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I n writing this Tenth Edition of Physics for Scientists and Engineers, we continue 
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gogical features that help support the learning and teaching processes. Drawing 
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fessors and students who use WebAssign, as well as reviewers’ suggestions, we have 
refined the text to better meet the needs of students and teachers.

This textbook is intended for a course in introductory physics for students major-
ing in science or engineering. The entire contents of the book in its extended ver-
sion could be covered in a three-semester course, but it is possible to use the mate-
rial in shorter sequences with the omission of selected chapters and sections. The 
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one semester of calculus. If that is not possible, the student should be enrolled in a 
concurrent course in introductory calculus.

Content
The material in this book covers fundamental topics in classical physics and pro-
vides an introduction to modern physics. The book is divided into six parts. Part 1 
(Chapters 1 to 14) deals with the fundamentals of Newtonian mechanics and the 
physics of fluids; Part 2 (Chapters 15 to 17) covers oscillations, mechanical waves, 
and sound; Part 3 (Chapters 18 to 21) addresses heat and thermodynamics; Part 4 
(Chapters 22 to 33) treats electricity and magnetism; Part 5 (Chapters 34 to 37) 
covers light and optics; and Part 6 (Chapters 38 to 44) deals with relativity and 
modern physics.

Objectives
This introductory physics textbook has three main objectives: to provide the stu-
dent with a clear and logical presentation of the basic concepts and principles of 
physics, to strengthen an understanding of the concepts and principles through a 
broad range of interesting real-world applications, and to develop strong problem-
solving skills through an effectively organized approach. To meet these objectives, 
we emphasize well-organized physical arguments and a focused problem-solving 
strategy. At the same time, we attempt to motivate the student through practical 
examples that demonstrate the role of physics in other disciplines, including engi-
neering, chemistry, and medicine.

An Integrative Approach to Course Materials
This new edition takes an integrative approach to course material with an opti-
mized, protected, online-only problem experience combined with rich textbook 
content designed to support an active classroom experience. This new opti-
mized online homework set is built on contextual randomizations and answer-
dependent student remediation for every problem. With this edition, you’ll have 
an integrative approach that seamlessly matches curated content to the learn-
ing environment for which it was intended—from in-class group problem solv-
ing to online homework that utilizes targeted feedback. This approach engages 
and guides students where they are at—whether they are studying online or with 
the textbook.

Students often approach an online homework problem by googling to find the 
right equation or explanation of the relevant concept; however, this approach has 
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eroded the value attributed to online homework as students leave the support of 
the program for unrelated help elsewhere and encounter imprecise information.

Students don’t need to leave WebAssign to get help when they are stuck—each 
problem has feedback that addresses the misconception or error a student made 
to reach the wrong answer. Each optimized problem also features comprehensive 
written solutions, and many have supporting video solutions that go through one 
contextual variant of the problem one step at a time. Since the optimized prob-
lem set is not in print, the content is protected from “solution providers” and will 
be augmented every year with updates to the targeted feedback based on actual 
student answers. 

Working in tandem with the optimized online homework, the printed textbook 
has been designed for an active learning experience that supports activities in the 
classroom as well as after-class practice and review. New content includes Think–
Pair–Share activities, context-rich problems, and a greater emphasis on symbolic 
and conceptual problems. All of the printed textbook’s problems will also be avail-
able to assign in WebAssign. 

Changes in the Tenth Edition
A large number of changes and improvements were made for the Tenth Edition of 
this text. Some of the new features are based on our experiences and on current 
trends in science education. Other changes were incorporated in response to com-
ments and suggestions offered by users of the Ninth Edition and by reviewers of 
the manuscript. The features listed here represent the major changes in the Tenth 
Edition.

WebAssign for Physics for Scientists and Engineers
WebAssign is a flexible and fully customizable online instructional solution that 
puts powerful tools in the hands of instructors, enabling you deploy assignments, 
instantly assess individual student and class performance, and help your students 
master the course concepts. With WebAssign’s powerful digital platform and 
content specific to Physics for Scientists and Engineers, you can tailor your course 
with a wide range of assignment settings, add your own questions and content, 
and access student and course analytics and communication tools. WebAssign 
for Physics for Scientists and Engineers includes the following new features for 
this edition.

Optimized Problems. Only available online via WebAssign, this problem set com-
bines new assessments with classic problems from Physics for Scientists and Engineers 
that have been optimized with just-in-time targeted feedback tailored to student 
responses and full student-focused solutions. Moving these problems so that they 
are only available online allows instructors to make full use of the capability of 
WebAssign to provide their students with dynamic assessment content, and reduces 
the opportunity for students to find online solutions through anti-search-engine 
optimizations. These problems reduce these opportunities both by making the text 
of the problem less searchable and by providing immediate assistance to students 
within the homework platform.

Interactive Video Vignettes (IVV) encourage students to address their alternate con-
ceptions outside of the classroom and can be used for pre-lecture activities in tra-
ditional or even workshop physics classrooms. Interactive Video Vignettes include 
online video analysis and interactive individual tutorials to address learning diffi-
culties identified by PER (Physics Education Research). Within the WebAssign plat-
form there are additional conceptual questions immediately following each IVV 
in order to evaluate student engagement with the material and reinforce the mes-
sage around these classic misconceptions. A screen shot from one of the Interactive 
Video Vignettes appears on the next page:
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New MCAT-Style Passage Problem Modules. Available only in WebAssign, these 30 
brand-new modules are modeled after the new MCAT exam’s “passage problems.” 
Each module starts with a text passage (often with accompanying photos/figures) 
followed by 5–6 multiple-choice questions. The passage and the questions are usu-
ally not confined to a single chapter, and feedback is available with each question.

New Life Science Problems. The online-only problems set for each chapter in WebAssign 
features two new life science problems that highlight the relevance of physics princi-
ples to those students taking the course who are majoring in one of the life sciences.

New What If? Problem Extensions. The online-only problems set for each chapter 
in WebAssign contains 6 new What If? extensions to existing problems. What If? 
extensions extend students’ understanding of physics concepts beyond the simple 
act of arriving at a numerical result.

Pre-Lecture Explorations combine interactive simulations with conceptual and ana-
lytical questions that guide students to a deeper understanding and help promote a 
robust physical intuition.

An Expanded Offering of All-New Integrated Tutorials. These Integrated Tutorials 
strengthen students’ problem-solving skills by guiding them through the steps in 
the book’s problem-solving process, and include meaningful feedback at each step 
so students can practice the problem-solving process and improve their skills. The 
feedback also addresses student preconceptions and helps them to catch algebraic 
and other mathematical errors. Solutions are carried out symbolically as long as 
possible, with numerical values substituted at the end. This feature promotes con-
ceptual understanding above memorization, helps students understand the effects 
of changing the values of each variable in the problem, avoids unnecessary repeti-
tive substitution of the same numbers, and eliminates round-off errors.

Increased Number of Fully Worked-Out Problem Solutions. Hundreds of solutions have 
been newly added to online end-of-chapter problems. Solutions step through prob-
lem-solving strategies as they are applied to specific problems.

Objective and Conceptual Questions Now Exclusively Available in WebAssign. Objective 
Questions are multiple-choice, true/false, ranking, or other multiple-guess-type 
questions. Some require calculations designed to facilitate students’ familiarity 
with the equations, the variables used, the concepts the variables represent, and 
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the relationships between the concepts. Others are more conceptual in nature and 
designed to encourage conceptual thinking. Objective Questions are also written 
with the personal response system user in mind, and most of the questions could 
easily be used in these systems. Conceptual Questions are more traditional short-
answer and essay-type questions that require students to think conceptually about 
a physical situation. More than 900 Objective and Conceptual Questions are avail-
able in WebAssign.

New Physics for Scientists and Engineers WebAssign Implementation Guide. The Imple-
mentation Guide provides instructors with occurrences of the different assignable 
problems, tutorials, questions, and activities that are available with each chapter 
of Physics for Scientists and Engineers in WebAssign. Instructors can use this man-
ual when making decisions about which and how many assessment items to assign. 
To facilitate this, an overview of how the assignable items are integrated into the 
course is included.

New Assessment Items
New Context-Rich Problems. Context-rich problems (identified with a CR  icon) always 
discuss “you” as the individual in the problem and have a real-world connection 
instead of discussing blocks on planes or balls on strings. They are structured like a 
short story and may not always explicitly identify the variable that needs to be eval-
uated. Context-rich problems may relate to the opening storyline of the chapter, 
might involve “expert witness” scenarios, which allow students to go beyond mathe-
matical manipulation by designing an argument based on mathematical results, or 
ask for decisions to be made in real situations. Selected new context-rich problems 
will only appear online in WebAssign. An example of a new context-rich problem 
appears below:

Chapter 8 Conservation of Energy

vi at the launch point in terms of g and h. (g) From 

ymax in terms of h and the launch angle u. (h) Would 
-

-

-

mk. In addition, both trails represent 

that came with her scooter claims that the fully charged bat-
tery is capable of providing 120 Wh of energy before being 
depleted. In preparation for the race, you go for a “test 
drive”: beginning with a fully charged battery, your grand-
mother rides beside you as you walk 5.00 km on flat ground. 
At the end of the walk, the battery usage indicator shows 
that 40.0% of the original energy in the battery remains. 
You also know that the combined weight of the scooter and 
your grandmother is 890 N. A few days later, filled with con-
fidence that the battery has sufficient energy, you and your 
grandmother drive to the 5K event. Unbeknownst to you, 
the 5K route is not on flat ground, but is all uphill, ending at 
a point higher than the starting line. A race official tells you 
that the total amount of vertical displacement on the route 
is 150 m. Should your grandmother accompany you on the 
walk, or will she be stranded when her battery runs out of 
energy? Assume that the only difference between your test 
drive and the actual event is the vertical displacement.

21. For saving energy, bicycling and walking are far more effi-
cient means of transportation than is travel by automobile. 
For example, when riding at 10.0 mi/h, a cyclist uses food 
energy at a rate of about 400 kcal/h above what he would use 
if merely sitting still. (In exercise physiology, power is often 
measured in kcal/h rather than in watts. Here 1 kcal 5 1  
nutritionist’s Calorie 5 4 186 J.) Walking at 3.00  mi/h 
requires about 220 kcal/h. It is interesting to compare 
these values with the energy consumption required for 
travel by car. Gasoline yields about 1.30 3 108 J/gal. Find 
the fuel economy in equivalent miles per gallon for a person 
(a) walking and (b) bicycling.

22. Energy is conventionally measured in Calories as well as in 

of two trails to reach the lodge. Both trails have the same 
coefficient of friction mk. In addition, both trails represent 
the same horizontal separation between the initial and final 
points. Trail A has a short, steep downslope and then a long, 
flat coast to the lodge. Trail B has a long, gentle downslope 
and then a short remaining flat coast to the lodge. Which 
trail will result in your arriving at the lodge with the highest 
final speed?

sectIon 8.5 Power

16. The electric motor of a model train accelerates the train from 
rest to 0.620 m/s in 21.0 ms. The total mass of the train is  
875 g. (a) Find the minimum power delivered to the train 
by electrical transmission from the metal rails during the 
acceleration. (b) Why is it the minimum power?

17. An energy-efficient lightbulb, taking in 28.0 W of power, 
can produce the same level of brightness as a conventional 
lightbulb operating at power 100 W. The lifetime of the 
energy-efficient bulb is 10 000 h and its purchase price is 
$4.50, whereas the conventional bulb has a lifetime of 750 h 
and costs $0.42. Determine the total savings obtained by 
using one energy-efficient bulb over its lifetime as opposed 
to using conventional bulbs over the same time interval. 
Assume an energy cost of $0.200 per kilowatt-hour.

18. An older-model car accelerates from 0 to speed v in a time 
interval of Dt. A newer, more powerful sports car accelerates 
from 0 to 2v in the same time period. Assuming the energy 
coming from the engine appears only as kinetic energy of 
the cars, compare the power of the two cars.

19. Make an order-of-magnitude estimate of the power a car 
engine contributes to speeding the car up to highway speed. 
In your solution, state the physical quantities you take as 
data and the values you measure or estimate for them. The 
mass of a vehicle is often given in the owner’s manual.

20. There is a 5K event coming up in your town. While talking 
to your grandmother, who uses an electric scooter for mobil-
ity, she says that she would like to accompany you on her 
scooter while you walk the 5.00-km distance. The manual 

nutritionist’s Calorie 5

22. 

as 1 kcal 5

addItIonal ProbleMs

23. A block of mass m 5

cal bowl of radius R 5

CR

R

�
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New Think–Pair–Share Problems and Activities. Think–Pair–Share problems and activi-
ties are similar to context-rich problems, but tend to benefit more from group discus-
sion because the solution is not as straightforward as for a single-concept problem. 
Some Think–Pair–Share problems require the group to discuss and make decisions; 
others are made more challenging by the fact that some information is not and can-
not be known. All chapters in the text have at least one Think–Pair–Share problem or 
activity; several more per chapter will be available only in WebAssign. Examples of a 
Think–Pair–Share Problem and a Think–Pair–Share Activity appear on the next page:

xiv Preface

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Content Changes
Reorganized Chapter 16 (Wave Motion). This combination of Chapters 16 and 17 from 
the last edition brings all of the fundamental material on traveling mechanical waves 
on strings and sound waves through materials together in one chapter. This allows for 
more close comparisons between the features of the two types of waves that are similar, 
such as derivations of the speed of the wave. The section on reflection and transmis-
sion of waves, details of which are not necessary in a chapter on traveling waves, was 
moved into Chapter 17 (Superposition and Standing Waves) for this edition, where it 
fits more naturally in a discussion of the effects of boundary conditions on waves.

Reorganization of Chapters 22–24. Movement of the material on continuous distri-
bution of charge out of Chapter 22 (Electric Fields) to Chapter 23 (Continuous 
Charge Distributions and Gauss’s Law) results in a chapter that is a more gradual 
introduction for students into the new and challenging topic of electricity. The 
chapter now involves only electric fields due to point charges and uniform electric 
fields due to parallel plates.

Chapter 23 previously involved only the analysis of electric fields due to continu-
ous charge distributions using Gauss’s law. Movement of the material on continu-
ous distribution of charge into Chapter 23 results in an entire chapter based on 
the analysis of fields from continuous charge distributions, using two techniques: 
integration and Gauss’s law.

Chapter 23 previously contained a discussion of four properties of isolated 
charged conductors. Three of the properties were discussed and argued from basic 
principles, while the student was referred to necessary material in the next chapter 
(on Electric Potential) for a discussion of the fourth property. With the movement 
of this discussion into Chapter 24 for this edition, the student has learned all of 
the necessary basic material before the discussion of properties of isolated charged 
conductors, and all four properties can be argued from basic principles together.

Reorganized Chapter 43 (Nuclear Physics). Chapters 44 (Nuclear Structure) and 45 
(Applications of Nuclear Physics) in the last edition have been combined in this 
edition. This new Chapter 43 allows all of the material on nuclear physics to be 
studied together. As a consequence, we now have a series of the final five chapters 
of the text that each cover in one chapter focused applications of the fundamental 
principles studied before: Chapter 40 (Quantum Mechanics), Chapter 41 (Atomic 
Physics), Chapter 42 (Molecules and Solids), Chapter 43 (Nuclear Physics), and 
Chapter 44 (Particle Physics).

New Storyline Approach to Chapter-Opening Text. Each chapter opens with a Story-
line section. This feature provides a continuous storyline through the whole book of 
“you” as an inquisitive physics student observing and analyzing phenomena seen in 

-
der horizontally between the supports as shown in the end 
view in Figure TP10.1a. The wood can be sanded and oiled 
to almost eliminate friction. In this way, the cylindrical arti-
fact is free to rotate around its long, horizontal axis. You 
wrap a long piece of twine several times around the cylinder 

the beginning of the track and at the same radial distance 
from the center of the track, and undergo constant transla-
tional acceleration of magnitude a. All cars have identical 
tires. Show that all of the cars skid outward off the track 
at the same angular position around the track, regardless 
of their mass. To solve this problem, the stubborn owner 
still does not want to spend the money on banked roadways, 
so he simply has a circular track built with the same road 
material but a larger radius. What happens?

3. ACTIVITY  (a) Place ten pennies on a horizontal meterstick, 
with a penny at 10 cm, 20 cm, 30 cm, etc., out to 100 cm.  
Carefully pick up the meterstick, keeping it horizontal, and 
have a member of the group make a video recording of the 
following event, using a smartphone or other device. While 
the video recording is underway, release the 100-cm end of 
the meterstick while the 0-cm end rests on someone’s fin-
ger or the edge of the desk. By stepping through the video 
images or watching the video in slow motion, determine 
which pennies first lose contact with the meterstick as it 
falls. (b) Make a theoretical determination of which pen-
nies should first lose contact and compare to your experi-
mental result.

a b

Figure TP10.1
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think–Pair– hare
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working as a delivery person for a dairy store. In 
the back of your pickup truck is a crate of eggs. The dairy 
company has run out of bungee cords, so the crate is not 
tied down. You have been told to drive carefully because 
the coefficient of static friction between the crate and the 
bed of the truck is 0.600. You are not worried, because you 
are traveling on a road that appears perfectly straight. Due 
to your confidence and inattention, your speed has crept 

upward to 45.0 mi/h. Suddenly, you see a curve ahead with 
a warning sign saying, “Danger: unbanked curve with radius 
of curvature 35.0 m.” You are 15.0 m from the beginning 
of the curve. What can you do to save the eggs: (i) take the 
curve at 45.0 mi/h, (ii) brake to a stop before entering the 
curve to think about it, or (iii) slow down to take the curve 
at a slower speed? Discuss these options in your group and 
determine if there is a best course of action.

2. ACTIvITY  Find a YouTube video that shows the complete 
cycle for an amusement park ride called the “Roundup.” In 
this ride, a rider stands against a wall at the edge of a disk 
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 With our new knowledge of forces, we can extend 
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upward to 45.0 mi/h. Suddenly, you see a curve ahead with 
a warning sign saying, “Danger: unbanked curve with radius 
of curvature 35.0 m.” You are 15.0 m from the beginning 
of the curve. What can you do to save the eggs: (i) take the 
curve at 45.0 mi/h, (ii) brake to a stop before entering the 
curve to think about it, or (iii) slow down to take the curve 
at a slower speed? Discuss these options in your group and 
determine if there is a best course of action.

2. ACTIvITY  Find a YouTube video that shows the complete 
cycle for an amusement park ride called the “Roundup.” In 
this ride, a rider stands against a wall at the edge of a disk 

9/14/17   9:45 AM
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everyday life. Many chapters’ Storyline involves measurements made with a smart-
phone, observations of YouTube videos, or investigations on the Internet.

New Chapter-Opening Connections. The start of each chapter also features a Connec-
tions section that shows how the material in the chapter connects to previously studied 
material and to future material. The Connections section provides a “big picture” of 
the concepts, explains why this chapter is placed in this particular location relative to 
the other chapters, and shows how the structure of physics builds on previous material.

Text Features
Most instructors believe that the textbook selected for a course should be the stu-
dent’s primary guide for understanding and learning the subject matter. Further-
more, the textbook should be easily accessible and should be styled and written to 
facilitate instruction and learning. With these points in mind, we have included 
many pedagogical features, listed below, that are intended to enhance its useful-
ness to both students and instructors.

Problem Solving and Conceptual Understanding
Analysis Model Approach to Problem Solving. Students are faced with hundreds of prob-
lems during their physics courses. A relatively small number of fundamental prin-
ciples form the basis of these problems. When faced with a new problem, a physicist 
forms a model of the problem that can be solved in a simple way by identifying the 
fundamental principle that is applicable in the problem. For example, many problems 
involve conservation of energy, Newton’s second law, or kinematic equations. Because 
the physicist has studied these principles and their applications extensively, he or she 
can apply this knowledge as a model for solving a new problem. Although it would be 
ideal for students to follow this same process, most students have difficulty becom-
ing familiar with the entire palette of fundamental principles that are available. It is 
easier for students to identify a situation rather than a fundamental principle.

The Analysis Model approach lays out a standard set of situations that appear in most 
physics problems. These situations are based on an entity in one of four simplification 
models: particle, system, rigid object, and wave. Once the simplification model is identified, 
the student thinks about what the entity is doing or how it interacts with its environ-
ment. This leads the student to identify a particular Analysis Model for the problem. 
For example, if an object is falling, the object is recognized as a particle experiencing 
an acceleration due to gravity that is constant. The student has learned that the Analy-
sis Model of a particle under constant acceleration describes this situation. Furthermore, 
this model has a small number of equations associated with it for use in starting prob-
lems, the kinematic equations presented in Chapter 2. Therefore, an understanding of 
the situation has led to an Analysis Model, which then identifies a very small number of 
equations to start the problem, rather than the myriad equations that students see in 
the text. In this way, the use of Analysis Models leads the student to identify the funda-
mental principle. As the student gains more experience, he or she will lean less on the 
Analysis Model approach and begin to identify fundamental principles directly.

The Analysis Model Approach to Problem Solving is presented in full in Chap-
ter 2 (Section 2.4, pages 30–32), and provides students with a structured process for 
solving problems. In all remaining chapters, the strategy is employed explicitly in 
every example so that students learn how it is applied. Students are encouraged to 
follow this strategy when working end-of-chapter problems.

Analysis Model descriptive boxes appear at the end of any section that intro-
duces a new Analysis Model. This feature recaps the Analysis Model introduced in 
the section and provides examples of the types of problems that a student could 
solve using the Analysis Model. These boxes function as a “refresher” before stu-
dents see the Analysis Models in use in the worked examples for a given section. 
The approach is further reinforced in the end-of-chapter summary under the 
heading Analysis Models for Problem Solving, and through the Analysis Model Tutori-
als that are based on selected end-of-chapter problems and appear in WebAssign.
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Analysis Model Tutorials. John Jewett developed 165 tutorials (ones that appear 
in  the printed text’s problem sets are indicated by an  icon) that strengthen 
students’ problem-solving skills by guiding them through the steps in the problem-
solving process. Important first steps include making predictions and focusing on 
physics concepts before solving the problem quantitatively. A critical component 
of these tutorials is the selection of an appropriate Analysis Model to describe 
what is going on in the problem. This step allows students to make the important 
link between the situation in the problem and the mathematical representation of 
the situation. Analysis Model tutorials include meaningful feedback at each step 
to help students practice the problem-solving process and improve their skills. In 
addition, the feedback addresses student misconceptions and helps them to catch 
algebraic and other mathematical errors. Solutions are carried out symbolically as 
long as possible, with numerical values substituted at the end. This feature helps 
students understand the effects of changing the values of each variable in the prob-
lem, avoids unnecessary repetitive substitution of the same numbers, and elimi-
nates round-off errors. Feedback at the end of the tutorial encourages students to 
compare the final answer with their original predictions.

Worked Examples. All in-text worked examples are presented in a two-column format  
to better reinforce physical concepts. The left column shows textual information 
that describes the steps for solving the problem. The right column shows the math-
ematical manipulations and results of taking these steps. This layout facilitates 
matching the concept with its mathematical execution and helps students organize 
their work. The examples closely follow the Analysis Model Approach to Problem 
Solving introduced in Section 2.4 to reinforce effective problem-solving habits. All 
worked examples in the text may be assigned for homework in WebAssign. A sam-
ple of a worked example can be found on the next page. 

Examples consist of two types. The first (and most common) example type pre-
sents a problem and numerical answer. The second type of example is conceptual 
in nature. To accommodate increased emphasis on understanding physical con-
cepts, the many conceptual examples are labeled as such and are designed to help 
students focus on the physical situation in the problem. Solutions in worked exam-
ples are presented symbolically as far as possible, with numerical values substituted 
at the end. This approach will help students think symbolically when they solve 
problems instead of unnecessarily inserting numbers into intermediate equations.

What If? Approximately one-third of the worked examples in the text contain a 
What If? feature. At the completion of the example solution, a What If? question 
offers a variation on the situation posed in the text of the example. This feature 
encourages students to think about the results of the example, and it also assists in 
conceptual understanding of the principles. What If? questions also prepare stu-
dents to encounter novel problems that may be included on exams. Selected end-
of-chapter problems also include this feature.

Quick Quizzes. Students are provided an opportunity to test their understanding of 
the physical concepts presented through Quick Quizzes. The questions require stu-
dents to make decisions on the basis of sound reasoning, and some of the questions 
have been written to help students overcome common misconceptions. Quick Quiz-
zes have been cast in an objective format, including multiple-choice, true–false, 
and ranking. Answers to all Quick Quiz questions are found at the end of the text. 
Many instructors choose to use such questions in a “peer instruction” teaching style 
or with the use of personal response system “clickers,” but they can be used in stan-
dard quiz format as well. An example of a Quick Quiz follows below.

Q UICk QUIz 7.5  A dart is inserted into a spring-loaded dart gun by pushing 
the spring in by a distance x. For the next loading, the spring is compressed a 
distance 2x. How much faster does the second dart leave the gun compared with 
the first? (a) four times as fast (b) two times as fast (c) the same (d) half as fast 
(e) one-fourth as fast
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What If? statements appear in about one-third of the worked examples and offer a variation on the situation 
posed in the text of the example. For instance, this feature might explore the effects of changing the conditions of 
the situation, determine what happens when a quantity is taken to a particular limiting value, or question whether 
additional information can be determined about the problem situation. This feature encourages students to think 
about the results of the example and assists in conceptual understanding of the principles.

Each solution has 
been written to 
closely follow the 
Analysis Model 
Approach to Prob-
lem Solving as out-
lined in Section 2.4 
(pages 30–32), 
so as to reinforce 
good problem-
solving habits.

Each step of the 
solution is detailed 
in a two-column 
format. The left 
column provides 
an explanation for 
each mathematical 
step in the right 
column, to better 
reinforce the physi-
cal concepts.

 All worked examples are also 
available to be assigned as interactive examples in 
WebAssign.

   
B 5 8 units. Which pair of numbers represents the largest and smallest possible 
values for the magnitude of the resultant vector R

S
5 A

S
1 B

S
? (a) 14.4 units, 

4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers

Q uiCk Quiz 3.3 If vector B
S

 is added to vector A
S

, which two of the following 
choices must be true for the resultant vector to be equal to zero? (a) A

S
 and  

B
S

 are parallel and in the same direction. (b) A
S

 and B
S

 are parallel and in 
opposite directions. (c) A

S
 and B

S
 have the same magnitude. (d) A

S
 and B

S
  

are perpendicular.

 Example 3.2    A Vacation Trip

A car travels 20.0 km due north and then 35.0 km 
in a direction 60.08 west of north as shown in 
Figure 3.11a. Find the magnitude and direction of 
the car’s resultant displacement.

S O L U T I O N

Conceptualize  The two vectors A
S

 and B
S

 that appear in  
Figure 3.11a help us conceptualize the problem. The 
resultant vector R

S
 has also been drawn. We expect its 

magnitude to be a few tens of kilometers. The angle 
b that the resultant vector makes with the y axis is 
expected to be less than 608, the angle that vector 
B
S

 makes with the y axis.

Categorize We can categorize this example as a simple analysis problem in vector addition. The displacement R
S

 is the resul-
tant when the two individual displacements A

S
 and B

S
 are added. We can further categorize it as a problem about the analysis 

of triangles, so we appeal to our expertise in geometry and trigonometry.

Analyze In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first way is to 
solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R

S
 and its direction in Fig-

ure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors to check 
your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to three-digit 
precision. Try using these tools on R

S
 in Figure 3.11a and compare to the trigonometric analysis below!

The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of R
S

 can be obtained 
from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

Use R2 5 A2 1 B2 2 2AB cos u from the law of cosines to  R 5 ÏA2 1 B 2 2 2AB cos u 
find R:

Substitute numerical values, noting that  R 5 Ïs20.0 kmd2 1 s35.0 kmd2 2 2s20.0 kmds35.0 kmd cos 1208 
u 5 1808 2 608 5 1208: 5   48.2 km

Use the law of sines (Appendix B.4) to find the direction  
sin b

B
5

sin u
R

 
of R

S
 measured from the northerly direction:

 sin b 5
B
R

  sin u 5
35.0 km
48.2 km

  sin 1208 5 0.629

 b 5   38.98

The resultant displacement of the car is 48.2 km in a direction 38.98 west of north.

y (km)

40

20

60.0�

x (km)
0

y (km)

20

x (km)
0�20�20

40

bb

u

E

N

S

W

A
S

 

B
S

 

R
S

A
S

 

B
S

 

R
S

a b

Figure 3.11  (Example 3.2) (a) Graphical method for finding the resul-
tant displacement vector R

S
5 A

S
1 B

S
. (b) Adding the vectors in reverse 

order sB
S

1 A
S

d gives the same result for R
S

.

continued
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   3.4    Components of a Vector and Unit Vectors
The graphical method of adding vectors is not recommended whenever high 
accuracy is required or in three-dimensional problems. In this section, we 
describe a method of adding vectors that makes use of the projections of vectors 
along coordinate axes. These projections are called the components of the vec-
tor or its rectangular components. Any vector can be completely described by its 
components.

Consider a vector A
S

 lying in the xy plane and making an arbitrary angle u 
with the positive x axis as shown in Figure 3.12a. This vector can be expressed 
as the sum of two other component vectors A

S
x , which is parallel to the x axis, 

and A
S

y , which is parallel to the y axis. From the figure, we see that the three 
vectors form a right triangle and that A

S
5 A

S
x 1 A

S
y. We shall often refer to the 

“components of a vector A
S

,” written Ax and Ay (without the boldface notation). 
Figure 3.12b shows the component vector A

S
y moved to the left so that it lies along 

the A  A
S

 

3.2 c o n t i n u e d

Finalize Does the angle b that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of R

S
 is larger 

than that of both A
S

 and B
S

? Are the units of R
S

 correct?
Although the head to tail method of adding vectors works 

well, it suffers from two disadvantages. First, some people 

find using the laws of cosines and sines to be awkward. Sec-
ond, a triangle only results if you are adding two vectors. If 
you are adding three or more vectors, the resulting geomet-
ric shape is usually not a triangle. In Section 3.4, we explore 
a new method of adding vectors that will address both of 
these disadvantages.

W h A T  I f ?  Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.08 west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an addition is 
irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same resultant vector.

Pitfall Prevention 3.2
x and y Components Equations 3.8 
and 3.9 associate the cosine of the 
angle with the x component and 
the sine of the angle with the y com-
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Pitfall Preventions. More than two hundred Pitfall Preventions (such as the one to 
the right) are provided to help students avoid common mistakes and misunder-
standings. These features, which are placed in the margins of the text, address 
both common student misconceptions and situations in which students often follow 
unproductive paths.

Summaries. Each chapter contains a summary that reviews the important concepts 
and equations discussed in that chapter. The summary is divided into three sections: 
Definitions, Concepts and Principles, and Analysis Models for Problem Solving.  
In each section, flash card–type boxes focus on each separate definition, concept, 
principle, or analysis model.

Problems Sets. For the Tenth Edition, the authors reviewed each question and problem 
and incorporated revisions designed to improve both readability and assignability. 

Problems. An extensive set of problems is included at the end of each chapter; in 
all, the printed textbook contains more than 2 000 problems, while another 1 500 
optimized problems are available only in WebAssign. Answers for odd-numbered 
problems in the printed text are provided at the end of the book, and solutions for 
all printed text problems are found in the Instructor’s Solutions Manual.

The end-of-chapter problems are organized by the sections in each chapter 
(about two-thirds of the problems are keyed to specific sections of the chapter). 
Within each section, the problems now “platform” students to higher-order think-
ing by presenting all the straightforward problems in the section first, followed by 
the intermediate problems. (The problem numbers for straightforward problems 
are printed in black; intermediate-level problems are in blue.) The Additional Prob-
lems section contains problems that are not keyed to specific sections. At the end of 
each chapter is the Challenge Problems section, which gathers the most difficult prob-
lems for a given chapter in one place. (Challenge Problems have problem numbers 
marked in red.) 

There are several kinds of problems featured in this text:

V  Watch It video solutions available in WebAssign explain fundamental problem-
solving strategies to help students step through selected problems.

 Quantitative/Conceptual problems contain parts that ask students to think both 
quantitatively and conceptually. An example of a Quantitative/Conceptual prob-
lem appears here:

PITFAll PrEvENTION 16.2
two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.

The problem is identified 
with a  icon.

Parts (a)–(c) of the problem ask 
for quantitative calculations.

Part (d) asks a conceptual 
question about the situation.
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as shown in Figure P8.32. 
In a time interval Dt, a new 
disk of air of mass Dm must 
be moved a distance v Dt 
and hence must be given 
a kinetic energy 1

2 sDmdv2. 
Using this model, show that 
the car’s power loss owing 
to air resistance is 1

2rAv3 
and that the resistive force acting on the car is 12rAv2, where 
r is the density of air. Compare this result with the empirical 
expression 12DrAv2 for the resistive force.

33. Heedless of danger, a child leaps onto a pile of old mat-
tresses to use them as a trampoline. His motion between two 
particular points is described by the energy conservation 
equation

1
2s46.0 kgds2.40 mysd2 1 s46.0 kgds9.80 mys2ds2.80 m 1 xd 5  

1
2s1.94 3 104 Nymdx2

  (a) Solve the equation for x. (b) Compose the statement of 
a problem, including data, for which this equation gives the 
solution. (c) Add the two values of x obtained in part (a) 
and divide by 2. (d) What is the significance of the resulting 
value in part (c)?

34. Review. Why is the following situation impossible? A new high-
speed roller coaster is claimed to be so safe that the passen-
gers do not need to wear seat belts or any other restraining 
device. The coaster is designed with a vertical circular sec-
tion over which the coaster travels on the inside of the cir-
cle so that the passengers are upside down for a short time 
interval. The radius of the circular section is 12.0 m, and the 
coaster enters the bottom of the circular section at a speed of  
22.0 m/s. Assume the coaster moves without friction on the 
track and model the coaster as a particle.

35. A horizontal spring attached to a wall has a force constant 
of k 5 850 N/m. A block of mass m 5 1.00 kg is attached 
to the spring and rests on a frictionless, horizontal sur-
face as in Figure P8.35. (a) The block is pulled to a posi-
tion xi 5 6.00 cm from equilibrium and released. Find the 
elastic potential energy stored in the spring when the block 
is 6.00  cm from equilibrium and when the block passes 
through equilibrium. (b) Find the speed of the block as it 
passes through the equilibrium point. (c) What is the speed 
of the block when it is at a position xi /2 5 3.00 cm? (d) Why 
isn’t the answer to part (c) half the answer to part (b)?

36. More than 2 300 years ago, the Greek teacher Aristotle 
wrote the first book called Physics. Put into more precise ter-
minology, this passage is from the end of its Section Eta:

Let P be the power of an agent causing motion; w, the 
load moved; d, the distance covered; and Dt, the time 
interval required. Then (1) a power equal to P will in 

 

A

v t�

vS

Figure P8.32

x � xix � xi/2

k
m

x � 0

Figure P8.35
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In a time interval Dt, a new 
disk of air of mass Dm must 
be moved a distance v Dt 
and hence must be given 
a kinetic energy 1

2 sDmdv2. 
Using this model, show that 
the car’s power loss owing 
to air resistance is 1

2rAv3 
and that the resistive force acting on the car is 12rAv2, where 
r is the density of air. Compare this result with the empirical 
expression 12DrAv2 for the resistive force.

33. Heedless of danger, a child leaps onto a pile of old mat-
tresses to use them as a trampoline. His motion between two 
particular points is described by the energy conservation 
equation

1
2s46.0 kgds2.40 mysd2 1 s46.0 kgds9.80 mys2ds2.80 m 1 xd 5  

1
2s1.94 3 104 Nymdx2

  (a) Solve the equation for x. (b) Compose the statement of 
a problem, including data, for which this equation gives the 
solution. (c) Add the two values of x obtained in part (a) 
and divide by 2. (d) What is the significance of the resulting 
value in part (c)?

34. Review. Why is the following situation impossible? A new high-
speed roller coaster is claimed to be so safe that the passen-
gers do not need to wear seat belts or any other restraining 
device. The coaster is designed with a vertical circular sec-
tion over which the coaster travels on the inside of the cir-
cle so that the passengers are upside down for a short time 
interval. The radius of the circular section is 12.0 m, and the 
coaster enters the bottom of the circular section at a speed of  
22.0 m/s. Assume the coaster moves without friction on the 
track and model the coaster as a particle.

35. A horizontal spring attached to a wall has a force constant 
of k 5 850 N/m. A block of mass m 5 1.00 kg is attached 
to the spring and rests on a frictionless, horizontal sur-
face as in Figure P8.35. (a) The block is pulled to a posi-
tion xi 5 6.00 cm from equilibrium and released. Find the 
elastic potential energy stored in the spring when the block 
is 6.00  cm from equilibrium and when the block passes 
through equilibrium. (b) Find the speed of the block as it 
passes through the equilibrium point. (c) What is the speed 
of the block when it is at a position xi /2 5 3.00 cm? (d) Why 
isn’t the answer to part (c) half the answer to part (b)?

36. More than 2 300 years ago, the Greek teacher Aristotle 
wrote the first book called Physics. Put into more precise ter-
minology, this passage is from the end of its Section Eta:

Let P be the power of an agent causing motion; w, the 
load moved; d, the distance covered; and Dt, the time 
interval required. Then (1) a power equal to P will in 

an interval of time equal to Dt move w
or (2)  it will move w/2 the given distance d
interval Dt/2. Also, if (3) the given power P
given load w a distance d/2 in time interval Dt
(4) P/2 will move w/2 the given distance d
time interval Dt.

  
equation P  Dt 5 bwd, where b

ality constant.

37. Review.

an angle ui 5 08

the vertical. What is this angle?

38. Review. Why is the following 
situation impossible? An ath-
lete tests her hand strength 
by having an assistant hang 
weights from her belt as she 
hangs onto a horizontal 
bar with her hands. When 
the weights hanging on her 
belt have increased to 80% 
of her body weight, her 
hands can no longer sup-
port her and she drops to 
the floor. Frustrated at not 
meeting her hand-strength 

platform, starting from rest with the ropes at an angle u
60.08

performer’s body is small compared to the length ,
resistance is negligible.

39. An airplane of mass 1.50 3 104

the airplane has a magnitude of 4.0 3 104

of the thrust in this situation is 7.50 3 104

has traveled 5.0 3 102 m.

40. A pendulum, comprising a light string of length L

a peg located a distance d

A

v t�

vS

Figure P8.32
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Figure P8.38

 Symbolic problems ask students to solve a problem using only symbolic manipu-
lation. Reviewers of the Ninth Edition (as well as the majority of respondents to a 
large survey) asked specifically for an increase in the number of symbolic prob-
lems found in the text because it better reflects the way instructors want their 
 students to think when solving physics problems. An example of a Symbolic prob-
lem appears on the next page:

 Preface xix
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 Guided Problems help students break problems into steps. A physics problem 
typically asks for one physical quantity in a given context. Often, however, several 
concepts must be used and a number of calculations are required to obtain that 
final answer. Many students are not accustomed to this level of complexity and 
often don’t know where to start. A Guided Problem breaks a standard problem into 
smaller steps, enabling students to grasp all the concepts and strategies required 
to arrive at a correct solution. Unlike standard physics problems, guidance is often 
built into the problem statement. Guided Problems are reminiscent of how a stu-
dent might interact with a professor in an office visit. These problems (there is one 
in every chapter of the text) help train students to break down complex problems 
into a series of simpler problems, an essential problem-solving skill. An example of 
a Guided Problem appears here:

No numbers appear in 
the problem statement.

The answer to the problem 
is purely symbolic.

 36. g(cos f tan u 2 sin f)

The figure shows only 
symbolic quantities.

The problem is identified 
with a  icon.

 Why is the following situation impos-
sible? A mischievous child goes to an 
amusement park with his family. On one ride, after a severe 
scolding from his mother, he slips out of his seat and climbs 
to the top of the ride’s structure, which is shaped like a 
cone with its axis vertical and its sloped sides making an 
angle of u 5 20.08 with the horizontal as shown in Figure 
P6.32. This part of the structure rotates about the vertical 
central axis when the ride operates. The child sits on the 
sloped surface at a point d 5 5.32 m down the sloped side 
from the center of the cone and pouts. The coefficient of 
static friction between the boy and the cone is 0.700. The 
ride operator does not notice that the child has slipped 
away from his seat and so continues to operate the ride. As 
a result, the sitting, pouting boy rotates in a circular path at 
a speed of 3.75 m/s.

 The pilot of an airplane executes a loop-the-loop maneu-
ver in a vertical circle. The speed of the airplane is 
300  mi/h at the top of the loop and 450 mi/h at the 
bottom, and the radius of the circle is 1 200 ft. (a) What  
is the pilot’s apparent weight at the lowest point if his true 
weight is 160 lb? (b) What is his apparent weight at the high-
est point? (c) What If? Describe how the pilot could experi-
ence weightlessness if both the radius and the speed can be 
varied. Note: His apparent weight is equal to the magnitude 
of the force exerted by the seat on his body.

 A basin surrounding a drain has the shape of a circular 
cone opening upward, having everywhere an angle of 35.08 
with the horizontal. A 25.0-g ice cube is set sliding around 
the cone without friction in a horizontal circle of radius R. 
(a) Find the speed the ice cube must have as a function of 
R. (b) Is any piece of data unnecessary for the solution? Sup-
pose R is made two times larger. (c) Will the required speed 
increase, decrease, or stay constant? If it changes, by what 
factor? (d) Will the time interval required for each revolu-
tion increase, decrease, or stay constant? If it changes, by 
what factor? (e) Do the answers to parts (c) and (d) seem 
contradictory? Explain.

 Review. While learning to drive, you are in a 1 200-kg car 
moving at 20.0 m/s across a large, vacant, level parking lot. 
Suddenly you realize you are heading straight toward the 

wheel, what is the minimum distance you must be from the 
wall to avoid a collision? (d) Of the two methods in parts (b) 
and (c), which is better for avoiding a collision? Or should 
you use both the brakes and the steering wheel, or neither? 
Explain. (e) Does the conclusion in part (d) depend on the 
numerical values given in this problem, or is it true in gen-
eral? Explain.

36. A truck is moving with 
constant acceleration 
a up a hill that makes 
an angle f with the 
horizontal as in Figure 
P6.36. A small sphere 
of mass m is suspended 
from the ceiling of the 
truck by a light cord. If 
the pendulum makes 
a constant angle u with the perpendicular to the ceiling, 
what is a?

37. Because the Earth rotates about its axis, a point on the equa-
tor experiences a centripetal acceleration of 0.033 7  m/s2,  
whereas a point at the poles experiences no centripe-
tal acceleration. If a person at the equator has a mass of 
75.0 kg, calculate (a) the gravitational force (true weight) on 
the person and (b) the normal force (apparent weight) on 
the person. (c) Which force is greater? Assume the Earth is 
a uniform sphere and take g 5 9.800 m/s2.

38. A puck of mass m1 is tied 
to a string and allowed 
to revolve in a circle of 
radius R on a friction-
less, horizontal table. 
The other end of the 
string passes through 
a small hole in the cen-
ter of the table, and 
an object of mass m2 is 
tied to it (Fig. P6.38). 
The suspended object 
remains in equilibrium while the puck on the tabletop 
revolves. Find symbolic expressions for (a) the tension in the 
string, (b) the radial force acting on the puck, and (c) the 
speed of the puck. (d) Qualitatively describe what will hap-
pen in the motion of the puck if the value of m2 is increased 
by placing a small additional load on the puck. (e) Qualita-
tively describe what will happen in the motion of the puck 
if the value of m2 is instead decreased by removing a part of 
the hanging load.

39. Galileo thought about whether acceleration should be 
defined as the rate of change of velocity over time or as 
the rate of change in velocity over distance. He chose the 
former, so let’s use the name “vroomosity” for the rate of 
change of velocity over distance. For motion of a particle 
on a straight line with constant acceleration, the equation 
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The goal of the problem 
is identified.

Analysis begins by identifying 
the appropriate analysis model.

Students are provided 
with suggestions for steps 
to solve the problem.

The problem is identified 
with a  icon.

The calculation 
associated with the  
goal is requested.
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block if the water in it froze? (The bulk modulus of ice is 
2.00 3 109 N/m2.)

23. Review. A 30.0-kg hammer, moving with speed 20.0 m/s, 
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the aver-
age strain in the spike during the impact?

addItIonal ProbleMs

24. A uniform beam resting on two pivots has a length L 5 6.00 m  
and mass M 5 90.0 kg. The pivot under the left end exerts a 
normal force n1 on the beam, and the second pivot located a 
distance , 5 4.00 m from the left end exerts a normal force 
n2. A woman of mass m 5 55.0 kg steps onto the left end of the 
beam and begins walking to the right as in Figure P12.24.  
The goal is to find the woman’s position when the beam 
begins to tip. (a) What is the appropriate analysis model for 
the beam before it begins to tip? (b) Sketch a force diagram 
for the beam, labeling the gravitational and normal forces 
acting on the beam and placing the woman a distance x to 
the right of the first pivot, which is the origin. (c) Where is 
the woman when the normal force n1 is the greatest?  
(d) What is n1 when the beam is about to tip? (e) Use Equa-
tion 12.1 to find the value of n2 when the beam is about to tip.  
(f) Using the result of part (d) and Equation 12.2, with torques 
computed around the second pivot, find the woman’s position 
x when the beam is about to tip. (g) Check the answer to part 
(e) by computing torques around the first pivot point.

25. A bridge of length 50.0 m and mass 8.00 3 104 kg is supported 
on a smooth pier at each end as shown in Figure P12.25. A 
truck of mass 3.00 3 104 kg is located 15.0 m from one end. 
What are the forces on the bridge at the points of support?

27. The lintel of prestressed reinforced concrete in Fig-
ure P12.27 is 1.50 m long. The concrete encloses one steel 
reinforcing rod with cross-sectional area 1.50 cm2. The rod 
joins two strong end plates. The cross- sectional area of the 
concrete perpendicular to the rod is 50.0 cm2. Young’s mod-
ulus for the concrete is 30.0 3 109 N/m2. After the concrete 
cures and the original tension T1 in the rod is released, the 
concrete is to be under compressive stress 8.00 3 106 N/m2.  
(a) By what distance will the rod compress the concrete 
when the original tension in the rod is released? (b) What is 
the new tension T2 in the rod? (c) The rod will then be how 
much longer than its unstressed 
length? (d)  When the concrete 
was poured, the rod should have 
been stretched by what exten-
sion distance from its unstressed 
length? (e)  Find the required 
original tension T1 in the rod.

28. The following equations are obtained from a force diagram 
of a rectangular farm gate, supported by two hinges on the 
left-hand side. A bucket of grain is hanging from the latch.

 2A  1 C 5 0

   1B 2 392 N 2 50.0 N 5 0

A(0) 1 B(0) 1 C(1.80 m) 2 392 N(1.50 m)

2 50.0 N(3.00 m) 5 0

  (a) Draw the force diagram and complete the statement of the 
problem, specifying the unknowns. (b) Determine the values 
of the unknowns and state the physical meaning of each.

29. A hungry bear weighing 700 N walks out on a beam in an 
attempt to retrieve a basket of goodies hanging at the end of 
the beam (Fig. P12.29). The beam is uniform, weighs 200 N, 
and is 6.00 m long, and it is supported by a wire at an angle 
of u 5 60.0°. The basket weighs 80.0 N. (a) Draw a force dia-
gram for the beam. (b) When the bear is at x 5 1.00 m, find 
the tension in the wire supporting the beam and the compo-
nents of the force exerted by the wall on the left end of the 
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Biomedical problems. These problems (indicated with a  icon) highlight the rel-
evance of physics principles to those students taking this course who are majoring 
in one of the life sciences.

T  Master It Tutorials available in WebAssign help students solve problems by hav-
ing them work through a stepped-out solution.
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Impossibility problems. Physics education research has focused heavily on the 
 problem-solving skills of students. Although most problems in this text are 
structured in the form of providing data and asking for a result of computation, 
two problems in each chapter, on average, are structured as impossibility prob-
lems. They begin with the phrase Why is the following situation impossible? That is 
followed by the description of a situation. The striking aspect of these problems is 
that no question is asked of the students, other than that in the initial italics. The 
student must determine what questions need to be asked and what calculations 
need to be performed. Based on the results of these calculations, the student 
must determine why the situation described is not possible. This determination 
may require information from personal experience, common sense, Internet or 
print research, measurement, mathematical skills, knowledge of human norms, 
or scientific thinking.

These problems can be assigned to build critical thinking skills in students. 
They are also fun, having the aspect of physics “mysteries” to be solved by students 
individually or in groups. An example of an impossibility problem appears here:

Paired problems. These problems are otherwise identical, one asking for a numeri-
cal solution and one asking for a symbolic derivation. There is at least one pair of 
these problems in most chapters, indicated by  cyan shading  in the end-of-chapter 
problems set.

Review problems. Many chapters include review problems requiring the student to 
combine concepts covered in the chapter with those discussed in previous chapters. 
These problems (marked Review) reflect the cohesive nature of the principles in 
the text and verify that physics is not a scattered set of ideas. When facing a real-
world issue such as global warming or nuclear weapons, it may be necessary to call 
on ideas in physics from several parts of a textbook such as this one.

“Fermi problems.” One or more problems in most chapters ask the student to reason 
in order-of-magnitude terms.

Design problems. Several chapters contain problems that ask the student to deter-
mine design parameters for a practical device so that it can function as required.

Calculus-based problems. Every chapter contains at least one problem applying ideas 
and methods from differential calculus and one problem using integral calculus.

Artwork. Every piece of artwork in the Tenth Edition is in a modern style that helps 
express the physics principles at work in a clear and precise fashion. Focus pointers 
are included with many figures in the text; these either point out important aspects 
of a figure or guide students through a process illustrated by the artwork or photo. 
This format helps those students who are more visual learners. An example of a 
figure with a focus pointer appears on the next page.

The initial phrase in italics signals 
an impossibility problem.

A situation 
is described.

No question is asked. The student 
must determine what needs to be 
calculated and why the situation 
is impossible.

8 with the hor-
-

-

-
d, 

8 east of north. 
8 

-

 

addItIonal ProbleMs

34. A ball on the end of a string is whirled around in a horizon-
tal circle of radius 0.300 m. The plane of the circle is 1.20 m 
above the ground. The string breaks and the ball lands 2.00 m 
(horizontally) away from the point on the ground directly 
beneath the ball’s location when the string breaks. Find the 
radial acceleration of the ball during its circular motion.

35. Why is the following situation impossible? A normally propor-
tioned adult walks briskly along a straight line in the 1x 
direction, standing straight up and holding his right arm 
vertical and next to his body so that the arm does not swing. 
His right hand holds a ball at his side a distance h above 
the floor. When the ball passes above a point marked as 
x 5 0 on the horizontal floor, he opens his fingers to release 
the ball from rest relative to his hand. The ball strikes the 
ground for the first time at position x 5 7.00h.

36. A particle starts from the origin with velocity 5i
⁄
 m/s  

at t 5 0 and moves in the xy plane with a varying accelera-
tion given by aS 5 s6Ït j

⁄
d, where aS is in meters per second 

squared and t is in seconds. (a) Determine the velocity of the 
particle as a function of time. (b) Determine the position of 
the particle as a function of time.

37. Lisa in her Lamborghini accelerates at s3.00i
⁄

2 2.00j
⁄
d m/s2, 

while Jill in her Jaguar accelerates at s1.00i
⁄

1 3.00j
⁄
d m/s2. 

They both start from rest at the origin. After 5.00 s, (a) what 
is Lisa’s speed with respect to Jill, (b) how far apart are they, 
and (c) what is Lisa’s acceleration relative to Jill?

38. A boy throws a stone horizontally from the top of a cliff 
of height h toward the ocean below. The stone strikes the 
ocean at distance d from the base of the cliff. In terms of 
h, d, and g, find expressions for (a) the time t at which the 
stone lands in the ocean, (b) the initial speed of the stone, 
(c) the speed of the stone immediately before it reaches the 
ocean, and (d) the direction of the stone’s velocity immedi-
ately before it reaches the ocean.

39. Why is the following situation impossible? Albert Pujols hits 
a home run so that the baseball just clears the top row of 
bleachers, 24.0 m high, located 130 m from home plate. The 
ball is hit at 41.7 m/s at an angle of 35.08 to the horizontal, 
and air resistance is negligible.

40. As some molten metal splashes, one droplet flies off to the 
east with initial velocity vi at angle ui above the horizontal, 
and another droplet flies off to the west with the same 
speed at the same angle above the horizontal as shown in 
Figure P4.40. In terms of vi and ui, find the distance between 
the two droplets as a function of time.

vS

i

i i

iu u

vS vS

Figure P4.40
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Math Appendix. The math appendix (Appendix B), a valuable tool for students, 
shows the math tools in a physics context. This resource is ideal for students who 
need a quick review on topics such as algebra, trigonometry, and calculus.

Helpful Features
Style. To facilitate rapid comprehension, we have written the book in a clear, logi-
cal, and engaging style. We have chosen a writing style that is somewhat informal 
and relaxed so that students will find the text appealing and enjoyable to read. New 
terms are carefully defined, and we have avoided the use of jargon.

Important Definitions and Equations. Most important definitions are set in bold-
face or are highlighted with a  background screen  for added emphasis and ease 
of review. Similarly, important equations are also highlighted with a background 
screen to facilitate location.

Marginal Notes. Comments and notes appearing in the margin with a N icon can be 
used to locate important statements, equations, and concepts in the text.

Pedagogical Use of Color. Readers should consult the pedagogical color chart (inside 
the front cover) for a listing of the color-coded symbols used in the text diagrams. 
This system is followed consistently throughout the text.

Mathematical Level. We have introduced calculus gradually, keeping in mind that 
students often take introductory courses in calculus and physics concurrently. Most 
steps are shown when basic equations are developed, and reference is often made 
to mathematical appendices near the end of the textbook. Although vectors are 
discussed in detail in Chapter 3, vector products are introduced later in the text, 
where they are needed in physical applications. The dot product is introduced in 
Chapter 7, which addresses energy of a system; the cross product is introduced in 
Chapter 11, which deals with angular momentum.

Significant Figures. In both worked examples and end-of-chapter problems, signifi-
cant figures have been handled with care. Most numerical examples are worked 
to either two or three significant figures, depending on the precision of the data 
provided. End-of-chapter problems regularly state data and answers to three-digit 
precision. When carrying out estimation calculations, we shall typically work with 
a single significant figure. (More discussion of significant figures can be found in 
Chapter 1, pages 13–15.)

Units. The international system of units (SI) is used throughout the text. The 
U.S. customary system of units is used only to a limited extent in the chapters on 
mechanics and thermodynamics.

Appendices and Endpapers. Several appendices are provided near the end of the 
textbook. Most of the appendix material represents a review of mathematical 
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Figure 4.2  As a particle moves 
between two points, its average 
velocity is in the direction of the 
displacement vector D rS. By defi-
nition, the instantaneous veloc-
ity at Ⓐ is directed along the line 
tangent to the curve at Ⓐ.
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concepts and techniques used in the text, including scientific notation, algebra, 
geometry, trigonometry, differential calculus, and integral calculus. Reference 
to these appendices is made throughout the text. Most mathematical review sec-
tions in the appendices include worked examples and exercises with answers. In 
addition to the mathematical reviews, the appendices contain tables of physical 
data, conversion factors, and the SI units of physical quantities as well as a peri-
odic table of the elements. Other useful information—fundamental constants and 
physical data, planetary data, a list of standard prefixes, mathematical symbols, 
the Greek alphabet, and standard abbreviations of units of measure—appears on 
the endpapers.

Course Solutions That Fit Your Teaching Goals  
and Your Students’ learning Needs
Recent advances in educational technology have made homework management 
systems and audience response systems powerful and affordable tools to enhance 
the way you teach your course. Whether you offer a more traditional text-based 
course, are interested in using or are currently using an online homework manage-
ment system such as WebAssign, or are ready to turn your lecture into an inter-
active learning environment, you can be confident that the text’s proven content 
provides the foundation for each and every component of our technology and 
ancillary package.

lecture Presentation resources
Cengage Learning Testing Powered by Cognero is a flexible, online system that allows 
you to author, edit, and manage test bank content from multiple Cengage Learn-
ing solutions, create multiple test versions in an instant, and deliver tests from your 
LMS, your classroom, or wherever you want.

Instructor Resource Website for Serway/Jewett Physics for Scientists and Engineers, 
Tenth Edition. The Instructor Resource Website contains a variety of resources to 
aid you in preparing and presenting text material in a manner that meets your 
personal preferences and course needs. The posted Instructor’s Solutions Manual 
presents complete worked solutions for all of the printed textbook’s end-of-chapter 
problems and answers for all even-numbered problems. Robust PowerPoint lecture 
outlines that have been designed for an active classroom are available, with reading 
check questions and Think–Pair–Share questions as well as the traditional section-
by-section outline. Images from the textbook can be used to customize your own 
presentations. Available online via www.cengage.com/login.

CengageBrain.com
To register or access your online learning solution or purchase materials for your 
course, visit www.cengagebrain.com.

Student resources

Physics Laboratory Manual, Fourth Edition by David Loyd (Angelo State University) 
Ideal for use with any introductory physics text, Loyd’s Physics Laboratory Manual 
is suitable for either calculus- or algebra/trigonometry-based physics courses. 
Designed to help students demonstrate a physical principle and teach techniques 
of careful measurement, Loyd’s Physics Laboratory Manual also emphasizes concep-
tual understanding and includes a thorough discussion of physical theory to help 
students see the connection between the lab and the lecture. Many labs give stu-
dents hands-on experience with statistical analysis, and now five computer-assisted 
data-entry labs are included in the printed manual. The fourth edition maintains 
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the minimum equipment requirements to allow for maximum flexibility and to 
make the most of preexisting lab equipment. For instructors interested in using 
some of Loyd’s experiments, a customized lab manual is another option available 
through the Cengage Learning Custom Solutions program. Now, you can select 
specific experiments from Loyd’s Physics Laboratory Manual, include your own origi-
nal lab experiments, and create one affordable bound book. Contact your Cengage 
Learning representative for more information on our Custom Solutions program. 
Available with InfoTrac® Student Collections http://gocengage.com/infotrac.

Physics Laboratory Experiments, Eighth Edition by Jerry D. Wilson (Lander College) 
and Cecilia A. Hernández (American River College). This market-leading man-
ual for the first-year physics laboratory course offers a wide range of class-tested 
experiments designed specifically for use in small to midsize lab programs. A 
series of integrated experiments emphasizes the use of computerized instrumen-
tation and includes a set of “computer-assisted experiments” to allow students and 
instructors to gain experience with modern equipment. It also lets instructors 
determine the appropriate balance of traditional versus computer-based experi-
ments for their courses. By analyzing data through two different methods, stu-
dents gain a greater understanding of the concepts behind the experiments. The 
Eighth Edition is updated with 4 new economical labs to accommodate shrinking 
department budgets and 30 new Pre-Lab Demonstrations, designed to capture 
students’ interest prior to the lab and requiring only widely available materials 
and items.

Teaching Options
The topics in this textbook are presented in the following sequence: classical 
mechanics, oscillations and mechanical waves, and heat and thermodynamics, fol-
lowed by electricity and magnetism, electromagnetic waves, optics, relativity, and 
modern physics. This presentation represents a traditional sequence, with the sub-
ject of mechanical waves being presented before electricity and magnetism. Some 
instructors may prefer to discuss both mechanical and electromagnetic waves 
together after completing electricity and magnetism. In this case, Chapters 16 and 
17 could be covered along with Chapter 33. The chapter on relativity is placed near 
the end of the text because this topic often is treated as an introduction to the 
era of “modern physics.” If time permits, instructors may choose to cover Chap-
ter 38 after completing Chapter 13 as a conclusion to the material on Newtonian 
mechanics. For those instructors teaching a two-semester sequence, some sections 
and chapters could be deleted without any loss of continuity. The following sections 
can be considered optional for this purpose:

 2.9 Kinematic Equations Derived from Calculus
 4.6 Relative Velocity and Relative Acceleration
 6.3 Motion in Accelerated Frames
 6.4 Motion in the Presence of Resistive Forces
 7.9 Energy Diagrams and Equilibrium of a System
 9.9 Rocket Propulsion
 11.5 The Motion of Gyroscopes and Tops
 14.8 Other Applications of Fluid Dynamics
 15.6 Damped Oscillations
 15.7 Forced Oscillations
 17.8 Nonsinusoidal Waveforms
 25.7 An Atomic Description of Dielectrics
 26.5 Superconductors
 27.5 Household Wiring and Electrical Safety
 28.3 Applications Involving Charged Particles  

Moving in a Magnetic Field

 28.6 The Hall Effect
 29.6 Magnetism in Matter
 30.6 Eddy Currents
 33.6 Production of Electromagnetic Waves by an Antenna
 35.5 Lens Aberrations
 35.6 Optical Instruments
 37.5 Diffraction of X-Rays by Crystals
 38.9 The General Theory of Relativity
 40.6 Applications of Tunneling
 41.9 Spontaneous and Stimulated Transitions
 41.10 Lasers
 42.7 Semiconductor Devices
 43.11 Radiation Damage
 43.12 Uses of Radiation from the Nucleus
 43.13 Nuclear Magnetic Resonance and Magnetic 

Resonance Imaging
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I t is appropriate to offer some words of advice that should be of benefit to 
you, the student. Before doing so, we assume you have read the Preface, which 
describes the various features of the text and support materials that will help 

you through the course.

How to Study
Instructors are often asked, “How should I study physics and prepare for examina-
tions?” There is no simple answer to this question, but we can offer some suggestions  
based on our own experiences in learning and teaching over the years.

First and foremost, maintain a positive attitude toward the subject matter, keep-
ing in mind that physics is the most fundamental of all natural sciences. Other  
science courses that follow will use the same physical principles, so it is important 
that you understand and are able to apply the various concepts and theories dis-
cussed in the text.

Concepts and Principles
It is essential that you understand the basic concepts and principles before attempt-
ing to solve assigned problems. You can best accomplish this goal by carefully read-
ing the textbook before you attend your lecture on the covered material. When 
reading the text, you should jot down those points that are not clear to you. Also be 
sure to make a diligent attempt at answering the questions in the Quick Quizzes as 
you come to them in your reading. We have worked hard to prepare questions that 
help you judge for yourself how well you understand the material. Study the What 
If? features that appear in many of the worked examples carefully. They will help 
you extend your understanding beyond the simple act of arriving at a numerical 
result. The Pitfall Preventions will also help guide you away from common mis-
understandings about physics. During class, take careful notes and ask questions 
about those ideas that are unclear to you. Keep in mind that few people are able 
to absorb the full meaning of scientific material after only one reading; several 
readings of the text and your notes may be necessary. Your lectures and laboratory 
work supplement the textbook and should clarify some of the more difficult mate-
rial. You should minimize your memorization of material. Successful memoriza-
tion of passages from the text, equations, and derivations does not necessarily indi-
cate that you understand the material. Your understanding of the material will be 
enhanced through a combination of efficient study habits, discussions with other 
students and with instructors, and your ability to solve the problems presented in 
the textbook. Ask questions whenever you believe that clarification of a concept is 
necessary.

Study Schedule
It is important that you set up a regular study schedule, preferably a daily one. Make 
sure that you read the syllabus for the course and adhere to the schedule set by your 
instructor. The lectures will make much more sense if you read the correspond-
ing text material before attending them. As a general rule, you should devote about 
two hours of study time for each hour you are in class. If you are having trouble 
with the course, seek the advice of the instructor or other students who have taken 
the course. You may find it necessary to seek further instruction from experienced 
students. Very often, instructors offer review sessions in addition to regular class 
periods. Avoid the practice of delaying study until a day or two before an exam. 

to the student
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More often than not, this approach has disastrous results. Rather than undertake 
an all-night study session before a test, briefly review the basic concepts and equa-
tions, and then get a good night’s rest. 

You can purchase any Cengage Learning product at your local college store or at 
our preferred online store CengageBrain.com.

Use the Features
You should make full use of the various features of the text discussed in the Pref-
ace. For example, marginal notes are useful for locating and describing important 
equations and concepts, and boldface indicates important definitions. Many useful 
tables are contained in the appendices, but most are incorporated in the text where 
they are most often referenced. Appendix B is a convenient review of mathematical 
tools used in the text.

Answers to Quick Quizzes and odd-numbered problems are given at the end of 
the textbook. The table of contents provides an overview of the entire text, and the 
index enables you to locate specific material quickly. Footnotes are sometimes used 
to supplement the text or to cite other references on the subject discussed.

After reading a chapter, you should be able to define any new quantities intro-
duced in that chapter and discuss the principles and assumptions that were used to 
arrive at certain key relations. In some cases, you may find it necessary to refer to 
the textbook’s index to locate certain topics. You should be able to associate with 
each physical quantity the correct symbol used to represent that quantity and the 
unit in which the quantity is specified. Furthermore, you should be able to express 
each important equation in concise and accurate prose.

Problem Solving
R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything 
until you have practiced.” In keeping with this statement, we strongly advise you to 
develop the skills necessary to solve a wide range of problems. Your ability to solve 
problems will be one of the main tests of your knowledge of physics; therefore, 
you should try to solve as many problems as possible. It is essential that you under-
stand basic concepts and principles before attempting to solve problems. It is good 
practice to try to find alternate solutions to the same problem. For example, you 
can solve problems in mechanics using Newton’s laws, but very often an alternative 
method that draws on energy considerations is more direct. You should not deceive 
yourself into thinking that you understand a problem merely because you have seen 
it solved in class. You must be able to solve the problem and similar problems on 
your own.

The approach to solving problems should be carefully planned. A systematic 
plan is especially important when a problem involves several concepts. First, read 
the problem several times until you are confident you understand what is being 
asked. Look for any key words that will help you interpret the problem and perhaps 
allow you to make certain assumptions. Your ability to interpret a question properly 
is an integral part of problem solving. Second, you should acquire the habit of writ-
ing down the information given in a problem and those quantities that need to be 
found; for example, you might construct a table listing both the quantities given 
and the quantities to be found. This procedure is sometimes used in the worked 
examples of the textbook. Finally, after you have decided on the method you 
believe is appropriate for a given problem, proceed with your solution. The Analysis 
Model Approach to Problem Solving will guide you through complex problems. If 
you follow the steps of this procedure (Conceptualize, Categorize, Analyze, Finalize), you 
will find it easier to come up with a solution and gain more from your efforts. This 
strategy, located in Section 2.4 (pages 30–32), is used in all worked examples in the 
remaining chapters so that you can learn how to apply it. Specific problem-solving 
strategies for certain types of situations are included in the text and appear with a 
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special heading. These specific strategies follow the outline of the Analysis Model 
Approach to Problem Solving.

Often, students fail to recognize the limitations of certain equations or physical 
laws in a particular situation. It is very important that you understand and remem-
ber the assumptions that underlie a particular theory or formalism. For example, 
certain equations in kinematics apply only to a particle moving with constant accel-
eration. These equations are not valid for describing motion whose acceleration is 
not constant, such as the motion of an object connected to a spring or the motion 
of an object through a fluid. Study the Analysis Models for Problem Solving in the 
chapter summaries carefully so that you know how each model can be applied to a 
specific situation. The analysis models provide you with a logical structure for solv-
ing problems and help you develop your thinking skills to become more like those 
of a physicist. Use the analysis model approach to save you hours of looking for the 
correct equation and to make you a faster and more efficient problem solver.

Experiments
Physics is a science based on experimental observations. Therefore, we recommend 
that you try to supplement the text by performing various types of “hands-on” 
experiments either at home or in the laboratory. These experiments can be used 
to test ideas and models discussed in class or in the textbook. For example, the 
common Slinky toy is excellent for studying traveling waves, a ball swinging on the 
end of a long string can be used to investigate pendulum motion, various masses 
attached to the end of a vertical spring or rubber band can be used to determine 
its elastic nature, an old pair of polarized sunglasses and some discarded lenses 
and a magnifying glass are the components of various experiments in optics, and 
an approximate measure of the free-fall acceleration can be determined simply by 
measuring with a stopwatch the time interval required for a ball to drop from a 
known height. The list of such experiments is endless. When physical models are 
not available, be imaginative and try to develop models of your own.

New Media
If available, we strongly encourage you to use the WebAssign product that is avail-
able with this textbook. It is far easier to understand physics if you see it in action, 
and the materials available in WebAssign will enable you to become a part of that 
action. 

It is our sincere hope that you will find physics an exciting and enjoyable experi-
ence and that you will benefit from this experience, regardless of your chosen pro-
fession. Welcome to the exciting world of physics!

The scientist does not study nature because it is useful; he studies it because he delights in 
it, and he delights in it because it is beautiful. If nature were not beautiful, it would not 
be worth knowing, and if nature were not worth knowing, life would not be worth living.

—Henri Poincaré

xxviii To the Student
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Mechanics

P a r t  1

Physics, the most fundamental physical science, is concerned 
with the fundamental principles of the Universe. It is the foundation upon 
which the other sciences—astronomy, biology, chemistry, and geology—
are based. It is also the basis of a large number of engineering applica-
tions. The beauty of physics lies in the simplicity of its fundamental prin-
ciples and in the manner in which just a small number of concepts and 
models can alter and expand our view of the world around us.

The study of physics can be divided into six main areas:

1. classical mechanics, concerning the motion of objects that are large 
relative to atoms and move at speeds much slower than the speed 
of light

2. relativity, a theory describing objects moving at any speed, even 
speeds approaching the speed of light

3. thermodynamics, dealing with heat, temperature, and the statistical 
behavior of systems with large numbers of particles

4. electromagnetism, concerning electricity, magnetism, and electro-
magnetic fields

5. optics, the study of the behavior of light and its interaction with 
materials

6. quantum mechanics, a collection of theories connecting the behavior 
of matter at the submicroscopic level to macroscopic observations

The disciplines of mechanics and electromagnetism are basic to all 
other branches of classical physics (developed before 1900) and modern 
physics (c. 1900–present). The first part of this textbook deals with classi-
cal mechanics, sometimes referred to as Newtonian mechanics or simply 
mechanics. Many principles and models used to understand mechanical 
systems retain their importance in the theories of other areas of physics 
and can later be used to describe many natural phenomena. Therefore, 
classical mechanics is of vital importance to students from all disciplines. ■

The Toyota Mirai, a fuel-cell-
powered automobile available 
to the public, albeit in limited 
quantities. A fuel cell converts 
hydrogen fuel into electricity to 
drive the motor attached to the 
wheels of the car. Automobiles, 
whether powered by fuel cells, 
gasoline engines, or batteries, 
use many of the concepts and 
principles of mechanics that we 
will study in this first part of the 
book. Quantities that we can 
use to describe the operation 
of vehicles include position, 
velocity, acceleration, force, 
energy, and momentum.  
(Chris Graythen/Getty Images Sport/
Getty Images)



2

1 Physics and Measurement

1.1 Standards of Length, 
Mass, and Time

1.2 Modeling and 
Alternative 
Representations

1.3 Dimensional Analysis

1.4 Conversion of Units

1.5 Estimates and 
Order-of-Magnitude 
Calculations

1.6 Significant Figures

Storyline Each chapter in this textbook will begin with a paragraph 
related to a storyline that runs throughout the text. The storyline centers on you: an 
inquisitive physics student. You could live anywhere in the world, but let’s say you 
live in southern California, where one of the authors lives. Most of your observations 
will occur there, although you will take trips to other locations. As you go through 
your everyday activities, you see physics in action all around you. In fact, you can’t get 
away from physics! As you observe phenomena at the beginning of each chapter, 
you will ask yourself, “Why does that happen?” You might take measurements with 
your smartphone. You might look for related videos on YouTube or photographs on 
an image search site. You are lucky indeed because, in addition to those resources, 
you have this textbook and the expertise of your instructor to help you understand 
the exciting physics surrounding you. Let’s look at your first observations as we begin 
your storyline. You have just bought this textbook and have flipped through some of 
its pages. You notice a page of conversions on the inside back cover. You notice in 
the entries under “Length” the unit of a light-year. You say, “Wait a minute! (You will 
say this often in the upcoming chapters.) How can a unit based on a year be a unit of 
length?” As you look farther down the page, you see 1 kg < 2.2 lb (lb is the abbrevia-
tion for pound; lb is from Latin libra pondo) under the heading “Some Approximations 
Useful for Estimation Problems.” Noticing the “approximately equal” sign (<), you 
wonder what the exact conversion is and look upward on the page to the heading 
“Mass,” since a kilogram is a unit of mass. The relation between kilograms and 
pounds is not there! Why not? Your physics adventure has begun!

ConneCtions The second paragraph in each chapter will explain how 
the material in the chapter connects to that in the previous chapter and/or future 

Stonehenge, in southern 
England, was built thousands 

of years ago. Various 
hypotheses have been 

proposed about its function, 
including a burial ground, 

a healing site, and a place 
for ancestor worship. One 

of the more intriguing ideas 
suggests that Stonehenge 

was an observatory, allowing 
measurements of some of 

the quantities discussed 
in this chapter, such as 

position of objects in space 
and time intervals between 
repeating celestial events.  

(Image copyright Stephen 
Inglis. Used under license from 

Shutterstock.com)
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chapters. This feature will help you see that the textbook is not a collection of 
unrelated chapters, but rather is a structure of understanding that we are building, 
step by step. These paragraphs will provide a roadmap through the concepts and 
principles as they are introduced in the text. They will justify why the material in 
that chapter is presented at that time and help you to see the “big picture” of the 
study of physics. In this first chapter, of course, we cannot connect to a previous 
chapter. We will simply look ahead to the present chapter, in which we discuss 
some preliminary concepts of measurement, units, modeling, and estimation that 
we will need throughout all the chapters of the text.

   1.1    Standards of Length, Mass, and Time
To describe natural phenomena, we must make measurements of various aspects 
of nature. Each measurement is associated with a physical quantity, such as the 
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the 
book. In mechanics, the three fundamental quantities are length, mass, and time. All 
other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to 
reproduce this measurement, a standard must be defined. For example, if someone 
reports that a wall is 2 meters high and our standard unit of length is defined to be 
1 meter, we know that the height of the wall is twice our basic length unit. Whatever 
is chosen as a standard must be readily accessible and must possess some property 
that can be measured reliably. Measurement standards used by different people in 
different places—throughout the Universe—must yield the same result. In addi-
tion, standards used for measurements must not change with time.

In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Système International), and its 
fundamental units of length, mass, and time are the meter, kilogram, and second, 
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), luminous 
intensity (the candela), and the amount of substance (the mole).

Length
We can identify length as the distance between two points in space. In 1120, the 
king of England decreed that the standard of length in his country would be named 
the yard and would be precisely equal to the distance from the tip of his nose to the 
end of his outstretched arm. Similarly, the original standard for the foot adopted 
by the French was the length of the royal foot of King Louis XIV. Neither of these 
standards is constant in time; when a new king took the throne, length measure-
ments changed! The French standard prevailed until 1799, when the legal standard 
of length in France became the meter (m), defined as one ten-millionth of the 
distance from the equator to the North Pole along one particular longitudinal line 
that passes through Paris. Notice that this value is an Earth-based standard that 
does not satisfy the requirement that it can be used throughout the Universe.

Table 1.1 (page 4) lists approximate values of some measured lengths. You should 
study this table as well as the next two tables and begin to generate an intuition for 
what is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms, 
or a time interval of 3.2 3 107 seconds.

As recently as 1960, the length of the meter was defined as the distance between 
two lines on a specific platinum–iridium bar stored under controlled conditions 
in France. Current requirements of science and technology, however, necessitate 
more accuracy than that with which the separation between the lines on the bar 
can be determined. In the 1960s and 1970s, the meter was defined to be equal to  

PitfaLL PrEvEntion 1.1
Reasonable Values Generating 
intuition about typical values of 
quantities when solving problems 
is important because you must 
think about your end result and 
determine if it seems reasonable. 
For example, if you are calculating 
the mass of a housefly and arrive 
at a value of 100 kg, this answer is 
unreasonable and there is an error 
somewhere.
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1 650 763.73 wavelengths1 of orange-red light emitted from a krypton-86 lamp. In 
October 1983, however, the meter was redefined as the distance traveled by light 
in vacuum during a time interval of 1/299 792 458 second. In effect, this latest 
definition establishes that the speed of light in vacuum is precisely 299 792 458 
meters per second. This definition of the meter is valid throughout the Universe 
based on our assumption that light is the same everywhere. The speed of light also 
allows us to define the light-year, as mentioned in the introductory storyline: the 
distance that light travels through empty space in one year. Use this definition and 
the speed of light to verify the length of a light-year in meters as given in Table 1.1.

Mass
We will find that the mass of an object is related to the amount of material that is 
present in the object, or to how much that object resists changes in its motion. Mass 
is an inherent property of an object and is independent of the object’s surround-
ings and of the method used to measure it. The SI fundamental unit of mass, the 
kilogram (kg), is defined as the mass of a specific platinum–iridium alloy cylinder 
kept at the International Bureau of Weights and Measures at Sèvres, France. This 
mass standard was established in 1887 and has not been changed since that time 
because platinum–iridium is an unusually stable alloy. A duplicate of the Sèvres 
cylinder is kept at the National Institute of Standards and Technology (NIST) in 
Gaithersburg, Maryland (Fig. 1.1a). Table 1.2 lists approximate values of the masses 
of various objects.

In Chapter 5, we will discuss the difference between mass and weight. In anticipa-
tion of that discussion, let’s look again at the approximate equivalence mentioned 
in the introductory storyline: 1 kg < 2.2 lb. It would never be correct to claim that 
a number of kilograms equals a number of pounds, because these units represent 
different variables. A kilogram is a unit of mass, while a pound is a unit of weight. 
That’s why an equality between kilograms and pounds is not given in the section of 
conversions for mass on the inside back cover of the textbook.

 tabLE 1.1  Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to the most remote known quasar 2.7 3 1026

Distance from the Earth to the most remote normal galaxies 3 3 1026

Distance from the Earth to the nearest large galaxy (Andromeda) 2 3 1022

Distance from the Sun to the nearest star (Proxima Centauri) 4 3 1016

One light-year 9.46 3 1015

Mean orbit radius of the Earth about the Sun 1.50 3 1011

Mean distance from the Earth to the Moon 3.84 3 108

Distance from the equator to the North Pole 1.00 3 107

Mean radius of the Earth 6.37 3 106

Typical altitude (above the surface) of a satellite orbiting the Earth 2 3 105

Length of a football field 9.1 3 101

Length of a housefly 5 3 1023

Size of smallest dust particles , 1024

Size of cells of most living organisms , 1025

Diameter of a hydrogen atom , 10210

Diameter of an atomic nucleus , 10214

Diameter of a proton , 10215

1 We will use the standard international notation for numbers with more than three digits, in which groups of three 
digits are separated by spaces rather than commas. Therefore, 10 000 is the same as the common American notation 
of 10,000. Similarly, p 5 3.14159265 is written as 3.141 592 65.

Figure 1.1 (a) International 
Prototype of the Kilogram, an 
accurate copy of the International 
Standard Kilogram kept at Sèvres, 
France, is housed under a double 
bell jar in a vault at the National 
Institute of Standards and Tech-
nology. (b) A cesium fountain 
atomic clock. The clock will 
neither gain nor lose a second  
in 20 million years.
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time
Before 1967, the standard of time was defined in terms of the mean solar day. (A 
solar day is the time interval between successive appearances of the Sun at the high-
est point it reaches in the sky each day.) The fundamental unit of a second (s) was 
defined as s 1

60ds 1
60ds 1

24d of a mean solar day. This definition is based on the rotation 
of one planet, the Earth. Therefore, this motion does not provide a time standard 
that is universal.

In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of 
cesium atoms. One second is now defined as 9 192 631 770 times the period of 
vibration of radiation from the cesium-133 atom.2 Approximate values of time 
intervals are presented in Table 1.3.

You should note that we will use the notations time and time interval differently. A 
time is a description of an instant relative to a reference time. For example, t 5 10.0 s  
refers to an instant 10.0 s after the instant we have identified as t 5 0. As another 
example, a time of 11:30 a.m. means an instant 11.5 hours after our reference time 
of midnight. On the other hand, a time interval refers to duration: he required 
30.0 minutes to finish the task. It is common to hear a “time of 30.0 minutes” in 
this latter example, but we will be careful to refer to measurements of duration as 
time intervals.

Units and Quantities In addition to SI, another system of units, the U.S. custom-
ary system, is still used in the United States despite acceptance of SI by the rest of the 
world. In this system, the units of length, mass, and time are the foot (ft), slug, and 
second, respectively. In this book, we shall use SI units because they are almost uni-
versally accepted in science and industry. We shall make some limited use of U.S. 
customary units in the study of classical mechanics.

In addition to the fundamental SI units of meter, kilogram, and second, we can 
also use other units, such as millimeters and nanoseconds, where the prefixes milli- 
and nano- denote multipliers of the basic units based on various powers of ten. 
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4 
(page 6). For example, 1023 m is equivalent to 1 millimeter (mm), and 103 m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1 mega 
volt (MV) is 106 volts (V).

2 Period is defined as the time interval needed for one complete vibration.

 tabLE 1.2  Approximate 
Masses of Various Objects

Mass (kg)

Observable
 Universe , 1052

Milky Way
 galaxy , 1042

Sun 1.99 3 1030

Earth 5.98 3 1024

Moon 7.36 3 1022

Shark , 103

Human , 102

Frog , 1021

Mosquito , 1025

Bacterium , 1 3 10215

Hydrogen atom 1.67 3 10227

Electron 9.11 3 10231

 tabLE 1.3  Approximate Values of  
Some Time Intervals

Time Interval (s)

Age of the Universe 4 3 1017

Age of the Earth 1.3 3 1017

Average age of a college student 6.3 3 108

One year 3.2 3 107

One day 8.6 3 104

One class period 3.0 3 103

Time interval between normal 
 heartbeats 8 3 1021

Period of audible sound waves , 1023

Period of typical radio waves , 1026

Period of vibration of an atom  
 in a solid , 10213

Period of visible light waves , 10215

Duration of a nuclear collision , 10222

Time interval for light to cross  
 a proton , 10224
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6 Chapter 1 Physics and Measurement

The variables length, mass, and time are examples of fundamental quantities. Most 
other variables are derived quantities, those that can be expressed as a mathematical 
combination of fundamental quantities. Common examples are area (a product of 
two lengths) and speed (a ratio of a length to a time interval).

Another example of a derived quantity is density. The density r (Greek letter 
rho) of any substance is defined as its mass per unit volume:

 r ;
m
V

 (1.1)

In terms of fundamental quantities, density is a ratio of a mass to a product of three 
lengths. Aluminum, for example, has a density of 2.70 3 103 kg/m3, and iron has 
a density of 7.86 3 103 kg/m3. An extreme difference in density can be imagined 
by thinking about holding a 10-centimeter (cm) cube of Styrofoam in one hand 
and a 10-cm cube of lead in the other. See Table 14.1 in Chapter 14 for densities of 
several materials.

Q uick Quiz 1.1 In a machine shop, two cams are produced, one of aluminum 
and one of iron. Both cams have the same mass. Which cam is larger? (a) The 
aluminum cam is larger. (b) The iron cam is larger. (c) Both cams have the 
same size.

   1.2    Modeling and Alternative Representations
Most courses in general physics require the student to learn the skills of prob-
lem solving, and examinations usually include problems that test such skills. This 
section describes some useful ideas that will enable you to enhance your under-
standing of physical concepts, increase your accuracy in solving problems, elim-
inate initial panic or lack of direction in approaching a problem, and organize 
your work.

One of the primary problem-solving methods in physics is to form an appropri-
ate model of the problem. A model is a simplified substitute for the real problem 
that allows us to solve the problem in a relatively simple way. As long as the predic-
tions of the model agree to our satisfaction with the actual behavior of the real sys-
tem, the model is valid. If the predictions do not agree, the model must be refined 
or replaced with another model. The power of modeling is in its ability to reduce a 
wide variety of very complex problems to a limited number of classes of problems 
that can be  approached in similar ways.

In science, a model is very different from, for example, an architect’s scale model 
of a proposed building, which appears as a smaller version of what it represents. 

A table of the letters in the  
Greek alphabet is provided  

on the back endpaper  
of this book.

 tabLE 1.4  Prefixes for Powers of Ten

 Power Prefix Abbreviation Power Prefix Abbreviation

 10224 yocto y 103   kilo k
 10221 zepto z 106   mega M
 10218 atto a 109   giga G
 10215 femto f 1012 tera T
 10212 pico p 1015 peta P
 1029   nano n 1018 exa E
 1026   micro m 1021 zetta Z
 1023   milli m 1024 yotta Y
 1022   centi c
 1021   deci d
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    1.2 Modeling and Alternative Representations 7

A scientific model is a theoretical construct and may have no visual similarity to the 
physical problem. A simple application of modeling is presented in  Example 1.1, 
and we shall encounter many more examples of models as the text progresses.

Models are needed because the actual operation of the Universe is extremely 
complicated. Suppose, for example, we are asked to solve a problem about the 
Earth’s motion around the Sun. The Earth is very complicated, with many pro-
cesses occurring simultaneously. These processes include weather, seismic activity, 
and ocean movements as well as the multitude of processes involving human activ-
ity. Trying to maintain knowledge and understanding of all these processes is an 
impossible task.

The modeling approach recognizes that none of these processes affects the 
motion of the Earth around the Sun to a measurable degree. Therefore, these 
details are all ignored. In addition, as we shall find in Chapter 13, the size of the 
Earth does not affect the gravitational force between the Earth and the Sun; only 
the masses of the Earth and Sun and the distance between their centers determine 
this force. In a simplified model, the Earth is imagined to be a particle, an object 
with mass but zero size. This replacement of an extended object by a particle is 
called the particle model, which is used extensively in physics. By analyzing the 
motion of a particle with the mass of the Earth in orbit around the Sun, we find 
that the predictions of the particle’s motion are in excellent agreement with the 
actual motion of the Earth.

The two primary conditions for using the particle model are as follows:

 ● The size of the actual object is of no consequence in the analysis of its 
motion.

 ● Any internal processes occurring in the object are of no consequence in the 
analysis of its motion.

Both of these conditions are in action in modeling the Earth as a particle. Its radius 
is not a factor in determining its motion, and internal processes such as thunder-
storms, earthquakes, and manufacturing processes can be ignored.

Four categories of models used in this book will help us understand and solve 
physics problems. The first category is the geometric model. In this model, we form 
a geometric construction that represents the real situation. We then set aside the 
real problem and perform an analysis of the geometric construction. Consider a 
popular problem in elementary trigonometry, as in the following example.

 Example 1.1    Finding the Height of a Tree

You wish to find the height of a tree but cannot measure it directly. You stand 50.0 m from the tree and determine that a 
line of sight from the ground to the top of the tree makes an angle of 25.08 with the ground. How tall is the tree?

S o l u t i o n

Figure 1.2 shows the tree and a right triangle correspond-
ing to the information in the problem superimposed over it. 
(We assume that the tree is exactly perpendicular to a perfectly 
flat ground.) In the triangle, we know the length of the hori-
zontal leg and the angle between the hypotenuse and the hori-
zontal leg. We can find the height of the tree by calculating the 
length of the vertical leg. We do so with the tangent function:

 tan u 5 
opposite side

adjacent side
5

h
50.0 m

 h 5 (50.0 m) tan u 5 (50.0 m) tan 25.08 5  23.3 m

h

25.0°

50.0 m

Figure 1.2 (Example 1.1) The height of a tree can be found by 
measuring the distance from the tree and the angle of sight to 
the top above the ground. This problem is a simple example of 
geometrically modeling the actual problem.
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8 Chapter 1 Physics and Measurement

You may have solved a problem very similar to Example 1.1 but never thought 
about the notion of modeling. From the modeling approach, however, once we 
draw the triangle in Figure 1.2, the triangle is a geometric model of the real prob-
lem; it is a substitute. Until we reach the end of the problem, we do not imagine 
the problem to be about a tree but to be about a triangle. We use trigonometry to 
find the vertical leg of the triangle, leading to a value of 23.3 m.  Because this leg 
represents the height of the tree, we can now return to the original problem and 
claim that the height of the tree is 23.3 m.

Other examples of geometric models include modeling the Earth as a perfect 
sphere, a pizza as a perfect disk, a meter stick as a long rod with no thickness, and 
an electric wire as a long, straight cylinder.

The particle model is an example of the second category of models, which we 
will call simplification models. In a simplification model, details that are not sig-
nificant in determining the outcome of the problem are ignored. When we study 
rotation in Chapter 10, objects will be modeled as rigid objects. All the molecules in 
a rigid object maintain their exact positions with respect to one another. We adopt 
this simplification model because a spinning rock is much easier to analyze than a 
spinning block of gelatin, which is not a rigid object. Other simplification models 
will assume that quantities such as friction forces are negligible, remain constant, 
or are proportional to some power of the object’s speed. We will assume uniform 
metal beams in Chapter 12, laminar flow of fluids in Chapter 14, massless springs in 
Chapter 15, symmetric distributions of electric charge in Chapter 23, resistance-free 
wires in Chapter 27, thin lenses in Chapter 34. These, and many more, are simplifi-
cation models.

The third category is that of analysis models, which are general types of prob-
lems that we have solved before. An important technique in problem solving is to 
cast a new problem into a form similar to one we have already solved and which can 
be used as a model. As we shall see, there are about two dozen analysis models that 
can be used to solve most of the problems you will encounter. All of the analysis 
models in classical physics will be based on four simplification models: particle, sys-
tem, rigid object, and wave. We will see our first analysis models in Chapter 2, where 
we will discuss them in more detail.

The fourth category of models is structural models. These models are gener-
ally used to understand the behavior of a system that is far different in scale from 
our macroscopic world—either much smaller or much larger—so that we cannot 
 in teract with it directly. As an example, the notion of a hydrogen atom as an elec-
tron in a circular orbit around a proton is a structural model of the atom. The 
ancient geocentric model of the Universe, in which the Earth is theorized to be at the 
center of the Universe, is an example of a structural model for something larger in 
scale than our macroscopic world.

Intimately related to the notion of modeling is that of forming alternative 
representations of the problem that you are solving. A representation is a 
method of viewing or presenting the information related to the problem. Sci-
entists must be able to communicate complex ideas to individuals without scien-
tific backgrounds. The best representation to use in conveying the information 
successfully will vary from one individual to the next. Some will be convinced 
by a well-drawn graph, and others will require a picture. Physicists are often 
persuaded to agree with a point of view by examining an equation, but non-
physicists may not be convinced by this mathematical representation of the 
information.

A word problem, such as those at the ends of the chapters in this book, is one 
representation of a problem. In the “real world” that you will enter after gradua-
tion, the initial representation of a problem may be just an existing situation, such 
as the effects of climate change or a patient in danger of dying. You may have to 
identify the important data and information, and then cast the situation yourself 
into an equivalent word problem!
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Considering alternative representations can help you think about the informa-
tion in the problem in several different ways to help you understand and solve it. 
Several types of representations can be of assistance in this endeavor:

 ● Mental representation. From the description of the problem, imagine a 
scene that describes what is happening in the word problem, then let time 
progress so that you understand the situation and can predict what changes 
will occur in the situation. This step is critical in approaching every problem.

 ● Pictorial representation. Drawing a picture of the situation described in the 
word problem can be of great assistance in understanding the problem. In 
 Example 1.1, the pictorial representation in Figure 1.2 allows us to identify 
the triangle as a geometric model of the problem. In architecture, a blueprint 
is a pictorial representation of a proposed building.

Generally, a pictorial representation describes what you would see if you 
were  observing the situation in the problem. For example, Figure 1.3 shows a 
 pictorial representation of a baseball player hitting a short pop foul. Any coor-
dinate axes included in your pictorial representation will be in two dimen-
sions: x and y axes.

 ● Simplified pictorial representation. It is often useful to redraw the picto-
rial representation without complicating details by applying a simplifica-
tion model. This process is similar to the discussion of the particle model 
described earlier. In a pictorial representation of the Earth in orbit around 
the Sun, you might draw the Earth and the Sun as spheres, with possibly 
some attempt to draw continents to identify which sphere is the Earth. 
In the simplified pictorial representation, the Earth and the Sun would 
be drawn simply as dots, representing particles, with appropriate labels. 
Figure 1.4 shows a simplified pictorial representation corresponding to the 
 pictorial representation of the baseball trajectory in Figure 1.3. The nota-
tions vx and vy refer to the components of the velocity vector for the baseball. 
We will study vector components in Chapter 3. We shall use such simplified 
pictorial representations throughout the book.

 ● Graphical representation. In some problems, drawing a graph that describes 
the situation can be very helpful. In mechanics, for example, position–time 
graphs can be of great assistance. Similarly, in thermodynamics, pressure–
volume graphs are essential to understanding. Figure 1.5 shows a graphical 
representation of the position as a function of time of a block on the end of a 
vertical spring as it oscillates up and down. Such a graph is helpful for under-
standing simple harmonic motion, which we study in Chapter 15.

A graphical representation is different from a pictorial representation, 
which is also a two-dimensional display of information but whose axes, if 
any, represent length coordinates. In a graphical representation, the axes may 
represent any two related variables. For example, a graphical representation 
may have axes for temperature and time. The graph in Figure 1.5 has axes 
of vertical position y and time t. Therefore, in comparison to a pictorial rep-
resentation, a graphical representation is generally not something you would 
see when observing the situation in the problem with your eyes.

 ● Tabular representation. It is sometimes helpful to organize the information 
in tabular form to help make it clearer. For example, some students find that 
making tables of known quantities and unknown quantities is helpful. The 
periodic table of the elements is an extremely useful tabular representation 
of information in chemistry and physics.

 ● Mathematical representation. The ultimate goal in solving a problem is 
often the mathematical representation. You want to move from the infor-
mation contained in the word problem, through various representations of 
the problem that allow you to understand what is happening, to one or more 
equations that represent the situation in the problem and that can be solved 
mathematically for the desired result.

Figure 1.3 A pictorial represen-
tation of a pop foul being hit by a 
baseball player.

vy

vx

vS

Figure 1.4 A simplified pictorial 
representation for the situation 
shown in Figure 1.3.

y

t

Figure 1.5 A graphical represen-
tation of the position as a function 
of time of a block hanging from a 
spring and oscillating.
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10 Chapter 1 Physics and Measurement

   1.3    Dimensional Analysis
In physics, the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are all different units for expressing the dimension of length.

The symbols we use in this book to specify the dimensions of length, mass, and 
time are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the 
dimensions of a physical quantity. For example, the symbol we use for speed in this 
book is v, and in our notation, the dimensions of speed are written [v] 5 L/T. As 
another example, the dimensions of area A are [A] 5 L2. The dimensions and units 
of area, volume, speed, and acceleration are listed in Table 1.5. The dimensions of 
other quantities, such as force and energy, will be described as they are introduced 
in the text.

In many situations, you may have to check a specific equation to see if it 
matches your expectations. A useful procedure for doing that, called dimen-
sional analysis, can be used because dimensions can be treated as algebraic 
quantities. For example, quantities can be added or subtracted only if they have 
the same dimensions. Furthermore, the terms on both sides of an equation must 
have the same dimensions. By following these simple rules, you can use dimen-
sional analysis to determine whether an expression has the correct form. Any 
relationship can be correct only if the dimensions on both sides of the equation 
are the same.

To illustrate this procedure, suppose you are interested in an equation for the 
position x of a car at a time t if the car starts from rest at x 5 0 and moves with con-
stant acceleration a. The correct expression for this situation is x 5 1

2 at2 as we show 
in Chapter 2. The quantity x on the left side has the dimension of length. For the 
equation to be dimensionally correct, the quantity on the right side must also have 
the dimension of length. We can perform a dimensional check by substituting the 
dimensions for acceleration, L/T2 (Table 1.5), and time, T, into the equation. That 
is, the dimensional form of the equation x 5 1

2 at2 is

L 5
L
T2 ? T2 5 L

The dimensions of time cancel as shown, leaving the dimension of length on the 
right-hand side to match that on the left.

A more general procedure using dimensional analysis is to set up an expression 
of the form

x ~ ant m

where n and m are exponents that must be determined and the symbol ~ indicates 
a proportionality. This relationship is correct only if the dimensions of both sides 
are the same. Because the dimension of the left side is length, the dimension of the 
right side must also be length. That is,

fantmg 5 L 5 L1T0

3 The dimensions of a quantity will be symbolized by a capitalized, nonitalic letter such as L or T. The algebraic symbol 
for the quantity itself will be an italicized letter such as L for the length of an object or t  for time.

 tabLE 1.5  Dimensions and Units of Four Derived Quantities

Quantity Area (A) Volume (V ) Speed (v) Acceleration (a)

Dimensions L2 L3 L/T L/T2

SI units m2 m3 m/s m/s2

U.S. customary units ft2 ft3 ft/s ft/s2

PitfaLL PrEvEntion 1.2
Symbols for Quantities Some 
quantities have a small number 
of symbols that represent them. 
For example, the symbol for time 
is almost always t. Other quanti-
ties might have various symbols 
depending on the usage. Length 
may be described with symbols 
such as x, y, and z (for position); 
r (for radius); a, b, and c (for the 
legs of a right triangle); , (for the 
length of an object); d (for a dis-
tance); h (for a height); and  
so forth.
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    1.3 Dimensional Analysis 11

Because the dimensions of acceleration are L/T2 and the dimension of time is T, 
we have

sLyT2dnTm 5 L1T0  S   sLnTm 2 2nd 5 L1T0

The exponents of L and T must be the same on both sides of the equation. From 
the exponents of L, we see immediately that n 5 1. From the exponents of T, we see 
that m 2 2n 5 0, which, once we substitute for n, gives us m 5 2. Returning to our 
original expression x ~ ant m, we conclude that x ~ at 2.

Q uick Quiz 1.2 True or False: Dimensional analysis can give you the numer-
ical value of constants of proportionality that may appear in an algebraic 
expression.

 Example 1.2    Analysis of an Equation

Show that the expression v 5 at, where v represents speed, a acceleration, and t an instant of time, is dimensionally 
correct.

S o l u t i o n

Identify the dimensions of v from Table 1.5: fvg 5
L
T

Identify the dimensions of a from Table 1.5 and multiply  fatg 5
L
T2  T 5

L
T

 
by the dimensions of t:

Therefore, v 5 at is dimensionally correct because we have the same dimensions on both sides. (If the expression were given 
as v 5 at2, it would be dimensionally incorrect. Try it and see!)

 Example 1.3    Analysis of a Power Law

Suppose we are told that the acceleration a of a particle moving with uniform speed v in a circle of radius r is proportional 
to some power of r, say r n, and some power of v, say v m. Determine the values of n and m and write the simplest form of an 
equation for the acceleration.

S o l u t i o n

Write an expression for a with a dimensionless constant  a 5 kr nv m

of proportionality k:

Substitute the dimensions of a, r, and v: 
L
T2 5 Ln SL

TDm

 5
Ln1m

Tm

Equate the exponents of L and T so that the dimensional  n 1 m 5 1 and m 5  2
equation is balanced:

Solve the two equations for n: n 5  21

Write the acceleration expression: a 5 kr21 v 2 5  k 
v 2

r

In Section 4.4 on uniform circular motion, we show that k 5 1 if a consistent set of units is used. The constant k would not 
equal 1 if, for example, v were in km/h and you wanted a in m/s2.
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12 Chapter 1 Physics and Measurement

   1.4    Conversion of Units
Sometimes it is necessary to convert units from one measurement system to another 
or convert within a system (for example, from kilometers to meters). Conversion 
factors between SI and U.S. customary units of length are as follows:

 1 mile 5 1 609 m 5 1.609 km 1 ft 5 0.304 8 m 5 30.48 cm
 1 m 5 39.37 in. 5 3.281 ft 1 in. 5 0.025 4 m 5 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.
Like dimensions, units can be treated as algebraic quantities that can can-

cel each other. For example, suppose we wish to convert 15.0 in. to centimeters. 
Because 1 in. is defined as exactly 2.54 cm, we find that

15.0 in. 5 s15.0 in. d12.54 cm
1 in.

 2 5 38.1 cm

where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather 
than 1 in./2.54 cm) so that the unit “inch” in the denominator cancels with the unit 
in the original quantity. The remaining unit is the centimeter, our desired result.

Q uick Quiz 1.3 The distance between two cities is 100 mi. What is the number  
of kilometers between the two cities? (a) smaller than 100 (b) larger than 100  
(c) equal to 100

Pitfall Prevention 1.3
Always Include Units When per-
forming calculations with numer-
ical values, include the units for 
every quantity and carry the units 
through the entire calculation. 
Avoid the temptation to drop the 
units early and then attach the 
expected units once you have an 
answer. By including the units in 
every step, you can detect errors if 
the units for the answer turn out 
to be incorrect.

 Example 1.4    Is He Speeding?

On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the 
speed limit of 75.0 mi/h?

S o l u t i o n

Convert meters to miles and seconds to hours: s38.0 mysd S 1 mi
1 609 mD1 60 s

1 min
 2 160 min

1 h
 2 5 85.0 miyh

The driver is indeed exceeding the speed limit and should slow down.

W H A t  i F ? What if the driver were from outside the United States and is  
familiar with speeds measured in kilometers per hour? What is the speed of the 
car in km/h?

Answer We can convert our final answer to the appropriate units:

s85.0 miyhd 11.609 km
1 mi

 2 5 137 kmyh

Figure 1.6 shows an automobile speedometer displaying speeds in both mi/h and 
km/h. Can you check the conversion we just performed using this photograph?

Figure 1.6 The speedometer of a vehicle 
that shows speeds in both miles per hour 
and kilometers per hour.

©
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   1.5    Estimates and Order-of-Magnitude Calculations
Suppose someone asks you the number of bits of data on a typical Blu-ray Disc. In 
response, it is not generally expected that you would provide the exact number but 
rather an estimate, which may be expressed in scientific notation. The estimate 
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    1.6 Significant Figures 13

may be made even more approximate by expressing it as an order of magnitude, 
which is a power of 10 determined as follows:

1. Express the number in scientific notation, with the multiplier of the power 
of 10 between 1 and 10 and a unit.

2. If the multiplier is less than 3.162 (the square root of 10), the order of mag-
nitude of the number is the power of 10 in the scientific notation. If the 
multiplier is greater than 3.162, the order of magnitude is one larger than 
the power of 10 in the scientific notation.

We use the symbol , for “is on the order of.” Use the procedure above to verify 
the orders of magnitude for the following lengths:

0.008 6 m , 1022 m  0.002 1 m , 1023 m  720 m , 103 m

Usually, when an order-of-magnitude estimate is made, the results are reliable to 
within about a factor of 10. 

Inaccuracies caused by guessing too low for one number are often canceled 
by other guesses that are too high. You will find that with practice your guessti-
mates become better and better. Estimation problems can be fun to work because 
you freely drop digits, venture reasonable approximations for unknown numbers, 
make simplifying assumptions, and turn the question around into something you 
can answer in your head or with minimal mathematical manipulation on paper. 
Because of the simplicity of these types of calculations, they can be performed on a 
small scrap of paper and are often called back-of-the-envelope calculations.

 Example 1.5    Breaths in a Lifetime

Estimate the number of breaths taken during an average human lifetime.

S o l u t i o n

We start by guessing that the typical human lifetime is about 70 years. Think about the average number of breaths that a per-
son takes in 1 min. This number varies depending on whether the person is exercising, sleeping, angry, serene, and so forth. 
To the nearest order of magnitude, we shall choose 10 breaths per minute as our estimate. (This estimate is certainly closer to 
the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

Find the approximate number of minutes in a year:  1 yr  1400 days 

1 yr 
 2 1 25 h 

1 day 
 2 160 min

1 h 
 2 5 6 3 105 min

Find the approximate number of minutes in a 70-year  number of minutes 5 (70 yr)(6 3 105 min/yr) 
lifetime: 5 4 3 107 min

Find the approximate number of breaths in a lifetime:  number of breaths  5 (10 breaths/min)(4 3 107 min)

 5  4 3 108 breaths

Therefore, a person takes on the order of 109 breaths in a lifetime. Notice how much simpler it is in the first calculation above 
to multiply 400 3 25 than it is to work with the more accurate 365 3 24.

W H A t  i F ? What if the average lifetime were estimated as 80 years instead of 70? Would that change our final estimate?

Answer We could claim that (80 yr)(6 3 105 min/yr) 5 5 3 107 min, so our final estimate should be 5 3 108 breaths. This 
answer is still on the order of 109 breaths, so an order-of-magnitude estimate would be unchanged.

   1.6    Significant Figures
When certain quantities are measured, the measured values are known only to 
within the limits of the experimental uncertainty. The value of this uncertainty 
can depend on various factors, such as the quality of the apparatus, the skill of 
the experimenter, and the number of measurements performed. The number of 
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14 Chapter 1 Physics and Measurement

significant figures in a measurement can be used to express something about the 
uncertainty. The number of significant figures is related to the number of numeri-
cal digits used to express the measurement, as we discuss below.

As an example of significant figures, suppose we are asked to measure the radius 
of a Blu-ray Disc using a meterstick as a measuring instrument. Let us assume the 
accuracy to which we can measure the radius of the disc is 60.1 cm. Because of 
the uncertainty of 60.1 cm, if the radius is measured to be 6.0 cm, we can claim 
only that its radius lies somewhere between 5.9 cm and 6.1 cm. In this case, we 
say that the measured value of 6.0 cm has two significant figures. Note that the  
significant figures include the first estimated digit. Therefore, we could write the radius as  
(6.0 6 0.1) cm.

Zeros may or may not be significant figures. Those used to position the decimal 
point in such numbers as 0.03 and 0.007 5 are not significant. Therefore, there are 
one and two significant figures, respectively, in these two values. When the zeros 
come after other digits, however, there is the possibility of misinterpretation. For 
example, suppose the mass of an object is given as 1 500 g. This value is ambiguous 
because we do not know whether the last two zeros are being used to locate the 
decimal point or whether they represent significant figures in the measurement. 
To remove this ambiguity, it is common to use scientific notation to indicate the 
number of significant figures. In this case, we would express the mass as 1.5 3 103 g 
if there are two significant figures in the measured value, 1.50 3 103 g if there are 
three significant figures, and 1.500 3 103 g if there are four. The same rule holds 
for numbers less than 1, so 2.3 3 1024 has two significant figures (and therefore 
could be written 0.000 23) and 2.30 3 1024 has three significant figures (and there-
fore written as 0.000 230).

In problem solving, we often combine quantities mathematically through mul-
tiplication, division, addition, subtraction, and so forth. When doing so, you must 
make sure that the result has the appropriate number of significant figures. A good 
rule of thumb to use in determining the number of significant figures that can be 
claimed in a multiplication or a division is as follows:

When multiplying several quantities, the number of significant figures in the 
final answer is the same as the number of significant figures in the quantity 
having the smallest number of significant figures. The same rule applies to 
division.

When numbers are added or subtracted, the number of decimal places in the 
result should equal the smallest number of decimal places of any term in the 
sum or difference.

Let’s apply this rule to find the area of the Blu-ray Disc whose radius we mea-
sured above. Using the equation for the area of a circle,

A 5 pr 2 5 ps6.0 cmd2 5 1.1 3 102 cm2

If you perform this calculation on your calculator, you will likely see 113.097 335 5. 
It should be clear that you don’t want to keep all of these digits, but you might 
be tempted to report the result as 113 cm2. This result is not justified because it 
has three significant figures, whereas the radius only has two. Therefore, we must 
report the result with only two significant figures as shown above.

For addition and subtraction, you must consider the number of decimal places 
when you are determining how many significant figures to report:

As an example of this rule, consider the sum

23.2 1 5.174 5 28.4

Notice that we do not report the answer as 28.374 because the lowest number of dec-
imal places is one, for 23.2. Therefore, our answer must have only one decimal place.

PitfaLL PrEvEntion 1.4
Read Carefully Notice that the 
rule for addition and subtraction 
is different from that for multipli-
cation and division. For addition 
and subtraction, the important 
consideration is the number of 
decimal places, not the number of 
significant figures.
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If the number of significant figures in the result of a calculation must be reduced, 
there is a general rule for rounding numbers: the last digit retained is increased by 
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.) 
If the last digit dropped is less than 5, the last digit retained remains as it is. (For 
example, 1.343 becomes 1.34.) If the last digit dropped is equal to 5, the remaining 
digit should be rounded to the nearest even number. (This rule helps avoid accu-
mulation of errors in long arithmetic processes.)

In a long calculation involving multiple steps, it is very important to delay the 
rounding of numbers until you have the final result, in order to avoid error accumu-
lation. Wait until you are ready to copy the final answer from your calculator before 
rounding to the correct number of significant figures. In this book, we display 
numerical values rounded off to two or three significant figures. This occasion-
ally makes some mathematical manipulations look odd or incorrect. For instance, 
looking ahead to Example 3.5 on page 62, you will see the operation 217.7 km 1 
34.6 km 5 17.0 km. This looks like an incorrect subtraction, but that is only because 
we have rounded the numbers 17.7 km and 34.6 km for display. If all digits in these 
two intermediate numbers are retained and the rounding is only performed on the 
final number, the correct three-digit result of 17.0 km is obtained.

In this book, most of the numerical examples and end-of-chapter problems 
will yield answers having three significant figures. When carrying out estima-
tion calculations, we shall typically work with a single significant figure.

  Significant figure guidelines 
used in this book

The rule for addition and subtraction can often result in answers that have a 
different number of significant figures than the quantities with which you start. For 
example, consider these operations that satisfy the rule:

1.000 1 1 0.000 3 5 1.000 4
1.002 2 0.998 5 0.004

In the first example, the result has five significant figures even though one of 
the terms, 0.000 3, has only one significant figure. Similarly, in the second calcu-
lation, the result has only one significant figure even though the numbers being 
subtracted have four and three, respectively.

Pitfall Prevention 1.5
Symbolic Solutions When solving 
problems, it is very useful to per-
form the solution completely in 
algebraic form and wait until the 
very end to enter numerical values 
into the final symbolic expression. 
This method will save many calcu-
lator keystrokes, especially if some 
quantities cancel so that you never 
have to enter their values into 
your calculator! In addition, you 
will only need to round once, on 
the final result.

 Example 1.6    Installing a Carpet

A carpet is to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measured to 
be 3.46 m. Find the area of the room.

S o l u t i o n

If you multiply 12.71 m by 3.46 m on your calculator, you will see an answer of 43.976 6 m2. How many of these numbers should 
you claim? Our rule of thumb for multiplication tells us that you can claim only the number of significant figures in your 
answer as are present in the measured quantity having the lowest number of significant figures. In this example, the lowest 
number of significant figures is three in 3.46 m, so we should express our final answer as 44.0 m2.

Summary
 › Definitions

The three fundamental physical quantities of mechanics are length, 
mass, and time, which in the SI system have the units meter (m), 
kilogram (kg), and second (s), respectively. These fundamental 
quantities cannot be defined in terms of more basic quantities.

The density of a substance is defined as its mass per unit 
volume:

 � ;
m
V

 (1.1)

 Summary 15

continued
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16 Chapter 1 Physics and Measurement

 › Concepts and Principles

The method of dimensional analysis is very powerful in solving phys-
ics problems. Dimensions can be treated as algebraic quantities. By 
making estimates and performing order-of-magnitude calculations, 
you should be able to approximate the answer to a problem when 
there is not enough information available to specify an exact solution 
completely.

When you compute a result from several measured 
numbers, each of which has a certain accuracy, you 
should give the result with the correct number of sig-
nificant figures.

When multiplying several quantities, the number of sig-
nificant  figures in the final answer is the same as the 
number of significant figures in the quantity having the 
smallest number of significant figures. The same rule 
applies to division.

When numbers are added or subtracted, the number 
of decimal places in the result should equal the small-
est number of decimal places of any term in the sum or 
difference.

Problem-solving skills and physical understanding can be improved 
by modeling the problem and by constructing alternative represen-
tations of the problem. Models helpful in solving problems include 
geometric, simplification, analysis, and structural models. Helpful 
representations include the mental, pictorial, simplified pictorial, 
graphical, tabular, and mathematical representations.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. A student is supplied with a stack of copy paper, ruler, com-
pass, scissors, and a sensitive balance. He cuts out various 
shapes in various sizes, calculates their areas, measures 
their masses, and prepares the graph of Figure TP1.1. (a) 
Consider the fourth experimental point from the top. How 
far is it vertically from the best-fit straight line? Express 
your answer as a difference in vertical-axis coordinate. (b) 
Express your answer as a percentage. (c) Calculate the slope 
of the line. (d) State what the graph demonstrates, referring 
to the shape of the graph and the results of parts (b) and 
(c). (e) Describe whether this result should be expected the-
oretically. (f) Describe the physical meaning of the slope.

2. ACTIVITy  Have each person in the group measure the 
height of another person using a meter stick with metric 
distances on one side and U.S. customary distances, such 
as inches, on the other side. Record the height to the near-
est centimeter and to the nearest half-inch. For each per-
son, divide his or her height in centimeters by the height in 
inches. Compare the results of this division for everyone in 
your group. What can you say about the results?

3. ACTIVITy  Gather together a number of U.S. pennies, either 
from your instructor or from the members of your group. 
Divide up the pennies into two samples: (1)  those with 
dates of 1981 or earlier, and (2) those with dates of 1983 
and later (exclude 1982 pennies from your sample). Find the 
total mass of all the pennies in each sample. Then divide 
each of these total masses by the number of pennies in its 
corresponding sample, to find the average penny mass in 
each sample. Discuss why the results are different for the 
two samples.

4. ACTIVITy  Discuss in your group the process by which 
you can obtain the best measurement of the thickness of 
a single sheet of paper in Chapters 1–5 of this book. Per-
form that measurement and express it with an appropriate 
number of significant figures and uncertainty. From that 
measurement, predict the total thickness of the pages in 
Volume 1 of this book (Chapters 1–21). After making your 
prediction, measure the thickness of Volume 1. Is your mea-
surement within the range of your prediction and its associ-
ated uncertainty?
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Note: Consult the endpapers, appendices, and tables in the 
text whenever necessary in solving problems. For this chapter, 
Table 14.1 and Appendix B.3 may be particularly useful. Answers 
to odd-numbered problems appear in the back of the book.

SEction 1.1 Standards of Length, Mass, and Time

1. (a) Use information on the endpapers of this book to cal-
culate the average density of the Earth. (b) Where does the 
value fit among those listed in Table 14.1 in Chapter 14? 
Look up the density of a typical surface rock like granite in 
another source and compare it with the density of the Earth.

2. A proton, which is the nucleus of a hydrogen atom, can be 
modeled as a sphere with a diameter of 2.4 fm and a mass 
of 1.67 3 10227 kg. (a) Determine the density of the proton. 
(b)  State how your answer to part (a) compares with the 
density of osmium, given in Table 14.1 in Chapter 14.

3. Two spheres are cut from a certain uniform rock. One has 
radius 4.50 cm. The mass of the other is five times greater. 
Find its radius.

4. What mass of a material with density r is required to make 
a hollow spherical shell having inner radius r1 and outer 
radius r2?

5. You have been hired by the defense attorney as an expert wit-
ness in a lawsuit. The plaintiff is someone who just returned 
from being a passenger on the first orbital space tourist flight. 
Based on a travel brochure offered by the space travel com-
pany, the plaintiff expected to be able to see the Great Wall of 
China from his orbital height of 200 km above the Earth’s sur-
face. He was unable to do so, and is now demanding that his 
fare be refunded and to receive additional financial compen-
sation to cover his great disappointment. Construct the basis 
for an argument for the defense that shows that his expecta-
tion of seeing the Great Wall from orbit was unreasonable. The 
Wall is 7 m wide at its widest point and the normal visual acuity 
of the human eye is 3 3 1024 rad. (Visual acuity is the smallest 
subtended angle that an object can make at the eye and still be 
recognized; the subtended angle in radians is the ratio of the 
width of an object to the distance of the object from your eyes.)

SEction 1.2 Modeling and Alternative Representations

6. A surveyor measures the distance across a straight river by 
the following method (Fig. P1.6). Starting directly across 
from a tree on the opposite bank, she walks d 5 100 m 
along the riverbank to establish a baseline. Then she sights 
across to the tree. The angle from her baseline to the tree is  
u 5 35.08. How wide is the river?

u

d

Figure P1.6

7. A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in Fig - 
ure P1.7a. The atoms reside at the corners of cubes of side  
L 5 0.200 nm. One piece of evidence for the regular 
arrangement of atoms comes from the flat surfaces along 
which a crystal separates, or cleaves, when it is broken. Sup-
pose this crystal cleaves along a face diagonal as shown in 
Figure P1.7b. Calculate the spacing d between two adjacent 
atomic planes that separate when the crystal cleaves.

L
d

a

b

Figure P1.7

SEction 1.3 Dimensional Analysis

8. The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Suppose 
we write this position as x 5 kamt n, where k is a dimension-
less constant. Show by dimensional analysis that this expres-
sion is satisfied if m 5 1 and n 5 2. Can this analysis give the 
value of k?

9. Which of the following equations are dimensionally cor-
rect? (a) vf 5 vi 1 ax (b) y 5 (2 m) cos (kx), where k 5 2 m21

10. (a) Assume the equation x 5 At 3 1 Bt describes the motion 
of a particular object, with x having the dimension of length 
and t having the dimension of time. Determine the dimen-
sions of the constants A and B. (b) Determine the dimen-
sions of the derivative dx/dt 5 3At2 1 B.

SEction 1.4 Conversion of Units

11. A solid piece of lead has a mass of 23.94 g and a volume of 
2.10 cm3. From these data, calculate the density of lead in SI 
units (kilograms per cubic meter).

12. Why is the following situation impossible? A student’s dormi-
tory room measures 3.8 m by 3.6 m, and its ceiling is 2.5 m 
high. After the student completes his physics course, he 
displays his dedication by completely wallpapering the 
walls of the room with the pages from his copy of volume 1  
(Chapters 1–21) of this textbook. He even covers the door 
and window.

13. One cubic meter (1.00 m3) of aluminum has a mass of 
2.70 3 103 kg, and the same volume of iron has a mass of 
7.86 3 103 kg. Find the radius of a solid aluminum sphere 
that will balance a solid iron sphere of radius 2.00 cm on an 
equal-arm balance.
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18 Chapter 1 Physics and Measurement

14. Let rAl represent the density of aluminum and rFe that of iron. 
Find the radius of a solid aluminum sphere that balances a 
solid iron sphere of radius rFe on an equal-arm balance.

15. One gallon of paint (volume 5 3.78 3 1023 m3) covers an 
area of 25.0 m2. What is the thickness of the fresh paint on 
the wall?

16. An auditorium measures 40.0 m 3 20.0 m 3 12.0 m. The 
density of air is 1.20 kg/m3. What are (a) the volume of the 
room in cubic feet and (b) the weight of air in the room in 
pounds?

SEction 1.5 Estimates and Order-of-Magnitude Calculations

Note: In your solutions to Problems 17 and 18, state the quanti-
ties you measure or estimate and the values you take for them.

17. (a) Compute the order of magnitude of the mass of a bath-
tub half full of water. (b) Compute the order of magnitude 
of the mass of a bathtub half full of copper coins.

18. To an order of magnitude, how many piano tuners reside 
in New York City? The physicist Enrico Fermi was famous 
for asking questions like this one on oral Ph.D. qualifying 
examinations.

19. Your roommate is playing a video game from the latest 
Star  Wars movie while you are studying physics. Distracted 
by the noise, you go to see what is on the screen. The game 
involves trying to fly a spacecraft through a crowded field of 
asteroids in the asteroid belt around the Sun. You say to him, 
“Do you know that the game you are playing is very unrealistic? 
The asteroid belt is not that crowded and you don’t have to 
maneuver through it like that!” Distracted by your statement, 
he accidentally allows his spacecraft to strike an asteroid, just 
missing the high score. He turns to you in disgust and says, 
“Yeah, prove it.” You say, “Okay, I’ve learned recently that the 
highest concentration of asteroids is in a doughnut-shaped 
region between the Kirkwood gaps at radii of 2.06 AU and 
3.27 AU from the Sun. There are an estimated 109 asteroids of 
radius 100 m or larger, like those in your video game, in this 
region . . .” Finish your argument with a calculation to show 
that the number of asteroids in the space near a spacecraft is 
tiny. (An astronomical unit—AU—is the mean distance of the 
Earth from the Sun: 1 AU 5 1.496 3 1011 m.)

SEction 1.6 Significant Figures

Note: Appendix B.8 on propagation of uncertainty may be 
useful in solving some problems in this section.

20. How many significant figures are in the following numbers? 
(a) 78.9 6 0.2 (b) 3.788 3 109 (c) 2.46 3 1026 (d) 0.005 3

21. The tropical year, the time interval from one vernal equinox 
to the next vernal equinox, is the basis for our calendar. It 
contains 365.242 199 days. Find the number of seconds in a 
tropical year.

Note: The next seven problems call on mathematical skills from 
your prior education that will be useful throughout this course.

22. Review. The average density of the planet Uranus is 1.27 3 
103 kg/m3. The ratio of the mass of Neptune to that of 
Uranus is 1.19. The ratio of the radius of Neptune to that 
of Uranus is 0.969. Find the average density of Neptune.

23. Review. In a community college parking lot, the number of 
ordinary cars is larger than the number of sport utility vehi-
cles by 94.7%. The difference between the number of cars 
and the number of SUVs is 18. Find the number of SUVs in 
the lot.

24. Review. Find every angle u between 0 and 3608 for which the 
ratio of sin u to cos u is 23.00.

25. Review. The ratio of the number of sparrows visiting a bird 
feeder to the number of more interesting birds is 2.25. On 
a morning when altogether 91 birds visit the feeder, what is 
the number of sparrows?

26. Review. Prove that one solution of the equation

2.00x4 2 3.00x3 1 5.00x 5 70.0

is x 5 22.22.

27. Review. From the set of equations

p 5 3q

pr 5 qs

1
2pr 2 1 1

2qs 2 5 1
2qt2

involving the unknowns p, q, r, s, and t, find the value of the 
ratio of t to r.

28. Review. Figure P1.28 shows students studying the ther-
mal conduction of energy into cylindrical blocks of ice. As 
we will see in Chapter 19, this process is described by the 
equation

Q

Dt
5

kpd 2sTh 2 Tc 
d

4L

For experimental control, in one set of trials all quantities 
except d and Dt are constant. (a) If d is made three times 
larger, does the equation predict that Dt will get larger or 
get smaller? By what factor? (b) What pattern of propor-
tionality of Dt to d does the equation predict? (c) To display 
this proportionality as a straight line on a graph, what quan-
tities should you plot on the horizontal and vertical axes? 
(d) What expression represents the theoretical slope of 
this graph?

Figure P1.28
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29. In a situation in which data are known to three significant 
digits, we write 6.379 m 5 6.38 m and 6.374 m 5 6.37 m. 
When a number ends in 5, we arbitrarily choose to write 
6.375 m 5 6.38 m. We could equally well write 6.375 m 5 
6.37 m, “rounding down” instead of “rounding up,” because 
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we would change the number 6.375 by equal increments in 
both cases. Now consider an order-of-magnitude estimate, in 
which factors of change rather than increments are impor-
tant. We write 500 m , 103 m because 500 differs from 100 
by a factor of 5 while it differs from 1 000 by only a factor of 
2. We write 437 m , 103 m and 305 m , 102 m. What dis-
tance differs from 100 m and from 1 000 m by equal factors 
so that we could equally well choose to represent its order of 
magnitude as , 102 m or as , 103 m?

30. (a) What is the order of magnitude of the number of micro
organisms in the human intestinal tract? A typical bacterial 
length scale is 1026 m. Estimate the intestinal volume and 
assume 1% of it is occupied by bacteria. (b) Does the num-
ber of bacteria suggest whether the bacteria are beneficial, 
dangerous, or neutral for the human body? What functions 
could they serve?

31. The distance from the Sun to the nearest star is about 4 3 
1016 m. The Milky Way galaxy (Fig. P1.31) is roughly a disk 
of diameter 1021 m and thickness , 1019 m. Find the order of 
magnitude of the number of stars in the Milky Way. Assume 
the distance between the Sun and our nearest neighbor 
is typical.

Figure P1.31 The Milky Way galaxy.

N
AS

A

32. Why is the following situation impossible? In an effort to boost 
interest in a television game show, each weekly winner is 
offered an additional $1 million bonus prize if he or she 
can personally count out that exact amount from a supply of 
one-dollar bills. The winner must do this task under super-
vision by television show executives and within one 40-hour 
work week. To the dismay of the show’s producers, most con-
testants succeed at the challenge.

33. Bacteria and other prokaryotes are found deep under-
ground, in water, and in the air. One micron (1026 m) is a 
typical length scale associated with these microbes. (a) Esti-
mate the total number of bacteria and other prokaryotes on 
the Earth. (b) Estimate the total mass of all such microbes.

34. A spherical shell has an outside radius of 2.60 cm and an 
inside radius of a. The shell wall has uniform thickness and 

is  made of a material with density 4.70 g/cm3. The space 
inside the shell is filled with a liquid having a density of 
1.23 g/cm3. (a) Find the mass m of the sphere, including its 
contents, as a function of a. (b) For what value of the vari-
able a does m have its maximum possible value? (c) What 
is this maximum mass? (d) Explain whether the value from 
part (c) agrees with the result of a direct calculation of the 
mass of a solid sphere of uniform density made of the same 
material as the shell. (e) What If? Would the answer to part 
(a) change if the inner wall were not concentric with the 
outer wall?

35. Air is blown into a spherical balloon so that, when its radius 
is 6.50 cm, its radius is increasing at the rate 0.900  cm/s. 
(a)  Find the rate at which the volume of the balloon is 
increasing. (b) If this volume flow rate of air entering the 
balloon is constant, at what rate will the radius be increas-
ing when the radius is 13.0 cm? (c) Explain physically why 
the answer to part (b) is larger or smaller than 0.9  cm/s, if 
it is different.

36. In physics, it is important to use mathematical approxima-
tions. (a) Demonstrate that for small angles (, 208)

tan a < sin a < a 5
pa9

1808

where a is in radians and a9 is in degrees. (b) Use a calcula-
tor to find the largest angle for which tan a may be approx-
imated by a with an error less than 10.0%.

37. The consumption of natural gas by a company satisfies the 
empirical equation V 5 1.50t 1 0.008 00t2, where V is the 
volume of gas in millions of cubic feet and t is the time in 
months. Express this equation in units of cubic feet and sec-
onds. Assume a month is 30.0 days.

38. A woman wishing to know the height of a mountain mea-
sures the angle of elevation of the mountaintop as 12.08. 
After walking 1.00 km closer to the mountain on level 
ground, she finds the angle to be 14.08. (a) Draw a picture 
of the problem, neglecting the height of the woman’s eyes 
above the ground. Hint: Use two triangles. (b)  Using the 
symbol y to represent the mountain height and the symbol x 
to represent the woman’s original distance from the moun-
tain, label the picture. (c) Using the labeled picture, write 
two trigonometric equations relating the two selected vari-
ables. (d) Find the height y.

chaLLEngE ProbLEM

39. A woman stands at a horizontal distance x from a mountain 
and measures the angle of elevation of the mountaintop 
above the horizontal as u. After walking a distance d closer 
to the mountain on level ground, she finds the angle to be 
f. Find a general equation for the height y of the mountain 
in terms of d, f, and u, neglecting the height of her eyes 
above the ground.

T
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Storyline You are a passenger in a car being driven by a friend 
down a straight road. You notice that the telephone poles, streetlight poles, or 
electric power poles on the side of the road are located at equal distances from 
each other. You pull out your smartphone and use it as a stopwatch to measure 
the time intervals required for you to pass between adjacent pairs of poles.1 
When your friend tells you that the car is moving at a fixed speed, you notice that 
all of these time intervals are the same. Now, the driver begins to slow down for 
a traffic light. You again measure the time intervals and find that each one is lon-
ger than the one before. After the car pulls away from the traffic light and speeds 
up, the time intervals between poles become shorter. Does this behavior make 
sense? When the car is moving at a constant speed again, you use the time inter-
val between poles and the driving speed reported by your friend to calculate the 
distance between the poles. You excitedly tell your friend to pull over so you can 
pace out the distance between the poles. How accurate was your calculation?

ConneCtions We begin our study of physics with the topic of kinematics. 
In this broad topic, we generally investigate motion: the motion of objects without 
regard for interactions with the environment that influence the motion. Motion is 
what many of the early scientists studied. Early astronomers in Greece, China, 
the Middle East, and Central America observed the motion of objects in the night 
sky. Galileo Galilei studied the motion of objects rolling down inclined planes. Isaac 
Newton pondered the nature of falling objects. From everyday experience, we 
recognize that motion of an object represents a continuous change in the object’s 

Motion in One Dimension

2.1 Position, Velocity, and 
Speed of a Particle

2.2 Instantaneous Velocity 
and Speed

2.3 Analysis Model: 
Particle Under 
Constant Velocity

2.4 The Analysis Model 
Approach to Problem 
Solving

2.5 Acceleration

2.6 Motion Diagrams

2.7 Analysis Model: 
Particle Under 
Constant Acceleration

2.8 Freely Falling Objects

2.9 Kinematic Equations 
Derived from Calculus

2
The introductory storyline involves a long, straight 
road like this one, where the power poles are 
equally spaced. (John Arehart/Shutterstock.com)

1A number of specialized smartphone apps can be downloaded and used to make numerical measurements, such as 
speed and acceleration. In our storylines, however, we will restrict our smartphone use mostly to apps that are stan-
dard on the phone as purchased.
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    2.1 Position, Velocity, and Speed of a Particle 21

position. In this chapter, we will analyze the motion of an object along a straight 
line, like the car in the storyline. We will use measurements of length and time as 
described in Chapter 1 to quantify the motion. An object moving vertically and sub-
ject to gravity is an important application of one-dimensional motion, and will also be 
studied in this chapter. Remember our discussion of making models for physical situ-
ations in Section 1.2. In our study, we use the simplification model mentioned in that 
section and called the particle model, and describe the moving object as a particle 
regardless of its size. In general, a particle is a point-like object, that is, an object that 
has mass but is of infinitesimal size. In Section 1.2, we discussed the fact that the 
motion of the Earth around the Sun can be treated as if the Earth were a particle. We 
will return to this model for the Earth when we study planetary orbits in Chapter 13. 
As an example on a much smaller scale, it is possible to explain the pressure exerted 
by a gas on the walls of a container by treating the gas molecules as particles, 
without regard for the internal structure of the molecules; we will see this analysis 
in Chapter 20. For now, let us apply the particle model to a wide variety of moving 
objects in this chapter. An understanding of motion will be essential throughout the 
rest of this book: the motion of planets in Chapter 13 on gravity, the motion of elec-
trons in electric circuits in Chapter 26, the motion of light waves in Chapter 34 on 
optics, the motion of quantum particles tunneling through barriers in Chapter 40.

   2.1    Position, Velocity, and Speed of a Particle
A particle’s position x  is the location of the particle with respect to a chosen reference 
point that we can consider to be the origin of a coordinate system. The motion of a 
particle is completely known if the particle’s position in space is known at all times.

Consider a car moving back and forth along the x axis as in Figure 2.1a (page 22). 
The numbers under the horizontal line are position markers for the car, similar to 
the equally spaced poles in the introductory storyline. When we begin collecting 
position data, the car is 30 m to the right of the reference position x 5 0. We will 
use the particle model by identifying some point on the car, perhaps the front door 
handle, as a particle representing the entire car.

We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position Ⓐ to position Ⓑ. After Ⓑ, 
the position values begin to decrease, suggesting the car is backing up from position 
Ⓑ through position Ⓕ. In fact, at Ⓓ, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.

Notice the alternative representations of information, as discussed in Section 1.2, 
that we have used for the motion of the car. Figure 2.1a is a pictorial representation, 
whereas Figure 2.1b is a graphical representation. Table 2.1 is a tabular representa-
tion of the same information. The ultimate goal, as mentioned in Section 1.2, is a 
mathematical representation, which can be analyzed to solve for some requested 
piece of information.

In the introductory storyline, you observed the change in the position of your 
car relative to the power poles. The displacement Dx of a particle is defined as  
its change in position in some time interval. As the particle moves from an initial 
position xi to a final position xf , its displacement is given by

 Dx ; xf 2 xi  (2.1)

 Position

 Displacement

 Table 2.1  Position of the  
Car at Various Times
Position t (s) x (m)

Ⓐ  0 30
Ⓑ 10 52
Ⓒ 20 38
Ⓓ 30 0
Ⓔ 40 237
Ⓕ 50 253
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22 Chapter 2 Motion in One Dimension

We use the capital Greek letter delta (D) to denote the change in a quantity. From 
this definition, we see that Dx is positive if xf is greater than xi and negative if xf is 
less than xi. Given the data in Table 2.1, we can easily determine the displacement 
of the car for various time intervals.

It is very important to recognize the difference between displacement and dis-
tance traveled. Distance is the length of a path followed by a particle. Consider, for 
example, the basketball players in Figure 2.2. If a player runs from his own team’s 
basket down the court to the other team’s basket and then returns to his own bas-
ket, the displacement of the player during this time interval is zero because he ended 
up at the same point as he started: xf 5 xi, so Dx 5 0. During this time interval, 
however, he moved through a distance of twice the length of the basketball court. 
Distance is always represented as a positive number, whereas displacement can be 
either positive or negative.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including position, velocity, and acceleration, also are vectors. In general, a 
vector quantity requires the specification of both direction and magnitude. For 
example, in the case of the car in Figure 2.1, by how much did the position of the 
car change (magnitude) and in what direction—forward or backward? By contrast,  
a scalar quantity has a numerical value and no direction. Distance is a scalar: how 
far did the car move, as measured by its odometer, in a certain time interval? In this 
chapter, we use positive (1) and negative (2) signs to indicate vector direction. For 
example, for horizontal motion let us arbitrarily specify to the right as being the 
positive direction. It follows that any object always moving to the right undergoes 
a positive displacement Dx . 0, and any object moving to the left undergoes a neg-
ative displacement so that Dx , 0. We shall treat vector quantities in greater detail 
in Chapter 3.

One very important point has not yet been mentioned. Notice that the data in 
Table 2.1 result only in the six data points in the graph in Figure 2.1b. Therefore, 
the motion of the particle is not completely known because we don’t know its posi-
tion at all times. The smooth curve drawn through the six points in the graph is  
only a possibility of the actual motion of the car. We only have information about six  
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

Figure 2.2 On this basketball 
court, players run back and forth 
for the entire game. The distance 
that the players run over the 
duration of the game is nonzero. 
The displacement of the players 
over the duration of the game is 
approximately zero because they 
keep returning to the same point 
over and over again.
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    2.1 Position, Velocity, and Speed of a Particle 23

instants of time; we have no idea what happened between the data points. The smooth  
curve is a guess as to what happened, but keep in mind that it is only a guess. If 
the smooth curve does represent the actual motion of the car, the graph contains 
complete information about the entire 50-s interval during which we watch the  
car move.

Q uick Quiz 2.1 Which of the following choices best describes what can be 
determined exactly from Table 2.1 and Figure 2.1 for the entire 50-s interval?  
(a) The distance the car moved. (b) The displacement of the car. (c) Both (a) and 
(b). (d) Neither (a) nor (b).

It is much easier to see changes in position from the graph than from a verbal 
description or even a table of numbers. For example, it is clear that the car covers 
more ground during the middle of the 50-s interval than at the end. Between posi-
tions Ⓒ and Ⓓ, the car changes position by almost 40 m, but during the last 10 s, 
between positions Ⓔ and Ⓕ, it changes position by less than half that much. A com-
mon way of comparing these different motions is to divide the displacement Dx that 
occurs between two clock readings by the value of that particular time interval Dt. 
The result turns out to be a very useful ratio, one that we shall use many times. This 
ratio has been given a special name: the average velocity. The average velocity vx,avg of 
a particle is defined as the particle’s displacement Dx divided by the time interval 
Dt during which that displacement occurs:

 vx,avg ;
Dx
Dt

 (2.2)

where the subscript x indicates motion along the x axis. From this definition we see 
that average velocity has dimensions of length divided by time (L/T), or meters per 
second in SI units.

The average velocity of a particle moving in one dimension can be positive or 
negative, depending on the sign of the displacement. (The time interval Dt is always 
positive.) If the coordinate of the particle increases in time (that is, if xf . xi), Dx 
is positive and vx,avg 5 Dx/Dt is positive. This case corresponds to a particle mov-
ing in the positive x direction, that is, toward larger values of x. If the coordinate 
decreases in time (that is, if xf , xi), Dx is negative and hence vx,avg is negative. This 
case corresponds to a particle moving in the negative x direction.

We can interpret average velocity geometrically by drawing a straight line 
between any two points on the position–time graph in Figure 2.1b. This line 
forms the hypotenuse of a right triangle of height Dx and base Dt. The slope of 
this line is the ratio Dx/Dt, which is what we have defined as average velocity in 
Equation 2.2. For example, the line between positions Ⓐ and Ⓑ in Figure 2.1b 
has a slope equal to the average velocity of the car between those two times,  
(52 m 2 30 m)/(10 s 2 0) 5 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics, 
however, there is a clear distinction between these two quantities. Consider a mar-
athon runner who runs a distance d of more than 40 km and yet ends up at her 
starting point. Her total displacement is zero, so her average velocity is zero! None-
theless, we need to be able to quantify how fast she was running. A slightly different 
ratio accomplishes that for us. The average speed vavg of a particle, a scalar quan-
tity, is defined as the total distance d traveled divided by the total time interval 
required to travel that distance:

 vavg ;
d

Dt
 (2.3)

The SI unit of average speed is the same as the unit of average velocity: meters 
per second. Unlike average velocity, however, average speed has no direction and 

 Average velocity

 Average speed
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24 Chapter 2 Motion in One Dimension

is always expressed as a positive number. Notice the clear distinction between 
the definitions of average velocity and average speed: average velocity (Eq. 2.2) is  
the displacement divided by the time interval, whereas average speed (Eq. 2.3) is the 
distance divided by the time interval.

Knowledge of the average velocity or average speed of a particle does not provide 
information about the details of the trip. For example, suppose it takes you 45.0 s 
to travel 100 m down a long, straight hallway toward your departure gate at an 
airport. At the 100-m mark, you realize you missed the restroom, and you return 
back 25.0 m along the same hallway, taking 10.0 s to make the return trip. The 
magnitude of your average velocity is 175.0 m/55.0 s 5 11.36 m/s. The average speed 
for your trip is 125 m/55.0 s 5 2.27 m/s. You may have traveled at various speeds 
during the walk and, of course, you changed direction. Neither average velocity nor 
average speed provides information about these details.

Q uick Quiz 2.2 Under which of the following conditions is the magnitude of 
the average velocity of a particle moving in one dimension smaller than the aver-
age speed over some time interval? (a) A particle moves in the 1x direction with-
out reversing. (b) A particle moves in the 2x direction without reversing. (c) A 
particle moves in the 1x direction and then reverses the direction of its motion.  
(d) There are no conditions for which this is true.

Pitfall Prevention 2.1
Average Speed and Average 
Velocity The magnitude of the 
average velocity is not the average 
speed. For example, consider 
the marathon runner discussed 
before Equation 2.3. The mag-
nitude of her average velocity 
is zero, but her average speed is 
clearly not zero.

 Example 2.1    Calculating the Average Velocity and Speed

Find the displacement, average velocity, and average speed of the car in Figure 2.1a between positions Ⓐ and Ⓕ.

S O L U T I O N

Consult Figure 2.1 to form a mental image of the car and its motion. We model the car as a particle. From the position–time 
graph given in Figure 2.1b, notice that x

Ⓐ
 5 30 m at t

Ⓐ
 5 0 s and that x

Ⓕ
 5 253 m at t

Ⓕ
 5 50 s.

Use Equation 2.1 to find the displacement of the car: Dx 5 x
Ⓕ

 2 x
Ⓐ

 5 253 m 2 30 m 5  283 m 

This result means that the car ends up 83 m in the negative direction (to the left, in this case) from where it started. This  
number has the correct units and is of the same order of magnitude as the supplied data. A quick look at Figure 2.1a indicates 
that it is the correct answer.

Use Equation 2.2 to find the car’s average velocity:  vx,avg 5
x

Ⓕ 2 x
Ⓐ

t
Ⓕ 2 t

Ⓐ

     5
253 m 2 30 m

50 s 2 0 s
5

283 m
50 s

5  21.7 mys

We cannot unambiguously find the average speed of the car from the data in Table 2.1 because we do not have information 
about the positions of the car between the data points. If we adopt the assumption that the details of the car’s position are 
described by the curve in Figure 2.1b, the distance traveled is 22 m (from Ⓐ to Ⓑ) plus 105 m (from Ⓑ to Ⓕ), for a total of 127 m.

Use Equation 2.3 to find the car’s average speed: vavg 5
127 m
50 s

5  2.5 mys

Notice that the average speed is positive, as it must be. Suppose the red-brown curve in Figure 2.1b were different so that 
between 0 s and 10 s it went from Ⓐ up to 100 m and then came back down to Ⓑ. The average speed of the car would change 
because the distance is different, but the average velocity would not change.

   2.2    Instantaneous Velocity and Speed
Often we need to know the velocity of a particle at a particular instant in time t 
rather than the average velocity over a finite time interval Dt. In other words, you 
would like to be able to specify your velocity just as precisely as you can specify your 
position by noting what is happening at a specific clock reading, that is, at some 
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    2.2 Instantaneous Velocity and Speed 25

specific instant. What does it mean to talk about how quickly something is moving 
if we “freeze time” and talk only about an individual instant? If the time interval 
has a value of zero, the displacement of the object is also zero, so the average veloc-
ity from Equation 2.2 would seem to be 0/0. How do we evaluate that ratio? In the 
late 1600s, with the invention of calculus, scientists began to understand how to 
answer that question and describe an object’s motion at any moment in time.

To see how that is done, consider Figure 2.3a, which is a reproduction of the 
graph in Figure 2.1b. What is the particle’s velocity at t 5 0? We have already dis-
cussed the average velocity for the interval during which the car moved from posi-
tion Ⓐ to position Ⓑ (given by the slope of the blue line) and for the interval dur-
ing which it moved from Ⓐ to Ⓕ (represented by the slope of the longer blue line 
and calculated in Example 2.1). The car starts out by moving to the right, which we 
defined to be the positive direction. Therefore, being positive, the value of the aver-
age velocity during the interval from Ⓐ to Ⓑ is more representative of the initial 
velocity than is the value of the average velocity during the interval from Ⓐ to Ⓕ, 
which we determined to be negative in Example 2.1. Now let us focus on the short 
blue line and imagine sliding point Ⓑ to the left along the curve, toward point Ⓐ, 
as in Figure 2.3b. The line between the points becomes steeper and steeper, and as 
the two points become extremely close together, the line becomes a tangent line to 
the curve, indicated by the green line in Figure 2.3b. The slope of this tangent line 
represents the velocity of the car at point Ⓐ. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:2

 vx ; lim
Dt S 0

Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, writ-
ten dx/dt:

 vx ; lim
Dt S 0

Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope  
of the position–time graph is positive, such as at any time during the first 10 s in 
Figure 2.3, vx is positive and the car is moving toward larger values of x. After point 
Ⓑ, vx is negative because the slope is negative and the car is moving toward smaller 
values of x. At point Ⓑ, the slope and the instantaneous velocity are zero and the 
car is momentarily at rest.

 Instantaneous velocity
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

PiTfall PrevenTion 2.2
Slopes of Graphs In any graph 
of physical data, the slope rep-
resents the ratio of the change in 
the quantity represented on the 
vertical axis to the change in the 
quantity represented on the hori-
zontal axis. Remember that a slope 
has units (unless both axes have 
the same units). The units of slope 
in Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

PiTfall PrevenTion 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

2As mentioned previously, the displacement Dx also approaches zero as Dt approaches zero, so the ratio Dx/Dt looks 
like 0/0. The ratio can be evaluated in the limit in this situation, however. As Dx and Dt become smaller and smaller, 
the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
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26 Chapter 2 Motion in One Dimension

From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed3 of 25 m/s.

Q uick Quiz 2.3 Are officers in the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?

 Conceptual Example 2.2    The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls back 
into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts through space 
at constant velocity. Are there any points in the motion of these objects at which the instantaneous velocity has the same 
value as the average velocity over the entire motion? If so, identify the point(s).

S O L U T I O N

(A) The average velocity for the thrown ball is zero because the ball returns to the starting point; therefore, its displacement is 
zero. There is one point at which the instantaneous velocity is zero: at the top of the motion.

(B) The car’s average velocity cannot be evaluated unambiguously with the information given, but it must have some value 
between 0 and 100 m/s. Because the car will have every instantaneous velocity between 0 and 100 m/s at some time during 
the interval, there must be some instant at which the instantaneous velocity is equal to the average velocity over the entire 
motion.

(C) Because the spacecraft’s instantaneous velocity is constant, its instantaneous velocity at any time and its average velocity 
over any time interval are the same.

Figure 2.4 (Example 2.3)  
(a) Position–time graph for a particle 
having an x coordinate that varies in  
time according to the expression  
x 5 24t 1 2t2. (b) The particle moves 
in one dimension along the x axis.
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 Example 2.3    Average and Instantaneous Velocity

A particle moves along the x axis. Its position varies with time according to the expres-
sion x 5 24t 1 2t 2, where x is in meters and t is in seconds.4 The position–time graph 
for this motion is shown in Figure 2.4a. Because the position of the particle is given by a 
mathematical function, the motion of the particle is known at all times, unlike that of the 
car in Figure 2.1, where data is only provided at six instants of time. Notice that the parti-
cle moves in the negative x direction for the first second of motion, is momentarily at rest 
at the moment t 5 1 s, and moves in the positive x direction at times t . 1 s.

(A) Determine the displacement of the particle in the time intervals t 5 0 to t 5 1 s and  
t 5 1 s to t 5 3 s.

S O L U T I O N

From the graph in Figure 2.4a, form a mental representation of the particle’s motion. Keep 
in mind that the particle does not move in a curved path in space such as that shown by the 
red-brown curve in the graphical representation. The particle moves only along the x axis 
in one dimension as shown in Figure 2.4b. At t 5 0, is it moving to the right or to the left?
 During the first time interval, the slope is negative and hence the average velocity is 
negative. Therefore, we know that the displacement between Ⓐ and Ⓑ must be a negative 
number having units of meters. Similarly, we expect the displacement between Ⓑ and Ⓓ to 
be positive.

continued

3As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

4Simply to make it easier to read, we write the expression as x 5 24t 1 2t2 rather than as x 5 (24.00 m/s)t 1  
(2.00 m/s2)t2.00. When an equation summarizes measurements, consider its coefficients and exponents to have as 
many significant figures as other data quoted in a problem. Consider its coefficients to have the units required for 
dimensional consistency. When we start our clocks at t 5 0, we usually do not mean to limit the precision to a single 
digit. Consider any zero value in this book to have as many significant figures as you need.
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    2.3 Analysis Model: Particle Under Constant Velocity 27

2.3 c o n t i n u e d

In the first time interval, set ti 5 t
Ⓐ

 5 0 and tf 5 t
Ⓑ

 5 1 s.  Dx
ⒶSⒷ

 5 xf 2 xi 5 x
Ⓑ

 2 x
Ⓐ

 
Substitute these values into x 5 24t 1 2t2 and use  

    5 [24(1) 1 2(1)2] 2 [24(0) 1 2(0)2] 5  22 m
 

Equation 2.1 to find the displacement:

For the second time interval (t 5 1 s to t 5 3 s), set ti 5  Dx
ⒷSⒹ

 5 xf 2 xi 5 x
Ⓓ

 2 x
Ⓑ

 
t

Ⓑ
 5 1 s and tf 5 t

Ⓓ
 5 3 s:    

 5 [24(3) 1 2(3)2] 2 [24(1) 1 2(1)2] 5  18 m

These displacements can also be read directly from the position–time graph.

(B) Calculate the average velocity during these two time intervals.

S O L U T I O N

In the first time interval, use Equation 2.2 with Dt 5  vx,avg sⒶ S Ⓑd 5
Dx

Ⓐ S Ⓑ

Dt
5

22 m
1 s

5   22 mys 
tf 2 ti 5 t

Ⓑ
 2 t

Ⓐ
 5 1 s:

In the second time interval, Dt 5 2 s: vx,avg sⒷ S Ⓓd 5
Dx

Ⓑ S Ⓓ

Dt
5

8 m
2 s

5  14 mys

These values are the same as the slopes of the blue lines joining these points in Figure 2.4a.

(C) Find the instantaneous velocity of the particle at t 5 2.5 s.

S O L U T I O N

Calculate the slope of the green line at t 5 2.5 s (point Ⓒ)  vx 5
10 m 2 s24 md

3.8 s 2 1.5 s
5   16 mys 

in Figure 2.4a by reading position and time values for the  
ends of the green line from the graph:

Notice that this instantaneous velocity is on the same order of magnitude as our previous results, that is, a few meters per  
second. Is that what you would have expected?

   2.3    Analysis Model: Particle Under Constant Velocity
In Section 1.2 we discussed the importance of making models. As mentioned 
there, a particularly important model used in the solution to physics problems is 
an analysis model. An analysis model is a common situation that occurs time and 
again when solving physics problems. Because it represents a common situation, 
it also represents a common type of problem that we have solved before. When 
you identify an analysis model in a new problem, the solution to the new problem 
can be modeled after that of the previously solved problem. Analysis models help 
us to recognize those common situations and guide us toward a solution to the 
problem. The form that an analysis model takes is a description of either (1) the 
behavior of some physical entity or (2) the interaction between that entity and 
the environment. When you encounter a new problem, you should identify the 
fundamental details of the problem, ignore details that are not important, and 
attempt to recognize which of the situations you have already seen that might 
be used as a model for the new problem. For example, suppose an automobile is 
moving along a straight freeway at a constant speed. Is it important that it is an 
automobile? Is it important that it is a freeway? If the answers to both questions 
are no, but the car moves in a straight line at constant speed, we model the auto-
mobile as a particle under constant velocity, which we will discuss in this section. 
Once the problem has been modeled, it is no longer about an automobile. It  
is about a particle undergoing a certain type of motion, a motion that we have 
studied before.

 Analysis model
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28 Chapter 2 Motion in One Dimension

This method is somewhat similar to the common practice in the legal profession 
of finding “legal precedents.” If a previously resolved case can be found that is very 
similar legally to the current one, it is used as a model and an argument is made in 
court to link them logically. The finding in the previous case can then be used to 
sway the finding in the current case. We will do something similar in physics. For 
a given problem, we search for a “physics precedent,” a model with which we are 
already familiar and that can be applied to the current problem.

All of the analysis models that we will develop are based on four fundamental 
simplification models. The first of the four is the particle model discussed in the 
introduction to this chapter. We will look at a particle under various behaviors 
and environmental interactions. Further analysis models are introduced in later 
chapters based on simplification models of a system, a rigid object, and a wave. Once 
we have introduced these analysis models, we shall see that they appear again and 
again in different problem situations.

When solving a problem, you should avoid browsing through the chapter looking 
for an equation that contains the unknown variable that is requested in the problem. 
In many cases, the equation you find may have nothing to do with the problem you 
are attempting to solve. It is much better to take this first step: Identify the analysis 
model that is appropriate for the problem. To do so, think carefully about what is 
going on in the problem and match it to a situation you have seen before. Once the 
analysis model is identified, there are a small number of equations from which to 
choose that are appropriate for that model, sometimes only one equation. Therefore, 
the model tells you which equation(s) to use for the mathematical representation.

Let us use Equation 2.2 to build our first analysis model for solving problems. 
We imagine a particle moving with a constant velocity. The model of a particle 
under constant velocity can be applied in any situation in which an entity that can 
be modeled as a particle is moving with constant velocity. This situation occurs fre-
quently, so this model is important.

If the velocity of a particle is constant, its instantaneous velocity at any instant 
during a time interval is the same as the average velocity over the interval. That is, 
vx 5 vx,avg. Therefore, substituting vx for vx,avg in Equation 2.2 gives us an equation to 
be used in the mathematical representation of this situation:

 vx 5
Dx
Dt

 (2.6)

Remembering that Dx 5 xf 2 xi, we see that vx 5 (xf 2 xi)/Dt, or

xf 5 xi 1 vx  Dt

This equation tells us that the position of the particle is given by the sum of its orig-
inal position xi at time t 5 0 plus the displacement vx Dt that occurs during the time 
interval Dt. In practice, we usually choose the time at the beginning of the interval 
to be ti 5 0 and the time at the end of the interval to be tf 5 t, so our equation 
becomes

 xf 5 xi 1 vxt (for constant vx) (2.7)

Equations 2.6 and 2.7 are the primary equations used in the model of a particle under 
constant velocity. Whenever you have identified the analysis model in a problem to 
be the particle under constant velocity, you can immediately turn to these equations.

Figure 2.5 is a graphical representation of the particle under constant velocity. On 
this position–time graph, the slope of the line representing the motion is constant and 
equal to the magnitude of the velocity. Equation 2.7, which is the equation of a straight 
line, is the mathematical representation of the particle under constant velocity model. 
The slope of the straight line is vx and the y intercept is xi in both representations.

In the opening storyline, the particle under constant velocity model was repre-
sented by the part of the motion taking place at “fixed speed.” You found in the 

Position as a function of  
time for the particle under 

 constant velocity model

xi

x

t

Slope � � vx
�x
�t

Figure 2.5 Position–time graph 
for a particle under constant  
velocity. The value of the constant 
velocity is the slope of the line.
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storyline that the time intervals between poles were always the same in this case.  
Is this result consistent with Equation 2.7? Example 2.4 below shows a numerical 
application of the particle under constant velocity model. 

 Example 2.4    Modeling a Runner as a Particle

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of the movement of the human 
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs 
along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point 
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

(A) What is the runner’s velocity?

S O L U T I O N

We model the moving runner as a particle because the size of the runner and the movement of arms and legs are  
unnecessary details. Because the problem states that the subject runs “at a constant rate,” we can model him as a particle under 
constant velocity.

Having identified the model, we can use Equation 2.6 to  vx 5
Dx
Dt

5
xf 2 xi

Dt
5

20 m 2 0
4.0 s

5   5.0 mys 
find the constant velocity of the runner:

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

S O L U T I O N

Use Equation 2.7 and the velocity found in part (A) to  xf 5 xi 1 vxt 5 0 1 (5.0 m/s)(10 s) 5  50 m 
find the position of the particle at time t 5 10 s:

Is the result for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and 200-m 
sprints? Notice the value in part (B) is more than twice that of the 20-m position at which the stopwatch was stopped. Is this 
value consistent with the time of 10 s being more than twice the time of 4.0 s?

The mathematical manipulations for the particle under constant velocity stem from 
Equation 2.6 and its descendent, Equation 2.7. These equations can be used to solve 
for any variable in the equations that happens to be unknown if the other variables 
are known. For example, in part (B) of Example 2.4, we find the position when the 
velocity and the time are known. Similarly, if we know the velocity and the final posi-
tion, we could use Equation 2.7 to find the time at which the runner is at this position.

A particle under constant velocity moves with a constant speed along a straight 
line. Now consider a particle moving with a constant speed through a distance d 
along a curved path. As we will see in Section 2.5 below, a change in the direction of 
motion of a particle signifies a change in the velocity of a particle even though its 
speed is constant; there is a change in the speed vector. Therefore, our particle mov-
ing along a curved path is not represented by the particle under constant velocity 
model. However, it can be represented with the model of a particle under constant 
speed. The primary equation for this model is Equation 2.3, with the average speed 
vavg replaced by the constant speed v:

 v 5
d

Dt
 (2.8)

As an example, imagine a particle moving at a constant speed in a circular path. If 
the speed is 5.00 m/s and the radius of the path is 10.0 m, we can calculate the time 
interval required to complete one trip around the circle:

v 5
d
Dt

S Dt 5
d
v

5
2�r

v
5

2�s10.0 md
5.00 mys

5 12.6 s
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30 Chapter 2 Motion in One Dimension

analYsis Model Particle Under Constant Velocity

Imagine a moving object that can be modeled as a particle.  
If it moves at a constant speed through a displacement Dx in a 
straight line in a time interval Dt, its constant velocity is 

 vx 5
Dx
Dt

 (2.6)

The position of the particle as a function of time is given by 

 xf 5 xi 1 vxt (2.7)

v

Examples:

 ● a meteoroid traveling through gravity-free space
 ● a car traveling at a constant speed on a straight highway
 ● a runner traveling at constant speed on a perfectly 

straight path
 ● an object moving at terminal speed through a viscous 

medium (Chapter 6)

   2.4    The Analysis Model Approach to Problem Solving
We have just seen our first analysis models: the particle under constant velocity 
and the particle under constant speed. Now, what do we do with these models? 
The analysis models fit into a general method of solving problems that we describe 
below. In particular, pay attention to the “Categorize” step in the discussion below. 
That is where you identify the analysis model to be applied to the problem. After 
that, the problem is solved using the equation or equations that you have already 
learned to be associated with that model. This is the way physicists approach com-
plex situations and complicated problems, and break them into manageable pieces. 
It is an extremely useful skill for you to learn. It may look complicated at first, but it 
will become easier and of second nature as you practice it!

conceptualize
 ● The first things to do when approaching a problem are to think about and 

understand the situation. Study carefully any representations of the informa-
tion (for example, diagrams, graphs, tables, or photographs) that accompany 
the problem. Imagine a movie, running in your mind, of what happens in the 
problem: the mental representation.

 ● If a pictorial representation is not provided, you should almost always make a 
quick drawing of the situation. Indicate any known values, perhaps in a table 
or directly on your sketch.

 ● Now focus on what algebraic or numerical information is given in the problem. 
Carefully read the problem statement, looking for key phrases such as “starts 
from rest” (vi 5 0) or “stops” (vf 5 0). 

analYsis Model Particle Under Constant Speed

Imagine a moving object that can be modeled as a particle. 
If it moves at a constant speed through a distance d along a 
straight line or a curved path in a time interval Dt, its constant 
speed is 

 v 5
d

Dt
 (2.8)

v

Examples: 

 ● a planet traveling around a perfectly circular orbit
 ● a car traveling at a constant speed on a curved racetrack
 ● a runner traveling at constant speed on a curved path
 ● a charged particle moving through a uniform magnetic 

field (Chapter 28)
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 ● Now focus on the expected result of solving the problem. Exactly what is the 
question asking? Will the final result be numerical, algebraic, or verbal? Do 
you know what units to expect?

 ● Don’t forget to incorporate information from your own experiences and 
common sense. What should a reasonable answer look like? For example, you 
wouldn’t expect to calculate the speed of an automobile to be 5 3 106 m/s.

categorize
 ● Once you have a good idea of what the problem is about, you need to simplify 

the problem. Use a simplification model to remove the details that are not 
important to the solution. For example, model a moving object as a particle. 
If appropriate, ignore air resistance or friction between a sliding object and 
a surface.

 ● Once the problem is simplified, it is important to categorize the problem in 
one of two ways. Is it a simple substitution problem such that numbers can be 
substituted into a simple equation or a definition? If so, the problem is likely 
to be finished when this substitution is done. If not, you face what we call an 
analysis problem: the situation must be analyzed more deeply to generate an 
appropriate equation and reach a solution.

 ● If it is an analysis problem, it needs to be categorized further. Have you seen 
this type of problem before? Does it fall into the growing list of types of  
problems that you have solved previously? If so, identify any analysis model(s) 
appropriate for the problem to prepare for the Analyze step below. Being 
able to classify a problem with an analysis model can make it much easier to 
lay out a plan to solve it. 

analyze
 ● Now you must analyze the problem and strive for a mathematical solution. 

Because you have already categorized the problem and identified an analysis 
model, it should not be too difficult to select relevant equations that apply to 
the type of situation in the problem. For example, if the problem involves a 
particle under constant velocity, Equation 2.7 is relevant.

 ● Use algebra (and calculus, if necessary) to solve symbolically for the unknown 
variable in terms of what is given. Finally, substitute in the appropriate numbers, 
calculate the result, and round it to the proper number of significant figures.

finalize
 ● Examine your numerical answer. Does it have the correct units? Does it 

meet your expectations from your conceptualization of the problem? What 
about the algebraic form of the result? Does it make sense? Examine the 
variables in the problem to see whether the answer would change in a physi-
cally meaningful way if the variables were drastically increased or decreased 
or even became zero. Looking at limiting cases to see whether they yield 
expected values is a very useful way to make sure that you are obtaining  
reasonable results.

 ● Think about how this problem compared with others you have solved. How 
was it similar? In what critical ways did it differ? Why was this problem 
assigned? Can you figure out what you have learned by doing it? If it is a new 
category of problem, be sure you understand it so that you can use it as a 
model for solving similar problems in the future.

When solving complex problems, you may need to identify a series of subprob-
lems and apply the Analysis Model Approach to each. For simple problems, you 
probably don’t need this approach. When you are trying to solve a problem and you 
don’t know what to do next, however, remember the steps in the approach and use 
them as a guide.
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In the rest of this book, we will label the Conceptualize, Categorize, Analyze, and 
Finalize steps in the worked examples. If a worked example is identified as a substi-
tution problem in the Categorize step, there will generally not be Analyze and Finalize 
sections labeled in the solution.

To show how to apply this approach, we reproduce Example 2.4 below, with the 
steps of the approach labeled.

 Example 2.4    Modeling a Runner as a Particle

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of the movement of the human 
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs 
along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point 
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

(A) What is the runner’s velocity?

S O L U T I O N

Conceptualize We model the moving runner as a particle because the size of the runner and the movement of arms and  
legs are unnecessary details. 

Categorize Because the problem states that the subject runs “at a constant rate,” we can model him as a particle under  
constant velocity.

Analyze Having identified the model, we can use Equation 2.6 to  vx 5
Dx
Dt

5
xf 2 xi

Dt
5

20 m 2 0
4.0 s

5   5.0 mys 
find the constant velocity of the runner:

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

S O L U T I O N

Use Equation 2.7 and the velocity found in part (A) to  xf 5 xi 1 vxt 5 0 1 (5.0 m/s)(10 s) 5  50 m 
find the position of the particle at time t 5 10 s:

Finalize Is the result for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and 
200-m sprints? Notice the value in part (B) is more than twice that of the 20-m position at which the stopwatch was stopped. Is 
this value consistent with the time of 10 s being more than twice the time of 4.0 s?

  2.5    Acceleration
In Example 2.3, we worked with a common situation in which the velocity of a parti-
cle changes while the particle is moving. When the velocity of a particle changes with 
time, the particle is said to be accelerating. For example, the magnitude of a car’s velocity 
increases when you step on the gas and decreases when you apply the brakes. Both of 
these actions result in an acceleration of the car. Let us see how to quantify acceleration.

Suppose an object that can be modeled as a particle moving along the x axis has 
an initial velocity vxi at time ti at position Ⓐ and a final velocity vxf at time tf at position 
Ⓑ as in Figure 2.6a. The red-brown curve in Figure 2.6b shows how the velocity var-
ies with time. The average acceleration ax,avg of the particle is defined as the change 
in velocity Dvx divided by the time interval Dt during which that change occurs:

 ax,avg ;
Dvx

Dt
5

vxf 2 vxi

tf 2 ti

 (2.9)

As with velocity, when the motion being analyzed is one dimensional, we can use 
positive and negative signs to indicate the direction of the acceleration. Because 
the dimensions of velocity are L/T and the dimension of time is T, acceleration has 

Average acceleration 
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   2.5 Acceleration 33

dimensions of length divided by time squared, or L/T2. The SI unit of acceleration 
is meters per second squared (m/s2). It might be easier to interpret these units if you 
think of them as meters per second per second. For example, suppose an object has 
an acceleration of 12 m/s2. You can interpret this value by forming a mental image 
of the object having a velocity that is along a straight line and is increasing by 2 m/s 
during every time interval of 1 s. If the object starts from rest, you should be able 
to picture it moving at a velocity of 12 m/s after 1 s, at 14 m/s after 2 s, and so on.

When your friend sped up from the traffic light in the opening storyline, you 
found that the time intervals between poles on the side of the road decreased. Is 
that result consistent with your expectations? Each new displacement between poles 
is undertaken at a higher speed, so the time intervals between poles become smaller.

In some situations, the value of the average acceleration may be different over dif-
ferent time intervals. It is therefore useful to define the instantaneous acceleration as 
the limit of the average acceleration as Dt approaches zero. This concept is analogous 
to the definition of instantaneous velocity discussed in Section 2.2. If we imagine that 
point Ⓐ is brought closer and closer to point Ⓑ in Figure 2.6a and we take the limit 
of Dvx/Dt as Dt approaches zero, we obtain the instantaneous acceleration at point Ⓑ:

 ax ; lim
Dt S 0

Dvx

Dt
5

dvx

dt
 (2.10)

That is, the instantaneous acceleration equals the derivative of the velocity with 
respect to time, which by definition is the slope of the velocity–time graph. The 
slope of the green line in Figure 2.6b is equal to the instantaneous acceleration at 
point Ⓑ. Notice that Figure 2.6b is a velocity–time graph, not a position–time graph 
like Figures 2.1b, 2.3, 2.4, and 2.5. Therefore, we see that just as the velocity of a 
moving particle is the slope at a point on the particle’s x–t graph, the acceleration 
of a particle is the slope at a point on the particle’s vx–t graph. One can interpret 
the derivative of the velocity with respect to time as the time rate of change of veloc-
ity. If ax is positive, the acceleration is in the positive x direction; if ax is negative, the 
acceleration is in the negative x direction.

Figure 2.7 illustrates how an acceleration–time graph is related to a velocity– 
time graph. The acceleration at any time is the slope of the velocity–time graph at 
that time. Positive values of acceleration correspond to those points in Figure 2.7a 
where the velocity is increasing in the positive x direction. The acceleration reaches 
a maximum at time t

Ⓐ
, when the slope of the velocity–time graph is a maximum. 

The acceleration then goes to zero at time t
Ⓑ

, when the velocity is a maximum (that 
is, when the slope of the vx–t graph is zero). The acceleration is negative when the 
velocity is decreasing in the positive x direction, and it reaches its most negative 
value at time t

Ⓒ
.

 Instantaneous acceleration

Figure 2.6 (a) A car, modeled  
as a particle, moving along the  
x axis from Ⓐ to Ⓑ, has velocity  
vxi at t 5 ti and velocity vxf at  
t 5 tf . (b) Velocity–time graph 
(red-brown) for the particle  
moving in a straight line.

�

�

�

t ft i

vxi

vxf

vx  

�t

�vx

t
ti tf

x

v � vxi v �vxf

�

The car moves with 
different velocities at 
points � and �.

The slope of the green line is 
the instantaneous acceleration 
of the car at point � (Eq. 2.10).

The slope of the blue 
line connecting � and 
� is the average 
acceleration of the car 
during the time interval 
�t � tf � ti (Eq. 2.9).

ba

t

ax

t� t�

t�

t� t� t�

vx

t

The acceleration at any time 
equals the slope of the line 
tangent to the curve of vx 
versus t at that time.

b

a

Figure 2.7 (a) The velocity–time 
graph for a particle moving along 
the x axis. (b) The instantaneous 
acceleration can be obtained from 
the velocity–time graph.
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34 Chapter 2 Motion in One Dimension

Q uick Quiz 2.4 Make a velocity–time graph for the car in Figure 2.1a. Suppose 
the speed limit for the road on which the car is driving is 30 km/h. True or False? 
The car exceeds the speed limit at some time within the time interval 0250 s.

For the case of motion in a straight line, the direction of the velocity of an object 
and the direction of its acceleration are related as follows. When the object’s veloc-
ity and acceleration are in the same direction, the object is speeding up. On the 
other hand, when the object’s velocity and acceleration are in opposite directions, 
the object is slowing down.

To help with this discussion of the signs of velocity and acceleration, we can 
relate the acceleration of an object to the total force exerted on the object. In 
Chapter 5, we formally establish that the force on an object is proportional to the 
acceleration of the object:

 Fx ~ ax  (2.11)

This proportionality indicates that acceleration is caused by force. Furthermore, 
force and acceleration are both vectors, and the vectors are in the same direction. 
Therefore, let us think about the signs of velocity and acceleration by imagining a 
force applied to an object and causing it to accelerate. Let us assume the velocity 
and acceleration are in the same direction. This situation corresponds to an object 
that experiences a force acting in the same direction as its velocity. In this case, the 
object speeds up! Now suppose the velocity and acceleration are in opposite direc-
tions. In this situation, the object moves in some direction and experiences a force 
acting in the opposite direction. Therefore, the object slows down! It is very useful 
to equate the direction of the acceleration to the direction of a force because it is 
easier from our everyday experience to think about what effect a force will have on 
an object than to think only in terms of the direction of the acceleration.

Q uick Quiz 2.5 If a car is traveling eastward and slowing down, what is 
the direction of the force on the car that causes it to slow down? (a) eastward 
(b) westward (c) neither eastward nor westward

From now on, we shall use the term acceleration to mean instantaneous accelera-
tion. When we mean average acceleration, we shall always use the adjective average.
Because vx 5 dx/dt, the acceleration can also be written as

 ax 5
dvx

dt
5

d
dtSdx

dtD 5
d2x
dt2  (2.12)

That is, in one-dimensional motion, the acceleration of a particle equals the  
second derivative of the particle’s position x with respect to time.

PiTfall PrevenTion 2.4
Negative Acceleration Keep in 
mind that negative acceleration does 
not necessarily mean that an object is 
slowing down. If the acceleration is 
negative and the velocity is nega-
tive, the object is speeding up!

PiTfall PrevenTion 2.5
Deceleration The word decelera-
tion has the common popular 
connotation of slowing down. We 
will not use this word in this book 
because it confuses the defini-
tion we have given for negative 
acceleration.

 Conceptual Example 2.5    Graphical Relationships Between x, vx, and ax

The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and the 
acceleration versus time for the object.

continued

S O L U T I O N

The velocity at any instant is the slope of the tangent to the 
x–t graph at that instant. Between t 5 0 and t 5 t

Ⓐ
, the slope 

of the x–t graph increases uniformly, so the velocity increases 
linearly as shown in Figure 2.8b. Between t

Ⓐ
 and t

Ⓑ
, the slope 

of the x–t graph is constant, so the velocity remains constant. 
Between t

Ⓑ
 and t

Ⓓ
, the slope of the x–t graph decreases, so 

the value of the velocity in the vx–t graph decreases. At t
Ⓓ

, 

the slope of the x–t graph is zero, so the velocity is zero at that 
instant. Between t

Ⓓ
 and t

Ⓔ
, the slope of the x–t graph and 

therefore the velocity are negative and decrease uniformly 
in this interval. In the interval t

Ⓔ
 to t

Ⓕ
, the slope of the x–t 

graph is still negative, and at t
Ⓕ

 it goes to zero. Finally, after 
t

Ⓕ
, the slope of the x–t graph is zero, meaning that the object 

is at rest for t . t
Ⓕ

.
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 Example 2.6    Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies according to the expression  
vx 5 40 2 5t 2, where vx is in meters per second and t is in seconds.

(A) Find the average acceleration in the time interval t 5 0 to t 5 2.0 s.

S O L U T I O N

Conceptualize Think about what the particle is doing 
from the mathematical representation. Is it moving 
at t 5 0? In which direction? Does it speed up or slow 
down? Figure 2.9 is a vx–t graph that was created from 
the velocity versus time expression given in the problem 
statement. Because the slope of the entire vx–t curve is 
negative, we expect the acceleration to be negative.

Categorize The solution to this problem does not 
require either of the analysis models we have devel-
oped so far, and can be solved with simple mathematics. 
Therefore, we categorize the problem as a substitution 
problem.

Find the velocities at ti 5 t
Ⓐ

 5 0 and tf 5 t
Ⓑ

 5 2.0 s by  vx Ⓐ
 5 40 2 5t

Ⓐ
2 5 40 2 5(0)2 5 140 m/s 

substituting these values of t into the expression for 
 vx Ⓑ

 5 40 2 5t
Ⓑ

2 5 40 2 5(2.0)2 5 120 m/s 
the velocity:

Use Equation 2.9 to find the average acceleration  ax,avg 5
vxf 2 vxi

tf 2 ti

5
vxⒷ

2 vx Ⓐ

t
Ⓑ

2 t
Ⓐ

5
20 mys 2 40 mys

2.0 s 2 0 s
 

in the specified time interval Dt 5 t
Ⓑ

 2 t
Ⓐ

 5 2.0 s:

 5  210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue line  
joining the initial and final points on the velocity–time graph, is negative.

10

�10

0

0 1 2 3 4

t (s)

vx (m/s)

20

30

40

�20

�30

�

�

The acceleration at � is equal to 
the slope of the green tangent 
line at t � 2 s, which is �20 m/s2.

Figure 2.8 (Conceptual Example 2.5) (a) Position–time graph for 
an object moving along the x axis. (b) The velocity–time graph for the 
object is obtained by measuring the slope of the position–time graph at 
each instant. (c) The acceleration–time graph for the object is obtained 
by measuring the slope of the velocity–time graph at each instant.

 The acceleration at any instant is the slope of the tangent to 
the vx–t graph at that instant. The graph of acceleration versus 
time for this object is shown in Figure 2.8c. The acceleration 
is constant and positive between 0 and t

Ⓐ
, where the slope of 

the vx–t graph is positive. It is zero between t
Ⓐ

 and t
Ⓑ

 and for  
t . t

Ⓕ
 because the slope of the vx–t graph is zero at these times. 

It is negative between t
Ⓑ

 and t
Ⓔ

 because the slope of the vx–t 
graph is negative during this interval. Between t

Ⓔ
 and t

Ⓕ
, the 

acceleration is positive like it is between 0 and t
Ⓐ

, but higher in 
value because the slope of the vx–t graph is steeper.
 Notice that the sudden changes in acceleration shown in 
Figure 2.8c are unphysical. Such instantaneous changes can-
not occur in reality.

x

t�t�t�t�t�t�

t�t�t�t�t�
t

t�

t

tt�t�t�t�

vx

ax

a

b

c

2.5 c o n t i n u e d

continued

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.
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36 Chapter 2 Motion in One Dimension

So far, we have evaluated the derivatives of a function by starting with the defini-
tion of the function and then taking the limit of a specific ratio. If you are familiar 
with calculus, you should recognize that there are specific rules for taking derivatives. 
These rules, which are listed in Appendix B.6, enable us to evaluate derivatives quickly. 
For instance, one rule tells us that the derivative of any constant is zero. As another 
example, suppose x is proportional to some power of t such as in the expression

x 5 At n

where A and n are constants. (This expression is a very common functional form.) 
The derivative of x with respect to t is

dx
dt

5 nAtn21

Applying these rules to Example 2.6, in which vx 5 40 2 5t 2, we quickly find that 
the acceleration is ax 5 dvx/dt 5 210t, as we found in part (B) of the example.

   2.6    Motion Diagrams
The concepts of velocity and acceleration are often confused with each other, but 
in fact they are quite different quantities. In forming a mental representation of a 
moving object, a pictorial representation called a motion diagram is sometimes use-
ful to describe the velocity and acceleration while an object is in motion.

A motion diagram can be formed by imagining a stroboscopic photograph of a 
moving object, which shows several images of the object taken as the strobe light 
flashes at a constant rate. Figure 2.1a is a motion diagram for the car studied in 
Section 2.1. Figure 2.10 represents three sets of strobe photographs of cars moving 
along a straight roadway in a single direction, from left to right. The time intervals 
between flashes of the stroboscope are equal in each part of the diagram. So as 
to not confuse the two vector quantities, we use red arrows for velocity and purple 
arrows for acceleration in Figure 2.10. The arrows are shown at several instants dur-
ing the motion of the object. Let us describe the motion of the car in each diagram.

In Figure 2.10a, the images of the car are equally spaced, showing us that the car 
moves through the same displacement in each time interval. This equal spacing is 
consistent with the car moving with constant positive velocity and zero acceleration. We 

(B) Determine the acceleration at t 5 2.0 s.

S O L U T I O N

Knowing that the initial velocity at any time t is    vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2 
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this  
expression by Dt and take the limit of the result    ax 5 lim

Dt S 0

Dvx

Dt
5 lim

Dt S 0
s210t 2 5 Dtd 5 210t 

as Dt approaches zero:

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing down.

Finalize Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points Ⓐ and Ⓑ. The instantaneous acceleration in part (B) is the slope of the green line 
tangent to the curve at point Ⓑ. Notice also that the acceleration is not constant in this example. Situations involving constant 
acceleration are treated in Section 2.7.

2.6 c o n t i n u e d
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    2.7 Analysis Model: Particle Under Constant Acceleration  37

could model the car as a particle and describe it with the particle under constant 
velocity model. The red velocity arrows are all of equal length, and there is no pur-
ple acceleration arrow shown because it is of length zero.

In Figure 2.10b, the images become farther apart as time progresses. In this 
case, the red velocity arrows increase in length with time because the car’s displace-
ment between adjacent positions increases in time. These features suggest the car is 
moving with a positive velocity and a positive acceleration. The velocity and acceleration 
are in the same direction. In terms of our earlier force discussion, imagine a force 
pulling on the car in the same direction it is moving: it speeds up.

In Figure 2.10c, we can tell that the car slows as it moves to the right because 
its displacement between adjacent images decreases with time. This case suggests 
the car moves to the right with a negative acceleration. The lengths of the veloc-
ity arrows decrease in time and eventually reach zero. From this diagram, we see 
that the acceleration and velocity arrows are not in the same direction. The car is 
moving with a positive velocity, but with a negative acceleration. (This type of motion 
is exhibited by a car that skids to a stop after its brakes are applied.) The velocity 
and acceleration are in opposite directions. In terms of our earlier force discus-
sion, imagine a force pulling on the car opposite to the direction it is moving: it  
slows down.

Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.6 Which one of the following statements is true? (a) If a car 
is traveling eastward, its acceleration must be eastward. (b) If a car is slowing 
down, its acceleration must be negative. (c) A particle with constant acceleration 
can never stop and stay stopped.

   2.7    Analysis Model: Particle  
Under Constant Acceleration
If the acceleration of a particle varies in time, its motion can be complex and dif-
ficult to analyze. A very common and simple type of one-dimensional motion, 
however, is that in which the acceleration is constant. In such a case, the average 
acceleration ax,avg over any time interval is numerically equal to the instantaneous 
acceleration ax at any instant within the interval, and the velocity changes at the 
same rate throughout the motion. This situation occurs often enough that we iden-
tify it as an analysis model: the particle under constant acceleration. In the dis-
cussion that follows, we generate several equations that describe the motion of a 
particle for this model.

Figure 2.10 Motion diagrams 
of a car moving along a straight 
roadway in a single direction. 
The velocity at each instant is 
indicated by a red arrow, and the 
constant acceleration is indicated 
by a purple arrow.

v

v

v

a

a

This car moves at 
constant velocity (zero 
acceleration). 

This car has a constant 
acceleration in the 
direction of its velocity. 

This car has a 
constant acceleration 
in the direction 
opposite its velocity.

a

b

c
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38 Chapter 2 Motion in One Dimension

If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax)  (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (con-
stant) slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is 
positive, which indicates a positive acceleration. If the acceleration were negative, 
the slope of the line in Figure 2.11b would be negative. When the acceleration is 
constant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having 
a slope of zero.

Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
 sfor constant axd  (2.14)

Notice that this expression for average velocity applies only in situations in which 
the acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.14 to obtain the position of an object as 
a function of time. Recalling that Dx in Equation 2.2 represents xf 2 xi and recog-
nizing that Dt 5 tf 2 ti 5 t 2 0 5 t, we find that

 xf 2 xi 5 vx, avg t 5 1
2svxi 1 vxfdt 

 xf 5 xi 1 1
2svxi 1 vxf dt sfor constant axd  (2.15)

This equation provides the final position of the particle at time t in terms of the 
initial and final velocities.

We can obtain another useful expression for the position of a particle under 
constant acceleration by substituting Equation 2.13 into Equation 2.15:

xf 5 xi 1 1
2[vxi 1 svxi 1 axtd]t

 xf 5 xi 1 vxit 1 1
2axt

2 sfor constant axd   (2.16)

This equation provides the final position of the particle at time t in terms of the 
initial position, the initial velocity, and the constant acceleration.

The position–time graph for motion at constant (positive) acceleration shown 
in Figure 2.11a is obtained from Equation 2.16. Notice that the curve is a parab-
ola. The slope of the tangent line to this curve at t 5 0 equals the initial velocity 
vxi , and the slope of the tangent line at any later time t equals the velocity vxf at  
that time.

Position as a function of  
velocity and time for the  
particle under constant  

acceleration model

Position as a function of  
time for the particle under  

constant acceleration model

vx

vxi vxf

t

vxi

axt

t

t

Slope �  ax

ax

t

Slope � 0

x

t

xi

Slope � vxi

t

Slope � vxf

ax

a

b

c

Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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    2.7 Analysis Model: Particle Under Constant Acceleration  39

analYsis Model Particle Under Constant Acceleration

Imagine a moving object that can be modeled as a particle. If it begins from position xi and initial velocity vxi and moves in a 
straight line with a constant acceleration ax, its subsequent position and velocity are described by the following kinematic equations: 

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2svxi 1 vxf dt (2.15)

 xf 5 xi 1 vxit 1 1
2axt

2 (2.16)

 vxf
2 5 vxi

2 1 2ax(xf 2 xi) (2.17)

v

a

Examples

 ● a car accelerating at a constant rate along a straight 
freeway

 ● a dropped object in the absence of air resistance  
(Section 2.8)

 ● an object on which a constant net force acts (Chapter 5)
 ● a charged particle in a uniform electric field (Chapter 22)

Finally, we can obtain an expression for the final velocity that does not contain 
time as a variable by substituting the value of t from Equation 2.13 into Equation 2.15:

xf 5 xi 1 1
2svxi 1 vxfdSvxf 2 vxi

ax
D 5 xi 1

vxf
2   2 vxi

2 

2ax

 vxf
2 5 vxi

2 1 2ax(xf 2 xi) (for constant ax) (2.17)

This equation provides the final velocity in terms of the initial velocity, the constant 
acceleration, and the position of the particle.

For motion at zero acceleration, we see from Equations 2.13 and 2.16 that

vxf 5 vxi 5 vx

xf 5 xi 1 vxt6    when ax 5 0

That is, when the acceleration of a particle is zero, its velocity is constant and its 
position changes linearly with time. In terms of models, when the acceleration of a 
particle is zero, the particle under constant acceleration model reduces to the par-
ticle under constant velocity model (Section 2.3).

Equations 2.13 through 2.17 are kinematic equations that may be used to solve 
any problem involving a particle under constant acceleration in one dimension. 
These equations are listed together below for convenience. The choice of which 
equation you use in a given situation depends on what you know beforehand. Some-
times it is necessary to use two of these equations to solve for two unknowns. You 
should recognize that the quantities that vary during the motion are position xf , 
velocity vxf , and time t.

You will gain a great deal of experience in the use of these equations by solving 
a number of exercises and problems. Many times you will discover that more than 
one method can be used to obtain a solution. Remember that these equations of 
kinematics cannot be used in a situation in which the acceleration varies with time. 
They can be used only when the acceleration is constant.

Q uick Quiz 2.7 In Figure 2.12, match each vx–t graph on the top with the 
ax–t graph on the bottom that best describes the motion.

  Velocity as a function of 
position for the particle under 
constant acceleration model

t

vx

a
t

vx

b
t

vx

c
t

ax

d
t

ax

e
t

ax

f

Figure 2.12 (Quick Quiz 2.7)  
Parts (a), (b), and (c) are vx–t 
graphs of objects in one- 
dimensional motion. The possible 
accelerations of each object as 
a function of time are shown in 
scrambled order in (d), (e), and (f).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



40 Chapter 2 Motion in One Dimension

 Example 2.7    Carrier Landing

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and brings it to 
a stop?

S O L U T I O N

Conceptualize You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest 
surprisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial speed 
of 63 m/s, we also know that the final speed is zero. We define our x axis as the direction of motion of the jet. Notice that we 
have no information about the change in position of the jet while it is slowing down.

Categorize Because the acceleration of the jet is assumed constant, we model it as a particle under constant acceleration.

Analyze Equation 2.13 is the only equation in the particle  ax 5
vxf 2 vxi

t
<

0 2 63 mys
2.0 s

 
under constant acceleration model that does not involve  
position, so we use it to find the acceleration of the jet,      5  232 m/s2 
modeled as a particle:

(B) If the jet touches down at position xi 5 0, what is its final position?

S O L U T I O N

Use Equation 2.15 to solve for the final position: xf 5 xi 1 1
2svxi 1 vxfdt 5 0 1 1

2s63 mys 1 0ds2.0 sd 5   63 m

Finalize Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting 
cables to slow down landing aircraft and enable them to land safely on ships originated at about the time of World War I. The 
cables are still a vital part of the operation of modern aircraft carriers.

w h a T  I f ?  Suppose the jet lands on the deck of the aircraft carrier with a speed faster than 63 m/s but has the same 
acceleration due to the cable as that calculated in part (A). How will that change the answer to part (B)?

Answer If the jet is traveling faster at the beginning, it will stop farther away from its starting point, so the answer to part (B) 
should be larger. Mathematically, we see in Equation 2.15 that if vxi is larger, then xf will be larger.

 Example 2.8    Watch Out for the Speed Limit!

You are driving at a constant speed of 45.0 m/s when you pass a 
trooper on a motorcycle hidden behind a billboard. One second 
after your car passes the billboard, the trooper sets out from the 
billboard to catch you, accelerating at a constant rate of 3.00 m/s2.  
How long does it take the trooper to overtake your car?

S O L U T I O N

Conceptualize This example represents a class of problems called 
context-rich problems. These problems involve real-world situations 
that one might encounter in one’s daily life. These problems also 
involve “you” as opposed to an unspecified particle or object. With 
you as the character in the problem, you can make the connection 
between physics and everyday life!

Categorize A pictorial representation (Fig. 2.13) helps clarify the sequence of events. Your car is modeled as a particle under 
constant velocity, and the trooper is modeled as a particle under constant acceleration.

Analyze First, we write expressions for the position of each vehicle as a function of time. It is convenient to choose the position  
of the billboard as the origin and to set t

Ⓑ
 5 0 as the time the trooper begins moving. At that instant, your car has already  

Figure 2.13 (Example 2.8) You are in a speeding car that 
passes a hidden trooper.

t� � ?t� � 0t� � �1.00 s

� � �

continued
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   2.8 Freely Falling Objects 41

traveled a distance of 45.0 m from the billboard because it has traveled at a constant speed of vx 5 45.0 m/s for 1 s. Therefore, 
the initial position of your car is x

Ⓑ
 5 45.0 m.

Using the particle under constant velocity model, apply  xcar 5 x
Ⓑ

 1 vx cart 
Equation 2.7 to give your car’s position at any time t:

A quick check shows that at t 5 0, this expression gives your car’s correct initial position when the trooper begins to  
move: xcar 5 x

Ⓑ 5 45.0 m.

The trooper starts from rest at t
Ⓑ 5 0 and accelerates at          xf 5 xi 1 vxit 1 1

2axt
2 

ax 5 3.00 m/s2 away from the origin. Use Equation 2.16  x trooper 5 0 1 s0dt 1 1
2axt

2 5 1
2axt

2 
to give her position at any time t:

Set the positions of your car and the trooper equal to  x trooper 5 xcar 
represent the trooper overtaking your car at position Ⓒ:    1

2axt
2 5 x

Ⓑ
1 vx cart

Rearrange to give a quadratic equation: 1
2axt

2 2 vx cart 2 x
Ⓑ

5 0

Solve the quadratic equation for the time at which the          t 5
vx car 6 Ïv 2

x car 1 2axxⒷ

ax

 
trooper catches your car (for help in solving quadratic  
equations, see Appendix B.2): 

(1)   t 5
vx car

ax

6Îv2
x car

ax
2 1

2x
Ⓑ

ax

Evaluate the solution, choosing the positive root because  t 5
45.0 mys
3.00 mys2 1Îs45.0 mysd2

s3.00 mys2d2 1
2s45.0 md
3.00 mys2 5  31.0 s 

that is the only choice consistent with a time t . 0:

Finalize Why didn’t we choose t 5 0 as the time at which your car passes the trooper? If we did so, we would not be able to use 
the particle under constant acceleration model for the trooper. Her acceleration would be zero for the first second and then 
3.00 m/s2 for the remaining time. By defining the time t 5 0 as when the trooper begins moving, we can use the particle under 
constant acceleration model for her movement for all positive times.

w h A T  I F ?  What if the trooper had a more powerful motorcycle with a larger acceleration? How would that change the 
time at which the trooper catches your car? 

Answer If the motorcycle has a larger acceleration, the trooper should catch up to your car sooner, so the answer for the time 
should be less than 31 s. Because all terms on the right side of Equation (1) have the acceleration ax in the denominator, we see 
symbolically that increasing the acceleration will decrease the time at which the trooper catches your car.

2.8 c o n t i n u e d

  2.8    Freely Falling Objects
It is well known that, in the absence of air resistance, all objects dropped near the 
Earth’s surface fall toward the Earth with the same constant acceleration under the 
influence of the Earth’s gravity, regardless of their mass. It was not until about 1600 
that this conclusion was accepted. Before that time, the teachings of the Greek philoso-
pher Aristotle (384–322 BC) had held that heavier objects fall faster than lighter ones.

The Italian Galileo Galilei (1564–1642) originated our present-day ideas con-
cerning falling objects. There is a legend that he demonstrated the behavior of fall-
ing objects by observing that two different weights dropped simultaneously from 
the Leaning Tower of Pisa hit the ground at approximately the same time. Although 
there is some doubt that he carried out this particular experiment, it is well estab-
lished that Galileo performed many experiments on objects moving on inclined 
planes. In his experiments, he rolled balls down a slight incline and measured the 
distances they covered in successive time intervals. The purpose of the incline was 
to reduce the acceleration, which made it possible for him to make accurate mea-
surements of the time intervals. By gradually increasing the slope of the incline, 

Galileo Galilei
Italian physicist and astronomer 
(1564–1642)
Galileo formulated the laws that govern 
the motion of objects in free fall and 
made many other significant discover-
ies in physics and astronomy. Galileo 
publicly defended Nicolaus Copernicus’s 
assertion that the Sun is at the center of 
the Universe (the heliocentric system).
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42 Chapter 2 Motion in One Dimension

he was finally able to draw conclusions about freely falling objects because a freely 
falling ball is equivalent to a ball moving down a vertical incline.

You might want to try the following experiment. Simultaneously drop a coin 
and a piece of paper from the same height. The coin will always reach the ground 
faster. Now, crumple the paper into a tight ball and repeat the experiment. Since 
you’ve minimized the effects of air resistance, the coin and the paper will have the 
same motion and will hit the floor at the same time. In the idealized case, in which 
air resistance is absent, such motion is referred to as free-fall motion. If this same 
experiment could be conducted in a vacuum, in which air resistance is truly negli-
gible, the paper and the coin would fall with the same acceleration even when the 
paper is not crumpled. On August 2, 1971, astronaut David Scott conducted such a 
demonstration on the Moon. He simultaneously released a hammer and a feather, 
and the two objects fell together to the lunar surface. This simple demonstration 
surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an 
object dropped from rest. A freely falling object is any object moving freely under 
the influence of gravity alone, regardless of its initial motion. Objects thrown 
upward or downward and those released from rest are all falling freely once they 
are released. Any freely falling object experiences an acceleration directed down-
ward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration, also called the accelera-
tion due to gravity, by the symbol g. The value of g decreases with increasing altitude 
above the Earth’s surface. Furthermore, slight variations in g occur with changes 
in latitude. At the Earth’s surface, the value of g is approximately 9.80 m/s2. Unless 
stated otherwise, we shall use this value for g when performing calculations. For 
making quick estimates, use g , 10 m/s2.

If we neglect air resistance and assume the free-fall acceleration does not vary 
with altitude over short vertical distances, the motion of a freely falling object mov-
ing vertically is equivalent to the motion of a particle under constant acceleration in 
one dimension. Therefore, the equations developed in Section 2.7 for the particle 
under constant acceleration model can be applied. The only modification for freely 
falling objects that we need to make in these equations is to note that the motion 
is in the vertical direction (the y direction) rather than in the horizontal direc-
tion (x) and that the acceleration is downward and has a magnitude of 9.80 m/s2. 
Therefore, we choose ay 5 2g 5 29.80 m/s2, where the negative sign means that 
the acceleration of a freely falling object is downward. In Chapter 13, we shall study 
how to deal with variations in g with altitude.

Q uick Quiz 2.8 Consider the following choices: (a) increases, (b) decreases,  
(c) increases and then decreases, (d) decreases and then increases, (e) remains 
the same. From these choices, select what happens to (i) the acceleration and 
(ii) the speed of a ball after it is thrown upward into the air.

PiTfall PrevenTion 2.8
Acceleration at the Top of the 
Motion A common misconception 
is that the acceleration of a pro-
jectile at the top of its trajectory 
is zero. Although the velocity at 
the top of the motion of an object 
thrown upward momentarily goes 
to zero, the acceleration is still that 
due to gravity at this point. If the 
velocity and acceleration were 
both zero, the projectile would 
stay at the top.

 Conceptual Example 2.9    The Daring Skydivers

A skydiver jumps out of a hovering helicopter. A few seconds later, another skydiver jumps out, and they both fall along the 
same vertical line. Ignore air resistance so that both skydivers fall with the same acceleration. Does the difference in their 
speeds stay the same throughout the fall? Does the vertical distance between them stay the same throughout the fall?

S O L U T I O N

At any given instant, the speeds of the skydivers are different 
because one had a head start. In any time interval Dt after 
this instant, however, the two skydivers increase their speeds 
by the same amount because they have the same accelera-
tion. Therefore, the difference in their speeds remains the 
same throughout the fall.

 The first jumper always has a greater speed than the sec-
ond. Therefore, in a given time interval, the first skydiver 
covers a greater distance than the second. Consequently, the 
separation distance between them increases.

PiTfall PrevenTion 2.6
g and g Be sure not to confuse the 
italic symbol g for free-fall accel-
eration with the nonitalic symbol 
g used as the abbreviation for the 
unit gram.

PiTfall PrevenTion 2.7
The Sign of g Keep in mind that 
g is a positive number. It is tempting 
to substitute 29.80 m/s2 for g, 
but resist the temptation. Down-
ward gravitational acceleration is 
indicated explicitly by stating the 
acceleration as ay 5 2g.
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 Example 2.10    Not a Bad Throw for a Rookie!

A stone thrown from the top of a building is given an initial velocity 
of 20.0 m/s straight upward. The stone is launched 50.0 m above the 
ground, and the stone just misses the edge of the roof on its way down 
as shown in Figure 2.14.

(A) Using t
Ⓐ

 5 0 as the time the stone leaves the thrower’s hand  
at position Ⓐ, determine the time at which the stone reaches its max-
imum height.

S O L U T I O N

Conceptualize You most likely 
have experience with dropping 
objects or throwing them upward 
and watching them fall, so this 
problem should describe a familiar 
experience. To simulate this situa-
tion, toss a small object upward and 
notice the time interval required 
for it to fall to the floor. Now imag-
ine throwing that object upward 
from the roof of a building. 

Categorize Because the stone is in free fall, it is modeled as a particle under 
constant acceleration due to gravity.

Analyze Recognize that the initial velocity is positive because the 
stone is launched upward. The velocity will change sign after the stone 
reaches its highest point, but the acceleration of the stone will always be 
downward so that it will always have a negative value. Choose an initial 
point just after the stone leaves the person’s hand and a final point at 
the top of its f light.

Use Equation 2.13 to calculate the time at which the  vyf 5 vyi 1 ayt S t 5
vyf 2 vyi

ay

5
vyⒷ

2 vyⒶ

2g
 

stone reaches its maximum height:

Substitute numerical values, recognizing that v = 0 at point Ⓑ: t 5 t
Ⓑ

5
0 2 20.0 mys
29.80 mys2 5   2.04 s

(B) Find the maximum height of the stone.

S O L U T I O N

As in part (A), choose the initial and final points at the beginning and the end of the upward flight. 

Set y
Ⓐ

 5 0 and substitute the time from part (A)  ymax 5 y
Ⓑ

5 y
Ⓐ

1 vx Ⓐ
t 1 1

2ayt
2 

into Equation 2.16 to find the maximum height: 
   y

Ⓑ
5 0 1 s20.0 mysds2.04 sd 1 1

2s29.80 mys2ds2.04 sd2 5   20.4 m

(C) Determine the velocity of the stone when it returns to the height from which it was thrown.

S O L U T I O N

Choose the initial point where the stone is launched and the final point when it passes this position coming down.

Substitute known values into Equation 2.17: vyⒸ
2 5 vyⒶ

2 1 2ay(y
Ⓒ

 2 y
Ⓐ

)

  vyⒸ
2 5 (20.0 m/s)2 1 2(29.80 m/s2)(0 2 0) 5 400 m2/s2

   vyⒸ
 5   220.0 m/s

Figure 2.14 (Example 2.10) Position, 
velocity, and acceleration values at 
various times for a freely falling stone 
thrown initially upward with a velocity 
vyi 5 20.0 m/s. Many of the quantities 
in the labels for points in the motion 
of the stone are calculated in the 
example. Can you verify the other val-
ues that are not?

�

�

�

�

t � � 5.00 s
y � � �22.5 m

vy � � �29.0 m/s
ay � � �9.80 m/s2

t � � 4.08 s
y � � 0

vy � � �20.0 m/s
ay � � �9.80 m/s2

t � � 2.04 s
y � � 20.4 m

vy � � 0
ay � � �9.80 m/s2

50.0 m

t � � 5.83 s
y � � �50.0 m

vy � � �37.1 m/s
ay � � �9.80 m/s2

t� � 0
y� � 0

vy � � 20.0 m/s
ay � � �9.80 m/s2

�

continued
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When taking the square root, we could choose either a positive or a negative root. We choose the negative root because we 
know that the stone is moving downward at point Ⓒ. The velocity of the stone when it arrives back at its original height is equal 
in magnitude to its initial velocity but is opposite in direction.

(D) Find the velocity and position of the stone at t 5 5.00 s.

S O L U T I O N

Choose the initial point just after the throw and the final point 5.00 s later.

Calculate the velocity at Ⓓ from Equation 2.13: vyⒹ
5 vyⒶ

 1 ayt 5 20.0 m/s 1 (29.80 m/s2)(5.00 s) 5   229.0 m/s

Use Equation 2.16 to find the position of   y
Ⓓ

5 y
Ⓐ

1 vyⒶ
t 1 1

2ayt
2 

the stone at t
Ⓓ

 5 5.00 s:      5 0 1 (20.0 m/s)(5.00 s) 1 12(29.80 m/s2)(5.00 s)2

       5   222.5 m

Finalize The choice of the time defined as t 5 0 is arbitrary and up to you to select as the problem solver. As an example of 
this arbitrariness, choose t 5 0 as the time at which the stone is at the highest point in its motion. Then solve parts (C) and (D) 
again using this new initial instant and notice that your answers are the same as those above.

w h A T  I F ?  What if the throw were from 30.0 m above the ground instead of 50.0 m? Which answers in parts (A) to (D) 
would change?

Answer None of the answers would change. All the motion takes place in the air during the first 5.00 s. (Notice that even for 
a throw from 30.0 m, the stone is above the ground at t 5 5.00 s.) Therefore, the height from which the stone is thrown is not 
an issue. Mathematically, if we look back over our calculations, we see that we never entered the height from which the stone 
is thrown into any equation.

  2.9    Kinematic Equations Derived from Calculus
The velocity of a particle moving in a straight line can be determined as the deriv-
ative of the position with respect to time. It is also possible to find the position of a 
particle if its velocity is known as a function of time. In calculus, the procedure used 
to perform this task is referred to either as integration or as finding the antiderivative. 

Suppose the vx–t graph for a particle moving along the x axis is as shown in 
Figure 2.15. Let us divide the time interval tf 2 ti into many small intervals, each of 
duration Dtn. From the definition of average velocity, we see that the displacement 
of the particle during any small interval, such as the one shaded in Figure 2.15, is 
given by Dxn 5 vxn,avg Dtn, where vxn,avg is the average velocity in that interval. There-
fore, the displacement during this small interval is simply the area of the shaded 
rectangle in Figure 2.15. The total displacement for the interval tf 2 ti is the sum of 
the areas of all the rectangles from ti to tf :

Dx 5 o
n

 vxn,avg Dtn

where the symbol o (uppercase Greek sigma) signifies a sum over all terms, that is, over 
all values of n. Now, as the intervals are made smaller and smaller, the number of terms 
in the sum increases and the sum approaches a value equal to the area under the curve 
in the velocity–time graph. Therefore, in the limit n S ̀ , or Dtn S 0, the displacement is

 Dx 5 lim
Dtn S 0 o

n

 vxn,avg Dtn (2.18)

The limit of the sum shown in Equation 2.18 is called a definite integral and so 
the displacement of the particle can be written as

 Dx 5 #
tf

ti

 vxstd dt (2.19)Definite integral 

PiTfall PrevenTion 2.9
Previous Experience with  
Integration This section assumes 
the reader is familiar with the 
techniques of integral calculus.  
If you have not yet studied integra-
tion in your calculus course, you 
should skip this section or cover 
it after you become familiar with 
integration.

2.10 c o n t i n u e d
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where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. 

kinematic equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.

The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt

may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 #
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax #
t

0

 dt 5 axst 2 0d 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

We can write this equation as dx 5 vx dt or in integral form as

xf 2 xi 5 #
t

0

 vx dt

Because vx 5 vxf 5 vxi 1 axt, this expression becomes

 xf 2 xi 5 #
t

0

svxi 1 axtd dt 5 #
t

0

 vxi dt 1 ax #
t

0

 t dt 5 vxist 2 0d 1 axSt 2

2
2 0D  

 xf 2 xi 5 vxit 1 1
2axt

2

which is Equation 2.16 in the particle under constant acceleration model.

 PiTfall PrevenTion 2.10
Integration is an Area If this dis-
cussion of integration is confusing 
to you, just remember that the 
integral of a function is simply the 
area between the function and 
the x axis between the limits of 
integration. If the function has a 
simple shape, the area can be eas-
ily calculated without integration. 
For example, if the function is a 
constant, so that its graph is a hor-
izontal line, the area is just that 
of the rectangle between the line 
and the x axis!

vx

t

�t n

t i t f

vxn,avg

The area of the shaded rectangle 
is equal to the displacement in 
the time interval �tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.
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46 Chapter 2 Motion in One Dimension

summary
 › Definitions

When a particle moves along the x 
axis from some initial position xi to 
some final position xf , its displace-
ment is

 Dx ; xf 2 xi (2.1)

The average velocity of a particle 
during some time interval is the dis-
placement Dx divided by the time 
interval Dt during which that dis-
placement occurs:

 vx,avg ;
Dx
Dt

 (2.2)

The average speed of a particle is 
equal to the ratio of the total dis-
tance it travels to the total time 
interval during which it travels that 
distance:

 vavg ;
d

Dt
 (2.3)

The instantaneous velocity of a particle is defined as the limit of the ratio Dx/Dt as Dt 
approaches zero. By definition, this limit equals the derivative of x with respect to t, or 
the time rate of change of the position:

 vx ; lim
Dt S 0

 
Dx
Dt

5
dx
dt

 (2.5)

The instantaneous speed of a particle is equal to the magnitude of its instantaneous 
velocity.

The average acceleration of a particle is defined as the ratio of the change in its velocity 
Dvx divided by the time interval Dt during which that change occurs:

 ax,avg ;
Dvx

Dt
5

vxf 2 vxi

tf 2 ti

 (2.9)

The instantaneous acceleration is equal to the limit of the ratio Dvx/Dt as Dt approaches 
0. By definition, this limit equals the derivative of vx with respect to t, or the time rate of 
change of the velocity:

 ax ; lim
Dt S 0

 
Dvx

Dt
5

dvx

dt
 (2.10)

 › Concepts and Principles

When an object’s velocity and acceleration are in the 
same direction, the object is speeding up. On the other 
hand, when the object’s velocity and acceleration are in 
opposite directions, the object is slowing down. Remem-
bering that Fx ~ ax is a useful way to identify the direction 
of the acceleration by associating it with a force.

An object falling freely in the presence of the Earth’s gravity experi-
ences free-fall acceleration directed toward the center of the Earth. 
If air resistance is neglected, if the motion occurs near the surface 
of the Earth, and if the range of the motion is small compared with 
the Earth’s radius, the free-fall acceleration ay 5 2g is constant over 
the range of motion, where g is equal to 9.80 m/s2.

Complicated problems are best approached 
in an organized manner. Recall and 
apply the Conceptualize, Categorize, Analyze, 
and Finalize steps of the Analysis Model 
Approach to Problem Solving when you 
need them.

An important aid to problem solving is the use of analysis models. Analysis mod-
els are situations that we have seen in previous problems. Each analysis model has 
one or more equations associated with it. When solving a new problem, identify 
the analysis model that corresponds to the problem. The model will tell you which 
equations to use. The first three analysis models introduced in this chapter are 
summarized below.

 › Analysis Models for Problem Solving

Particle Under Constant Velocity. If a particle moves in a 
straight line with a constant speed vx, its constant velocity is 
given by

 vx 5
Dx
Dt

 (2.6)

and its position is given by

 xf 5 xi 1 vxt (2.7)

v

Particle Under Constant Speed. If a particle moves a dis-
tance d along a curved or straight path with a constant speed, 
its constant speed is given by

 v 5
d

Dt
 (2.8)

v
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Particle Under Constant Acceleration. If a particle moves in 
a straight line with a constant acceleration ax, its motion is 
described by the kinematic equations:

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2svxi 1 vxf dt (2.15)

 xf 5 xi 1 vxit 1 1
2axt

2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)

v

a

Think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are at a carnival playing the “Strike-the-Bell” game, as 
shown in Figure TP2.1. The goal is to hit the end of the lever 
with a hammer, sending a hard object upward along the fric-
tionless vertical track so as to strike a bell at the top. Show-
ing off your control for the crowd, you hit the lever several 
times in a row in such a way that the hard object rises to a 
height h 5 4.50 m and just touches the bell, which makes 
a gentle ringing sound. Now, to really impress the crowd, 
you swing the hammer with a mighty motion, hit the lever, 
and project the object upward with twice the initial speed 
of your previous demonstrations. Unbeknownst to you, 
on the previous demonstration, the bell came loose and 
slipped off to the side, so that, on this demonstration, the 
object bypasses the bell and is projected straight up into 
the air. What is the total time interval between when the 
object begins its upward motion and then later lands on the 
ground beside the apparatus?

2. Your group is at the top of a cliff of height h 5 75.0 m. At the 
bottom of the cliff is a pool of water. You split the group in 
two. The first half of the group volunteers a member to drop a 

rock from rest so that it falls straight downward and makes a 
splash in the water. The second half of the group volunteers 
a member to, after some time interval has passed since the 
first rock was dropped, throw a second rock straight down-
ward so that both rocks arrive at the water at the same time. 
You test the performance by listening for a single splash 
made by the rocks simultaneously hitting the water. (a) If the 
second rock is thrown 1.00 s after the first rock is released, 
with what speed must the second rock be thrown? (b) If the 
fastest anyone in your group can throw the rock is 40.0 m/s, 
what is the longest time interval that can pass between the 
release of the rocks so that a single splash is heard? (c) If 
there is no limit as to how fast the rock can be thrown, what 
is the longest time interval that can pass between the release 
of the rocks so that a single splash is heard?

3. ACTIVITy  Have your partner hold a ruler vertically with the 
zero end at the bottom. Place your open finger and thumb 
at the zero position. Without warning, your partner should 
release the ruler and you should catch it as soon as you see it 
moving. From the position of your finger on the ruler, deter-
mine your reaction time. Repeat the experiment a number 
of times to estimate the uncertainty in your reaction time. 
Have each member of your group catch the ruler and com-
pare your reaction times.

4. ACTIVITy  The Acela is an electric train on the Washing-
ton–New York–Boston run, carrying passengers at speeds 
as high as 170 mi/h. A velocity–time graph for the Acela is 
shown in Figure TP2.4. (a) Describe the train’s motion in 
each successive time interval. (b) Find the train’s peak posi-
tive acceleration in the motion graphed. (c) Find the train’s 
displacement in miles between t = 0 and t = 200 s.

 Think–Pair–Share 47

Figure TP2.1
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Figure TP2.4 Velocity–time graph for the Acela.
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48 Chapter 2 Motion in One Dimension

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

secTion 2.1 Position, Velocity, and Speed

1. The speed of a nerve impulse in the human body is about 
100 m/s. If you accidentally stub your toe in the dark, estimate 
the time it takes the nerve impulse to travel to your brain.

2. A particle moves according to the equation x 5 10t 2, where x 
is in meters and t is in seconds. (a) Find the average velocity 
for the time interval from 2.00 s to 3.00 s. (b) Find the aver-
age velocity for the time interval from 2.00 to 2.10 s.

3. The position of a pinewood derby car was observed at vari-
ous times; the results are summarized in the following table. 
Find the average velocity of the car for (a) the first second, 
(b) the last 3 s, and (c) the entire period of observation.

t (s) 0 1.0 2.0 3.0 4.0 5.0 
x (m) 0 2.3 9.2 20.7 36.8 57.5

secTion 2.2 Instantaneous Velocity and Speed

4. An athlete leaves one end of a pool of length L at t 5 0 
and arrives at the other end at time t1. She swims back and 
arrives at the starting position at time t2. If she is swimming 
initially in the positive x direction, determine her aver-
age velocities symbolically in (a) the first half of the swim,  
(b) the second half of the swim, and (c) the round trip.  
(d) What is her average speed for the round trip?

5. A position–time graph for a particle moving along the  
x axis is shown in Figure P2.5. (a) Find the average velocity 
in the time interval t 5 1.50 s to t 5 4.00 s. (b) Determine 
the instantaneous velocity at t 5 2.00 s by measuring the 
slope of the tangent line shown in the graph. (c) At what 
value of t is the velocity zero?

10

12

6

8

2

4

0
t (s)

x (m)

1 2 3 4 5 6

Figure P2.5

secTion 2.3 Analysis Model: Particle Under Constant Velocity

6. A car travels along a straight line at a constant speed of 
60.0 mi/h for a distance d and then another distance d in 
the same direction at another constant speed. The average 
velocity for the entire trip is 30.0 mi/h. (a) What is the con-
stant speed with which the car moved during the second dis-
tance d ? (b) What If? Suppose the second distance d were 
traveled in the opposite direction; you forgot something and 
had to return home at the same constant speed as found in 
part (a). What is the average velocity for this trip? (c) What is 
the average speed for this new trip?

7. A person takes a trip, driving with a constant speed of 89.5 
km/h, except for a 22.0-min rest stop. If the person’s aver-
age speed is 77.8 km/h, (a) how much time is spent on the 
trip and (b) how far does the person travel?

secTion 2.5 Acceleration

8. A child rolls a marble on a bent track that is 100 cm long as 
shown in Figure P2.8. We use x to represent the position of 
the marble along the track. On the horizontal sections from 
x 5 0 to x 5 20 cm and from x 5 40 cm to x 5 60 cm, the 
marble rolls with constant speed. On the sloping sections, 
the marble’s speed changes steadily. At the places where 
the slope changes, the marble stays on the track and does 
not undergo any sudden changes in speed. The child gives 
the marble some initial speed at x 5 0 and t 5 0 and then 
watches it roll to x 5 90 cm, where it turns around, eventually 
returning to x 5 0 with the same speed with which the child 
released it. Prepare graphs of x versus t, vx versus t, and ax ver-
sus t, vertically aligned with their time axes identical, to show 
the motion of the marble. You will not be able to place num-
bers other than zero on the horizontal axis or on the velocity 
or acceleration axes, but show the correct graph shapes.

vS

20 cm

40 cm 60 cm

100 cm

0

Figure P2.8

9. Figure P2.9 shows a graph of vx versus t for the motion of 
a motorcyclist as he starts from rest and moves along the 
road in a straight line. (a) Find the average acceleration for 
the time interval t 5 0 to t 5 6.00 s. (b) Estimate the time 
at which the acceleration has its greatest positive value and 
the value of the acceleration at that instant. (c) When is 
the acceleration zero? (d) Estimate the maximum negative 
value of the acceleration and the time at which it occurs.

0 2 4 6 108 12
t (s)

2

4

6

8

10
vx (m/s)

Figure P2.9

10. (a) Use the data in Problem 3 to construct a smooth graph 
of position versus time. (b) By constructing tangents to 
the x(t) curve, find the instantaneous velocity of the car at 
several instants. (c) Plot the instantaneous velocity versus 
time and, from this information, determine the average 
acceleration of the car. (d) What was the initial velocity of 
the car?

V

T
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11. A particle starts from rest 
and accelerates as shown 
in Figure P2.11. Determine 
(a)  the particle’s speed at t 
5 10.0 s and at t 5 20.0 s, 
and (b) the distance trav-
eled in the first 20.0 s.

secTion 2.6 Motion Diagrams

12. Draw motion diagrams for 
(a) an object moving to the 
right at constant speed, (b) an object moving to the right 
and speeding up at a constant rate, (c) an object moving 
to the right and slowing down at a constant rate, (d)  an 
object moving to the left and speeding up at a constant rate, 
and (e) an object moving to the left and slowing down at a 
constant rate. (f) How would your drawings change if the 
changes in speed were not uniform, that is, if the speed were 
not changing at a constant rate?

13. Each of the strobe photographs (a), (b), and (c) in Figure P2.13  
was taken of a single disk moving toward the right, which we 
take as the positive direction. Within each photograph the time 
interval between images is constant. For each photograph, pre-
pare graphs of x versus t, vx versus t, and ax versus t, vertically 
aligned with their time axes identical, to show the motion of 
the disk. You will not be able to place numbers other than zero 
on the axes, but show the correct shapes for the graph lines.

a

Figure P2.13

b

c

secTion 2.7 Analysis Model: Particle  
Under Constant Acceleration

14. An electron in a cathode-ray tube accelerates uniformly 
from 2.00 3 104 m/s to 6.00 3 106 m/s over 1.50 cm.  
(a) In what time interval does the electron travel this 1.50 cm?  
(b) What is its acceleration?

15. A parcel of air moving in a straight tube with a constant 
acceleration of 24.00 m/s2 has a velocity of 13.0 m/s at 
10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.?  
(b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe the 
shape of a graph of velocity versus time for this parcel of air. 
(e) Argue for or against the following statement: “Knowing 

V
the single value of an object’s constant acceleration is like 
knowing a whole list of values for its velocity.”

16. In Example 2.7, we investigated a jet landing on an aircraft 
carrier. In a later maneuver, the jet comes in for a landing 
on solid ground with a speed of 100 m/s, and its acceleration 
can have a maximum magnitude of 5.00 m/s2 as it comes to 
rest. (a) From the instant the jet touches the runway, what 
is the minimum time interval needed before it can come to 
rest? (b) Can this jet land at a small tropical island airport 
where the runway is 0.800 km long? (c) Explain your answer.

17.  An object moving with uniform acceleration has a velocity 
of 12.0 cm/s in the positive x direction when its x coordinate 
is 3.00 cm. If its x coordinate 2.00 s later is 25.00 cm, what 
is its acceleration?

18. Solve Example 2.8 by a graphical method. On the same 
graph, plot position versus time for the car and the trooper. 
From the intersection of the two curves, read the time at 
which the trooper overtakes the car.

19. A glider of length , moves through a stationary photogate 
on an air track. A photogate (Fig. P2.19) is a device that mea-
sures the time interval Dtd during which the glider blocks 
a beam of infrared light passing across the photogate. The 
ratio vd 5 ,/Dtd is the average velocity of the glider over this 
part of its motion. Suppose the glider moves with constant 
acceleration. (a) Argue for or against the idea that vd is equal 
to the instantaneous velocity of the glider when it is halfway 
through the photogate in space. (b) Argue for or against 
the idea that vd is equal to the instantaneous velocity of the 
glider when it is halfway through the photogate in time.

Figure P2.19 Problems 19 and 21.

20. Why is the following situation impossible? Starting from rest,  
a charging rhinoceros moves 50.0 m in a straight line in  
10.0 s. Her acceleration is constant during the entire motion, 
and her final speed is 8.00 m/s.

21. A glider of length 12.4 cm moves on an air track with con-
stant acceleration (Fig P2.19). A time interval of 0.628  s 
elapses between the moment when its front end passes a 
fixed point Ⓐ along the track and the moment when its 
back end passes this point. Next, a time interval of 1.39  s 
elapses between the moment when the back end of the 
glider passes the point Ⓐ and the moment when the front 
end of the glider passes a second point Ⓑ farther down the 
track. After that, an additional 0.431 s elapses until the back 
end of the glider passes point Ⓑ. (a) Find the average speed 
of the glider as it passes point Ⓐ. (b) Find the acceleration 
of the glider. (c) Explain how you can compute the accelera-
tion without knowing the distance between points Ⓐ and Ⓑ.

22. In the particle under constant acceleration model, we 
identify the variables and parameters vxi, vxf , ax, t, and  

T

T

2
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50 Chapter 2 Motion in One Dimension

xf  2 xi. Of the equations in the model, Equations 2.13–2.17, 
the first does not involve xf  2 xi, the second and third do 
not contain ax, the fourth omits vxf , and the last leaves out 
t. So, to complete the set, there should be an equation not 
involving vxi. Derive it from the others. 

23. At t 5 0, one toy car is set rolling on a straight track with 
initial position 15.0 cm, initial velocity 23.50 cm/s, and con-
stant acceleration 2.40 cm/s2. At the same moment, another 
toy car is set rolling on an adjacent track with initial posi-
tion 10.0 cm, initial velocity 15.50 cm/s, and constant accel-
eration zero. (a) At what time, if any, do the two cars have 
equal speeds? (b) What are their speeds at that time? (c) At 
what time(s), if any, do the cars pass each other? (d) What 
are their locations at that time? (e) Explain the difference 
between question (a) and question (c) as clearly as possible.

24. You are observing the poles along the side of the road as 
described in the opening storyline of the chapter. You have 
already stopped and measured the distance between adjacent 
poles as 40.0 m. You are now driving again and have activated 
your smartphone stopwatch. You start the stopwatch at t 5 0 
as you pass pole #1. At pole #2, the stopwatch reads 10.0  s. 
At pole #3, the stop watch reads 25.0 s. Your friend tells you 
that he was pressing the brake and slowing down the car uni-
formly during the entire time interval from pole #1 to pole 
#3. (a) What was the acceleration of the car between poles #1 
and #3? (b) What was the velocity of the car at pole #1? (c) If 
the motion of the car continues as described, what is the 
number of the last pole passed before the car comes to rest?

secTion 2.8 Freely Falling Objects

Note: In all problems in this section, ignore the effects of air 
resistance.

25. Why is the following situation 
impossible? Emily challenges 
David to catch a $1 bill 
as follows. She holds the 
bill vertically as shown in  
Figure P2.25, with the cen-
ter of the bill between but 
not touching David’s index 
finger and thumb. Without 
warning, Emily releases the 
bill. David catches the bill 
without moving his hand 
downward. David’s reaction time is equal to the average 
human reaction time.

26. An attacker at the base of a castle wall 3.65 m high throws a 
rock straight up with speed 7.40 m/s from a height of 1.55 m 
above the ground. (a) Will the rock reach the top of the 
wall? (b) If so, what is its speed at the top? If not, what initial 
speed must it have to reach the top? (c) Find the change in 
speed of a rock thrown straight down from the top of the 
wall at an initial speed of 7.40 m/s and moving between the 
same two points. (d) Does the change in speed of the down-
ward-moving rock agree with the magnitude of the speed 
change of the rock moving upward between the same eleva-
tions? (e) Explain physically why it does or does not agree.

27. The height of a helicopter above the ground is given by  
h 5 3.00t 3, where h is in meters and t is in seconds. At  
t 5 2.00 s, the helicopter releases a small mailbag. How long 
after its release does the mailbag reach the ground?

CR

28. A ball is thrown upward from the ground with an initial 
speed of 25 m/s; at the same instant, another ball is dropped 
from a building 15 m high. After how long will the balls be 
at the same height above the ground?

29. A student throws a set of keys vertically upward to her soror-
ity sister, who is in a window 4.00 m above. The second  
student catches the keys 1.50 s later. (a) With what initial 
velocity were the keys thrown? (b) What was the velocity of 
the keys just before they were caught?

30. At time t 5 0, a student throws a set of keys vertically upward 
to her sorority sister, who is in a window at distance h above. 
The second student catches the keys at time t. (a) With what 
initial velocity were the keys thrown? (b) What was the veloc-
ity of the keys just before they were caught?

31. You have been hired by the prosecuting attorney as an expert 
witness in a robbery case. The defendant is accused of steal-
ing an expensive and massive diamond ring in its box from 
a jewelry store. A witness to the alleged crime testified that 
she saw the defendant run from the store, stop next to an 
apartment building, and throw the box straight upward to 
an accomplice leaning out a fourth-floor window. When cap-
tured, the defendant did not have the stolen box with him 
and claimed innocence. When the witness testified in court 
about the defendant’s throwing of the box to an accomplice, 
the defending attorney argued that it would be impossible to 
throw the box upward that high to reach the window in ques-
tion. The bottom of the window is 19.0 m above the sidewalk. 
You have set up a demonstration in which the defendant was 
asked by the judge to throw a baseball horizontally as fast as 
he could and a radar device was used to determine that he 
can throw the ball at 20 m/s. (a) What testimony can you pro-
vide about the ability of the defendant to throw the box to the 
window in question? (b) What argument might the defense 
attorney make about the process used to develop your expert  
testimony? What might be your counter argument? Ignore 
any effects of air resistance on the box.

secTion 2.9 Kinematic Equations Derived from Calculus

32. A student drives a moped 
along a straight road 
as described by the 
 velocity–time graph in 
Figure P2.32. Sketch this 
graph in the middle of 
a sheet of graph paper. 
(a)  Directly above your 
graph, sketch a graph of 
the position versus time, 
aligning the time coor-
dinates of the two graphs. (b) Sketch a graph of the accel-
eration versus time directly below the velocity–time graph, 
again aligning the time coordinates. On each graph, show 
the numerical values of x and ax for all points of inflec-
tion. (c)  What is the acceleration at t 5 6.00 s? (d)  Find 
the position (relative to the starting point) at t 5 6.00 s.  
(e) What is the moped’s final position at t 5 9.00 s?

33. Automotive engineers refer to the time rate of change of accel-
eration as the “ jerk.” Assume an object moves in one dimen-
sion such that its jerk J is constant. (a) Determine expressions 
for its acceleration ax(t), velocity vx(t), and position x(t), given 
that its initial acceleration, velocity, and position are axi, vxi, 
and xi, respectively. (b) Show that ax

2 5 axi
2 1 2J(vx 2 vxi).
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addiTional ProbleMs

34. In Figure 2.11b, the area under the velocity–time graph 
and between the vertical axis and time t (vertical dashed 
line) represents the displacement. As shown, this area con-
sists of a rectangle and a triangle. (a) Compute their areas.  
(b) Explain how the sum of the two areas compares with the 
expression on the right-hand side of Equation 2.16.

35. The froghopper Philaenus spumarius is supposedly the best 
jumper in the animal kingdom. To start a jump, this insect 
can accelerate at 4.00 km/s2 over a distance of 2.00 mm as it 
straightens its specially adapted “ jumping legs.” Assume the 
acceleration is constant. (a) Find the upward velocity with 
which the insect takes off. (b) In what time interval does it 
reach this velocity? (c) How high would the insect jump if 
air resistance were negligible? The actual height it reaches is 
about 70 cm, so air resistance must be a noticeable force on 
the leaping froghopper.

36. A woman is reported to have fallen 144 ft from the 17th 
floor of a building, landing on a metal ventilator box that 
she crushed to a depth of 18.0 in. She suffered only minor 
injuries. Ignoring air resistance, calculate (a) the speed of 
the woman just before she collided with the ventilator and 
(b) her average acceleration while in contact with the box. 
(c) Modeling her acceleration as constant, calculate the 
time interval it took to crush the box.

37. At t 5 0, one athlete in a race running on a long, straight 
track with a constant speed v1 is a distance d1 behind a sec-
ond athlete running with a constant speed v2. (a) Under 
what circumstances is the first athlete able to overtake the 
second athlete? (b) Find the time t at which the first athlete 
overtakes the second athlete, in terms of d1, v1, and v2. (c) 
At what minimum distance d2 from the leading athlete must 
the finish line be located so that the trailing athlete can at 
least tie for first place? Express d2 in terms of d1, v1, and v2 by 
using the result of part (b).

38. Why is the following situation impossible? A freight train is lum-
bering along at a constant speed of 16.0 m/s. Behind the 
freight train on the same track is a passenger train traveling 
in the same direction at 40.0 m/s. When the front of the pas-
senger train is 58.5 m from the back of the freight train, the 
engineer on the passenger train recognizes the danger and 
hits the brakes of his train, causing the train to move with 
acceleration 23.00 m/s2. Because of the engineer’s action, 
the trains do not collide.

39. Hannah tests her new sports car by racing with Sam, an 
experienced racer. Both start from rest, but Hannah  
leaves the starting line 1.00 s after Sam does. Sam moves 
with a constant acceleration of 3.50 m/s2, while Hannah  
maintains an acceleration of 4.90 m/s2. Find (a) the time at 
which Hannah overtakes Sam, (b) the distance she travels 
before she catches him, and (c) the speeds of both cars at the 
instant Hannah overtakes Sam.

40. Two objects, A and B, are connected by hinges to a rigid 
rod that has a length L. The objects slide along perpendic-
ular guide rails as shown in Figure P2.40. Assume object A 
slides to the left with a constant speed v. (a) Find the veloc-
ity vB of object B as a function of the angle u. (b) Describe vB 

T

relative to v. Is vB always smaller 
than v, larger than v, or the same 
as v, or does it have some other 
relationship?

41. Lisa rushes down onto a subway 
platform to find her train already 
departing. She stops and watches 
the cars go by. Each car is 8.60 m 
long. The first moves past her in 
1.50 s and the second in 1.10 s. 
Find the constant acceleration of 
the train.

challenGe ProbleMs

42. Two thin rods are fastened to 
the inside of a circular ring as 
shown in Figure P2.42. One 
rod of length D is vertical, and 
the other of length L makes an 
angle u with the horizontal. The 
two rods and the ring lie in a 
vertical plane. Two small beads 
are free to slide without friction 
along the rods. (a) If the two 
beads are released from rest 
simultaneously from the posi-
tions shown, use your intuition 
and guess which bead reaches the bottom first. (b) Find an 
expression for the time interval required for the red bead to 
fall from point Ⓐ to point Ⓒ in terms of g and D. (c) Find an 
expression for the time interval required for the blue bead 
to slide from point Ⓑ to point Ⓒ in terms of g, L, and u. 
(d) Show that the two time intervals found in parts (b) and 
(c) are equal. Hint: What is the angle between the chords of 
the circle Ⓐ Ⓑ and Ⓑ Ⓒ? (e) Do these results surprise you? 
Was your intuitive guess in part (a) correct? This problem  
was inspired by an article by Thomas B. Greenslade, Jr., 
“Galileo’s Paradox,” Phys. Teach. 46, 294 (May 2008).

43. In a women’s 100-m race, accelerating uniformly, Laura 
takes 2.00 s and Healan 3.00 s to attain their maximum 
speeds, which they each maintain for the rest of the race. 
They cross the finish line simultaneously, both setting a 
world record of 10.4 s. (a) What is the acceleration of each 
sprinter? (b)  What are their respective maximum speeds? 
(c) Which sprinter is ahead at the 6.00-s mark, and by how 
much? (d) What is the maximum distance by which Healan 
is behind Laura, and at what time does that occur?

44. Review. You are sitting in your car at rest at a traffic light 
with a bicyclist at rest next to you in the adjoining bicy-
cle lane. As soon as the traffic light turns green, your car 
speeds up from rest to 50.0 mi/h with constant acceleration 
9.00 mi/h/s and thereafter moves with a constant speed of 
50.0 mi/h. At the same time, the cyclist speeds up from 
rest to 20.0 mi/h with constant acceleration 13.0 mi/h/s 
and thereafter moves with a constant speed of 20.0 mi/h. 
(a) For what time interval after the light turned green is  
the bicycle ahead of your car? (b) What is the maximum 
distance by which the bicycle leads your car during this 
time interval?
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3 Vectors

3.1 Coordinate Systems

3.2 Vector and Scalar 
Quantities

3.3 Basic Vector Arithmetic

3.4 Components of a 
Vector and Unit Vectors

Storyline Your road trip in Chapter 2 takes you toward the ocean. 
You end up in Newport Beach, California. Your friend who was driving the car in 
Chapter 2 owns a sailboat and asks you to pilot the boat from Newport Beach 
to Catalina Island, which is 26 miles off the coast. Your friend challenges you to 
pilot the boat along a perfectly straight line. Always up for a challenge, you agree, 
settle into the captain’s chair, and then panic. You know you have to travel 26 
miles in a straight line, but what should you set as the heading for the boat? The 
distance of 26 miles is not sufficient information to allow you to travel to Catalina 
Island in a straight line. You realize that your trip will require both the distance to 
Catalina Island and the direction in which you must travel. You ask your friend the 
appropriate direction to Catalina Island and he gives you a heading as an angle 
south of due west. You open the compass app on your smartphone, find the 
appropriate direction, and set sail!

ConneCtions If you move only along a straight line, as in the previous 
chapter, then a single number (with a positive or negative sign) can be used to 
specify your position with respect to the origin. In this chapter, we will study the 
positions of objects or points in two- or three-dimensional space that require 
two types of information: distance from a reference point and direction relative 
to a reference axis. Quantities that require these two types of information are 
called vectors. We will learn various properties of vectors and will see how to 
add and subtract vectors. Vector quantities are used throughout this text. In 
addition to the position vectors studied in this chapter, we will see other vector 
quantities in subsequent chapters, such as velocity, acceleration, force, and 
electric field. Therefore, it is imperative that you master the techniques discussed 
in this chapter.

Catalina Island can be 
reached from different 

starting points along the Los 
Angeles–Orange County 

coast. The opening storyline 
refers to a trip to Avalon 

beginning in Newport Beach.
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   3.1    Coordinate Systems
Many aspects of physics involve a description of a location in space. In Chapter 2, 
for example, we saw that the mathematical description of an object’s motion 
requires a method for describing the object’s position at various times. In two 
dimensions, this description is accomplished with the use of the Cartesian coor-
dinate system, in which perpendicular axes intersect at a point defined as the 
origin O (Fig. 3.1). Cartesian coordinates of a point in space, representing the 
x and y values of the point, and expressed as (x, y), are also called rectangular 
coordinates.

Sometimes it is more convenient to represent a point in a plane by its plane polar 
coordinates (r, u) as shown in Figure 3.2a. In this polar coordinate system, r is the dis-
tance from the origin to the point having Cartesian coordinates (x, y) and u is the 
angle between a fixed axis and a line drawn from the origin to the point. The fixed 
axis is often the positive x axis, and u is usually measured counterclockwise from it. 
From the right triangle in Figure 3.2b, we find that sin u 5 y/r and that cos u 5 x/r. 
(A review of trigonometric functions is given in Appendix B.4.) Therefore, starting 
with the plane polar coordinates of any point, we can obtain the Cartesian coordi-
nates by using the equations

 x 5 r cos u (3.1)

 y 5 r sin u (3.2)

Conversely, if we know the Cartesian coordinates, the definitions of trigonometry 
tell us that the polar coordinates are given by

 tan u 5
y
x

 (3.3)

 r 5 Ïx 2 1 y2 (3.4)

Equation 3.4 is the familiar Pythagorean theorem.
These four expressions relating the coordinates (x, y) to the coordinates (r, u) 

apply only when u is defined as shown in Figure 3.2a—in other words, when pos-
itive u is an angle measured counterclockwise from the positive x axis. (Some sci-
entific calculators perform conversions between Cartesian and polar coordinates 
based on these standard conventions.) If the reference axis for the polar angle u is 
chosen to be one other than the positive x axis or if the sense of increasing u is cho-
sen differently, the expressions relating the two sets of coordinates will be different 
from those above.

  Cartesian coordinates in 
terms of polar coordinates

  Polar coordinates in terms of 
Cartesian coordinates

y

x

Q

(–3, 4) (5, 3)

(x, y)

P

5 10

5

10

O

Figure 3.1 Designation of points 
in a Cartesian coordinate system. 
Every point is labeled with coordi-
nates (x, y).

Figure 3.2 (a) The plane polar coordinates of a point are represented by the distance r and the 
angle u, where u is measured counterclockwise from the positive x axis. (b) The right triangle used to 
relate (x, y) to (r, u).
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54 Chapter 3 Vectors

   3.2    Vector and Scalar Quantities
We now formally describe the difference between scalar quantities and vector quan-
tities. When you want to know the temperature outside so that you will know how 
to dress, the only information you need is a number and the unit “degrees C” or 
“degrees F.” Temperature is therefore an example of a scalar quantity:

A scalar quantity is completely specified by a single value with an appropriate 
unit and has no direction.

Other examples of scalar quantities are volume, mass, speed, time, and time inter-
vals. Some scalars are always positive, such as mass and speed. Others, such as tem-
perature, can have either positive or negative values. The rules of ordinary arithme-
tic are used to manipulate scalar quantities.

If you are preparing to pilot a small plane and need to know the wind velocity, 
you must know both the speed of the wind and its direction. Because direction is 
important for its complete specification, velocity is a vector quantity:

A vector quantity is completely specified by a number with an appropriate 
unit (the magnitude of the vector) plus a direction.

Another example of a vector quantity is displacement, as you know from 
Chapter 2. Suppose a particle moves from some point Ⓐ to some point Ⓑ along 
a straight path as shown in Figure 3.4. We represent this displacement by draw-
ing an arrow from Ⓐ to Ⓑ, with the tip of the arrow pointing away from the 
starting point. The direction of the arrowhead represents the direction of the 
displacement, and the length of the arrow represents the magnitude of the dis-
placement. If the particle travels along some other path from Ⓐ to Ⓑ such as 

 Example 3.1    Polar Coordinates

The Cartesian coordinates of a point in the xy plane are (x, y) 5 (23.50, 22.50) m as shown in Figure 3.3. Find the polar 
coordinates of this point.

S O L U T I O N

Conceptualize The drawing in Figure 3.3 helps us conceptu-
alize the problem. We wish to find r and u. Based on the fig-
ure and the data given in the problem statement, we expect r 
to be a few meters and u to be between 1808 and 2708.

Categorize Based on the statement of the problem and the 
Conceptualize step, we recognize that we are simply con-
verting from Cartesian coordinates to polar coordinates. We 
therefore categorize this example as a substitution problem. 
As mentioned in Section 2.4, substitution problems generally 
do not have an extensive Analyze step other than the substitution of numbers into a given equation. Similarly, the Finalize step 
consists primarily of checking the units and making sure that the answer is reasonable and consistent with our expectations. 
Therefore, for substitution problems, we will not label Analyze or Finalize steps.

Use Equation 3.4 to find r: r 5 Ïx2 1 y 2 5 Ïs23.50 md2 1 s22.50 md2 5   4.30 m

Use Equation 3.3 to find u: tan u 5
y

x
5

22.50 m
23.50 m

5 0.714

 u 5   2168

Notice that you must use the signs of x and y to find that the point lies in the third quadrant of the coordinate system. That is, 
u 5 2168, not 35.58, whose tangent is also 0.714. Answers to both r and u agree with our expectations in the Conceptualize step.

Figure 3.3 (Example 3.1) 
Finding polar coordinates when 
Cartesian coordinates are given.

(–3.50, –2.50)

x (m)

r

y (m)

u

�

�

Figure 3.4 As a particle moves 
from Ⓐ to Ⓑ either along the 
straight line or along an arbitrary 
path represented by the broken 
line, its displacement is a vector 
quantity shown by the arrow 
drawn from Ⓐ to Ⓑ.
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shown by the broken line in Figure 3.4, its displacement is still the arrow drawn 
from Ⓐ to Ⓑ. Displacement depends only on the initial and final positions, so 
the displacement vector is independent of the path taken by the particle between 
these two points.

In this text, we use a boldface letter with an arrow over the letter, such as A
S

, to 
represent a vector. Another common notation for vectors with which you should 
be familiar is a simple boldface character: A. The magnitude of the vector A

S
  

is written either A or uA
S

u. The magnitude of a vector has physical units, such as 
meters for displacement or meters per second for velocity. The magnitude of a vec-
tor is always a positive number.

What about the vector to follow in our opening storyline? What heading did 
your friend give you to Catalina Island? You can use a latitude and longitude finder 
online to find the coordinates for the opening of Newport Harbor and for Avalon 
Harbor. Then, putting these coordinates into a distance and azimuth calculator 
online, you find that the distance is 30.7 mi, with a heading of 236.28 relative to 
due east. (Note that Catalina is described as “26 miles across the sea” in a popular 
song from the 1950s, but we need to travel a bit farther to make this trip. An online 
calculation shows the distance between San Pedro and Avalon to be 27 miles, which 
might be the origin of the song.)

Q uiCk Quiz 3.1 Which of the following are vector quantities and which are 
scalar quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

   3.3    Basic Vector Arithmetic
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A 5 B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

The rules for vector addition are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magnitude 

represented by a convenient length scale, and then draw vector B
S

 to the same scale, 
with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant vector 

R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
A geometric construction can also be used to add more than two vectors as  

shown in Figure 3.7 for the case of three vectors. The resultant vector R
S

 5 A
S

 1 
B
S

 1 C
S

 is the vector that completes the polygon. In other words, R
S

 is the vector 
drawn from the tail of the first vector to the tip of the last vector. This technique for 
adding vectors is often called the “head to tail method.”

O

y

x

Figure 3.5  These four vectors 
are equal because they have equal 
lengths and point in the same 
direction.

Pitfall Prevention 3.1
Vector Addition Versus  
Scalar Addition Notice that 
A
S

1 B
S

5 C
S

 is very different from 
A 1 B 5 C. The first equation 
is a vector sum, which must be 
handled carefully, such as  
with the graphical method. The 
second equation is a simple alge-
braic addition of numbers that  
is handled with the normal rules 
of arithmetic.

A
S

 

B
S

 

C
S

 

A
S  

B
S  

C
S  

R
S �

�

�

Figure 3.7 Geometric construc-
tion for summing three vectors. The 
resultant vector R

S
 is by definition 

the one that completes the polygon.

Figure 3.6 When vector B
S

 is 
added to vector A

S
 the resultant  

R
S

 is the vector that runs from the 
tail of A

S
 to the tip of B

S
.

�
�

A
S

 

R
S A

S  B
S  

B
S
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56 Chapter 3 Vectors

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is 
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric 
construction in Figure 3.8, is known as the commutative law of addition:

 A
S

1 B
S

5 B
S

1 A
S

 (3.5)

When three or more vectors are added, their sum is independent of the way in 
which the individual vectors are grouped together. A geometric proof of this rule 
for three vectors is given in Figure 3.9, where two ways of adding the same three 
vectors are shown. This property is called the associative law of addition:

 A
S

1 sB
S

1 C
S

d 5 sA
S

1 B
S

d 1 C
S

 (3.6)

We have described adding displacement vectors in this section because these 
types of vectors are easy to visualize. We can also add other types of vectors, such as 
velocity, force, and electric field vectors, which we will do in later chapters. When 
two or more vectors are added together, they must all have the same units and they 
must all be the same type of quantity. It would be meaningless to add a velocity 
vector (for example, 60 km/h to the east) to a displacement vector (for example, 
200 km to the north) because these vectors represent different physical quantities. 
The same rule also applies to scalars. For example, it would be meaningless to add 
time intervals to temperatures.

The operation of vector subtraction makes use of the definition of the negative 
of a vector. The negative of the vector A

S
 is defined as the vector that when added 

to A
S

 gives zero for the vector sum. That is, A
S

1 s2A
S

d 5 0. The vectors A
S

 and 
2A

S
 have the same magnitude but point in opposite directions. We define the oper-

ation A
S

2 B
S

 as vector 2B
S

 added to vector A
S

:

 A
S

2 B
S

5 A
S

1 s2B
S

d (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in 
Figure 3.10a.

Another way of looking at vector subtraction is to notice that the difference 
A
S

2 B
S

 between two vectors A
S

 and B
S

 is what you have to add to the second vector  
to obtain the first. In this case, as Figure 3.10b shows, the vector A

S
2 B

S
 points from 

the tip of the second vector to the tip of the first.
Scalar multiplication of vectors is straightforward. If vector A

S
 is multiplied by a 

positive scalar quantity m, the product m A
S

 is a vector that has the same direction 
as A

S
 and magnitude mA. If vector A

S
 is multiplied by a negative scalar quantity 2m, 

Commutative law of addition 
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Figure 3.8 This construction 
shows that A

S
1 B

S
5 B

S
1 A

S
 or, in 

other words, that vector addition 
is commutative.
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Figure 3.9  Geometric construc-
tions for verifying the associative 
law of addition. (a) Vectors B

S
 and 

C
S

 are added first and added to A
S

.  
(b) Vectors A

S
 and B

S
 are added 

first, and then C
S

 is added.
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Figure 3.10 (a) Subtracting vector B
S

 from vector A
S

. The vector 2B
S

 is equal in magnitude to  
vector B

S
 and points in the opposite direction. (b) A second way of looking at vector subtraction.
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the product 2mA
S

 is directed opposite A
S

. For example, the vector 5A
S

 is five times 
as long as A

S
 and points in the same direction as A

S
; the vector 21

3 A
S

 is one-third the 
length of A

S
 and points in the direction opposite A

S
.

Q uiCk Quiz 3.2 The magnitudes of two vectors A
S

 and B
S

 are A 5 12 units and 
B 5 8 units. Which pair of numbers represents the largest and smallest possible 
values for the magnitude of the resultant vector R

S
5 A

S
1 B

S
? (a) 14.4 units, 

4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers

Q uiCk Quiz 3.3 If vector B
S

 is added to vector A
S

, which two of the following 
choices must be true for the resultant vector to be equal to zero? (a) A

S
 and  

B
S

 are parallel and in the same direction. (b) A
S

 and B
S

 are parallel and in 
opposite directions. (c) A

S
 and B

S
 have the same magnitude. (d) A

S
 and B

S
  

are perpendicular.

 Example 3.2    A Vacation Trip

A car travels 20.0 km due north and then 35.0 km 
in a direction 60.08 west of north as shown in 
Figure 3.11a. Find the magnitude and direction of 
the car’s resultant displacement.

S O L U T I O N

Conceptualize  The two vectors A
S

 and B
S

 that appear in  
Figure 3.11a help us conceptualize the problem. The 
resultant vector R

S
 has also been drawn. We expect its 

magnitude to be a few tens of kilometers. The angle 
b that the resultant vector makes with the y axis is 
expected to be less than 608, the angle that vector 
B
S

 makes with the y axis.

Categorize We can categorize this example as a simple analysis problem in vector addition. The displacement R
S

 is the resul-
tant when the two individual displacements A

S
 and B

S
 are added. We can further categorize it as a problem about the analysis 

of triangles, so we appeal to our expertise in geometry and trigonometry.

Analyze In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first way is to 
solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R

S
 and its direction in Fig-

ure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors to check 
your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to three-digit 
precision. Try using these tools on R

S
 in Figure 3.11a and compare to the trigonometric analysis below!

The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of R
S

 can be obtained 
from the law of cosines as applied to the triangle in Figure 3.11a (see Appendix B.4).

Use R2 5 A2 1 B2 2 2AB cos u from the law of cosines to  R 5 ÏA2 1 B 2 2 2AB cos u 
find R:

Substitute numerical values, noting that  R 5 Ïs20.0 kmd2 1 s35.0 kmd2 2 2s20.0 kmds35.0 kmd cos 1208 
u 5 1808 2 608 5 1208: 5   48.2 km

Use the law of sines (Appendix B.4) to find the direction  
sin b

B
5

sin u
R

 
of R

S
 measured from the northerly direction:

 sin b 5
B
R

  sin u 5
35.0 km
48.2 km

  sin 1208 5 0.629

 b 5   38.98

The resultant displacement of the car is 48.2 km in a direction 38.98 west of north.
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Figure 3.11  (Example 3.2) (a) Graphical method for finding the resul-
tant displacement vector R

S
5 A

S
1 B

S
. (b) Adding the vectors in reverse 

order sB
S

1 A
S

d gives the same result for R
S

.

continued
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58 Chapter 3 Vectors

   3.4    Components of a Vector and Unit Vectors
The graphical method of adding vectors is not recommended whenever high 
accuracy is required or in three-dimensional problems. In this section, we 
describe a method of adding vectors that makes use of the projections of vectors 
along coordinate axes. These projections are called the components of the vec-
tor or its rectangular components. Any vector can be completely described by its 
components.

Consider a vector A
S

 lying in the xy plane and making an arbitrary angle u 
with the positive x axis as shown in Figure 3.12a. This vector can be expressed 
as the sum of two other component vectors A

S
x , which is parallel to the x axis, 

and A
S

y , which is parallel to the y axis. From the figure, we see that the three 
vectors form a right triangle and that A

S
5 A

S
x 1 A

S
y. We shall often refer to the 

“components of a vector A
S

,” written Ax and Ay (without the boldface notation). 
Figure 3.12b shows the component vector A

S
y moved to the left so that it lies along 

the y axis. We see that the component Ax represents the projection of A
S

 along 
the x axis, and the component Ay represents the projection of A

S
 along the  

y axis. These components can be positive or negative. The component Ax is pos-
itive if the component vector A

S
x points in the positive x direction and is nega-

tive if A
S

x points in the negative x direction. A similar statement is made for the 
component Ay.

From Figure 3.12 and the definition of sine and cosine, we see that cos u 5 Ax/A 
and that sin u 5 Ay /A. Hence, the components of A

S
 are

 Ax 5 A cos u (3.8)

 Ay 5 A sin u (3.9)

3.2 c o n t i n u e d

Finalize Does the angle b that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of R

S
 is larger 

than that of both A
S

 and B
S

? Are the units of R
S

 correct?
Although the head to tail method of adding vectors works 

well, it suffers from two disadvantages. First, some people 

find using the laws of cosines and sines to be awkward. Sec-
ond, a triangle only results if you are adding two vectors. If 
you are adding three or more vectors, the resulting geomet-
ric shape is usually not a triangle. In Section 3.4, we explore 
a new method of adding vectors that will address both of 
these disadvantages.

W h A T  I f ?  Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.08 west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an addition is 
irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same resultant vector.

Pitfall Prevention 3.2
x and y Components Equations 3.8 
and 3.9 associate the cosine of the 
angle with the x component and 
the sine of the angle with the y com-
ponent. This association is true only 
because we measured the angle u 
with respect to the x axis, so do not 
memorize these equations. If u is 
measured with respect to the y axis 
(as in some problems), these equa-
tions will be incorrect. Think about 
which side of the triangle contain-
ing the components is adjacent to 
the angle and which side is opposite 
and then assign the cosine and sine 
accordingly.

Figure 3.12  (a) A vector A
S

 lying in the xy plane can be represented as a vector sum of its component 
vectors A

S
x and A

S
y. These three vectors form a right triangle. (b) The y component vector A

S
y can be 

moved to the left so that it lies along the y axis.
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The magnitudes of these components are the lengths of the two sides of a right 
triangle with a hypotenuse of length A. Therefore, the magnitude and direction of 
A
S

 are related to its components through the expressions

 A 5 ÏAx
2 1 Ay

2 (3.10)

 u 5 tan21SAy

Ax
D (3.11)

Notice that the signs of the components Ax and Ay depend on the angle u. For 
example, if u 5 1208, Ax is negative and Ay is positive. If u 5 2258, both Ax and Ay 
are negative. Figure 3.13 summarizes the directions of the component vectors and 
signs of the components when A

S
 lies in the various quadrants.

When solving problems in two dimensions, you can specify a vector A
S

 either 
with its components Ax and Ay or with its magnitude and direction A and u.

In many applications, it is convenient to express the components in a coordinate 
system having axes that are not horizontal and vertical but that are still perpen-
dicular to each other. For example, we will consider the motion of objects sliding 
down inclined planes. For these examples, it is often convenient to orient the x axis 
parallel to the plane and the y axis perpendicular to the plane.

Q uiCk Quiz 3.4  Choose the correct response to make the sentence true: A 
component of a vector is (a) always, (b) never, or (c) sometimes larger than the 
magnitude of the vector.

Vector quantities often are expressed in terms of unit vectors. A unit vector is a 
dimensionless vector having a magnitude of exactly 1. Unit vectors are used to spec-
ify a given direction and have no other physical significance. They are used solely  
as a bookkeeping convenience in describing a direction in space. We shall use the 
symbols i

⁄
, j

⁄
, and k

⁄
 to represent unit vectors pointing in the positive x, y, and z 

directions, respectively. (The “hats,” or circumflexes, on the symbols are a standard 
notation for unit vectors.) The unit vectors i

⁄
, j

⁄
, and k

⁄
 form a set of mutually per-

pendicular vectors in a right-handed coordinate system as shown in Figure 3.14a. 
The magnitude of each unit vector equals 1; that is, ui

⁄
u 5 uj

⁄
u 5 uk

⁄
u 5 1.

Consider a vector A
S

 lying in the xy plane as shown in Figure 3.14b. The prod-
uct of the component Ax and the unit vector i

⁄
 is the component vector A

S
x 5 Axi

⁄
,  

which lies on the x axis and has magnitude uAxu. Likewise, A
S

y 5 Ay j
S

 is the com-
ponent vector of magnitude uAyu lying on the y axis. Therefore, the unit-vector 
 notation for the vector A

S
 is

 A
S

5 Axi
⁄

1 Ay j
⁄
 (3.12)

Consider now the polar coordinates shown for the point in Figure 3.2. The point 
in the first quadrant in that figure is reproduced in Figure 3.15. Notice that we can 
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Figure 3.13 The signs of the 
 components of a vector A

S
 depend  

on the quadrant in which the vector 
is located.

Figure 3.14 (a) The unit vectors i
⁄
, j

⁄
, and k

⁄
 are directed along the x, y, and z axes, respectively. 

(b) Vector A
S

5 Axi
⁄

1 Ay j
⁄
 lying in the xy plane has components Ax and Ay.y
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Figure 3.15 Unit vectors for 
a point described by polar 
coordinates.
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60 Chapter 3 Vectors

identify radial and angular unit vectors r⁄ and u
⁄
. Just like for rectangular coordi-

nates, these vectors are of unit length. Unlike rectangular coordinates, however, 
the directions of radial and angular unit vectors depend on the point, as shown by 
the point in the fourth quadrant in Figure 3.15. 

Now let us see how to use components to add vectors when the graphical method 
is not sufficiently accurate. Suppose we wish to add vector B

S
 to vector A

S
 in Equa-

tion 3.12, where vector B
S

 has components Bx and By. Because of the bookkeeping 
convenience of the unit vectors, all we do is add the x and y components separately. 
The resultant vector R

S
 is

R
S

5 A
S

1 B
S

5 sAx i
⁄

1 Ay j
⁄
d 1 sBx i

⁄
1 By j

⁄
d

or, rearranging terms,

 R
S

5 sAx 1 Bxd i
⁄

1 sAy 1 Byd j
⁄
 (3.13)

Because R
S

5 Rx i
⁄

1 Ry j
⁄
, we see that the components of the resultant vector are

Rx 5 Ax 1 Bx

 Ry 5 Ay 1 By 
(3.14)

Therefore, we see that in the component method of adding vectors, we add all the 
x components together to find the x component of the resultant vector and use the 
same process for the y components. We can check this addition by components with 
a geometric construction as shown in Figure 3.16.

The magnitude of R
S

 and the angle it makes with the x axis are obtained from its 
components using the relationships

     R 5 ÏRx
2 1 Ry

2 5 ÏsAx 1 Bxd
2 1 sAy 1 Byd

2 (3.15)

 tan u 5
Ry

Rx

5
Ay 1 By

Ax 1 Bx

 (3.16)

At times, we need to consider situations involving motion in three component 
directions. The extension of our methods to three-dimensional vectors is straight-
forward. If A

S
 and B

S
 both have x, y, and z components, they can be expressed in the 

form

 A
S

5 Ax i
⁄

1 Ay j
⁄

1 Az k
⁄
 (3.17)

 B
S

5 Bx i
⁄

1 By j
⁄

1 Bz k
⁄
 (3.18)

The sum of A
S

 and B
S

 is

 R
S

5 sAx 1 Bxd i
⁄

1 sAy 1 Byd j
⁄

1 sAz 1 Bzd k
⁄
 (3.19)

Notice that Equation 3.19 differs from Equation 3.13: in Equation 3.19, the resul-
tant vector also has a z component Rz 5 Az 1 Bz. If a vector R

S
 has x, y, and  z 

components, the magnitude of the vector is R 5 ÏRx
2 1 Ry

2 1 Rz
2. The angle ux  

that R
S

 makes with the x axis is found from the expression cos ux 5 Rx/R, with simi-
lar expressions for the angles with respect to the y and z axes.

The extension of our method to adding more than two vectors is also straightfor-
ward using the component method. For example, A

S
1 B

S
1 C

S
5 sAx 1 Bx 1 Cxd i

⁄
1

sAy 1 By 1 Cyd j
⁄

1 sAz 1 Bz 1 Czd k
⁄
. 

Q uiCk Quiz 3.5  For which of the following vectors is the magnitude of the 
 vector equal to one of the components of the vector? (a) A

S
5 2 i

⁄
1 5 j

⁄
  

(b) B
S

5 23 j
⁄
 (c) C

S
5 15 k

⁄

y

x

Bx

Ay

Ax

Rx

By
Ry

A
S

 

B
S

 R
S

Figure 3.16 This geometric 
construction for the sum of two 
vectors shows the relationship 
between the components of the 
resultant R

S
 and the components 

of the individual vectors.

Pitfall Prevention 3.3
Tangents on Calculators  
Equation 3.16 involves the calcu-
lation of an angle by means of a 
tangent function. Generally, the 
inverse tangent function on calcu-
lators provides an angle between 
2908 and 1908. As a consequence, 
if the vector you are studying lies 
in the second or third quadrant, 
the angle measured from the pos-
itive x axis will be the angle your 
calculator returns plus 1808.
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 Example 3.3    The Sum of Two Vectors

Find the sum of two vectors A
S

 and B
S

 lying in the xy plane and given by

A
S

5 s2.0 i
⁄

1 2.0 j
⁄
d  and B

S
5 s2.0 i

⁄
2 4.0 j

⁄
d 

S O L U T I O N

Conceptualize You can conceptualize the situation by drawing the vectors on graph paper. Do this and then draw an approx-
imation of the expected resultant vector.

Categorize We categorize this example as a simple substitution problem. Comparing this expression for A
S

 with the general 
expression A

S
5 Ax i

⁄
1 Ay j

⁄
1 Az k

⁄
, we see that Ax 5 2.0, Ay 5 2.0, and Az 5 0. Likewise, Bx 5 2.0, By 5 24.0, and Bz 5 0. We can 

use a two-dimensional approach because there are no z components.

Use Equation 3.13 to obtain the resultant vector R
S

: R
S

5 sAx 1 Bxd i
⁄

1 sAy 1 Byd j
⁄

5 s2.0 1 2.0di
⁄
 1 s2.0 2 4.0dj

⁄
 

 5 4.0 i
⁄

2 2.0 j
⁄
 

Use Equation 3.15 to find the magnitude of R
S

:  R 5 ÏRx
2  1 Ry

2
 5 Ïs4.0d2 1 s22.0d2 5 Ï20 5   4.5 

Find the direction of R
S

 from Equation 3.16: tan u 5
Ry

Rx

5
22.0 
4.0 

5 20.50

Your calculator likely gives the answer 2278 for u 5 tan21(20.50). This answer is correct if we interpret it to mean 278 clockwise 
from the x axis. Our standard form has been to quote the angles measured counterclockwise from the 1x axis, and that angle for 
this vector is u 5  3338  .

 Example 3.4    The Resultant Displacement

A particle undergoes three consecutive displacements: D rS1 5 s15 i
⁄

1 30 j
⁄

1 12 k
⁄
d cm, D rS2 5 s23 i

⁄
2 14 j

⁄
2  5.0 k

⁄
d cm, and 

D rS3 5 s213 i
⁄

1 15 j
⁄
d cm. Find unit-vector notation for the resultant displacement and its magnitude.

S O L U T I O N

Conceptualize Although x is sufficient to locate a point in 
one dimension, we need a vector r

S
 to locate a point in two 

or three dimensions. The notation D r
S

 is a generalization 
of the one-dimensional displacement Dx in Equation 2.1. 
Three-dimensional displacements are more difficult to con-
ceptualize than those in two dimensions because they can-
not be drawn on paper like the latter.

For this problem, let us imagine that you start with your 
pencil at the origin of a piece of graph paper on which 
you have drawn x and y axes. Move your pencil 15 cm  
to the right along the x axis, then 30 cm upward along the 

y axis, and then 12 cm perpendicularly toward you away from 
the graph paper. This procedure provides the displacement 
described by D rS1. From this point, move your pencil 23 cm 
to the right parallel to the x axis, then 14 cm parallel to the 
graph paper in the 2y direction, and then 5.0 cm perpendic-
ularly away from you toward the graph paper. You are now at 
the displacement from the origin described by D rS1 1 D rS2. 
From this point, move your pencil 13 cm to the left in the 2x 
direction, and (finally!) 15 cm parallel to the graph paper 
along the y axis. Your final position is at a displacement 
D rS1 1 D rS2 1 D rS3 from the origin.

Categorize Despite the difficulty in conceptualizing in three dimensions, we can categorize this problem as a substitution 
problem because of the careful bookkeeping methods that we have developed for vectors. The mathematical manipulation 
keeps track of this motion along the three perpendicular axes in an organized, compact way, as we see below.

To find the resultant displacement,  D rS 5 D rS1 1 D rS2 1 D rS3  
add the three vectors:
 5 s15 1 23 2 13d i

⁄
 cm 1 s30 2 14 1 15d j

⁄
 cm 1 s12 2 5.0 1 0d k

⁄
 cm

  5  s25 i
⁄

1 31 j
⁄

1 7.0 k
⁄
d cm

Find the magnitude of the resultant  R 5 ÏR x
2 1 R y

2 1 R z
2  

vector:
 5 Ïs25 cmd2 1 s31 cmd2 1 s7.0 cmd2 5   40 cm
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 Example 3.5    Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and 
sets up her tent for the night. On the second day, she walks 40.0 km in a direction 
60.08 north of east, at which point she discovers a forest ranger’s tower.

(A) Determine the components of the hiker’s displacement for each day.

S O L U T I O N

Conceptualize We conceptualize the problem by drawing a sketch as in Figure 3.17. If 
we denote the displacement vectors on the first and second days by A

S
 and B

S
, respec-

tively, and use the car as the origin of coordinates, we obtain the vectors shown in Fig-
ure 3.17. The sketch allows us to estimate the resultant vector as shown.

Categorize Having drawn the resultant R
S

, we can now categorize this problem as one 
we’ve solved before: an addition of two vectors. You should now have a hint of the power 
of categorization in that many new problems are very similar to problems we have already 
solved if we are careful to conceptualize them. Once we have drawn the displacement vec-
tors and categorized the problem, this problem is no longer about a hiker, a walk, a car, 
a tent, or a tower. It is a problem about vector addition, one that we have already solved.

Analyze Displacement A
S

 has a magnitude of 25.0 km and is directed 45.08 below the positive x axis.

Find the components of A
S

 using Equations 3.8 and 3.9: Ax 5 A cos s245.08d 5 s25.0 kmds0.707d 5   17.7 km

 Ay 5 A sin s245.08d 5 s25.0 kmds20.707d 5   217.7 km

The negative value of Ay indicates that the hiker ends up below the x axis on the first day. The signs of Ax and Ay also are 
evident from Figure 3.17.

Find the components of B
S

 using Equations 3.8 and 3.9: Bx 5 B cos 60.08 5 s40.0 kmds0.500d 5   20.0 km

 By 5 B sin 60.08 5 s40.0 kmds0.866d 5   34.6 km

(B) Determine the components of the hiker’s resultant displacement R
S

 for the trip. Find an expression for R
S

 in terms of 
unit vectors.

S O L U T I O N

Use Equation 3.14 to find the components of the  Rx 5 Ax 1 Bx 5 17.7 km 1 20.0 km 5   37.7 km 
resultant displacement R

S
5 A

S
1 B

S
:

  Ry 5 Ay 1 By 5 217.7 km 1 34.6 km 5   17.0 km

Write the total displacement in unit-vector form: R
S

5   s37.7 i
⁄

1 17.0 j
⁄
d km

Finalize Looking at the graphical representation in Figure 3.17, we estimate the position of the tower to be about (38 km, 
17 km), which is consistent with the components of R

S
 in our result for the final position of the hiker. Also, both components of 

R
S

 are positive, putting the final position in the first quadrant of the coordinate system, which is also consistent with Figure 3.17.

W h A T  I f ? After reaching the tower, the hiker wishes to return to her car along a single straight line. What are the 
components of the vector representing this hike? What should the direction of the hike be?

Answer The desired vector R
S

car is the negative of vector R
S

:

R
S

car 5 2R
S

5 s237.7 i
⁄

2 17.0 j
⁄
d km

The direction is found by calculating the angle that the vector makes with the x axis:

tan u 5
R car,y

R car,x

5
217.0 km
237.7 km

5 0.450

which gives an angle of u 5 204.28, or 24.28 south of west.

y (km)

x (km)

60.0�

45.0� 20 30 40

Tower

Car
0

20

10

�10

�20 Tent

E

N

S

W

R
S

A
S

 

B
S

 

Figure 3.17 (Example 3.5) The 
total displacement of the hiker is  
the vector R

S
5 A

S
1 B

S
.
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Summary
 › Definitions

Scalar quantities are those that have only a 
numerical value and no associated direction. 

Vector quantities have both magnitude and direction and obey the laws of 
vector addition. The magnitude of a vector is always a positive number.

 › Concepts and Principles

When two or more vectors are added together, they must 
all have the same units and they all must be the same type 
of quantity. We can add two vectors A

S
 and B

S
 graphically. 

In this method (Fig. 3.6), the resultant vector R
S

5 A
S

1 B
S

 
runs from the tail of A

S
 to the tip of B

S
.

A second method of adding vectors involves com ponents of the vec-
tors. The x component Ax of the  vector A

S
 is equal to the projection 

of A
S

 along the x axis of a coordinate system, where Ax 5 A cos u. 
The y component Ay of A

S
 is the projection of A

S
 along the y axis, 

where Ay 5 A sin u.

If a vector A
S

 has an x component Ax and a y compo-
nent Ay, the vector can be expressed in unit-vector form 
as A

S
5 Ax i

⁄
1 Ay j

⁄
. In this notation, i

⁄
 is a unit vector point-

ing in the positive x direction and j
⁄
 is a unit vector point-

ing in the positive y direction. Because i
⁄
 and j

⁄
 are unit 

vectors, ui
⁄
u 5 uj

⁄
u 5 1.

We can find the resultant of two or more vectors by resolving all 
vectors into their x and y components, adding their resultant x and y 
components, and then using the Pythagorean theorem to find the 
magnitude of the resultant vector. We can find the angle that the 
resultant vector makes with respect to the x axis by using a suitable 
trigonometric function.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working at a radar station for the Coast Guard. While 
everyone else is out to lunch, you hear a distress call from a 
sinking ship. The ship is located at a distance of 51.2 km from 
the station, at a bearing of 368 west of north. On your radar 
screen, you see the locations of four other ships as follows:

Ship #
Distance from 
Station (km) Bearing

Maximum 
Speed (km/h)

1 36.1 428 W of N 30.0
2 37.3 618 W of N 38.0
3 10.2 368 W of N 32.0
4 51.2 798 W of N 45.0

Quick! Which ship do you contact to help the sinking 
ship? Which ship will get there in the shortest time inter-
val? Assume that each ship would accelerate quickly to its 
maximum speed and then maintain that constant speed in a 
straight line for the entire trip to the sinking ship. 

2. ACTiViTy  On a paper map of the United States, locate 
Memphis, Albuquerque, and Chicago. Draw a vector from 
Albuquerque to Memphis and another vector from Mem-
phis to Chicago. Using the scale on the map, determine the 
straight-line distances between Albuquerque and Memphis, 
and between Memphis and Chicago. Use a protractor to 
measure the angles of your two vectors with respect to lati-
tude and longitude lines. From this information, determine 
the straight-line distance in miles between Albuquerque 
and Chicago.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtion 3.1 Coordinate Systems

1. Two points in the xy plane have Cartesian coordinates 
(2.00, 24.00) m and (23.00, 3.00) m. Determine (a) the  
distance between these points and (b) their polar 
coordinates.

2. Two points in a plane have polar coordinates (2.50 m, 30.08) 
and (3.80 m, 120.08). Determine (a) the Cartesian coordi-
nates of these points and (b) the distance between them.

3. The polar coordinates of a certain point are (r 5 4.30 cm,  
u 5 2148). (a) Find its Cartesian coordinates x and y. Find 
the polar coordinates of the points with Cartesian coordi-
nates (b) (2x, y), (c) (22x, 22y), and (d) (3x, 23y).

4. Let the polar coordinates of the point (x, y) be (r, u).  
Determine the polar coordinates for the points  
(a) (2x, y), (b) (22x, 22y), and (c) (3x, 23y).

SeCtion 3.2 Vector and Scalar Quantities

5. Why is the following situation impossible? A skater glides along 
a circular path. She defines a certain point on the circle as 

V
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64 Chapter 3 Vectors

her origin. Later on, she passes through a point at which 
the distance she has traveled along the path from the origin 
is smaller than the magnitude of her displacement vector 
from the origin.

SeCtion 3.3 Basic Vector Arithmetic

6. Vector A
S

 has a magnitude of 29 units and points in the pos-
itive y direction. When vector B

S
 is added to A

S
, the resultant 

vector A
S

1 B
S

 points in the negative y direction with a mag-
nitude of 14 units. Find the magnitude and direction of B

S
.

7. A force F
S

1 of magnitude 6.00 
units acts on an object at the ori-
gin in a direction u 5 30.08 above 
the positive x axis (Fig. P3.7). A 
second force F

S
2 of magnitude 

5.00 units acts on the object 
in the direction of the positive  
y axis. Find graphically the magni-
tude and direction of the resultant 
force F

S
1 1 F

S
2.

8. Three displacements are A
S

 5 200 m due south, B
S

 5 250 m 
due west, and C

S
 5 150 m at 30.08 east of north. (a) Construct 

a separate diagram for each of the following possible ways 
of adding these vectors: R

S
1 5 A

S
1 B

S
1 C

S
; R

S
25 B

S
1 C

S
1 A

S
;  

R
S

3 5 C
S

1 B
S

1 A
S

. (b) Explain what you can conclude from 
comparing the diagrams.

9. The displacement vectors A
S

 
and B

S
 shown in Figure P3.9 

both have magnitudes of 
3.00  m. The direction of vec-
tor A

S
 is u 5 30.08. Find gra-

phically (a) A
S

1 B
S

, (b) A
S

2 B
S

,  
(c) B

S
2 A

S
, and (d) A

S
2 2B

S
. 

(Report all angles counterclock-
wise from the positive x axis.)

10. A roller-coaster car moves 200 ft 
horizontally and then rises 135 
ft at an angle of 30.08 above the 
horizontal. It next travels 135 ft at an angle of 40.08 down-
ward. What is its displacement from its starting point? Use 
graphical techniques.

SeCtion 3.4 Components of a Vector and Unit Vectors

11. A minivan travels straight north in the right lane of a divided 
highway at 28.0 m/s. A camper passes the minivan and then 
changes from the left lane into the right lane. As it does so, the 
camper’s path on the road is a straight displacement at 8.508 
east of north. To avoid cutting off the minivan, the north–south 
distance between the camper’s back bumper and the minivan’s 
front bumper should not decrease. (a)  Can the camper be 
driven to satisfy this requirement? (b) Explain your answer.

12. A person walks 25.08 north of east for 3.10 km. How far 
would she have to walk due north and due east to arrive at 
the same location?

13. Your dog is running around the grass in your back yard. He 
undergoes successive displacements 3.50 m south, 8.20 m 
northeast, and 15.0 m west. What is the resultant displacement?

14. Given the vectors A
S

5 2.00 i
⁄

1 6.00 j
⁄
 and B

S
 5

3.00 i
⁄

2 2.00 j
⁄
, (a) draw the vector sum C

S
5 A

S
1 B

S
  

and the vector dif ference D
S

5 A
S

2 B
S

. (b) Calculate  

C
S

 and D
S

, in terms of unit vectors. (c) Calculate C
S

 and D
S

 
in terms of polar coordinates, with angles measured with 
respect to the positive x axis.

15. The helicopter view in Fig. 
P3.15 shows two people pull-
ing on a stubborn mule. The 
person on the right pulls with 
a force F

S
1 of magnitude 120 N  

and direction of u1 5 60.08. 
The person on the left pulls 
with a force F

S
2 of magni-

tude 80.0 N and direction of  
u2 5 75.08. Find (a) the single 
force that is equivalent to the 
two forces shown and (b)  the 
force that a third person would 
have to exert on the mule 
to make the resultant force 
equal to zero. The forces are 
measured in units of newtons 
(symbolized N).

16. A snow-covered ski slope makes an angle of 35.08 with the 
horizontal. When a ski jumper plummets onto the hill, a 
parcel of splashed snow is thrown up to a maximum dis-
placement of 1.50 m at 16.08 from the vertical in the uphill 
direction as shown in Figure P3.16. Find the components of 
its maximum displacement (a) parallel to the surface and 
(b) perpendicular to the surface.

17. Consider the three displacement vectors A
S

 5
s3 i

⁄
2 3 j

⁄
d  m, B

S
5 si

⁄
2 4 j

⁄
d m, and C

S
5 s22 i

⁄
1 5 j

⁄
d m. 

Use the component method to determine (a) the  
magnitude and direction of D

S
 5 A

S
 1 B

S
1 C

S
 and  

(b) the magnitude and direction of E
S

 5 2A
S

2 B
S

1 C
S

.

18. Vector A
S

 has x and y components of 28.70 cm and 
15.0  cm, respectively; vector B

S
 has x and y com-

ponents of 13.2  cm and 26.60 cm, respectively.  
If A

S
2 B

S
1 3C

S
5 0, what are the components of C

S
?

19. The vector A
S

 has x, y, and z components of 8.00, 
12.0, and 24.00 units, respectively. (a) Write a vector 
expression for A

S
 in unit-vector notation. (b) Obtain a  

unit-vector expression for a vector B
S

 one-fourth the 
length of A

S
 pointing in the same direction as A

S
.  

(c) Obtain a unit-vector expression for a vector C
S

 three 
times the length of A

S
 pointing in the direction opposite the 

direction of A
S

.

20. Given the displacement vectors A
S

5 s3 i
⁄

2 4 j
⁄

1 4 k
⁄
d m  

and B
S

5 s2 i
⁄

1 3 j
⁄

2 7 k
⁄
d m, find the magnitudes of 

the following vectors and express each in terms of 

T

T

V

V

V

V

T

V

F2
S

F1
S

u

Figure P3.7

y

O
x

B
S

 

A
S

 

u

Figure P3.9  
Problems 9 and 25.

x

y

u2 u1

F1
S

F2
S

Figure P3.15

35.0�

16.0�

Figure P3.16
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its rectangular components. (a) C
S

5 A
S

1 B
S

 (b) D
S

 5  
2A

S
2 B

S

21. Vector A
S

 has a negative x component 3.00 units in 
length and a positive y component 2.00 units in length. 
(a) Determine an expression for A

S
 in unit-vector nota-

tion. (b) Determine the magnitude and direction of A
S

.  
(c) What vector B

S
 when added to A

S
 gives a resultant vector 

with no x component and a negative y component 4.00 units 
in length?

22. Three displacement vectors of a cro -  
quet ball are shown in Figure  P3.22, 
where uA

S
u 5 20.0 units, uB

S
u 5 

40.0 units, and uC
S

u 5 30.0 units. Find 
(a)  the resultant in unit-vector nota-
tion and (b) the magnitude and direc-
tion of the resultant displacement.

23. (a) Taking A
S

5 s6.00 i
⁄

2 8.00 j
⁄
d units,  

B
S

 5 s28.00 i
⁄

1 3.00 j
⁄
d units, and  

C
S

5 s26.0 i
⁄

1 19.0 j
⁄
d units, determine a  

and b such that a A
S

1 b B
S

1 C
S

5 0.  
(b) A student has learned that a single equation cannot be 
solved to determine values for more than one unknown in 
it. How would you explain to him that both a and b can be 
determined from the single equation used in part (a)?

24. Vector B
S

 has x, y, and z components of 4.00, 6.00, and 
3.00  units, respectively. Calculate (a) the magnitude of B

S
 

and (b) the angle that B
S

 makes with each coordinate axis.

25. Use the component method to add the vectors A
S

  
and B

S
 shown in Figure P3.9. Both vectors have mag-

nitudes of 3.00 m and vector A
S

 makes an angle of  
u 5 30.08 with the x axis. Express the resultant A

S
1 B

S
 in 

unit-vector notation.

26. A girl delivering newspapers covers her route by travel-
ing 3.00 blocks west, 4.00 blocks north, and then 6.00 
blocks east. (a) What is her resultant displacement?  
(b) What is the total distance she travels?

27. A man pushing a mop across a floor causes it to undergo 
two displacements. The first has a magnitude of 150 cm and 
makes an angle of 1208 with the positive x axis. The resultant 
displacement has a magnitude of 140 cm and is directed at 
an angle of 35.08 to the positive x axis. Find the magnitude 
and direction of the second displacement.

28. Figure P3.28 illustrates typical proportions of male (m)  
and female (f) anatomies. The displacements d

S
1m and d

S
1f 

from the soles of the feet to the navel have magnitudes of 

104 cm and 84.0 cm, respectively. The displacements d
S

2m 
and d

S
2f from the navel to outstretched fingertips have mag-

nitudes of 100 cm and 86.0 cm, respectively. Find the vector 
sum of these displacements d

S
3 5 d

S
1 1 d

S
2 for both people.

29. Review. As it passes over Grand Bahama Island, the 
eye of a hurricane is moving in a direction 60.08 north 
of west with a speed of 41.0 km/h. (a) What is the 
unit-vector expression for the velocity of the hurricane?  
It maintains this velocity for 3.00 h, at which time the 
course of the hurricane suddenly shifts due north, and 
its speed slows to a constant 25.0 km/h. This new veloc-
ity is maintained for 1.50 h. (b) What is the unit-vector 
expression for the new velocity of the hurricane?  
(c) What is the unit-vector expression for the dis-
placement of the hurricane during the first 3.00 h?  
(d) What is the unit-vector expression for the dis-
placement of the hurricane during the latter 1.50 h?  
(e) How far from Grand Bahama is the eye 4.50 h after it 
passes over the island?

30. In an assembly operation illustrated in Figure P3.30, a 
robot moves an object first straight upward and then also 
to the east, around an arc forming one-quarter of a circle 
of radius 4.80 cm that lies in 
an east–west vertical plane. 
The robot then moves the 
object upward and to the 
north, through one-quarter 
of a circle of radius 3.70 cm  
that lies in a north–south 
vertical plane. Find (a) the 
magnitude of the total dis-
placement of the object 
and (b)  the angle the total 
displacement makes with 
the vertical.

31. Review. You are standing on the ground at the origin of a 
coordinate system. An airplane flies over you with constant 
velocity parallel to the x axis and at a fixed height of 7.60 3 
103 m. At time t 5 0, the airplane is directly above you so 
that the vector leading from you to it is P

S
0 5 7.60 3 103

 j
⁄
 m. 

At t 5 30.0 s, the position vector leading from you to the air-
plane is P

S
30 5 s8.04 3 103

 i
⁄

1 7.60 3 103
 j
⁄
d m as suggested in 

Figure P3.31. Determine the magnitude and orientation of 
the airplane’s position vector at t 5 45.0 s.

32. Why is the following situation impossible? A shopper pushing 
a cart through a market follows directions to the canned 
goods and moves through a displacement 8.00 i

⁄
 m down one 

aisle. He then makes a 90.08 turn and moves 3.00 m along 
the y axis. He then makes another 90.08 turn and moves 
4.00  m along the x axis. Every shopper who follows these 
directions correctly ends up 5.00 m from the starting point.

T

T

45.0�

45.0�

O
x

y

A
S

 
B
S

 

C
S

 

Figure P3.22

d1m
S

d1f
S

d2f
S

23.0�

28.0�

d2m
S
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P0
S

P30
S

Figure P3.31
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Figure P3.30
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66 Chapter 3 Vectors

33. In Figure P3.33, the line seg-
ment represents a path from 
the point with position vector 
s5 i

⁄
1 3 j

⁄
d m to the point with 

location (16 i
⁄

1 12 j
⁄
) m. Point 

Ⓐ is along this path, a fraction f  
of the way to the destination.  
(a) Find the position vector of 
point Ⓐ in terms of f. (b)  Eval-
uate the expression from part  
(a) for f 5 0. (c) Explain whether 
the result in part (b) is reason-
able. (d) Evaluate the expression 
for f 5 1. (e) Explain whether the 
result in part (d) is reasonable.

additional ProblemS

34. You are spending the summer as an assistant learning how 
to navigate on a large ship carrying freight across Lake 
Erie. One day, you and your ship are to travel across the 
lake a distance of 200 km traveling due north from your 
origin port to your destination port. Just as you leave your 
origin port, the navigation electronics go down. The cap-
tain continues sailing, claiming he can depend on his years 
of experience on the water as a guide. The engineers work 
on the navigation system while the ship continues to sail, 
and winds and waves push it off course. Eventually, enough 
of the navigation system comes back up to tell you your 
location. The system tells you that your current position is 
50.0 km north of the origin port and 25.0 km east of the 
port. The captain is a little embarrassed that his ship is so 
far off course and barks an order to you to tell him immedi-
ately what heading he should set from your current position 
to the destination port. Give him an appropriate heading 
angle.

35. A person going for a walk follows the path shown in 
Figure  P3.35. The total trip consists of four straight-line 
paths. At the end of the walk, what is the person’s resultant 
displacement measured from the starting point?

36. A ferry transports tourists between three islands. It sails 
from the first island to the second island, 4.76 km away, 
in a direction 37.08 north of east. It then sails from the 
second island to the third island in a direction 69.08 west 
of north. Finally it returns to the first island, sailing in 
a direction 28.08 east of south. Calculate the distance 
between (a) the second and third islands and (b) the first 
and third islands.

37. Two vectors A
S

 and B
S

 have precisely equal mag- 
nitudes. For the magnitude of A

S
1 B

S
 to be 100 times larger 

than the magnitude of A
S

2 B
S

, what must be the angle 
between them?

38. Two vectors A
S

 and B
S

 have precisely equal magni-
tudes. For the magnitude of A

S
1 B

S
 to be larger than 

the magnitude of A
S

2 B
S

 by the factor n, what must  
be the angle between them?

39. Review. The biggest stuffed 
animal in the world is a snake 
420 m long, constructed by 
Norwegian children. Suppose 
the snake is laid out in a park 
as shown in Figure P3.39, 
forming two straight sides of 
a 1058 angle, with one side  
240 m long. Olaf and Inge 
run a race they invent. Inge 
runs directly from the tail of 
the snake to its head, and Olaf starts from the same place 
at the same moment but runs along the snake. (a) If both 
children run steadily at 12.0 km/h, Inge reaches the head of 
the snake how much earlier than Olaf? (b) If Inge runs the 
race again at a constant speed of 12.0 km/h, at what con-
stant speed must Olaf run to reach the end of the snake at 
the same time as Inge?

40. Ecotourists use their global positioning system indicator 
to determine their location inside a botanical garden as 
latitude 0.002 43 degree south of the equator, longitude 
75.642 38 degrees west. They wish to visit a tree at latitude 
0.001 62 degree north, longitude 75.644 26 degrees west. (a) 
Determine the straight-line distance and the direction in 
which they can walk to reach the tree as follows. First model 
the Earth as a sphere of radius 6.37 3 106 m to determine 
the westward and northward displacement components 
required, in meters. Then model the Earth as a flat surface 
to complete the calculation. (b) Explain why it is possible 
to use these two geometrical models together to solve the 
problem.

41. A vector is given by R
S

5 2 i
⁄

1  j
⁄

1 3 k
⁄
. Find (a) the mag-

nitudes of the x, y, and z components; (b) the magnitude  
of R

S
; and (c) the angles between R

S
 and the x, y, and  

z axes.

42. You are working as an assistant to an air-traffic controller 
at the local airport, from which small airplanes take off 
and land. Your job is to make sure that airplanes are not 
closer to each other than a minimum safe separation dis-
tance of 2.00 km. You observe two small aircraft on your 
radar screen, out over the ocean surface. The first is at alti-
tude 800 m above the surface, horizontal distance 19.2 km, 
and 25.08 south of west. The second aircraft is at altitude 
1  100  m, horizontal distance 17.6 km, and 20.08 south of 
west. Your supervisor is concerned that the two aircraft are 
too close together and asks for a separation distance for the 
two airplanes. (Place the x axis west, the y axis south, and 
the z axis vertical.)

43. Review. The instantaneous position of an object is spec-
ified by its position vector leading from a fixed ori-
gin to the location of the object, modeled as a parti-
cle. Suppose for a certain object the position vector is 
a function of time given by rS 5 4 i

⁄
1 3 j

⁄
2 2t  k

⁄
, where 

CR

T

CR

V

(5, 3)

(16, 12)

O
x

y

�

Figure P3.33 Point 
Ⓐ is a fraction f of the 
distance from the ini-
tial point (5, 3) to the 
final point (16, 12).
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rS is in meters and t is in seconds. (a) Evaluate d rSydt.  
(b) What physical quantity does d rSydt represent about 
the object?

44. Vectors A
S

 and B
S

 have equal magnitudes of 5.00.  
The sum of A

S
 and B

S
 is the vector 6.00 j

⁄
. Determine the 

angle between A
S

 and B
S

.

45. A rectangular parallelepiped has dimensions a, b, and c as 
shown in Figure P3.45. (a) Obtain a vector expression for 
the face diagonal vector R

S
1. (b) What is the magnitude 

of this vector? (c) Notice that R
S

1, c k
⁄
, and R

S
2 make a right 

triangle. Obtain a vector expression for the body diagonal 
vector R

S
2.

Challenge Problem

46. A pirate has buried his treasure on an island with five trees 
located at the points (30.0 m, 220.0 m), (60.0 m, 80.0 m), 
(210.0 m, 210.0 m), (40.0 m, 230.0 m), and (270.0  m, 

60.0 m), all measured relative to some origin, as shown in 
Figure P3.46. His ship’s log instructs you to start at tree A 
and move toward tree B, but to cover only one-half the dis-
tance between A and B. Then move toward tree C, covering 
one-third the distance between your current location and 
C. Next move toward tree D, covering one-fourth the dis-
tance between where you are and D. Finally move toward 
tree E, covering one-fifth the distance between you and E, 
stop, and dig. (a) Assume you have correctly determined 
the order in which the pirate labeled the trees as A, B, C, D, 
and E as shown in the figure. What are the coordinates of 
the point where his treasure is buried? (b) What If? What if 
you do not really know the way the pirate labeled the trees? 
What would happen to the answer if you rearranged the 
order of the trees, for instance, to B (30 m, 220 m), A (60 m, 
80 m), E (210 m, 210 m), C (40 m, 230 m), and D (270 m,  
60 m)? State reasoning to show that the answer does not 
depend on the order in which the trees are labeled.
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O
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S
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4.1 The Position, Velocity, 
and Acceleration Vectors

4.2 Two-Dimensional 
Motion with Constant 
Acceleration

4.3 Projectile Motion

4.4 Analysis Model: Particle 
in Uniform Circular Motion

4.5 Tangential and Radial 
Acceleration

4.6 Relative Velocity and 
Relative Acceleration

Compare the shapes of the 
paths of: a teenager jumping 
off a cliff; sparks generated 
by a welder at work; water 
projected into a park fountain; 
the stream from a water 
fountain. (Top Left: André Berg/
EyeEm/Getty Images; Top Right: 
wi6995/Shutterstock.com; 
Bottom Right: Kristina Postnikova/
Shutterstock.com; Bottom Left: 
Flashon Studio/Shutterstock.com)

Motion in Two Dimensions

4

Storyline In the preceding chapter, you are sailing for Catalina 
Island in a sailboat. As you approach the island, you see teenagers doing flips off 
a cliff. You take out your smartphone, open the camera, and take photographs of 
a teenager as he travels along his trajectory. Using a special app on your phone, 
you combine several pictures into one so that you can see several images of the 
falling teenager. He seems to be following a path of a particular shape as he falls. 
What do you think that shape is? As you enter the harbor on Catalina Island, you 
see a welder performing repairs on a metal boat. A shower of sparks occurs. You 
look at the paths of the individual sparks and notice their shape. On shore, you 
see a fountain in a park in which streams of water are projected at an angle into 
the air and follow a certain shape as they come back down. You get a drink from 
a water fountain and notice the shape of the water projected from the fountain. 
What is that shape that you are seeing over and over again?

ConneCtions In Chapter 2, we studied motion in one dimension. In Chap-
ter 3, we learned about vector quantities in general, addition of vectors, and vector 
components. We focused there on position vectors. In this chapter, we will see how 
to use vectors from Chapter 3 to modify our mathematical expressions for position, 
velocity, and acceleration from Chapter 2 to account for motion in two dimensions. We 
will study two important types of two-dimensional motion: projectile motion, such as 
that of a thrown baseball or the diving teenager in the previous paragraph, and circular 
motion, such as the idealized motion of a planet around a star. We also discuss the con-
cept of relative motion, which shows why observers in different frames of reference 
may measure different positions and velocities for a given particle. This chapter will 
complete our discussion of ways to describe the motion of a particle, and will set us up 
for Chapter 5, in which we study the cause of changes in the motion of a particle.
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    4.1 The Position, Velocity, and Acceleration Vectors 69

   4.1    The Position, Velocity, and Acceleration Vectors
In one dimension, a single numerical value describes a particle’s position, but in 
two dimensions, we indicate its position by its position vector rS, drawn from the 
origin of some coordinate system to the location of the particle in the xy plane as 
in Figure 4.1. At time ti, the particle is at point Ⓐ, described by position vector rSi. 
At some later time tf, it is at point Ⓑ, described by position vector rSf . The path fol-
lowed by the particle from Ⓐ to Ⓑ is not necessarily a straight line. As the particle 
moves from Ⓐ to Ⓑ in the time interval Dt 5 tf 2 ti, its position vector changes from 
rSi to rSf . As we learned in Chapter 2, displacement is a vector, and the displacement 
of the particle is the difference between its final position and its initial position. We 
now define the displacement vector D rS for a particle such as the one in Figure 4.1 
as the difference between its final position vector and its initial position vector:

 D rS ; rSf 2 rSi (4.1)

The direction of D rS is indicated in Figure 4.1. As we see from the figure, the 
magnitude of D rS is less than the distance traveled along the curved path followed 
by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the 
displacement divided by the time interval during which that displacement occurs, 
which gives the rate of change of position. Two-dimensional (or three-dimensional) 
kinematics is similar to one-dimensional kinematics, but we must now use full 
vector notation rather than positive and negative signs to indicate the direction 
of motion.

We define the average velocity vSavg of a particle during the time interval Dt as 
the displacement of the particle divided by the time interval:

 vSavg ;
D rS

Dt
 (4.2)

Multiplying or dividing a vector quantity by a positive scalar quantity such as Dt 
changes only the magnitude of the vector, not its direction. Because displacement 
is a vector quantity and the time interval is a positive scalar quantity, we conclude 
that the average velocity is a vector quantity directed along D rS. 

The average velocity between points is independent of the path taken. That is 
because average velocity is proportional to displacement, which depends only 
on the initial and final position vectors and not on the path taken. As with one- 
dimensional motion, we conclude that if a particle starts its motion at some point and 
returns to this point via any path, its average velocity is zero for this trip because its 
displacement is zero. Consider again our basketball players on the court in Figure 2.2  
(page 22). We previously considered only their one-dimensional motion back and 
forth between the baskets. In reality, however, they move over a two-dimensional 
surface, running back and forth between the baskets as well as left and right across 
the width of the court. Starting from one basket, a given player may follow a very 
complicated two-dimensional path. Upon returning to the original basket, how-
ever, a player’s average velocity is zero because the player’s displacement for the 
whole trip is zero.

Consider again the motion of a particle between two points in the xy plane 
as shown in Figure 4.2 (page 70). The dashed curve shows the path of the par-
ticle from point Ⓐ to point Ⓑ. As the time interval over which we observe 
the motion becomes smaller and smaller—that is, as Ⓑ is moved to Ⓑ9 and 
then to Ⓑ0 and so on—the direction of the displacement approaches that 
of the green line tangent to the path at Ⓐ. The instantaneous velocity  
vS is defined as the limit of the average velocity D rSyDt as Dt approaches zero:

 vS ; lim
Dt S 0

 
D rS

Dt
5

d rS

dt
 (4.3)

  Displacement vector 
(Compare to Equation 2.1)

  Average velocity (Compare to 
Equation 2.2)

  Instantaneous velocity 
(Compare to Equation 2.5)

Path of
particle

x

y

 ti

i

�
 t f

f

O

rS 

rS 

rS 

�r.S 
The displacement of the 
particle is the vector

�
�

Figure 4.1 A particle moving in 
the xy plane is located with the 
position vector rS drawn from 
the origin to the particle. The 
displacement of the particle as it 
moves from Ⓐ to Ⓑ in the time 
interval Dt 5 tf 2 ti is equal to the 
vector D rS 5 rSf 2 rSi.
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70 Chapter 4 Motion in Two Dimensions

That is, the instantaneous velocity at point Ⓐ equals the derivative of the position 
vector with respect to time, evaluated at point Ⓐ. The direction of the instanta-
neous velocity vector at any point in a particle’s path is along a line tangent to the 
path at that point and in the direction of motion. 

The magnitude of the instantaneous velocity vector v 5 uvSu of a particle is called 
the speed of the particle, which is a scalar quantity.

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vSi at time ti to vSf  at time tf . Knowing the velocity 
at these points allows us to determine the average acceleration of the particle. The 
average acceleration aSavg of a particle is defined as the change in its instantaneous 
velocity vector DvS divided by the time interval Dt during which that change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti

 (4.4)

Because aSavg is the ratio of a vector quantity DvS and a positive scalar quantity Dt, 
we conclude that average acceleration is a vector quantity directed along DvS. As 
indicated in Figure 4.3, the vector DvS is the difference between vectors vSf  and vSi: 
DvS 5 vSf 2 vSi. 

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accel-
eration aS is defined as the limiting value of the ratio DvSyDt as Dt approaches zero:

 aS ; lim
Dt S 0

 
DvS

Dt
5

d vS

dt
 (4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity 
vector with respect to time. 

Various changes can occur when a particle accelerates in two dimensions. First, 
the magnitude of the velocity vector (the speed) may change with time as in one- 
dimensional motion. Second, the direction of the velocity vector may change with 
time even if its magnitude (speed) remains constant. Finally, both the magnitude 
and the direction of the velocity vector may change simultaneously.

Average acceleration  
(Compare to Equation 2.9)

Instantaneous acceleration  
(Compare to Equation 2.10)

x

y

O

vf

vi
S

vi
S

vf
S �vSri

S

rf
S

�

�

Figure 4.3  A particle moves from position Ⓐ to 
position Ⓑ. Its velocity vector changes from vSi to vSf . 
The vector diagram at the right of the figure shows 
how to determine the vector DvS from the initial and 
final velocities.

PItfall PreventIon 4.1
Vector Addition As mentioned in 
Chapter 3, vector addition can be 
applied to any type of vector quan-
tity. Figure 4.3, for example, shows 
the addition of velocity vectors 
using the graphical approach.

O

y

x

�

�

�r1
S 

r2
S

r3
S

As the end point approaches     , �t 
approaches zero and the direction 
of      approaches that of the green 
line tangent to the curve at     .

�rS

As the end point of the path is 
moved from      to      to      , the 
respective displacements and 
corresponding time intervals 
become smaller and smaller.

� �

�

Direction
of  at vS �

�

�

��
��

�

� � �

Figure 4.2  As a particle moves 
between two points, its average 
velocity is in the direction of the 
displacement vector D rS. By defi-
nition, the instantaneous velocity 
at Ⓐ is directed along the line 
tangent to the curve at Ⓐ.
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    4.2 Two-Dimensional Motion with Constant Acceleration  71

Q uICk QuIz 4.1  Consider the following controls in an automobile in motion: 
gas pedal, brake, steering wheel. What are the controls in this list that cause an 
acceleration of the car? (a) all three controls (b) the gas pedal and the brake 
(c) only the brake (d) only the gas pedal (e) only the steering wheel

   4.2    Two-Dimensional Motion  
with Constant Acceleration
In Section 2.7, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model.  
Let us now consider two-dimensional motion during which the acceleration of a 
particle remains constant in both magnitude and direction. As we shall see, this 
approach is useful for analyzing some common types of motion.

In section 4.1, we considered position vectors for a particle and represented them 
as arrows. Now, let us recall our discussion of vector components in Section 3.4. 
Consider a particle located in the xy plane at a position having Cartesian coordi-
nates (x, y) as in Figure 4.4. The point can be specified by the position vector rS, 
which in unit-vector form is given by

 rS 5 x i
⁄

1 y j
⁄
 (4.6)

where x, y, and rS change with time as the particle moves while the unit vectors i
⁄
 

and j
⁄
 remain constant.

We need to emphasize an important point regarding two-dimensional motion. 
Imagine an air hockey puck moving in a straight line along a perfectly level, fric-
tion-free surface of an air hockey table. Figure 4.5a shows a motion diagram from 
an overhead point of view of this puck. Recall that in Section 2.4 we related the 
acceleration of an object to a force on the object. Because there are no forces on 
the puck in the horizontal plane, it moves with constant velocity in the x direc-
tion. Now suppose you blow a quick puff of air on the puck as it passes your 
position, with the force from your puff of air exactly in the y direction. Because 
the force from this puff of air has no component in the x direction, it causes no 
acceleration in the x direction. It only causes a momentary acceleration in the 
y direction, causing the puck to have a constant y component of velocity once 
the force from the puff of air is removed. After your puff of air on the puck, its 
velocity component in the x direction is unchanged as shown in Figure 4.5b. The 
y component of the puck in Equation 4.6 remained constant before the puff of 
air, but is increasing afterward. The generalization of this simple experiment is 
that motion in two dimensions can be modeled as two independent motions in 
each of the two perpendicular directions associated with the x and y axes. That 
is, any influence in the y direction does not affect the motion in the x direction 
and vice versa.

y

x
O

(x, y)

y

x

ĵ

î

rS 

Figure 4.4  The point whose 
Cartesian coordinates are (x, y) 
can be represented by the position 
vector rS 5 x i

⁄
1 y j

⁄
.

The horizontal red vectors, 
representing the x 
component of the velocity, 
are the same length in 
both parts of the figure, 
which demonstrates that 
motion in two dimensions 
can be modeled as two 
independent motions in 
perpendicular directions.

x

y

x

y

a

b

Figure 4.5  (a) A puck moves 
across a horizontal air hockey 
table at constant velocity in the x 
direction. (b) After a puff of air 
in the y direction is applied to the 
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force 
in the perpendicular direction.
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72 Chapter 4 Motion in Two Dimensions

If the position vector of a particle is known, the velocity of the particle can be 
obtained from Equations 4.3 and 4.6, which give

 vS 5
d rS

dt
5

dx
dt

 i
⁄

1
dy

dt
 j
⁄

5 vx i
⁄

1 vy j
⁄
 (4.7)

Because the acceleration aS of the particle is assumed constant in this discussion, 
its components ax and ay also are constants. Therefore, we can model the particle as 
a particle under constant acceleration independently in each of the two directions 
and apply the equations of kinematics separately to the x and y components of the 
velocity vector. Substituting, from Equation 2.13, vxf 5 vxi 1 axt and vyf 5 vyi 1 ayt 
into Equation 4.7 to determine the final velocity at any time t, we obtain

vSf 5 svxi 1 axtdi
⁄

1 svyi 1 aytdj
⁄

5 svxi i
⁄

1 vyi j
⁄
d 1 saxi

⁄
1 ay j

⁄
dt

 vSf 5 vSi 1 aSt (for constant aS) (4.8)

This result states that the velocity of a particle at some time t equals the vector sum 
of its initial velocity vSi at time t 5 0 and the additional velocity aSt acquired at time t 
as a result of constant acceleration. 

Similarly, from Equation 2.16 we know that the x and y coordinates of a particle 
under constant acceleration are

xf 5 xi 1 vxit 1 1
2axt 

2  yf 5 yi 1 vyit 1 1
2ayt 

2

Substituting these expressions into Equation 4.6 (and labeling the final position 
vector rSf ) gives

 rSf 5 sxi 1 vxit 1 1
2axt 

2di
⁄

1 syi 1 vyit 1 1
2ayt 

2dj
⁄

 5 sxi i
⁄

1 yi j
⁄
d 1 svxi i

⁄
1 vyi j

⁄
dt 1 1

2sax i
⁄

1 ay j
⁄
dt 

2

 rSf 5 rSi 1 vSit 1 1
2 aSt2 (for constant aS) (4.9)

Equation 4.9 tells us that the position vector rSf  of a particle is the vector sum 
of the original position rSi, a displacement vSi t arising from the initial velocity of 
the particle, and a displacement 1

2 aSt 2 resulting from the constant acceleration of 
the particle.

We can consider Equations 4.8 and 4.9 to be the mathematical representation 
of a two-dimensional version of the particle under constant acceleration model. 
Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.6. The 
components of the position and velocity vectors are also illustrated in the figure. 

Velocity vector as  
a function of time for a  

particle under constant 
 acceleration in two 

dimensions (Compare to 
Equation 2.13)

Position vector as 
a function of time for a  

particle under constant 
 acceleration in two 

dimensions (Compare to 
Equation 2.16)

Figure 4.6 Vector representa-
tions and components of (a) the 
velocity and (b) the position of a 
particle under constant accelera-
tion in two dimensions.
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    4.2 Two-Dimensional Motion with Constant Acceleration  73

 Example 4.1    Motion in a Plane

A particle moves in the xy plane, starting from the origin at t 5 0 with an initial velocity having an x component of  
20 m/s and a y component of 215 m/s. The particle experiences an acceleration in the x direction, given by ax 5  
4.0 m/s2.

(A) Determine the total velocity vector at any later time.

S o l U T I o n

Conceptualize The components of the initial velocity tell us 
that the particle starts by moving toward the right and down-
ward. The x component of velocity starts at 20 m/s and increases 
by 4.0  m/s every second. The y component of velocity never 
changes from its initial value of 215 m/s. We sketch a motion 
diagram of the situation in Figure 4.7. Because the particle is 
accelerating in the 1x direction, its velocity component in this 
direction increases and the path curves as shown in the diagram. 
Notice that the spacing between successive images increases as 
time goes on because the speed is increasing. The placement of 
the acceleration (purple) and velocity (red) vectors in Figure 4.7 
helps us further conceptualize the situation.

Categorize Because the initial velocity has components in both 
the x and y directions, we categorize this problem as one involv-
ing a particle moving in two dimensions. Because the particle only has an x component of acceleration, we model it as a particle 
under constant acceleration in the x direction and a particle under constant velocity in the y direction.

Analyze To begin the mathematical analysis, we set vxi 5 20 m/s, vyi 5 215 m/s, ax 5 4.0 m/s2, and ay 5 0.

Use Equation 4.8 for the velocity vector: vSf 5 vSi 1 aSt 5 svxi 1 axtdi
⁄

1 svyi 1 aytdj
⁄

Substitute numerical values in metric units: vSf 5 f20 1 s4.0dtgi
⁄

1 f215 1 s0dtg j
⁄

 (1)   vSf 5  fs20 1 4.0tdi
⁄

2 15j
⁄
g

Finalize Notice from this expression that the x component of velocity increases in time while the y component remains con-
stant; this result is consistent with our prediction.

(B) Calculate the velocity and speed of the particle at t 5 5.0 s and the angle the velocity vector makes with the x axis.

S o l U T I o n

Analyze
Evaluate the result from Equation (1) at t 5 5.0 s: vSf 5 h f20 1 4.0s5.0dg i

⁄
2 15j

⁄
j 5  s40i

⁄
2 15j

⁄
d mys

Determine the angle u that vSf  makes with the x axis u 5 tan211
vyf

vxf
2 5 tan211215 mys

40 mys 2 5  2218  
at t 5 5.0 s:

Evaluate the speed of the particle as the magnitude  vf 5 uvSfu 5Ïvx f
2 1 vyf

2 5Ïs40d2 1 s215d2 mys 5  43 mys  
of vSf :

Finalize The negative sign for the angle u indicates that the velocity vector is directed at an angle of 218 below the posi-
tive x axis. Notice that if we calculate vi from the x and y components of vSi, we find that vf . vi. Is that consistent with our 
prediction?

x

y

Figure 4.7  (Example 4.1) Motion diagram for the particle. 
Velocity vectors are shown in red and acceleration vectors 
in purple.

continued
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74 Chapter 4 Motion in Two Dimensions

   4.3    Projectile Motion
Anyone who has observed a baseball in motion has observed projectile motion. The 
ball moves in a curved path and returns to the ground. Projectile motion of an object is 
simple to analyze if we make two assumptions: (1) the free-fall acceleration is constant 
over the range of motion and is directed downward (i.e., ax 5 0, ay 5 2g),1 and (2) the 
effect of air resistance is negligible.2 With these assumptions, we find that the path 
of a projectile, which we call its trajectory, is always a parabola as shown in Figure 4.8.  
We use these assumptions throughout this chapter. The parabola is the shape for 
all the trajectories described in the opening storyline for this chapter: the diving 
teenager, the sparks caused by the welder, the water in the park fountain, and the 
water in the drinking fountain.

4.1 c o n t i n u e d

(C) Determine the x and y coordinates of the particle at any time t and its position vector at this time.

S o l U T I o n

Analyze
Use Equation 4.9 for the position vector: rSf 5 rSi 1 vSit 1 1

2 aSt 
2 5 _xi 1 vxit 1 1

2axt 
2+i⁄ 1 _yi 1 vyit 1 1

2ayt 
2+j⁄

Substitute numerical values in metric units: rSf 5 f0 1 (20)t 1 1
2(4.0)t 

2gi⁄ 1 f0 1 (215)t 1 1
2(0)t 

2g j⁄

 rSf 5 s20t 1 2.0t 
2)i

⁄
2 15t j

⁄

Finalize Let us now consider a limiting case for very large values of t.

W H A T  I F ?  What if we wait a very long time and then observe the motion of the particle? How would we describe the 
motion of the particle for large values of the time?

Answer Looking at Figure 4.7, we see the path of the particle curving toward the x axis. There is no reason to assume this 
tendency will change, which suggests that the path will become more and more parallel to the x axis as time grows large. Math-
ematically, Equation (1) shows that the y component of the velocity remains constant while the x component grows linearly 
with t. Therefore, when t is very large, the x component of the velocity will be much larger than the y component, suggesting 
that the velocity vector becomes more and more parallel to the x axis. The magnitudes of both xf and yf continue to grow with 
time, although xf grows much faster.

PItfall PreventIon 4.2
Acceleration at the Highest Point  
As discussed in Pitfall Prevention 
2.8, many people claim that the 
acceleration of a projectile at the 
topmost point of its trajectory is 
zero. This mistake arises from 
confusion between zero vertical 
velocity and zero acceleration. 
If the projectile were to expe-
rience zero acceleration at the 
highest point, its velocity at that 
point would not change; rather, 
the projectile would move hori-
zontally at constant speed from 
then on! That does not happen, 
however, because the acceleration 
is not zero anywhere along the 
trajectory.

1 This assumption is reasonable as long as the range of motion is small compared with the radius of the Earth  
(6.4 3 106 m). In effect, this assumption is equivalent to assuming the Earth is flat over the range of motion considered.
2 This assumption is often not justified, especially at high velocities. In addition, any spin imparted to a projectile, 
such as that applied when a pitcher throws a curve ball, can give rise to some very interesting effects associated with 
aerodynamic forces, which will be discussed in Chapter 14.

Figure 4.8 The parabolic path of 
a projectile that leaves the origin 
with a velocity vSi. The velocity vec-
tor vS changes with time in both 
magnitude and direction. This 
change is the result of accelera-
tion aS 5 gS in the negative  
y direction.
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    4.3 Projectile Motion 75

The expression for the position vector of the projectile as a function of time 
follows directly from Equation 4.9, with its acceleration being that due to gravity, 
aS 5 gS:

 rSf 5 rSi 1 vSit 1 1
2 gSt2 (4.10)

where the initial x and y components of the velocity of the projectile are

 vxi 5 vi cos ui  vyi 5 vi sin ui (4.11)

A pictorial representation of the path of a particle described by the position function 
in Equation 4.10 is shown in Figure 4.9 for a projectile launched from the origin, so 
that rSi 5 0. The final position of a particle can be considered to be the superposi-
tion of its initial position rSi ; the term vSit, which is its displacement if no acceleration 
were present; and the term 1

2 gSt2 that arises from its acceleration due to gravity. In 
other words, if there were no gravitational acceleration, the particle would continue 
to move along a straight path in the direction of vSi. Therefore, the vertical distance 
1
2 gSt2 through which the particle “falls” off the straight-line path is the same distance 
that an object dropped from rest would fall during the same time interval.

In Section 4.2, we stated that two-dimensional motion with constant acceleration 
can be analyzed as a combination of two independent motions in the x and y direc-
tions, with accelerations ax and ay. Projectile motion can also be handled in this way, 
with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 2g in the 
y direction. Therefore, when solving projectile motion problems, use two analysis 
models: (1) the particle under constant velocity in the horizontal direction (Eq. 2.7),

 xf 5 xi 1 vxit (4.12)

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay 5 2g),

 vyf 5 vyi 2 gt (4.13)

 vy,avg 5
vyi 1 vyf

2
 (4.14)

 yf 5 yi 1 1
2svyi 1 vyfdt  (4.15)

  yf 5 yi 1 vyit 2 1
2gt2 (4.16)

 vyf
2 5 vyi

2 2 2g syf 2 yid (4.17)

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uICk QuIz 4.2  (i) As a projectile thrown at an upward angle moves in its par-
abolic path (such as in Fig. 4.9), at what point along its path are the velocity and 
acceleration vectors for the projectile perpendicular to each other? (a) nowhere 
(b) the highest point (c) the launch point (ii) From the same choices, at what 
point are the velocity and acceleration vectors for the projectile parallel to 
each other?

Horizontal range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 0 
with a positive vyi component as shown in Figure 4.10 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.

f
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(x,y)
it
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y

t21
2

gS 

rS 

vS

Figure 4.9  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.10 A projectile 
launched over a flat surface from 
the origin at ti 5 0 with an initial 
velocity vSi . The maximum height 
of the projectile is h, and the hor-
izontal range is R. At Ⓐ, the peak 
of the trajectory, the particle has 
coordinates (R/2, h).
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76 Chapter 4 Motion in Two Dimensions

Two points in this motion are especially interesting to analyze: the peak point Ⓐ, 
which has Cartesian coordinates (R/2, h), and the point Ⓑ, which has coordinates  
(R, 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.

We can determine h by noting that at the peak vyⒶ
 5 0. Therefore, from the par-

ticle under constant acceleration model, we can use Equation 4.13 to determine the 
time t

Ⓐ
 at which the projectile reaches the peak:

 vyf 5 vyi 2 gt    S   0 5 vi sin ui 2 gt
Ⓐ

 t
Ⓐ

5
vi sin ui

g
 (4.18)

Substituting this expression for t
Ⓐ

 into Equation 4.16 and replacing y f 5 y
Ⓐ

 with 
h, we obtain an expression for h in terms of the magnitude and direction of the 
initial velocity vector:

yf 5 yi 1 vyit 2 12gt2   S    h 5 svi sin ui 
d 

vi sin ui

g
2 1

2g 1vi sin ui

g 2
2

  h 5
vi

2 sin2 ui

2g
 (4.19)

Because of the symmetry of the trajectory, the projectile covers the upward part 
of the trajectory to the top in exactly the same time interval as it requires to come 
back to the ground from the topmost point. Therefore, the range R is the horizon-
tal position of the projectile at a time that is twice the time at which it reaches its 
peak, that is, at time t

Ⓑ
 5 2t

Ⓐ
. Using the particle under constant velocity model, 

noting that vxi 5 vxⒷ
 5 vi cos ui, and setting x

Ⓑ
 5 R at t 5 2t

Ⓐ
, we find from Equa-

tion 4.12 that

xf 5 xi 1 vxit   S    R 5 vxitⒷ
5 svi cos uid2t

Ⓐ

 5 svi cos ui 
d 

2vi sin ui

g
5

2vi
2 sin ui cos ui

g

Using the identity sin 2u 5 2 sin u cos u (see Appendix B.4), we can write R in the 
more compact form

 R 5
vi

2 sin 2ui

g
 (4.20)

The maximum value of R from Equation 4.20 is Rmax 5 vi
2yg . This result makes 

sense because the maximum value of sin 2ui is 1, which occurs when 2ui 5 908. 
Therefore, R is a maximum when ui 5 458.

Figure 4.11 illustrates various trajectories for a projectile having a given initial 
speed but launched at different angles. As you can see, the range is a maximum for 
ui 5 458. In addition, for any ui other than 458, a point having Cartesian coordinates 
(R, 0) can be reached by using either one of two complementary values of ui for 

50

100

150
y (m)

x (m)

75�

60�

45�

30�

15�

vi � 50 m/s

50 100 150 200 250

Complementary 
values of the initial 
angle ui result in the 
same value of R.

Figure 4.11 A projectile 
launched over a flat surface from 
the origin with an initial speed 
of 50 m/s at various angles of 
projection.

PItfall PreventIon 4.3
The Range Equation Equation 
4.20 is useful for calculating 
R only for a symmetric path as 
shown in Figure 4.11. If the path is 
not symmetric, do not use this equa-
tion. The particle under constant 
velocity and particle under con-
stant acceleration models are the 
important starting points because 
they give the position and veloc-
ity components of any projectile 
moving with constant acceleration 
in two dimensions at any time t, 
symmetric path or not.
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which sin 2ui gives the same result, such as 758 and 158. Of course, the maximum 
height and time of flight for one of these values of ui are different from the max-
imum height and time of flight for the complementary value. The time of flight 
depends only on vyi and is independent of vxi.

Q uICk QuIz 4.3 Rank the launch angles for the five paths in Figure 4.11 with 
respect to time of flight from the shortest time of flight to the longest.

PRoBlEM-SolVing STRATEgy Projectile Motion

We suggest you use the following approach when solving projectile motion problems.

1. Conceptualize. Think about what is going on physically in the problem. Establish the mental representation by imagining 
the projectile moving along its trajectory.

2. Categorize. Confirm that the problem involves a particle in free fall and that air resistance is neglected. Select a coordi-
nate system with x in the horizontal direction and y in the vertical direction. Use the particle under constant velocity model 
for the x component of the motion. Use the particle under constant acceleration model for the y direction. In the special case 
of the projectile returning to the same level from which it was launched, use Equations 4.19 and 4.20.

3. Analyze. If the initial velocity vector is given, resolve it into x and y components. Select the appropriate equation(s) 
from the particle under constant acceleration model (4.13 through 4.17) for the vertical motion and use these along with 
Equation 4.12 for the horizontal motion to solve for the unknown(s). 

4. Finalize. Once you have determined your result, check to see if your answers are consistent with the mental and pictorial 
representations and your results are realistic.

 Example 4.2    The long Jump

A long jumper (Fig. 4.12) leaves the ground at an angle of 20.08 above the horizontal 
and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction?

S o l U T I o n

Conceptualize The arms and legs of a long jumper move in a complicated way, but we 
will ignore this motion. We model the long jumper as a particle and conceptualize his 
motion as equivalent to that of a simple projectile.

Categorize We categorize this example as a projectile motion problem. Because the 
initial speed and launch angle are given and because the final height is the same as the 
initial height, we further categorize this problem as satisfying the conditions for which 
Equations 4.19 and 4.20 can be used. This approach is the most direct way to analyze 
this problem, although the general methods that have been described will always give 
the correct answer.

Analyze
Use Equation 4.20 to find the range of the jumper: R 5

v 2
i  sin 2ui

g
5

s11.0 mysd2 sin 2s20.08d
9.80 mys2 5  7.94 m

(B) What is the maximum height reached?

S o l U T I o n

Analyze
Find the maximum height reached by using h 5

v 2
i sin2ui

2g
5

s11.0 mysd2ssin 20.08d2

2s9.80 mys2d
5  0.722 m 

Equation 4.19:

Finalize Find the answers to parts (A) and (B) using the general method. The results should agree. Treating the long jumper 
as a particle is an oversimplification. Nevertheless, the values obtained are consistent with experience in sports. We can model 
a complicated system such as a long jumper as a particle and still obtain reasonable results.

Figure 4.12 (Example 4.2) Ashton 
Eaton of the United States com-
petes in the men’s decathlon long 
jump at the 2016 Rio de Janeiro 
Olympic Games.
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 Example 4.3    A Bull’s-Eye Every Time

In a popular lecture demonstration, a projectile is aimed directly at a target and fired in such a way that the projectile 
leaves the gun at the same time the target is dropped from rest. Show that the projectile hits the falling target.

S o l U T I o n

Conceptualize We conceptualize the problem by studying Figure 4.13a. Notice that the problem does not ask for numerical 
values. The expected result must involve an algebraic argument.

Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects 
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a par-
ticle under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the  
y direction and a particle under constant velocity in the x direction.

Analyze Figure 4.13b shows that the initial y coordinate yiT of the target is xT tan ui and its initial velocity is zero. It falls with 
acceleration ay 5 2g. 

Write an expression for the y coordinate  (1)   y T 5 yi T 1 s0dt 2 1
2gt2 5 x T tan ui 2 1

2gt2 
of the target at any moment after release,  
noting that its initial velocity is zero:

Write an expression for the y coordinate  (2)   yP 5 yi P 1 vyi Pt 2 1
2g t 

2 5 0 1 svi P sin uidt 2 1
2g t 

2 5 svi P sin uidt 2 1
2gt 

2 
of the projectile at any moment:

Write an expression for the x coordinate   xP 5 xiP 1 vxi Pt 5 0 1 svi P cos uidt 5 sviP cos uidt  
of the projectile at any moment:

Solve this expression for time as a function  t 5
xP

vi P cos ui

 
of the horizontal position of the projectile:

Substitute this expression into Equation (2): (3)   yP 5 sviP sin uidS xP

viP cos ui
D 2 1

2g t 
2 5 xP tan ui 2 1

2gt2

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the same—that 
is, when xT 5 xP—their y coordinates given by Equations (1) and (3) are the same and a collision results.

Ch
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s 

D.
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The velocity of the projectile (red 
arrows) changes in direction and 
magnitude, but its acceleration 
(purple arrows) remains constant.

a

Target

Line of si
ght

y

x

Point of
collisionGun 0 ui

x T tan ui 
gt2

y T

x T

b

1
2

Figure 4.13  (Example 4.3) (a) Multiflash photograph of the projectile–target demonstration. If the gun 
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will 
hit the target. (b) Schematic diagram of the projectile–target demonstration.
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 Example 4.4    That’s Quite an Arm!

A stone is thrown from the top of a building upward at an angle of 30.08 to the horizontal with an initial speed of 20.0 m/s 
as shown in Figure 4.14. The height from which the stone is thrown is 45.0 m above the ground.

(A) How long does it take the stone to reach the ground?

S o l U T I o n

Conceptualize Study Figure 4.14, in which we have indi-
cated the trajectory and various parameters of the motion 
of the stone.

Categorize We categorize this problem as a projectile 
motion problem. The stone is modeled as a particle under 
constant acceleration in the y direction and a particle under 
constant velocity in the x direction.

Analyze We have the information xi 5 yi 5 0, yf 5 245.0 m, 
ay 5 2g, and vi 5 20.0 m/s (the numerical value of yf is 
negative because we have chosen the point of the throw as  
the origin).

Find the initial x and y components of the stone’s  vxi 5 vi cos ui 5 s20.0 mysd cos 30.08 5 17.3 mys 
velocity:
 vyi 5 vi sin ui 5 s20.0 mysd sin 30.08 5 10.0 mys

Express the vertical position of the stone from the particle  yf 5 yi 1 vyi t 2 1
2g t2 

under constant acceleration model:

Substitute numerical values: 245.0 m 5 0 1 s10.0 mysdt 1 1
2s29.80 mys2dt2

Solve the quadratic equation for t: t 5 4.22 s

(B) What is the speed of the stone just before it strikes the ground?

S o l U T I o n

Analyze Use the velocity equation in the particle  vy f 5 vyi 2 g t 
under constant acceleration model to obtain the y  
component of the velocity of the stone just before  
it strikes the ground:

Substitute numerical values, using t 5 4.22 s: vy f 5 10.0 mys 1 s29.80 mys2ds4.22 sd 5 231.3 mys

Use this component with the horizontal component  vf 5 Ïv 2
xf 1 v 2

yf 5Ïs17.3 mysd2 1 s231.3 mysd2 5  35.8 mys 
vxf 5 vxi 5 17.3 m/s to find the speed of the stone  
at t 5 4.22 s:

Finalize Is it reasonable that the y component of the final velocity is negative? Is it reasonable that the final speed is larger 
than the initial speed of 20.0 m/s?

W H A T  I F ?  What if a horizontal wind is blowing in the same direction as the stone is thrown and it causes the stone 
to have a horizontal acceleration component ax 5 0.500 m/s2? Which part of this example, (A) or (B), will have a different 
answer?

Answer Recall that the motions in the x and y directions are independent. Therefore, the horizontal wind cannot affect 
the vertical motion. The vertical motion determines the time of the projectile in the air, so the answer to part (A) does not 
change. The wind causes the horizontal velocity component to increase with time, so the final speed will be larger in part (B). 
Taking ax 5 0.500 m/s2, we find vxf 5 19.4 m/s and vf 5 36.9 m/s.

45.0 m

vi � 20.0 m/s

i � 30.0�u

y

xO

Figure 4.14 (Example 4.4) A 
stone is thrown from the top 
of a building.
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 Example 4.5    The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal direction with a speed of 25.0 m/s as shown in Figure 4.15. The 
landing incline below her falls off with a slope of 35.08. Where does she land on the incline?

S o l U T I o n

Conceptualize We can conceptualize this problem based on memories of 
observing winter ski jumping competitions. We estimate the skier to be air-
borne for perhaps 4 s and to travel a distance of about 100 m horizontally. 
We should expect the value of d, the distance traveled along the incline, to 
be of the same order of magnitude.

Categorize We categorize the problem as one of a particle in projectile 
motion. As with other projectile motion problems, we use the particle under 
constant velocity model for the horizontal motion and the particle under con-
stant acceleration model for the vertical motion.

Analyze It is convenient to select the beginning of the jump as the origin. 
The initial velocity components are vxi 5 25.0 m/s and vyi 5 0. From the right 
triangle in Figure 4.15, we see that the jumper’s x and y coordinates at the 
landing point are given by xf 5 d cos f and yf 5 2d sin f.

Express the coordinates of the jumper as a function of  (1)   xf 5 vxi t  S (2)   d cos f 5 vxit 
time, using the particle under constant velocity model 

 (3)   yf 5 vyit 2 1
2g t2 S (4)    2d sin f 5 21

2g t 
2 

for x and the position equation from the particle under  
constant acceleration model for y:

Solve Equation (2) for t and substitute the result into  2d sin f 5 21
2gSd cos f

vxi
D2

 
Equation (4):

Solve for d and substitute numerical values: d 5
2vxi

2  sin f

g cos2 f
5

2s25.0 mysd2 sin 35.08

s9.80 mys2d cos2 35.08
5 109 m

Evaluate the x and y coordinates of the point at which  xf 5 d cos f 5 s109 md cos 35.08 5  89.3 m 
the skier lands:
 yf 5 2d sin f 5 2s109 md sin 35.08 5  262.5 m

Finalize Let us compare these results with our expectations. We expected the horizontal distance to be on the order of 
100 m, and our result of 89.3 m is indeed on this order of magnitude. It might be useful to calculate the time interval that the 
jumper is in the air and compare it with our estimate of about 4 s.

W H A T  I F ?  Suppose everything in this example is the same except the ski jump is curved so that the jumper is projected 
upward at an angle from the end of the track. Is this design better in terms of maximizing the length of the jump?

Answer If the initial velocity has an upward component, the skier will be in the air longer and should therefore travel farther. 
Tilting the initial velocity vector upward, however, will reduce the horizontal component of the initial velocity. Therefore, 
angling the end of the ski track upward at a large angle may actually reduce the distance. Consider the extreme case: the skier is 
projected at 908 to the horizontal and simply goes up and comes back down at the end of the ski track! This argument suggests 
that there must be an optimal angle between 08 and 908 that represents a balance between making the flight time longer and 
the horizontal velocity component smaller.

Let us find this optimal angle mathematically. We modify Equations (1) through (4) in the following way, assuming the 
skier is projected at an angle u with respect to the horizontal over a landing incline sloped with an arbitrary angle f:

 (1) and (2) S xf 5 (vi cos u)t 5 d cos f

 (3) and (4) S yf 5 (vi sin u)t 2 12gt2 5 2d sin f

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive (after sev-
eral steps; see Problem 52) at the following equation for the angle u that gives the maximum value of d:

u 5 458 2
f

2
For the slope angle in Figure 4.15, f 5 35.08; this equation results in an optimal launch angle of u 5 27.58. For a slope 
angle of f 5 08, which represents a horizontal plane (no slope), this equation gives an optimal launch angle of u 5 458, 
as we would expect (see Figure 4.11).

y d

25.0 m/s

O

x

f � 35.0�

Figure 4.15 (Example 4.5) A ski jumper leaves 
the track moving in a horizontal direction.
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   4.4    Analysis Model: Particle in Uniform Circular Motion
Figure 4.16a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.

It is often surprising to students to find that even though an object moves at a con-
stant speed in a circular path, it still has an acceleration. To see why, consider the defining 
equation for acceleration, aS 5 d vSydt (Eq. 4.5). Notice that the acceleration depends 
on the change in the velocity. Because velocity is a vector quantity, an acceleration can 
occur in two ways as mentioned in Section 4.1: by a change in the magnitude of the 
velocity and by a change in the direction of the velocity. The latter situation occurs for an 
object moving with constant speed in a circular path. The constant-magnitude velocity 
vector is always tangent to the path of the object and perpendicular to the radius of the 
circular path. Therefore, the direction of the velocity vector is always changing.

Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and, therefore, always points toward the center 
of the circle. If that were not true, there would be a component of the acceleration 
parallel to the path and therefore parallel to the velocity vector. Such an accel-
eration component would lead to a change in the speed of the particle along the 
path. This situation, however, is inconsistent with our setup of the situation: the 
particle moves with constant speed along the path. Therefore, for uniform circular 
motion, the acceleration vector can only have a component perpendicular to the 
path, which is toward the center of the circle.

Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.16b. The figure also shows the 
vector representing the change in position D rS for an arbitrary time interval. The par-
ticle follows a circular path of radius r, part of which is shown by the dashed curve. The 
particle is at Ⓐ at time ti, and its velocity at that time is vSi; it is at Ⓑ at some later time tf  , 
and its velocity at that time is vSf . Let us also assume vSi and vSf  differ only in direction; 
their magnitudes are the same (that is, vi 5 vf 5 v because it is uniform circular motion).

In Figure 4.16c, the velocity vectors in Figure 4.16b have been redrawn tail to 
tail. The vector DvS connects the tips of the vectors, representing the vector addition 
vSf 5 vSi 1 DvS. In both Figures 4.16b and 4.16c, we can identify triangles that help 
us analyze the motion. The angle Du between the two position vectors in Figure 
4.16b is the same as the angle between the velocity vectors in Figure 4.16c because 
the velocity vector vS is always perpendicular to the position vector rS. Therefore, 
the two triangles are similar. (Two triangles are similar if the angle between any two 
sides is the same for both triangles and if the ratio of the lengths of these sides is 
the same.) We can now write a relationship between the lengths of the sides for the 
two triangles in Figures 4.16b and 4.16c:

uDvSu
v

5
uD rSu

r

where v 5 vi 5 vf and r 5 ri 5 rf . This equation can be solved for uDvSu, and the 
expression obtained can be substituted into Equation 4.4, aSavg 5 DvSyDt, to give 

PItfall PreventIon 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

Figure 4.16 (a) A car moving 
along a circular path at constant 
speed experiences uniform circu-
lar motion. (b) As a particle moves 
along a portion of a circular path 
from Ⓐ to Ⓑ, its velocity vector 
changes from vSi to vSf . (c) The 
construction for determining the 
direction of the change in velocity 
DvS, which is toward the center of 
the circle for small DrS.
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82 Chapter 4 Motion in Two Dimensions

the magnitude of the average acceleration over the time interval for the particle to 
move from Ⓐ to Ⓑ:

uaSavgu 5
uDvSu
Dt 

5
vuD rSu
r Dt

Now imagine that points Ⓐ and Ⓑ in Figure 4.16b become extremely close 
together. As Ⓐ and Ⓑ approach each other, Dt approaches zero, uD rSu approaches 
the distance traveled by the particle along the circular path, and the ratio uD rSuyDt 
approaches the speed v. In addition, the average acceleration becomes the instan-
taneous acceleration at point Ⓐ. Hence, in the limit Dt S 0, the magnitude of the 
acceleration is

 ac 5
v2

r
 (4.21)

An acceleration of this nature is called a centripetal acceleration (centripetal means 
center-seeking). The subscript on the acceleration symbol reminds us that the accel-
eration is centripetal.

In many situations, it is convenient to describe the motion of a particle mov-
ing with constant speed in a circle of radius r in terms of the period T, which is 
defined as the time interval required for one complete revolution of the particle. 
In the time interval T, the particle moves a distance of 2pr, which is equal to the 
circumference of the particle’s circular path. Therefore, because its speed is equal 
to the circumference of the circular path divided by the period, or v 5 2pr/T, it 
follows that

 T 5
2pr
v

 (4.22)

The period of a particle in uniform circular motion is a measure of the num-
ber of seconds for one revolution of the particle around the circle. The inverse of 
the period is the rotation rate and is measured in revolutions per second. Because 
one full revolution of the particle around the circle corresponds to an angle of 2p 
radians, the product of 2p and the rotation rate gives the angular speed v of the 
particle, measured in radians/s or s21:

 v 5
2p

T
 (4.23)

Combining this equation with Equation 4.22, we find a relationship between 
angular speed and the translational speed with which the particle travels in the 
circular path:

 v 5 2pS v
2prD 5

v
r
 S    v 5 rv (4.24)

Equation 4.24 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.23 and 4.24 more deeply in Chapter 10.

We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.21 and 4.24:

ac 5
srvd2

r

 ac 5 rv2 (4.25)

Centripetal acceleration 
for a particle in uniform  

circular motion

Period of circular motion 
for a particle in uniform  

circular motion

PItfall PreventIon 4.5
Centripetal Acceleration  
is not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.
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Equations 4.21–4.25 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uICk QuIz 4.4  A particle moves in a circular path of radius r with speed v. 
It then increases its speed to 2v while traveling along the same circular path. 
(i) The centripetal acceleration of the particle has changed by what factor? 
Choose one: (a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From 
the same choices, by what factor has the period of the particle changed?

analysIs Model Particle in Uniform Circular Motion

r

vSac
S

Examples: 

 ● a rock twirled in a circle on a string of 
constant length 

 ● a planet traveling around a perfectly 
circular orbit (Chapter 13)

 ● a charged particle moving in a uniform 
magnetic field (Chapter 28)

 ● an electron in orbit around a nucleus 
in the Bohr model of the hydrogen 
atom (Chapter 41)

Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.21)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.22)

The angular speed of the particle is

 v 5
2p

T
 (4.23)

 Example 4.6    The Centripetal Acceleration of the Earth

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

S o l U T I o n

Conceptualize We will model the Earth as a particle and approximate the Earth’s orbit as circular (it’s actually slightly ellipti-
cal, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.21. With the help of Equation 4.22, 
however, we can recast Equation 4.21 in terms of the period of the Earth’s orbit, which we know is one year, and the radius of 
the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

Combine Equations 4.21 and 4.22: ac 5
v2

r
5

S2pr
T D2

r
5

4p2r
T 2

Substitute numerical values: ac 5
4p2s1.496 3 1011 md

s1 yrd2 S 1 yr

3.156 3 107 sD2

5  5.93 3 1023 mys2

(B) What is the angular speed of the Earth in its orbit around the Sun?

S o l U T I o n

Analyze 

Substitute numerical values into Equation 4.23: v 5
2p

1 yr
 S 1 yr

3.156 3 107 sD 5  1.99 3 1027 s21

Finalize The acceleration in part (A) is much smaller than the free-fall acceleration on the surface of the Earth. An impor-
tant technique we learned here is replacing the speed v in Equation 4.21 in terms of the period T of the motion. In many 
problems, it is more likely that T is known rather than v. In part (B), we see that the angular speed of the Earth is very small, 
which is to be expected because the Earth takes an entire year to go around the circular path once.
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   4.5    Tangential and Radial Acceleration
Let us consider a more general motion than that presented in Section 4.4. A parti-
cle moves to the right along a curved path, and its velocity changes both in direction 
and in magnitude as described in Figure 4.17. In this situation, the velocity vector 
is always tangent to the path; the acceleration vector aS, however, is at some angle 
to the path. At each of three points Ⓐ, Ⓑ, and Ⓒ in Figure 4.17, the dashed blue 
circles represent the curvature of the actual path at each point. The radius of each 
circle is equal to the path’s radius of curvature at each point.

As the particle moves along the curved path in Figure 4.17, the direction of the 
total acceleration vector aS changes from point to point. At any instant, this vec-
tor can be resolved into two components based on an origin at the center of the 
dashed circle corresponding to that instant: a radial component ar along the radius 
of the circle and a tangential component at perpendicular to this radius. The total 
acceleration vector aS can be written as the vector sum of the component vectors:

 aS 5 aSr 1 aSt (4.26)

The tangential acceleration component causes a change in the speed v of the particle. 
This component is parallel to the instantaneous velocity, and its magnitude is given by

 at 5 * dv
dt * (4.27)

The radial acceleration component arises from a change in direction of the velocity 
vector and is given by

 ar 5 2ac 5 2
v2

r
 (4.28)

where r is the radius of curvature of the path at the point in question. We recog-
nize the magnitude of the radial component of the acceleration as the centripetal 
acceleration discussed in Section 4.4 with regard to the particle in uniform cir-
cular motion model. Even in situations in which a particle moves along a curved 
path with a varying speed, however, Equation 4.21 can be used for the centripetal 
acceleration. In this situation, the equation gives the instantaneous centripetal accel-
eration at any time. The negative sign in Equation 4.28 indicates that the direction 
of the centripetal acceleration is toward the center of the circle representing the 
radius of curvature. The direction is opposite that of the radial unit vector r⁄, which 
always points away from the origin at the center of the circle. (See Fig. 3.15.)

Because aSr and aSt are perpendicular component vectors of aS, it follows that  
the magnitude of aS is a 5 Ïar

2  1 at
2. At a given speed, ar is large when the  

radius of curvature is small (as at points Ⓐ and Ⓑ in Fig. 4.17) and small when r is 
large (as at point Ⓒ). The direction of aSt is either in the same direction as vS (if v is 
increasing) or opposite vS (if v is decreasing, as it must be at point Ⓑ).

In uniform circular motion, where v is constant, at 5 0 and the acceleration is 
always completely radial as described in Section 4.4. In other words, uniform circu-
lar motion is a special case of motion along a general curved path. Furthermore, if 
the direction of vS does not change, there is no radial acceleration and the motion 
is one dimensional (in this case, ar 5 0, but at may not be zero).

Total acceleration 

Tangential acceleration 

Radial acceleration 

Path of
particle at

ar

at

ar at
araS 

aS 

aS �

�

�
Figure 4.17 The motion of a 
particle along an arbitrary curved 
path lying in the xy plane. If the 
velocity vector vS (always tangent 
to the path) changes in direction 
and magnitude, the components 
of the acceleration aS are a tan-
gential component at and a radial 
component ar.
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Q uICk QuIz 4.5  A particle moves along a path, and its speed increases with 
time. (i) In which of the following cases are its acceleration and velocity vectors 
parallel? (a) when the path is circular (b) when the path is straight (c) when the 
path is a parabola (d) never (ii) From the same choices, in which case are its 
acceleration and velocity vectors perpendicular everywhere along the path?

 Example 4.7    over the Rise

A car leaves a stop sign and exhibits a constant acceleration of 
0.300 m/s2 parallel to the roadway. The car passes over a rise in 
the roadway such that the top of the rise is shaped like an arc of 
a circle of radius 500 m. At the moment the car is at the top 
of the rise, its velocity vector is horizontal and has a magnitude 
of 6.00 m/s. What are the magnitude and direction of the total 
acceleration vector for the car at this instant?

S o l U T I o n

Conceptualize Conceptualize the situation using Figure 4.18a and 
any experiences you have had in driving over rises on a roadway.

Categorize Because the accelerating car is moving along a curved 
path, we categorize this problem as one involving a particle experi-
encing both tangential and radial acceleration. We recognize that it 
is a relatively simple substitution problem.

The tangential acceleration vector has magnitude 0.300 m/s2 and 
is horizontal. The radial acceleration is given by Equation 4.28, 
with v 5 6.00 m/s and r 5 500 m. The radial acceleration vector is 
directed straight downward. 

Evaluate the radial acceleration: ar 5 2
v2

r
5 2

s6.00 mysd2

500 m
5 20.072 0 mys2

Find the magnitude of aS: a 5 Ïa 2
r 1 a 2

t 5 Ïs20.072 0 mys2d2 1 s0.300 mys2d2

5 0.309 m/s2

Find the angle f (see Fig. 4.18b) between aS and the  f 5 tan21 
ar

at

5 tan21S20.072 0 mys2

0.300 mys2 D 5  213.58 
horizontal:

r

t

at � 0.300 m/s2

v � 6.00 m/s

t

f

vS

aS 
aS 

aS 

aS 

a

b

Figure 4.18 (Example 4.7) (a) A car passes over a rise 
that is shaped like an arc of a circle. (b) The total accelera-
tion vector aS is the sum of the tangential and radial accel-
eration vectors aSt and aSr.

   4.6    Relative Velocity and Relative Acceleration
In this section, we describe how observations made by different observers in dif-
ferent frames of reference are related to one another. A frame of reference can be 
described by a Cartesian coordinate system for which an observer is at rest with 
respect to the origin.

Let us conceptualize a sample situation in which there will be different observa-
tions for different observers. Consider the two observers A and B along the number 
line in Figure 4.19a. Observer A is located 5 units to the right of observer B. Both 
observers measure the position of point P, which is located 5 units to the right of 
observer A. Suppose each observer decides that he is located at the origin of an  
x axis as in Figure 4.19b. Notice that the two observers disagree on the value of the 
position of point P. Observer A claims point P is located at a position with a value 
of xA 5 15, whereas observer B claims it is located at a position with a value of xB 5 
110. Both observers are correct, even though they make different measurements. 
Their measurements differ because they are making the measurement from differ-
ent frames of reference.

Imagine now that observer B in Figure 4.19b is moving to the right along the xB 
axis. Now the two measurements are even more different. Observer A claims point P 

+5

x
B

B

A P

–5 0
x A

A P

+100 +5
x B

P

a

b

5

Figure 4.19 Different observers 
make different measurements. 
(a) Observer A is located 5 units 
to the right of Observer B. Both 
observers measure the position of 
a particle at P. (b) If both observ-
ers see themselves at the origin of 
their own coordinate system, they 
disagree on the value of the posi-
tion of the particle at P.
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86 Chapter 4 Motion in Two Dimensions

remains at rest at a position with a value of 15, whereas observer B claims the posi-
tion of P continuously changes with time, even passing him and moving behind 
him! Again, both observers are correct, with the difference in their measurements 
arising from their different frames of reference.

We explore this phenomenon further by considering two observers watching a 
man walking on a moving beltway at an airport in Figure 4.20. The woman stand-
ing on the moving beltway sees the man moving at a normal walking speed. The 
woman observing from the stationary floor sees the man moving with a higher 
speed because the beltway speed combines with his walking speed. Both observers 
look at the same man and arrive at different values for his speed. Both are cor-
rect; the difference in their measurements results from the relative velocity of their 
frames of reference.

In a more general situation, consider a particle located at point P in Figure 4.21. 
Imagine that the motion of this particle is being described by two observers, 
observer A in a reference frame SA fixed relative to the Earth and a second observer 
B in a reference frame SB moving to the right relative to SA (and therefore rela-
tive to the Earth) with a constant velocity vSBA. In this discussion of relative veloc-
ity, we use a double-subscript notation; the first subscript represents what is being 
observed, and the second represents who is doing the observing. Therefore, the 
notation vSBA means the velocity of observer B (and the attached frame SB) as mea-
sured by observer A. With this notation, observer B measures A to be moving to the 
left with a velocity vSAB 5 2vSBA. For purposes of this discussion, let us place each 
observer at her or his respective origin.

We define the time t 5 0 as the instant at which the origins of the two reference 
frames coincide in space. Therefore, at time t, the origins of the reference frames 
will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.21, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.29)

By differentiating Equation 4.29 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA  (4.30)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tion 4.30 is demonstrated by the red vectors at the top of Figure 4.21. Vector uSP B is the 
velocity of the particle at time t as seen by observer B. When you add the relative veloc-
ity vSBA of the frames, the sum is the velocity of the particle as measured by observer A. 

Equations 4.29 and 4.30 are known as Galilean transformation equations. They 
relate the position and velocity of a particle as measured by observers in relative 
motion. 

Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.30:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBAydt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP Aydt and aSP B 5 d uSP Bydt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

The woman standing on the 
beltway sees the man moving with 
a slower speed than does the 
woman observing the man from 
the stationary floor.

Figure 4.20 Two observers mea-
sure the speed of a man walking  
on a moving beltway. 

SA SB

BA

P

x

BA

PB

PA

BAtvS

vS

BAvS

rS 

PAuS 

rS 

PBuS 

Figure 4.21  A particle located 
at P is described by two observ-
ers, one in the fixed frame of 
reference SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB. The 
red vectors at the top of the figure 
show a vector addition for the 
velocities of the particle at time t, 
representing Equation 4.30.
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 Example 4.8    A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

S o l U T I o n

Conceptualize Imagine moving in a boat across a river while 
the current pushes you down the river. You will not be able to 
move directly across the river, but will end up downstream as 
suggested in Figure 4.22a. Imagine observer A on the shore, 
so that she is on the Earth, represented by letter E. Observer 
B is represented by letter r in the figure; this observer is on a 
cork floating in the river, at rest with respect to the water and 
carried along with the current. When the boat begins from 
point P and is aimed straight across the river, the velocities uSbr,  
the boat relative to the river, and vSrE, the river relative to the 
Earth, add to give the velocity vSbE, the velocity of the boat relative to observer A on the Earth. Compare the vector addition 
in Figure 4.22a to that in Figure 4.21. As the boat moves, it will follow along vector vSbE, as suggested by its position after some 
time in Figure 4.22a.

Categorize Because of the combined velocities of you relative to the river and the river relative to the Earth, we can categorize 
this problem as one involving relative velocities.

Analyze We know uSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. What we 
must find is uSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities is uSbE 5 uSbr 1 vSrE.  
The terms in the equation must be manipulated as vector quantities; the vectors are shown in Figure 4.22a. The quantity uSbr is 
due north; vSrE is due east; and the vector sum of the two, uSbE, is at an angle u as defined in Figure 4.22a.

Find the speed ubE of the boat relative to the Earth using  ubE 5 Ïu 2
br 1 v 2

rE 5 Ïs10.0 kmyhd2 1 s5.00 kmyhd2 
the Pythagorean theorem:

5  11.2 km/h

Find the direction of uSbE: u 5 tan21SvrE

ubr
D 5 tan21S5.00

10.0D 5  26.68

Finalize The boat is moving at a speed of 11.2 km/h in the direction 26.68 east of north relative to the Earth. Notice that the 
speed of 11.2 km/h is faster than your boat speed of 10.0 km/h. The current velocity adds to yours to give you a higher speed. 
Notice in Figure 4.22a that your resultant velocity is at an angle to the direction straight across the river, so you will end up 
downstream, as we predicted.

(B) If the boat travels with the same speed of 10.0 km/h relative to the river and is to travel due north as shown in 
Figure 4.22b, what should its heading be?

S o l U T I o n

Conceptualize/Categorize This question is an extension of part (A), so we have already conceptualized and categorized the 
problem. In this case, however, we must aim the boat upstream so as to go straight across the river.

Analyze The analysis now involves the new triangle shown in Figure 4.22b. As in part (A), we know vSrE and the magnitude of 
the vector uSbr, and we want uSbE to be directed across the river. Notice the difference between the triangle in Figure 4.22a and 
the one in Figure 4.22b: the hypotenuse in Figure 4.22b is no longer uSbE.

Use the Pythagorean theorem to find ubE: ubE 5 Ïubr
2   2 vrE

2 5 Ïs10.0 kmyhd2 2 s5.00 kmyhd2 5 8.66 kmyh

Find the direction in which the boat is heading: u 5 tan21SvrE

ubE
D 5 tan21S5.00

8.66D 5  30.08

u
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rE

E

N

S

W

a
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uS

E

N

S

W

b

u

br

bE

rEvS

uS

uS

P P

Figure 4.22 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.

continued
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88 Chapter 4 Motion in Two Dimensions

4.8 c o n t i n u e d

Finalize The boat must head upstream so as to travel directly northward across the river. For the given situation, the boat 
must steer a course 30.08 west of north. For faster currents, the boat must be aimed upstream at larger angles.

W H A T  I F ?  Imagine that the two boats in parts (A) and (B) are racing across the river. Which boat arrives at the opposite 
bank first?

Answer In part (A), the velocity of 10 km/h is aimed directly across the river. In part (B), the velocity that is directed across 
the river has a magnitude of only 8.66 km/h. Therefore, the boat in part (A) has a larger velocity component directly across 
the river and arrives first.

summary
 › Definitions

The displacement vector DrS for a particle is 
the difference between its final position vector 
and its initial position vector:

 D rS ; rSf 2 rSi (4.1)

The average velocity of a particle during the 
time interval Dt is defined as the displacement 
of the particle divided by the time interval:

 vSavg ;
D rS

Dt
 (4.2)

The instantaneous velocity of a particle is 
defined as the limit of the average velocity as Dt 
approaches zero:

 vS ; lim
Dt S 0

D rS

Dt
5

d rS

dt
 (4.3)

The average acceleration of a particle is defined as the change in its instan-
taneous velocity vector divided by the time interval Dt during which that 
change occurs:

 aSavg ;
DvS

Dt
5

vSf 2 vSi

tf 2 ti

 (4.4)

The instantaneous acceleration of a particle is defined as the limiting value 
of the average acceleration as Dt approaches zero:

 aS ; lim
Dt S 0

DvS

Dt
5

d vS

dt
 (4.5)

Projectile motion is one type of two-dimensional motion, exhibited by an 
object launched into the air near the Earth’s surface and experiencing free 
fall. If the projectile is launched at an upward angle from the horizontal, it 
will follow a path described mathematically as a parabola.
 A particle moving in a circular path with constant speed is exhibiting uni-
form circular motion.

 › Concepts and Principles

If a particle moves with constant acceleration aS and has 
velocity vSi and position rSi at t 5 0, its velocity and posi-
tion vectors at some later time t are

 vSf 5 vSi 1 aSt (4.8)

 rSf 5 rSi 1 vSi t 1 1
2 aSt2 (4.9)

For two-dimensional motion in the xy plane under con-
stant acceleration, each of these vector expressions is 
equivalent to two component expressions: one for the 
motion in the x direction and one for the motion in the 
y direction.

A particle in uniform circular motion undergoes a radial accelera-
tion aSr because the direction of vS changes in time. This accelera-
tion is called centripetal acceleration, and its direction is always 
toward the center of the circle.

It is useful to think of projectile motion in terms of a 
combination of two analysis models: (1) the particle 
under constant velocity model in the x direction and 
(2) the particle under constant acceleration model in the 
vertical direction with a constant downward acceleration 
of magnitude g 5 9.80 m/s2.

If a particle moves along a curved path in such a way that both the 
magnitude and the direction of vS change in time, the particle has 
an acceleration vector that can be described by two component vec-
tors: (1) a radial component vector aSr that causes the change in 
direction of vS and (2) a tangential component vector aSt that causes 
the change in magnitude of vS. The magnitude of aSr is v

2/r, and the 
magnitude of aSt is |dv/dt|.

The velocity uSPA of a particle measured in a fixed frame of refer-
ence SA can be related to the velocity uSP B of the same particle mea-
sured in a moving frame of reference SB by

 uSP A 5 uSP B 1 vSBA (4.30)

where vSBA is the velocity of SB relative to SA.
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 › Analysis Model for Problem Solving

Particle in Uniform Circular Motion If a particle moves in a circular path of radius r with a constant speed 
v, the magnitude of its centripetal acceleration is given by

 ac 5
v 2

r
 (4.21)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.22)

The angular speed of the particle is

 v 5
2p

T
 (4.23)

r

vSac
S

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You watch your toddler nephew rolling marbles toward the top 
of a staircase. There are 12 steps, each 30.0 cm deep horizon-
tally, and separated by 20.0 cm vertically. The marbles leave 
the upper landing horizontally and are projected into the air, 
bouncing down the steps until they arrive at the lower floor. 
This gets you wondering the following: (a) How fast must the 
marble be rolled so that it misses bouncing off the first step 
below the upper landing? (b) How fast must the marble be 
rolled so that it misses bouncing off the second step below the 
upper landing? (c) Is it possible for your toddler nephew to roll 
the marble fast enough to miss all the steps? (d) Suppose the 
marble is projected with a speed such that it lands on the sixth 
step and bounces upward at the same angle at which it struck 
the step, with the same speed. Argue that the marble will not 
hit another step before striking the floor of the lower landing.

2. ACTiViTy  Place a penny at the corner of a table as shown in 
the overhead view in Figure TP4.2. Place a ruler next to the 
penny and another penny on the top of the part of the ruler 

that hangs off the edge of the table. Hold the end of the ruler 
on the table with one hand and use your other hand to flick the 
end of the ruler with the penny parallel to the table surface. 
This will project the penny sitting on the corner of the table in 
a horizontal direction. At the same time, the ruler will slide out 
from under the second penny, which will fall straight down. 
Using your smartphone audio recorder, make an audio record-
ing of the two falling pennies. From the recording, determine 
the time interval between the landing of the two pennies on 
the floor. What should the time interval be theoretically?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

seCtIon 4.1 The Position, Velocity, and Acceleration Vectors

1. Suppose the position vector for a particle is given as a func-
tion of time by rSstd 5 x stdi

⁄
1 ystd j

⁄
, with x(t) 5 at 1 b and 

y(t) 5 ct2 1 d, where a 5 1.00 m/s, b 5 1.00 m, c 5 0.125 m/s2,  
and d 5 1.00 m. (a) Calculate the average velocity during 
the time interval from t 5 2.00 s to t 5 4.00 s. (b) Determine 
the velocity and the speed at t 5 2.00 s.

2. The coordinates of an object moving in the xy plane vary 
with time according to the equations x 5 25.00 sin vt and 
y 5 4.00 2 5.00 cos vt, where v is a constant, x and y are in 
meters, and t is in seconds. (a) Determine the components 

of velocity of the object at t  5 0. (b) Determine the com-
ponents of acceleration of the object at t 5 0. (c)  Write 
expressions for the position vector, the velocity vector, 
and the acceleration vector of the object at any time t . 0. 
(d) Describe the path of the object in an xy plot.

seCtIon 4.2 Two-Dimensional Motion  
with Constant Acceleration

3. The vector position of a particle varies in time according to 
the expression rS 5 3.00i

⁄
2 6.00t2 j

⁄
, where rS is in meters and 

t is in seconds. (a) Find an expression for the velocity of the 
particle as a function of time. (b) Determine the accelera-
tion of the particle as a function of time. (c) Calculate the 
particle’s position and velocity at t 5 1.00 s.

V

 Problems 89

Flick the
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Figure TP4.2
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4. It is not possible to see very small objects, such as viruses, 
using an ordinary light microscope. An electron micro-
scope, however, can view such objects using an electron 
beam instead of a light beam. Electron microscopy has 
proved invaluable for investigations of viruses, cell mem-
branes and subcellular structures, bacterial surfaces, visual 
receptors, chloroplasts, and the contractile properties of 
muscles. The “lenses” of an electron microscope consist of 
electric and magnetic fields that control the electron beam. 
As an example of the manipulation of an electron beam, con-
sider an electron traveling away from the origin along the  
x axis in the xy plane with initial velocity vSi 5 vi i

⁄
. As it passes 

through the region x 5 0 to x 5 d, the electron experiences 
acceleration aS 5 axi

⁄
1 ay  j

⁄
, where ax and ay are constants. For 

the case vi 5 1.80 3 107 m/s, ax 5 8.00 3 1014 m/s2, and ay 5 
1.60 3 1015 m/s2, determine at x 5 d 5 0.010 0 m (a) the posi-
tion of the electron, (b) the velocity of the electron, (c) the 
speed of the electron, and (d) the direction of travel of the 
electron (i.e., the angle between its velocity and the x axis).

5. Review. A snowmobile is originally at the point with posi-
tion vector 29.0 m at 95.08 counterclockwise from the x 
axis, moving with velocity 4.50 m/s at 40.08. It moves with 
constant acceleration 1.90 m/s2 at 2008. After 5.00 s have 
elapsed, find (a) its velocity and (b) its position vector.

seCtIon 4.3 Projectile Motion

Note: Ignore air resistance in all problems and take g 5 9.80 m/s2 
at the Earth’s surface.

6. In a local bar, a customer slides an empty beer mug down 
the counter for a refill. The height of the counter is h. The 
mug slides off the counter and strikes the floor at distance d 
from the base of the counter. (a) With what velocity did the 
mug leave the counter? (b) What was the direction of the 
mug’s velocity just before it hit the floor?

7. Mayan kings and many school sports teams are named 
for the puma, cougar, or mountain lion—Felis concolor— 
the best jumper among animals. It can jump to a height of 
12.0 ft when leaving the ground at an angle of 45.08. With 
what speed, in SI units, does it leave the ground to make 
this leap?

8. A projectile is fired in such a way that its horizontal range is 
equal to three times its maximum height. What is the angle 
of projection?

9. The speed of a projectile when it reaches its maximum 
height is one-half its speed when it is at half its maximum 
height. What is the initial projection angle of the projectile?

10. A rock is thrown upward from level ground in such a way 
that the maximum height of its flight is equal to its hori-
zontal range R. (a) At what angle u is the rock thrown? (b) 
In terms of its original range R, what is the range Rmax the 
rock can attain if it is launched at the same speed but at the 
optimal angle for maximum range? (c) What If? Would your 
answer to part (a) be different if the rock is thrown with the 
same speed on a different planet? Explain.

11. A firefighter, a distance d from a burning building, directs 
a stream of water from a fire hose at angle ui above the 
horizontal as shown in Figure P4.11. If the initial speed of 
the stream is vi, at what height h does the water strike the 
building?

12. A basketball star covers 2.80 m horizontally in a jump to 
dunk the ball (Fig. P4.12a). His motion through space 
can be modeled precisely as that of a particle at his cen-
ter of mass, which we will define in Chapter 9. His cen-
ter of mass is at elevation 1.02 m when he leaves the 
floor. It reaches a maximum height of 1.85 m above the 
floor and is at elevation 0.900 m when he touches down 
again. Determine (a)  his time of flight (his “hang time”),  
(b) his horizontal and (c) vertical velocity components 
at the instant of takeoff, and (d) his takeoff angle. (e) For  
comparison, determine the hang time of a whitetail deer 
making a jump (Fig. P4.12b) with center-of-mass elevations 
yi 5 1.20 m, ymax 5 2.50 m, and yf 5 0.700 m.

13. A student stands at the edge of a 
cliff and throws a stone horizon-
tally over the edge with a speed 
of vi 5 18.0 m/s. The cliff is h 5 
50.0 m above a body of water as 
shown in Figure P4.13. (a) What 
are the coordinates of the initial 
position of the stone? (b)  What 
are the components of the initial 
velocity of the stone? (c) What is 
the appropriate analysis model 
for the vertical motion of the 
stone? (d)  What is the appro-
priate analysis model for the 
horizontal motion of the stone? 
(e) Write symbolic equations for 
the x and y components of the 
velocity of the stone as a function of time. (f) Write symbolic 
equations for the position of the stone as a function of time. 
(g) How long after being released does the stone strike the 
water below the cliff? (h) With what speed and angle of 
impact does the stone land?
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14. The record distance in the sport of throwing cowpats is 
81.1 m. This record toss was set by Steve Urner of the United 
States in 1981. Assuming the initial launch angle was 458 
and neglecting air resistance, determine (a) the initial 
speed of the projectile and (b) the total time interval the 
projectile was in flight. (c) How would the answers change if 
the range were the same but the launch angle were greater 
than 458? Explain.

15. A home run is hit in such a way that the baseball just clears a 
wall 21.0 m high, located 130 m from home plate. The ball is 
hit at an angle of 35.08 to the horizontal, and air resistance 
is negligible. Find (a) the initial speed of the ball, (b) the 
time it takes the ball to reach the wall, and (c) the velocity 
components and the speed of the ball when it reaches the 
wall. (Assume the ball is hit at a height of 1.00 m above the 
ground.)

16. A projectile is fired from the top of a cliff of height h above 
the ocean below. The projectile is fired at an angle u above 
the horizontal and with an initial speed vi. (a) Find a sym-
bolic expression in terms of the variables vi, g, and u for the 
time at which the projectile reaches its maximum height. 
(b) Using the result of part (a), find an expression for the 
maximum height hmax above the ocean attained by the pro-
jectile in terms of h, vi, g, and u.

17. A boy stands on a diving board and tosses a stone into 
a swimming pool. The stone is thrown from a height of 
2.50 m above the water surface with a velocity of 4.00 m/s 
at an angle of 60.08 above the horizontal. As the stone 
strikes the water surface, it immediately slows down to 
exactly half the speed it had when it struck the water and 
maintains that speed while in the water. After the stone 
enters the water, it moves in a straight line in the direc-
tion of the velocity it had when it struck the water. If the 
pool is 3.00  m deep, how much time elapses between 
when the stone is thrown and when it strikes the bottom 
of the pool?

seCtIon 4.4 Analysis Model: Particle  
in Uniform Circular Motion

Note: Problems 3 and 9 in Chapter 6 can also be assigned with 
this section.

18. In Example 4.6, we found the centripetal acceleration of the 
Earth as it revolves around the Sun. From information on 
the endpapers of this book, compute the centripetal accel-
eration of a point on the surface of the Earth at the equator 
caused by the rotation of the Earth about its axis.

19. The astronaut orbiting 
the Earth in Figure P4.19 
is preparing to dock with 
a Westar VI satellite. The 
satellite is in a circular 
orbit 600 km above the 
Earth’s surface, where 
the free-fall acceleration 
is 8.21  m/s2. Take the 
radius of the Earth as  
6 400 km. Determine the  
speed of the satellite and 
the time interval required to complete one orbit around the 
Earth, which is the period of the satellite.

20. An athlete swings a ball, connected to the end of a chain, 
in a horizontal circle. The athlete is able to rotate the ball 
at the rate of 8.00 rev/s when the length of the chain is 
0.600 m. When he increases the length to 0.900 m, he is able 
to rotate the ball only 6.00 rev/s. (a) Which rate of rotation 
gives the greater speed for the ball? (b) What is the centrip-
etal acceleration of the ball at 8.00 rev/s? (c)  What is the 
centripetal acceleration at 6.00 rev/s?

21. The athlete shown in Fig-
ure P4.21 rotates a 1.00-kg  
discus along a circular 
path of radius 1.06  m. 
The maximum speed of 
the discus is 20.0 m/s. 
Determine the magnitude 
of the maximum radial 
acceleration of the discus.

22. A tire 0.500 m in radius 
rotates at a constant rate 
of 200 rev/min. Find the 
speed and acceleration 
of a small stone lodged 
in the tread of the tire 
(on its outer edge).

seCtIon 4.5 Tangential and Radial Acceleration

23. (a) Can a particle moving with instantaneous speed 
3.00  m/s on a path with radius of curvature 2.00 m have 
an acceleration of magnitude 6.00 m/s2? (b) Can it have an 
acceleration of magnitude 4.00 m/s2? In each case, if the 
answer is yes, explain how it can happen; if the answer is no, 
explain why not.

24. A ball swings counterclockwise in a vertical circle at  
the end of a rope 1.50 m long. When the ball is 36.98 past 
the lowest point on its way up, its total acceleration is 
s222.5 i

⁄
1 20.2 j

⁄
d m/s2. For that instant, (a) sketch a vec-

tor diagram showing the components of its acceleration, 
(b) determine the magnitude of its radial acceleration, and 
(c) determine the speed and velocity of the ball.

seCtIon 4.6 Relative Velocity and Relative Acceleration

25. A bolt drops from the ceiling of a moving train car that is 
accelerating northward at a rate of 2.50 m/s2. (a)  What is 
the acceleration of the bolt relative to the train car? (b) 
What is the acceleration of the bolt relative to the Earth? 
(c) Describe the trajectory of the bolt as seen by an observer 
inside the train car. (d) Describe the trajectory of the bolt as 
seen by an observer fixed on the Earth.

26. The pilot of an airplane notes that the compass indicates a 
heading due west. The airplane’s speed relative to the air is 
150 km/h. The air is moving in a wind at 30.0 km/h toward 
the north. Find the velocity of the airplane relative to the 
ground.

27. You are taking flying lessons from an experienced pilot. 
You and the pilot are up in the plane, with you in the pilot 
seat. The control tower radios the plane, saying that, while 
you have been airborne, a 25-mi/h crosswind has arisen, 
with the direction of the wind perpendicular to the run-
way on which you plan to land. The pilot tells you that your 
normal airspeed as you land will be 80 mi/h relative to the 
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92 Chapter 4 Motion in Two Dimensions

ground. This speed is relative to the air, in the direction 
in which the nose of the airplane points. He asks you to 
determine the angle at which the aircraft must be “crab-
bed,” that is, the angle between the centerline of the air-
craft and the centerline of the runway that will allow the 
airplane’s velocity relative to the ground to be parallel to 
the runway.

28. A car travels due east with a speed of 50.0 km/h. Raindrops 
are falling at a constant speed vertically with respect to the 
Earth. The traces of the rain on the side windows of the car 
make an angle of 60.08 with the vertical. Find the velocity of 
the rain with respect to (a) the car and (b) the Earth.

29. A science student is riding on a flatcar of a train traveling 
along a straight, horizontal track at a constant speed of 
10.0 m/s. The student throws a ball into the air along a path 
that he judges to make an initial angle of 60.08 with the hor-
izontal and to be in line with the track. The student’s profes-
sor, who is standing on the ground nearby, observes the ball 
to rise vertically. How high does she see the ball rise?

30. A river has a steady speed of 0.500 m/s. A student swims 
upstream a distance of 1.00 km and swims back to the start-
ing point. (a) If the student can swim at a speed of 1.20 m/s 
in still water, how long does the trip take? (b) How much 
time is required in still water for the same length swim? 
(c) Intuitively, why does the swim take longer when there is 
a current?

31. A river flows with a steady speed v. A student swims upstream 
a distance d and then back to the starting point. The stu-
dent can swim at speed c in still water. (a)  In terms of d, 
v, and c, what time interval is required for the round trip? 
(b) What time interval would be required if the water were 
still? (c) Which time interval is larger? Explain whether it is 
always larger.

32. You are participating in a summer internship with the Coast 
Guard. You have been assigned the duty of determining the 
direction in which a Coast Guard speedboat should travel to 
intercept unidentified vessels. One day, the radar operator 
detects an unidentified vessel at a distance of 20.0 km from 
the radar installation in the direction 15.08 east of north. 
The vessel is traveling at 26.0 km/h on a course at 40.08 
east of north. The Coast Guard wishes to send a speedboat, 
which travels at 50.0 km/h, to travel in a straight line from 
the radar installation to intercept and investigate the ves-
sel, and asks you for the heading for the speedboat to take. 
Express the direction as a compass bearing with respect to 
due north.

33. A farm truck moves 
due east with a constant 
velocity of 9.50 m/s  
on a limitless, hori-
zontal stretch of road. 
A boy riding on the 
back of the truck 
throws a can of soda 
upward (Fig. P4.33) and 
catches the projectile at the same location on the 
truck bed, but 16.0 m farther down the road. (a) In  
the frame of reference of the truck, at what angle to 
the vertical does the boy throw the can? (b) What is the 
initial speed of the can relative to the truck? (c) What 
is the shape of the can’s trajectory as seen by the boy? 

An observer on the ground watches the boy throw the 
can and catch it. In this observer’s frame of reference,  
(d) describe the shape of the can’s path and (e) determine 
the initial velocity of the can.

addItIonal ProbleMs

34. A ball on the end of a string is whirled around in a horizon-
tal circle of radius 0.300 m. The plane of the circle is 1.20 m 
above the ground. The string breaks and the ball lands 2.00 m 
(horizontally) away from the point on the ground directly 
beneath the ball’s location when the string breaks. Find the 
radial acceleration of the ball during its circular motion.

35. Why is the following situation impossible? A normally propor-
tioned adult walks briskly along a straight line in the 1x 
direction, standing straight up and holding his right arm 
vertical and next to his body so that the arm does not swing. 
His right hand holds a ball at his side a distance h above 
the floor. When the ball passes above a point marked as 
x 5 0 on the horizontal floor, he opens his fingers to release 
the ball from rest relative to his hand. The ball strikes the 
ground for the first time at position x 5 7.00h.

36. A particle starts from the origin with velocity 5i
⁄
 m/s  

at t 5 0 and moves in the xy plane with a varying accelera-
tion given by aS 5 s6Ït j

⁄
d, where aS is in meters per second 

squared and t is in seconds. (a) Determine the velocity of the 
particle as a function of time. (b) Determine the position of 
the particle as a function of time.

37. Lisa in her Lamborghini accelerates at s3.00i
⁄

2 2.00j
⁄
d m/s2, 

while Jill in her Jaguar accelerates at s1.00i
⁄

1 3.00j
⁄
d m/s2. 

They both start from rest at the origin. After 5.00 s, (a) what 
is Lisa’s speed with respect to Jill, (b) how far apart are they, 
and (c) what is Lisa’s acceleration relative to Jill?

38. A boy throws a stone horizontally from the top of a cliff 
of height h toward the ocean below. The stone strikes the 
ocean at distance d from the base of the cliff. In terms of 
h, d, and g, find expressions for (a) the time t at which the 
stone lands in the ocean, (b) the initial speed of the stone, 
(c) the speed of the stone immediately before it reaches the 
ocean, and (d) the direction of the stone’s velocity immedi-
ately before it reaches the ocean.

39. Why is the following situation impossible? Albert Pujols hits 
a home run so that the baseball just clears the top row of 
bleachers, 24.0 m high, located 130 m from home plate. The 
ball is hit at 41.7 m/s at an angle of 35.08 to the horizontal, 
and air resistance is negligible.

40. As some molten metal splashes, one droplet flies off to the 
east with initial velocity vi at angle ui above the horizontal, 
and another droplet flies off to the west with the same 
speed at the same angle above the horizontal as shown in 
Figure P4.40. In terms of vi and ui, find the distance between 
the two droplets as a function of time.
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41. An astronaut on the surface of the Moon fires a cannon to 
launch an experiment package, which leaves the barrel mov-
ing horizontally. Assume the free-fall acceleration on the 
Moon is one-sixth of that on the Earth. (a) What must the 
muzzle speed of the package be so that it travels completely 
around the Moon and returns to its original location? (b) 
What time interval does this trip around the Moon require?

42. A pendulum with a cord of 
length r 5 1.00 m swings in 
a vertical plane (Fig. P4.42). 
When the pendulum is in the 
two horizontal positions u 5 
90.08 and u 5 2708, its speed is 
5.00 m/s. Find the magnitude 
of (a) the radial acceleration 
and (b) the tangential accel-
eration for these positions. 
(c)  Draw vector diagrams to 
determine the direction of the 
total acceleration for these two 
positions. (d) Calculate the 
magnitude and direction of 
the total acceleration at these 
two positions.

43. A spring cannon is located at the edge of a table that is 
1.20  m above the floor. A steel ball is launched from the 
cannon with speed vi at 35.08 above the horizontal. (a) Find 
the horizontal position of the ball as a function of vi at the 
instant it lands on the floor. We write this function as x(vi). 
Evaluate x for (b) vi 5 0.100 m/s and for (c) vi 5 100 m/s. 
(d) Assume vi is close to but not equal to zero. Show that one 
term in the answer to part (a) dominates so that the func-
tion x(vi) reduces to a simpler form. (e) If vi is very large, 
what is the approximate form of x(vi)? (f) Describe the over-
all shape of the graph of the function x(vi).

44. A projectile is launched from the point (x 5 0, y 5 0), 
with velocity s12.0i

⁄
1 49.0 j

⁄
d m/s, at t 5 0. (a) Make a 

table listing the projectile’s distance | rS| from the ori-
gin at the end of each second thereafter, for 0 # t #  
10 s. Tabulating the x and y coordinates and the compo-
nents of velocity vx and vy will also be useful. (b) Notice 
that the projectile’s distance from its starting point 
increases with time, goes through a maximum, and 
starts to decrease. Prove that the distance is a maximum 
when the position vector is perpendicular to the veloc-
ity. Suggestion: Argue that if vS is not perpendicular to 
 rS, then | rS| must be increasing or decreasing. (c) Determine 
the magnitude of the maximum displacement. (d) Explain 
your method for solving part (c).

45. A fisherman sets out upstream on a river. His small boat, pow-
ered by an outboard motor, travels at a constant speed v in 
still water. The water flows at a lower constant speed vw. The 
fisherman has traveled upstream for 2.00 km when his ice 
chest falls out of the boat. He notices that the chest is miss-
ing only after he has gone upstream for another 15.0 min. At 
that point, he turns around and heads back downstream, all 
the time traveling at the same speed relative to the water. He 
catches up with the floating ice chest just as he returns to his 
starting point. How fast is the river flowing? Solve this prob-
lem in two ways. (a) First, use the Earth as a reference frame. 
With respect to the Earth, the boat travels upstream at speed 
v 2 vw and downstream at v 1 vw. (b) A second much simpler 

and more elegant solution is obtained by using the water as 
the reference frame. This approach has important applica-
tions in many more complicated problems; examples are cal-
culating the motion of rockets and satellites and analyzing 
the scattering of subatomic particles from massive targets.

46. An outfielder throws a baseball to his catcher in an attempt 
to throw out a runner at home plate. The ball bounces once 
before reaching the catcher. Assume the angle at which the 
bounced ball leaves the ground is the same as the angle at 
which the outfielder threw it as shown in Figure P4.46, but 
that the ball’s speed after the bounce is one-half of what it 
was before the bounce. (a) Assume the ball is always thrown 
with the same initial speed and ignore air resistance. At 
what angle u should the fielder throw the ball to make it go 
the same distance D with one bounce (blue path) as a ball 
thrown upward at 45.08 with no bounce (green path)? (b) 
Determine the ratio of the time interval for the one-bounce 
throw to the flight time for the no-bounce throw.

47. Do not hurt yourself; do not strike your hand against any-
thing. Within these limitations, describe what you do to  
give your hand a large acceleration. Compute an order-of-
magnitude estimate of this acceleration, stating the quanti-
ties you measure or estimate and their values.

48. You are on the Pirates of the Caribbean attraction in the 
Magic Kingdom at Disney World. Your boat rides through 
a pirate battle, in which cannons on a ship and in a fort are 
firing at each other. While you are aware that the splashes 
in the water do not represent actual cannonballs, you begin 
to wonder about such battles in the days of the pirates. Sup-
pose the fort and the ship are separated by 75.0 m. You see 
that the cannons in the fort are aimed so that their cannon-
balls would be fired horizontally from a height of 7.00 m 
above the water. (a) You wonder at what speed they must 
be fired in order to hit the ship before falling in the water. 
(b)  Then, you think about the sludge that must build up 
inside the barrel of a cannon. This sludge should slow down 
the cannonballs. A question occurs in your mind: if the can-
nonballs can be fired at only 50.0% of the speed found ear-
lier, is it possible to fire them upward at some angle to the 
horizontal so that they would reach the ship?

CHallenge ProbleMs

49. A skier leaves the ramp of a ski jump with a velocity of  
v 5 10.0 m/s at u 5 15.08 above the horizontal as shown 
in Figure P4.49 (page 94). The slope where she will land is 
inclined downward at f 5 50.08, and air resistance is neg-
ligible. Find (a) the distance from the end of the ramp to 
where the jumper lands and (b) her velocity components 
just before the landing. (c) Explain how you think the 
results might be affected if air resistance were included.

ar

at

r

u

f

gS 

aS 

Figure P4.42

CR

45.0°
θ θ

D

Figure P4.46

 Problems 93

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



94 Chapter 4 Motion in Two Dimensions

50. A projectile is fired up an incline (incline angle f) with an 
initial speed vi at an angle ui with respect to the horizontal 
(ui . f) as shown in Figure P4.50. (a) Show that the projec-
tile travels a distance d up the incline, where 

d 5
2vi

2 cos ui sinsui 2 fd

g cos 2 f

  (b) For what value of ui is d a maximum, and what is that 
maximum value?

51. Two swimmers, Chris and Sarah, start together at the 
same point on the bank of a wide stream that flows with a 
speed v. Both move at the same speed c (where c . v) rela-
tive to the water. Chris swims downstream a distance L and 
then upstream the same distance. Sarah swims so that her 
motion relative to the Earth is perpendicular to the banks 
of the stream. She swims the distance L and then back the 
same distance, with both swimmers returning to the start-
ing point. In terms of L, c, and v, find the time intervals 
required (a) for Chris’s round trip and (b) for Sarah’s round 
trip. (c) Explain which swimmer returns first.

52. In the What If? section of Example 4.5, it was claimed that 
the maximum range of a ski jumper occurs for a launch 
angle u given by

u 5 458 2
f

2

  where f is the angle the hill makes with the horizontal in 
Figure 4.15. Prove this claim by deriving the equation above.

53. A fireworks rocket explodes at height h, the peak of its verti-
cal trajectory. It throws out burning fragments in all direc-
tions, but all at the same speed v. Pellets of solidified metal 
fall to the ground without air resistance. Find the smallest 
angle that the final velocity of an impacting fragment makes 
with the horizontal.
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The Laws of Motion

Storyline. You have returned home from your trip to Catalina 
Island in the previous two chapters. Your family is having a picnic to celebrate a 
birthday, so there are many people in your backyard on a beautiful day. Someone 
suggests an egg toss contest. You decide to offer some advice to your cousin and 
instruct her to move her hands backward just as she catches the egg. Your cousin 
looks you in the eye and says, “Why?” You are tempted to say, “Because that’s 
just how you do it,” but then consider the deeper implications of your cousin’s 
question. Why is it that you move your hands backward? What happens if you hold 
your hands in a fixed position and catch the egg? Should you have your cousin try 
this? You take your cousin to the computer and have her search for YouTube videos 
involving catching an egg, and then you notice some videos showing the results of 
throwing an egg into a vertical sheet. As you and your cousin watch these videos, 
both of you begin to understand the physics of throwing and catching eggs.

ConneCtions In the previous chapters, we learned how to describe the 
motion of particles and objects that can be modeled as particles. We saw motion 
changing in various ways. The acceleration of a car is a change in its velocity. The 
direction of the velocity of a thrown baseball changes as it flies through the air. 
We can describe these changes with the material in the previous chapters, but 
what causes these changes? Such a question represents a transition from kine-
matics, the description of motion, to dynamics, the study of causes of changes in 
motion. We will see that force is the cause of changes in motion, and will study 
the effects of force through the laws of motion as handed down to us by Isaac 
Newton. The notion of force will be used again and again in future chapters: grav-
itational forces in Chapter 13, electric forces in Chapter 22, magnetic forces in 
Chapter 28, nuclear forces in Chapter 43, and more.

5.1 The Concept of Force

5.2 Newton’s First Law and 
Inertial Frames

5.3 Mass

5.4 Newton’s Second Law

5.5 The Gravitational Force 
and Weight

5.6 Newton’s Third Law

5.7 Analysis Models Using 
Newton’s Second Law

5.8 Forces of Friction

5

Your cousin prepares to catch a raw egg thrown to her at a birthday party. (Sue McDonald/
Shutterstock.com)
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96 Chapter 5 The Laws of Motion

   5.1    The Concept of Force
Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the 
word force refers to an interaction with an object by means of muscular activity and 
some change in the object’s velocity. Forces do not always cause motion, however. 
For example, when you are sitting, a gravitational force acts on your body and yet 
you remain stationary. As a second example, you can push (in other words, exert a 
force) on a large boulder and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this 
and related questions by stating that forces are what cause any change in the velocity  
of an object. The Moon’s velocity changes in direction as it moves in a nearly circular  
orbit around the Earth. This change in velocity is caused by the gravitational force 
exerted by the Earth on the Moon.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a 
stationary cart is pulled, as in Figure 5.1b, the cart moves. When a football is kicked, 
as in Figure 5.1c, it is both deformed and set in motion. These situations are all 
examples of a class of forces called contact forces. That is, they involve physical contact 
between two objects. Other examples of contact forces are the force exerted by gas 
molecules on the walls of a container and the force exerted by your feet on the floor.

Another class of forces, known as field forces, does not involve physical contact 
between two objects. These forces act through empty space. The gravitational force 
of attraction between two objects with mass, illustrated in Figure 5.1d, is an exam-
ple of this class of force. The gravitational force keeps objects bound to the Earth 
and the planets in orbit around the Sun. Another common field force is the electric 
force that one electric charge exerts on another (Fig. 5.1e), such as the attractive 
electric force between an electron and a proton that form a hydrogen atom. A third 
example of a field force is the force a bar magnet exerts on a piece of iron (Fig. 5.1f).

The distinction between contact forces and field forces is not as sharp as you 
may have been led to believe by the previous discussion. When examined at the 
atomic level, all the forces we classify as contact forces turn out to be caused by 
electric (field) forces of the type illustrated in Figure 5.1e. Nevertheless, in devel-
oping models for macroscopic phenomena, it is convenient to use both classifica-
tions of forces. The only known fundamental forces in nature are all field forces:  
(1) gravitational forces between objects, (2) electromagnetic forces between electric 
charges, (3) strong forces between subatomic particles, and (4) weak forces that arise in 
certain radioactive decay processes. In classical physics, we are concerned only with 
gravitational and electromagnetic forces. We will discuss strong and weak forces in 
Chapter 44.

b c
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Figure 5.1 Some examples of 
applied forces. In each case, a 
force is exerted on the object 
within the boxed area. Some 
agent in the environment exter-
nal to the boxed area exerts a 
force on the object.

Isaac Newton
English physicist and mathematician 
(1642–1727)
Isaac Newton was one of the most bril-
liant scientists in history. Before the age 
of 30, he formulated the basic concepts 
and laws of mechanics, discovered 
the law of universal gravitation, and 
invented the mathematical methods 
of calculus. As a consequence of his 
theories, Newton was able to explain 
the motions of the planets, the ebb 
and flow of the tides, and many special 
features of the motions of the Moon 
and the Earth. He also interpreted many 
fundamental observations concerning 
the nature of light. His contributions to 
physical theories dominated scientific 
thought for two centuries and remain 
important today.
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The Vector Nature of Force
It is possible to use the deformation of a spring to measure force. Suppose a vertical 
force is applied to a spring scale that has a fixed upper end as shown in Figure 5.2a. 
The spring elongates when the force is applied, and a pointer on the scale reads 
the extension of the spring. We can calibrate the spring by defining a reference 
force F

S
1 as the force that produces a pointer reading of 1.00 cm. If we now apply a 

different downward force F
S

2 whose magnitude is twice that of the reference force 
F
S

1 as seen in Figure 5.2b, the pointer moves to 2.00 cm. Figure 5.2c shows that the 
combined effect of the two collinear forces is the sum of the effects of the individ-
ual forces.

Now suppose the two forces are applied simultaneously with F
S

1 downward and 
F
S

2 horizontal as illustrated in Figure 5.2d. In this case, the pointer reads 2.24 cm.  
The single force F

S
 that would produce this same reading is the sum of the two vec 

tors F
S

1 and F
S

2 as described in Figure 5.2d. That is, u F
S

1u 5 ÏF1
21  F2

2 5 2.24 units, 
and its direction is u 5 tan21 (20.500) 5 226.6°. Because forces have been experi-
mentally verified to behave as vectors, you must use the rules of vector addition to 
obtain the net force on an object.

   5.2    Newton’s First Law and Inertial Frames
We begin our study of forces by imagining some physical situations involving a puck 
on a perfectly level air hockey table (Fig. 5.3). You expect that the puck will remain 
stationary when it is placed gently at rest on the table. Now imagine your air hockey 
table is located on a train moving with constant velocity along a perfectly smooth 
track. If the puck is placed on the table, the puck again remains where it is placed. 
If the train were to accelerate, however, the puck would start moving along the 
table opposite the direction of the train’s acceleration, just as a set of papers on 
your dashboard falls onto the floor of your car when you step on the accelerator.

As we saw in Section 4.6, a moving object can be observed from any number of 
reference frames. Newton’s first law of motion, sometimes called the law of inertia, 
defines a special set of reference frames called inertial frames. This law can be stated 
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Figure 5.2 The vector nature 
of a force is tested with a spring 
scale.

Airflow

Electric blower

Figure 5.3 On an air hockey 
table, air blown through holes in 
the surface supports the puck and 
allows it to move almost without 
friction across the table. If the 
table is not accelerating, a puck 
placed on the table will remain 
at rest.
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98 Chapter 5 The Laws of Motion

Such a reference frame is called an inertial frame of reference. When the puck is 
on the air hockey table located on the ground, you are observing it from an inertial 
reference frame; there are no horizontal interactions of the puck with any other 
objects, and you observe it to have zero acceleration in that direction. When you 
are on the train moving at constant velocity, you are also observing the puck from 
an inertial reference frame. Any reference frame that moves with constant velocity 
relative to an inertial frame is itself an inertial frame. When you and the train accel-
erate, however, you are observing the puck from a noninertial reference frame 
because you and the train are accelerating relative to the inertial reference frame 
of the Earth’s surface. While the puck appears to be accelerating according to your 
observations, a reference frame can be identified in which the puck has zero accel-
eration. For example, an observer standing outside the train on the ground sees 
the puck sliding relative to the table but always moving with the same velocity with 
respect to the ground as the train had before it started to accelerate (because there 
is almost no friction to “tie” the puck and the train together). Therefore, Newton’s 
first law is still satisfied even though your observations as a rider on the train show 
an apparent acceleration relative to you.

A reference frame that moves with constant velocity relative to the distant stars is 
the best approximation of an inertial frame, and for our purposes we can consider 
the Earth as being such a frame. The Earth is not really an inertial frame because 
of its orbital motion around the Sun and its rotational motion about its own axis, 
both of which involve centripetal accelerations. These accelerations are small com-
pared with g, however, and can often be neglected. For this reason, we model the 
Earth as an inertial frame, along with any other frame attached to it.

Let us assume we are observing an object from an inertial reference frame. (We 
will return to observations made in noninertial reference frames in Section 6.3.) 
Before about 1600, scientists believed that the natural state of matter was the state of 
rest. Observations showed that moving objects eventually stopped moving. Galileo  
was the first to take a different approach to motion and the natural state of matter.  
He devised thought experiments and concluded that it is not the nature of an object 
to stop once set in motion: rather, it is its nature to resist changes in its motion. In his 
words, “Any velocity once imparted to a moving body will be rigidly maintained as 
long as the external causes of retardation are removed.” For example, a spacecraft 
drifting through empty space with its engine turned off will keep moving forever. It 
would not seek a “natural state” of rest.

Given our discussion of observations made from inertial reference frames, we 
can pose a more practical statement of Newton’s first law of motion than that in the 
previous screened statement:

Inertial frame of reference 

If an object does not interact with other objects, it is possible to identify a ref-
erence frame in which the object has zero acceleration.

A theoretical statement 
of Newton’s first law

In the absence of external forces and when viewed from an inertial refer-
ence frame, an object at rest remains at rest and an object in motion con-
tinues in motion with a constant velocity (that is, with a constant speed in a 
straight line).

A more practical statement 
of Newton’s first law

In other words, when no force acts on an object, the acceleration of the object is 
zero. From the first law, we conclude that any isolated object (one that does not inter-
act with its environment) is either at rest and stays at rest, or is moving with con-
stant velocity. The tendency of an object to resist any attempt to change its velocity 
is called inertia. Given the statement of the first law above, we can conclude that an 
object that is accelerating must be experiencing a force. In turn, from the first law, 
we can define force as that which causes a change in motion of an object.Definition of force 

PITFall PreVeNTIoN 5.1
Newton’s First Law Newton’s first 
law does not say what happens for 
an object with zero net force, that 
is, multiple forces that cancel; it 
says what happens in the absence 
of external forces. This subtle but 
important difference allows us to 
define force as that which causes 
a change in the motion. The 
description of an object under the 
effect of forces that balance is cov-
ered by Newton’s second law.

in a theoretical manner as follows:
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Q uICk QuIz 5.1 Which of the following statements is correct? (a) It is possible for 
an object to have motion in the absence of forces on the object. (b) It is possible to 
have forces on an object in the absence of motion of the object. (c) Neither state-
ment (a) nor statement (b) is correct. (d) Both statements (a) and (b) are correct.

   5.3    Mass
Imagine playing catch with either a basketball or a bowling ball. Which ball is more 
likely to keep moving when you try to catch it? Which ball requires more effort to 
throw it? The bowling ball requires more effort. In the language of physics, we say 
that the bowling ball is more resistant to changes in its velocity than the basketball. 
How can we quantify this concept?

Mass is that property of an object that specifies how much resistance an object 
exhibits to changes in its velocity, and as we learned in Section 1.1, the SI unit of 
mass is the kilogram. Experiments show that the greater the mass of an object, the 
less that object accelerates under the action of a given applied force.

To describe mass quantitatively, we conduct experiments in which we compare 
the accelerations a given force produces on different objects. Suppose a force act-
ing on an object of mass m1 produces a change in motion of the object that we can 
quantify with the object’s acceleration aS1, and the same force acting on an object of 
mass m2 produces an acceleration aS2. The ratio of the two masses is defined as the 
inverse ratio of the magnitudes of the accelerations produced by the force:

 
m1

m2

;
a2

a1

 (5.1)

For example, if a given force acting on a 3-kg object produces an acceleration of  
4 m/s2, the same force applied to an object with twice the mass, 6 kg, produces an accel-
eration with half the magnitude, 2 m/s2. According to a huge number of similar obser-
vations, we conclude that the magnitude of the acceleration of an object is inversely 
proportional to its mass when acted on by a given force. If one object has a known mass, 
the mass of the other object can be obtained from acceleration measurements.

As mentioned in Chapter 1, mass is an inherent property of an object and is 
independent of the object’s surroundings and of the method used to measure it. 
Also, mass is a scalar quantity and thus obeys the rules of ordinary arithmetic. For 
example, if you combine a 3-kg mass with a 5-kg mass, the total mass is 8 kg. This 
result can be verified experimentally by comparing the acceleration that a known 
force gives to several objects separately with the acceleration that the same force 
gives to the same objects combined as one unit.

Mass should not be confused with weight. Mass and weight are two different 
quantities. The weight of an object is equal to the magnitude of the gravitational 
force exerted on the object and varies with location (see Section 5.5). For example, 
a person weighing 180 lb on the Earth weighs only about 30 lb on the Moon. On the 
other hand, the mass of an object is the same everywhere: an object having a mass 
of 2 kg on the Earth also has a mass of 2 kg on the Moon.

   5.4    Newton’s Second Law
Newton’s first law explains what happens to an object when no forces act on it: it 
maintains its original motion; it either remains at rest or moves in a straight line 
with constant speed. Newton’s second law answers the question of what happens to 
an object when one or more forces act on it.

Imagine performing an experiment in which you push a block of mass m across 
a frictionless, horizontal surface. When you exert some horizontal force F

S
 on the 

block, it moves with some acceleration aS. If you apply a force twice as great on the 
same block, experimental results show that the acceleration of the block doubles;  

 Definition of mass 

  Mass and weight are 
different quantities

PITFall PreVeNTIoN 5.2
Force Is the Cause of Changes 
in Motion An object can have 
motion in the absence of forces 
as described in Newton’s first law. 
Therefore, don’t interpret force 
as the cause of motion. Force is the 
cause of changes in motion.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



100 Chapter 5 The Laws of Motion

if you increase the applied force to 3F
S

, the acceleration triples; and so on. From 
such observations, we conclude that the acceleration of an object is directly propor-
tional to the force acting on it: F

S
~ aS. This idea was first introduced in Section 2.4  

when we discussed the direction of the acceleration of an object. We also know 
from Equation 5.1 that the magnitude of the acceleration of an object is inversely 
proportional to its mass: uaSu ~ 1ym.

These experimental observations are summarized in Newton’s second law:

When viewed from an inertial reference frame, the acceleration of an object 
is directly proportional to the net force acting on it and inversely proportional 
to its mass:

aS ~
o  F

S

m
 

If we choose a proportionality constant of 1, we can relate mass, acceleration, 
and force through the following mathematical statement of Newton’s second law:1

 o  F
S

5 maS  (5.2)

In both the textual and mathematical statements of Newton’s second law, we have 
indicated that the acceleration is due to the net force o F

S
 acting on an object. The 

net force on an object is the vector sum of all forces acting on the object. (Other 
names used for the net force include the total force, the resultant force, and the unbal-
anced force.) In solving a problem using Newton’s second law, it is imperative to 
determine the correct net force on an object. Many forces may be acting on an 
object, but there is only one acceleration of the object.

Equation 5.2 is a vector expression and hence is equivalent to three component 
equations:

 o  Fx 5 max  o  Fy 5 may  o  Fz 5 maz (5.3)

Q uICk QuIz 5.2 An object experiences no acceleration. Which of the follow-
ing cannot be true for the object? (a) A single force acts on the object. (b) No 
forces act on the object. (c) Forces act on the object, but the forces cancel.

Q uICk QuIz 5.3 You push an object, initially at rest, across a frictionless 
floor with a constant force for a time interval Dt, resulting in a final speed of 
v for the object. You then repeat the experiment, but with a force that is twice 
as large. What time interval is now required to reach the same final speed v? 
(a) 4 Dt (b) 2 Dt  (c) Dt (d) Dt/2 (e) Dt/4

The SI unit of force is the newton (N). A force of 1 N is the force that, when act-
ing on an object of mass 1 kg, produces an acceleration of 1 m/s2. From this defini-
tion and Newton’s second law, we see that the newton can be expressed in terms of 
the following fundamental units of mass, length, and time:

 1 N ; 1 kg ? m/s2 (5.4)

In the U.S. customary system, the unit of force is the pound (lb). A force of 1 lb 
is the force that, when acting on a 1-slug mass,2 produces an acceleration of 1 ft/s2:

 1 lb ; 1 slug ? ft/s2 

A convenient approximation is 1 N < 14 lb.

Newton’s second law 

Newton’s second law: 
component form

Definition of the newton 

1Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat the relativistic 
situation in Chapter 38.
2The slug is the unit of mass in the U.S. customary system and is that system’s counterpart of the SI unit the kilogram. 
Because most of the calculations in our study of classical mechanics are in SI units, the slug is seldom used in this text.

PITFall PreVeNTIoN 5.3
m aS Is Not a Force Equation 5.2 
does not say that the product maS 
is a force. All forces on an object 
are added vectorially to generate 
the net force on the left side of the 
equation. This net force is then 
equated to the product of the mass 
of the object and the acceleration 
that results from the net force. Do 
not include an “maS force” in your 
analysis of the forces on an object.
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Why do you move your hands backward when you catch the egg in the opening 
storyline? Imagine holding your hands stiffly and not moving them as you catch 
the egg. Then the egg will hit your hand and be brought to rest in a very short 
time interval. As a result, the magnitude of the acceleration of the egg will be 
large. According to Equation 5.2, this will require a large force from your hands. 
This large force is sufficient to break the shell of the egg. If you move your hands 
backward, however, and slowly bring the egg to rest, the acceleration is of a much 
smaller magnitude. This, in turn, requires a much smaller force, which can keep 
the shell of the egg intact.

Throwing the egg into the sheet is similar: when the egg strikes the sheet, the 
sheet moves in the same direction in response, bringing the egg to a lower velocity 
over a relatively long distance.

 Example 5.1    An Accelerating Hockey Puck

A hockey puck having a mass of 0.30 kg slides on the frictionless, hori-
zontal surface of an ice rink. Two hockey sticks strike the puck simulta-
neously, exerting the forces on the puck shown in Figure 5.4. The force 
F
S

1 has a magnitude of 5.0 N, and is directed at u 5 20° below the  
x axis. The force F

S
2 has a magnitude of 8.0 N and its direction is 

f 5 60° above the x axis. Determine both the magnitude and the direc-
tion of the puck’s acceleration.

S O L U T I O N

Conceptualize Study Figure 5.4. Using your expertise in vector addi-
tion from Chapter 3, predict the approximate direction of the net force 
vector on the puck. The acceleration of the puck will be in the same 
direction.

x

y

60�

F2  =  8.0 N
F1  =  5.0 N

20�

F1
S

F2
S

Figure 5.4 (Exam-
ple 5.1) A hockey 
puck moving on a 
frictionless surface 
is subject to two 
forces F

S
1 and F

S
2.

Categorize Because we can determine a net force and we want an acceleration, this problem is categorized as one that may 
be solved using Newton’s second law. In Section 5.7, we will formally introduce the particle under a net force analysis model to 
describe a situation such as this one.

Analyze Find the component of the net force acting on o Fx 5 F1x 1 F2x 5 F1 cos u 1 F2 cos f 
the puck in the x direction:

Find the component of the net force acting on the  o Fy 5 F1y 1 F2y 5 F1 sin u 1 F2 sin f 
puck in the y direction:

Use Newton’s second law in component form (Eq. 5.3)  ax 5
o Fx

m
5  

F1 cos u 1 F2 cos f

m
 

to find the x and y components of the puck’s  

ay 5
o Fy

m
5  

F1 sin u 1 F2 sin f

m

 
acceleration:

Substitute numerical values: ax 5
s5.0 Nd cos s2208d 1 s8.0 Nd cos s608d

0.30 kg
5 29 mys2

 ay 5
s5.0 Nd sin s2208d 1 s8.0 Nd sin s608d

0.30 kg
5 17 mys2

Find the magnitude of the acceleration:  a 5 Ïs29 mys2d2 1 s17 mys2d2 5  34 mys2

Find the direction of the acceleration relative to the   u 5 tan21 1
ay

ax
2 5 tan21 117

292 5 318  
positive x axis:

Finalize The vectors in Figure 5.4 can be added graphically to check the reasonableness of our answer. Because the accel-
eration vector is along the direction of the resultant force, a drawing showing the resultant force vector helps us check the 
validity of the answer. (Try it!)

continued
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102 Chapter 5 The Laws of Motion

5.1 c o n t i n u e d

W H A T  I F ? Suppose three hockey sticks strike the puck simultaneously, with two of them exerting the forces shown in 
Figure 5.4. The result of the three forces is that the hockey puck shows no acceleration. What must be the components of the 
third force?

Answer If there is zero acceleration, the net force acting on the puck must be zero. Therefore, the three forces must cancel. 
The components of the third force must be of equal magnitude and opposite sign compared to the components of the net 
force applied by the first two forces so that all the components add to zero. Therefore, F3x 5 2o  Fx 5 2s0.30 kgds29 mys2d 5 
28.7 N and F3y 5 2o  Fy 5 2s0.30 kgds17 mys2d 5 25.2 N.

   5.5    The Gravitational Force and Weight
All objects are attracted to the Earth. The attractive force exerted by the Earth 
on an object is called the gravitational force F

S
g. This force is directed toward the  

center of the Earth,3 and its magnitude is called the weight of the object.
We saw in Section 2.6 that a freely falling object experiences an acceleration gS 

acting toward the center of the Earth. Applying Newton’s second law o F
S

5 maS to 
a freely falling object of mass m, with aS 5 gS and o F

S
5 F

S
g, gives

 F
S

g 5 mgS  (5.5)

Therefore, the weight of an object, being defined as the magnitude of F
S

g, is given by

 Fg = mg  (5.6)

Because it depends on g, weight varies with geographic location. Because g 
decreases with increasing distance from the center of the Earth, objects weigh less 
at higher altitudes than at sea level. For example, a 1 000-kg pallet of bricks used 
in the construction of the Empire State Building in New York City weighed 9 800 N 
at street level, but weighed about 1 N less by the time it was lifted from sidewalk 
level to the top of the building. As another example, suppose a student has a mass 
of 70.0 kg. The student’s weight in a location where g 5 9.80 m/s2 is 686 N (about 
150 lb). At the top of a mountain, however, where g 5 9.77 m/s2, the student’s weight 
is only 684 N. Therefore, if you want to lose weight without going on a diet, climb a 
mountain or weigh yourself at 30 000 ft during an airplane flight!

Equation 5.6 indicates that there is a clear difference between mass and weight. 
The life-support unit strapped to the back of astronaut Harrison Schmitt in Fig-
ure 5.5 weighed 300 lb on the Earth and had a mass of 136 kg. During his training, 
a 50-lb mockup with a mass of 23 kg was used. Although this strategy effectively 
simulated the reduced weight the unit would have on the Moon, it did not correctly 
mimic the unchanging mass. It was more difficult to accelerate the 136-kg unit 
(perhaps by jumping or twisting suddenly) on the Moon than it was to accelerate 
the 23-kg unit on the Earth.

Equation 5.6 quantifies the gravitational force on the object, but notice that this 
equation does not require the object to be moving. Even for a stationary object or 
for an object on which several forces act, Equation 5.6 can be used to calculate the 
magnitude of the gravitational force. The result is a subtle shift in the interpreta-
tion of m in the equation. The mass m in Equation 5.6 determines the strength of 
the gravitational attraction between the object and the Earth. This role is com-
pletely different from that previously described for mass, that of measuring the 
resistance to changes in motion in response to an external force. In that role, mass 
is also called inertial mass. We call m in Equation 5.6 the gravitational mass. Even 
though this quantity is different in behavior from inertial mass, it is one of the 

PITFall PreVeNTIoN 5.4
“Weight of an Object” We are 
familiar with the everyday phrase, 
the “weight of an object.” Weight, 
however, is not an inherent prop-
erty of an object; rather, it is a 
measure of the gravitational force 
between the object and the Earth 
(or other planet). Therefore, 
weight is a property of a system of 
items: the object and the Earth.

PITFall PreVeNTIoN 5.5
Kilogram Is Not a Unit of Weight  
You may have seen the “con-
version” 1 kg 5 2.2 lb. Despite 
popular statements of weights 
expressed in kilograms, the kilo-
gram is not a unit of weight, it is 
a unit of mass. The conversion 
statement is not an equality; it is 
an equivalence that is valid only 
on the Earth’s surface. We first 
raised this issue in the Chapter 1 
storyline.

 3This statement ignores that the mass distribution of the Earth is not perfectly spherical.

Figure 5.5 Astronaut Harrison 
Schmitt carries a backpack on  
the Moon.
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experimental conclusions in Newtonian dynamics that gravitational mass and iner-
tial mass have the same value.

Although this discussion has focused on the gravitational force on an object 
due to the Earth, the concept is generally valid on any planet. The value of g will 
vary from one planet to the next, but the magnitude of the gravitational force will 
always be given by the value of mg.

Q uICk QuIz 5.4 Suppose you are talking by interplanetary telephone to a 
friend who lives on the Moon. He tells you that he has just won a newton of gold 
in a contest. Excitedly, you tell him that you entered the Earth version of the 
same contest and also won a newton of gold! Who is richer? (a) You are. (b) Your 
friend is. (c) You are equally rich.

   5.6    Newton’s Third Law
If you press against a corner of this textbook with your fingertip, the book pushes 
back and makes a small dent in your skin. If you push harder, the book does the same 
and the dent in your skin is a little larger. This simple activity illustrates that forces 
are interactions between two objects: when your finger pushes on the book, the book 
pushes back on your finger. This important principle is known as Newton’s third law:

 Conceptual Example 5.2    How Much Do You Weigh in an Elevator?

You have most likely been in an elevator that accelerates upward as it moves toward a higher floor. In this case, you feel 
heavier. In fact, if you are standing on a bathroom scale at the time, the scale measures a force having a magnitude that is 
greater than your weight. Therefore, you have tactile and measured evidence that leads you to believe you are heavier in 
this situation. Are you heavier?

S O L U T I O N

No; your weight is unchanged. Your experiences are due to your being in a noninertial reference frame. To provide the accel-
eration upward, the floor or scale must exert on your feet an upward force that is greater in magnitude than your weight. It is 
this greater force you feel, which you interpret as feeling heavier. The scale reads the force with which it pushes up on you, not 
your weight (unless you are at rest), and so its reading increases. We will examine the effect of the acceleration of an elevator 
on apparent weight in Example 5.8.

If two objects interact, the force F
S

12 exerted by object 1 on object 2 is equal 
in magnitude and opposite in direction to the force F

S
21 exerted by object 2 

on object 1:

 F
S

12 5 2F
S

21 (5.7)

 Newton’s third law

When it is important to designate forces as interactions between two objects, we 
will use this subscript notation, where F

S
ab means “the force exerted by a on b.” The 

third law is illustrated in Figure 5.6. The force that object 1 exerts on object 2 is 
popularly called the action force, and the force of object 2 on object 1 is called the 
reaction force. These italicized terms are not scientific terms; furthermore, either 
force can be labeled the action or reaction force. We will use these terms for con-
venience. In all cases, the action and reaction forces act on different objects and 
must be of the same type (gravitational, electrical, etc.). For example, the force  
acting on a freely falling projectile is the gravitational force exerted by the  
Earth on the projectile F

S
g 5 F

S
Ep (E 5 Earth, p 5 projectile), and the magnitude of 

this force is mg. The reaction to this force is the gravitational force exerted by the pro-
jectile on the Earth F

S
pE 5 2F

S
Ep. The reaction force F

S
pE must accelerate the Earth 

toward the projectile just as the action force F
S

Ep accelerates the projectile toward  

2

1

F12
S

F12 �
S

F21
S

�F21
S

Figure 5.6  Newton’s third law. 
The force F

S
12 exerted by object 1 

on object 2 is equal in magnitude 
and opposite in direction to  
the force F

S
21 exerted by object 2  

on object 1.
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the Earth. Because the Earth has such a large mass, however, its acceleration due to 
this reaction force is negligibly small.

Consider a computer monitor at rest on a table as in Figure 5.7a. The gravita-
tional force on the monitor is F

S
g 5 F

S
Em. The reaction to this force is the force 

F
S

mE 5 2F
S

Em exerted by the monitor on the Earth. The monitor does not acceler-
ate because it is held up by the table. The table exerts on the monitor an upward 
force nS 5 F

S
tm, called the normal force. (Normal in this context means perpendicu-

lar.) In general, whenever an object is in contact with a surface, the surface exerts 
a normal force on the object. The normal force on the monitor can have any value 
needed, up to the point of breaking the table. Because the monitor has zero accel-
eration, Newton’s second law applied to the monitor gives us o F

S
5 nS 1 mgS 5 0, 

so n j
⁄

2 mg j
⁄

5 0, or n 5 mg. The normal force balances the gravitational force on 
the monitor, so the net force on the monitor is zero. The reaction force to nS is the  
force exerted by the monitor downward on the table, F

S
mt 5 2F

S
tm 5 2nS.

Notice that the forces acting on the monitor are F
S

g and nS as shown in Figure 5.7b.  
The two forces F

S
mE and F

S
mt are exerted on objects other than the monitor.

Figure 5.7 illustrates an extremely important step in solving problems involving 
forces. Figure 5.7a shows many of the forces in the situation: those acting on the 
monitor, one acting on the table, and one acting on the Earth. Figure 5.7b, by con-
trast, shows only the forces acting on one object, the monitor, and is called a force 
diagram or a diagram showing the forces on the object. The important pictorial repre-
sentation in Figure 5.7c is called a free-body diagram. In a free-body diagram, the 
particle model is used by representing the object as a dot and showing the forces 
that act on the object as being applied to the dot. When analyzing an object sub-
ject to forces, we are interested in the net force acting on one object, which we 
will model as a particle. Therefore, a free-body diagram helps us isolate only those 
forces on the object and eliminate the other forces from our analysis.

Q uICk QuIz 5.5  (i) If a fly collides with the windshield of a fast-moving bus, 
which experiences an impact force with a larger magnitude? (a) The fly. (b) The 
bus. (c) The same force is experienced by both. (ii) Which experiences the 
greater acceleration? (a) The fly. (b) The bus. (c) The same acceleration is expe-
rienced by both.

PITFall PreVeNTIoN 5.6
n Does Not Always Equal mg In 
the situation shown in Figure 5.7 
and in many others, we find that 
n 5 mg (the normal force has the 
same magnitude as the gravita-
tional force). This result, however, 
is not generally true. If an object is 
on an incline, if there are applied 
forces with vertical components, 
or if there is a vertical acceleration 
of the system, then n ? mg. Always 
apply Newton’s second law to find 
the relationship between n and mg.

PITFall PreVeNTIoN 5.7
Newton’s Third Law Remember 
that Newton’s third-law action 
and reaction forces act on different 
objects. For example, in Figure 5.7,  
nS 5 F

S
tm 5 2mgS 5 2 F

S
Em. The 

forces nS and mgS are equal in 
magnitude and opposite in direc-
tion, but they do not represent an 
action–reaction pair because both 
forces act on the same object, the 
monitor.

PITFall PreVeNTIoN 5.8
Free-Body Diagrams The most 
important step in solving a problem 
using Newton’s laws is to draw a 
proper sketch, the free-body dia-
gram. Be sure to draw only those 
forces that act on the object you 
are isolating. Be sure to draw all 
forces acting on the object, includ-
ing any field forces, such as the 
gravitational force.

� Ftm
S

Fmt
S

FmE
S

nS � Ftm
S

nS

� Ftm
S

nS

� Fg
S S

� Fg
S

FEm
S

� Fg
S

FEm
S

a b c

FEm

Figure 5.7 (a) When a computer 
monitor is at rest on a table, the 
forces acting on the monitor are 
the normal force nS and the gravi-
tational force F

S
g. The reaction to 

nS is the force F
S

mt exerted by the 
monitor on the table. The reaction 
to F

S
g is the force F

S
mE exerted by 

the monitor on the Earth. (b) A 
force diagram shows the forces on 
the monitor. (c) A free-body diagram 
shows the monitor as a black dot 
with the forces acting on it.

 Conceptual Example 5.3    You Push Me and I’ll Push You

A large man and a small boy stand facing each other on frictionless ice. They put their hands together and push against 
each other so that they move apart.

(A) Who moves away with the higher speed?
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   5.7    Analysis Models Using Newton’s Second Law
In this section, we discuss two analysis models for solving problems in which 
objects are either in equilibrium saS 5 0d or accelerating under the action of con-
stant external forces. Remember that when Newton’s laws are applied to an object, 
we are interested only in external forces that act on the object. If the objects are 
modeled as particles, we need not worry about rotational motion such as spinning. 
For now, we also neglect the effects of friction in those problems involving motion, 
which is equivalent to stating that the surfaces are frictionless. (The friction force is 
discussed in Section 5.8.)

We usually neglect the mass of any ropes, strings, or cables involved. In this 
approximation, the magnitude of the force exerted by any element of the rope on 
the adjacent element is the same for all elements along the rope. In problem state-
ments, the synonymous terms light and of negligible mass are used to indicate that 
a mass is to be ignored when you work the problems. When a rope attached to an 
object is pulling on the object, the rope exerts a force on the object in a direction 
away from the object, parallel to the rope. The magnitude T of that force is called 
the tension in the rope. Because it is the magnitude of a vector quantity, tension is 
a scalar quantity.

analysis Model: The Particle in equilibrium
If the acceleration of an object modeled as a particle is zero, the object is treated with 
the particle in equilibrium model. In this model, the net force on the object is zero:

 o F
S

5 0 (5.8)

Consider a lamp suspended from a light chain fastened to the ceiling as in Figure 
5.8a. The force diagram for the lamp (Fig. 5.8b) shows that the forces acting on the 
lamp are the downward gravitational force F

S
g and the upward force T

S
 exerted by 

the chain. Because there are no forces in the x direction, S Fx 5 0 provides no help-
ful information. The condition S Fy 5 0 gives

S Fy 5 T 2 Fg 5 0 or T 5 Fg

Again, notice that T
S

 and F
S

g are not an action–reaction pair because they act on the 
same object, the lamp. The reaction force to T

S
 is a downward force exerted by the 

lamp on the chain.
Example 5.4 (page 107) shows an application of the particle in equilibrium model.

5.3 c o n t i n u e d

S O L U T I O N

This situation is similar to what we saw in Quick Quiz 5.5. According to Newton’s third law, the force exerted by the man 
on the boy and the force exerted by the boy on the man are a third-law pair of forces, so they must be equal in magnitude. 
(A bathroom scale placed between their hands would read the same, regardless of which way it faced.) Therefore, the boy, 
having the smaller mass, experiences the greater acceleration. Both individuals accelerate for the same amount of time, 
but the greater acceleration of the boy over this time interval results in his moving away from the interaction with the 
higher speed.

(B) Who moves farther while their hands are in contact?

S O L U T I O N

Because the boy has the greater acceleration and therefore the greater average velocity, he moves farther than the man during 
the time interval during which their hands are in contact.

Fg
S

a b

T
S

Figure 5.8 (a) A lamp suspended 
from a ceiling by a chain of negli-
gible mass. (b) The forces acting 
on the lamp are the gravitational 
force F

S
g  and the force T

S
 exerted 

by the chain.
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106 Chapter 5 The Laws of Motion

analysis Model: The Particle under a Net Force
If an object experiences an acceleration, its motion can be analyzed with the parti-
cle under a net force model. The appropriate equation for this model is Newton’s 
second law, Equation 5.2:

 o  F
S

5 maS (5.2)

Consider a crate being pulled to the right on a frictionless, horizontal floor as in 
Figure 5.9a. Of course, the floor directly under the boy must have friction; other-
wise, his feet would simply slip when he tries to pull on the crate! Suppose you wish 
to find the acceleration of the crate and the force the floor exerts on it. The forces 
acting on the crate are illustrated in the free-body diagram in Figure 5.9b. Notice 
that the horizontal force T

S
 being applied to the crate acts through the rope. The 

magnitude of T
S

 is equal to the tension in the rope. In addition to the force T
S

, the 
free-body diagram for the crate includes the gravitational force F

S
g and the normal 

force nS exerted by the floor on the crate.
We can now apply Newton’s second law in component form to the crate. The only 

force acting in the x direction is T
S

. Applying S Fx 5 max to the horizontal motion gives

 o Fx 5 T 5 max or ax 5
T
m

 

No acceleration occurs in the y direction because the crate moves only horizon-
tally. Therefore, we use the particle in equilibrium model in the y direction. Apply-
ing the y component of Equation 5.8 yields

S Fy 5 n 2 Fg 5 0 or n 5 Fg

That is, the normal force has the same magnitude as the gravitational force but acts 
in the opposite direction.

If T
S

 is a constant force, the acceleration ax 5 T/m also is constant. Hence, the 
crate is also modeled as a particle under constant acceleration in the x direction, 
and the equations of kinematics from Chapter 2 can be used to obtain the crate’s 
position x and velocity vx as functions of time.

Notice from this discussion two concepts that will be important in future problem 
solving: (1) In a given problem, it is possible to have different analysis models applied in different 
directions. The crate in Figure 5.9 is a particle in equilibrium in the vertical direction 
and a particle under a net force in the horizontal direction. (2) It is possible to describe an 
object by multiple analysis models. The crate is a particle under a net force in the horizon-
tal direction and is also a particle under constant acceleration in the same direction.

In the situation just described, the magnitude of the normal force nS is equal to the 
magnitude of F

S
g, but that is not always the case, as noted in Pitfall Prevention 5.6. For 

example, suppose a book is lying on a table and you push down on the book with a force 
F
S

 as in Figure 5.10. Because the book is at rest and therefore not accelerating, S Fy 5 0, 
which gives n 2 Fg 2 F 5 0, or n 5 Fg 1 F 5 mg 1 F. In this situation, the normal force is 
greater than the gravitational force. Other examples in which n ? Fg are presented later.

Several examples below demonstrate the use of the particle in equilibrium 
model and the particle under a net force model.

a

b

nS

T
S

Fg
S

x

y

Figure 5.9 (a) A crate being 
pulled to the right on a friction-
less floor. (b) The free-body dia-
gram representing the external 
forces acting on the crate.

nS

F
S

Fg
S

Physics

Figure 5.10 When a force F
S

 
pushes vertically downward on 
another object, the normal force 
nS on the object is greater than the 
gravitational force: n 5 Fg 1 F.

aNalYsIs Model Particle in Equilibrium

Imagine an object that can be modeled as a particle. If it has several forces acting on it so that the forces all cancel, giving a net 
force of zero, the object will have an acceleration of zero. This condition is mathematically described as

 o  F
S

5 0 (5.8)

m

�F � 0
S

a � 0S
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aNalYsIs Model Particle in Equilibrium continued

Examples

 ● a chandelier hanging over a dining room table
 ● an object moving at terminal speed through a viscous medium (Chapter 6)
 ● a steel beam in the frame of a building (Chapter 12) 
 ● a boat floating on a body of water (Chapter 14)

aNalYsIs Model Particle Under a Net Force

Imagine an object that can be modeled as a particle. If it has 
one or more forces acting on it so that there is a net force on 
the object, it will accelerate in the direction of the net force. 
The relationship between the net force and the acceleration is

 o  F
S

5 m aS (5.2)

 

m

� F
S

 

aS 

Examples:

 ● a crate pushed across a factory floor
 ● a falling object acted upon by a gravitational force
 ● a piston in an automobile engine pushed by hot gases 

(Chapter 21)
 ● a charged particle in an electric field (Chapter 22)

 Example 5.4    A Traffic Light at Rest 

A traffic light weighing 122 N hangs from a cable tied to 
two other cables fastened to a support as in Figure 5.11a. 
The upper cables make angles of u1 5 37.0° and u2 5 53.0° 
with the horizontal. These upper cables are not as strong 
as the vertical cable and will break if the tension in them 
exceeds 100 N. Does the traffic light remain hanging in 
this situation, or will one of the cables break?

S O L U T I O N

Conceptualize Inspect the drawing in Figure 5.11a. Let us 
assume the cables do not break and nothing is moving.

Categorize If nothing is moving, no part of the system is accel-
erating. We can now model the light as a particle in equilibrium on 
which the net force is zero. Similarly, the net force on the knot 
(Fig. 5.11c) is zero, so it is also modeled as a particle in equilibrium.

Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.11b, and a free-body diagram for 
the knot that holds the three cables together, shown in Figure 5.11c. This knot is a convenient object to choose because all the 
forces of interest act along lines passing through the knot.

From the particle in equilibrium model, apply  S Fy 5 0   S   T3 2 Fg 5 0 
Equation 5.8 for the traffic light in the y direction:  T3 5 Fg

Choose the coordinate axes as shown in Figure 5.11c  Force x Component y Component
and resolve the forces acting on the knot into their

  T
S

1 2T1 cos u1 T1 sin u1components:
 T

S
2 T2 cos u2 T2 sin u2

   T
S

3  0 2Fg

Apply the particle in equilibrium model to the knot: (1)   S Fx 5 2T1 cos u1 1 T2 cos u2 5 0

   (2)   S Fy 5 T1 sin u1 1 T2 sin u2 1 (2Fg) 5 0

Fg
S

a b c

T2T1

T3
x

y

T
S

3

T
S

3

T
S

1

T
S

2

u1

u1

u2

u2

Figure 5.11 (Example 5.4) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) The free-body 
diagram for the knot where the three cables are joined.

continued
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108 Chapter 5 The Laws of Motion

 Conceptual Example 5.5    Forces Between Cars in a Train

Train cars are connected by couplers, which are under tension as the locomotive pulls the train. Imagine you are on a train 
speeding up with a constant acceleration. As you move through the train from the locomotive to the last car, measuring the 
tension in each set of couplers, does the tension increase, decrease, or stay the same? When the engineer applies the brakes, 
the couplers are under compression. How does this compression force vary from the locomotive to the last car? (Assume 
only the brakes on the wheels of the engine are applied.)

S O L U T I O N

While the train is speeding up, tension decreases from the front of the train to the back. The coupler between the locomotive 
and the first car must apply enough force to accelerate the rest of the cars. As you move back along the train, each coupler is 
accelerating less mass behind it. The last coupler has to accelerate only the last car, and so it is under the least tension.

When the brakes are applied, the force again decreases from front to back. The coupler connecting the locomotive to the 
first car must apply a large force to slow down the rest of the cars, but the final coupler must apply a force large enough to slow 
down only the last car.

5.4 c o n t i n u e d

Equation (1) shows that the horizontal components of T
S

1 and T
S

2 must be equal in magnitude, and Equation (2) shows that 
the sum of the vertical components of T

S
1 and T

S
2 must balance the downward force T

S
3, which is equal in  magnitude to the 

weight of the light.

Solve Equation (1) for T2 in terms of T1: (3)   T2 5 T1Scos u1

cos u2
D

Substitute this value for T2 into Equation (2): T1 sin u1 1 T1Scos u1

cos u2
D(sin u2) 2Fg 5 0

Solve for T1: T1 5
Fg

sin u1 1 cos u1 tan u2

Substitute numerical values: T1 5
122 N

sin 37.08 1 cos 37.08 tan 53.08
5 73.4 N

Using Equation (3), evaluate T2: T2 5 s73.4 NdScos 37.08

cos 53.08D 5 97.4 N

Both values are less than 100 N ( just barely for T2), so  the cables will not break.

Finalize Let us finalize this problem by imagining a change in the system, as in the following What If?

W H A T  I F ? Suppose the two angles in Figure 5.11a are equal. What would be the relationship between T1 and T2?

Answer We can argue from the symmetry of the problem that the two tensions T1 and T2 would be equal to each other. Math-
ematically, if the equal angles are called u, Equation (3) becomes

T2 5 T1Scos u
cos uD 5 T1

which also tells us that the tensions are equal. Without knowing the specific value of u, we cannot find the values of T1 and T2. 
The tensions will be equal to each other, however, regardless of the value of u.

 Example 5.6     The Runaway Car

A car of mass m is on an icy driveway inclined at an angle u as in Figure 5.12a.

(A) Find the acceleration of the car, assuming the driveway is frictionless.

S O L U T I O N

Conceptualize  Use Figure 5.12a to conceptualize the situation. From everyday experience, we know that a car on an icy 
incline will accelerate down the incline. (The same thing happens to a car on a hill with its brakes not set.)
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5.6 c o n t i n u e d

Categorize We categorize the car as a particle 
under a net force because it accelerates. Further-
more, this example belongs to a very common cat-
egory of problems in which an object moves under 
the influence of gravity on an inclined plane.

Analyze Figure 5.12b shows the free-body diagram 
for the car. The only forces acting on the car are 
the normal force nS exerted by the inclined plane, 
which acts perpendicular to the plane, and the 
gravitational force F

S
g 5 mgS, which acts vertically 

downward. For problems involving inclined planes, 
it is convenient to choose the coordinate axes with 
x along the incline and y perpendicular to it as in 
Figure 5.12b. Using similar triangles, we can show 
that the angle between the gravitational force F

S
g 

and the negative y axis in part b of Fig ure 5.12 is 
equal to the angle u that the incline makes with the horizontal in part a. With these axes, we represent the gravitational force 
by a component of magnitude mg sin u along the positive x axis and one of magnitude mg cos u along the negative y axis. Our 
choice of axes results in the car being modeled as a particle under a net force in the x direction and a particle in equilibrium 
in the y direction.

Apply these models to the car: (1)   S Fx 5 mg sin u 5 max

  (2)   S Fy 5 n 2 mg cos u 5 0 

Solve Equation (1) for ax: (3)   ax 5   g sin u

a b

y

xx u
u

mg cos u

mg sin u

g = m gS 

nS

F
S

Figure 5.12  (Example 5.6) (a) A car on a frictionless incline. (b) The free-
body diagram for the car. The black dot represents the position of the center 
of mass of the car. We will learn about center of mass in Chapter 9.

Finalize Note that the acceleration component ax is independent of the mass of the car. It depends only on the angle of incli-
nation and on g.

From Equation (2), we conclude that the component of F
S

g perpendicular to the incline is balanced by the normal force; 
that is, n 5 mg cos u. This situation is a case in which the normal force is not equal in magnitude to the weight of the object (as 
discussed in Pitfall Prevention 5.6 on page 104).

It is possible, although inconvenient, to solve the problem with “standard” horizontal and vertical axes. You may want to try 
it, just for practice.

(B) Suppose the car is released from rest at the top of the incline and the distance from the car’s front bumper to the bot-
tom of the incline is d. How long does it take the front bumper to reach the bottom of the hill, and what is the car’s speed 
as it arrives there?

S O L U T I O N

Conceptualize Imagine the car is sliding down the hill and you use a stopwatch to measure the entire time interval until it 
reaches the bottom.

Categorize This part of the problem belongs to kinematics rather than to dynamics, and Equation (3) shows that the accelera-
tion ax is constant. Therefore, you should categorize the car in this part of the problem as a particle under constant acceleration.

Analyze Defining the initial position of the front bumper 
as xi 5 0 and its final position as xf 5 d, and recognizing that  
vxi 5 0, choose Equation 2.16 from the particle under con-
stant acceleration model: 

xf 5 xi 1 vxi t 1 1
2ax t2 S d 5 1

2ax t2

Solve for t:
(4)   t 5Î2d

ax

5Î 2d
g sin u

Use Equation 2.17, with vxi 5 0, to find the final velocity of 
the car:

vxf
2 5 2axd

(5)   vxf 5 Ï2axd 5 Ï2gd sin u

continued
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5.6 c o n t i n u e d

Finalize We see from Equations (4) and (5) that the time t at which the car reaches the bottom and its final speed vxf are 
independent of the car’s mass, as was its acceleration. Notice that we have combined techniques from Chapter 2 with new tech-
niques from this chapter in this example. As we learn more techniques in later chapters, this process of combining analysis 
models and information from several parts of the book will occur more often. In these cases, use the Analysis Model Approach 
to Problem Solving discussed in Chapter 2 to help you work your way through new problems.

W H A T  I F ?  What previously solved problem does this situation become if u 5 90°?

Answer Imagine u going to 90° in Figure 5.12. The inclined plane becomes vertical, and the car is an object in free fall! 
Equation (3) becomes

ax 5 g sin u 5 g sin 90° 5 g

which is indeed the free-fall acceleration. (We find ax 5 g rather than ax 5 2g because we have chosen positive x to be down-
ward in Fig. 5.12.) Notice also that the condition n 5 mg cos u gives us n 5 mg cos 90° 5 0. That is consistent with the car falling 
downward next to the vertical plane, in which case there is no contact force between the car and the plane.

 Example 5.7    One Block Pushes Another 

Two blocks of masses m1 and m2, with m1 . m2, are placed in contact 
with each other on a frictionless, horizontal surface as in Figure 5.13a. 
A constant horizontal force F

S
 is applied to m1 as shown.

(A) Find the magnitude of the acceleration of the system.

S O L U T I O N

Conceptualize Conceptualize the situation by using Figure 5.13a and 
realize that both blocks must experience the same acceleration because 
they are in contact with each other and remain in contact throughout the 
motion.

Categorize We categorize this problem as one involving a particle under a 
net force because a force is applied to a system of blocks and we are looking 
for the acceleration of the system.

Analyze First model the combination of two blocks as a sin-
gle particle under a net force. Apply Newton’s second law to 
the combination in the x direction to find the acceleration:

  S Fx 5 F 5 (m1 1 m2)ax

  (1)   ax 5 
F

m1 1 m2

Finalize The acceleration given by Equation (1) is the same as that of a single object of mass m1 1 m2 and subject to the same force.

m2
m1

1

m1
m2

2

x

y

F
S

F
S

21P
S

 12P
S

 

nS
nS

gS 
gS 

a

b c

Figure 5.13 (Example 5.7) (a) A force is 
applied to a block of mass m1, which pushes on 
a second block of mass m2. (b) The forces act-
ing on m1. (c) The forces acting on m2.

(B) Determine the magnitude of the contact force between the two blocks.

S O L U T I O N

Conceptualize The contact force is internal to the system of two blocks. Therefore, we cannot find this force by modeling the 
whole system (the two blocks) as a single particle.

Categorize Now consider each of the two blocks individually by categorizing each as a particle under a net force.

Analyze We construct a diagram of forces acting on the object for each block as shown in Figures 5.13b and 5.13c, where the 
contact force is denoted by P

S
. From Figure 5.13c, we see that the only horizontal force acting on m2 is the contact force P

S
12 (the 

force exerted by m1 on m2), which is directed to the right.

Apply Newton’s second law to m2: (2)   S Fx 5 P12 5 m2ax

Substitute the value of the acceleration ax given by Equation (1)  (3)   P12 5 m 2ax 5 S m2

m1 1 m2
DF  

into Equation (2):
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5.7 c o n t i n u e d

Finalize This result shows that the contact force P12 is less than the applied force F. The force required to accelerate block 2 
alone must be less than the force required to produce the same acceleration for the two-block system.

To finalize further, let us check this expression for P12 by considering the forces acting on m1, shown in Figure 5.13b. 
The horizontal forces acting on m1 are the applied force F

S
 to the right and the contact force P

S
21 to the left (the  

force exerted by m2 on m1). From Newton’s third law, P
S

21 is the reaction force to P
S

12, so P21 5 P12.

Apply Newton’s second law to m1: (4)   S Fx 5 F 2 P21 5 F 2 P12 5 m1ax

Solve for P12 and substitute the value of ax from Equation (1): P12 5 F 2 m1ax 5 F 2 m1S F
m1 1 m2

D 5 S m2

m1 1 m2
DF

This result agrees with Equation (3), as it must.

W H A T  I F ?  Imagine that the force F
S

 in Figure 5.13 is applied toward the left on the right-hand block of mass m2.  
Is the magnitude of the force P

S
12 the same as it was when the force was applied toward the right on m1?

Answer When the force is applied toward the left on m2, the contact force must accelerate m1. In the original situation, the 
contact force accelerates m2. Because m1 . m2, more force is required, so the magnitude of P

S
12 is greater than in the original 

situation. To see this mathematically, modify Equation (4) appropriately and solve for P
S

12.

 Example 5.8    Weighing a Fish in an Elevator 

A person weighs a fish of mass m on a spring scale attached 
to the ceiling of an elevator as illustrated in Figure 5.14.

(A) Show that if the elevator accelerates either upward or 
downward, the spring scale gives a reading that is differ-
ent from the weight of the fish.

S O L U T I O N

Conceptualize The reading on the scale is related to the 
extension of the spring in the scale, which is related to the force 
on the end of the spring as in Figure 5.2. Imagine that the fish 
is hanging on a string attached to the end of the spring. In this 
case, the magnitude of the force exerted on the spring is equal 
to the tension T in the string. Therefore, we are looking for T. 
The force T

S
 pulls down on the spring and pulls up on the fish.

Categorize We can categorize this problem by identifying the 
fish as a particle in equilibrium if the elevator is not accelerating 
or as a particle under a net force if the elevator is accelerating.

Analyze Inspect the diagrams of the forces acting on the 
fish in Figure 5.14 and notice that the external forces acting 
on the fish are the downward gravitational force F

S
g 5 mgS 

and the force T
S

 exerted by the string. If the elevator is either 
at rest or moving at constant velocity, the fish is a particle in equilibrium, so S Fy 5 T 2 Fg 5 0 or T 5 Fg 5 mg. (Remember that 
the scalar mg is the weight of the fish.)

Now suppose the elevator is moving with an acceleration aS relative to an observer standing outside the elevator in an iner-
tial frame. The fish is now a particle under a net force.

Apply Newton’s second law to the fish: S Fy 5 T 2 mg 5 may

Solve for T: (1)   T 5 may 1 mg 5 mg Say

g
1 1D 5 Fg Say

g
1 1D

where we have chosen upward as the positive y direction. We conclude from Equation (1) that the scale reading T is greater 
than the fish’s weight mg if aS is upward, so ay is positive (Fig. 5.14a), and that the reading is less than mg if aS is downward, so ay 
is negative (Fig. 5.14b).

1
2
3

456
7
8

9 0
T
S

mg
S

1
2
3

456
7
8

9 0

T
S

mg
S

a b

aS
aS

When the elevator accelerates 
upward, the spring scale reads 
a value greater than the
weight of the fish. 

When the elevator accelerates 
downward, the spring scale 
reads a value less than the
weight of the fish. 

Figure 5.14 (Example 5.8) A fish is weighed on a spring scale in an 
accelerating elevator car.

continued
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5.8 c o n t i n u e d

(B) Evaluate the scale readings for a 40.0-N fish if the elevator moves with an acceleration ay 5 62.00 m/s2.

S O L U T I O N

Evaluate the scale reading from Equation (1) if aS is upward: T 5 s40.0 NdS2.00 mys2

9.80 mys2 1 1D5 48.2 N  

Evaluate the scale reading from Equation (1) if aS is downward: T 5 s40.0 NdS22.00 mys2

9.80 mys2 1 1D5 31.8 N

Finalize Take this advice: if you buy a fish by weight in an elevator, make sure the fish is weighed while the elevator is either 
at rest or accelerating downward! Furthermore, notice that from the information given here, one cannot determine the direc-
tion of the velocity of the elevator.

W H A T  I F ?  Suppose the woman in Figure 5.14 tires of watching the scale and exits the elevator. Then the elevator cable 
breaks and the elevator and its remaining contents are in free fall. What happens to the reading on the scale?

Answer If the elevator falls freely, the fish’s acceleration is ay 5 2g. We see from Equation (1) that the scale reading T is zero 
in this case; that is, the fish appears to be weightless.

 Example 5.9    The Atwood Machine

When two objects of unequal mass are hung vertically over a frictionless pulley of 
negligible mass as in Figure 5.15a, the arrangement is called an Atwood machine. The 
device is sometimes used in the laboratory to determine the value of g by measuring 
the acceleration of the objects. Determine the magnitude of the acceleration of the 
two objects and the tension in the lightweight string.

S O L U T I O N

Conceptualize Imagine the situation pictured in Figure 5.15a in action: as one object 
moves upward, the other object moves downward. Because the objects are connected 
by an inextensible string, the distance one object travels in a given time interval must 
be the same as the distance the other one travels, and their velocities and accelerations 
must be of equal magnitude.

Categorize The objects in the Atwood machine are subject to the gravitational force as 
well as to the forces exerted by the strings connected to them. Therefore, we can catego-
rize this problem as one involving two particles under a net force.

Analyze The free-body diagrams for the two objects are shown in Figure 5.15b. Two 
forces act on each object: the upward force T

S
 exerted by the string and the downward 

gravitational force. In problems such as this one in which the pulley is modeled as mass-
less and frictionless, the tension in the string on both sides of the pulley is the same. If 
the pulley has mass or is subject to friction, the tensions on either side are not the same and the situation requires techniques 
we will learn in Chapter 10.

We must be very careful with signs in problems such as this one. In Figure 5.15a, notice that if object 1 accelerates upward, 
object 2 accelerates downward. Therefore, for consistency with signs, if we define the upward direction as positive for object 1, 
we must define the downward direction as positive for object 2. With this sign convention, both objects accelerate in the same 
direction as defined by the choice of sign. Furthermore, according to this sign convention, the y component of the net force 
exerted on object 1 is T 2 m1g, and the y component of the net force exerted on object 2 is m2g 2 T.

From the particle under a net force model, apply (1)   S Fy 5 T 2 m1g  5 m1ay 
Newton’s second law to object 1:

Apply Newton’s second law to object 2: (2)   S Fy 5 m2g 2 T 5 m2ay

Add Equation (2) to Equation (1), noticing that T cancels: 2 m1g 1 m2g 5 m1ay 1 m2ay

Figure 5.15 (Example 5.9) The 
Atwood machine. (a) Two objects 
connected by a massless inextensible 
string over a frictionless pulley.  
(b) The free-body diagrams for the 
two objects.
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Analyze Consider the free-body diagrams shown in Figures 5.16b and 5.16c.

Apply Newton’s second law  (1)   S Fy 5 T 2 m1g  5 m1ay 5 m1a 
in the y direction to the ball,  
choosing the upward direction  
as positive:

For the ball to accelerate upward, it is necessary that T . m1g. In Equation (1), we replaced ay with a because the acceleration 
has only a y component.

For the block, we have chosen the x9 axis along the incline as in Figure 5.15c. For consistency with our choice for the ball, 
we choose the positive x9 direction to be down the incline.

5.9 c o n t i n u e d

Solve for the acceleration: (3)   ay 5 Sm2 2 m1

m1 1 m2
Dg

Substitute Equation (3) into Equation (1) to find T : (4)   T 5 m1(g 1 ay) 5 S 2m1m2

m1 1 m2
Dg

Finalize The acceleration given by Equation (3) can be interpreted as the ratio of the magnitude of the unbalanced force on 
the system (m2 2 m1)g to the total mass of the system (m1 1 m2), as expected from Newton’s second law. Notice that the sign of 
the acceleration depends on the relative masses of the two objects; if m2 . m1, the acceleration is positive, corresponding to 
downward motion for m2 and upward for m1. However, if m1 . m2, Equation (3) gives a negative acceleration, indicating that m1 
moves downward and m2 moves upward.

 W H A T  I F ?    Describe the motion of the system if the objects have equal masses, that is, m1 5 m2.

Answer If we have the same mass on both sides, the system is balanced and should not accelerate. Mathematically, we see that 
if m1 5 m2, Equation (3) gives us ay 5 0.

 W H A T  I F ?    What if one of the masses is much larger than the other: m1 .. m2?

Answer In the case in which one mass is infinitely larger than the other, we can ignore the effect of the smaller mass. 
Therefore, the larger mass should simply fall as if the smaller mass were not there. We see that if m1 .. m2, Equation (3) 
gives us ay 5 2g.

 Example 5.10    Acceleration of Two Objects Connected by a Cord 

A ball of mass m1 and a block of mass m2 are attached by a lightweight cord 
that passes over a frictionless pulley of negligible mass as in Figure 5.16a. 
The block lies on a frictionless incline of angle u. Find the magnitude of the 
acceleration of the two objects and the tension in the cord.

S O L U T I O N

Conceptualize Imagine the objects in Figure 5.16 in motion. If m2 moves down 
the incline, then m1 moves upward. Because the objects are connected by a cord 
(which we assume does not stretch), their accelerations have the same magni-
tude. Notice the normal coordinate axes in Figure 5.16b for the ball and the 
“tilted” axes for the block in Figure 5.16c. Just as we chose the positive direction 
to be different for each of the objects in Example 5.9, we are free to choose 
entirely different coordinate axes for the two objects here.

Categorize We can identify forces on each of the two objects and we are look-
ing for an acceleration, so we categorize the objects as particles under a net force. 
For the block, this model is only valid for the x9 direction. In the y9 direction, 
we apply the particle in equilibrium model because the block does not accelerate 
in that direction.
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Figure 5.16 (Example 5.10) (a) Two objects 
connected by a lightweight cord strung over a 
frictionless pulley. (b) The free-body diagram 
for the ball. (c) The free-body diagram for the 
block. (The incline is frictionless.)

continued
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5.10 c o n t i n u e d

Apply the particle under a net force model to the block in  (2)   S Fx9
 5 m2g sin u 2 T 5 m2ax9

 5 m2a 
the x9 direction and the particle in equilibrium model in  
the y9 direction: (3)   S Fy9

 5 n 2 m2g cos u 5 0

In Equation (2), we replaced ax9
 with a because the two objects have accelerations of equal magnitude a.

Solve Equation (1) for T : (4)   T 5 m1(g 1 a)

Substitute this expression for T into Equation (2): m2g sin u 2 m1(g 1 a) 5 m2a

Solve for a: (5)   a 5 Sm2 sin u 2 m1

m1 1 m2
Dg

Substitute this expression for a into Equation (4) to  (6)   T 5 3m1m2ssin u 1 1d

m1 1 m2
4g  

find T :

Finalize The block accelerates down the incline only if m2 sin u . m1. If m1 . m2 sin u, the acceleration is up the incline for 
the block and downward for the ball. Also notice that the result for the acceleration, Equation (5), can be interpreted as the 
magnitude of the net external force acting on the ball–block system divided by the total mass of the system; this result is con-
sistent with Newton’s second law.

 W H A T  I F ?    What happens in this situation if u 5 90°?

Answer If u 5 90°, the inclined plane becomes vertical and there is no interaction between its surface and m2. Therefore, this 
problem becomes the Atwood machine of Example 5.9. Letting u S 90° in Equations (5) and (6) causes them to reduce to 
Equations (3) and (4) of Example 5.9!

 W H A T  I F ?    What if m1 5 0?

Answer If m1 5 0, then m2 is simply sliding down an inclined plane without interacting with m1 through the string. Therefore, 
this problem becomes the sliding car problem in Example 5.6. Letting m1 S 0 in Equation (5) causes it to reduce to Equation 
(3) of Example 5.6!

   5.8    Forces of Friction
When an object is in motion either on a surface or in a viscous medium such as 
air or water, there is resistance to the motion because the object interacts with its 
surroundings. We call such resistance a force of friction. Forces of friction are very 
important in our everyday lives. They allow us to walk or run and are necessary for 
the motion of wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with 
yard clippings. You then try to drag the trash can across the surface of your concrete 
patio as in Figure 5.17a. This surface is real, not an idealized, frictionless surface.  
If we apply an external horizontal force F

S
 to the trash can, acting to the right, 

the trash can remains stationary when F
S

 is small. The force on the trash can that 
counteracts F

S
 and keeps it from moving acts toward the left and is called the  

force of static friction f
S

s. As long as the trash can is not moving, fs 5 F. Therefore, 
if F

S
 is increased, f

S
s also increases. Likewise, if F

S
 decreases, f

S
s also decreases.

Experiments show that the friction force arises from the nature of the two 
surfaces: because of their roughness, contact is made only at a few locations 
where peaks of the material touch. At these locations, the friction force arises in 
part because one peak physically blocks the motion of a peak from the opposing 
surface and in part from chemical bonding (“spot welds”) of opposing peaks as 
they come into contact. Although the details of friction are quite complex at the 
atomic level, this force ultimately involves an electrical interaction between atoms 
or molecules.

Force of static friction 
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If we increase the magnitude of F
S

 as in Figure 5.17b, the trash can eventually 
slips. When the trash can is on the verge of slipping, fs has its maximum value fs,max 
as shown in Figure 5.17c. When F exceeds fs,max, the trash can moves and accelerates 
to the right. We call the friction force for an object in motion the force of kinetic  
friction f

S
k. When the trash can is in motion, the force of kinetic friction on the can 

is less than fs,max (Fig. 5.17c). The net force F 2 fk in the x direction produces an accel-
eration to the right, according to Newton’s second law. If F 5 fk, the acceleration  
is zero and the trash can moves to the right with constant speed. If the applied 
force F

S
 is removed from the moving can, the friction force f

S
k acting to the left pro-

vides an acceleration of the trash can in the 2x direction and eventually brings it to 
rest, again consistent with Newton’s second law.

Experimentally, we find that, to a good approximation, both fs,max and fk are pro-
portional to the magnitude of the normal force exerted on an object by the sur-
face. The following descriptions of the force of friction are based on experimental 
observations and serve as the simplification model we shall use for forces of friction 
in problem solving:

 ● The magnitude of the force of static friction between any two surfaces in con-
tact can have the values

 fs # msn (5.9)

 where the dimensionless constant ms is called the coefficient of static fric-
tion and n is the magnitude of the normal force exerted by one surface 
on the other. The equality in Equation 5.9 holds when the surfaces are on 
the verge of slipping, that is, when fs 5 fs,max 5 msn. This situation is called 
impending motion. The inequality holds when the surfaces are not on the 
verge of slipping.
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For small applied 
forces, the magnitude 
of the force of static 
friction equals the 
magnitude of the 
applied force.

When the magnitude of 
the applied force 
exceeds the magnitude 
of the maximum force of 
static friction, the trash 
can breaks free and 
accelerates to the right.

Figure 5.17 (a) and (b) When 
pulling on a trash can, the direc-
tion of the force of friction f

S
 

between the can and a rough sur-
face is opposite the direction of 
the applied force F

S
. (c) A graph of 

friction force versus applied force. 
Notice that fs,max . fk.

PITFall PreVeNTIoN 5.9
The Equal Sign Is Used in Limited 
Situations In Equation 5.9, the 
equal sign is used only in the case 
in which the surfaces are just 
about to break free and begin slid-
ing. Do not fall into the common 
trap of using fs 5 msn in any static 
situation.
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 ● The magnitude of the force of kinetic friction acting between two surfaces is

 fk 5 mkn (5.10)

 where mk is the coefficient of kinetic friction. Although the coefficient of 
kinetic friction can vary with speed, we shall usually neglect any such varia-
tions in this text.

 ● The values of mk and ms depend on the nature of the surfaces, but mk is gener-
ally less than ms. Typical values range from around 0.03 to 1.0. Table 5.1 lists 
some reported values.

 ● The direction of the friction force on an object is parallel to the surface with 
which the object is in contact and opposite to the actual motion (kinetic friction) 
or the impending motion (static friction) of the object relative to the surface.

 ● The coefficients of friction are nearly independent of the area of contact 
between the surfaces. We might expect that placing an object on the side 
having the most area might increase the friction force. Although this method 
provides more points in contact, the weight of the object is spread out over 
a larger area and the individual points are not pressed together as tightly. 
Because these effects approximately compensate for each other, the friction 
force is independent of the area.

Q uICk QuIz 5.6 You press your physics textbook flat against a vertical wall 
with your hand. What is the direction of the friction force exerted by the wall 
on the book? (a) downward (b) upward (c) out from the wall (d) into the wall

Q uICk QuIz 5.7 Charlie is playing with his daughter Torrey in the snow. She sits 
on a sled and asks him to slide her across a flat, horizontal field. Charlie has a  
choice of (a) pushing her from behind by applying a force downward on her 
shoulders at 30° below the horizontal (Fig. 5.18a) or (b) attaching a rope to  
the front of the sled and pulling with a force at 30° above the horizontal 
(Fig. 5.18b). Which would be easier for him and why?

PITFall PreVeNTIoN 5.10
Friction Equations Equations 5.9 
and 5.10 are not vector equations. 
They are relationships between 
the magnitudes of the vectors rep-
resenting the friction and normal 
forces. Because the friction and 
normal forces are perpendicular 
to each other, the vectors cannot 
be related by a multiplicative 
constant.

PITFall PreVeNTIoN 5.11
The Direction of the Friction 
Force Sometimes, an incorrect 
statement about the friction force 
between an object and a surface is 
made—“the friction force on an 
object is opposite to its motion or 
impending motion”—rather than 
the correct phrasing, “the friction 
force on an object is opposite to 
its motion or impending motion 
relative to the surface.”

 Table 5.1  Coefficients of Friction

 ms mk

Rubber on concrete 1.0  0.8
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Wood on wood 0.25–0.5 0.2
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Teflon on Teflon 0.04 0.04
Ice on ice 0.1  0.03
Synovial joints in humans 0.01 0.003

Note: All values are approximate. In some cases, the coefficient of friction can exceed 1.0.

 Example 5.11   Experimental Determination of ms and mk

The following is a simple method of measuring coefficients of friction. Suppose a block is placed on a rough surface 
inclined relative to the horizontal as shown in Figure 5.19. The incline angle is increased until the block starts to move. 
Show that you can obtain ms by measuring the critical angle uc at which this slipping just occurs.

S O L U T I O N

Conceptualize Consider Figure 5.19 and imagine that the block tends to slide down the incline due to the gravitational force. 
To simulate the situation, place a coin on this book’s cover and tilt the book until the coin begins to slide. Notice how this 

a

b

30�

F
S

30�

F
S

Figure 5.18 (Quick Quiz 5.7) A 
father slides his daughter on a sled 
either by (a) pushing down on her 
shoulders or (b) pulling up on a 
rope.
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    5.8 Forces of Friction 117

example differs from Example 5.6. When there is no friction on an incline, any angle of 
the incline will cause a stationary object to begin moving. When there is friction, how-
ever, there is no movement of the object for angles less than the critical angle.

Categorize The block is subject to various forces. Because we are raising the plane to 
the angle at which the block is just ready to begin to move but is not moving, we catego-
rize the block as a particle in equilibrium.

Analyze The diagram in Figure 5.19 shows the forces on the block: the gravitational 
force mgS, the normal force nS, and the force of static friction f

S
s . We choose x to be par-

allel to the plane and y perpendicular to it.

From the particle in equilibrium model,  (1)   S Fx 5 mg sin u 2 fs 5 0 
apply Equation 5.8 to the block in both  

(2)   S Fy 5 n 2 mg cos u 5 0
 

the x and y directions:

Substitute mg 5 n/cos u from Equation (2)  (3)   fs 5 mg sin u 5 S n
cos uD sin u 5 n tan u 

into Equation (1):

When the incline angle is increased until  msn 5 n tan uc 
the block is on the verge of slipping, the    ms 5 tan uc 
force of static friction has reached its  
maximum value msn. The angle u in this  
situation is the critical angle uc. Make  
these substitutions in Equation (3):

We have shown, as requested, that the coefficient of static friction is related only to the critical angle. For example, if the block 
just slips at uc 5 20.0°, we find that ms 5 tan 20.0° 5 0.364.

5.11 c o n t i n u e d
y

x

s

mg sin u

uu

mg cos u

nS

mgS 

f
S

 

Figure 5.19 (Example 5.11) The 
external forces exerted on a block 
lying on a rough incline are the grav-
itational force mgS, the normal force 
nS, and the force of friction f

S
s . For 

convenience, the gravitational force 
is resolved into a component mg sin u 
along the incline and a component  
mg cos u perpendicular to the incline.

Finalize Once the block starts to move at u $ uc, it accelerates down the incline and the force of friction is fk 5 mkn. 

 W H A T  I F ?    How could you determine mk for the block and incline?

Answer If u is reduced to a value less than uc, it may be possible to find an angle u9c  such that the block moves down the incline 
with constant speed as a particle in equilibrium again (ax 5 0). In this case, use Equations (1) and (2) with fs replaced by fk to 
find mk: mk 5 tan u9c , where u9c  , uc .

 Example 5.12    The Sliding Hockey Puck 

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck 
always remains on the ice and slides 115 m before coming to rest, determine the coef-
ficient of kinetic friction between the puck and ice.

S O L U T I O N

Conceptualize Imagine that the puck in Figure 5.20 slides to the right. The kinetic 
friction force acts to the left and slows the puck, which eventually comes to rest due 
to that force.

Categorize The forces acting on the puck are identified in Figure 5.20, but the text 
of the problem provides kinematic variables. Therefore, we categorize the problem 
in several ways. First, it involves modeling the puck as a particle under a net force in 
the horizontal direction: kinetic friction causes the puck to accelerate. There is no 
acceleration of the puck in the vertical direction, so we use the particle in equilibrium 
model for that direction. Furthermore, because we model the force of kinetic friction 
as independent of speed, the acceleration of the puck is constant. So, we can also cate-
gorize this problem by modeling the puck as a particle under constant acceleration.

Motion

k

mgS 

f
S

 

nS

Figure 5.20  (Example 5.12) After 
the puck is given an initial velocity 
to the right, the only external forces 
acting on it are the gravitational 
force mgS, the normal force nS, and 
the force of kinetic friction f

S
k.

continued
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5.12 c o n t i n u e d

Analyze First, let’s find the acceleration algebraically in terms of the coefficient of kinetic friction, using Newton’s second 
law. Once we know the acceleration of the puck and the distance it travels, the equations of kinematics can be used to find the 
numerical value of the coefficient of kinetic friction. 

Apply the particle under a net force model in the  (1)   S Fx 5 2 fk 5 max 
x direction to the puck:

Apply the particle in equilibrium model in the  (2)   S Fy 5 n 2 mg 5 0 
y direction to the puck:

Substitute n 5 mg from Equation (2) and fk 5 mkn into 2 mkn 5 2 mkmg 5 max 
Equation (1):    ax 5 2 mkg

The negative sign means the acceleration is to the left in Figure 5.20. Because the velocity of the puck is to the right, the puck is 
slowing down. The acceleration is independent of the mass of the puck and is constant because we assume mk remains constant.

Apply the particle under constant acceleration model to  0 5 vxi
2 1 2axxf 5

 vxi
2 2 2mkgxf 

the puck, choosing Equation 2.17 from the model, vxf
2 5  

vxi
2 1 2ax(xf 2 xi), with xi 5 0 and vxf 5 0:

Solve for the coefficient of kinetic friction: mk 5
vxi

2

2gxf

Substitute the numerical values: mk 5
s20.0 mysd2

2s9.80 mys2ds115 md
5 0.177

Finalize Notice that mk is dimensionless, as it should be, and that it has a low value, consistent with an object sliding on ice.

 Example 5.13    Acceleration of Two Connected Objects When Friction Is Present

A block of mass m2 on a rough, horizontal surface is connected 
to a ball of mass m1 by a lightweight cord over a lightweight, 
frictionless pulley as shown in Figure 5.21a. A force of magni-
tude F at an angle u with the horizontal is applied to the block 
as shown, and the block slides to the right. The coefficient of 
kinetic friction between the block and surface is mk. Deter-
mine the magnitude of the acceleration of the two objects.

S O L U T I O N

Conceptualize Imagine what happens as F
S

 is applied to the 
block. Assuming F

S
 is large enough to break the block free 

from static friction but not large enough to lift the block,  
the block slides to the right and the ball rises.

Categorize We can identify forces and we want an acceleration, so we categorize this problem as one involving two particles 
under a net force, the ball and the block. Because we assume that the block does not rise into the air due to the applied force, we 
model the block as a particle in equilibrium in the vertical direction.

Analyze First draw force diagrams for the two objects as shown in Figures 5.21b and 5.21c. Notice that the string exerts a 
force of magnitude T on both objects. The applied force F

S
 has x and y components F cos u and F sin u, respectively. Because 

the two objects are connected, we can equate the magnitudes of the x component of the acceleration of the block and the y 
component of the acceleration of the ball and call them both a. Let us assume the motion of the block is to the right.

Apply the particle under a net force model to the block in the  (1)   S Fx 5 F cos u 2 fk 2 T 5 m2ax 5 m2a 
horizontal direction:

y

x

m1

m2

m2

u

F  sin u

F  cos u
k

u

m1

m1aS 

aS 

f
S

 

gS gS 

nS

T
S T

S
F
S

 
F
S

 

a b c

m2

Figure 5.21 (Example 5.13) (a) The external force F
S

 applied as 
shown can cause the block to accelerate to the right. (b, c) Diagrams 
showing the forces on the two objects, assuming the block acceler-
ates to the right and the ball accelerates upward.
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5.13 c o n t i n u e d

Because the block moves only horizontally, apply the particle  (2)   S Fy 5 n 1 F sin u 2 m2g 5 0 
in equilibrium model to the block in the vertical direction:

Apply the particle under a net force model to the ball in the  (3)   S Fy 5 T 2 m1g 5 m1ay 5 m1a 
vertical direction:

Solve Equation (2) for n: n 5 m2g  2 F sin u

Substitute n into fk 5 mkn from Equation 5.10: (4)   fk 5 mk(m2g  2 F sin u)

Substitute Equation (4) and the value of T from  F cos u 2 mk(m2g  2 F sin u) 2 m1(a 1 g) 5 m2a 
Equation (3) into Equation (1):

Solve for a: (5)   a 5 
F scos u 1 mk sin ud 2 sm1 1 mkm2dg

m1 1 m2

Finalize The acceleration of the block can be either to the right or to the left depending on the sign of the numerator in 
Equation (5). If the velocity is to the left, we must reverse the sign of fk in Equation (1) because the force of kinetic friction must 
oppose the motion of the block relative to the surface. In this case, the value of a is the same as in Equation (5), with the two 
plus signs in the numerator changed to minus signs.

What does Equation (5) reduce to if the force F
S

 is removed and the surface becomes frictionless? Call this expression 
Equation (6). Does this algebraic expression match your intuition about the physical situation in this case? Now go back to 
Example 5.10 and let angle u go to zero in Equation (5) of that example. How does the resulting equation compare with your 
Equation (6) here in Example 5.13? Should the algebraic expressions compare in this way based on the physical situations?

summary
 › Definitions

An inertial frame of reference is a frame in which an object that does not interact with 
other objects experiences zero acceleration. Any frame moving with constant velocity 
relative to an inertial frame is also an inertial frame.

We define force as that which causes 
a change in motion of an object.

 › Concepts and Principles

Newton’s first law states that it is possible to find an inertial frame in which an object that 
does not interact with other objects experiences zero acceleration, or, equivalently, in the 
absence of an external force, when viewed from an inertial frame, an object at rest remains 
at rest and an object in uniform motion in a straight line maintains that motion.

Newton’s second law states that the acceleration of an object is directly proportional to 
the net force acting on it and inversely proportional to its mass.

Newton’s third law states that if two objects interact, the force exerted by object 1 on 
object 2 is equal in magnitude and opposite in direction to the force exerted by object 
2 on object 1.

The gravitational force exerted on 
an object is equal to the product of its 
mass (a scalar quantity) and the free-
fall acceleration:

 F
S

g 5 mgS (5.5)

The weight of an object is the magni-
tude of the gravitational force acting 
on the object:

 Fg 5 mg (5.6)

The maximum force of static friction f
S

s,max between an object and a surface is pro-
portional to the normal force acting on the object. In general, fs # msn, where ms is the 
coefficient of static friction and n is the magnitude of the normal force. 

When an object slides over a surface, 
the magnitude of the force of kinetic 
friction f

S
k is given by fk 5 mkn, where 

mk is the coefficient of kinetic friction.

 Summary 119

continued
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120 Chapter 5 The Laws of Motion

 › Analysis Models for Problem Solving

Particle Under a Net Force If a particle of mass m expe-
riences a nonzero net force, its acceleration is related to 
the net force by Newton’s second law:

 o  F
S

5 m aS (5.2)

 

m

� F
S

 

aS 

Particle in Equilibrium If a particle maintains a constant velocity 
(so that aS 5 0), which could include a velocity of zero, the forces on 
the particle balance and Newton’s second law reduces to

 o  F
S

5 0 (5.8)

m

�F � 0
S

a � 0S

Think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are a member of an expert witness group that provides sci-
entific services to the legal community. Your group has been 
asked by a defense attorney to argue at trial that a driver was 
not exceeding the speed limit. You are provided with the fol-
lowing data: The mass of the car is 1.50 3 103 kg. The mass of 
the driver is 95.0 kg. The coefficient of kinetic friction between 
the car’s tires and the roadway is 0.580. The coefficient of 
static friction between the car’s tires and the roadway is 0.820. 
The posted speed limit on the road is 25 mi/h. The roadway 
was dry and the weather was sunny at the time of the incident.

You are also provided with the following description of 
the incident: The driver was driving up a hill that makes 
an angle of 17.5° with the horizontal. The driver saw a dog 
run into the street, slammed on the brakes and left a skid 
mark 17.0 m long. The car came to rest at the end of the skid 
mark. The driver did not hit the dog, but the sound of the 
screeching tires drew the attention of a nearby policeman, 
who ticketed the driver for speeding.

(a) Should your group agree to offer testimony for the 
defense in this case? (b) Why or why not?

2. Consider the egg-catching activity discussed in the chap-
ter-opening storyline. Discuss in your group and make esti-
mates of the following. Identify a separation distance between 

the thrower and the catcher of the egg, and determine a typical 
speed with which the egg must be thrown so that it covers the 
distance without hitting the ground or passing over the head 
of the catcher. Estimate the mass and diameter of the egg (the 
shorter diameter, perpendicular to the longest dimension). 
From these data, estimate the force on the egg exerted by your 
hand if your hand is held stiffly and doesn’t move when the 
egg hits it. Now, simulate moving your hands backward while 
you catch the egg. Have a group member estimate the distance 
over which your hands move in this process. From these data, 
estimate the force on the egg exerted by your hand in this 
catching process. Compare the forces of your hand on the egg 
between these two methods of catching the egg.

3. ACTIvITY  A simple procedure can be followed to measure 
the coefficient of friction using the technique discussed in 
Example 5.11. Lay your book down on a table and place a 
coin on the cover far from the spine. Slowly open the book 
cover so that it forms an inclined plane down which the coin 
will slide. Watch carefully and stop opening the cover at the 
instant the coin begins to slide. (a) Measure this critical angle 
that the book cover makes with the horizontal with a protrac-
tor. From this angle, determine the coefficient of static fric-
tion between the coin and the cover. (b) Place a loop of tape 
between two coins and repeat the procedure above for the 
two-coin stack. How does the coefficient of static friction for 
the stack compare to that for the single coin?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

seCTIoN 5.1 The Concept of Force

1.  A certain orthodontist uses a 
wire brace to align a patient’s 
crooked tooth as in Figure P5.1.  
The tension in the wire is 
adjusted to have a magnitude of 
18.0 N. Find the magnitude of 
the net force exerted by the wire 
on the crooked tooth.

2. One or more external forces, large enough to be easily mea-
sured, are exerted on each object enclosed in a dashed box 
shown in Figure 5.1. Identify the reaction to each of these 
forces.

seCTIoN 5.4 Newton’s Second Law

3. A 3.00-kg object undergoes an acceleration given by 
aS 5 s2.00 i

⁄
1 5.00 j

⁄
d m/s2. Find (a) the resultant force acting 

on the object and (b) the magnitude of the resultant force.

4. The average speed of a nitrogen molecule in air is about 
6.70 3 102 m/s, and its mass is 4.68 3 10226 kg. (a) If it takes 
3.00 3 10213 s for a nitrogen molecule to hit a wall and 

V

Figure P5.1
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rebound with the same speed but moving in the opposite 
direction, what is the average acceleration of the molecule 
during this time interval? (b) What average force does the 
molecule exert on the wall?

5. Two forces, F
S

1 5 s26.00 i
⁄

2 4.00 j
⁄
d N and F

S
2 5 s23.00 i

⁄
1

7.00 j
⁄
d N, act on a particle of mass 2.00 kg that is initially 

at rest at coordinates (22.00 m, 14.00 m). (a) What are the 
components of the particle’s velocity at t 5 10.0 s? (b) In what 
direction is the particle moving at t 5 10.0 s? (c) What dis-
placement does the particle undergo during the first 10.0 s?  
(d) What are the coordinates of the particle at t 5 10.0 s? 

6. The force exerted by the wind on the sails of a sailboat is 
390 N north. The water exerts a force of 180 N east. If the 
boat (including its crew) has a mass of 270 kg, what are the 
magnitude and direction of its acceleration?

7. Review. Three forces acting on an object are given by F
S

1 5 
(22.00 i

⁄
 1 2.00 j

⁄
) N, and F

S
2 5(5.00 i

⁄
 2 3.00 j

⁄
) N, and F

S
3 5

s245.0 i
⁄
d N. The object experiences an acceleration of mag-

nitude 3.75 m/s2. (a) What is the direction of the accelera-
tion? (b) What is the mass of the object? (c) If the object is 
initially at rest, what is its speed after 10.0 s? (d) What are 
the velocity components of the object after 10.0 s?

8. If a single constant force acts on an object that moves on a 
straight line, the object’s velocity is a linear function of time. 
The equation v 5 vi 1 at gives its velocity v as a function of 
time, where a is its constant acceleration. What if velocity is 
instead a linear function of position? Assume that as a par-
ticular object moves through a resistive medium, its speed 
decreases as described by the equation v 5 vi 2 kx, where k 
is a constant coefficient and x is the position of the object. 
Find the law describing the total force acting on this object.

seCTIoN 5.5 The Gravitational Force and Weight

9. Review. The gravitational force exerted on a baseball is 
2.21  N down. A pitcher throws the ball horizontally with 
velocity 18.0 m/s by uniformly accelerating it along a straight 
horizontal line for a time interval of 170 ms. The ball starts 
from rest. (a) Through what distance does it move before its 
release? (b) What are the magnitude and direction of the 
force the pitcher exerts on the ball?

10. Review. The gravitational force exerted on a baseball 
is 2Fg j

⁄
. A pitcher throws the ball with velocity v i

⁄
 by uni-

formly accelerating it along a straight horizontal line for 
a time interval of Dt 5 t 2 0 5 t. (a) Starting from rest, 
through what distance does the ball move before its release? 
(b) What force does the pitcher exert on the ball?

11. Review. An electron of mass 9.11 3 10231 kg has an initial 
speed of 3.00 3 105 m/s. It travels in a straight line, and its 
speed increases to 7.00 3 105 m/s in a distance of 5.00 cm. 
Assuming its acceleration is constant, (a) determine the mag-
nitude of the force exerted on the electron and (b) compare 
this force with the weight of the electron, which we ignored.

12. If a man weighs 900 N on the Earth, what would he weigh on 
Jupiter, where the free-fall acceleration is 25.9 m/s2?

13. You stand on the seat of a chair and then hop off. (a) During  
the time interval you are in flight down to the floor, the 
Earth moves toward you with an acceleration of what order 
of magnitude? In your solution, explain your logic. Model 
the Earth as a perfectly solid object. (b) The Earth moves 
toward you through a distance of what order of magnitude?

seCTIoN 5.6 Newton’s Third Law

14. A brick of mass M has been placed on a rubber cushion of 
mass m. Together they are sliding to the right at constant 
velocity on an ice-covered parking lot. (a) Draw a free-body 
diagram of the brick and identify each force acting on it.  
(b) Draw a free-body diagram of the cushion and identify 
each force acting on it. (c) Identify all of the action– reaction 
pairs of forces in the brick–cushion–planet system.

seCTIoN 5.7 Analysis Models Using Newton’s Second Law

15. Review. Figure P5.15 shows a 
worker poling a boat—a very effi-
cient mode of transportation—
across a shallow lake. He pushes 
parallel to the length of the light 
pole, exerting a force of magnitude 
240 N on the bottom of the lake. 
Assume the pole lies in the verti-
cal plane containing the keel of 
the boat. At one moment, the pole 
makes an angle of 35.0° with the 
vertical and the water exerts a hor-
izontal drag force of 47.5 N on the 
boat, opposite to its forward veloc-
ity of magnitude 0.857 m/s. The 
mass of the boat including its cargo and the worker is 370 kg. 
(a) The water exerts a buoyant force vertically upward on the 
boat. Find the magnitude of this force. (b) Model the forces as 
constant over a short interval of time to find the velocity of the 
boat 0.450 s after the moment described.

16. An iron bolt of mass 65.0 g hangs from a string 35.7 cm long. 
The top end of the string is fixed. Without touching it, a mag-
net attracts the bolt so that it remains stationary, but is displaced 
horizontally 28.0 cm to the right from the previously vertical 
line of the string. The magnet is located to the right of the bolt 
and on the same vertical level as the bolt in the final configu-
ration. (a) Draw a free-body diagram of the bolt. (b) Find the 
tension in the string. (c) Find the magnetic force on the bolt.

17. A block slides down a frictionless plane having an inclina-
tion of u 5 15.0°. The block starts from rest at the top, and 
the length of the incline is 2.00 m. (a) Draw a free-body dia-
gram of the block. Find (b) the acceleration of the block 
and (c) its speed when it reaches the bottom of the incline.

18. A bag of cement whose weight is Fg 
hangs in equilibrium from three 
wires as shown in Figure P5.18. Two 
of the wires make angles u1 and u2 
with the horizontal. Assuming the 
system is in equilibrium, show that 
the tension in the left-hand wire is

T1 5
Fg cos u2

sin su1 1 u2d

19. The distance between two telephone 
poles is 50.0 m. When a 1.00-kg  
bird lands on the telephone wire midway between the poles, 
the wire sags 0.200 m. (a) Draw a free-body diagram of the 
bird. (b) How much tension does the bird produce in the 
wire? Ignore the weight of the wire.

20. An object of mass m 5 1.00 kg is observed to have an accel-
eration aS with a magnitude of 10.0 m/s2 in a direction 60.0° 
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122 Chapter 5 The Laws of Motion

east of north. Figure P5.20 
shows a view of the object from 
above. The force F

S
2 acting on 

the object has a magnitude of 
5.00 N and is directed north. 
Determine the magnitude and 
direction of the one other hori-
zontal force F

S
1 acting on the 

object.

21. A simple accelerometer is constructed inside a car by sus-
pending an object of mass m from a string of length L that is 
tied to the car’s ceiling. As the car accelerates the string–
object system makes a constant angle of u with the vertical. 
(a) Assuming that the string mass is negligible compared 
with m, derive an expression for the car’s acceleration in 
terms of u and show that it is independent of the mass m and 
the length L. (b) Determine the acceleration of the car 
when u 5 23.0°.

22. An object of mass m1 5 5.00 kg placed 
on a frictionless, horizontal table 
is connected to a string that passes 
over a pulley and then is fastened to a 
hanging object of mass m2 5 9.00 kg  
as shown in Figure P5.22. (a) Draw 
free-body diagrams of both objects. 
Find (b) the magnitude of the accel-
eration of the objects and (c) the ten-
sion in the string.

23. In the system shown in Figure P5.23, a horizontal force F
S

x 
acts on an object of mass m2 5 8.00 kg. The horizontal sur-
face is frictionless. Consider the acceleration of the sliding 
object as a function of Fx. (a) For what values of Fx does the 
object of mass m1 5 2.00 kg accelerate upward? (b) For what 
values of Fx is the tension in the cord zero? (c) Plot the accel-
eration of the m2 object versus Fx. Include values of Fx from 
2100 N to 1100 N.

24. A car is stuck in the mud. A tow truck pulls on the car with 
the arrangement shown in Figure P5.24. The tow cable is 
under a tension of 2 500 N and pulls downward and to the 
left on the pin at its upper end. The light pin is held in equi-
librium by forces exerted by the two bars A and B. Each bar 
is a strut; that is, each is a bar whose weight is small com-
pared to the forces it exerts and which exerts forces only 
through hinge pins at its ends. Each strut exerts a force 
directed parallel to its length. Determine the force of ten-
sion or compression in each strut. Proceed as follows. Make 
a guess as to which way (pushing or pulling) each force acts 
on the top pin. Draw a free-body diagram of the pin. Use 
the condition for equilibrium of the pin to translate the 
free-body diagram into equations. From the equations cal-
culate the forces exerted by struts A and B. If you obtain a 
positive answer, you correctly guessed the direction of the 
force. A negative answer means that the direction should be 
reversed, but the absolute value correctly gives the 

magnitude of the force. If a strut pulls on a pin, it is in ten-
sion. If it pushes, the strut is in compression. Identify 
whether each strut is in tension or in compression.

25. An object of mass m1 hangs from a string that passes over a 
very light fixed pulley P1 as shown in Figure P5.25. The 
string connects to a second very light pulley P2. A second 
string passes around this pulley with one end attached to a 
wall and the other to an object of mass m2 on a frictionless, 
horizontal table. (a) If a1 and a2 are the accelerations of m1 
and m2, respectively, what is the relation between these 
accelerations? Find expressions for (b) the tensions in the 
strings and (c) the accelerations a1 and a2 in terms of the 
masses m1 and m2, and g.

seCTIoN 5.8 Forces of Friction

26. Why is the following situation impossible? Your 3.80-kg physics  
book is placed next to you on the horizontal seat of your 
car. The coefficient of static friction between the book 
and the seat is 0.650, and the coefficient of kinetic fric-
tion is 0.550. You are traveling forward at 72.0 km/h 
and brake to a stop with constant acceleration over a  
distance of 30.0 m. Your physics book remains on the seat 
rather than sliding forward onto the floor.

27. Consider a large truck carrying a heavy load, such as steel 
beams. A significant hazard for the driver is that the load may 
slide forward, crushing the cab, if the truck stops suddenly in 
an accident or even in braking. Assume, for example, that a  
10 000-kg load sits on the flatbed of a 20 000-kg truck mov-
ing at 12.0 m/s. Assume that the load is not tied down to the 
truck, but has a coefficient of friction of 0.500 with the flatbed 
of the truck. (a) Calculate the minimum stopping distance 
for which the load will not slide forward relative to the truck.  
(b) Is any piece of data unnecessary for the solution?

28. Before 1960, people believed that the maximum attainable 
coefficient of static friction for an automobile tire on a road-
way was ms 5 1. Around 1962, three companies indepen-
dently developed racing tires with coefficients of 1.6. This 
problem shows that tires have improved further since then. 
The shortest time interval in which a piston-engine car ini-
tially at rest has covered a distance of one-quarter mile is 
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about 4.43 s. (a) Assume the car’s rear wheels lift the front 
wheels off the pavement as shown in Figure P5.28.  
What minimum value of ms is necessary to achieve the 
record time? (b) Suppose the driver were able to increase 
his or her engine power, keeping other things equal. How 
would this change affect the elapsed time?

29. A 9.00-kg hanging object is connected by a light, inextensible 
cord over a light, frictionless pulley to a 5.00-kg block that is 
sliding on a flat table (Fig. P5.22). Taking the coefficient of 
kinetic friction as 0.200, find the tension in the string.

30. The person in Figure P5.30 
weighs 170 lb. As seen from the 
front, each light crutch makes 
an angle of 22.0° with the verti-
cal. Half of the person’s weight 
is supported by the crutches. 
The other half is supported 
by the vertical forces of the 
ground on the person’s feet. 
Assuming that the person is 
moving with constant velocity 
and the force exerted by the 
ground on the crutches acts 
along the crutches, determine 
(a) the smallest possible coeffi-
cient of friction between crutches and ground and (b) the 
magnitude of the compression force in each crutch.

31. Three objects are connected on a table as shown in Fig-
ure P5.31. The coefficient of kinetic friction between the 
block of mass m2 and the table is 0.350. The objects have 
masses of m1 5 4.00 kg, m2 5 1.00 kg, and m3 5 2.00 kg, and 
the pulleys are frictionless. (a) Draw a free-body diagram of 
each object. (b) Determine the acceleration of each object, 
including its direction. (c) Determine the tensions in the two 
cords. What If? (d) If the tabletop were smooth, would the 
tensions increase, decrease, or remain the same? Explain.

32. You are working as a letter sorter in a U.S Post Office. Postal 
regulations require that employees’ footwear must have 
a minimum coefficient of static friction of 0.5 on a speci-
fied tile surface. You are wearing athletic shoes for which 
you do not know the coefficient of static friction. In order 

to determine the coefficient, you imagine that there is an 
emergency and start running across the room. You have a 
coworker time you, and find that you can begin at rest and 
move 4.23 m in 1.20 s. If you try to move faster than this, 
your feet slip. Assuming your acceleration is constant, does 
your footwear qualify for the postal regulation? 

33. You have been called as an expert witness for a trial in which 
a driver has been charged with speeding but is claiming 
innocence. He claims to have slammed on his brakes to 
avoid rear-ending another car, but tapped the back of the 
other car just as he came to rest. You have been hired by the 
prosecution to prove that the driver was indeed speeding. 
You have received data as follows from the police: Skid 
marks left by the driver are 56.0 m long and the roadway is 
level. Tires matching those on the car of the driver have 
been dragged over the same roadway to determine that the 
coefficient of kinetic friction between the tires and the 
roadway is 0.82 at all points along the skid mark. The speed 
limit on the road is 35 mi/h. Construct an argument to be 
used in court to show that the driver was indeed speeding.

34. A block of mass 3.00 kg is pushed up 
against a wall by a force P

S
 that makes an 

angle of u 5 50.0° with the horizontal as 
shown in Figure P5.34. The coefficient 
of static friction between the block 
and the wall is 0.250. (a) Determine  
the possible values for the magnitude 
of P

S
 that allow the block to remain 

stationary. (b) Describe what happens 
if uP

S
u has a larger value and what hap-

pens if it is smaller. (c) Repeat parts (a) and (b), assuming the 
force makes an angle of u 5 13.0° with the horizontal.

35. Review. A Chinook salmon can swim underwater at 3.58 m/s, 
and it can also jump vertically upward, leaving the water with 
a speed of 6.26 m/s. A record salmon has length 1.50 m and 
mass 61.0 kg. Consider the fish swimming straight upward in 
the water below the surface of a lake. The gravitational force 
exerted on it is very nearly canceled out by a buoyant force 
exerted by the water as we will study in Chapter 14. The fish 
experiences an upward force P exerted by the water on its 
threshing tail fin and a downward fluid friction force that we 
model as acting on its front end. Assume the fluid friction 
force disappears as soon as the fish’s head breaks the water 
surface and assume the force on its tail is constant. Model the 
gravitational force as suddenly switching full on when half 
the length of the fish is out of the water. Find the value of P. 

36. A 5.00-kg block is placed on top of a 10.0-kg block (Fig. 
P5.36). A horizontal force of 45.0 N is applied to the 10-kg 
block, and the 5.00-kg block is tied to the wall. The coef-
ficient of kinetic friction between all moving surfaces is 
0.200. (a) Draw a free-body diagram for each block and 
identify the action–reaction forces between the blocks. (b) 
Determine the tension in the string and the magnitude of 
the acceleration of the 10.0-kg block.
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124 Chapter 5 The Laws of Motion

addITIoNal ProbleMs

37. A black aluminum glider floats on a film of air above a level 
aluminum air track. Aluminum feels essentially no force in a 
magnetic field, and air resistance is negligible. A strong mag-
net is attached to the top of the glider, forming a total mass 
of 240 g. A piece of scrap iron attached to one end stop on the 
track attracts the magnet with a force of 0.823 N when the iron 
and the magnet are separated by 2.50 cm. (a) Find the accel-
eration of the glider at this instant. (b) The scrap iron is now 
attached to another green glider, forming total mass 120 g. 
Find the acceleration of each glider when the gliders are simul-
taneously released at 2.50-cm separation.

38. Why is the following situation impossible? A book sits on an 
inclined plane on the surface of the Earth. The angle of the 
plane with the horizontal is 60.0°. The coefficient of kinetic 
friction between the book and the plane is 0.300. At time 
t 5 0, the book is released from rest. The book then slides 
through a distance of 1.00 m, measured along the plane, in 
a time interval of 0.483 s.

39. Two blocks of masses m1 and m2 are placed on a table in con-
tact with each other as discussed in Example 5.7 and shown 
in Figure 5.13a. The coefficient of kinetic friction between 
the block of mass m1 and the table is m1, and that between 
the block of mass m2 and the table is m2. A horizontal force 
of magnitude F is applied to the block of mass m1. We wish to 
find P, the magnitude of the contact force between the 
blocks. (a) Draw diagrams showing the forces for each 
block. (b) What is the net force on the  system of two blocks? 
(c) What is the net force acting on m1? (d) What is the net 
force acting on m2? (e) Write Newton’s second law in the x 
direction for each block. (f) Solve the two equations in two 
unknowns for the acceleration a of the blocks in terms of 
the masses, the applied force F, the coefficients of friction, 
and g. (g) Find the magnitude P of the contact force between 
the blocks in terms of the same quantities.

40. A 1.00-kg glider on a horizontal air track is pulled by a 
string at an angle u. The taut string runs over a pulley and 
is attached to a hanging object of mass 0.500 kg as shown 
in Figure P5.40. (a) Show that the speed vx of the glider 
and the speed vy of the hanging object are related by vx 5 uvy, 
where u 5 z(z2 2 h0

2)21/2. (b) The glider is released from rest. 
Show that at that instant the acceleration ax of the glider 
and the acceleration ay of the hanging object are related by  
ax 5 uay. (c) Find the tension in the string at the instant the 
glider is released for h0 5 80.0 cm and u 5 30.0°.

41. An inventive child named Nick wants to reach an apple in a 
tree without climbing the tree. Sitting in a chair connected 
to a rope that passes over a frictionless pulley (Fig. P5.41),  
Nick pulls on the loose end of the rope with such a force 
that the spring scale reads 250 N. Nick’s true weight is 
320 N, and the chair weighs 160 N. Nick’s feet are not touch-
ing the ground. (a) Draw one pair of diagrams showing the 
forces for Nick and the chair considered as separate systems 
and another diagram for Nick and the chair considered as 
one system. (b) Show that the acceleration of the system is 
upward and find its magnitude. (c) Find the force Nick 
exerts on the chair.

42. A rope with mass mr is attached 
to a block with mass mb as in Fig-
ure P5.42. The block rests on a 
frictionless, horizontal surface. 
The rope does not stretch. The 
free end of the rope is pulled 
to the right with a horizontal force F

S
. (a) Draw force dia-

grams for the rope and the block, noting that the tension 
in the rope is not uniform. (b) Find the acceleration of the 
system in terms of mb, mr, and F. (c) Find the magnitude of 
the force the rope exerts on the block. (d) What happens  
to the force on the block as the rope’s mass approaches zero? 
What can you state about the tension in a light cord joining a 
pair of moving objects?

43. In Example 5.7, we pushed on two blocks on a table. Sup-
pose three blocks are in contact with one another on a 
frictionless, horizontal surface as shown in Figure P5.43. 
A horizontal force F

S
 is applied to m1. Take m1 5 2.00 kg,  

m2 5 3.00 kg, m3 5 4.00 kg, and F 5 18.0 N. (a) Draw a sep-
arate free-body diagram for each block. (b) Determine the 
acceleration of the blocks. (c) Find the resultant force on 
each block. (d) Find the magnitudes of the contact forces 
between the blocks. (e) You are working on a construction 
project. A coworker is nailing up plasterboard on one side of 
a light partition, and you are on the opposite side, providing 
“backing” by leaning against the wall with your back push-
ing on it. Every hammer blow makes your back sting. The 
supervisor helps you put a heavy block of wood between the 
wall and your back. Using the situation analyzed in parts (a) 
through (d) as a model, explain how this change works to 
make your job more comfortable.
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44. In the situation described in Problem 41 and Figure P5.41, 
the masses of the rope, spring balance, and pulley are negli-
gible. Nick’s feet are not touching the ground. (a)  Assume 
Nick is momentarily at rest when he stops pulling down on 
the rope and passes the end of the rope to another child, of 
weight 440 N, who is standing on the ground next to him. 
The rope does not break. Describe the ensuing motion.  
(b) Instead, assume Nick is momentarily at rest when he ties 
the end of the rope to a strong hook projecting from the tree 
trunk. Explain why this action can make the rope break.

45. A crate of weight Fg is pushed by a force 
P
S

 on a horizontal floor as shown in Fig-
ure P5.45. The coefficient of static fric-
tion is ms, and P

S
 is directed at angle u  

below the horizontal. (a) Show that the 
minimum value of P that will move the 
crate is given by

P 5
ms Fg sec u

1 2 ms tan u

  (b) Find the condition on u in terms of ms for which motion 
of the crate is impossible for any value of P.

46. In Figure P5.46, the pulleys and 
the cord are light, all surfaces are 
frictionless, and the cord does 
not stretch. (a) How does the 
acceleration of block 1 compare 
with the acceleration of block 2? 
Explain your reasoning. (b) The 
mass of block 2 is 1.30 kg. Find 
its acceleration as it depends on 
the mass m1 of block 1. (c) What 
If? What does the result of part 
(b) predict if m1 is very much less 
than 1.30 kg? (d) What does the result of part (b) predict 
if m1 approaches infinity? (e) In this last case, what is the 
tension in the cord? (f) Could you anticipate the answers to 
parts (c), (d), and (e) without first doing part (b)? Explain.

47. You are working as an expert witness for the defense of a 
container ship captain whose ship ran into a reef surround-
ing a Caribbean island. The captain is being charged with 
intentionally running the ship into the reef. In discovery, 
the following information has been presented, and attor-
neys on both sides have stipulated that the information is 
correct: The ship was traveling at 2.50 m/s toward the reef 
when a mechanical failure caused the rudder to jam in the 
straight-ahead position. At that point in time, the ship was 
900 m from the reef. The wind was blowing directly toward 
the reef, and exerting a constant force of 9.00 3 103 N on 
the boat in a direction toward the reef. The mass of the ship 
and its cargo was 5.50 3 107 kg. During the preparation 
for the trial, the captain claims that without control of the 
direction of travel, the only choice he had was to put the 

engines in reverse at maximum power, such that the total 
force exerted by the frictional drag force of the water and 
the force of the water on the propellers was 1.25 3 105 N 
in a direction away from the reef. From this information, 
construct a convincing argument that nothing the captain 
could do in this situation could have prevented the ship 
from striking the reef.

48. A flat cushion of mass m is 
released from rest at the corner of 
the roof of a building, at height h. 
A wind blowing along the side of 
the building exerts a constant 
horizontal force of magnitude F 
on the cushion as it drops as 
shown in Figure  P5.48. The air 
exerts no vertical force. (a) Show 
that the path of the cushion is a 
straight line. (b) Does the cushion 
fall with constant velocity? 
Explain. (c) If m 5 1.20 kg, h 5 
8.00 m, and F 5 2.40 N, how far from the building will the 
cushion hit the level ground? What If? (d) If the cushion is 
thrown downward with a nonzero speed at the top of the build-
ing, what will be the shape of its trajectory? Explain.

49. What horizontal force must 
be applied to a large block of 
mass M shown in Figure P5.49 
so that the tan blocks remain 
stationary relative to M? 
Assume all surfaces and the 
pulley are frictionless. Notice 
that the force exerted by the 
string accelerates m2.

50. An 8.40-kg object slides down a fixed, frictionless, inclined 
plane. Use a computer to determine and tabulate (a) the 
normal force exerted on the object and (b) its acceleration 
for a series of incline angles (measured from the horizontal) 
ranging from 0° to 90° in 5° increments. (c) Plot a graph of 
the normal force and the acceleration as functions of the 
incline angle. (d) In the limiting cases of 0° and 90°, are 
your results consistent with the known behavior?

ChalleNge ProbleMs

51. A block of mass 2.20 kg is accel-
erated across a rough surface by 
a light cord passing over a small 
pulley as shown in Figure P5.51. 
The tension T in the cord is main-
tained at 10.0 N, and the pulley 
is 0.100 m above the top of the 
block. The coefficient of kinetic 
friction is 0.400. (a)  Determine 
the acceleration of the block 
when x 5 0.400 m. (b)  Describe 
the general behavior of the accel-
eration as the block slides from a location where x is large to 
x 5 0. (c) Find the maximum value of the acceleration and 
the position x for which it occurs. (d) Find the value of x for 
which the acceleration is zero.

52. Why is the following situation impossible? A 1.30-kg toaster is not 
plugged in. The coefficient of static friction between the 
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126 Chapter 5 The Laws of Motion

toaster and a horizontal countertop is 0.350. To make the 
toaster start moving, you carelessly pull on its electric cord. 
Unfortunately, the cord has become frayed from your previous 
similar actions and will break if the tension in the cord exceeds 
4.00 N. By pulling on the cord at a particular angle, you suc-
cessfully start the toaster moving without breaking the cord.

53. Initially, the system of objects shown in Figure P5.49 is held 
motionless. The pulley and all surfaces and wheels are fric-
tionless. Let the force F

S
 be zero and assume that m1 can 

move only vertically. At the instant after the system of objects 
is released, find (a) the tension T in the string, (b) the accel-
eration of m2, (c) the acceleration of M, and (d) the accelera-
tion of m1. (Note: The pulley accelerates along with the cart.)

54. A mobile is formed by supporting four metal butterflies 
of equal mass m from a string of length L. The points of 
support are evenly spaced a distance , apart as shown in 
Figure P5.54. The string forms an angle u1 with the ceiling 
at each endpoint. The center section of string is horizon-
tal. (a) Find the tension in each section of string in terms 
of u1, m, and g. (b) In terms of u1, find the angle u2 that the 
sections of string between the outside butterflies and the 
inside butterflies form with the horizontal. (c) Show that 
the distance D between the endpoints of the string is

D 5
L
5

  52 cos u1 1 2 cosftan21_12 tan u1+g 1 16

55. In Figure P5.55, the incline has mass M and is fastened to 
the stationary horizontal tabletop. The block of mass m is 
placed near the bottom of the incline and is released with a 
quick push that sets it sliding upward. The block stops near 
the top of the incline as shown in the figure and then slides 
down again, always without friction. Find the force that the 
tabletop exerts on the incline throughout this motion in 
terms of m, M, g, and u.
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Storyline You have no classes today and decide to spend the day 
at Disneyland with a friend. It’s a weekday, so the lines are relatively short. In 
fact, even the line for the Mad Tea Party is short! You have read online that this 
ride is available at all of Disney’s parks around the world, even at the newest 
Disneyland in Shanghai, China. For this ride, you and your friend sit in a large tea 
cup that spins rapidly. While your friend pulls on the wheel in the center of the 
teacup to make it spin quickly, you hang your smartphone from a string to form 
a pendulum. You dangle the pendulum from your hand at the rim of the tea cup. 
You notice that the pendulum does not hang straight down! You open a special 
app on the smartphone that gives you a readout of the angle of the phone with 
respect to the vertical and hang the phone again as a pendulum. Why does the 
pendulum deviate from the vertical? In what direction does the pendulum deviate 
from the vertical? What happens to the angle reading on the phone as you move 
your hand holding the pendulum toward the center of the tea cup? Why does the 
reading change in this way?

ConneCtions In this chapter, we expand on the circular motion we 
studied in Chapter 4, combining it with our new knowledge about force 
from Chapter 5. What forces act on an object when it is in circular motion? 
In addition, we consider some other cases in which Newton’s laws help us 
to understand the motion. We will consider how the laws of physics appear 
when one is in an accelerated frame of reference, such as the spinning teacup 
in the storyline. We will also extend our discussions of friction from Chapter 5 
by looking at resistive forces on an object, such as air resistance. Unlike in 

6.1 Extending the Particle 
in Uniform Circular 
Motion Model

6.2 Nonuniform Circular 
Motion

6.3 Motion in Accelerated 
Frames

6.4 Motion in the Presence 
of Resistive Forces

6
The Mad Tea Party at 
Disneyland is a ride with 
lots of circular motion. Each 
cup rotates around a central 
axis. In addition, six cups 
are mounted on a rotating 
turntable. Furthermore, three 
such turntables are mounted 
on a large turntable rotating 
in the opposite direction 
to the smaller turntables. 
(Pascal Le Segretain/Getty 
Images News/Getty Images)

Circular Motion and Other 
Applications of Newton’s Laws

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



128 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

our model of kinetic friction, these forces vary in magnitude according to the 
speed of the object relative to the surrounding medium. In future chapters, 
we will see several examples of circular motion, such as planets in orbit in 
Chapter 13, charged particles moving in circular paths in magnetic fields in 
Chapter 28, and electrons in circular orbits in the Bohr theory of the hydrogen 
atom in Chapter 41. The action of particles undergoing resistive forces will 
appear in future chapters, and we will see electrical analogs to resistive forces 
in various kinds of electric circuits in Chapters 27 and 31. The material in this 
chapter on accelerated reference frames will be followed up with the discus-
sion of general relativity in Chapter 38.

   6.1    Extending the Particle in Uniform  
Circular Motion Model
In Section 4.4, we discussed the analysis model of a particle in uniform circular 
motion, in which a particle moves with constant speed v in a circular path having a 
radius r. The particle experiences an acceleration that has a magnitude

ac 5
v2

r

The acceleration is called centripetal acceleration because aSc is directed toward the 
center of the circle. Furthermore, aSc is always perpendicular to vS. (If there were a 
component of acceleration parallel to vS, the particle’s speed would be changing.)

Let us now extend the particle in uniform circular motion model from Sec-
tion 4.4 by incorporating the concept of force. Consider a puck of mass m that is 
tied to a string of length r and moves at constant speed in a horizontal, circular 
path as illustrated in the overhead view in Figure 6.1. Its weight is supported by 
the normal force from a frictionless table, and the string is anchored to a peg at 
the center of the circular path of the puck. Why does the puck move in a circle? 
According to Newton’s first law, the puck would move in a straight line if there were 
no force on it; the string, however, prevents motion along a straight line by exerting 
on the puck a radial force F

S
r that makes it follow the circular path. This force is 

directed along the string toward the center of the circle as shown in Figure 6.1.
If Newton’s second law is applied along the radial direction, the net force caus-

ing the centripetal acceleration can be related to the acceleration as follows:

 oF 5 mac 5 m 
v2

r
 (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illus-
trated in Figure 6.2 for the puck moving in a circular path at the end of a string 
in a horizontal plane. If the string breaks at some instant, the puck moves along 
the straight-line path that is tangent to the circle at the position of the puck at 
this instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

Force causing centripetal 
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears.
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analYsis Model Particle in Uniform Circular Motion (Extension)

Imagine a moving object that can be modeled as a particle. If 
it moves in a circular path of radius r at a constant speed v, it 
experiences a centripetal acceleration. Because the particle is 
accelerating, there must be a net force acting on the particle. 
That force is directed toward the center of the circular path 
and is given by 

 oF 5 mac 5 m 
v2

r
 (6.1)

Examples

 ● the tension in a string of constant length acting on a rock 
twirled in a circle

 ● the gravitational force acting on 
a planet traveling around the 
Sun in a perfectly circular orbit 
(Chapter 13)

 ● the magnetic force acting on 
a charged particle moving 
in a uniform magnetic field 
(Chapter 28)

 ● the electric force acting on an electron in orbit around 
a nucleus in the Bohr model of the hydrogen atom 
(Chapter 41)

r

� vS

ac
S

F
S

 Example 6.1    The Conical Pendulum

A small ball of mass m is suspended from a string of length L. The ball revolves with 
constant speed v in a horizontal circle of radius r as shown in Figure 6.3. (Because 
the string sweeps out the surface of a cone, the system is known as a conical pendulum.) 
Find an expression for v in terms of the length of the string and the angle it makes 
with the vertical in Figure 6.3.

S o l U T I o N

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince yourself that 
the string sweeps out a cone and that the ball moves in a horizontal circle. What hap-
pens if the ball moves with a higher speed?

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we model it 
as a particle in equilibrium in the vertical direction. It experiences a centripetal accelera-
tion in the horizontal direction, so it is modeled as a particle in uniform circular motion in 
this direction.

Analyze Let u represent the angle between the string and the vertical. In the diagram of forces acting on the ball in 
Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical component T cos u and a horizontal compo-

nent T sin u acting toward the center of the circular path.

Apply the particle in equilibrium model in the vertical  o Fy 5 T cos u 2 mg 5 0 
direction: 

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular  (2)   o Fx 5 T sin u 5 mac 5
mv2

r
 

motion model in the horizontal direction:

Divide Equation (2) by Equation (1) and use  tan u 5
v2

rg
 

sin u/cos u 5 tan u:

Solve for v: v 5 Ïrg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a: (3)   v 5  ÏLg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so that the 
string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string cannot possibly be 
horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational force on the ball. The 

situation in this problem is similar in some ways to your experience on the Mad Tea Party ride. As you move your hand holding 
the hanging smartphone toward the center of your spinning cup, the speed v of the phone changes, resulting in a different 
angle u, as suggested by Equation (3).

r

L

m

u

u

T sin u

T cos u
T
S

gS mgS 

a b

Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.
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 Example 6.2    How Fast Can It Spin?

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

S o l U T I o N

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we expect 
a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

Analyze Incorporate the tension and the centripetal acceleration  T 5 m 
v2

r
  

into Newton’s second law as described by Equation 6.1:

Solve for v: (1)   v 5ÎTr
m

  

Find the maximum speed the puck can have, which corresponds  vmax 5ÎTmaxr

m
5Îs50.0 Nds1.50 md

0.500 kg
5  12.2 m/s 

to the maximum tension the string can withstand:

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptualization 
of the problem.

W h A T  I F ?  Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less likely 
to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time inter-
val. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string is less likely 
to break when the puck travels in a circle of larger radius.

 Example 6.3    What Is the Maximum Speed of the Car?

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as  
shown in the overhead view in Figure 6.4a. If the radius of the curve is 35.0 m 
and the coefficient of static friction between the tires and dry pavement is  
0.523, find the maximum speed the car can have and still make the turn 
successfully.

S o l U T I o N

Conceptualize Imagine that the curved roadway is part of a large circle so that the 
car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze The back view in Figure 6.4b shows the forces on the car. The force that 
enables the car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If this 
force of static friction were zero—for example, if the car were on an icy road—the 
car would continue in a straight line and slide off the curved road.) The maximum 
speed vmax the car can have around the curve is the speed at which it is on the 
verge of skidding outward. At this point, the friction force has its maximum value  
fs,max 5 msn.

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The 
force of static friction directed 
toward the center of the curve keeps 
the car moving in a circular path. 
(b) The forces acting on the car.
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6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion  (1)   fs,max 5 msn 5 m 
v 2

max

r
 

model in the radial direction for the maximum speed condition:

Apply the particle in equilibrium model to the car in the  o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg 
vertical direction:

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5Îmsnr

m
5Îmsmgr

m
5 Ïms gr

Substitute numerical values: vmax 5 Ïs0.523ds9.80 mys2ds35.0 md 5  13.4 mys

Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, this 
roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does not depend 
on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various masses of vehicles 
using the road.

W h A T  I F ?  Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the tires and 
a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet road than a dry 
road.

To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

s8.00 mysd2

s9.80 mys2ds35.0 md
5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

 Example 6.4    The Banked Roadway

You are a civil engineer who has been given the assignment to redesign the curved 
roadway in Example 6.3 in such a way that a car will not have to rely on friction to 
round the curve without skidding. In other words, a car moving at the designated 
speed can negotiate the curve even when the road is covered with ice. Such a road is 
usually banked, which means that the roadway is tilted toward the inside of the curve. 
Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and the radius 
of the curve is 35.0 m. You need to determine the angle at which the roadway on the 
curve should be banked.

S o l U T I o N

Conceptualize The difference between this example and Example 6.3 is that the car is no 
longer moving on a flat roadway. Figure 6.5 shows the banked roadway, with the center of 
the circular path of the car far to the left of the figure. Notice that the horizontal compo-
nent of the normal force participates in causing the car’s centripetal acceleration. Note 
in Figure 6.5 that, unlike the motion on an inclined plane in Figure 5.12, we use a coor-
dinate system with x horizontal and y upward. This choice is made so that the centripetal 
acceleration of the car is purely in the x direction.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in the vertical 
direction and a particle in uniform circular motion in the horizontal direction.

Analyze On a level (unbanked) road, the force that causes the centripetal acceleration is 
the force of static friction between tires and the road as we saw in the preceding example. 

Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal acceleration 
and keeps the car moving in its cir-
cular path is the horizontal com-
ponent of the normal force.

nx

ny

u

u

Fg
S

nS

y

x

continued
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132 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

6.4 c o n t i n u e d

If the road is banked at an angle u as in Figure 6.5, however, the normal force nS has a horizontal component toward the center 
of the curve. Because the road is to be designed so that the force of static friction is zero, the component nx 5 n sin u is the only 
force that causes the centripetal acceleration.

Write Newton’s second law for the car in the radial direction,  (1)   o Fr 5 n sin u 5
mv 2

r
 

which is the 2x direction:

Apply the particle in equilibrium model to the car in the  o Fy 5 n cos u 2 mg 5 0
vertical direction: 

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u and substitute numerical values: u 5 tan213 s13.4 mysd2

s35.0 mds9.80 mys2d4 5  27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a car 
rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, which is 
unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the car down the 
inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed to keep the car 
from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve at a speed greater than 
13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5). See problem 41 for an analysis 
of this situation.

W h A T  I F ?  Imagine that this same roadway were built on Mars in the future to connect different colony centers. Could 
it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller compo-
nent would not be sufficient to provide the centripetal acceleration associated with the original speed. The centripetal accel-
eration must be reduced, which can be done by reducing the speed v.

Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway of 
fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway can be 
safely traveled is also smaller.

 Example 6.5    Riding the Ferris Wheel

A child of mass m rides on a Ferris wheel as shown in 
Figure 6.6a. The child moves in a vertical circle of radius 
10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the child 
at the bottom of the ride. Express your answer in terms 
of the weight of the child, mg.

S o l U T I o N

Conceptualize Look carefully at Figure 6.6a. Based on 
experiences you may have had on a Ferris wheel or driving 
over small hills on a roadway, you would expect to feel lighter 
at the top of the path. Similarly, you would expect to feel 
heavier at the bottom of the path. At both the bottom of the 
path and the top, the normal and gravitational forces on the 
child act in opposite directions. The vector sum of these two 
forces gives a force of constant magnitude that keeps the 
child moving in a circular path at a constant speed. To yield 
net force vectors with the same magnitude, the normal force 
at the bottom must be greater than that at the top.

a b c

nbot
S

mgS

ntop
S

vS

R

Bottom

Top
vS

mgS

Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.
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6.5 c o n t i n u e d

Categorize Because the speed of the child is constant, we can categorize this problem as one involving a particle (the child) in 
uniform circular motion, complicated by the gravitational force acting at all times on the child.

Analyze We draw a diagram of forces acting on the child at the bottom of the ride as shown in Figure 6.6b. The only 
forces acting on him are the downward gravitational force F

S
g 5 mgS and the upward force nSbot exerted by the seat.  

The centripetal acceleration of the child at this point is upward and the net upward force on the child has a magnitude nbot 2 mg.

Using the particle in uniform circular motion model,  o F 5 n bot 2 mg 5 m 
v2

r
 

apply Newton’s second law to the child in the radial  
direction when he is at the bottom of the ride:

Solve for the force exerted by the seat on the child: n bot 5 mg 1 m 
v 2

r
5 mgS1 1

v 2

rgD
Substitute numerical values given for the speed  n bot 5 mg31 1

s3.00 mysd2

s10.0 mds9.80 mys2d4 
and radius:

5   1.09 mg

Hence, the magnitude of the force nSbot exerted by the seat on the child is greater than the weight of the child by a factor of 1.09. 
So, the child experiences an apparent weight that is greater than his true weight by a factor of 1.09.

(B) Determine the force exerted by the seat on the child at the top of the ride.

S o l U T I o N

Analyze The diagram of forces acting on the child at the top of the ride is shown in Figure 6.6c. The centripetal acceleration 
of the child at this point is downward and the net downward force has a magnitude mg 2 n top.

Apply Newton’s second law to the child at this position: o F 5 mg 2 n top 5 m 
v2

r

Solve for the force exerted by the seat on the child: n top 5 mg 2 m 
v2

r
5 mgS1 2

v2

rgD
Substitute numerical values: n top 5 mg 31 2

s3.00 mysd2

s10.0 mds9.80 mys2d4
5   0.908 mg

In this case, the magnitude of the force exerted by the seat on the child is less than his true weight by a factor of 0.908, and the 
child feels lighter.

Finalize The variations in the normal force are consistent with our prediction in the Conceptualize step of the problem.

W h A T  I F ?  Suppose a defect in the Ferris wheel mechanism causes the speed of the child to increase to 10.0 m/s. What 
does the child experience at the top of the ride in this case?

Answer If the calculation above is performed with v 5 10.0 m/s, the magnitude of the normal force at the top of the ride 
is negative, which is impossible. We interpret it to mean that the required downward centripetal acceleration of the child is 
larger than that due to gravity. As a result, the child will lose contact with the seat and will only stay in his circular path if there 
is a safety bar or a seat belt that provides a downward force on him to keep him in his seat. At the bottom of the ride, the nor-
mal force is 2.02 mg, which would be uncomfortable.

   6.2    Nonuniform Circular Motion
In Chapter 4, we found that if a particle moves with varying speed in a circular 
path, there is, in addition to the radial component of acceleration, a tangential 
component having magnitude udv/dtu. Therefore, the force acting on the particle 
must also have a tangential and a radial component. Because the total accelera-
tion is aS 5 aSr 1 aSt, the total force exerted on the particle is o F

S
5 o F

S
r 1 o F

S
t 
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134 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

as shown in Figure 6.7. (We express the radial and tangential forces as net forces 
with the summation notation because each force could consist of multiple forces 
that combine.) The vector o F

S
r is directed toward the center of the circle and is 

responsible for the centripetal acceleration. The vector o F
S

t tangent to the circle is 
responsible for the tangential acceleration, which represents a change in the parti-
cle’s speed with time.

Q uick Quiz 6.2 A bead slides at constant speed along a curved wire lying on a 
horizontal surface as shown in Figure 6.8. (a) Draw the vectors representing the 
force exerted by the wire on the bead at points Ⓐ, Ⓑ, and Ⓒ. (b) Suppose the 
bead in Figure 6.8 speeds up with constant tangential acceleration as it moves 
toward the right. Draw the vectors representing the forces on the bead at points 
Ⓐ, Ⓑ, and Ⓒ.

Figure 6.8 (Quick Quiz 6.2) A 
bead slides along a curved wire.

�

�

�

Figure 6.7 When the net force acting on a par-
ticle moving in a circular path has a tangential 
component o Ft, the particle’s speed changes.

�

�

�

F
S

Ft
S

Fr
S

The net force exerted on 
the particle is the vector 
sum of the radial force 
and the tangential force.

 Example 6.6    Keep Your Eye on the Ball

A small sphere of mass m is attached to the end of a cord of length R and 
set into motion in a vertical circle about a fixed point O as illustrated in 
Figure  6.9. Determine the tangential acceleration of the sphere and the 
tension in the cord at any instant when the speed of the sphere is v and the 
cord makes an angle u with the vertical.

S o l U T I o N

Conceptualize Compare the motion of the sphere in Figure 6.9 with that of 
the child in Figure 6.6a associated with Example 6.5. Both objects travel in 
a circular path. Unlike the child in Example 6.5, however, the speed of the 
sphere is not uniform in this example because, at most points along the path, 
a tangential component of acceleration arises from the gravitational force 
exerted on the sphere.

Categorize We model the sphere as a particle under a net force and moving 
in a circular path, but it is not a particle in uniform circular motion. We 
need to use the techniques discussed in this section on nonuniform circular 
motion.

Analyze From the force diagram in Figure 6.9, we see that the only forces 
acting on the sphere are the gravitational force F

S
g 5 mgS exerted by the Earth  

and the force T
S

 exerted by the cord. We resolve F
S

g into a tangential component 
mg sin u and a radial component mg cos u.

Figure 6.9 (Example 6.6) The forces acting 
on a sphere of mass m connected to a cord 
of length R and rotating in a vertical circle 
centered at O. Forces acting on the sphere are 
shown when the sphere is at the top and bottom 
of the circle and at an arbitrary location.

R

O

mg sin u

u

umg cos u
vbot
S

vtop
S

T
S

Tbot
S

Ttop
S

mgS 

mgS 

mgS 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    6.3 Motion in Accelerated Frames 135

6.6 c o n t i n u e d

From the particle under a net force model, apply Newton’s  o Ft 5 mg sin u 5 mat 
second law to the sphere in the tangential direction: 

at 5   g sin u

Apply Newton’s second law to the forces acting on the sphere  oFr 5 T 2 mg cos u 5
mv 2

R
 

in the radial direction, noting that both T
S

 and aSr are  
directed toward O. As noted in Section 4.5, we can use  
Equation 4.21 for the instantaneous centripetal acceleration  

T 5  mgS v 2

Rg
1 cos uD 

of a particle even when it moves in nonuniform circular motion:

Finalize Let us evaluate this result at the top and bottom of the circular path (Fig. 6.9):

Ttop 5 mgSv 2
top

Rg
2 1D  Tbot 5 mgSv 2

bot

Rg
1 1D

These results have similar mathematical forms as those for the normal forces ntop and nbot on the child in Example 6.5, which 
is consistent with the normal force on the child playing a similar physical role in Example 6.5 as the tension in the string plays 
in this example. Keep in mind, however, that the normal force nS on the child in Example 6.5 is always upward, whereas the 
force T

S
 in this example changes direction because it must always point inward along the string. Also note that v in the expres-

sions above varies for different positions of the sphere, as indicated by the subscripts, whereas v in Example 6.5 is constant.

W h A T  I F ? What if the sphere is set in motion with a slower speed? 

(A) What speed would the sphere have as it passes over the top of the circle if the tension in the cord goes to zero instanta-
neously at this point?

Answer Let us set the tension equal to zero in the expression for Ttop:

0 5 mgSv 2
top

Rg
2 1D  S   vtop 5 ÏgR

(B) What if the sphere is set in motion such that the speed at the top is less than this value? What happens?

Answer In this case, the sphere never reaches the top of the circle. At some point on the way up, the tension in the string 
goes to zero and the sphere becomes a projectile. It follows a segment of a parabolic path, with its peak below the topmost posi-
tion of the sphere shown in Figure 6.9, rejoining the circular path on the other side when the tension becomes nonzero again.

   6.3    Motion in Accelerated Frames
Newton’s laws of motion, which we introduced in Chapter 5, describe observations 
that are made in an inertial frame of reference. In this section, we analyze how 
Newton’s laws are applied by an observer in a noninertial frame of reference, that 
is, one that is accelerating. For example, recall the discussion of the air hockey 
table on a train in Section 5.2. The train moving at constant velocity represents an 
inertial frame. An observer on the train sees the puck at rest remain at rest, and 
Newton’s first law appears to be obeyed. The accelerating train is not an inertial 
frame. According to you as the observer on this train, there appears to be no force 
on the puck, yet it accelerates from rest toward the back of the train, appearing to 
violate Newton’s first law. This property is a general property of observations made 
in noninertial frames: there appear to be unexplained accelerations of objects that 
are not “fastened” to the frame. Newton’s first law is not violated, of course. It only 
appears to be violated because of observations made from a noninertial frame. 

On the accelerating train, as you watch the puck accelerating toward the back 
of the train, you might conclude based on your belief in Newton’s second law that 
a force has acted on the puck to cause it to accelerate. We call an apparent force 
such as this one a fictitious force because it is not a real force and is due only to 
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136 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

observations made in an accelerated reference frame. A fictitious force appears to 
act on an object in the same way as a real force. Real forces are always interactions 
between two objects, however, and you cannot identify a second object for a ficti-
tious force. (What second object is interacting with the puck to cause it to accel-
erate?) In general, simple fictitious forces appear to act in the direction opposite 
that of the acceleration of the noninertial frame. For example, the train accelerates 
forward and there appears to be a fictitious force causing the puck to slide toward 
the back of the train.

The train example describes a fictitious force due to a change in the train’s 
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a 
change in direction, consider a car traveling along a highway at a high speed and 
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car 
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or 
slides to the right and hits the door. At that point the force exerted by the door on 
the passenger keeps her from being ejected from the car. What causes her to move 
toward the door? A popular but incorrect explanation is that a force acting toward 
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The 
car represents a noninertial reference frame that has a centripetal  acceleration 
toward the center of its circular path. As a result, the passenger feels an apparent 
force which is outward from the center of the circular path, or to the right in Figure 
6.10b, in the direction opposite that of the acceleration.

Let us address this phenomenon in terms of Newton’s laws. Before the car enters 
the ramp, the passenger is moving in a straight-line path. As the car enters the 
ramp and travels a curved path, the passenger tends to move along the original 
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large 
force (toward the center of curvature) acts on the passenger as in Figure 6.10c, 
however, she moves in a curved path along with the car. This force is the force of 
friction between her and the car seat. If this friction force is not large enough, the 
seat follows a curved path while the passenger tends to continue in the straight-line 
path of the car before the car began the turn. Therefore, from the point of view of 
an observer in the car, the passenger leans or slides to the right relative to the seat. 
Eventually, she encounters the door, which provides a force large enough to enable 
her to follow the same curved path as the car.

Another interesting fictitious force is the “Coriolis force.” It is an apparent force 
caused by changing the radial position of an object in a rotating coordinate system.

For example, suppose you and a friend are on opposite sides of a rotating circular 
platform and you decide to throw a baseball to your friend. Figure 6.11a represents 
what an observer would see if the ball is viewed while the observer is hovering at rest 
above the rotating platform. According to this observer, who is in an inertial frame, 
the ball follows a straight line as it must according to Newton’s first law. At t 5 0 you 
throw the ball toward your friend, but by the time tf when the ball has crossed the 
platform, your friend has moved to a new position and can’t catch the ball. Now, 
however, consider the situation from your friend’s viewpoint. Your friend is in a non-
inertial reference frame because he is undergoing a centripetal acceleration relative 
to the inertial frame of the Earth’s surface. He starts off seeing the baseball coming 
toward him, but as it crosses the platform, it veers to one side as shown in Figure 
6.11b. Therefore, your friend on the rotating platform states that the ball does not 
obey Newton’s first law and claims that a sideways force is causing the ball to follow 
a curved path. This fictitious force is called the Coriolis force.

Fictitious forces may not be real forces, but they can have real effects. An object 
on your dashboard really slides off if you press the accelerator of your car. As you 
ride on a merry-go-round, you feel pushed toward the outside as if due to the fic-
titious “centrifugal force.” You are likely to fall over and injure yourself due to the 

From the passenger’s frame of 
reference, a force appears to push 
her toward the right door, but it is 
a fictitious force.

Fictitious
force

Relative to the reference frame of 
the Earth, the car seat applies a 
real force (friction) toward the 
left on the passenger, causing her 
to change direction along with 
the rest of the car.

Real
force

a

b

c

Figure 6.10 (a) A car approach-
ing a curved exit ramp. What 
causes a passenger in the front 
seat to move toward the right-
hand door? (b) Passenger’s frame 
of reference. (c) Reference frame 
of the Earth.
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Coriolis force if you walk along a radial line while a merry-go-round rotates. (One 
of the authors did so and suffered a separation of the ligaments from his ribs when 
he fell over.) The Coriolis force due to the rotation of the Earth is responsible for 
rotations of hurricanes and for large-scale ocean currents.

Q uick Quiz 6.3 Consider the passenger in the car making a left turn in 
Figure 6.10. Which of the following is correct about forces in the horizontal 
direction if she is making contact with the right-hand door? (a) The passenger 
is in equilibrium between real forces acting to the right and real forces acting 
to the left. (b) The passenger is subject only to real forces acting to the right. 
(c) The passenger is subject only to real forces acting to the left. (d) None of 
those statements is true.

Friend at
t � 0

You at
t � 0

Friend at
t � tf

Ball at
t � tf

You at
t � tf Ball at

t � 0

By the time tf  that the ball arrives at the other side 
of the platform, your friend is no longer there to 
catch it. According to this observer, the ball follows 
a straight-line path, consistent with Newton’s laws.

From your friend’s point of view, the ball veers to 
one side during its flight. Your friend introduces a 
fictitious force to explain this deviation from the 
expected path.

a b

Figure 6.11 You and your friend stand at the edge of a rotating circular platform. You throw the 
ball at t 5 0 in the direction of your friend. (a) Overhead view observed by someone in an inertial 
reference frame attached to the Earth. The ground appears stationary, and the platform rotates 
clockwise. (b) Overhead view observed by someone in an inertial reference frame attached to the 
platform. The platform appears stationary, and the ground rotates counterclockwise.

Pitfall Prevention 6.2
Centrifugal Force The commonly 
heard phrase “centrifugal force” 
is described as a force pulling 
outward on an object moving in a 
circular path. If you are feeling a 
“centrifugal force” on a rotating 
carnival ride, what is the other 
object with which you are interact-
ing? You cannot identify another 
object because it is a fictitious 
force that occurs when you are in 
a noninertial reference frame.

 Example 6.7    Fictitious Forces in Circular Motion

Consider the experiment described in the opening storyline: you are riding on the Mad Tea Party ride and holding your 
smartphone hanging from a string. Now suppose your friend stands on solid ground beside the ride watching you. You 
hold the upper end of the string above a point near the outer rim of the spinning tea cup. Both the inertial observer (your 
friend) and the noninertial observer (you) agree that the string makes an angle u with respect to the vertical. You claim 
that a force, which we know to be fictitious, causes the observed deviation of the string from the vertical. How is the magni-
tude of this force related to the smartphone’s centripetal acceleration measured by the inertial observer?

S o l U T I o N

Conceptualize Place yourself in the role of each of the two observers. The inertial observer on the ground knows that the 
smartphone has a centripetal acceleration and that the deviation of the string is related to this acceleration. As the noninertial 
observer on the teacup, imagine that you ignore any effects of the spinning of the teacup, so you have no knowledge of any 
centripetal acceleration. Because you are unaware of this acceleration, you claim that a force is pushing sideways on the smart-
phone to cause the deviation of the string from the vertical. To make the conceptualization more real, try running from rest 
while holding a hanging object on a string and notice that the string is at an angle to the vertical while you are accelerating, as 
if a force is pushing the object backward.

continued
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138 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

6.7 c o n t i n u e d

Categorize For the inertial observer, we model the smartphone as a particle under a net force in the horizontal direction and a 
particle in equilibrium in the vertical direction. For the noninertial observer, the smartphone is modeled as a particle in equilib-
rium in both directions.

Analyze The geometry for the spinning and hanging smartphone will be similar to that shown for the ball in Figure 6.3b. 
According to the inertial observer at rest, the forces on the smartphone are the force T

S
 exerted by the string and the grav-

itational force. The inertial observer concludes that the smartphone’s centripetal acceleration is provided by the horizontal 
component of T

S
.

For this observer, apply the particle under a net force  Inertial observer 
and particle in equilibrium models:

According to the noninertial observer riding in the teacup, the string also makes an angle u with the vertical; to that 
observer, however, the smartphone is at rest and so its acceleration is zero. Therefore, the noninertial observer introduces a 
force (which we know to be fictitious) in the horizontal direction to balance the horizontal component of T

S
 and claims that 

the net force on the smartphone is zero.

Apply the particle in equilibrium model for this observer  Noninertial observer 
in both directions:

These expressions are equivalent to Equations (1) and (2) if   Ffictitious 5 mac  , where ac is the centripetal acceleration of the 
smartphone according to the inertial observer.

Finalize The angle of the string will depend on where the upper end of the string is held relative to the center of the teacup. 
If the string is held directly over the center, for example, the smartphone is not moving in a circular path, it has no centripe-
tal acceleration due to the motion of the teacup, and the string will not deviate from the vertical. (In practice, it may deviate 
slightly due to the rotation of the turntables on which the teacup is mounted.)

W h A T  I F ?  Suppose you wish to measure the centripetal acceleration of the smartphone from your observations. How 
could you do so?

Answer Our intuition tells us that the angle u the string makes with the vertical should increase as the acceleration increases. 
By solving Equations (1) and (2) simultaneously for ac , we find that ac 5 g tan u. Therefore, you can determine the magnitude of 
the centripetal acceleration of the smartphone by measuring the angle u and using that relationship. Because the deflection of 
the string from the vertical serves as a measure of acceleration, a simple pendulum can be used as an accelerometer.

5 (1)   o Fx 5 T sin u 5 mac

(2)   o Fy 5 T cos u 2 mg 5 0

5o F 9x 5 T sin u 2 Ffictitious 5 0

o F 9y 5 T cos u 2 mg 5 0

   6.4    Motion in the Presence of Resistive Forces
In Chapter 5, we described the force of kinetic friction exerted on an object moving 
on some surface. We completely ignored any interaction between the object and the 
medium through which it moves. Now consider the effect of that medium, which 
can be either a liquid or a gas. The medium exerts a resistive force R

S
 on the object 

moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
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flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!

The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: resistive force Proportional to object velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)

where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative 
to the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

Consider a small sphere of mass m released from rest in a liquid as in Figure 6.12a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-
ticle under a net force. Applying Newton’s second law to the vertical motion of the 
sphere and choosing the downward direction to be positive, we obtain

 o Fy 5 ma   S   mg 2 bv 5 ma (6.3)

where the acceleration of the sphere is downward. Solving Equation 6.3 for a and 
noting that a is equal to dv/dt gives

 
dv
dt

5 g 2
b
m

 v (6.4)

This equation is called a differential equation; it contains both v and the derivative 
of v. The methods of solving such an equation may not be familiar to you as yet. 
Notice, however, that initially when v 5 0, the magnitude of the resistive force is 

v

vT

0.632vT

t

v � 0 a � g

v � vT

a � 0mgS 

R
S

vS

a b c

The sphere approaches a 
maximum (or terminal) 
speed vT.

The time constant t is the 
time at which the sphere 
reaches a speed of 0.632vT.

t

Figure 6.12 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (purple) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.

1 A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.
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140 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

also zero and the acceleration of the sphere is simply g. As t increases, the mag-
nitude of the resistive force increases and the acceleration decreases. The accel-
eration approaches zero when the magnitude of the resistive force approaches the 
sphere’s weight so that the net force on the sphere is zero. In this situation, the 
speed of the sphere approaches its terminal speed vT .

The terminal speed is obtained from Equation 6.4 by setting dv/dt 5 0, which 
gives

 0 5 g 2
b
m

 vT or vT 5
mg

b
 (6.5)

Because you may not be familiar with differential equations yet, we won’t show  
the explicit details of the process that gives the expression for v for all times t. If 
v 5 0 at t 5 0, this expression is

 v 5
mg

b
 s1 2 e2btymd 5 vT s1 2 e2tytd (6.6)

This function is plotted in Figure 6.12c. The symbol e represents the base of the 
natural logarithm and is also called Euler’s number: e 5 2.718 28. The time constant 
t 5 m/b (Greek letter tau) is the time at which the sphere released from rest at t 5 0  
reaches 63.2% of its terminal speed; when t 5 t, Equation 6.6 yields v 5 0.632vT . 
(The number 0.632 is 1 2 e21.)

We can check that Equation 6.6 is a solution to Equation 6.4 by direct 
differentiation:

dv
dt

5
d
dt3

mg

b
s1 2 e2btymd4 5

mg

b S0 1
b
m

 e2btymD 5 ge2btym

(See Appendix Table B.4 for the derivative of e raised to some power.) This is the 
left side of Equation 6.4. The right side is 

g 2
b
m

 v 5 g 2
b
m3mg

b
 _1 2 e2btym+4

5 ge2btym

Because the results for both sides of Equation 6.4 are the same, Equation 6.6 rep-
resents a solution to Equation 6.4.

Terminal speed 

 Example 6.8    Sphere Falling in Oil

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil, where it experiences a resistive force pro-
portional to its speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant t and the time at 
which the sphere reaches 90.0% of its terminal speed.

S o l U T I o N

Conceptualize With the help of Figure 6.12, imagine dropping the sphere into the oil and watching it sink to the bottom of 
the vessel. If you have some thick shampoo in a clear container, drop a marble in it and observe the motion of the marble.

Categorize We model the sphere as a particle under a net force, with one of the forces being a resistive force that depends on the 
speed of the sphere. This model leads to the result in Equation 6.5.

Analyze From Equation 6.5, evaluate the coefficient b: b 5
mg

vT

Evaluate the time constant t: t 5
m
b

5 mS vT

mgD 5
vT

g
 

Substitute numerical values: t 5
5.00 cmys
980 cmys2 5 5.10 3 1023 s
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Model 2: resistive force Proportional  
to object speed squared
For objects moving at high speeds through air, such as airplanes, skydivers, cars, 
and baseballs, the resistive force is reasonably well modeled as proportional to the 
square of the speed. In these situations, the magnitude of the resistive force can be 
expressed as

 R 5 1
2 DrAv2 (6.7)

where D is a dimensionless empirical quantity called the drag coefficient, r is the 
density of air, and A is the cross-sectional area of the moving object measured in a 
plane perpendicular to its velocity. The drag coefficient has a value of about 0.5 for 
spherical objects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of a falling object subject to an upward air resistive 
force of magnitude R 5 1

2 DrAv2. Suppose an object of mass m is released from rest. 
As Figure 6.13 shows, the object experiences two external forces:2 the downward 
gravitational force F

S
g 5 mgS and the upward resistive force R

S
. Hence, the magni-

tude of the net force is

 oF 5 mg 2 1
2 DrAv2 (6.8)

where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude

 a 5 g 2 SDrA
2m Dv2 (6.9)

We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives

0 5 g 2 SDrA
2m Dv 2

T

so, solving for vT ,

 vT 5Î2mg

DrA
 (6.10)

Table 6.1 (page 142) lists the terminal speeds for several objects falling through air.

6.8 c o n t i n u e d

Find the time t at which the sphere reaches a speed  0.900vT 5 vT(1 2 e2t/t) 
of 0.900vT  by setting v 5 0.900vT in Equation 6.6 and  
solving for t :

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this behavior 
if you performed the activity with the marble and the shampoo. Because of the short time interval required to reach termi-
nal velocity, you may not have noticed the time interval at all. The marble may have appeared to immediately begin moving 
through the shampoo at a constant velocity.

1 2 e2t/t 5 0.900

e2t/t 5 0.100

2
t
t

5 ln s0.100d 5 22.30

t 5 2.30t 5 2.30(5.10 3 1023 s) 5 11.7 3 1023 s

5  11.7 ms

mgS mgS 

vS vT
S

R
S

R
S

ba

Figure 6.13 (a) An object  
falling through air experiences a 
resistive force R

S
 and a gravitational 

force F
S

g 5 mgS. (b) The object 
reaches terminal speed when the 
net force acting on it is zero, that 
is, when R

S
5 2 F

S
g or R 5 mg.

2 As with Model 1, there is also an upward buoyant force that we neglect.
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142 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

 table 6.1  Terminal Speed for Various objects Falling Through Air

Object
Mass 
(kg)

Cross-Sectional Area 
(m2)

vT 
(m/s)

Skydiver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 3 1023 43
Golf ball (radius 2.1 cm) 0.046 1.4 3 1023 44
Hailstone (radius 0.50 cm) 4.8 3 1024 7.9 3 1025 14
Raindrop (radius 0.20 cm) 3.4 3 1025 1.3 3 1025 9.0

Q uick Quiz 6.4 A basketball and a 2-inch-diameter steel ball, having the same 
mass, are dropped through air from rest such that their bottoms are initially 
at the same height above the ground, on the order of 1 m or more. Which one 
strikes the ground first? (a) The steel ball strikes the ground first. (b) The bas-
ketball strikes the ground first. (c) Both strike the ground at the same time.

 Conceptual Example 6.9    The Skysurfer

Consider a skysurfer (Fig. 6.14) who jumps from a plane with his feet attached firmly 
to his surfboard, does some tricks, and then opens his parachute. Describe the forces 
acting on him during these maneuvers.

S o l U T I o N

When the surfer first steps out of the plane, he has no vertical velocity. The down-
ward gravitational force causes him and the board to accelerate toward the ground. 
As their downward speed increases, so does the upward resistive force exerted by 
the air on the surfer and the board. This upward force reduces their acceleration, 
and so their speed increases more slowly. Eventually, they are going so fast that the 
upward resistive force matches the downward gravitational force. Now the net force is 
zero and they no longer accelerate, but instead reach their terminal speed. At some 
point after reaching terminal speed, he opens his parachute, resulting in a drastic 
increase in the upward resistive force. The net force (and therefore the acceleration) 
is now upward, in the direction opposite the direction of the velocity. The down-
ward velocity therefore decreases rapidly, and the resistive force on the parachute 
also decreases. Eventually, the upward resistive force and the downward gravitational 
force balance each other again and a much smaller terminal speed is reached, per-
mitting a safe landing.

(Contrary to popular belief, the velocity vector of a skydiver never points upward. You may have seen a video in which a 
skydiver appears to “rocket” upward once the parachute opens. In fact, what happens is that the skydiver slows down but the 
person holding the camera continues falling at high speed.)
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Figure 6.14  (Conceptual Example 
6.9) A skysurfer.

 Example 6.10    Resistive Force Exerted on a Baseball

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s (5 90 mi/h). Find the resistive force acting on the ball at 
this speed.

S o l U T I o N

Conceptualize This example is different from the previous ones in that the object is now moving horizontally through the air 
instead of moving vertically under the influence of gravity and the resistive force. The resistive force causes the ball to slow 
down, and gravity causes its trajectory to curve downward. We simplify the situation by assuming the velocity vector is exactly 
horizontal at the instant it is traveling at 40.2 m/s.

Categorize In general, the ball is a particle under a net force. Because we are considering only one instant of time, however, we 
are not concerned about acceleration, so the problem involves only finding the value of one of the forces.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6.10 c o n t i n u e d

Analyze To determine the drag coefficient D, imagine  
D 5

2mg

vT
2rA

 
that we drop the baseball and allow it to reach terminal  
speed. Solve Equation 6.10 for D:

Use this expression for D in Equation 6.7 to find an  R 5 1
2DrAv2 5 

1
2 S 2mg

vT
2  rADrAv2 5 mgS v

vT
D2

 
expression for the magnitude of the resistive force:

Substitute numerical values, using the terminal speed  R 5 s0.145 kgds9.80 mys2dS40.2 mys
43 mys D2

5 1.2 N 
from Table 6.1:

Finalize The magnitude of the resistive force is similar in magnitude to the weight of the baseball, which is about  
1.4 N. Therefore, air resistance plays a major role in the motion of the ball, as evidenced by the variety of curve balls, floaters, 
sinkers, and the like thrown by baseball pitchers.

summary
 › Concepts and Principles

A particle moving in uniform circular motion has a 
centripetal acceleration; this acceleration must be pro-
vided by a net force directed toward the center of the 
circular path.

An observer in a noninertial (accelerating) frame of refer-
ence introduces fictitious forces when applying Newton’s 
second law in that frame.

An object moving through a liquid or gas experiences a speed- 
dependent resistive force. This resistive force is in a direction 
opposite that of the velocity of the object relative to the medium 
and generally increases with speed. The magnitude of the resis-
tive force depends on the object’s size and shape and on the 
properties of the medium through which the object is moving. 
In the limiting case for a falling object, when the magnitude of 
the resistive force equals the object’s weight, the object reaches its 
terminal speed.

 › Analysis Model for Problem Solving

Particle in Uniform Circular Motion (Extension) With our new knowledge of forces, we can extend 
the model of a particle in uniform circular motion, first introduced in Chapter 4. Newton’s second law 
applied to a particle moving in uniform circular motion states that the net force causing the particle to 
undergo a centripetal acceleration (Eq. 4.21) is related to the acceleration according to

 o F 5 mac 5 m 
v2

r
 (6.1)

r

� vS

ac
S

F
S

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working as a delivery person for a dairy store. In 
the back of your pickup truck is a crate of eggs. The dairy 
company has run out of bungee cords, so the crate is not 
tied down. You have been told to drive carefully because 
the coefficient of static friction between the crate and the 
bed of the truck is 0.600. You are not worried, because you 
are traveling on a road that appears perfectly straight. Due 
to your confidence and inattention, your speed has crept 

upward to 45.0 mi/h. Suddenly, you see a curve ahead with 
a warning sign saying, “Danger: unbanked curve with radius 
of curvature 35.0 m.” You are 15.0 m from the beginning 
of the curve. What can you do to save the eggs: (i) take the 
curve at 45.0 mi/h, (ii) brake to a stop before entering the 
curve to think about it, or (iii) slow down to take the curve 
at a slower speed? Discuss these options in your group and 
determine if there is a best course of action.

2. ACTIvITY  Find a YouTube video that shows the complete 
cycle for an amusement park ride called the “Roundup.” In 
this ride, a rider stands against a wall at the edge of a disk 
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144 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

rotating around a vertical axis. When the disk reaches its 
operating speed, an arm raises the disk through an angle 
so that the disk rotates around an axis that is almost hori-
zontal. As a result, the rider moves over the top of a vertical 
circle, seemingly unsupported, but does not fall downward. 
By using the height of a typical person on the ride, estimate 
the radius of the disk, using a stopped image of the disk at 
its highest angle. Begin the video again and use your smart-
phone stopwatch to measure the period of rotation of the 
disk. (a) From this information, calculate the centripetal 
acceleration of a rider at the top of the ride. (b) How does 
this acceleration compare to that due to gravity? (c) Why 
doesn’t a rider at the top fall downward?

3. ACTIvITY  Find a YouTube video that shows the complete 
cycle for an amusement park ride called the “Rotor.” In 
this ride, a rider stands against a wall in a cylinder rotat-
ing around a vertical axis. When the cylinder reaches its 
operating speed, the floor drops away and riders remain 
suspended on the wall. By using the height of a typical per-
son on the ride, estimate the radius of the cylinder, using a 
stopped image of the ride. Begin the video again and use 
your smartphone stopwatch to measure the period of rota-
tion of the cylinder. From this information, determine the 
minimum coefficient of static friction necessary between 
the rider and the wall to keep the rider suspended.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

section 6.1 Extending the Particle in Uniform Circular 
Motion Model

1. In the Bohr model of the hydrogen atom, an electron moves 
in a circular path around a proton. The speed of the electron 
is approximately 2.20 3 106 m/s. Find (a) the force acting on 
the electron as it revolves in a circular orbit of radius 0.529 3 
10210 m and (b) the centripetal acceleration of the electron.

2. Whenever two Apollo astronauts were on the surface of the 
Moon, a third astronaut orbited the Moon. Assume the orbit 
to be circular and 100 km above the surface of the Moon, 
where the acceleration due to gravity is 1.52 m/s2. The 
radius of the Moon is 1.70 3 106 m. Determine (a) the astro-
naut’s orbital speed and (b) the period of the orbit.

3. A car initially traveling 
eastward turns north by 
traveling in a circular 
path at uniform speed 
as shown in Figure P6.3. 
The length of the arc 
ABC is 235 m, and the 
car completes the turn 
in 36.0 s. (a) What is the 
acceleration when the car 
is at B located at an angle 
of 35.08? Express your 
answer in terms of the 
unit vectors i

⁄
 and j

⁄
. Determine (b) the car’s average speed 

and (c) its average acceleration during the 36.0-s interval.

4. A curve in a road forms part of a horizontal circle. As a car 
goes around it at constant speed 14.0 m/s, the total horizon-
tal force on the driver has magnitude 130 N. What is the 
total horizontal force on the driver if the speed on the same 
curve is 18.0 m/s instead?

5. In a cyclotron (one type of particle accelerator), a deuteron 
(of mass 2.00 u) reaches a final speed of 10.0% of the speed 
of light while moving in a circular path of radius 0.480 m. 
What magnitude of magnetic force is required to maintain 
the deuteron in a circular path?

6. Why is the following situation impossible? The object of mass 
m 5 4.00 kg in Figure P6.6 is attached to a vertical rod by 

two strings of length , 5 2.00 m. 
The strings are attached to the 
rod at points a distance d 5 3.00 m  
apart. The object rotates in a hor-
izontal circle at a constant speed 
of v 5 3.00  m/s, and the strings 
remain taut. The rod rotates along 
with the object so that the strings 
do not wrap onto the rod. What If? 
Could this situation be possible on 
another planet?

7. You are working during your summer break as an amusement 
park ride operator. The ride you are controlling consists of 
a large vertical cylinder that spins about its axis fast enough 
that any person inside is held up against the wall when the 
floor drops away (Fig. P6.7). The coefficient of static friction 
between a person of mass m and the wall is ms, and the radius 
of the cylinder is R. You are rotating the ride with an angular 
speed v suggested by your 
supervisor. (a) Suppose a 
very heavy person enters 
the ride. Do you need to 
increase the angular speed 
so that this person will 
not slide down the wall? 
(b) Suppose someone enters 
the ride wearing a very slip-
pery satin workout outfit. 
In this case, do you need to 
increase the angular speed 
so that this person will not 
slide down the wall?

8.  A driver is suing the state highway department after an 
accident on a curved freeway. The driver lost control and 
crashed into a tree located a short distance from the outside 
edge of the curved roadway. The driver is claiming that the 
radius of curvature of the unbanked roadway was too small 
for the speed limit, causing him to slide outward on the 
curve and hit the tree. You have been hired as an expert wit-
ness for the defense, and have been requested to use your 
knowledge of physics to testify that the radius of curvature 
of the roadway is appropriate for the speed limit. State reg-
ulations show that the radius of curvature of an unbanked 
roadway on which the speed limit is 65 mi/h must be at least 
150 m. You build an accelerometer, which is a plumb bob 
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with a protractor that you attach to the roof of your car. 
An associate riding in your car with you observes that the 
plumb bob hangs at an angle of 15.08 from the vertical when 
the car is driven at a safer speed of 23.0 m/s on the curve 
in question. What is your testimony regarding the radius of 
the curve?

section 6.2 Nonuniform Circular Motion

9. A hawk flies in a horizontal arc of radius 12.0 m at constant 
speed 4.00 m/s. (a) Find its centripetal acceleration. (b) It 
continues to fly along the same horizontal arc, but increases 
its speed at the rate of 1.20 m/s2. Find the acceleration 
(magnitude and direction) in this situation at the moment 
the hawk’s speed is 4.00 m/s.

10. A 40.0-kg child swings in a swing supported by two chains, 
each 3.00 m long. The tension in each chain at the lowest 
point is 350 N. Find (a) the child’s speed at the lowest point 
and (b) the force exerted by the seat on the child at the low-
est point. (Ignore the mass of the seat.)

11. A child of mass m swings in a swing supported by two chains, 
each of length R. If the tension in each chain at the lowest 
point is T, find (a) the child’s speed at the lowest point and 
(b) the force exerted by the seat on the child at the lowest 
point. (Ignore the mass of the seat.)

12. One end of a cord is fixed and a small 
0.500-kg object is attached to the 
other end, where it swings in a section 
of a vertical circle of radius 2.00 m as 
shown in Figure P6.12. When u 5 20.08, 
the speed of the object is 8.00 m/s.  
At this instant, find (a) the tension 
in the string, (b) the tangential and 
radial components of acceleration,  
and (c) the total acceleration. (d) Is your 
answer changed if the object is swinging down toward its  
lowest point instead of swinging up? (e) Explain your answer 
to part (d).

13. A roller coaster at the Six Flags 
Great America amusement park 
in Gurnee, Illinois, incorporates 
some clever design technology 
and some basic physics. Each ver-
tical loop, instead of being cir-
cular, is shaped like a teardrop 
(Fig. P6.13). The cars ride on 
the inside of the loop at the top, 
and the speeds are fast enough 
to ensure the cars remain on the 
track. The biggest loop is 40.0 m 
high. Suppose the speed at the 
top of the loop is 13.0 m/s and 
the corresponding centripetal 
acceleration of the riders is 2g. (a) What is the radius of the 
arc of the teardrop at the top? (b) If the total mass of a car 
plus the riders is M, what force does the rail exert on the car 
at the top? (c) Suppose the roller coaster had a circular loop 
of radius 20.0 m. If the cars have the same speed, 13.0 m/s 
at the top, what is the centripetal acceleration of the riders 
at the top? (d) Comment on the normal force at the top in 
the situation described in part (c) and on the advantages of 
having teardrop-shaped loops.

section 6.3 Motion in Accelerated Frames

14. An object of mass m 5 
5.00  kg, attached to a 
spring scale, rests on a 
frictionless, horizontal 
surface as shown in Fig-
ure P6.14. The spring 
scale, attached to the 
front end of a boxcar, 
reads zero when the  
car is at rest. (a) Determine the acceleration of the car if the 
spring scale has a constant reading of 18.0 N when the car 
is in motion. (b) What constant reading will the spring scale 
show if the car moves with constant velocity? Describe the 
forces on the object as observed (c) by someone in the car 
and (d) by someone at rest outside the car.

15. A person stands on a scale in an elevator. As the ele-
vator starts, the scale has a constant reading of 591 N. 
As the elevator later stops, the scale reading is 391 N. 
Assuming the magnitude of the acceleration is the same  
during starting and stopping, determine (a) the weight of 
the person, (b) the person’s mass, and (c) the acceleration 
of the elevator.

16. Review. A student, along with her backpack on the floor 
next to her, is in an elevator that is accelerating upward 
with acceleration a. The student gives her backpack a quick 
kick at t 5 0, imparting to it speed v and causing it to slide 
across the elevator floor. At time t, the backpack hits the 
opposite wall a distance L away from the student. Find the 
coefficient of kinetic friction mk between the backpack and 
the elevator floor.

17. A small container of water is placed on a turntable inside 
a microwave oven, at a radius of 12.0 cm from the center. 
The turntable rotates steadily, turning one revolution in 
each 7.25 s. What angle does the water surface make with 
the horizontal?

section 6.4 Motion in the Presence of Resistive Forces

18. The mass of a sports car is 1 200 kg. The shape of the body is 
such that the aerodynamic drag coefficient is 0.250 and the 
frontal area is 2.20 m2. Ignoring all other sources of friction, 
calculate the initial acceleration the car has if it has been 
traveling at 100 km/h and is now shifted into neutral and 
allowed to coast.

19. Review. A window washer pulls a rubber squeegee down 
a very tall vertical window. The squeegee has mass 160 g 
and is mounted on the end of a light rod. The coefficient 
of kinetic friction between the squeegee and the dry glass 
is 0.900. The window washer presses it against the window 
with a force having a horizontal component of 4.00 N. (a) If 
she pulls the squeegee down the window at constant veloc-
ity, what vertical force component must she exert? (b) The 
window washer increases the downward force component 
by 25.0%, while all other forces remain the same. Find the 
squeegee’s acceleration in this situation. (c) The squeegee 
is moved into a wet portion of the window, where its motion 
is resisted by a fluid drag force R proportional to its veloc-
ity according to R 5 220.0v, where R is in newtons and v 
is in meters per second. Find the terminal velocity that the 
squeegee approaches, assuming the window washer exerts 
the same force described in part (b).
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146 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

20. A small piece of Styrofoam packing material is dropped 
from a height of 2.00 m above the ground. Until it reaches 
terminal speed, the magnitude of its acceleration is given 
by a 5 g 2 Bv. After falling 0.500 m, the Styrofoam effec-
tively reaches terminal speed and then takes 5.00 s more to 
reach the ground. (a) What is the value of the constant B? 
(b) What is the acceleration at t 5 0? (c) What is the accel-
eration when the speed is 0.150 m/s?

21. A small, spherical bead of mass 3.00 g is released from 
rest at t 5 0 from a point under the surface of a vis-
cous liquid. The terminal speed is observed to be vT 5  
2.00 cm/s. Find (a) the value of the constant b that appears 
in Equation 6.2, (b) the time t at which the bead reaches 
0.632vT, and (c)  the value of the resistive force when the 
bead reaches terminal speed.

22. Assume the resistive force acting on a speed skater is pro-
portional to the square of the skater’s speed v and is given 
by f 5 2kmv2, where k is a constant and m is the skater’s mass. 
The skater crosses the finish line of a straight-line race with 
speed vi and then slows down by coasting on his skates. Show 
that the skater’s speed at any time t after crossing the finish 
line is v(t) 5 vi /(1 1 ktvi).

23. You can feel a force of air drag on your hand if you stretch 
your arm out of the open window of a speeding car. Note: Do 
not endanger yourself. What is the order of magnitude of 
this force? In your solution, state the quantities you measure 
or estimate and their values.

additional ProbleMs

24. A car travels clockwise at constant 
speed around a circular section of 
a horizontal road as shown in the 
aerial view of Figure P6.24. Find the 
directions of its velocity and accel-
eration at (a) position Ⓐ and (b) 
position Ⓑ.

25. A string under a 
tension of 50.0 N is 
used to whirl a rock 
in a horizontal circle 
of radius 2.50 m at 
a speed of 20.4  m/s 
on a frictionless 
surface as shown in 
Figure P6.25. As the 
string is pulled in, 
the speed of the rock 
increases. When the 
string on the table is 1.00 m long and the speed of the rock 
is 51.0 m/s, the string breaks. What is the breaking strength, 
in newtons, of the string?

26. Disturbed by speeding 
cars outside his workplace, 
Nobel laureate Arthur 
Holly Compton designed 
a speed bump (called the 
“Holly hump”) and had 
it in stalled. Suppose a 
1 800-kg car passes over a 
hump in a roadway that follows the arc of a circle of radius  
20.4 m as shown in Figure P6.26. (a) If the car travels at 

30.0 km/h, what force does the road exert on the car as the 
car passes the highest point of the hump? (b) What If? What 
is the maximum speed the car can have without losing con-
tact with the road as it passes this highest point?

27. A car of mass m passes over a hump in a road that follows 
the arc of a circle of radius R as shown in Figure P6.26. (a) 
If the car travels at a speed v, what force does the road exert 
on the car as the car passes the highest point of the hump? 
(b) What If? What is the maximum speed the car can have 
without losing contact with the road as it passes this highest 
point?

28. A child’s toy consists of a small 
wedge that has an acute angle u  
(Fig. P6.28). The sloping side of 
the wedge is frictionless, and an 
object of mass m on it remains at 
constant height if the wedge is 
spun at a certain constant speed. 
The wedge is spun by rotating, 
as an axis, a vertical rod that is 
firmly attached to the wedge at 
the bottom end. Show that, when 
the object sits at rest at a point at 
distance L up along the wedge, 
the speed of the object must be  
v 5 (gL sin u)1/2.

29. A seaplane of total mass m lands on a lake with initial speed 
vi i

⁄
. The only horizontal force on it is a resistive force on its 

pontoons from the water. The resistive force is proportional 
to the velocity of the seaplane: R

S
5 2bvS. Newton’s second 

law applied to the plane is 2bv i
⁄

5 m sdvydtd i
⁄
. From the fun-

damental theorem of calculus, this differential equation 
implies that the speed changes according to

#
v

vi

dv
v

5 2 

b
m
 #

t

0
 dt

(a) Carry out the integration to determine the speed of the 
seaplane as a function of time. (b) Sketch a graph of the 
speed as a function of time. (c) Does the seaplane come to a 
complete stop after a finite interval of time? (d) Does the 
seaplane travel a finite distance in stopping?

30. An object of mass m1  5 
4.00 kg is tied to an 
object of mass m2 5 
3.00 kg with String 1 of 
length , 5 0.500 m. The 
combination is swung 
in a vertical circular 
path on a second string, 
String 2, of length , 5 
0.500 m. During the motion, the two strings are collinear at 
all times as shown in Figure P6.30. At the top of its motion, 
m2 is traveling at v 5 4.00 m/s. (a) What is the tension in 
String 1 at this instant? (b) What is the tension in String 2 at 
this instant? (c) Which string will break first if the combina-
tion is rotated faster and faster?

31. A ball of mass m 5 0.275 kg swings in a vertical circular 
path on a string L 5 0.850 m long as in Figure P6.31. 
(a) What are the forces acting on the ball at any point on 
the path? (b) Draw force diagrams for the ball when it is 
at the bottom of the circle and when it is at the top. (c) If 
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its speed is 5.20  m/s at the top of 
the circle, what is the tension in the 
string there? (d) If the string breaks 
when its tension exceeds 22.5  N, 
what is the maximum speed the ball 
can have at the bottom before that 
happens?

32. Why is the following situation impos-
sible? A mischievous child goes to an 
amusement park with his family. On one ride, after a severe 
scolding from his mother, he slips out of his seat and climbs 
to the top of the ride’s structure, which is shaped like a 
cone with its axis vertical and its sloped sides making an 
angle of u 5 20.08 with the horizontal as shown in Figure 
P6.32. This part of the structure rotates about the vertical 
central axis when the ride operates. The child sits on the 
sloped surface at a point d 5 5.32 m down the sloped side 
from the center of the cone and pouts. The coefficient of 
static friction between the boy and the cone is 0.700. The 
ride operator does not notice that the child has slipped 
away from his seat and so continues to operate the ride. As 
a result, the sitting, pouting boy rotates in a circular path at 
a speed of 3.75 m/s.

33. The pilot of an airplane executes a loop-the-loop maneu-
ver in a vertical circle. The speed of the airplane is 
300  mi/h at the top of the loop and 450 mi/h at the 
bottom, and the radius of the circle is 1 200 ft. (a) What  
is the pilot’s apparent weight at the lowest point if his true 
weight is 160 lb? (b) What is his apparent weight at the high-
est point? (c) What If? Describe how the pilot could experi-
ence weightlessness if both the radius and the speed can be 
varied. Note: His apparent weight is equal to the magnitude 
of the force exerted by the seat on his body.

34. A basin surrounding a drain has the shape of a circular 
cone opening upward, having everywhere an angle of 35.08 
with the horizontal. A 25.0-g ice cube is set sliding around 
the cone without friction in a horizontal circle of radius R. 
(a) Find the speed the ice cube must have as a function of 
R. (b) Is any piece of data unnecessary for the solution? Sup-
pose R is made two times larger. (c) Will the required speed 
increase, decrease, or stay constant? If it changes, by what 
factor? (d) Will the time interval required for each revolu-
tion increase, decrease, or stay constant? If it changes, by 
what factor? (e) Do the answers to parts (c) and (d) seem 
contradictory? Explain.

35. Review. While learning to drive, you are in a 1 200-kg car 
moving at 20.0 m/s across a large, vacant, level parking lot. 
Suddenly you realize you are heading straight toward the 

brick sidewall of a large supermarket and are in danger of 
running into it. The pavement can exert a maximum hor-
izontal force of 7 000 N on the car. (a) Explain why you 
should expect the force to have a well-defined maximum 
value. (b) Suppose you apply the brakes and do not turn 
the steering wheel. Find the minimum distance you must be 
from the wall to avoid a collision. (c) If you do not brake 
but instead maintain constant speed and turn the steering 
wheel, what is the minimum distance you must be from the 
wall to avoid a collision? (d) Of the two methods in parts (b) 
and (c), which is better for avoiding a collision? Or should 
you use both the brakes and the steering wheel, or neither? 
Explain. (e) Does the conclusion in part (d) depend on the 
numerical values given in this problem, or is it true in gen-
eral? Explain.

36. A truck is moving with 
constant acceleration 
a up a hill that makes 
an angle f with the 
horizontal as in Figure 
P6.36. A small sphere 
of mass m is suspended 
from the ceiling of the 
truck by a light cord. If 
the pendulum makes 
a constant angle u with the perpendicular to the ceiling, 
what is a?

37. Because the Earth rotates about its axis, a point on the equa-
tor experiences a centripetal acceleration of 0.033 7  m/s2,  
whereas a point at the poles experiences no centripe-
tal acceleration. If a person at the equator has a mass of 
75.0 kg, calculate (a) the gravitational force (true weight) on 
the person and (b) the normal force (apparent weight) on 
the person. (c) Which force is greater? Assume the Earth is 
a uniform sphere and take g 5 9.800 m/s2.

38. A puck of mass m1 is tied 
to a string and allowed 
to revolve in a circle of 
radius R on a friction-
less, horizontal table. 
The other end of the 
string passes through 
a small hole in the cen-
ter of the table, and 
an object of mass m2 is 
tied to it (Fig. P6.38). 
The suspended object 
remains in equilibrium while the puck on the tabletop 
revolves. Find symbolic expressions for (a) the tension in the 
string, (b) the radial force acting on the puck, and (c) the 
speed of the puck. (d) Qualitatively describe what will hap-
pen in the motion of the puck if the value of m2 is increased 
by placing a small additional load on the puck. (e) Qualita-
tively describe what will happen in the motion of the puck 
if the value of m2 is instead decreased by removing a part of 
the hanging load.

39. Galileo thought about whether acceleration should be 
defined as the rate of change of velocity over time or as 
the rate of change in velocity over distance. He chose the 
former, so let’s use the name “vroomosity” for the rate of 
change of velocity over distance. For motion of a particle 
on a straight line with constant acceleration, the equation 
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148 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

v 5 vi 1 at gives its velocity v as a function of time. Similarly,  
for a particle’s linear motion with constant vroomosity k, 
the equation v 5 vi 1 kx gives the velocity as a function  
of the position x if the particle’s speed is vi at x 5 0. (a) Find 
the  law describing the total force acting on this object of 
mass m. Describe an example of such a motion or explain 
why it is unrealistic for (b) the possibility of k positive and  
(c) the possibility of k negative.

40. Members of a skydiving club were given the following 
data to use in planning their jumps. In the table, d is the 
distance fallen from rest by a skydiver in a “free-fall stable 
spread position” versus the time of fall t. (a) Convert the dis-
tances in feet into meters. (b) Graph d (in meters) versus t. 
(c) Determine the value of the terminal speed vT by finding 
the slope of the straight portion of the curve. Use a least-
squares fit to determine this slope.

 t (s) d (ft) t (s) d (ft) t (s) d (ft)

 0   0  7   652 14 1 831
 1  16  8   808 15 2 005
 2  62  9   971 16 2 179
 3 138 10 1 138 17 2 353
 4 242 11 1 309 18 2 527
 5 366 12 1 483 19 2 701
 6 504 13 1 657 20 2 875

41. A car rounds a banked curve as discussed in Example 
6.4 and shown in Figure 6.5. The radius of curvature of 
the road is R , the banking angle is u, and the coefficient 
of static friction is ms. (a) Determine the range of speeds 
the car can have without slipping up or down the road. 
(b) Find the minimum value for ms such that the minimum 
speed is zero.

42. In Example 6.5, we investigated the forces a child experi-
ences on a Ferris wheel. Assume the data in that example 
applies to this problem. What force (magnitude and direc-
tion) does the seat exert on a 40.0-kg child when the child is 
halfway between top and bottom?

43. Review. A piece of putty is initially located at point A on 
the rim of a grinding wheel rotating at constant angular 
speed about a horizontal axis. The putty is dislodged from 
point A when the diameter through A is horizontal. It then 
rises vertically and returns to A at the instant the wheel 
completes one revolution. From this information, we wish 
to find the speed v of the putty when it leaves the wheel 
and the force holding it to the wheel. (a)  What analysis 
model is appropriate for the motion of the putty as it rises 
and falls? (b) Use this model to find a symbolic expres-
sion for the time interval between when the putty leaves 
point A and when it arrives back at A, in terms of v and 
g. (c)  What is the appropriate analysis model to describe 
point A on the wheel? (d) Find the period of the motion of 
point A in terms of the tangential speed v and the radius R 
of the wheel. (e) Set the time interval from part (b) equal 
to the period from part (d) and solve for the speed v of the 
putty as it leaves the wheel. (f) If the mass of the putty is m, 
what is the magnitude of the force that held it to the wheel 
before it was released?

44. A model airplane of mass 0.750 kg flies with a speed of 
35.0 m/s in a horizontal circle at the end of a 60.0-m-long 
control wire as shown in Figure P6.44a. The forces exerted 

on the airplane are shown in Figure P6.44b: the tension in 
the control wire, the gravitational force, and aerodynamic 
lift that acts at u 5 20.08 inward from the vertical. Compute 
the tension in the wire, assuming it makes a constant angle 
of u 5 20.08 with the horizontal.

challenge ProbleMs

45. A 9.00-kg object starting from rest falls through a vis-
cous medium and experiences a resistive force given 
by Equation 6.2. The object reaches one half its termi-
nal speed in 5.54 s. (a) Determine the terminal speed.  
(b) At what time is the speed of the object three-fourths the 
terminal speed? (c) How far has the object traveled in the 
first 5.54 s of motion?

46. For t , 0, an object of mass m experiences no force and 
moves in the positive x direction with a constant speed vi. 
Beginning at t 5 0, when the object passes position x 5 0, it 
experiences a net resistive force proportional to the square 
of its speed: F

S
net 5 2mkv2 i

⁄
, where k is a constant. The 

speed of the object after t 5 0 is given by v 5 vi /(1 1 kvit). 
(a) Find the position x of the object as a function of time. 
(b) Find the object’s velocity as a function of position.

47. A golfer tees off from a 
location precisely at fi 5 
35.08 north latitude. He 
hits the ball due south, 
with range 285  m. The 
ball’s initial velocity is 
at 48.08 above the hori-
zontal. Suppose air resis-
tance is negligible for 
the golf ball. (a) For how 
long is the ball in f light? 
The cup is due south of 
the golfer’s location, and 
the golfer would have a 
hole-in-one if the Earth were not rotating. The Earth’s 
rotation makes the tee move in a circle of radius RE cos fi 5  
(6.37 3 106 m) cos 35.08 as shown in Figure P6.47. The tee 
completes one revolution each day. (b) Find the eastward 
speed of the tee relative to the stars. The hole is also mov-
ing east, but it is 285 m farther south and thus at a slightly 
lower latitude ff. Because the hole moves in a slightly 
larger circle, its speed must be greater than that of the 
tee. (c) By how much does the hole’s speed exceed that 
of the tee? During the time interval the ball is in f light, 
it moves upward and downward as well as southward with 
the projectile motion you studied in Chapter 4, but it also 
moves eastward with the speed you found in part (b). The 
hole moves to the east at a faster speed, however, pulling 
ahead of the ball with the relative speed you found in 
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part  (c). (d) How far to the west of the 
hole does the ball land?

48. A single bead can slide with negligible fric-
tion on a stiff wire that has been bent into 
a circular loop of radius 15.0 cm as shown 
in Figure P6.48. The circle is always in a 
vertical plane and rotates steadily about its 
vertical diameter with a period of 0.450 s. 
The position of the bead is described by 
the angle u that the radial line, from the 
center of the loop to the bead, makes with the vertical. (a) 
At what angle up from the bottom of the circle can the bead 
stay motionless relative to the turning circle? (b) What If? 
Repeat the problem, this time taking the period of the cir-
cle’s rotation as 0.850 s. (c) Describe how the solution to 
part (b) is different from the solution to part (a). (d) For 
any period or loop size, is there always an angle at which the 
bead can stand still relative to the loop? (e) Are there ever 
more than two angles? Arnold Arons suggested the idea for 
this problem.

49. Because of the Earth’s rotation, a plumb bob does not hang 
exactly along a line directed to the center of the Earth. How 
much does the plumb bob deviate from a radial line at 35.08 
north latitude? Assume the Earth is spherical.

50. You have a great job working at a major league baseball sta-
dium for the summer! At this stadium, the speed of every 
pitch is measured using a radar gun aimed at the pitcher 
by an operator behind home plate. The operator has so 
much experience with this job that he has perfected a 
technique by which he can make each measurement at the 
exact instant at which the ball leaves the pitcher’s hand. 
Your supervisor asks you to construct an algorithm that 
will provide the speed of the ball as it crosses home plate, 
18.3 m from the pitcher, based on the measured speed vi of 
the ball as it leaves the pitcher’s hand. The speed at home 
plate will be lower due to the resistive force of the air on 
the baseball. The vertical motion of the ball is small, so, to 
a good approximation, we can consider only the horizon-
tal motion of the ball. You begin to develop your algorithm 
by applying the particle under a net force to the baseball 
in the horizontal direction. A pitch is measured to have a 
speed of 40.2 m/s as it leaves the pitcher’s hand. You need 
to tell your supervisor how fast it was traveling as it crossed 
home plate. (Hint: Use the chain rule to express accelera-
tion in terms of a derivative with respect to x, and then 
solve a differential equation for v to find an expression 
for the speed of the baseball as a function of its position. 
The function will involve an exponential. Also make use 
of Table 6.1.)

CR

u

Figure P6.48
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Storyline Your observations as an inquisitive physics student 
have worn you out and you decide to spend a quiet day at home. You go into your 
garage to do further work on a carpentry project you started a while ago. You are 
thinking about how much you have learned about mechanics in your investiga-
tions as you find your sandpaper and a piece of wood that needs to be smoothed. 
You begin to sand the wood, still thinking that your studies of mechanics make 
a very complete description of nature and the Universe. Then you notice the 
sandpaper and the wood, along with your fingers, becoming warmer as you sand. 
“Wait. This is new!” you think. You are applying forces to the sandpaper, and it 
accelerates, therefore changing its velocity. There is friction between the sand-
paper and the wood. This is all mechanics; you have thought about all of these 
concepts and have learned about them in previous chapters. But warmth? What’s 
that all about? Maybe you have more thinking to do!

ConneCtions In this chapter, we are going to investigate a quantity that is 
very different from those studied in the previous chapters. Chapters 2 through 6 dealt 
with change. Velocity is a change in position, and acceleration is a change in velocity 
(Chapters 2 and 4). Force is the cause of changes in motion (Chapter 5). In this chap-
ter and the next, we will study a quantity, energy, that is conserved. That is, the total 
energy in an isolated system does not change during any process that occurs in the 
system. Or if the total energy in a system does change, for example, if it increases, 
we find that the energy of the surroundings of the system decreases by the same 
amount! Therefore, the energy of the entire Universe is fixed; it has the same value 
at all times! Our analysis models presented in earlier chapters were based on the 
motion of a particle, or an object that could be modeled as a particle. We begin our 

Energy of a System

7.1 Systems and 
Environments

7.2 Work Done by a 
Constant Force

7.3 The Scalar Product  
of Two Vectors

7.4 Work Done by a 
Varying Force

7.5 Kinetic Energy and the 
Work–Kinetic Energy 
Theorem

7.6 Potential Energy  
of a System

7.7 Conservative and 
Nonconservative 
Forces

7.8 Relationship Between 
Conservative Forces 
and Potential Energy

7.9 Energy Diagrams and 
Equilibrium of a System

7

You use sandpaper to smooth the surface of a piece of wood. The sandpaper and wood both become warmer. 
How do we incorporate warmth into our growing list of physics concepts? (DJTaylor/Shutterstock.com)
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new approach by focusing our attention on a new simplification model, a system, and 
analysis models based on the model of a system. These analysis models will be for-
mally introduced in Chapter 8. In this chapter, we introduce systems and three ways 
to store energy in a system. We begin by making a connection between a familiar 
concept, force, and our new topic, energy. We will identify several forms in which 
energy can exist in a system. Even though this new quantity has a different nature 
from our previously studied quantities, it is very important and allows us to solve an 
entirely new class of problems. Furthermore, you might be happy to find out that 
energy is a scalar, so we don’t have to perform complicated vector calculations! As 
we continue to study physics in the rest of the chapters in this book, we will see very 
often that we can take a force approach to a new area of study and we can also take 
an energy approach. The two approaches are complementary.

   7.1    Systems and Environments
In the system model, we focus our attention on a small portion of the Universe—
the system—and ignore details of the rest of the Universe outside of the system.  
A critical skill in applying the system model to problems is identifying the system.

A valid system

 ● may be a single object or particle
 ● may be a collection of objects or particles
 ● may be a region of space (such as the interior of an automobile engine com-

bustion cylinder)
 ● may vary with time in size and shape (such as a rubber ball, which deforms 

upon striking a wall)

Identifying the need for a system approach to solving a problem (as opposed to 
a particle approach) is part of the Categorize step in the Analysis Model Approach 
to Problem Solving outlined in Chapter 2. Identifying the particular system is a 
second part of this step.

No matter what the particular system is in a given problem, we identify a system 
boundary, an imaginary surface (not necessarily coinciding with a physical surface) 
that divides the Universe into the system and the environment surrounding the system.

As an example, imagine a force applied to an object in empty space. We can 
define the object as the system and its outer surface as the system boundary. The 
force applied to it is an influence on the system from the environment that acts 
across the system boundary. We will see how to analyze this situation from a system 
approach in a subsequent section of this chapter.

Another example was seen in Example 5.10, where the system can be defined as 
the combination of the ball, the block, and the cord. The influence from the envi-
ronment includes the gravitational forces on the ball and the block, the normal 
and friction forces on the block, and the force exerted by the pulley on the cord. 
The forces exerted by the cord on the ball and the block are internal to the system 
and therefore are not included as an influence from the environment.

There are a number of mechanisms by which a system can be influenced by its 
environment. The first one we shall investigate is work.

   7.2    Work Done by a Constant Force
Almost all the terms we have used thus far—velocity, acceleration, force, and so 
on—convey a similar meaning in physics as they do in everyday life. Now, however, 
we encounter a term whose meaning in physics is distinctly different from its every-
day meaning: work.

Pitfall Prevention 7.1
Identify the System The most 
important first step to take in solv-
ing a problem using the energy 
approach is to identify the appro-
priate system of interest.
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152 Chapter 7 Energy of a System

To understand what work as an influence on a system means to the physicist, 
consider the situation illustrated in Figure 7.1. A force F

S
 is applied to a chalkboard 

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b is more effective in moving the eraser than the push in Figure 7.1a. 
On the other hand, Figure 7.1c shows a situation in which the applied force does 
not move the eraser at all, regardless of how hard it is pushed (unless, of course, 
we apply a force so great that we break the chalkboard tray!). These results suggest 
that when analyzing forces to determine the influence they have on the system, we 
must consider the vector nature of forces. We must also consider the magnitude of 
the force. Moving a force with a magnitude of uF

S
u 5 2 N through a displacement 

represents a greater influence on the system than moving a force of magnitude 1 N 
through the same displacement. The magnitude of the displacement is also impor-
tant. Moving the eraser 3 m along the tray represents a greater influence than mov-
ing it 2 cm if the same force is used in both cases.

Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement. We formally 
define the work done by the force on the system as follows:

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)Work done by a 
constant force

Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors in Figure 7.2, a force F

S
 and a displacement D rS. In Section 7.3, we 

explore how to combine two vectors to generate a scalar quantity.
Notice also that the displacement in Equation 7.1 is that of the point of applica-

tion of the force. If the force is applied to a particle or a rigid object that can be 
modeled as a particle, this displacement is the same as that of the particle. For a 
deformable system, however, these displacements are not the same. For example, 
imagine pressing in on the sides of a balloon with both hands. The center of the 
balloon moves through zero displacement. The points of application of the forces 
from your hands on the sides of the balloon, however, do indeed move through a 
displacement as the balloon is compressed, and that is the displacement to be used 
in Equation 7.1. We will see other examples of deformable systems, such as springs 
and samples of gas contained in a vessel.

a b c

Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 
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Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, 
“the work done by . . . on . . . .” 
After “by,” insert the part of the 
environment that is interacting 
directly with the system. After 
“on,” insert the system. For exam-
ple, “the work done by the ham-
mer on the nail” identifies the 
nail as the system, and the force 
from the hammer represents the 
influence from the environment.

�

u

F
S

rS 

Figure 7.2 An object on a table 
undergoes a displacement D rS 
under the action of a constant 
force F

S
.
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    7.2 Work Done by a Constant Force 153

As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 
have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support 
the chair, but you do not move it. A force does no work on an object if the force 
does not move through a displacement. If Dr 5 0, Equation 7.1 gives W 5 0, which is 
the situation depicted in Figure 7.1c.

Also notice from Equation 7.1 that the work done by a force on a moving object 
is zero when the force applied is perpendicular to the displacement of its point of 
application. That is, if u 5 908, then W 5 0 because cos 908 5 0. For example, in  
Figure 7.3, the work done by the normal force on the object and the work done by the 
gravitational force on the object are both zero because both forces are perpendicular 
to the displacement and have zero components along an axis in the direction of D rS.

The sign of the work also depends on the direction of F
S

 relative to D rS. The work 
done by the applied force on a system is positive when the projection of F

S
 onto D rS 

is in the same direction as the displacement. For example, when an object is lifted, 
the work done by the applied force on the object is positive because the direction 
of that force is upward, in the same direction as the displacement of its point of 
application. When the projection of F

S
 onto D rS is in the direction opposite the dis-

placement, W is negative. For example, as an object is lifted, the work done by the 
gravitational force on the object is negative. The factor cos u in the definition of W 
(Eq. 7.1) automatically takes care of the sign.

If an applied force F
S

 is in the same direction as the displacement D rS, then u 5 0 
and cos 0 5 1. In this case, Equation 7.1 gives

 W 5 F Dr 

The units of work are those of force multiplied by those of length. Therefore, 
the SI unit of work is the newton ? meter (N ? m 5 kg ? m2/s2). This combination 
of units is used so frequently that it has been given a name of its own, the joule (J).

An important consideration for a system approach to problems is that work is an 
energy transfer. For now, energy sounds mysterious, because we have not studied it 
yet. It is difficult to define energy, other than to say that it is a physical quantity that 
is conserved. In that behavior, it is similar to money. When a financial transaction 
occurs in your checking account, money is transferred across the boundary of your 
account: for example, inward by deposits and outward by withdrawals. When a physi-
cal process occurs, energy is  transferred across the boundary of a system. Our under-
standing of energy will improve as we investigate various examples in this chapter.

If W is the work done on a system and W is positive, energy is transferred to the 
system; if W is negative, energy is transferred from the system. Therefore, if a system 
interacts with its environment, this interaction can be described as a transfer of 
energy across the system boundary. The result is a change in the energy stored in 
the system. We will learn about the first type of energy storage in Section 7.5, after 
we investigate more aspects of work.

Q uick Quiz 7.1  The gravitational force exerted by the Sun on the Earth holds 
the Earth in an orbit around the Sun. Let us assume that the orbit is perfectly 
circular. The work done by this gravitational force during a short time interval 
in which the Earth moves through a displacement in its orbital path is (a) zero  
(b) positive (c) negative (d) impossible to determine

Q uick Quiz 7.2  Figure 7.4 shows four situations in which a force is applied to 
an object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to 
most negative.

u

F
S

mgS 

nS

�rS

   is the only force 
that does work on 
the block in this 
situation.

F
S

Figure 7.3 An object is displaced 
on a frictionless, horizontal sur-
face. The normal force nS and the 
gravitational force mgS do no work 
on the object.

Pitfall Prevention 7.3
Cause of the Displacement We 
can calculate the work done by a 
force on an object, but that force 
is not necessarily the cause of the 
object’s displacement. For exam-
ple, if you lift an object, (negative) 
work is done on the object by the 
gravitational force, although grav-
ity is not the cause of the object 
moving upward!
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Figure 7.4  (Quick Quiz 7.2)  
A block is pulled by a force in four 
different directions. In each case, 
the displacement of the block 
is to the right and of the same 
magnitude.
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154 Chapter 7 Energy of a System

   7.3    The Scalar Product of Two Vectors
Because of the way the force and displacement vectors are combined in Equation 7.1,  
it is helpful to use a convenient mathematical tool called the scalar product of two 
vectors. We write this scalar product of vectors A

S
 and B

S
 as A

S 
? B

S
. (Because of the 

dot symbol, the scalar product is often called the dot product.)
The scalar product of any two vectors A

S
 and B

S
 is defined as a scalar quantity 

equal to the product of the magnitudes of the two vectors and the cosine of the 
angle u between them:

 A
S 

? B
S

; AB cos u  (7.2)

As is the case with any multiplication, A
S

 and B
S

 need not have the same units.
By comparing this definition with Equation 7.1, we can express Equation 7.1 as a 

scalar product:

 W 5 F Dr cos u 5 F
S 

? D rS  (7.3)

In other words, F
S 

? D rS is a shorthand notation for F Dr cos u.
Before continuing with our discussion of work, let us investigate some properties 

of the dot product. Figure 7.6 shows two vectors A
S

 and B
S

 and the angle u between 
them used in the definition of the dot product. In Figure 7.6, B cos u is the projec-
tion of B

S
 onto A

S
. Therefore, Equation 7.2 means that A

S 
? B

S
 is the product of the 

magnitude of A
S

 and the projection of B
S

 onto A
S

.
From the right-hand side of Equation 7.2, we also see that the scalar product is 

commutative.1 That is,

A
S 

? B
S

5 B
S 

? A
S

Scalar product of any two 
vectors A

S
 and B

S

 Example 7.1   Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with 
a force of magnitude F 5 50.0 N at an angle of 30.08 
with the horizontal (Fig. 7.5). Calculate the work 
done by the force on the vacuum cleaner as the vac-
uum cleaner is displaced 3.00 m to the right.

S O L U T I O N

Conceptualize  Figure 7.5 helps conceptualize the situation. Think about an experience in your life in which you pulled an 
object across the floor with a rope or cord.

Categorize  We are asked for the work done on an object by a force and are given the force on the object, the displacement 
of the object, and the angle between the two vectors, so we categorize this example as a substitution problem. We identify the 
vacuum cleaner as the system.

Use the definition of work (Eq. 7.1): W 5 F Dr cos u 5 s50.0 Nds3.00 mdscos 30.08d  
   5  130 J

Notice in this situation that the normal force nS and the gravitational F
S

g 5 mgS do no work on the vacuum cleaner because 
these forces are perpendicular to the displacements of their points of application. Furthermore, there was no mention of 
whether there was friction between the vacuum cleaner and the floor. The presence or absence of friction is not important 
when calculating the work done by the applied force. In addition, this work does not depend on whether the vacuum moved 
at constant velocity or if it accelerated.

30.0�

50.0 N

mgS 

nS

Figure 7.5  (Example 7.1) A 
vacuum cleaner being pulled 
at an angle of 30.08 from the 
horizontal.

Pitfall Prevention 7.4
Work Is a Scalar Although Equa-
tion 7.3 defines the work in terms 
of two vectors, work is a scalar; 
there is no direction associated 
with it. All types of energy and 
energy transfer are scalars. This 
fact is a major advantage of the 
energy approach because we don’t 
need vector calculations!

1The commutativity of the dot product means that A
S 

? B
S

 also equals the product of the magnitude of B
S

 and the pro-
jection of A

S
 onto B

S
. In Chapter 11, you will see another way of combining vectors that proves useful in physics and 

is not commutative.

B cos 

.  =  AB cos
u

u

u

B
S

 

B
S

 

A
S

 

A
S

 

Figure 7.6  The scalar product 
A
S 

? B
S

 equals the magnitude of A
S

  
multiplied by B cos u, which is the 
projection of B

S
 onto A

S
.
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Finally, the scalar product obeys the distributive law of multiplication, so

A 
S

? sB
S

1 C
S

d 5 A
S 

? B
S

1 A
S 

? C
S

The scalar product is simple to evaluate from Equation 7.2 when A
S

 is either per-
pendicular or parallel to B

S
. If A

S
 is perpendicular to B

S
 (u 5 908), then A

S 
? B

S
 5 0.  

(The equality A
S 

? B
S

 5  0 also holds in the more trivial case in which either A
S

  
or B

S
 is zero.) If vector A

S
 is parallel to vector B

S
 and the two point in the same direc-

tion (u 5 0), then A
S 

? B
S

 5 AB. If vector A
S

 is parallel to vector B
S

 but the two point 
in opposite directions (u 5 1808), then A

S 
? B

S
 5 2AB. The scalar product is negative 

when 908 , u # 1808.
The unit vectors i

⁄
, j

⁄
, and k

⁄
, which were defined in Chapter 3, lie in the positive 

x, y, and z directions, respectively, of a right-handed coordinate system. Therefore, it 
follows from the definition of A

S 
? B

S
 that the scalar products of these unit vectors are

  i
⁄ 

? i
⁄

5 j
⁄ 

? j
⁄

5 k
⁄ 

? k
⁄

5 1 (7.4)

  i
⁄ 

? j
⁄

5 i
⁄ 

? k
⁄

5 j
⁄ 

? k
⁄

5 0 (7.5)

Equations 3.17 and 3.18 state that two vectors A
S

 and B
S

 can be expressed in 
unit-vector form as

A
S

5 Ax i
⁄

1 Ay j
⁄

1 Az k
⁄

B
S

5 Bx   i
⁄

1 By  j
⁄

1 Bz k
⁄

Using these expressions for the vectors and the information given in Equations 7.4 
and 7.5 shows that the scalar product of A

S
 and B

S
 reduces to

 A 
S

? B
S

5 Ax Bx 1 Ay By 1 Az Bz (7.6)

(Details of the derivation are left for you in Problem 5 at the end of the chapter.) In 
the special case in which A

S
5 B

S
, we see that

A
S 

? A
S

5 Ax
2 1 Ay

2 1 Az
2 5 A2

Q uick Quiz 7.3  Which of the following statements is true about the relation-
ship between the dot product of two vectors and the product of the magni tudes  
of the vectors? (a) A

S 
? B

S
 is larger than AB. (b) A

S 
? B

S
 is smaller than AB. (c) A

S 
? B

S
  

could be larger or smaller than AB, depending on the angle between the vectors. 
(d) A

S 
? B

S
 could be equal to AB.

  Scalar products of  
unit vectors

 Example 7.2   The Scalar Product

The vectors A
S

 and B
S

 are given by A
S

5 2 i
⁄

1 3 j
⁄
 and B

S
5 2 i

⁄
1 2 j

⁄
.

(A) Determine the scalar product A
S 

? B
S

.

S O L U T I O N

Conceptualize  There is no physical system to imagine here. Rather, it is purely a mathematical exercise involving two vectors.

Categorize  Because we have a definition for the scalar product, we categorize this example as a substitution problem.

Substitute the specific vector expressions for A
S

 and B
S

: A
S 

? B
S

 5 s2 i
⁄

1 3 j
⁄
 d ? s2 i

⁄
1 2 j

⁄
d

   5 22 i
⁄ 

? i
⁄

1 2 i
⁄ 

? 2 j
⁄

2 3 j
⁄ 

? i
⁄

1 3 j
⁄ 

? 2 j
⁄

    5 22(1) 1 4(0) 2 3(0) 1 6(1) 5 22 1 6 5  4

The same result is obtained when we use Equation 7.6 directly, where Ax 5 2, Ay 5 3, Bx 5 21, and By 5 2.

continued
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156 Chapter 7 Energy of a System

7.2 c o n t i n u e d

(B) Find the angle u between A
S

 and B
S

.

S O L U T I O N

Evaluate the magnitudes of A
S

 and B
S

 using the Pythagorean theorem: A 5 ÏAx
2 1 A y

2 5 Ïs2d2 1 s3d2 5 Ï13

  B 5 ÏB x 

2 1 B y
2 5 Ïs21d2 1 s2d2 5 Ï5

Use Equation 7.2 and the result from part (A) to find the angle: cos u 5
A
S 

? B
S

AB
5

4

Ï13Ï5
5

4

Ï65

 u 5 cos21 
4

Ï65
5  60.38

 Example 7.3    Work Done by a Constant Force

A particle moving in the xy plane undergoes a displacement given by D rS 5 s2.0 i
⁄

1 3.0 j
⁄
d m as a constant force 

F
S

5 s5.0 i
⁄

1 2.0 j
⁄
d  N acts on the particle. Calculate the work done by F

S
 on the particle.

S O L U T I O N

Conceptualize Although this example is a little more physical than the previous one in that it identifies a force and a displace-
ment, it is similar in terms of its mathematical structure.

Categorize Because we are given force and displacement vectors and asked to find the work done by this force on the particle, 
we categorize this example as a substitution problem.

Substitute the expressions for F
S

 and D rS into  W 5 F
S  ? D rS 5 fs5.0 i

⁄
1 2.0 j

⁄
d Ng ? fs2.0 i

⁄
1 3.0 j

⁄
) mg

Equation 7.3 and use Equations 7.4 and 7.5:
    5 s5.0 i

⁄
? 2.0 i

⁄
1 5.0 i

⁄
? 3.0 j

⁄
1 2.0 j

⁄
? 2.0 i

⁄
1 2.0 j

⁄
? 3.0 j

⁄
d N ? m

    5 [10 1 0 1 0 1 6] N ? m 5  16 J

   7.4    Work Done by a Varying Force
Now consider a particle being displaced along the x axis under the action of a 
force that varies with position. In such a situation, we cannot use Equation 7.1 to 
calculate the work done by the force because this relationship applies only when 
F
S

 is constant in magnitude and direction. The red-brown curve in Figure 7.7a  
shows a varying force applied on a particle that moves from initial position xi to 
final position xf . Imagine a particle undergoing a very small displacement Dx, 
shown in the figure. The x component Fx of the force is approximately constant 
over this small interval; for this small displacement, we can approximate the work 
done on the particle by the force using Equation 7.1 as

 W < Fx Dx 

which is the area of the shaded rectangle in Figure 7.7a. If the Fx versus x curve is 
divided into a large number of such intervals, the total work done for the displace-
ment from xi to xf is approximately equal to the sum of a large number of such 
terms:

 W < o
xf

xi

 Fx Dx 

If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a 
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definite value equal to the area bounded by the Fx curve and the x axis, expressed 
as an integral:

lim
Dx S 0o

xf

xi

 Fx Dx 5 #
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf  as

 W 5 #
xf

xi

 Fx dx  (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.

If more than one force acts on a system and the system can be modeled as a particle, 
the points of application of all forces move through the same displacement, and the 
total work done on the system is just the work done by the net force. If we express 
the net force in the x direction as o Fx, the total work, or net work, done as the parti-
cle moves from xi to xf is

oW 5 Wext 5 #
xf

xi

soFxd dx (particle)

For the general case of a net force o F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 oW 5 Wext 5 #so F
S

) ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.

If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 oW 5 Wext 5 o
forces

 1# F
S 

? d rS2 (deformable system)

Fx Area  =  Fx  x

Fx

xxfxi

x

Fx

xxfxi

Work

�

�

The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.

a

b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

 Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the work 
done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

S O L U T I O N

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force remains 
constant as the particle moves through the first 4.0 m and then decreases linearly to 
zero at 6.0 m. In terms of earlier discussions of motion, the particle could be modeled as 
a particle under constant acceleration for the first 4.0 m because the force is constant. 
Between 4.0 m and 6.0 m, however, the motion does not fit into one of our earlier anal-
ysis models because the acceleration of the particle is changing. If the particle starts 
from rest, its speed increases throughout the motion, and the particle is always moving 
in the positive x direction. These details about its speed and direction are not necessary 
for the calculation of the work done, however. continued

1 2 3 4 5 6
x (m)0

5

Fx (N)

�

� �

The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is con-
stant for the first 4.0 m of motion 
and then decreases linearly with x 
from x

Ⓑ
 5 4.0 m to x

Ⓒ
 5 6.0 m.
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158 Chapter 7 Energy of a System

Work Done by a Spring
A model of a common physical system on which the force varies with position is 
shown in Figure 7.9. The system is a block on a frictionless, horizontal surface and 
connected to a spring. For many springs, if the spring is either stretched or com-
pressed a small distance from its unstretched (equilibrium) configuration, it exerts 
on the block a force component that can be mathematically modeled as

 Fs 5 2kx  (7.9)

where x is the position of the block relative to its equilibrium (x 5 0) position and k 
is a positive constant called the force constant or the spring constant of the spring. 
In other words, the force required to stretch or compress a spring is proportional 

Spring force 

7.4 c o n t i n u e d

Categorize Because the force varies during the motion of the particle, we must use the techniques for work done by varying 
forces. In this case, the graphical representation in Figure 7.8 can be used to evaluate the work done.

Analyze The work done by the force is equal to the area under the curve from x
Ⓐ

 5 0 to x
Ⓒ

 5 6.0 m. This area is equal  
to the area of the rectangular section from Ⓐ to Ⓑ plus the area of the triangular section from Ⓑ to Ⓒ.

Evaluate the area of the rectangle: W
Ⓐ to Ⓑ 5 (5.0 N)(4.0 m) 5 20 J 

Evaluate the area of the triangle: W
Ⓑ to Ⓒ 5 12(5.0 N)(2.0 m) 5 5.0 J

Find the total work done by the force on the particle: W
Ⓐ to Ⓒ 5 W

Ⓐ to Ⓑ 1 W
Ⓑ to Ⓒ 5 20 J 1 5.0 J 5   25 J

Finalize Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geometric 
models to evaluate the total work done in this example. If a force does not vary linearly, as in Figure 7.7, such rules cannot be 
used and the force function must be integrated as in Equation 7.7 or 7.8.

Figure 7.9 The force exerted by 
a spring on a block varies with the 
block’s position x relative to the 
equilibrium position x 5 0.  
(a) x is positive. (b) x is zero. (c) x 
is negative. (d) Graph of Fs versus x 
for the block–spring system.

x

x

x

Fs

x
0

kxmax

xmax
Fs � �kx

x

x � 0

x

x

b

c

d

a

When x is positive 
(stretched spring), the 
spring force is directed 
to the left.

When x is zero 
(natural length of the 
spring), the spring 
force is zero.

When x is negative 
(compressed spring), 
the spring force is 
directed to the right.

The work done by the 
spring force on the 
block as it moves from 
�xmax to 0 is the area 
of the shaded triangle,
� kx 2

max
1
2 .

Fs
S

Fs
S
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    7.4 Work Done by a Varying Force 159

to the amount of stretch or compression x. This force law for springs is known as 
Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs 
have large k values, and soft springs have small k values. As can be seen from Equa-
tion 7.9, the units of k are N/m.

The vector form of Equation 7.9 is

 F
S

s 5 Fs i
⁄

5 2kx i
⁄
 (7.10)

where we have chosen the x axis to lie along the direction the spring extends or 
compresses.

The negative sign in Equations 7.9 and 7.10 signifies that the force exerted by 
the spring is always directed opposite the displacement from equilibrium. When 
x . 0 as in Figure 7.9a so that the block is to the right of the equilibrium position 
and the spring is stretched, the spring force is directed to the left, in the negative x 
direction. When x , 0 as in Figure 7.9c, the block is to the left of equilibrium, the 
spring is compressed, and the spring force is directed to the right, in the positive 
x direction. When x 5 0 as in Figure 7.9b, the spring is unstretched and Fs 5 0. 
Because the spring force always acts toward the equilibrium position (x 5 0), it is 
sometimes called a restoring force.

If the spring is compressed until the block is at the point 2xmax and is then 
released, the block moves from 2xmax through zero to 1xmax. It then reverses direc-
tion, returns to 2xmax, and continues oscillating back and forth. We will study these 
oscillations in more detail in Chapter 15. For now, let’s investigate the work done by 
the spring on the block over small portions of one oscillation.

Suppose the block has been pushed to the left to a position 2xmax and is then 
released as shown in Figure 7.10. We identify the block as our system and calcu-
late the work Ws done by the spring force on the block as the block moves from  
xi 5 2xmax to xf 5 0. Applying Equation 7.8 and assuming the block may be mod-
eled as a particle, we obtain

 Ws 5 # F
S

s ? d rS 5 #
xf

xi

s2kx i
⁄
d ? sdx i

⁄
d 5 #

0

2x max

s2kxd dx 5 1
2kx 

2
max (7.11)

where we have used the integral e xn dx 5 xn11/(n 1 1) with n 5 1. The work done by 
the spring force is positive because the force is in the same direction as its displacement 
(both are to the right in Figure 7.10 during the time interval considered). Because the 
block arrives at x 5 0 with some speed, it will continue moving until it reaches a posi-
tion 1xmax. The work done by the spring force on the block as it moves from xi 5 0 to 
xf 5 xmax is Ws 5 21

2kx2
max. The work is negative because for this part of the motion the 

spring force is to the left and its displacement is to the right. Therefore, the net work 
done by the spring force on the block as it moves from xi 5 2xmax to xf 5 xmax is zero.

Figure 7.9d is a plot of Fs versus x. Equation 7.9 indicates that Fs is proportional to 
x, so the graph of Fs versus x is a straight line. The work calculated in Equation 7.11 
is the area of the shaded triangle, corresponding to the displacement from 2xmax 
to 0. Because the triangle has base xmax and height kxmax, its area is 12kx2

max, agreeing 
with the work done by the spring calculated in Equation 7.11 by integration.

If the block undergoes an arbitrary displacement from x 5 xi to x 5 xf, the work 
done by the spring force on the block is

 Ws 5 #
xf

xi

s2kxd dx 5 1
2kx i

2 2 1
2kx f

2  (7.12)

From Equation 7.12, we see that the work done by the spring force is zero for any 
motion that ends where it began (xi 5 xf). We shall make use of this important 
result in Chapter 8 when we describe the motion of this system in greater detail.

Equations 7.11 and 7.12 describe the work done by the spring on the block. Now 
let us consider the work done on the block by an external agent as the agent applies 

 Work done by a spring 

Figure 7.10 A block is pushed 
to the initial position xi 5 2xmax 
and then released from rest. We 
identify the final position as the 
equilibrium position xf 5 0.

xi � �xmax xf � 0

Fs
S

The force Fs exerted by the 
spring performs work on the 
block as it moves to its final 
position.

S
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160 Chapter 7 Energy of a System

a force on the block and the block moves very slowly from xi 5 2xmax to xf 5 0 as  
in Figure 7.11. Compare the two figures carefully. In Figure 7.10, the spring 
expands freely. In Figure 7.11, however, the applied force F

S
app pushes inward and pre-

vents this free expansion. The magnitude of the applied force is adjusted so that 
the block moves to its final position very slowly. We can calculate the work done by 
the applied force by noting that at any value of the position, F

S
app is equal in mag-

nitude and opposite in direction to the spring force F
S

s , so F
S

app 5 Fapp  i
⁄

5 2F
S

s 5
2s2kx i

⁄
d 5 kx i

⁄
. Therefore, the work done by this applied force (the external agent) 

on the system of the block for the motion described is

 Wext 5 # F
S

app  ? d rS 5 #
xf

xi

skx i
⁄
d ? sdx i

⁄
d 5 #

0

2x
max

kx dx 5 21
2kx 2

max 

This work is equal to the negative of the work done by the spring force for this dis-
placement (Eq. 7.11). The work is negative because the external agent must push 
inward on the spring to prevent it from expanding, and this direction is opposite 
the direction of the displacement of the point of application of the force as the 
block moves from 2xmax to 0.

For an arbitrary displacement of the block, the work done on the system by the 
external agent is

 Wext 5 #
xf

xi

 kx dx 5 1
2kx f

2 2 1
2kx i

2  (7.13)

Notice that this equation is the negative of Equation 7.12.

Q uick Quiz 7.4  A dart is inserted into a spring-loaded dart gun by pushing 
the spring in by a distance x. For the next loading, the spring is compressed a 
distance 2x. How much work is required to load the second dart compared with 
that required to load the first? (a) four times as much (b) two times as much  
(c) the same (d) half as much (e) one-fourth as much

xi � �xmax xf � 0

Fs
S

Fapp
S

If the process of moving the 
block is carried out very slowly, 
then Fapp is equal in magnitude 
and opposite in direction to Fs 
at all times.

S

S

Figure 7.11  A block moves from  
xi 5 2xmax to xf 5 0 on a fric-
tionless surface as a force F

S
app is 

applied to the block.

 Example 7.5    Measuring k for a Spring

A common technique used to measure the force constant of a spring is demon-
strated by the setup in Figure 7.12. The spring is hung vertically (Fig. 7.12a), and an 
object of mass m is attached to its lower end. Under the action of the “load” mg, the 
spring stretches a distance d from its equilibrium position (Fig. 7.12b).

(A) If a spring is stretched 2.0 cm by a suspended object having a mass of 0.55 kg, 
what is the force constant of the spring?

S O L U T I O N

Conceptualize Figure 7.12b shows what happens to the spring when the object is 
attached to it. Simulate this situation by hanging an object on a rubber band.

Categorize The object in Figure 7.12b is at rest and not accelerating, so it is modeled as 
a particle in equilibrium.

Analyze  Because the object is in equilibrium, the net force on it is zero and the upward 
spring force balances the downward gravitational force mgS (Fig. 7.12c).

Apply the particle in equilibrium model to the object: F
S

s 1 mgS 5 0  S   Fs 2 mg 5 0  S   Fs 5 mg

Apply Hooke’s law to give the magnitude Fs 5 kd and solve for k: k 5
mg

d
5

s0.55 kgds9.80 mys2d
2.0 3 1022 m

5  2.7 3 102 Nym

(B) How much work is done by the spring on the object as it stretches through this distance?

d

mgS

Fs
S

The elongation d is 
caused by the weight mg 
of the attached object.

b ca

Figure 7.12  (Example 7.5)  
Determining the force constant k  
of a spring.
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   7.5    Kinetic Energy and the Work–Kinetic 
Energy Theorem
When energy transfers across the boundary of a system, the amount of energy 
stored in the system changes. We have investigated work in some depth and have 
identified it as a mechanism for transferring energy into a system. We have stated 
that work is an influence on a system from the environment, but we have not yet dis-
cussed the result of this influence on the system. One possible result of doing work 
on a system is that the system changes its speed: a common experience is to push on 
an object and observe it changing its state from rest to motion. In this section, we 
investigate this situation and introduce our first type of energy storage in a system, 
called kinetic energy.

Consider a system consisting of a single object. Figure 7.13 shows a block of 
mass m moving through a displacement directed to the right under the action of a  
net force o F

S
, also directed to the right. We know from Newton’s second law that 

the block moves with an acceleration aS. If the block (and therefore the force) moves 
through a displacement D rS 5 Dx i

⁄
5 sxf 2 xidi

⁄
, the net work done on the block by 

the external net force o F
S

 is given by Equation 7.7:

 Wext 5 #
xf

xi

 oF dx (7.14)

Using Newton’s second law, we substitute for the magnitude of the net force S F 5 
ma and then perform the following chain-rule manipulations on the integrand:

 Wext 5 #
xf

xi

 ma dx 5 #
xf

xi

 m 
dv
dt

 dx 5 #
xf

xi

 m 
dv
dx

  
dx
dt

 dx 5 #
vf

vi

 mv dv 

 Wext 5 1
2mvf

2 2 1
2mvi

2  (7.15)

where vi is the speed of the block at x 5 xi and vf is its speed at xf .
Equation 7.15 was generated for the specific situation of one-dimensional motion, 

but it is a general result. It tells us that the work done by the net force on a particle of 
mass m is equal to the difference between the initial and final values of a quantity 12mv2.  
This quantity is so important that it has been given a special name, kinetic energy:

 K ; 1
2mv2  (7.16)  Kinetic energy

7.5 c o n t i n u e d

S O L U T I O N

Use Equation 7.12 to find the work done by the spring on  Ws 5 0 2 1
2kd 2 5 21

2s2.7 3 102 Nymds2.0 3 1022 md2

the object:   5  25.4 3 1022 J

Finalize  This work is negative because the spring force acts upward on the object, but its point of application (where the 
spring attaches to the object) moves downward. As the object moves through the 2.0-cm distance, the gravitational force 
also does work on it. This work is positive because the gravitational force is downward and so is the displacement of the point 
of application of this force. Would we expect the work done by the gravitational force, as the applied force in a direction 
opposite to the spring force, to be the negative of the answer above? Let’s find out.

Evaluate the work done by the gravitational force on  W 5 F
S 

? D rS 5 smgdsdd cos 0 5 mgd 
the object:  

5 (0.55 kg)(9.80 m/s2)(2.0 3 1022 m) 5 1.1 3 1021 J

If you expected the work done by gravity simply to be that done by the spring with a positive sign, you may be surprised by this 
result! To understand why that is not the case, we need to explore further, as we do in the next section.

fi

x�

�

m

vS vS

F
S

Figure 7.13  An object undergo-
ing a displacement D rS 5 Dx i

⁄
 and 

a change in velocity under the 
action of a net force oF

S
.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



162 Chapter 7 Energy of a System

Kinetic energy represents the energy associated with the motion of the particle. 
Note that kinetic energy is a scalar quantity and has the same units as work. For 
example, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J. 
Table 7.1 lists the kinetic energies for various objects.

Equation 7.15 states that the work done on a particle by a net force o F
S

 acting 
on it equals the change in kinetic energy of the particle. It is often convenient to 
write Equation 7.15 in the form

 Wext 5 Kf 2 Ki 5 DK  (7.17)

Another way to write it is Kf 5 Ki 1 Wext, which tells us that the final kinetic energy 
of an object is equal to its initial kinetic energy plus the change in energy due to 
the net work done on it.

We have generated Equation 7.17 by imagining doing work on a particle. If we 
identify the particle as a system, we have increased the amount of energy stored in 
the system by doing work on it. We have stored the energy in the particular form 
of kinetic energy, represented by motion of the system through space. We could 
also do work on a deformable system, in which members of the system move with 
respect to one another. In this case, we also find that Equation 7.17 is valid as long 
as the net work is found by adding up the works done by each force and adding, as 
discussed earlier with regard to Equation 7.8. The kinetic energy K of the system is 
the sum of the kinetic energies of all members of the system.

Equation 7.17 is an important result known as the work–kinetic energy theorem:

When work is done on a system and the only change in the system is in the 
speeds of its members, the net work done on the system equals the change in 
kinetic energy of the system, as expressed by Equation 7.17: W 5 DK.

Work–kinetic energy theorem 

The work–kinetic energy theorem indicates that the kinetic energy of a system 
increases if the net work done on it is positive: energy is being transferred into the 
system. The kinetic energy decreases if the net work is negative: energy is being trans-
ferred out of the system.

Because we have so far only investigated translational motion through space, 
we arrived at the work–kinetic energy theorem by analyzing situations involving 
translational motion. Another type of motion is rotational motion, in which an object 
spins about an axis. We will study this type of motion in Chapter 10. The work–
kinetic energy theorem is also valid for systems that undergo a change in the rota-
tional speed due to work done on the system. A windmill serves as an example of 
work (done by the wind) causing rotational motion.

The work–kinetic energy theorem will clarify a result seen earlier in this chapter 
that may have seemed odd. In Section 7.4, we arrived at a result of zero net work 

 table 7.1  Kinetic Energies for Various Objects

Object Mass (kg) Speed (m/s) Kinetic Energy (J)

Earth orbiting the Sun 5.97 3 1024 2.98 3 104  2.65 3 1033

Moon orbiting the Earth  7.35 3 1022 1.02 3 103 3.82 3 1028

Rocket moving at escape speeda 500 1.12 3 104  3.14 3 1010

Automobile at 65 mi/h 2 000 29   8.4 3 105

Running athlete 70 10 3 500
Stone dropped from 10 m 1.0 14 98
Golf ball at terminal speed 0.046 44 45
Raindrop at terminal speed    3.5 3 1025 9.0    1.4 3 1023

Oxygen molecule in air    5.3 3 10226 500   6.6 3 10221

aEscape speed is the minimum speed an object must reach near the Earth’s surface to move infinitely far away from 
the Earth.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    7.5 Kinetic Energy and the Work–Kinetic Energy Theorem 163

done when we let a spring push a block from xi 5 2xmax to xf 5 xmax. Notice that 
because the speed of the block is continually changing, it may seem complicated 
to analyze this process. The quantity DK in the work–kinetic energy theorem, how-
ever, only refers to the initial and final configurations of the system. It does not 
depend on the particular path followed by any members of the system. Therefore, 
because the speed of the block is zero at both the initial and final points of the 
motion, the net work done on the block is zero. We will often see this concept of 
path independence in similar approaches to problems.

Let us also return to the mystery in the Finalize step at the end of Example 7.5. 
Why was the work done by gravity not just the value of the work done by the spring 
with a positive sign? Notice that the work done by gravity is larger than the magni-
tude of the work done by the spring. Therefore, the total work done by all forces 
on the object is positive. Imagine now how to create the situation in which the only 
forces on the object are the spring force and the gravitational force. You must sup-
port the object at the highest point and then remove your hand and let the object 
fall. If you do so, you know that when the object reaches a position 2.0 cm below 
your hand, it will be moving, which is consistent with Equation 7.17. Positive net 
work is done on the object, and the result is that it has a kinetic energy as it passes 
through the 2.0-cm point.

The only way to prevent the object from having a kinetic energy after moving 
through 2.0 cm is to slowly lower it with your hand. Then, however, there is a third 
force doing work on the object, the normal force from your hand. If this work is 
calculated and added to that done by the spring force and the gravitational force, 
the net work done on the object is zero, which is consistent because it is not moving 
at the 2.0-cm point.

Earlier, we indicated that work can be considered as a mechanism for trans-
ferring energy into a system. Equation 7.17 is a mathematical statement of this 
concept. When work Wext is done on a system, the result is a transfer of energy 
across the boundary of the system. The result on the system, in the case of Equa-
tion 7.17, is a change DK in kinetic energy. In the next section, we investigate 
another type of energy that can be stored in a system as a result of doing work 
on the system.

Q uick Quiz 7.5  A dart is inserted into a spring-loaded dart gun by pushing 
the spring in by a distance x. For the next loading, the spring is compressed a 
distance 2x. How much faster does the second dart leave the gun compared with 
the first? (a) four times as fast (b) two times as fast (c) the same (d) half as fast 
(e) one-fourth as fast

 Example 7.6   A Block Pulled on a Frictionless Surface

A 6.0-kg block initially at rest is pulled to the right along a frictionless, horizontal sur-
face by a constant horizontal force of magnitude 12 N. Find the block’s speed after it 
has moved through a horizontal distance of 3.0 m.

S O L U T I O N

Conceptualize  Figure 7.14 illustrates this situation. Imagine pulling a toy car across a 
table with a horizontal rubber band attached to the front of the car. The force is main-
tained constant by ensuring that the stretched rubber band always has the same length.

Categorize  We could apply the equations of kinematics to determine the answer, but 
let us practice the energy approach. The block is the system, and three external forces 
act on the system. The normal force balances the gravitational force on the block, and 
neither of these vertically acting forces does work on the block because their points of 
application are not vertically displaced.

x�

fvS

F
S

mgS 

nS

Figure 7.14  (Example 7.6) A 
block pulled to the right on a fric-
tionless surface by a constant hori-
zontal force.

continued

Pitfall Prevention 7.5
Conditions for the Work–Kinetic 
Energy Theorem The work–
kinetic energy theorem is impor-
tant but limited in its application; 
it is not a general principle. In 
many situations, other changes in 
the system occur besides its speed, 
and there are other interactions 
with the environment besides 
work. A more general principle 
involving energy is conservation of 
energy in Section 8.1.

Pitfall Prevention 7.6
The Work–Kinetic Energy  
Theorem: Speed, Not Velocity  
The work–kinetic energy theorem 
relates work to a change in the 
speed of a system, not a change 
in its velocity. For example, if 
an object is in uniform circular 
motion, its speed is constant. Even 
though its velocity is changing, no 
work is done on the object by the 
force causing the circular motion.
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7.6 c o n t i n u e d

Analyze  The net external force acting on the block is the horizontal 12-N force.

Use the work–kinetic energy theorem for the block, noting   Wext 5 DK 5 K f 2 K i 5 1
2mvf

2 2 0 5 1
2mvf

2 
that its initial kinetic energy is zero:

Solve for vf and use Equation 7.1 for the work done on  vf 5Î2Wext

m
 5Î2F Dx

m
 

the block by F
S

:

Substitute numerical values: vf 5Î2s12 Nds3.0 md
6.0 kg

5  3.5 mys

Finalize  You should solve this problem again by modeling the block as a particle under a net force to find its acceleration and 
then as a particle under constant acceleration to find its final velocity. In Chapter 8, we will see that the energy procedure followed 
above is an example of the analysis model of the nonisolated system.

W H A T  I F ? Suppose the magnitude of the force in this example is doubled to F 9 5 2F. The 6.0-kg block accelerates to 
3.5 m/s due to this applied force while moving through a displacement Dx9. How does the displacement Dx9 compare with the 
original displacement Dx?

Answer  If we pull harder, the block should accelerate to a given speed in a shorter distance, so we expect that Dx9 , Dx. In 
both cases, the block experiences the same change in kinetic energy DK. Therefore, the same work is done on the block in 
both cases. Mathematically, from the work–kinetic energy theorem, we find that

Wext 5 F 9Dx9 5 DK 5 F Dx

   Dx9 5
F
F 9

 Dx 5
F
2F

  Dx 5 1
2 Dx

and the distance is shorter as suggested by our conceptual argument.

 Conceptual Example 7.7    Does the Ramp Lessen the Work Required?

A man wishes to load a refrigerator onto a truck using a 
ramp at angle u as shown in Figure 7.15. He claims that less 
work would be required to load the truck if the length L  
of the ramp were increased so that the angle u would be 
smaller. Is his claim valid?

S O L U T I O N

No. Suppose the refrigerator is wheeled on a hand truck up 
the ramp at constant speed. In this case, for the system of the 
refrigerator and the hand truck, DK 5 0. The normal force 
exerted by the ramp on the system  is directed at 908 to the 
displacement of its point of application and so does no work 
on the system. Because DK 5 0, the work–kinetic energy the-
orem applied to the refrigerator gives

Wext 5 Wby man 1 Wby gravity 5 0

The work done by the gravitational force equals the product of the weight mg of the system, the distance L through which the 
refrigerator is displaced, and cos (u 1 908). Therefore,

Wby man 5 2Wby gravity 5 2smgdsLdfcos su 1 908dg

  5 mgL sin u 5 mgh

where h 5 L sin u is the height of the ramp at the truck. Therefore, the man must do the same amount of work mgh on the 
system regardless of the length of the ramp. The work depends only on the height of the ramp. Although less force is required 
with a longer ramp, the point of application of that force moves through a greater displacement.

u

L
h

Figure 7.15  (Conceptual Example 7.7) A refrigerator attached to 
a frictionless, wheeled hand truck is moved up a ramp at constant 
speed.
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associated 
with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

   7.6    Potential Energy of a System
So far in this chapter, we have defined a system in general, but have focused our 
attention primarily on single particles or objects under the influence of external 
forces. Let us now consider systems of two or more particles or objects interacting 
via a force that is internal to the system. The kinetic energy of such a system is the 
algebraic sum of the kinetic energies of all members of the system. There may 
be systems, however, in which one object is so massive that it can be modeled as 
stationary and its kinetic energy can be neglected. For example, if we consider 
a ball–Earth system as the ball falls to the Earth, the kinetic energy of the sys-
tem can be considered as just the kinetic energy of the ball. The Earth moves so 
slowly in this process that we can ignore its kinetic energy. On the other hand, the 
kinetic energy of a system of two electrons must include the kinetic energies of 
both particles.

Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 syf 2 yi dj

⁄
 as in Figure 7.16. According to 

our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.

Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi. Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the 
work that was done in lifting the book. While the book was at the highest point, 
the system had the potential to possess kinetic energy, but it did not do so until the 
book was allowed to fall. Therefore, we call the energy storage mechanism before 
the book is released potential energy. We will find that the potential energy of a 
system can only be associated with specific types of forces acting between members 
of a system. The amount of potential energy in the system is determined by the 
configuration of the system. Moving members of the system to different positions or 
rotating them may change the configuration of the system and therefore its poten-
tial energy.

Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.16. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app  and the upward displacement of this force, D rS 5 Dy j

⁄
:

 Wext 5 sF
S

appd ? D rS 5 smg  j
⁄
d ? fsyf 2 yi d j

⁄
g 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is 
the only force on the system from the environment. (Remember that the gravita-
tional force is internal to the system.) Notice the similarity between Equation 7.18 
and Equation 7.15. In each equation, the work done on a system equals a difference 
between the final and initial values of a quantity. In Equation 7.15, the work rep-
resents a transfer of energy into the system and the increase in energy of the system 
is kinetic in form. In Equation 7.18, the work represents a transfer of energy into 
the system and the system energy appears in a different form, which we have called 
potential energy.

Figure 7.16 An external agent 
lifts a book slowly from a height yi 
to a height yf .

yf

yi
m

�

Physics

Physics

The work done by 
the agent on the 
book–Earth system is 
mgyf � mgyi .

Fapp
S

 
rS 

gS 
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166 Chapter 7 Energy of a System

Therefore, we can identify the quantity mgy as the gravitational potential energy 
Ug of the system of an object of mass m and the Earth:

 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.2

Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as

 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.

Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
kinetic energy, representing motion of the members of the system. In Equation 7.20, 
work is done on the system and energy appears in the system as potential energy, 
representing a change in the configuration of the members of the system.

Gravitational potential energy depends only on the vertical height of the object 
above the surface of the Earth. The same amount of work must be done on an 
object–Earth system whether the object is lifted vertically from the Earth or is 
pushed starting from the same point up a frictionless incline, ending up at the 
same height. We verified this statement for a specific situation of rolling a refriger-
ator up a ramp in Conceptual Example 7.7. This statement can be shown to be true 
in general by calculating the work done on an object by an agent moving the object 
through a displacement having both vertical and horizontal components:

Wext 5 sF
S

appd ? D rS 5 smg j
⁄
d ? fsxf 2 xi 

d i
⁄

1 s yf 2 yi 
d j

⁄
g 5 mgyf 2 mgyi

where there is no term involving x in the final result because j
⁄ 

? i
⁄

5 0.
In solving problems, you must choose a reference configuration for which the 

gravitational potential energy of the system is set equal to some reference value, 
which is normally zero. The choice of reference configuration is completely arbi-
trary because the important quantity is the difference in potential energy, and this 
difference is independent of the choice of reference configuration.

It is often convenient to choose as the reference configuration for zero gravita-
tional potential energy the configuration in which an object is at the surface of the 
Earth, but this choice is not essential. Often, the statement of the problem suggests 
a convenient configuration to use.

Q uick Quiz 7.6  Choose the correct answer. The gravitational potential energy of 
a system (a) is always positive (b) is always negative (c) can be negative or positive

Gravitational 
potential energy

2The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

 Example 7.8     The Proud Athlete and the Sore Toe

A trophy being shown off by a careless athlete slips from the athlete’s hands and drops on his foot. Choosing floor level as 
the y 5 0 point of your coordinate system, estimate the change in gravitational potential energy of the trophy–Earth system 
as the trophy falls. Repeat the calculation, using the top of the athlete’s head as the origin of coordinates.

S O L U T I O N

Conceptualize The trophy changes its vertical position with respect to the surface of the Earth. Associated with this change in 
position is a change in the gravitational potential energy of the trophy–Earth system.
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elastic Potential energy
Because members of a system can interact with one another by means of different 
types of forces, it is possible that there are different types of potential energy in a 
system. We have just become familiar with gravitational potential energy of a sys-
tem in which members interact via the gravitational force. Let us explore a second 
type of potential energy that a system can possess.

Consider a system consisting of a block and a spring as shown in Figure 7.17  
(page 168). In Section 7.4, we identified only the block as the system. Now we include 
both the block and the spring in the system and recognize that the spring force is the 
interaction between the two members of the system. The force that the spring exerts on 
the block is given by Fs 5 2kx (Eq. 7.9). The external work done by an applied force Fapp 
on the block–spring system as the block moves from xi to xf is given by Equation 7.13:

 Wext 5 1
2kxf

2 2 1
2kxi

2 (7.21)

In this situation, the initial and final x coordinates of the block are measured from 
its equilibrium position, x 5 0. Again (as in the gravitational case, Eq. 7.18) the 

7.8 c o n t i n u e d

Categorize We evaluate a change in gravitational potential energy defined in this section, so we categorize this example as 
a substitution problem. Because there are no numbers provided in the problem statement, it is also an estimation problem.
 The problem statement tells us that the reference configuration of the trophy–Earth system corresponding to zero poten-
tial energy is when the bottom of the trophy is at the floor. To find the change in potential energy for the system, we need to 
estimate a few values. Let’s say the trophy has a mass of approximately 2 kg, and the top of a person’s foot is about 0.05 m above 
the floor. Also, let’s assume the trophy falls from a height of 1.4 m.

Calculate the gravitational potential energy of the  Ui 5 mgyi 5 s2 kgds9.80 mys2ds1.4 md 5 27.4 J 
 trophy–Earth system just before the trophy is released:

Calculate the gravitational potential energy of the  trophy–Earth Uf 5 mgyf 5 s2 kgds9.80 mys2ds0.05 md 5 0.98 J 
system when the trophy reaches the athlete’s foot:

Evaluate the change in gravitational potential energy of the  DUg 5 0.98 J 2 27.4 J 5 226.4 J 
trophy–Earth system:

We should probably keep only two digits because of the roughness of our estimates; therefore, we estimate that the change in 
gravitational potential energy is   226 J   . The system had about 27 J of gravitational potential energy before the trophy began 
its fall and approximately 1 J of potential energy as the trophy reaches the top of the foot.
 The second case presented indicates that the reference configuration of the system for zero potential energy is chosen to 
be when the trophy is on the athlete’s head (even though the trophy is never at this position in its motion). We estimate this 
position to be 2.0 m above the floor).

Calculate the gravitational potential energy of the  trophy–Earth  Ui 5 mgyi 5 s2 kgds9.80 mys2ds20.6 md 5 211.8 J 
system just before the trophy is released from its position 0.6 m  
below the athlete’s head:

Calculate the gravitational potential energy of the  trophy–Earth  Uf 5 mgyf 5 s2 kgds9.80 mys2ds21.95 md 5 238.2 J 
system when the trophy reaches the athlete’s foot located 1.95 m  
below the athlete’s head:

Evaluate the change in gravitational potential energy of the  DUg 5 238.2 J 2 s211.8 Jd 5 226.4 J <  226 J 
trophy–Earth system:

This value is the same as before, as it must be. The change in potential energy is independent of the choice of configuration of 
the system representing the zero of potential energy. If we wanted to keep only one digit in our estimates, we could write the 
final result as 3 3 101 J.
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168 Chapter 7 Energy of a System

work done on the system is equal to the difference between the initial and final 
values of an expression related to the system’s configuration. The elastic potential 
energy function associated with the block–spring system is defined by

 Us ; 1
2kx2  (7.22)

Equation 7.21 can be expressed as

 Wext 5 DUs (7.23)

Compare this equation to Equations 7.17 and 7.20. In all three situations, external 
work is done on a system and a form of energy storage in the system changes as a 
result.

The elastic potential energy of the system can be thought of as the energy stored 
in the deformed spring (one that is either compressed or stretched from its equilib-
rium position). The elastic potential energy stored in a spring is zero whenever the 

Elastic potential energy  

Work is done by the hand 
on the spring–block 
system, so the total energy 
of the system increases.

No work is done on the 
spring–block system from 
the surroundings, so the 
total energy of the system 
stays constant.
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Before the spring is 
compressed, there is no 
energy in the spring–block 
system.

When the spring is partially 
compressed, the total energy 
of the system is elastic 
potential energy.

The spring is compressed by a 
maximum amount, and the 
block is held steady; there is 
elastic potential energy in the 
system and no kinetic energy.

After the block is released, 
the elastic potential energy in 
the system decreases and the 
kinetic energy increases.

After the block loses contact 
with the spring, the total 
energy of the system is kinetic 
energy.

x

xmax

x

a

b

c

d

e

Figure 7.17 A spring on a frictionless, horizontal surface is compressed a distance xmax when a block of 
mass m is pushed against it. The block is then released and the spring pushes it to the right, where the 
block eventually loses contact with the spring. Parts (a) through (e) show various instants in the process. 
Energy bar charts on the right of each part of the figure help keep track of the energy in the system.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    7.7 Conservative and Nonconservative Forces 169

spring is undeformed (x 5 0). Energy is stored in the spring only when the spring 
is either stretched or compressed. Because the elastic potential energy is propor-
tional to x2, we see that Us is always positive in a deformed spring. Everyday exam-
ples of the storage of elastic potential energy can be found in old-style clocks or 
watches that operate from a wound-up spring and small wind-up toys for children.

Consider Figure 7.17 once again, which shows a spring on a frictionless, hori-
zontal surface. When a block is pushed against the spring by an external agent, the 
elastic potential energy and the total energy of the system increase as indicated in 
Figure 7.17b. When the spring is compressed a distance xmax (Fig. 7.17c), the elastic 
potential energy stored in the spring is 12kx 

2
max. When the external force is removed, 

the only force on the block is that due to the spring, and the block moves to the 
right. The elastic potential energy of the system decreases, whereas the kinetic 
energy increases and the total energy remains fixed (Fig. 7.17d). When the spring 
returns to its original length, the stored elastic potential energy is completely trans-
formed into kinetic energy of the block (Fig. 7.17e).

Q uick Quiz 7.7  A ball is connected to a light spring suspended vertically as 
shown in Figure 7.18. When pulled downward from its equilibrium position and 
released, the ball oscillates up and down. (i) In the system of the ball, the spring, 
and the Earth, what forms of energy are there during the motion? (a) kinetic and 
elastic potential (b) kinetic and gravitational potential (c) kinetic, elastic poten-
tial, and gravitational potential (d) elastic potential and gravitational potential 
(ii) In the system of the ball and the spring, what forms of energy are there during 
the motion? Choose from the same possibilities (a) through (d).

energy bar charts
Figure 7.17 shows an important graphical representation of information related 
to energy of systems called an energy bar chart. The vertical axis represents the 
amount of energy of a given type in the system. The horizontal axis shows the 
types of energy in the system. The bar chart in Figure 7.17a shows that the system 
contains zero energy because the spring is relaxed and the block is not moving. 
Between Figure 7.17a and Figure 7.17c, the hand does work on the system, com-
pressing the spring and storing elastic potential energy in the system. In Figure 
7.17d, the block has been released and is moving to the right while still in contact 
with the spring. The height of the bar for the elastic potential energy of the system 
decreases, the kinetic energy bar increases, and the total energy bar remains fixed. 
In Figure 7.17e, the spring has returned to its relaxed length and the system now 
contains only kinetic energy associated with the moving block.

Energy bar charts can be a very useful representation for keeping track of the 
various types of energy in a system. For practice, try making energy bar charts for 
the book–Earth system in Figure 7.16 when the book is dropped from the higher 
position. Figure 7.18 associated with Quick Quiz 7.7 shows another system for which 
drawing an energy bar chart would be a good exercise. We will show energy bar 
charts in some figures in this chapter.

   7.7    Conservative and Nonconservative Forces
We now introduce a third type of energy that a system can possess and store. Imag-
ine that the book in Figure 7.19a (page 170) has been accelerated by your hand and 
is now sliding to the right on the surface of a heavy table and slowing down due to 
the friction force. Suppose the surface is the system. Then, from our discussion of 
work, we can argue that the friction force from the sliding book does work on the 
surface. The friction force on the surface is to the right and the displacement of 
the point of application of the force is to the right because the book has moved to 
the right. The work done on the surface is therefore positive, but the surface is not 

m

Figure 7.18  (Quick Quiz 7.7) 
A ball connected to a massless 
spring suspended vertically. What 
forms of potential energy are asso-
ciated with the system when the 
ball is displaced downward?
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170 Chapter 7 Energy of a System

moving after the book has stopped. Positive work has been done on the surface, yet 
there is no increase in the surface’s kinetic energy. Nor is there any change in the 
potential energy of any system. So work has been done, but where is the energy?

From your everyday experience with sliding over surfaces with friction, you can 
probably guess that the surface will be warmer after the book slides over it. This is 
what you found when you sanded the wood in the opening storyline for this chapter.  
The work that was done on the surface has gone into warming the surface rather 
than increasing its speed or changing the configuration of a system. We call the 
energy associated with the temperature of a system its internal energy, symbolized 
Eint. (We will define internal energy more generally in Chapter 19.) In this case, the 
work done on the surface does indeed represent energy transferred into the sys-
tem, but it appears in the system as internal energy rather than kinetic or potential 
energy.

Now consider the book and the surface in Figure 7.19a together as a system. After 
the book is released, and while it is slowing down, no work is done on this system. 
Initially, the system has kinetic energy because the book is moving. While the book 
is sliding, the internal energy of the system increases: the book and the surface are 
warmer than before. When the book stops, the kinetic energy has been completely 
transformed to internal energy. We can consider the friction force within the  
system—that is, between the book and the surface—as a transformation mechanism 
for energy. This force transforms the kinetic energy of the system into internal 
energy. Rub your hands together briskly to experience this effect!

Figures 7.19b through 7.19d show energy bar charts for the situation in Figure 
7.19a. In Figure 7.19b, the bar chart shows that the system contains kinetic energy 
at the instant the book is released by your hand. We define the reference amount of 
internal energy in the system as zero at this instant. Figure 7.19c shows the kinetic 
energy transforming to internal energy as the book slows down due to the friction 
force. In Figure 7.19d, after the book has stopped sliding, the kinetic energy is zero, 
and the system now contains only internal energy Eint. Notice that the total energy 
bar in red has not changed during the process. The amount of internal energy in 
the system after the book has stopped is equal to the amount of kinetic energy in 
the system at the initial instant. This equality is described by an important princi-
ple called conservation of energy. We will explore this principle in Chapter 8.

Now consider in more detail an object moving downward near the surface of the 
Earth. The work done by the gravitational force on the object does not depend on 
whether it falls vertically or slides down a sloping incline with friction. All that matters 
is the change in the object’s elevation. The energy transformation to internal energy 
due to friction on that incline, however, depends very much on the distance the object 
slides. The longer the incline, the more potential energy is transformed to internal 
energy. In other words, the path makes no difference when we consider the work done 
by the gravitational force, but it does make a difference when we consider the energy 
transformation due to friction forces. We can use this varying dependence on path to 
classify forces as either conservative or nonconservative. Of the two forces just mentioned, 
the gravitational force is conservative and the friction force is nonconservative.

conservative forces
Conservative forces have these two equivalent properties:

1. The work done by a conservative force on a particle moving between any 
two points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any 
closed path is zero. (A closed path is one for which the beginning point and 
the endpoint are identical.)

The gravitational force is one example of a conservative force; the force that an 
ideal spring exerts on any object attached to the spring is another. The work done 
by the gravitational force on an object moving between any two points near the 

Properties of 
conservative forces

Figure 7.19 (a) A book sliding to 
the right on a horizontal surface 
slows down in the presence of a 
force of kinetic friction acting 
to the left on the book. (b) An 
energy bar chart showing the 
energy in the system of the book 
and the surface at the initial 
instant of time. The energy of 
the system is all kinetic energy. 
(c) While the book is sliding, 
the kinetic energy of the system 
decreases as it is transformed to 
internal energy. (d) After the 
book has stopped, the energy of 
the system is all internal energy.
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Earth’s surface is Wg 5 2mg  j
⁄ 

? fsyf 2 yid j
⁄
g 5 mgyi 2 mgyf . From this equation, notice 

that Wg depends only on the initial and final y coordinates of the object and hence 
is independent of the path. Furthermore, Wg is zero when the object moves over any 
closed path (where yi 5 yf).

For the case of the object–spring system, the work Ws done by the spring force 
is given by Ws 5 1

2kxi
2 2 1

2kxf
2 (Eq. 7.12). We see that the spring force is conservative 

because Ws depends only on the initial and final x coordinates of the object and is 
zero for any closed path (where xi 5 xf).

nonconservative forces
A force is nonconservative if it does not satisfy properties 1 and 2 above. The work 
done by a nonconservative force is path-dependent. We define the sum of the 
kinetic and potential energies of a system as the mechanical energy of the system:

 Emech ; K 1 U (7.24)

where K includes the kinetic energy of all moving members of the system and U 
includes all types of potential energy in the system. For a book falling under the 
action of the gravitational force, the mechanical energy of the book–Earth system 
remains fixed; gravitational potential energy transforms to kinetic energy, and the 
total energy of the system remains constant. Nonconservative forces acting within a 
system, however, cause a change in the mechanical energy of the system. For exam-
ple, for a book sent sliding on a horizontal surface that is not frictionless (Fig. 7.19a), 
the mechanical energy of the book–surface system is transformed to internal energy 
as we discussed earlier. Only part of the book’s kinetic energy is transformed to 
internal energy in the book. The rest appears as internal energy in the surface. 
(When you trip and slide across a gymnasium floor, not only does the skin on your 
knees warm up, so does the floor!) Because the force of kinetic friction transforms 
the mechanical energy of a system into internal energy, it is a nonconservative force.

As an example of the path dependence of the work for a nonconservative force, 
consider Figure 7.20. Suppose you displace a book between two points on a table. If 
the book is displaced in a straight line along the blue path between points Ⓐ and 
Ⓑ in Figure 7.20, you do a certain amount of work against the kinetic friction force 
to keep the book moving at a constant speed. Now, imagine that you push the book 
along the brown semicircular path in Figure 7.20. You perform more work against 
friction along this curved path than along the straight path because the curved 
path is longer. The work done on the book depends on the path, so the friction 
force cannot be conservative.

   7.8    Relationship Between Conservative  
Forces and Potential Energy
We can associate a potential energy function U for a system with a force acting 
between members of the system, but we can do so only if the force is conservative. In 
general, the work Wint done by a conservative force on an object that is a member 
of a system as the system changes from one configuration to another is equal to the 
initial value of the potential energy of the system minus the final value:

 Wint 5 Ui 2 Uf 5 2DU  (7.25)

The subscript “int” in Equation 7.25 reminds us that the work we are discussing is 
done by one member of the system on another member and is therefore internal to 
the system. It is different from the work Wext done on the system as a whole by an 
external agent. As an example, compare Equation 7.25 with the equation for the 
work done by an external agent on a block–spring system (Eq. 7.23) as the exten-
sion of the spring changes.

The work done in moving the 
book is greater along the brown 
path than along the blue path.

�

�

Physics

Figure 7.20  The work done 
against the force of kinetic fric-
tion depends on the path taken as 
the book is moved from Ⓐ to Ⓑ.

Pitfall Prevention 7.9
Similar Equation Warning Com-
pare Equation 7.25 with Equation 
7.20. These equations are similar 
except for the negative sign, which 
is a common source of confusion. 
Equation 7.20 tells us that positive 
work done by an outside agent on a 
system causes an increase in the 
potential energy of the system 
(with no change in the kinetic or 
internal energy). Equation 7.25 
states that positive work done on 
a component of a system by a con-
servative force internal to the system 
causes a decrease in the potential 
energy of the system.
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172 Chapter 7 Energy of a System

Let us imagine a system of particles in which a conservative force F
S

 acts between 
the particles. Imagine also that the configuration of the system changes due to the 
motion of one particle along the x axis. Then we can evaluate the internal work done 
by this force as the particle moves along the x axis3 using Equations 7.7 and 7.25:

 Wint 5 #
xf

xi

 Fx dx 5 2DU  (7.26)

where Fx is the component of F
S

 in the direction of the displacement. We can also 
express Equation 7.26 as

 DU 5 Uf 2 Ui 5 2#
xf

xi

 Fx dx (7.27)

Therefore, DU is negative when Fx and dx are in the same direction, as when an 
object is lowered in a gravitational field or when a spring pushes an object toward 
equilibrium.

It is often convenient to establish some particular location xi of one member of a 
system as representing a reference configuration and measure all potential energy 
differences with respect to it. We can then define the potential energy function as

 Uf sxd 5 2#
xf

xi

 Fx dx 1 Ui (7.28)

The value of Ui is often taken to be zero for the reference configuration. It does not 
matter what value we assign to Ui because any nonzero value merely shifts Uf(x) by a 
constant amount and only the change in potential energy is physically meaningful.

If the point of application of the force undergoes an infinitesimal displacement dx, 
we can express the infinitesimal change in the potential energy of the system dU as

dU 5 2Fx dx

Therefore, the conservative force is related to the potential energy function 
through the relationship4

 
Fx 5 2

dU 

dx  (7.29)

That is, the x component of a conservative force acting on a member within a  system 
equals the negative derivative of the potential energy of the system with respect to x.

We can easily check Equation 7.29 for the two examples already discussed. In the 
case of the deformed spring, Us 5 1

2kx2; therefore,

Fs 5 2
dUs

dx
5 2

d
dx

s1
2kx2d 5 2kx

which corresponds to the restoring force in the spring (Hooke’s law). Because the 
gravitational potential energy function is Ug 5 mgy, it follows from Equation 7.29 
that Fg 5 2mg when we differentiate Ug with respect to y instead of x.

We now see that U is an important function because a conservative force can be 
derived from it. Furthermore, Equation 7.29 should clarify that adding a constant 
to the potential energy is unimportant because the derivative of a constant is zero.

Relation of force between  
members of a system  

to the potential energy of  
the system

3For a general displacement, the work done in two or three dimensions also equals 2DU, where U 5 U(x, y, z). We 
write this equation formally as Wint 5 #

f

i  F
S 

?
 

d rS 5 Ui 2 Uf
.

4In three dimensions, the expression is

F
S

5 2
−U
−x

 i
⁄

2
−U
−y

 j
⁄

2
−U
−z

 k
⁄

where (−U/−x) and so forth are partial derivatives. In the language of vector calculus, F
S

 equals the negative of the 
gradient of the scalar quantity U(x, y, z).
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Q uick Quiz 7.8  What does the slope of a graph of U(x) versus x represent? 
(a) the magnitude of the force on the object (b) the negative of the magnitude 
of the force on the object (c) the x component of the force on the object (d) the 
negative of the x component of the force on the object

   7.9    Energy Diagrams and Equilibrium of a System
The motion of a system can often be understood qualitatively through a graph of its 
potential energy versus the position of a member of the system. Consider the potential  
energy function for a block–spring system, given by Us 5 1

2kx2. This function is plot-
ted versus x in Figure 7.21a, where x is the position of the block.

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the equi-
librium position of the spring (x 5 0), where Fs 5 0, it will remain there unless some 
external force Fext acts on it. If this external force stretches the spring from equilib-
rium, x is positive and the slope dU/dx is positive; therefore, the force Fs exerted by 
the spring is negative and the block accelerates back toward x 5 0 when released. 
If the external force compresses the spring, x is negative and the slope is negative; 
therefore, Fs is positive and again the mass accelerates toward x 5 0 upon release.

From this analysis, we conclude that the x 5 0 position for a block–spring system 
is one of stable equilibrium. That is, any movement away from this position results 
in a force directed back toward x 5 0. In general, configurations of a system in sta-
ble equilibrium correspond to those for which U(x) for the system has a minimum.

Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.

Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.22. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system has a maximum.

Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.

E

�xmax 0

Us

x

� � kx21
2Us

xmax

xmaxx � 0

m

Fs
S

The restoring force exerted by the 
spring always acts toward x � 0, 
the position of stable equilibrium.

a

b

Figure 7.21 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.21, 
where the block is only moving 
horizontally.

0
x

U

Negative slopePositive slope
x � 0 x � 0

Figure 7.22  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located at 
x 5 0. For any finite displacement 
of the particle, the force on the 
particle is directed away from  
x 5 0.
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174 Chapter 7 Energy of a System

 Example 7.9     Force and Energy on an Atomic Scale

The potential energy associated with the force between two neutral atoms in a molecule can be modeled by the  Lennard–
Jones potential energy function:

U srd 5 4e3Ss

rD12

2 Ss

rD64
where r is the separation of the atoms. The function U(r) contains two parameters s and e that are determined from experi-
ments. Sample values for the interaction between two atoms in a molecule are s 5 0.263 nm and e 5 1.51 3 10222 J. Using a 
spreadsheet or similar tool, graph this function and find the most likely distance between the two atoms.

S O L U T I O N

Conceptualize  We identify the two atoms in the molecule as a system. Based on our understanding that stable molecules exist, 
we expect to find stable equilibrium when the two atoms are separated by some equilibrium distance.

Categorize Because a potential energy function exists, we categorize the force between the atoms as conservative. For a con-
servative force, Equation 7.29 describes the relationship between the force and the potential energy function.

Analyze Stable equilibrium exists for a separation distance at which the potential energy of the system of two atoms (the 
molecule) is a minimum.

Take the derivative of the function U(r): 
dU srd

dr
5 4e 

d
dr3Ss

rD12

2 Ss

rD64 5 4e 3212s12

r 
13 1

6s 

6

r 
7 4

Minimize the function U(r) by setting its derivative 4e3212s12

req
13 1

6s 

6

req
7 4 5 0  S   req 5 s2d1y6s 

equal to zero:

Evaluate req, the equilibrium separation of the two atoms req 5 s2d1y6s0.263 nmd 5 2.95 3 10210 m  
in the molecule:

We graph the Lennard–Jones function on both sides of  
this critical value to create our energy diagram as shown in 
Figure 7.23.

Finalize Notice that U(r) is extremely large when the atoms 
are very close together, is a minimum when the atoms are 
at their critical separation, and then increases again as the 
atoms move apart. When U(r) is a minimum, the atoms are 
in stable equilibrium, indicating that the most likely separa-
tion between them occurs at this point.

–20

–10

0
3 4 5 6

r (10�10 m)

U (10�23 J )

req

Figure 7.23  (Example 7.9) Potential energy curve associated 
with a molecule. The distance r is the separation between the two 
atoms making up the molecule.

Summary
 › Definitions

A system is most often a single particle, 
a collection of particles, or a region of 
space, and may vary in size and shape.  
A system boundary separates the sys-
tem from the environment.

The work W done on a system by an agent exerting a constant force F
S

 on the system is 
the product of the magnitude Dr of the displacement of the point of application of the 
force and the component F cos u of the force along the direction of the displacement D rS:

 W ; F Dr cos u (7.1)
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If a varying force does work on a particle as the particle moves 
along the x axis from xi to xf , the work done by the force on the 
particle is given by

 W 5 #
xf

xi

 Fx dx (7.7)

where Fx is the component of force in the x direction.

The scalar product (dot product) of two vectors A
S

 and B
S

 is 
defined by the relationship

 A
S 

? B
S

; AB cos u (7.2)

where the result is a scalar quantity and u is the angle between 
the two vectors. The scalar product obeys the commutative and 
distributive laws.

The kinetic energy of a particle of 
mass m moving with a speed v is

 K ; 1
2mv 

2 (7.16)

A force is conservative if the work it does on a particle that is a member of the system 
as the particle moves between two points is independent of the path the particle 
takes between the two points. Furthermore, a force is conservative if the work it does 
on a particle is zero when the particle moves through an arbitrary closed path and 
returns to its initial position. A force that does not meet these criteria is said to be 
nonconservative.

If a particle of mass m is at a distance y above the Earth’s surface (y 5 0), the gravita-
tional potential energy of the particle–Earth system is

 Ug ; mgy (7.19)

The elastic potential energy stored in a spring of force constant k is

 Us ; 1
2kx 

2 (7.22)

The total mechanical energy of a system 
is defined as the sum of the kinetic energy 
and the potential energy:

 Emech  ; K 1 U (7.24)

 › Concepts and Principles

The work–kinetic energy theorem states that if work is 
done on a system by external forces and the only change 
in the system is in the speeds of its members,

 Wext 5 Kf 2 Ki 5 DK 5 1
2mvf

2 2 1
2mvi

2 (7.15, 7.17)

If the only change is in the configuration of the system,

 Wext 5 DU (7.20, 7.23)

A potential energy function U can be associated only with a con-
servative force. If a conservative force F

S
 acts between members of a 

system while one member moves along the x axis from xi to xf , the 
change in the potential energy of the system equals the negative of 
the work done by that force:

 Uf 2 Ui 5 2#
xf

xi

 Fx dx (7.27)

Systems can be in three types of equilibrium configurations 
when the net force on a member of the system is zero. Config-
urations of stable equilibrium correspond to those for which 
U(x) has a minimum. 

Configurations of unsta-
ble equilibrium corre-
spond to those for which 
U(x) has a maximum.

Neutral equilibrium arises 
when U is constant as a mem-
ber of the system moves over 
some region.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working in a manufacturing plant. One of the 
machines in the plant uses a spring. For a new process, it 
would be desirable for springs with different force constants 
to be used during different portions of the process. Your 
boss asks you for advice on how to change out one spring 
for another quickly so that the entire process can take place 
in a reasonable amount of time. You suggest that, rather 
than changing out springs continuously, you can change 
the force constant of one long spring by clamping it at vari-
ous locations to define a new fixed end of the spring. Then 
the effective spring consists only of those coils beyond the 

clamp. You design a system consisting of one long spring 
with N coils and a force constant k. You design a clamping 
system that will isolate part of the spring, leaving N 9 coils 
free beyond the fixed clamp. (a) Write an expression for the 
force constant k9 of the free end of the spring in terms of k, N,  
and N 9. (b) The end of the unclamped, relaxed spring is 
grasped and pulled outward by a distance x. In the process, 
the hand holding the end of the spring does work W on 
the spring. Now, the spring is returned to its relaxed state 
and then clamped at its center point. The free end of the 
clamped, relaxed spring is grasped and pulled outward by 
the same distance x. How much work does the hand do on 
the spring in this case? W ? 2W ? 4W ? Another value?

 Think–Pair–Share 175
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2. ACTIVITy  In the table of data, we see minimum stopping 
distances d as a function of the initial speed v of a car. Work 
in your group to answer the following. (a) If you double the 
initial speed, does it take twice the distance to stop the car? 
(b) Assume the stopping distance is proportional to the 
speed of the car raised to some power: d ~ vn. Use graphing 
techniques to determine n. (c) Why does the stopping dis-
tance depend on the particular value of n that you found 
in (b)?

Speed (mi/h) Stopping Distance (ft)

20 22.5
25 35.0
30 50.4
35 68.6
40 89.6
45 113.5
50 140.0
55 169.5
60 201.7
65 236.7
70 274.5

176 Chapter 7 Energy of a System

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 7.2 Work Done by a Constant Force

1. A shopper in a supermarket pushes a cart with a  
force of 35.0 N directed at an angle of 25.08 below 
the horizontal. The force is just sufficient to bal-
ance various friction forces, so the cart moves at con-
stant speed. (a) Find the work done by the shopper 
on the cart as she moves down a 50.0-m-long aisle.  
(b) The shopper goes down the next aisle, pushing hori-
zontally and maintaining the same speed as before.  
If the friction force doesn’t change, would the shopper’s 
applied force be larger, smaller, or the same? (c) What 
about the work done on the cart by the shopper?

2. The record number of boat lifts, including the boat and 
its ten crew members, was achieved by Sami Heinonen and 
Juha Räsänen of Sweden in 2000. They lifted a total mass 
of 653.2 kg approximately 4 in. off the ground a total of 24 
times. Estimate the total work done by the two men on the 
boat in this record lift, ignoring the negative work done by 
the men when they lowered the boat back to the ground.

3. In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg 
object through a distance of 17.1 cm using only his teeth. 
(a) How much work was done on the object by Arfeuille in 
this lift, assuming the object was lifted at constant speed? 
(b) What total force was exerted on Arfeuille’s teeth dur-
ing the lift?

4. Spiderman, whose mass is 80.0 kg, is dangling on the free 
end of a 12.0-m-long rope, the other end of which is fixed 
to a tree limb above. By repeatedly bending at the waist, 
he is able to get the rope in motion, eventually getting it 
to swing enough that he can reach a ledge when the rope 
makes a 60.08 angle with the vertical. How much work 
was done by the gravitational force on Spiderman in this 
maneuver?

Section 7.3 The Scalar Product of Two Vectors

5. For any two vectors A
S

 and B
S

, show that A
S 

? B
S

 5 AxBx 1 AyBy 1  
AzBz. Suggestions: Write A

S
 and B

S
 in unit-vector form and use 

Equations 7.4 and 7.5.

6. Vector A
S

 has a magnitude of 5.00 units, and vector B
S

 has a 
magnitude of 9.00 units. The two vectors make an angle of 
50.08 with each other. Find A

S 
? B

S
.

Note: In Problems 7 and 8, calculate numerical answers to 
three significant figures as usual.

7. Find the scalar product of the vectors in Figure P7.7.

8. Using the definition of the scalar product, find the angles 
between (a) A

S
5 3 i

⁄
2 2 j

⁄
 and B

S
5 4 i

⁄
2 4 j

⁄
, (b) A

S
5 22i

⁄
 1 4 j

⁄
  

and B
S

5 3i
⁄
 2 4 j

⁄
 1 2k

⁄
, and (c)A

S
5 i

⁄
2 2 j

⁄
1 2k

⁄
 and B

S
 5 

3 j
⁄

1 4k
⁄
.

Section 7.4 Work Done by a Varying Force

9. A particle is subject to a force Fx that varies with position 
as shown in Figure P7.9. Find the work done by the force 
on the particle as it moves (a) from x 5 0 to x 5 5.00 m, 
(b) from x 5 5.00 m to x 5 10.0 m, and (c) from x 5 10.0 m 
to x 5 15.0 m. (d) What is the total work done by the force 
over the distance x 5 0 to x 5 15.0 m?
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10. In a control system, an accelerometer consists of a 4.70-g 
object sliding on a calibrated horizontal rail. A low-mass 
spring attaches the object to a flange at one end of the rail. 
Grease on the rail makes static friction negligible, but rap-
idly damps out vibrations of the sliding object. When subject 
to a steady acceleration of 0.800g, the object should be at a 
location 0.500 cm away from its equilibrium position. Find 
the force constant of the spring required for the calibration 
to be correct.

11. When a 4.00-kg object is hung vertically on a certain light 
spring that obeys Hooke’s law, the spring stretches 2.50 cm.  
If the 4.00-kg object is removed, (a) how far will the spring 
stretch if a 1.50-kg block is hung on it? (b) How much 
work must an external agent do to stretch the same spring 
4.00 cm from its unstretched position?

12. Express the units of the force constant of a spring in SI fun-
damental units.

13. The tray dispenser in your cafeteria has broken and is not 
repairable. The custodian knows that you are good at design-
ing things and asks you to help him build a new dispenser out 
of spare parts he has on his workbench. The tray dispenser 
supports a stack of trays on a shelf that is supported by four 
springs, one at each corner of the shelf. Each tray is rectangu-
lar, with dimensions 45.3 cm by 35.6 cm. Each tray is 0.450 cm  
thick and has a mass of 580 g. The custodian asks you to 
design a new four-spring dispenser such that when a tray is 
removed, the dispenser pushes up the remaining stack so 
that the top tray is at the same position as the just-removed 
tray was. He has a wide variety of springs that he can use to 
build the dispenser. Which springs should he use?

14. A light spring with force constant 3.85 N/m is compressed by 
8.00 cm as it is held between a 0.250-kg block on the left and 
a 0.500-kg block on the right, both resting on a horizontal 
surface. The spring exerts a force on each block, tending to 
push the blocks apart. The blocks are simultaneously 
released from rest. Find the acceleration with which each 
block starts to move, given that the coefficient of kinetic fric-
tion between each block and the surface is (a) 0, (b) 0.100, 
and (c) 0.462.

15. A small particle of mass 
m is pulled to the top of a 
frictionless half-cylinder 
(of radius R) by a light 
cord that passes over the 
top of the cylinder as illus-
trated in Figure P7.15. 
(a) Assuming the particle 
moves at a constant speed, 
show that F 5 mg cos u. Note: If the particle moves at constant 
speed, the component of its acceleration tangent to the cyl-
inder must be zero at all times. (b) By directly integrating 
W 5 # F

S 
? d rS, find the work done in moving the particle at 

constant speed from the bottom to the top of the half-cylinder.

16. The force acting on a particle is Fx 5 (8x 2 16), where F is 
in newtons and x is in meters. (a) Make a plot of this force 
versus x from x 5 0 to x 5 3.00 m. (b) From your graph, find 
the net work done by this force on the particle as it moves 
from x 5 0 to x 5 3.00 m.

17. When different loads hang on a spring, the spring 
stretches to different lengths as shown in the following  

table. (a) Make a graph of the applied force versus the 
extension of the spring. (b) By least-squares fitting, determ-
ine the straight line that best fits the data. (c) To complete  
part (b), do you want to use all the data points, or should 
you ignore some of them? Explain. (d) From the slope of 
the best-fit line, find the spring constant k. (e) If the spring 
is extended to 105 mm, what force does it exert on the sus-
pended object?

F (N) 2.0 4.0 6.0 8.0 10 12 14 16 18 20 22

L (mm) 15 32 49 64 79 98 112 126 149 175 190

18. A 100-g bullet is fired from a rifle having a barrel 0.600 m 
long. Choose the origin to be at the location where the bullet 
begins to move. Then the force (in newtons) exerted by the 
expanding gas on the bullet is 15 000 1 10 000x 2 25 000x2, 
where x is in meters. (a) Determine the work done by the gas 
on the bullet as the bullet travels the length of the barrel. 
(b) What If? If the barrel is 1.00 m long, how much work 
is done, and (c) how does this value compare with the work 
calculated in part (a)?

19. (a) A force F
S

5 (4xi
⁄

1 3yj
⁄
), where F

S
 is in newtons and x 

and y are in meters, acts on an object as the object moves in 
the x direction from the origin to x = 5.00 m. Find the work 
W 5 # F

S
? d rS done by the force on the object. (b) What If? 

Find the work W 5 # F
S

? d  rS done by the force on the object if 
it moves from the origin to (5.00 m, 5.00 m) along a straight-
line path making an angle of 45.0° with the positive x axis. 
Is the work done by this 
force dependent on the 
path taken between the 
initial and final points?

20. Review. The graph in 
Figure P7.20 specifies a 
functional relationship 
between the two vari-
ables u and v. (a) Find 
#
b

au dv. (b) Find #
a

b u dv.  
(c) Find #

b

a v du.

Section 7.5 Kinetic Energy and the Work–Kinetic  
Energy Theorem

21. A 0.600-kg particle has a speed of 2.00 m/s at point Ⓐ and 
kinetic energy of 7.50 J at point Ⓑ. What is (a) its kinetic 
energy at Ⓐ, (b) its speed at Ⓑ, and (c) the net work done 
on the particle by external forces as it moves from Ⓐ to Ⓑ?

22. A 4.00-kg particle is subject to a net force that varies with 
position as shown in Figure P7.9. The particle starts from rest 
at x 5 0. What is its speed at (a) x 5 5.00 m, (b) x 5 10.0 m,  
and (c) x 5 15.0 m?

23. A 2 100-kg pile driver is used to drive a steel I-beam into the 
ground. The pile driver falls 5.00 m before coming into con-
tact with the top of the beam, and it drives the beam 12.0 cm 
farther into the ground before coming to rest. Using energy 
considerations, calculate the average force the beam exerts 
on the pile driver while the pile driver is brought to rest.

24. Review. In an electron microscope, there is an electron gun 
that contains two charged metallic plates 2.80 cm apart. 
An electric force accelerates each electron in the beam 
from rest to 9.60% of the speed of light over this distance. 
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178 Chapter 7 Energy of a System

(a) Determine the kinetic energy of the electron as it leaves 
the electron gun. Electrons carry this energy to a phos-
phorescent viewing screen where the microscope’s image 
is formed, making it glow. For an electron passing between 
the plates in the electron gun, determine (b) the magnitude 
of the constant electric force acting on the electron, (c) the 
acceleration of the electron, and (d) the time interval the 
electron spends between the plates.

25. Review. You can think of the work–kinetic energy theorem 
as a second theory of motion, parallel to Newton’s laws in 
describing how outside influences affect the motion of an 
object. In this problem, solve parts (a), (b), and (c) separately 
from parts (d) and (e) so you can compare the predictions of 
the two theories. A 15.0-g bullet is accelerated from rest to a 
speed of 780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the barrel. (b) Use 
the work–kinetic energy theorem to find the net work that 
is done on the bullet. (c) Use your result to part (b) to find 
the magnitude of the average net force that acted on the bul-
let while it was in the barrel. (d) Now model the bullet as a 
particle under constant acceleration. Find the constant accel-
eration of a bullet that starts from rest and gains a speed of 
780 m/s over a distance of 72.0 cm. (e) Modeling the bullet as 
a particle under a net force, find the net force that acted on 
it during its acceleration. (f) What conclusion can you draw 
from comparing your results of parts (c) and (e)?

26. You are lying in your bedroom, resting after doing your physics  
homework. As you stare at your ceiling, you come up with the 
idea for a new game. You grab a dart with a sticky nose and a 
mass of 19.0 g. You also grab a spring that has been lying on 
your desk from some previous project. You paint a target pat-
tern on your ceiling. Your new game is to place the spring ver-
tically on the floor, place the sticky-nose dart facing upward 
on the spring, and push the spring downward until the coils 
all press together, as on the right in Figure P7.26. You will then 
release the spring, firing the dart up toward the target on 
your ceiling, where its sticky nose will make it hang from the 
ceiling. The spring has an uncompressed end-to-end length 
of 5.00 cm, as shown on the left in Figure P7.26, and can be 
compressed to an end-to-end length of 1.00 cm when the coils 
are all pressed together. Before trying the game, you hold the 
upper end of the spring in one hand and hang a bundle of ten 
identical darts from the lower end of the spring. The spring 
extends by 1.00 cm due to the weight of the darts. You are so 
excited about the new game that, before doing a test of the 
game, you run out to gather your friends to show them. When 
your friends are in your room watching and you show them 
the first firing of your new game, why are you embarrassed?

27. Review. A 5.75-kg object passes through the origin at  
time t 5 0 such that its x component of velocity is 5.00 m/s 
and its y component of velocity is 23.00 m/s. (a) What is 
the kinetic energy of the object at this time? (b) At a later 
time t 5 2.00 s, the particle is located at x 5 8.50 m and  
y 5 5.00 m. What constant force acted on the object during 
this time interval? (c) What is the speed of the particle at 
t 5 2.00 s?

28. Review. A 7.80-g bullet moving at 575 m/s strikes the hand 
of a superhero, causing the hand to move 5.50 cm in the dir-
ection of the bullet’s velocity before stopping. (a) Use work 
and energy considerations to find the average force that 
stops the bullet. (b) Assuming the force is constant, determ-
ine how much time elapses between the moment the bullet 
strikes the hand and the moment it stops moving.

Section 7.6 Potential Energy of a System

29. A 0.20-kg stone is held 1.3 m above the top edge of a water 
well and then dropped into it. The well has a depth of 5.0 m. 
Relative to the configuration with the stone at the top edge 
of the well, what is the gravitational potential energy of the 
stone–Earth system (a) before the stone is released and 
(b) when it reaches the bottom of the well? (c) What is the 
change in gravitational potential energy of the system from 
release to reaching the bottom of the well?

30. A 1 000-kg roller coaster car is initially at the top of a rise, at 
point Ⓐ. It then moves 135 ft, at an angle of 40.08 below the 
horizontal, to a lower point Ⓑ. (a) Choose the car at point Ⓑ  
to be the zero configuration for gravitational potential 
energy of the roller coaster–Earth system. Find the poten-
tial energy of the system when the car is at points Ⓐ and 
Ⓑ, and the change in potential energy as the car moves 
between these points. (b) Repeat part (a), setting the zero 
configuration with the car at point Ⓐ.

Section 7.7 Conservative and Nonconservative Forces

31. A 4.00-kg particle moves 
from the origin to position 
Ⓒ, having coordinates x 5  
5.00 m and y 5 5.00 m 
(Fig.  P7.31). One force on 
the particle is the gravita-
tional force acting in the 
negative y direction. Using 
Equation 7.3, calculate the 
work done by the gravita-
tional force on the parti-
cle as it goes from O to Ⓒ 
along (a) the purple path, (b) the red path, and (c) the blue 
path. (d) Your results should all be identical. Why?

32. (a) Suppose a constant force acts on an object. The force 
does not vary with time or with the position or the veloc-
ity of the object. Start with the general definition for work 
done by a force

W 5 #
f

i
F
S

? d rS

  and show that the force is conservative. (b) As a special case, 
suppose the force F

S
5 (3i

⁄
1 4j

⁄
) N acts on a particle that 

moves from O to Ⓒ in Figure P7.31. Calculate the work done 
by F

S
 on the particle as it moves along each one of the three 

paths shown in the figure and show that the work done along 
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the three paths is identical. (c) What If? Is the work done also 
identical along the three paths for the force F

S
5 (4x i

⁄
1 3y j

⁄
),  

where F
S

 is in newtons and x and y are in meters, from 
Problem 19? (d) What If? Suppose the force is given by 
F
S

5 (y i
⁄

2 x j
⁄
), where F

S
 is in newtons and x and y are in 

meters. Is the work done identical along the three paths for  
this force?

33. A force acting on a particle moving in the xy plane is  
given by F

S
5 s2y i

⁄
1 x2

 j
⁄
d, where F

S
 is in newtons and x and y 

are in meters. The particle moves from the origin to a final 
position having coordinates x 5 5.00 m and y 5 5.00 m as 
shown in Figure P7.31. Calculate the work done by F

S
 on the 

particle as it moves along (a) the purple path, (b) the red 
path, and (c) the blue path. (d) Is F

S
 conservative or noncon-

servative? (e) Explain your answer to part (d).

Section 7.8 Relationship Between Conservative  
Forces and Potential Energy

34. Why is the following situation impossible? A librarian lifts a book 
from the ground to a high shelf, doing 20.0 J of work in the 
lifting process. As he turns his back, the book falls off the 
shelf back to the ground. The gravitational force from the 
Earth on the book does 20.0 J of work on the book while it 
falls. Because the work done was 20.0 J 1 20.0 J 5 40.0 J, the 
book hits the ground with 40.0 J of kinetic energy.

35. A single conservative force acts on a 5.00-kg particle within a 
system due to its interaction with the rest of the system. The 
equation Fx 5 2x 1 4 describes the force, where Fx is in new-
tons and x is in meters. As the particle moves along the x axis 
from x 5 1.00 m to x 5 5.00 m, calculate (a) the work done 
by this force on the particle, (b) the change in the potential 
energy of the system, and (c) the kinetic energy the particle 
has at x 5 5.00 m if its speed is 3.00 m/s at x 5 1.00 m.

36. A potential energy function for a system in which a two-di-
mensional force acts is of the form U 5 3x3y 2 7x. Find the 
force that acts at the point (x, y).

37. The potential energy of a system of two particles sep-
arated by a distance r is given by U(r) 5 A/r, where A  
is a constant. Find the radial force F

S
r that each particle exerts 

on the other.

Section 7.9 Energy Diagrams and Equilibrium of a System

38. For the potential 
energy curve shown  
in Figure P7.38, 
(a)  determine whe-
ther the force Fx is 
positive, negative, or 
zero at the five 
points indicated. (b) 
Indicate points of 
stable, unstable, and 
neutral equilibrium. 
(c) Sketch the curve 
for Fx versus x from 
x 5 0 to x 5 9.5 m.

39. A right circular cone can theoretically be balanced on a 
horizontal surface in three different ways. Sketch these 
three equilibrium configurations and identify them as posi-
tions of stable, unstable, or neutral equilibrium.

aDDitional ProblemS

40. The potential energy function for a system of particles is 
given by U(x) 5 2x3 1 2x2 1 3x, where x is the position of 
one particle in the system. (a) Determine the force Fx on 
the particle as a function of x. (b) For what values of x is the 
force equal to zero? (c) Plot U(x) versus x and Fx versus x and 
indicate points of stable and unstable equilibrium.

41. You have a new internship, where you are helping to design a 
new freight yard for the train station in your city. There will be 
a number of dead-end sidings where single cars can be stored 
until they are needed. To keep the cars from running off the 
tracks at the end of the siding, you have designed a combina-
tion of two coiled springs as illustrated in Figure P7.41. When 
a car moves to the right in the figure and strikes the springs, 
they exert a force to the left on the car to slow it down.

   Both springs are described by Hooke’s law and have spring 
constants k1 = 1 600 N/m and k2 = 3 400 N/m. After the first 
spring compresses by a distance of d = 30.0 cm, the second 
spring acts with the first to increase the force to the left on the 
car in Figure P7.41. When the spring with spring constant k2 
compresses by 50.0 cm, the coils of both springs are pressed 
together, so that the springs can no longer compress. A typical 
car on the siding has a mass of 6 000 kg. When you present 
your design to your supervisor, he asks you for the maximum 
speed that a car can have and be stopped by your device.

42. When an object is displaced by an amount x from stable 
equilibrium, a restoring force acts on it, tending to 
return the object to its equilibrium position. The mag-
nitude of the restoring force can be a complicated  
function of x. In such cases, we can generally ima-
gine the force function F(x) to be expressed as a power 
series in x as F(x) 5 2(k1x  1 k2x

2  1 k3x
3 1 . . .). The 

first term here is just Hooke’s law, which describes the 
force exerted by a simple spring for small displace-
ments. For small excursions from equilibrium, we gen-
erally ignore the higher-order terms, but in some cases 
it may be desirable to keep the second term as well.  
If we model the restoring force as F 5 2(k1x 1 k2x

2), how 
much work is done on an object in displacing it from x 5 0 
to x 5 xmax by an applied force 2F ?
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43. A particle moves along the x axis from x 5 12.8 m to x 5 23.7 m  
under the influence of a force

F 5
375

x3 1 3.75x

  where F is in newtons and x is in meters. Using numerical 
integration, determine the work done by this force on the 
particle during this displacement. Your result should be 
accurate to within 2%.

44. Why is the following situation impossible? In a new casino, a 
supersized pinball machine is introduced. Casino advert-
ising boasts that a professional basketball player can lie on 
top of the machine and his head and feet will not hang off 
the edge! The ball launcher in the machine sends metal balls 
up one side of the machine and then into play. The spring in 
the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. 
The surface on which the ball moves is inclined u 5 10.08 
with respect to the horizontal. The spring is initially com-
pressed its maximum distance d 5 5.00 cm. A ball of mass 
100 g is projected into play by releasing the plunger. Casino 
visitors find the play of the giant machine quite exciting.

45. Review. Two con stant forces act on an object of mass m 5 
5.00 kg moving in the xy plane as shown in Figure P7.45. 
Force F

S
1 is 25.0 N at 35.08, and force F

S
2 is 42.0 N at 1508. 

At time t 5 0, the object is at the origin and has velocity 
s4.00 i

⁄
1 2.50 j

⁄
d m/s. (a) Express the two forces in unit-vector 

notation. Use unit-vector notation for your other answers. 
(b) Find the total force exerted on the object. (c) Find the 
object’s acceleration. Now, considering the instant t 5 3.00 s,  
find (d) the object’s  
velocity, (e) its position, 
(f)  its kinetic energy 
from 1

2mvf
2, and (g) its 

kinetic energy from 
1
2mvi

2 1 o F
S

 ? D rS. (h) What  
conclusion can you draw 
by comparing the answers 
to parts (f) and (g)?

46. (a) Take U 5 5 for a system with a particle at position x 5  
0 and calculate the potential energy of the system as a func-
tion of the particle position x. The force on the particle is 
given by (8e22x) i

⁄
. (b) Explain whether the force is conservat-

ive or nonconservative and how you can tell.

47. An inclined plane of angle 
u 5 20.08 has a spring of 
force constant k 5 500 N/m 
fastened securely at the 
bottom so that the spring 
is parallel to the surface as 
shown in Figure P7.47. A 
block of mass m 5 2.50 kg 
is placed on the plane at a 
distance d 5 0.300 m from 

the spring. From this position, the block is projected down-
ward toward the spring with speed v 5 0.750 m/s. By what 
distance is the spring compressed when the block moment-
arily comes to rest?

48. An inclined plane of angle u has a spring of force constant k 
fastened securely at the bottom so that the spring is parallel 
to the surface. A block of mass m is placed on the plane at 
a distance d from the spring. From this position, the block 
is projected downward toward the spring with speed v as 
shown in Figure P7.47. By what distance is the spring com-
pressed when the block momentarily comes to rest?

49. Over the Christmas break, you are making some extra 
money for buying presents by working in a factory, helping 
to move crates around. At one particular time, you find 
that all the handtrucks, dollies, and carts are in use, so you 
must move a crate across the room a straight-line distance of  
35.0 m without the assistance of these devices. You notice 
that the crate has a rope attached to the middle of one of 
its vertical faces. You decide to move the crate by pulling on 
the rope. The crate has a mass of 130 kg, and the coefficient 
of kinetic friction between the crate and the concrete floor 
is 0.350. (a) Determine the angle relative to the horizontal 
at which you should pull upward on the rope so that you can 
move the crate over the desired distance with the force of 
the smallest magnitude. (b) At this angle of pulling on the 
rope, how much work do you do in dragging the crate over 
the desired distance?

challenge Problem

 50. A particle of mass m 5 1.18  kg is attached between two 
identical springs on a frictionless, horizontal tabletop. 
Both springs have spring constant k and are initially 
unstressed, and the particle is at x 5 0. (a) The particle 
is pulled a distance x along a direction perpendicular to 
the initial configuration of the springs as shown in Figure 
P7.50. Show that the force exerted by the springs on the 
particle is

F
S

5 22kxS1 2
L

Ïx2 1 L2D i
⁄

 (b) Show that the potential energy of the system is

U sxd 5 kx2 1 2kLsL 2 Ïx2 1 L2d

  (c) Make a plot of U(x) versus x and identify all equilibrium 
points. Assume L 5 1.20 m and k 5 40.0 N/m. (d) If  
the particle is pulled 0.500 m to the right and then released, 
what is its speed when it reaches x 5 0?
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Problems 47 and 48.
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8Conservation of Energy

8.1 Analysis Model: 
Nonisolated System 
(Energy)

8.2 Analysis Model: 
Isolated System 
(Energy)

8.3 Situations Involving 
Kinetic Friction

8.4 Changes in 
Mechanical Energy 
for Nonconservative 
Forces

8.5 Power

Storyline In the previous chapter, you rubbed sandpaper on 
wood and we associated the resulting warmth with internal energy. Now you look 
around the garage for more examples of energy. Your car is at rest in the garage 
now, but it has kinetic energy when in operation. How does it get that energy? From 
gasoline! But how did the gasoline get in the car? At the gasoline station! But where 
did the gasoline station get it? From the refinery! But where did the refinery get it? 
These questions go on and on! To get your mind off these questions, you start a long 
cut on a piece of wood with your table saw. Wait a minute! When in operation, the 
saw blade has rotational kinetic energy. Where does that energy come from? Ah-ha, 
you plugged it in, so energy is coming from the plug in the wall! But how did the 
energy get to the plug? It must come through the power lines from a power plant! But 
where does the power plant get the energy . . . ? As you continue to look around your 
garage, you see that energy must transfer into various devices for them to operate. 
And that energy must transfer out of something: a gasoline tank, a wall plug, batter-
ies, and so on.

ConneCtions In the previous chapter, we found that energy can belong to 
a system in different forms. In this chapter, we will investigate ways that energy 
can transfer into or out of a system, or transform within a system. For example, in 
the system of the sandpaper and the wood for your carpentry project in Chapter 7,  
the kinetic energy of the sandpaper transforms to internal energy. On the other 
hand, for the system of your table saw in this chapter, energy transfers into the 
system by electricity to make it operate. We will see the full power of the energy 
approach in this chapter, embodied in the principle of conservation of energy. This 
approach will give us tools to solve problems that would be extremely difficult to 

You use a table saw to  
make a cut in a piece of 
wood. How does the  
energy transfer to the saw  
to make the blade turn?  
(George Rudy/Shutterstock.com)
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182 Chapter 8 Conservation of Energy

solve with Newton’s laws. In future chapters, we will see many cases in which 
the conservation of energy principle is applied in a variety of situations.

   8.1    Analysis Model: Nonisolated System (Energy)
As we have seen, an object, modeled as a particle, can be acted on by various forces, 
resulting in a change in its kinetic energy according to the work–kinetic energy 
theorem from Chapter 7. If we choose the object as the system, this very simple situ-
ation is the first example of a nonisolated system, for which energy crosses the bound-
ary of the system during some time interval due to an interaction with the environ-
ment. This scenario is common in physics problems. If a system does not interact 
with its environment, it is an isolated system, which we will study in Section 8.2.

The work–kinetic energy theorem (Eq. 7.17) is our first example of an energy 
equation appropriate for a nonisolated system. In the case of that theorem, the 
interaction of the system with its environment is the work done by the external 
force, and the quantity in the system that changes is the kinetic energy.

So far, we have seen only one way to transfer energy into a system: work. We men-
tion below a few other ways to transfer energy into or out of a system. The details 
of these processes will be studied in other sections of the book, but they should 
be familiar to you from everyday experience. We illustrate mechanisms to transfer 
energy in Figure 8.1 and summarize them as follows.

Work, as we have learned in Chapter 7, is a method of transferring energy to a 
system by applying a force to the system such that the point of application of the 
force undergoes a displacement (Fig. 8.1a).

Mechanical waves (Chapters 16–17) are a means of transferring energy by allow-
ing a disturbance to propagate through air or another medium. It is the method 
by which energy (which you detect as sound) leaves the system of your clock radio 
through the loudspeaker and enters your ears to stimulate the hearing process 
(Fig. 8.1b). Other examples of mechanical waves are seismic waves and ocean waves.

Energy transfers to 
the handle of the 
spoon by heat.

c

Energy leaves the radio 
from the speaker by 
mechanical waves.

b

Energy is transferred 
to the block by work.

a

Energy leaves the light- 
bulb by electromagnetic 
radiation.

f

Energy enters the 
hair dryer by 
electrical transmission.

e

Energy enters the 
automobile gas tank 
by matter transfer.

d

Co
co

on
/G

et
ty

 Im
ag

es

Figure 8.1 Energy transfer 
mechanisms. In each case, 
the system into which 
or from which energy is 
transferred is indicated.
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    8.1 Analysis Model: Nonisolated System (Energy) 183

Heat (Chapter 19) is a mechanism of energy transfer that is driven by a tem-
perature difference between a system and its environment. For example, imagine 
dividing a metal spoon into two parts: the handle, which we identify as the system, 
and the portion submerged in a cup of coffee, which is part of the environment 
(Fig. 8.1c). The handle of the spoon becomes hot because fast-moving electrons 
and atoms in the submerged portion bump into slower ones in the nearby part of 
the handle. These particles move faster because of the collisions and bump into the 
next group of slow particles. Therefore, the internal energy of the spoon handle 
rises from energy transfer due to this collision process.

Matter transfer (Chapter 19) involves situations in which matter physically 
crosses the boundary of a system, carrying energy with it. Examples include filling 
the tank of your car in the opening storyline with gasoline (Fig. 8.1d) and carrying 
energy to the rooms of your home by circulating warm air from the furnace, a pro-
cess called convection.

Electrical transmission (Chapters 26 and 27) involves energy transfer into or 
out of a system by means of electric currents. It is how energy transfers into your 
hair dryer (Fig. 8.1e), home theater system, or any other electrical device, such as 
the table saw in your garage in the opening storyline.

Electromagnetic radiation (Chapter 33) refers to electromagnetic waves such as 
visible light (Fig. 8.1f), microwaves, and radio waves crossing the boundary of a system. 
Examples of this method of transfer include cooking a baked potato in your micro-
wave oven and energy traveling from the Sun to the Earth by light through space.1

A central feature of the energy approach is the notion that we can neither create 
nor destroy energy, that energy is always conserved. This feature has been tested 
in countless experiments, and no experiment has ever shown this statement to be 
incorrect. Therefore, if the total amount of energy in a system changes, it can only 
be because energy has crossed the boundary of the system by a transfer mecha-
nism such as one of the methods listed above. 

Energy is one of several quantities in physics that are conserved. We will see 
other conserved quantities in subsequent chapters. There are many physical quan-
tities that do not obey a conservation principle. For example, there is no conserva-
tion of force principle or conservation of velocity principle. Similarly, in areas other 
than physical quantities, such as in everyday life, some quantities are conserved and 
some are not. For example, the money in the system of your bank account is a con-
served quantity. The only way the account balance changes is if money crosses the 
boundary of the system by deposits or withdrawals. On the other hand, the number 
of people in the system of a country is not conserved. Although people indeed cross 
the boundary of the system, which changes the total population, the population 
can also change by people dying and by giving birth to new babies. Even if no peo-
ple cross the system boundary, the births and deaths will change the number of 
people in the system. There is no equivalent in the concept of energy to dying or 
giving birth. The general statement of the principle of conservation of energy can 
be described mathematically with the conservation of energy equation as follows:

 DEsystem 5 o T (8.1)

where Esystem is the total energy of the system, including all methods of energy 
storage (kinetic, potential, and internal), T (for transfer) is the amount of energy 
transferred across the system boundary by some mechanism, and the sum is 
over all possible transfer mechanisms. Two of our transfer mechanisms have 
well-established symbolic notations. For work, Twork 5 W as discussed in Chapter 7, 
and for heat, Theat 5 Q as defined in Chapter 19. (Now that we are familiar with 
work, we can simplify the appearance of equations by letting the simple symbol W 
represent the external work Wext on a system. For internal work, we will always use 

 Conservation of energy

1 Electromagnetic radiation and work done by field forces are the only energy transfer mechanisms that do not 
require molecules of the environment to be available at the system boundary. Therefore, systems surrounded by a 
vacuum (such as planets) can only exchange energy with the environment by means of these two possibilities.

PItfall PreventIon 8.1
Heat Is Not a Form of Energy  
The word heat is one of the most 
misused words in our popular 
language. Heat is a method of 
transferring energy, not a form of 
storing energy. Therefore, phrases 
such as “heat content,” “the heat 
of the summer,” and “the heat 
escaped” all represent uses of 
this word that are inconsistent 
with our physics definition. 
See Chapter 19.
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184 Chapter 8 Conservation of Energy

Wint to differentiate it from W.) The other four members of our list do not have 
established symbols, so we will call them TMW (mechanical waves), TMT (matter 
transfer), TET (electrical transmission), and TER (electromagnetic radiation).

The full expansion of Equation 8.1 is

 DK 1 DU 1 DEint 5 W  1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

which is the primary mathematical representation of the energy version of the anal-
ysis model of the nonisolated system. (We will see other versions of the nonisolated 
system model, involving linear momentum and angular momentum, in later chap-
ters.) In most cases, Equation 8.2 reduces to a much simpler one because some of 
the terms are zero for the specific situation. If, for a given system, all terms on the 
right side of the conservation of energy equation are zero, the system is an isolated 
system, which we study in the next section.

The conservation of energy equation is no more complicated in theory than the 
process of balancing your checking account statement. If your account is the sys-
tem, the change in the account balance for a given month is the sum of all the 
transfers: deposits, withdrawals, fees, interest, and checks written. You may find it 
useful to think of energy as the currency of nature!

Equation 8.2 represents a general situation; it covers all possibilities for situa-
tions in classical physics that we will find throughout this book. You don’t need 
to memorize different energy equations for different situations. Equation 8.2 is 
the only equation you need to begin an energy approach to a problem solution. 
When using it to solve a problem, the procedure is to analyze the situation and 
set terms in Equation 8.2 that don’t apply to the situation equal to zero. This will 
reduce Equation 8.2 to a smaller equation that is appropriate to the situation. For 
example, suppose a force is applied to a nonisolated system and the point of appli-
cation of the force moves through a displacement. Now suppose the only change 
in the system is in the speed of one or more components of the system. Then 
Equation 8.2 reduces to

 DK 5 W  (8.3)

which is the work–kinetic energy theorem. This theorem is a special case of the 
more general principle of conservation of energy. We shall see several more special 
cases in future chapters.

Q uIck QuIz 8.1  Consider a block sliding over a horizontal surface with friction. 
Ignore any sound the sliding might make. (i) If the system is the block, this system 
is (a) isolated (b) nonisolated (c) impossible to determine (ii) If the system is the 
surface, describe the system from the same set of choices. (iii) If the system is the 
block and the surface, describe the system from the same set of choices.

The expanded conservation 
of energy equation

analysIs Model Nonisolated System (Energy)

Imagine you have identified a system to be analyzed 
and have defined a system boundary. Energy can exist 
in the system in three forms: kinetic, potential, and 
internal. The total of that energy can be changed when 
energy crosses the system boundary by any of six transfer 
methods shown in the diagram here. The total change 
in the energy in the system is equal to the total amount 
of energy that has crossed the system boundary. The 
mathematical statement of that concept is expressed in 
the conservation of energy equation:

 DEsystem 5 o T (8.1)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.
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analysIs Model Nonisolated System (Energy) continued

The full expansion of Equation 8.1 shows the specific types of energy storage and transfer: 

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

For a specific problem, this equation is generally reduced to a smaller number of terms by eliminating the terms that are equal 
to zero because they are not appropriate to the situation. See Conceptual Example 8.1, below.

Examples: 

 ● a force does work on a system of a single object, changing its speed: the work–kinetic energy theorem, W 5 DK
 ● a gas contained in a vessel has work done on it and experiences a transfer of energy by heat, resulting in a change in its 

temperature: the first law of thermodynamics, DEint 5 W 1 Q (Chapter 19)
 ● an incandescent light bulb is turned on, with energy entering the filament by electricity, causing its temperature to 

increase, and leaving by light: DEint 5 TET 1 TER (Chapter 26)
 ● a photon enters a metal, causing an electron to be ejected from the metal: the photoelectric effect, DK 1 DU 5 TER (Chapter 39)

 Conceptual Example 8.1    Reducing Equation 8.2 in Specific Situations

When using Equation 8.2 to solve a problem, the following steps should be remembered: (1) define the system; (2) identify 
the beginning and end of the time interval of interest; (3) identify initial and final configurations of the system (posi-
tions of objects in gravitational situations, extensions of springs, etc.) and assign appropriate reference values of potential 
energy; (4) write Equation 8.2, eliminating or setting terms equal to zero that do not apply in the situation. Consider the 
following examples. For each example, the system is provided and the time interval is from before the device is turned on 
until it has been operating for a few moments.

(A) Your television set.

DK  1 DU  1 DEint 5 W  1 Q 1 TMW 1 TMT 1 TET 1 TER S DEint 5 Q 1 TMW 1 TET 1 TER

Your television set is a nonisolated system, warming up after it is turned on, taking in energy by electricity in order to operate, 
and emitting energy by sound from the speakers, light from the screen, and heat from warm surfaces.

(B) Your gasoline-powered lawn mower. The time interval includes the process of filling the tank with gasoline.

DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER S DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT

Your lawn mower is a nonisolated system, with a moving blade, an increased potential energy in the fuel that was added, and 
an increasing temperature as it operates. Energy entered the lawn mower when it was filled with fuel and leaves by sound and 
heat from hot surfaces. The goal of the device is the work that it does on grass as the grass is cut. Notice that there may be 
electrical processes associated with the spark plug of the mower engine, but these processes are internal to the system, so they 
do not represent energy crossing the boundary.

(C) A cup of tea being warmed in a microwave oven.

DK  1 DU  1 DEint 5 W  1 Q 1 TMW 1 TMT 1 TET 1 TER S DEint 5 Q 1 TER

Your cup of tea is a nonisolated system, with an increasing temperature. The input of energy is by electromagnetic radiation: 
the microwaves. The heat term represents some energy transferring out of the hot tea into the lower-temperature air sur-
rounding the cup.

   8.2    Analysis Model: Isolated System (Energy)
In this section, we study another very common scenario in physics problems: a 
system is chosen such that no energy crosses the system boundary by any method. 
We begin by considering a gravitational situation. Think about the book–Earth 
system in Figure 7.16 in the preceding chapter. After we have lifted the book, 
there is gravitational potential energy stored in the system, which can be calcu-
lated from the work done by the external agent on the system, using W 5 DUg. 
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186 Chapter 8 Conservation of Energy

(Check to see that this equation, which we’ve seen before as Eq. 7.20, is contained 
within Eq. 8.2 above.) 

Now imagine dropping the book from the position to which you lifted it, as 
shown in Figure 8.2. The book–Earth system now does not interact with the envi-
ronment, since your hand is no longer in contact with the book. As the book falls, 
the kinetic energy of the system, which is due to the motion of the book alone, 
increases, and the gravitational potential energy of the system decreases. From 
Equation 8.2, we see that

 DK 1 DUg 5 0 (8.4)

The left side of this equation represents a sum of changes of the energy stored 
in the system. There are no transfers of energy of any kind across the boundary of 
the system, so we set all terms on the right side of Equation 8.2 equal to zero; the 
book–Earth system is isolated from the environment. We developed this equation 
for a gravitational system, but it can be shown to be valid for a system with any type 
of potential energy. Therefore, for this isolated system,

 DK 1 DU 5 0 (8.5)

(Check to see that this equation is contained within Eq. 8.2.) Notice what happens 
in this process. Energy is not transferred across the boundary of an isolated system. 
Rather, energy is transformed within the system, from one type to another. In the 
case of the falling book in Figure 8.2, the transformation mechanism is the internal 
work done on the book within the system by the gravitational force.

We defined in Chapter 7 the sum of the kinetic and potential energies of a sys-
tem as its mechanical energy:

 Emech ; K 1 U (8.6)

where U represents the total of all types of potential energy. Because the system 
under consideration is isolated, Equations 8.5 and 8.6 tell us that the mechanical 
energy of the system is conserved:

 DEmech 5 0 (8.7)

Equation 8.7 is a statement of conservation of mechanical energy for an isolated 
system with no nonconservative forces acting. The mechanical energy in such a sys-
tem is conserved: the sum of the kinetic and potential energies remains constant: 

Let us now write the changes in energy in Equation 8.5 explicitly:

(Kf 2 Ki) 1 (Uf 2 Ui) 5 0

 Kf 1 Uf 5 Ki 1 Ui (8.8)

For the gravitational situation of the falling book, Equation 8.8 can be written as

 1
2mvf

2 1 mgyf 5 1
2mvi

2 1 mgyi (8.9)

where vi 5 0 if the book in Figure 8.2 is dropped from rest. As the book falls to the 
Earth, the book–Earth system loses potential energy and gains kinetic energy such 
that the total of the two types of energy always remains constant: Etotal,i 5 Etotal, f  .

If there are nonconservative forces acting within the system, mechanical energy 
is transformed to internal energy as discussed in Section 7.7. If nonconserva-
tive forces act in an isolated system, the total energy of the system is conserved, 
although the mechanical energy is not. In that case, we can express the conserva-
tion of energy of the system as

 DEsystem 5 0 (8.10)

where Esystem includes all kinetic, potential, and internal energies. This equation is 
the most general statement of the energy version of the isolated system model. It 

The mechanical energy of 
an isolated system with  

no nonconservative forces 
acting is conserved.

The total energy of an 
isolated system is conserved.

The book is held at rest 
here and then released.

At a lower position, the 
book is moving and has 
kinetic energy K.

Physics

Physics

yf

yi

Figure 8.2  A book is released 
from rest and falls due to work 
done by the gravitational force on 
the book.

PItfall PreventIon 8.2
Conditions on Equation 8.5 Equa-
tion 8.5 is only true for a system 
in which conservative forces act. 
We will see how to handle non-
conservative forces in Sections 8.3 
and 8.4.
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is equivalent to Equation 8.2 with all terms on the right-hand side equal to zero. 
When using the isolated or nonisolated system models as discussed here, we will 
add the qualifier for energy or (energy). We will find in the next few chapters that 
there are isolated and nonisolated system models for other quantities as well.

Associated with this most general equation for the isolated system are a vari-
ety of new transformation mechanisms. Examples include nonconservative forces 
(the warming of the sandpaper in the Chapter 7 storyline), chemical reactions (an 
exploding firecracker), and nuclear reactions (operation of a nuclear reactor).

Q uIck QuIz 8.2  A rock of mass m is dropped to the ground from a height h. A 
second rock, with mass 2m, is dropped from the same height. When the second 
rock strikes the ground, what is its kinetic energy? (a) twice that of the first rock 
(b) four times that of the first rock (c) the same as that of the first rock (d) half 
as much as that of the first rock (e) impossible to determine

Q uIck QuIz 8.3  Three identical balls are thrown from the top of a building, 
all with the same initial speed. As shown in Figure 8.3, the first is thrown hori-
zontally, the second at some angle above the horizontal, and the third at some 
angle below the horizontal. Neglecting air resistance, rank the speeds of the 
balls at the instant each hits the ground.

Figure 8.3 (Quick Quiz 8.3) Three 
identical balls are thrown with the 
same initial speed from the top of 
a building.

2
1

3

Imagine you have 
identified a system 
to be analyzed and 
have defined a system 
boundary. Energy can 
exist in the system in 
three forms: kinetic, 
potential, and internal. 
Imagine also a situation 
in which no energy 
crosses the boundary 
of the system by any 
method. Then, the system is isolated; energy transforms from one form to 
another and Equation 8.2 becomes

 DEsystem 5 0 (8.10)

If no nonconservative forces act within the isolated system, the mechani-
cal energy of the system is conserved, so

 DEmech 5 0 (8.7)

analysIs Model Isolated System (Energy)

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.

Examples: 

 ● an object is in free-fall; gravitational  
potential energy transforms to kinetic  
energy: DK 1 DU 5 0

 ● a basketball rolling across a gym floor comes 
to rest; kinetic energy transforms to internal 
energy: DK 1 DEint 5 0

 ● a pendulum is raised and released with an 
initial speed; its motion eventually stops 
due to air resistance; gravitational potential 
energy and kinetic energy transform to 
internal energy, DK 1 DU 1 DEint 5 0 
(Chapter 15)

 ● a battery is connected to a resistor; chemical 
potential energy in the battery transforms to 
internal energy in both the battery and the 
resistor: DU 1 DEint 5 0 (Chapter 27)

 Example 8.2    Ball in Free Fall

A ball of mass m is dropped from a height h above the ground as shown in Figure 8.4 (page 188).

(A) Neglecting air resistance, determine the speed of the ball when it is at a height y above the ground. Choose the system 
as the ball and the Earth.

S o l u T I o N

Conceptualize Figure 8.4 and our everyday experience with falling objects allow us to conceptualize the situation. Although 
we can readily solve this problem with the techniques of Chapter 2, let us practice an energy approach.

Categorize As suggested in the problem, we identify the system as the ball and the Earth. Because there is neither air resis-
tance nor any other interaction between the system and the environment, the system is isolated and we use the isolated system 
model for energy. The only force between members of the system is the gravitational force, which is conservative.

continued
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188 Chapter 8 Conservation of Energy

8.2 c o n t i n u e d

Analyze Because the system is isolated and there are no nonconservative forces acting within 
the system, we apply the principle of conservation of mechanical energy to the ball–Earth 
system. At the instant the ball is released, its kinetic energy is Ki 5 0 and the gravitational 
potential energy of the system is Ugi 5 mgh. When the ball is at a position y above the ground, 
its kinetic energy is Kf 5 1

2mvf
2 and the potential energy relative to the ground is Ugf 5 mgy.

Write the appropriate reduction of Equation 8.2,  DK 1 DUg 5 0 
noting that the only types of energy in the system  
that change are kinetic energy and gravitational  
potential energy:

Substitute for the energies: s1
2mvf

2 2 0d 1 smgy 2 mghd 5 0

Solve for vf : vf
2 5 2g sh 2 yd  S  vf 5  Ï2g sh 2 yd

The speed is always positive. If you had been asked to find the ball’s velocity, you would use 
the negative value of the square root as the y component to indicate the downward motion.

(B) Find the speed of the ball again at height y by choosing the ball as the system.

S o l u T I o N

Categorize In this case, the only type of energy in the system that changes is kinetic energy. 
A single object that can be modeled as a particle cannot possess potential energy. The effect 
of gravity is to do work on the ball across the boundary of the system. We use the nonisolated 
system model for energy.

Analyze Write the appropriate reduction of  DK 5 W 
Equation 8.2:

Substitute for the initial and final kinetic energies  (1
2mvf

2 2 0) 5 F
S

g  ? D rS 5 2mg j
⁄ 

? Dy j
⁄
 

and the work done by gravity:
5 2mgDy 5 2mg(y 2 h) 5 mg(h 2 y)

Solve for vf : vf
2 5 2g sh 2 yd  S  vf 5  Ï2g sh 2 yd

Finalize The final result is the same, regardless of the choice of system. In your future problem solving, keep in mind that the 
choice of system is yours to make. Sometimes the problem is much easier to solve if a judicious choice is made as to the system 
to analyze.

W H A T  I F ?  What if the ball were thrown downward from its highest position with a speed vi? What would its speed be at 
height y?

Answer If the ball is thrown downward initially, we would expect its speed at height y to be larger than if simply dropped. 
Make your choice of system, either the ball alone or the ball and the Earth. You should find that either choice gives you the 
following result:

vf 5 Ïvi
2 1 2g sh 2 yd

Figure 8.4 (Example 8.2) A 
ball is dropped from a height 
h above the ground. Initially, 
the total energy of the ball–
Earth system is gravitational 
potential energy, equal to mgh 
relative to the ground. At the 
position y, the total energy 
is the sum of the kinetic and 
potential energies.

y

h

f

Ugi � mgh
Ki � 0

y � 0
Ug � 0

yf � y
Ugf � mgy

Kf � mvf
2

yi � h

2
1

vS

 Example 8.3    A Grand Entrance

You are part of the stage crew for a theatrical company and are designing an apparatus to support an actor of mass 65.0 kg 
who is to “fly” down to the stage during the performance of a play. You attach the actor’s harness to a 130-kg sandbag by 
means of a lightweight steel cable running smoothly over two frictionless pulleys as in Figure 8.5a. You need 3.00 m of cable 
between the harness and the nearest pulley so that the pulley can be hidden behind a curtain. For the apparatus to work 
successfully, the sandbag must never lift above the floor as the actor swings from above the stage to the floor. Let us call 
the initial angle that the actor’s cable makes with the vertical u. What is the maximum value u can have before the sandbag 
lifts off the floor?
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8.3 c o n t i n u e d

S o l u T I o N

Conceptualize We must use several concepts to solve this problem. Imagine what happens as the actor approaches the bottom 
of the swing. At the bottom, the cable is vertical and must support his weight as well as provide centripetal acceleration of his 
body in the upward direction. At this point in his swing, the tension in the cable is the highest and the sandbag is most likely 
to lift off the floor.

Categorize Looking first at the swinging of the actor from the initial point to the lowest point, we model the actor and the 
Earth as an isolated system for energy. We ignore air resistance, so there are no nonconservative forces acting. You might initially 
be tempted to model the system as nonisolated because of the interaction of the system with the cable, which is in the environ-
ment. The force applied to the actor by the cable, however, is always perpendicular to each element of the displacement of the 
actor and hence does no work. Therefore, in terms of energy transfers across the boundary, the system is isolated.

Analyze We first find the actor’s speed as he arrives at the floor as a function of the initial angle u and the radius R of the 
circular path through which he swings. We use the particle model by choosing a particular point on the actor’s body.

From the isolated system model, make the appropriate  (1)   DK 1 DUg 5 0 
reduction of Equation 8.2 for the actor–Earth system:

Let yi be the initial height of the actor above the floor and  s 
1
2mactorvf

2 2 0d 1 smactor  
gyf 2 mactor g yi  

d 5 0 
vf  be his speed at the instant before he lands. (Notice that  
Ki 5 0 because the actor starts from rest.) Insert the   (2)   vf

2 5 2g (yf 2 yi 
) 

energies into Equation (1) and solve for the final speed of  
the actor.

From the geometry in Figure 8.5a, notice that yf 2 yi 5 (3)   vf
2 5 2gR s1 2 cos ud 

R 2 R cos u 5 R(1 2 cos u). Use this relationship in  
Equation (2).

Categorize Next, focus on the instant the actor is at the lowest point. Because the tension in the cable is transferred as a force 
applied to the sandbag, we model the actor at this instant as a particle under a net force. Because the actor moves along a circular 
arc, he experiences at the bottom of the swing a centripetal acceleration of vf

2/R directed upward.

Analyze Apply Newton’s second law from the particle  o Fy 5 T 2 mactorg 5 mactor 
vf

2

R
 

under a net force model to the actor at the bottom of  
his path, using the free-body diagram in Figure 8.5b as  
a guide, and recognizing the acceleration as centripetal:

(4)   T 5 mactorg 1 mactor 
vf

2

R

Categorize Finally, notice that the sandbag lifts off the floor when the upward force exerted on it by the cable exceeds the 
gravitational force acting on it; the normal force from the floor is zero when that happens. We do not, however, want the sand-
bag to lift off the floor. The sandbag must remain at rest, so we model it as a particle in equilibrium.

R

Actor Sandbag
yi

u

mactor mbag

T
S

T
S

gS 
gS 

b c

mactor
mbag

a

yf

Figure 8.5  (Example 8.3) (a) An 
actor uses some clever staging to 
make his entrance. (b) The free-
body diagram for the actor at the 
bottom of the circular path. (c) 
The free-body diagram for the 
sandbag if the normal force from 
the floor goes to zero.

continued
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190 Chapter 8 Conservation of Energy

8.3 c o n t i n u e d

Analyze A force T of the magnitude given by Equation (4) is transmitted by the cable to the sandbag. If the sandbag remains 
at rest but is just ready to be lifted off the floor if any more force were applied by the cable, the normal force on it becomes zero 
and the particle in equilibrium model tells us that T 5 mbagg as in Figure 8.5c.

Substitute this condition and Equation (3) into  mbagg 5 mactor g 1 mactor  
2gR s1 2 cos ud

R
 

Equation (4):

Solve for cos u and substitute the given parameters: cos u 5
3mactor 2 mbag

2mactor 
5

3s65.0 kgd 2 130 kg

2s65.0 kgd
5 0.500

u 5   60.08

Finalize Here we had to combine several analysis models from different areas of our study. Notice that the length R of the 
cable from the actor’s harness to the leftmost pulley did not appear in the final algebraic equation for cos u. Therefore, the 
final answer is independent of R.

 Example 8.4    The Spring-Loaded Popgun

The launching mechanism of a popgun consists of a trigger-released spring (Fig. 8.6a). The spring is compressed to a posi-
tion y

Ⓐ, and the trigger is fired. The projectile of mass m rises to a maximum position y
Ⓒ

 above the position at which it leaves 
the spring, indicated in Figure 8.6b as position y

Ⓑ
 5 0. Consider a firing of the gun for which m 5 35.0 g, y

Ⓐ
 5 20.120 m,  

and y
Ⓒ

 5 20.0 m.

(A) Neglecting all resistive forces, determine the spring constant.

S o l u T I o N

Conceptualize Imagine the process illustrated in parts (a) and (b) of Figure 8.6. The projectile starts from rest at Ⓐ, speeds up 
as the spring pushes upward on it, leaves the spring at Ⓑ, and then slows down as the gravitational force pulls downward on it, 
eventually coming to rest at point Ⓒ. Notice that there are two types of potential energy in this system: gravitational and elastic.

y�

�

�

y  � 0�

vS

� y�

a b

%

0
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100
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pot.

energy
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energy

Grav.
pot.

energy

Total
energy

%

0
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100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

c

d

e

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

f

Isolated 
system: 

total 
energy 

constant

Nonisolated 
system: total 

energy 
changes

Figure 8.6 (Example 8.4)  
A spring-loaded popgun (a) before 
firing and (b) when the spring 
extends to its relaxed length. 
(c) An energy bar chart for the 
popgun–projectile–Earth system 
before the popgun is loaded.  
The energy in the system is zero. 
(d) The popgun is loaded by 
means of an external agent doing 
work on the system to push the 
spring downward. Therefore 
the system is nonisolated during 
this process. After the popgun is 
loaded, elastic potential energy is 
stored in the spring and the grav-
itational potential energy of the 
system is lower because the pro-
jectile is below point Ⓑ. (e) As the 
projectile passes through point 
Ⓑ, all of the energy of the isolated 
system is kinetic. (f) When the 
projectile reaches point Ⓒ, all of 
the energy of the isolated system is 
gravitational potential.
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8.4 c o n t i n u e d

Categorize We identify the system as the projectile, the spring, and the Earth. We ignore both air resistance on the projectile 
and friction in the gun, so we model the system as isolated for energy with no nonconservative forces acting.

Analyze Because the projectile starts from rest, its initial kinetic energy is zero. We choose the zero configuration for the 
gravitational potential energy of the system to be when the projectile leaves the spring at Ⓑ. For this configuration, the elastic 
potential energy is also zero.

After the gun is fired, the projectile rises to a maximum height y
Ⓒ. The final kinetic energy of the projectile is zero.

From the isolated system model for energy, write a  (1)   DK 1 DUg 1 DUs 5 0 
conservation of mechanical energy equation for the  
system between configurations when the projectile  
is at points Ⓐ and Ⓒ:

Substitute for the initial and final energies: s0 2 0d 1 smgy
Ⓒ

2 mgy
Ⓐ

d 1 s0 2 1
2kx2d 5 0

Solve for k: k 5
2mg sy

Ⓒ
2 y

Ⓐ
d

x2

Substitute numerical values: k 5
2s0.035 0 kgds9.80 mys2df20.0 m 2 s20.120 mdg

s0.120 md2 5  958 Nym

(B) Find the speed of the projectile as it moves through the equilibrium position Ⓑ of the spring as shown in Figure 8.6b.

S o l u T I o N

Analyze The energy of the system as the projectile moves through the equilibrium position of the spring includes only the 
kinetic energy of the projectile 12mv

Ⓑ
2. Both types of potential energy are equal to zero for this configuration of the system.

Write Equation (1) again for the system between  DK 1 DUg 1 DUs 5 0 
configurations for which the projectile is at  
points Ⓐ and Ⓑ:

Substitute for the initial and final energies: s 1
2mv

Ⓑ
2 2 0d 1 s0 2 mgy

Ⓐ
d 1 s0 2  1

2kx2d 5 0

Solve for v
Ⓑ

: v
Ⓑ

5Îkx2

m
1 2gy

Ⓐ

Substitute numerical values: v
Ⓑ

5Îs958 Nymds0.120 md2

s0.035 0 kgd
1 2s9.80 mys2ds20.120 md 5  19.8 mys

Finalize This example is the first one we have seen in which we must include two different types of potential energy. Notice in 
part (A) that we never needed to consider anything about the speed of the ball between points Ⓐ and Ⓒ, which is part of the 
power of the energy approach: changes in kinetic and potential energy depend only on the initial and final values, not on what 
happens between the configurations corresponding to these values.

   8.3    Situations Involving Kinetic Friction
Consider again the book in Figure 7.19a sliding to the right on the surface of a 
heavy table and slowing down due to the friction force. Work is done by the fric-
tion force on the book because there is a force and a displacement. Keep in mind, 
however, that our equations for work involve the displacement of the point of appli-
cation of the force. A simple model of the friction force between the book and the 
surface is shown in Figure 8.7a (page 192). We have represented the entire friction 
force between the book and surface as being due to two identical teeth that have 
been spot-welded together.2 One tooth projects upward from the surface, the other 

2 Figure 8.7 and its discussion are inspired by a classic article on friction: B. A. Sherwood and W. H. Bernard, “Work 
and heat transfer in the presence of sliding friction,” American Journal of Physics, 52:1001, 1984.
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192 Chapter 8 Conservation of Energy

downward from the book, and they are welded at the points where they touch. The 
friction force acts at the junction of the two teeth. Imagine that the book slides a 
small distance d to the right as in Figure 8.7b. Because the teeth are modeled as 
identical, the junction of the teeth moves to the right by a distance d/2. Therefore, 
the displacement of the point of application of the friction force is d/2, but the dis-
placement of the book is d!

In reality, however, the friction force is spread out over the entire contact area 
of an object sliding on a surface, so the force is not localized at a point. In addi-
tion, because the magnitudes of the friction forces at various points are constantly 
changing as individual spot welds occur, the surface and the book deform locally, 
and so on, the displacement of the point of application of the friction force is not at 
all the same as the displacement of the book. In fact, the displacement of the point 
of application of the friction force is not calculable and so neither is the work done 
by the friction force.

The work–kinetic energy theorem is valid for a particle or an object that can 
be modeled as a particle. When a friction force acts, however, we cannot calculate 
the work done by friction. For such situations, Newton’s second law is still valid 
for the system even though the work–kinetic energy theorem is not. The case of 
a nondeformable object like our book sliding on the surface3 can be handled in a 
relatively straightforward way.

Starting from a situation in which forces, including friction, are applied to the 
book, we can follow a similar procedure to that done in developing Equation 7.17. 
Let us start by writing Equation 7.8 for all forces on an object other than friction:

 o  Wother forces 5 #   
so  F

S
other forcesd ? d rS (8.11)

The d rS in this equation is the displacement of the object because for forces other 
than friction, under the assumption that these forces do not deform the object, 
this displacement is the same as the displacement of the point of application of the 
forces. To each side of Equation 8.11 let us add the integral of the scalar product of 
the force of kinetic friction and d rS. In doing so, we are not defining this quantity 
as work! We are simply saying that it is a quantity that can be calculated mathemat-
ically and will turn out to be useful to us in what follows.

o  Wother forces 1 # f
S

k ? d rS 5 # so  F
S

other forcesd ? d rS 1 # f
S

k ? d rS

5 # so  F
S

other forces 1 f
S

kd ? d rS

The integrand on the right side of this equation is the net force o F
S

 on the object, so

o  Wother forces 1 # f
S

k ? d rS 5 #o  F
S 

? d rS

Incorporating Newton’s second law o F
S

5 maS gives

 o  Wother forces 1 # f
S

k ? d rS 5 #   maS ? d rS 5 #  m 
d vS

dt
 ? d rS 5 #

tf

ti

 m 
d vS

dt
 ? vS dt (8.12)

where we have used Equation 4.3 to rewrite d rS as vS dt. The scalar product obeys 
the product rule for differentiation (see Eq. B.30 in Appendix B.6), so the deriva-
tive of the scalar product of vS with itself can be written

d
dt

svS ? vSd 5
d vS

dt
 ? vS 1 vS ? 

d vS

dt
5 2 

d vS

dt
 ? vS

d
2

Book
Surface

d

The entire friction force is 
modeled to be applied at the 
interface between two identical 
teeth projecting from the book 
and the surface.

The point of application of the 
friction force moves through a 
displacement of magnitude d/2.

a

b

Figure 8.7  (a) A simplified 
model of friction between a book 
and a surface. (b) The book is 
moved to the right by a distance d.

3 The overall shape of the book remains the same, which is why we say it is nondeformable. On a microscopic level, 
however, there is deformation of the book’s face as it slides over the surface.
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We used the commutative property of the scalar product to justify the final expres-
sion in this equation. Consequently,

d vS

dt
 ? vS 5 1

2 
d
dt

svS ? vSd 5 1
2 

dv 2

dt

Substituting this result into Equation 8.12 gives

o  Wother forces 1 # f
S

k ? d rS 5 #
tf

ti

 mS1
2 

dv 2

dt D dt 5 1
2m #

vf

vi

 dsv 2d 5 1
2mvf

2 2 1
2mvi

2 5 DK

Looking at the left side of this equation, notice that in the inertial frame of the sur-
face, f

S
k and d rS will be in opposite directions for every increment d rS of the path 

followed by the object. Therefore, f
S

k ? d rS 5 2fk dr. The previous expression now 
becomes

 o  Wother forces 2 # fk dr 5 DK  

In our model for friction, the magnitude of the kinetic friction force is constant, so 
fk can be brought out of the integral. The remaining integral e dr is simply the sum 
of increments of length along the path, which is the total path length d. Therefore,

 W 2 fkd 5 DK (8.13)

where W represents the work done on the object by all forces other than friction. 
Equation 8.13 can be used when a friction force acts on an object. The change in 
kinetic energy is equal to the work done by all forces other than friction minus a 
term fkd associated with the friction force.

Considering the sliding book situation again, let’s identify the larger system of 
the book and the surface as the book slows down under the influence of a fric-
tion force alone. There is no work done across the boundary of this system by 
other forces because the system does not interact with the environment. There 
are no other types of energy transfer occurring across the boundary of the sys-
tem, assuming we ignore the inevitable sound the sliding book makes! In this case, 
Equation 8.2 becomes

 DK 1 DEint 5 0 

The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
forces gives

 2fkd 1 DEint 5 0 

 DEint 5 fkd (8.14)

Equation 8.14 tells us that the increase in internal energy of the system is equal 
to the product of the friction force and the path length through which the block 
moves. In summary, a friction force transforms kinetic energy in a system to inter-
nal energy. If work is done on the system by forces other than friction, Equation 
8.13, with the help of Equation 8.14, can be written as

 W 5 DK 1 DEint (8.15)

which is a reduced form of Equation 8.2 and represents the nonisolated system 
model for energy for a system within which a nonconservative force acts. For any 
system in which the force of kinetic friction acts between members of the system, we 
can write the full form of Equation 8.2, reduce it accordingly, and then use Equa-
tion 8.14 to substitute for the change in the internal energy.

  Change in internal energy 
due to a constant friction  
force within the system
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194 Chapter 8 Conservation of Energy

Q uIck QuIz 8.4  You are traveling along a freeway at 65 mi/h. Your car has 
kinetic energy. You suddenly skid to a stop because of congestion in traffic. 
Where is the kinetic energy your car once had? (a) It is all in internal energy 
in the road. (b) It is all in internal energy in the tires. (c) Some of it has trans-
formed to internal energy and some of it transferred away by mechanical waves. 
(d) It is all transferred away from your car by various mechanisms.

 Example 8.5    A Block Pulled on a Rough Surface

A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a 
constant horizontal force of magnitude 12 N.

(A) Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
have a coefficient of kinetic friction of 0.15.

S o l u T I o N

Conceptualize This example is similar to Example 7.6 (page 163), but modified so that 
the surface is no longer frictionless. The rough surface applies a friction force on the 
block opposite to the applied force. As a result, we expect the speed to be lower than that 
found in Example 7.6.

Categorize The block is pulled by a force and the surface is rough, so the block and the 
surface are modeled as a nonisolated system for energy with a nonconservative force acting.

Analyze Figure 8.8a illustrates this situation. Neither the normal force nor the gravi-
tational force does work on the system because their points of application are displaced 
horizontally.

Write the appropriate reduction of Equation 8.2:   (1)   DK 1 DEint 5 W

Find the work done on the system by the applied force  W 5 F Dx 5 Fd 
just as in Example 7.6, noting that Dx 5 d because the  
motion is in a straight line:

Apply the particle in equilibrium model to the block in the  o Fy 5 0   S   n 2 mg 5 0   S   n 5 mg 
vertical direction:

Find the magnitude of the friction force: fk 5 mkn 5 mkmg

Substitute the energies into Equation (1), using  s1
2mvf

2 2 0d 1 smkmgdd 5 Fd 
Equation 8.14 for DEint, and solve for the final  
speed of the block: vf 5Î2dS F

m
2 mk g2

Substitute numerical values: vf 5Î2s3.0 md 3 12 N
6.0 kg

2 s0.15ds9.80 mys2d4 5  1.8 mys

Finalize As expected, this value is less than the 3.5 m/s found in the case of the block sliding on a frictionless surface (see 
Example 7.6). The difference in kinetic energies between the block in Example 7.6 and the block in this example is equal to 
the increase in internal energy of the block–surface system in this example.

(B) Suppose the force F
S

 is applied at an angle u as shown in Figure 8.8b. At what angle should the force be applied to 
achieve the largest possible speed after the block has moved 3.0 m to the right?

S o l u T I o N

Conceptualize You might guess that u 5 0 would give the largest speed because the force would have the largest component 
possible in the direction parallel to the surface. Think about F

S
 applied at an arbitrary nonzero angle, however. Although 

the horizontal component of the force would be reduced, the vertical component of the force would reduce the normal force, in 
turn reducing the force of friction, which suggests that the speed could be maximized by pulling at an angle other than u 5 0.

Figure 8.8 (Example 8.5) (a) A 
block pulled to the right on a rough 
surface by a constant horizontal 
force. (b) The applied force is at an 
angle u to the horizontal.
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8.5 c o n t i n u e d

Categorize As in part (A), we model the block and the surface as a nonisolated system for energy with a nonconservative  
force acting.

Analyze Write the appropriate reduction of Equation 8.2:  (1)   DK 1 DEint 5 W

 Find the work done by the applied force:  (2)   W 5 F Dx cos u 5 Fd cos u

Apply the particle in equilibrium model to the block in  o Fy 5 n 1 F sin u 2 mg 5 0 
the vertical direction:

Solve for n: (2)   n 5 mg 2 F sin u 

Substitute for the energy changes in Equation (1) and  (Kf 2 0) 1 fkd 5 W S Kf 5 W 2 fkd 
solve for the final kinetic energy of the block:

Substitute the results found in Equations (1) and (2): Kf 5 Fd cos u 2 mknd 5 Fd cos u 2 mk(mg 2 F sin u)d

Maximizing the speed is equivalent to maximizing the  
dKf

du
 5 2Fd sin u 2 mk(0 2 F cos u)d 5 0 

final kinetic energy. Consequently, differentiate Kf with  
respect to u and set the result equal to zero:

2 sin u 1 mk cos u 5 0

tan u 5 mk

Evaluate u for mk 5 0.15: u 5 tan21(mk) 5 tan21(0.15) 5   8.58

Finalize Notice that the angle at which the speed of the block is a maximum is indeed not u 5 0. When the angle exceeds 8.58, 
the horizontal component of the applied force is too small to be compensated by the reduced friction force and the speed of 
the block begins to decrease from its maximum value.

 Example 8.6    A Block–Spring System

A block of mass 1.6 kg is attached to a horizontal spring that has a force constant 
of 1 000 N/m as shown in Figure 8.9a. The spring is compressed 2.0 cm and is then 
released from rest as in Figure 8.9b.

(A) Calculate the speed of the block as it passes through the equilibrium position 
x 5 0 if the surface is frictionless.

S o l u T I o N

Conceptualize This situation has been discussed before, and it is easy to visualize the 
block being pushed to the right by the spring and moving with some speed at x 5 0.

Categorize We identify the system as the block and model the block as a nonisolated 
system for energy.

Analyze Write the appropriate reduction  (1)   DK 5 Ws 
of Equation 8.2 for the block being pushed  
by the spring:

Use Equation 7.11 to find the work  (2)   Ws 5 1
2kx2

max 
done by the spring on the system: 

Substitute the initial and final kinetic energies  s 
1
2mv 2

f  2 0d 5 1
2kx2

max S vf 5 xmaxÎ k
m

 
on the left of Equation (1) and the expression  
for the work in Equation (2) on the right:

Substitute numerical values: vf 5 s0.020 mdÎ1 000 Nym
1.6 kg

5   0.50 mys

s

a

b

x � 0

x � 0

x

x

F
S

x � �xmax

Figure 8.9  (Example 8.6) (a) A block 
attached to a spring is pushed inward 
from an initial position x 5 0 by an 
external agent. (b) At position x 5 2xmax,  
the block is released from rest and the 
spring pushes it to the right.

continued
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Finalize Although this problem could have been solved in Chapter 7, it is presented here to provide contrast with the follow-
ing part (B), which requires the techniques of this chapter.

(B) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force of 4.0 N retards 
its motion from the moment it is released.

S o l u T I o N

Conceptualize The correct answer must be less than that found in part (A) because the friction force retards the motion.

Categorize We identify the system as the block and the surface, a nonisolated system for energy because of the work  
done by the spring. There is a nonconservative force acting within the system: the friction between the block and  
the surface.

Analyze Write the appropriate reduction  DK 1 DEint 5 Ws S s 
1
2mvf

2 2 0d 1 fkd 5 Ws 
of Equation 8.2 and substitute for the  
energy changes:

Solve for vf : vf 5Î2
m

 sWs 2 fkd d

Substitute for the work done by the  vf 5Î2
m

 s 
1
2kxmax

2 2 fkd d 
spring, found in part (A):

Substitute numerical values: vf 5Î 2
1.6 kg

f 1
2 s1 000 Nymds0.020 md2 2 s4.0 Nds0.020 mdg 5 0.39 mys

Finalize As expected, this value is less than the 0.50 m/s found in part (A).

W H A T  I F ? What if the friction force were increased to 10.0 N? What is the block’s speed at x 5 0?

Answer In this case, the value of fkd as the block moves to 
x 5 0 is

fkd 5 (10.0 N)(0.020 m) 5 0.20 J

which is equal in magnitude to the kinetic energy at x 5 0 
for the frictionless case. (Verify it!). Therefore, all the kinetic 

energy has been transformed to internal energy by friction 
when the block arrives at x 5 0, and its speed at this point is 
v 5 0.

In this situation as well as that in part (B), the speed of the 
block reaches a maximum at some position other than x 5 0. 
Problem 27 asks you to locate these positions.

   8.4    Changes in Mechanical Energy  
for Nonconservative Forces
In the discussion leading to Equation 8.14, which identifies the change in inter-
nal energy of a system due to friction, we considered nonconservative forces 
that affected only the kinetic energy of the system. Now, however, suppose the 
book on the surface that we were discussing there is part of a system that also 
exhibits a change in potential energy. In this case, f kd is the change in internal 
energy due to a decrease in the mechanical energy of the system because of the 
force of kinetic friction. For example, if the book moves on an incline that is not 
frictionless, there is a change in both the kinetic energy and the gravitational 
potential energy of the book–incline–Earth system. Consequently, Equation 8.2  
can be written as

 DK 1 DU 1 DEint 5 0 (8.16)

where DEint is given by Equation 8.14.
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 Example 8.7    Crate Sliding Down a Ramp

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and 
inclined at an angle of 30.08 as shown in Figure 8.10. The crate starts from 
rest at the top and experiences a constant friction force of magnitude 5.00 N. 
The crate continues to move a short distance on the horizontal floor after it 
leaves the ramp, and then comes to rest.

(A) Use energy methods to determine the speed of the crate at the bottom 
of the ramp.

S o l u T I o N

Conceptualize Imagine the crate sliding down the ramp in Figure 8.10. The 
larger the friction force, the more slowly the crate will slide.

Categorize We identify the crate, the surface, and the Earth as an isolated system 
for energy with a nonconservative force acting. We consider the time interval 
from when the crate leaves the top of the ramp until it reaches the bottom.

Analyze Because vi 5 0, the initial kinetic energy of the system when the crate is at the top of the ramp is zero. If the y coordi-
nate is measured from the bottom of the ramp (the final position of the crate, for which we choose the gravitational potential 
energy of the system to be zero) with the upward direction being positive, then yi 5 0.500 m.

Write the conservation of energy equation (Eq. 8.2) for  DK 1 DU 1 DEint 5 0 
this system:

Substitute for the energies: s 
1
2mvf

2 2 0d 1 s0 2 mgyi 
d 1 fkd 5 0

Solve for vf : (1)   vf 5Î2
m

smgyi 2 fkd d

Substitute numerical values: vf 5Î 2
3.00 kg

 fs3.00 kgds9.80 mys2ds0.500 md 2 s5.00 Nds1.00 mdg 5  2.54 mys

(B) How far does the crate slide on the horizontal floor if it continues to experience a friction force of magnitude 5.00 N?

S o l u T I o N

Analyze This part of the problem is handled in exactly the same way as part (A), but in this case we consider the time interval 
from the moment the crate begins to slide at the top of the ramp until it comes to rest on the floor.

Write the conservation of energy equation for this  DK 1 DU 1 DEint 5 0 
situation:

Substitute for the energies noting that the crate slides  s0 2 0d 1 s0 2 mgyi 
d 1 fkdtotal 5 0 

over a total distance, ramp and floor, that we call dtotal:

Solve for the distance dtotal and substitute numerical values: dtotal 5
mgyi

fk

5
s3.00 kgds9.80 mys2ds0.500 md

5.00 N
5  2.94 m

Subtracting the 1.00-m length of the ramp gives us  1.94 m  that the crate slides across the floor.

Finalize For comparison, you may want to calculate the speed of the crate at the bottom of the ramp in the case in which the 
ramp is frictionless. Also notice that the increase in internal energy of the system for the entire motion of the crate is fkdtotal 5 
(5.00 N)(2.94 m) 5 14.7 J. This energy is shared between the crate and the surface, each of which is a bit warmer than before.

Also notice that the distance d the object slides on the horizontal surface is infinite if the surface is frictionless. Is that con-
sistent with your conceptualization of the situation?

W H A T  I F ?   A cautious worker decides that the speed of the crate when it arrives at the bottom of the ramp may be so 
large that its contents may be damaged. Therefore, he replaces the ramp with a longer one such that the new ramp makes an 
angle of 25.08 with the ground. Does this new ramp reduce the speed of the crate as it reaches the ground?

0.500 m

d � 1.00 m

30.0�

 � 0vi
S

vf
S

Figure 8.10  (Example 8.7) A crate slides 
down a ramp with friction under the influ-
ence of gravity. The potential energy of the 
system decreases, whereas the kinetic and 
internal energies increase.

continued
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Answer Because the ramp is longer, the friction force acts over a longer distance and transforms more of the mechanical 
energy into internal energy. The result is a reduction in the kinetic energy of the crate, and we expect a lower speed as it 
reaches the ground.

Find the length d of the new ramp: sin 25.08 5
0.500 m

d
 S d 5

0.500 m
sin 25.08

5 1.18 m

Find vf from Equation (1) in  vf 5Î 2
3.00 kg

 fs3.00 kgds9.80 mys2ds0.500 md 2 s5.00 Nds1.18 mdg 5 2.42 mys 
part (A):

The final speed is indeed lower than in the higher-angle case.

 Example 8.8    Block–Spring Collision

A block having a mass of 0.80 kg is given an initial velocity v
Ⓐ

 5 1.2 m/s to the right and collides with a spring whose mass 
is negligible and whose force constant is k 5 50 N/m as shown in Figure 8.11.

(A) Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision.

S o l u T I o N

Conceptualize The various parts 
of Figure 8.11 help us imagine what 
the block will do in this situation. All 
motion takes place in a horizontal 
plane, so we do not need to consider 
changes in gravitational potential 
energy. Before the collision, when 
the block is at Ⓐ, it has kinetic 
energy and the spring is uncom-
pressed, so the elastic potential 
energy stored in the system is zero. 
Therefore, the total mechanical 
energy of the system before the colli-
sion is just 12mv

Ⓐ
2. After the collision, 

when the block is at Ⓒ, the spring is 
fully compressed; now the block is at 
rest and so has zero kinetic energy. 
The elastic potential energy stored 
in the system, however, has its max-
imum value 1

2kx2 5 1
2kx2

max, where the 
origin of coordinates x 5 0 is chosen to be the equilibrium position of the spring and xmax is the maximum compression of the 
spring, which in this case happens to be x

Ⓒ. The total mechanical energy of the system is conserved because no nonconserva-
tive forces act on objects within the isolated system.

Categorize We identify the system to be the block and the spring and model it as an isolated system for energy with no noncon-
servative forces acting.

Analyze Write the appropriate reduction of Equation 8.2  DK 1 DU 5 0 
between points Ⓐ and Ⓒ: 

Substitute for the energies: s0 2 1
2mv

Ⓐ
2d 1 s 

1
2kx 2

max 2 0d 5 0

Solve for xmax and evaluate: xmax 5Îm
k

 v
Ⓐ

5Î 0.80 kg

50 Nym
s1.2 mysd 5  0.15 m

vS

vS

vS

vS

E � � mv�
21

2

x � 0

� � 0

xmax

�

�

�

E � � mv�
2 � � kx�

21
2

1
2

E � � mv�
2 � � mv�

21
2

1
2

E � � kxmax
1
2

�

�

x�

� � � vS�

2

�

b

c

d

a

Figure 8.11  (Example 8.8) 
A block sliding on a fric-
tionless, horizontal surface 
collides with a light spring. 
(a) Initially, the block slides 
to the right, approaching 
the spring. (b) The block 
strikes the spring and 
begins to compress it. 
(c) The block stops momen-
tarily at the maximum 
compression of the spring. 
(d) The spring pushes the 
block to the left. As the 
spring returns to its equilib-
rium length, the block con-
tinues moving to the left. 
The energy equations at the 
right show the energies of 
the system in the friction-
less case in part (A).
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8.8 c o n t i n u e d

(B) Suppose a constant force of kinetic friction acts between the block and the surface, with mk 5 0.50. If the speed of the 
block at the moment it collides with the spring is v

Ⓐ
 5 1.2 m/s, what is the maximum compression x

Ⓒ
 in the spring?

S o l u T I o N

Conceptualize Because of the friction force, we expect the compression of the spring to be smaller than in part (A) because 
some of the block’s kinetic energy is transformed to internal energy in the block and the surface.

Categorize We identify the system as the block, the surface, and the spring. This is an isolated system for energy but now 
involves a nonconservative force.

Analyze In this case, the mechanical energy Emech 5 K 1 Us of the system is not conserved because a friction force acts on the 
block. From the particle in equilibrium model in the vertical direction, we see that n 5 mg.

Evaluate the magnitude of the friction force: fk 5 mkn 5 mkmg

Write the appropriate reduction of Equation 8.2  DK 1 DU 1 DEint 5 0 
for this situation:

Substitute the initial and final energies: s0 2 1
2mv

Ⓐ
2d 1 s 

1
2kx 2

Ⓒ
2 0d 1 mkmgx

Ⓒ
5 0

Rearrange the terms into a quadratic equation: kx
Ⓒ

2 1 2mkmgx
Ⓒ

2 mv
Ⓐ

2 5 0

Solve the quadratic equation: x
Ⓒ

5
mk 

mg

k
 16Î1 1

kv
Ⓐ

2

mk
2  mg2 2 12

Substituting numerical values gives x
Ⓒ

 5 0.092 m and x
Ⓒ

 5 20.25 m. The physically meaningful root is x
Ⓒ

 5   0.092 m.

Finalize The negative root does not apply to this situation because the block must be to the right of the origin (positive 
value of x) when it comes to rest. Notice that the value of 0.092 m is less than the distance obtained in the frictionless case of 
part (A) as we expected.

 Example 8.9    Connected Blocks in Motion

Two blocks are connected by a light string that passes over a frictionless pulley as 
shown in Figure 8.12. The block of mass m1 lies on a horizontal surface and is con-
nected to a spring of force constant k. The system is released from rest when the 
spring is unstretched. If the hanging block of mass m2 falls a distance h before com-
ing to rest, calculate the coefficient of kinetic friction between the block of mass m1 
and the surface.

S o l u T I o N

Conceptualize The key word rest appears twice in the problem statement. This word 
suggests that the configurations of the system associated with rest are good candidates 
for the initial and final configurations because the kinetic energy of the system is zero 
for these configurations.

Categorize In this situation, the system consists of the two blocks, the spring, the 
surface, and the Earth. This is an isolated system with a nonconservative force acting. We 
also model the sliding block as a particle in equilibrium in the vertical direction, leading 
to n 5 m1g.

Analyze We need to consider two forms of potential energy for the system, gravitational and elastic: DUg 5 Ugf 2 Ugi is the 
change in the system’s gravitational potential energy, and DUs 5 Usf 2 Usi is the change in the system’s elastic potential energy. 
The change in the gravitational potential energy of the system is associated with only the falling block because the vertical 
coordinate of the horizontally sliding block does not change. 

k

h

m1

m2

Figure 8.12  (Example 8.9) As the 
hanging block moves from its high-
est elevation to its lowest, the system 
loses gravitational potential energy 
but gains elastic potential energy in 
the spring. Some mechanical energy 
is transformed to internal energy 
because of friction between the slid-
ing block and the surface.

continued
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Write the appropriate reduction of Equation 8.2: (1)   DK 1 DUg 1 DUs 1 DEint 5 0 

Substitute for the energies for the time interval beginning upon release  s0 2 0d 1 s0 2 m2ghd 1 s 
1
2kh2 2 0d 1 fkh 5 0 

and ending when the system is again at rest, noting that as the hanging  
block falls a distance h, the horizontally moving block moves the same  
distance h to the right, and the spring stretches by a distance h:

Substitute for the friction force: 2m2gh 1 1
2kh2 1 mkm1gh 5 0

Solve for mk: mk 5
m2g 2 1

2kh

m1g

Finalize This setup represents a method of measuring the coefficient of kinetic friction between an object and some surface. 
Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation 8.2 and then tai-
lor it to the physical situation. This process may include deleting terms, such as all terms on the right-hand side of Equation 8.2 
in this example. It can also include expanding terms, such as rewriting DU due to two types of potential energy in this example.

 Conceptual Example 8.10    Interpreting the Energy Bars

The energy bar charts in Figure 8.13 show three instants 
in the motion of the system in Figure 8.12 and described in 
Example 8.9. For each bar chart, identify the configuration of 
the system that corresponds to the chart.

S o l u T I o N

In Figure 8.13a, there is no kinetic energy in the system. There-
fore, nothing in the system is moving. The bar chart shows that 
the system contains only gravitational potential energy and no 
internal energy yet, which corresponds to the configuration with 
the darker blocks in Figure 8.12 and represents the instant just 
after the system is released.

In Figure 8.13b, the system contains four types of energy. The 
height of the gravitational potential energy bar is at 50%, which 
tells us that the hanging block has moved halfway between its 
position corresponding to Figure 8.13a and the position defined 
as y 5 0. Therefore, in this configuration, the hanging block 
is between the dark and light images of the hanging block in 
Figure  8.12. The system has gained kinetic energy because the 
blocks are moving, elastic potential energy because the spring is 
stretching, and internal energy because of friction between the 
block of mass m1 and the surface.

In Figure 8.13c, the height of the gravitational potential energy 
bar is zero, telling us that the hanging block is at y 5 0. In addi-
tion, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily. Therefore, the 
configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of the elastic potential 
energy bar is high because the spring is stretched its maximum amount. The height of the internal energy bar is higher 
than in Figure 8.13b because the block of mass m1 has continued to slide over the surface after the configuration shown in 
Figure 8.13b.
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Figure 8.13 (Conceptual Example 8.10) Three energy bar 
charts are shown for the system in Figure 8.12.

   8.5    Power
Consider Conceptual Example 7.7 again, which involved rolling a refrigerator up a 
ramp into a truck. Suppose the man is not convinced the work is the same regard-
less of the ramp’s length and sets up a long ramp with a gentle rise. Although he 
does the same amount of work as someone using a shorter ramp, he takes longer 
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to do the work because he has to move the refrigerator over a greater distance. 
Although the work done on both ramps is the same, there is something different 
about the tasks: the time interval during which the work is done.

The time rate of energy transfer is called the instantaneous power P and is 
defined as

 P ;
dE
dt

 (8.17)

We will focus on work as the energy transfer method in this discussion, but keep 
in mind that the notion of power is valid for any means of energy transfer discussed 
in Section 8.1. If an external force is applied to an object (which we model as a par-
ticle) and if the work done by this force on the object in the time interval Dt is W, 
the average power during this interval is

 Pavg 5
W
Dt

 

Therefore, in Conceptual Example 7.7, although the same work is done in rolling 
the refrigerator up both ramps, less power is required for the longer ramp.

In a manner similar to the way we approached the definition of velocity and 
acceleration, the instantaneous power is the limiting value of the average power as 
Dt approaches zero:

 P 5 lim
Dt S 0

 
W
Dt

5
dW
dt

  

where we have represented the infinitesimal value of the work done by dW. We find 
from Equation 7.3 that dW 5 F

S
?d rS. Therefore, for a constant force, the instanta-

neous power can be written

 P 5
dW
dt

5 F
S 

? 
d rS

dt
5 F

S 
? vS (8.18)

where vS 5 d rSydt.
The SI unit of power is joules per second (J/s), also called the watt (W) after 

James Watt:

 1 W 5 1 J/s 5 1 kg ? m2/s3 

A unit of power in the U.S. customary system is the horsepower (hp):

 1 hp 5 746 W 

A unit of energy (or work) can now be defined in terms of the unit of power. One 
kilowatt-hour (kWh) is the energy transferred in 1 h at the constant rate of 1 kW 5 
1 000 J/s. The amount of energy represented by 1 kWh is

 1 kWh 5 (103 W)(3 600 s) 5 3.60 3 106 J 

A kilowatt-hour is a unit of energy, not power. When you pay your electric bill, you 
are buying energy, and the amount of energy transferred by electrical transmission 
into a home during the period represented by the electric bill is usually expressed 
in kilowatt-hours. For example, your bill may state that you used 900 kWh of energy 
during a month and that you are being charged at the rate of 11¢ per kilowatt-hour. 
Your obligation is then $99 for this amount of energy. As another example, sup-
pose an electric bulb is rated at 100 W. In 1.00 h of operation, it would have energy 
transferred to it by electrical transmission in the amount of (0.100 kW)(1.00 h) 5  
0.100 kWh 5 3.60 3 105 J.

 Definition of power

 The watt

PItfall PreventIon 8.3
W, W, and watts Do not confuse 
the symbol W for the watt with 
the italic symbol W for work. Also, 
remember that the watt already 
represents a rate of energy trans-
fer, so “watts per second” does not 
make sense. The watt is the same as 
a joule per second.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



202 Chapter 8 Conservation of Energy

 Example 8.11    Power Delivered by an Elevator Motor

An elevator car (Fig. 8.14a) has a mass of 1 600 kg and is carrying passengers having 
a combined mass of 200 kg. A constant friction force of 4 000 N retards its motion.

(A) How much power must a motor deliver to lift the elevator car and its passengers 
at a constant speed of 3.00 m/s?

S o l u T I o N

Conceptualize The motor must supply the force of magni-
tude T that pulls the elevator car upward.

Categorize The friction force increases the power necessary 
to lift the elevator. The problem states that the speed of the 
elevator is constant, which tells us that a 5 0. We model the 
elevator as a particle in equilibrium.

Analyze The free-body diagram in Figure 8.14b specifies 
the upward direction as positive. The total mass M of the sys-
tem (car plus passengers) is equal to 1 800 kg.

Using the particle in equilibrium model,  o Fy 5 T 2 f 2 Mg 5 0 
apply Newton’s second law to the car:

Solve for T : T 5 Mg 1 f

Use Equation 8.18 and that T
S

 is in the same  P 5 T
S 

? vS 5 Tv 5 sMg 1 f dv 
direction as vS to find the power:

Substitute numerical values: P 5 [(1 800 kg)(9.80 m/s2) 1 (4 000 N)](3.00 m/s) 5   6.49 3 104 W

(B) What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide the 
elevator car with an upward acceleration of 1.00 m/s2?

S o l u T I o N

Conceptualize In this case, the motor must supply the force of magnitude T that pulls the elevator car upward with an increas-
ing speed. We expect that more power will be required to do that than in part (A) because the motor must now perform the 
additional task of accelerating the car.

Categorize In this case, we model the elevator car as a particle under a net force because it is accelerating.

Analyze Using the particle under a net force model,  o Fy 5 T 2 f 2 Mg 5 Ma 
apply Newton’s second law to the car:

Solve for T : T 5 M(a 1 g) 1 f

Use Equation 8.18 to obtain the required power: P 5 Tv 5 [M(a 1 g) 1 f]v 

Substitute numerical values: P 5 [(1 800 kg)(1.00 m/s2 1 9.80 m/s2) 1 4 000 N]v

5   (2.34 3 104)v

where v is the instantaneous speed of the car in meters per second and P is in watts.

Finalize To compare with part (A), let v 5 3.00 m/s, giving a power of

P 5 (2.34 3 104 N)(3.00 m/s) 5 7.02 3 104 W

which is larger than the power found in part (A), as expected.

T
S

gS 

f
S

 

�

Motor

M

a b

Figure 8.14  (Example 
8.11) (a) The motor exerts 
an upward force T

S
 on the 

elevator car. The magnitude 
of this force is the total ten-
sion T in the cables connect-
ing the car and motor. The 
downward forces acting on 
the car are a friction force f

S
 

and the gravitational force 
F
S

g 5 M gS. (b) The free-body 
diagram for the elevator car.
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summary
 › Definitions

A nonisolated system is one for which energy crosses 
the boundary of the system. An isolated system 
is one for which no energy crosses the boundary of 
the system.

The instantaneous power P is defined as the time rate of energy transfer:

 P ;
dE
dt

 (8.17)

 › Concepts and Principles

For a nonisolated system, we can equate the change in the 
total energy stored in the system to the sum of all the transfers 
of energy across the system boundary, which is a statement of 
conservation of energy. For an isolated system, the total energy 
is constant.

If a friction force of magnitude fk acts over a distance d 
within a system, the change in internal energy of the 
system is

 DEint 5 fkd (8.14)

 › Analysis Models for Problem Solving

Nonisolated System (Energy).  The most general statement describ-
ing the behavior of a nonisolated system is the conservation of energy 
equation:

 DEsystem 5 o T (8.1)

Including the types of energy storage and energy transfer that we have 
discussed gives

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

For a specific problem, this equation is generally reduced to a smaller 
number of terms by eliminating the terms that are not appropriate to 
the situation.

Isolated System (Energy).  The total energy of an iso-
lated system is conserved, so

 DEsystem 5 0 (8.10)

If no nonconservative forces act within the isolated 
system, the mechanical energy of the system is con-
served, so

 DEmech 5 0 (8.7)

which can be written as

 DK 1 DU 5 0 (8.5)

If a nonconservative force such as friction acts within 
the system, there is a change in internal energy, so

 DK 1 DU 1 DEint 5 0 (8.16)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.
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204 Chapter 8 Conservation of Energy

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are a member of an expert witness group that provides 
scientific services to the legal community. Your group has 
been asked by a defense attorney to prove at trial that a 
driver was not exceeding the speed limit. You are provided 
with the following data: The mass of the car is 1.50 3 103 kg. 
The mass of the driver is 95.0 kg. The coefficient of kinetic 
friction between the car’s tires and the roadway is 0.580. 
The coefficient of static friction between the car’s tires and 
the roadway is 0.820. The posted speed limit on the road is 
25 mi/h. The roadway was dry and the weather was sunny at 
the time of the incident.

You are also provided with the following description of 
the incident: The driver was driving up a hill that makes 
an angle of 17.58 with the horizontal. The driver saw a dog 
run into the street, slammed on the brakes and left a skid 
mark 17.0 m long. The car came to rest at the end of the skid 
mark. The driver did not hit the dog, but the sound of the 
screeching tires drew the attention of a nearby policeman, 
who ticketed the driver for speeding.

Should your group agree to offer testimony for the 
defense in this case? (Notice that this problem is the same 
as Think–Pair–Share Problem 5.1 (see page 120), but we 
want to use an energy approach here for comparison.)

2. You are working on a team of expert witnesses for an auto-
mobile company. The company is being sued by a persistent 

inventor who is frustrated that the company will not adopt 
his idea of a car that is operated solely by solar power. Pre-
pare an argument for your company to use at trial to show 
that there is simply not enough energy delivered to a nor-
mal-sized car by solar energy to operate the car on streets 
and highways. Use the fact that the maximum intensity of 
sunlight available, near the equator, is 1 000 W/m2.

3. ACTIvITy  (a) Draw a simple diagram of a house and indi-
cate all major means of energy transfer between the house 
and the environment. (b) What means can be used to com-
bat or take advantage of the energy transfers to keep the 
temperature of the house fixed at a lower monthly cost for 
utility bills? (c) The following are words used in architec-
ture when discussing energy considerations for a building: 
Insolation, Infiltration. Assign these architectural words to 
specific corresponding terms in Eq. 8.2.

4. ACTIvITy  Consider the popgun in Example 8.4. Suppose 
the projectile mass, compression distance, and spring 
constant remain the same as given or calculated in the 
example. Suppose, however, there is a friction force of 
magnitude 2.00 N acting on the projectile as it rubs 
against the interior of the barrel. The vertical length 
from point Ⓐ to the end of the barrel is 0.600 m. (a) After 
the spring is compressed and the popgun fired, to what 
height does the projectile rise above point Ⓑ? (b) Draw 
four energy bar charts for this situation, analogous to 
those in Figures 8.6c–d.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

sectIon 8.1 Analysis Model: Nonisolated System (Energy)

1. A ball of mass m falls from a height h to the floor. (a) Write 
the appropriate version of Equation 8.2 for the system of the 
ball and the Earth and use it to calculate the speed of the 
ball just before it strikes the Earth. (b) Write the appropri-
ate version of Equation 8.2 for the system of the ball and use 
it to calculate the speed of the ball just before it strikes the 
Earth.

sectIon 8.2 Analysis Model: Isolated System (Energy)

2. A 20.0-kg cannonball is fired from a cannon with muzzle 
speed of 1 000 m/s at an angle of 37.08 with the horizontal. 
A second ball is fired at an angle of 90.08. Use the isolated 
system model to find (a) the maximum height reached by 
each ball and (b) the total mechanical energy of the ball–
Earth system at the maximum height for each ball. Let y 5 0 
at the cannon.

3. A block of mass m 5 5.00 kg is released from point Ⓐ and 
slides on the frictionless track shown in Figure P8.3. Deter-
mine (a) the block’s speed at points Ⓑ and Ⓒ and (b) the 
net work done by the gravitational force on the block as it 
moves from point Ⓐ to point Ⓒ.

4. At 11:00 a.m. on September 7, 2001, more than one million 
British schoolchildren jumped up and down for one minute 
to simulate an earthquake. (a) Find the energy stored in the 
children’s bodies that was converted into internal energy 
in the ground and their bodies and propagated into the 
ground by seismic waves during the experiment. Assume  
1 050 000 children of average mass 36.0 kg jumped 12 
times each, raising their centers of mass by 25.0 cm each 
time and briefly resting between one jump and the next. 
(b) Of the energy that propagated into the ground, most 
produced high-frequency “microtremor” vibrations that 
were rapidly damped and did not travel far. Assume 0.01% 
of the total energy was carried away by long-range seismic 
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waves. The magnitude of an earthquake on the Richter 
scale is given by

M 5
log E 2 4.8

1.5

  where E is the seismic wave energy in joules. According to 
this model, what was the magnitude of the demonstration 
quake?

5. A light, rigid rod is 77.0 cm long. Its top end is pivoted on a 
frictionless, horizontal axle. The rod hangs straight down 
at rest with a small, massive ball attached to its bottom end. 
You strike the ball, suddenly giving it a horizontal velocity so 
that it swings around in a full circle. What minimum speed 
at the bottom is required to make the ball go over the top 
of the circle?

6. Review. The system shown in Figure 
P8.6 consists of a light, inextensible 
cord, light, frictionless pulleys, and 
blocks of equal mass. Notice that block 
B is attached to one of the pulleys. The 
system is initially held at rest so that  
the blocks are at the same height 
above the ground. The blocks are then 
released. Find the speed of block A at 
the moment the vertical separation of 
the blocks is h.

sectIon 8.3 Situations Involving Kinetic Friction

7. A crate of mass 10.0 kg is pulled up a rough incline with 
an initial speed of 1.50 m/s. The pulling force is 100  N 
parallel to the incline, which makes an angle of 20.08 
with the horizontal. The coefficient of kinetic friction 
is 0.400, and the crate is pulled 5.00 m. (a) How much 
work is done by the gravitational force on the crate?  
(b) Determine the increase in internal energy of the crate–
incline system owing to friction. (c) How much work is done 
by the 100-N force on the crate? (d) What is the change in 
kinetic energy of the crate? (e) What is the speed of the 
crate after being pulled 5.00 m?

8. A 40.0-kg box initially at rest is pushed 5.00 m along a 
rough, horizontal floor with a constant applied horizontal 
force of 130 N. The coefficient of friction between box and 
floor is 0.300. Find (a) the work done by the applied force, 
(b)  the increase in internal energy in the box–floor sys-
tem as a result of friction, (c) the work done by the normal 
force, (d) the work done by the gravitational force, (e) the 
change in kinetic energy of the box, and (f) the final speed 
of the box.

9. A smooth circular hoop with a radius of 0.500 m is placed 
flat on the floor. A 0.400-kg particle slides around the inside 
edge of the hoop. The particle is given an initial speed of 
8.00  m/s. After one revolution, its speed has dropped to 
6.00  m/s because of friction with the floor. (a)  Find the 
energy transformed from mechanical to internal in the 
particle–hoop–floor system as a result of friction in one rev-
olution. (b) What is the total number of revolutions the 
particle makes before stopping? Assume the friction force 
remains constant during the entire motion.

sectIon 8.4 Changes in Mechanical Energy  
for Nonconservative Forces

10. As shown in Figure P8.10, 
a green bead of mass 25 g 
slides along a straight wire. 
The length of the wire 
from point Ⓐ to point Ⓑ 
is 0.600 m, and point Ⓐ is 
0.200 m higher than point 
Ⓑ. A constant friction 
force of magnitude 0.025 0 
N acts on the bead. (a) If the bead is released from rest at 
point Ⓐ, what is its speed at point Ⓑ? (b) A red bead of mass 
25  g slides along a curved wire, subject to a friction force 
with the same constant magnitude as that on the green 
bead. If the green and red beads are released simultane-
ously from rest at point Ⓐ, which bead reaches point Ⓑ with 
a higher speed? Explain.

11. At time ti, the kinetic energy of a particle is 30.0 J and the 
potential energy of the system to which it belongs is 10.0 J. 
At some later time tf , the kinetic energy of the particle is 
18.0 J. (a) If only conservative forces act on the particle, 
what are the potential energy and the total energy of the 
system at time tf ? (b) If the potential energy of the system at 
time tf is 5.00 J, are any nonconservative forces acting on the 
particle? (c) Explain your answer to part (b).

12. A 1.50-kg object is held 1.20 m above a relaxed massless, ver-
tical spring with a force constant of 320 N/m. The object is 
dropped onto the spring. (a) How far does the object com-
press the spring? (b) What If? Repeat part (a), but this time 
assume a constant air-resistance force of 0.700 N acts on 
the object during its motion. (c) What If? How far does the 
object compress the spring if the same experiment is per-
formed on the Moon, where g 5 1.63 m/s2 and air resistance 
is neglected?

13. A child of mass m starts from rest and slides without fric-
tion from a height h along a slide next to a pool (Fig. P8.13). 
She is launched from a height h/5 into the air over the pool. 
We wish to find the maximum height she reaches above the 
water in her projectile motion. (a) Is the child–Earth system 
isolated or nonisolated? Why? (b) Is there a nonconservative 
force acting within the system? (c) Define the configuration 
of the system when the child is at the water level as having 
zero gravitational potential energy. Express the total energy 
of the system when the child is at the top of the waterslide. 
(d) Express the total energy of the system when the child is 
at the launching point. (e) Express the total energy of the 
system when the child is at the highest point in her projec-
tile motion. (f) From parts (c) and (d), determine her initial 
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206 Chapter 8 Conservation of Energy

speed vi at the launch point in terms of g and h. (g) From 
parts (d), (e), and (f), determine her maximum airborne 
height ymax in terms of h and the launch angle u. (h) Would 
your answers be the same if the waterslide were not friction-
less? Explain.

14. An 80.0-kg skydiver jumps out of a balloon at an altitude of 
1 000 m and opens his parachute at an altitude of 200 m. 
(a) Assuming the total retarding force on the skydiver is 
constant at 50.0 N with the parachute closed and constant 
at 3 600 N with the parachute open, find the speed of the 
skydiver when he lands on the ground. (b) Do you think the 
skydiver will be injured? Explain. (c) At what height should 
the parachute be opened so that the final speed of the sky-
diver when he hits the ground is 5.00 m/s? (d) How realistic 
is the assumption that the total retarding force is constant? 
Explain.

15. You have spent a long day skiing and are tired. You are 
standing at the top of a hill, looking at the lodge at the bot-
tom of the hill. You are so tired that you want to simply start 
from rest and coast down the slope, without pushing with 
your poles or doing anything else to change your motion. 
You want to let gravity do all the work! You have a choice 
of two trails to reach the lodge. Both trails have the same 
coefficient of friction mk. In addition, both trails represent 
the same horizontal separation between the initial and final 
points. Trail A has a short, steep downslope and then a long, 
flat coast to the lodge. Trail B has a long, gentle downslope 
and then a short remaining flat coast to the lodge. Which 
trail will result in your arriving at the lodge with the highest 
final speed?

sectIon 8.5 Power

16. The electric motor of a model train accelerates the train from 
rest to 0.620 m/s in 21.0 ms. The total mass of the train is  
875 g. (a) Find the minimum power delivered to the train 
by electrical transmission from the metal rails during the 
acceleration. (b) Why is it the minimum power?

17. An energy-efficient lightbulb, taking in 28.0 W of power, 
can produce the same level of brightness as a conventional 
lightbulb operating at power 100 W. The lifetime of the 
energy-efficient bulb is 10 000 h and its purchase price is 
$4.50, whereas the conventional bulb has a lifetime of 750 h 
and costs $0.42. Determine the total savings obtained by 
using one energy-efficient bulb over its lifetime as opposed 
to using conventional bulbs over the same time interval. 
Assume an energy cost of $0.200 per kilowatt-hour.

18. An older-model car accelerates from 0 to speed v in a time 
interval of Dt. A newer, more powerful sports car accelerates 
from 0 to 2v in the same time period. Assuming the energy 
coming from the engine appears only as kinetic energy of 
the cars, compare the power of the two cars.

19. Make an order-of-magnitude estimate of the power a car 
engine contributes to speeding the car up to highway speed. 
In your solution, state the physical quantities you take as 
data and the values you measure or estimate for them. The 
mass of a vehicle is often given in the owner’s manual.

20. There is a 5K event coming up in your town. While talking 
to your grandmother, who uses an electric scooter for mobil-
ity, she says that she would like to accompany you on her 
scooter while you walk the 5.00-km distance. The manual 

that came with her scooter claims that the fully charged bat-
tery is capable of providing 120 Wh of energy before being 
depleted. In preparation for the race, you go for a “test 
drive”: beginning with a fully charged battery, your grand-
mother rides beside you as you walk 5.00 km on flat ground. 
At the end of the walk, the battery usage indicator shows 
that 40.0% of the original energy in the battery remains. 
You also know that the combined weight of the scooter and 
your grandmother is 890 N. A few days later, filled with con-
fidence that the battery has sufficient energy, you and your 
grandmother drive to the 5K event. Unbeknownst to you, 
the 5K route is not on flat ground, but is all uphill, ending at 
a point higher than the starting line. A race official tells you 
that the total amount of vertical displacement on the route 
is 150 m. Should your grandmother accompany you on the 
walk, or will she be stranded when her battery runs out of 
energy? Assume that the only difference between your test 
drive and the actual event is the vertical displacement.

21. For saving energy, bicycling and walking are far more effi-
cient means of transportation than is travel by automobile. 
For example, when riding at 10.0 mi/h, a cyclist uses food 
energy at a rate of about 400 kcal/h above what he would use 
if merely sitting still. (In exercise physiology, power is often 
measured in kcal/h rather than in watts. Here 1 kcal 5 1  
nutritionist’s Calorie 5 4 186 J.) Walking at 3.00  mi/h 
requires about 220 kcal/h. It is interesting to compare 
these values with the energy consumption required for 
travel by car. Gasoline yields about 1.30 3 108 J/gal. Find 
the fuel economy in equivalent miles per gallon for a person 
(a) walking and (b) bicycling.

22. Energy is conventionally measured in Calories as well as in 
joules. One Calorie in nutrition is one kilocalorie, defined 
as 1 kcal 5 4 186 J. Metabolizing 1 g of fat can release 
9.00 kcal. A student decides to try to lose weight by exercis-
ing. He plans to run up and down the stairs in a football 
stadium as fast as he can and as many times as necessary. 
To evaluate the program, suppose he runs up a flight of 
80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore 
the energy he uses in coming down (which is small). Assume 
a typical efficiency for human muscles is 20.0%. This state-
ment means that when your body converts 100 J from metab-
olizing fat, 20 J goes into doing mechanical work (here, 
climbing stairs). The remainder goes into extra internal 
energy. Assume the student’s mass is 75.0 kg. (a) How many 
times must the student run the flight of stairs to lose 1.00 kg 
of fat? (b) What is his average power output, in watts and in 
horsepower, as he runs up the stairs? (c) Is this activity in 
itself a practical way to lose weight?

addItIonal ProbleMs

23. A block of mass m 5 200 g is released from rest at point Ⓐ  
along the horizontal diameter on the inside of hemispheri-
cal bowl of radius R 5 30.0 cm, and the surface of the bowl is 
rough (Fig. P8.23). The block’s speed at point Ⓑ is 1.50 m/s.  
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(a) What is its kinetic energy at point Ⓑ? (b) How much 
mechanical energy is transformed into internal energy as 
the block moves from point Ⓐ to point Ⓑ? (c) Is it possible to 
determine the coefficient of friction from these results in any 
simple manner? (d) Explain your answer to part (c).

24. Make an order-of-magnitude estimate of your power out-
put as you climb stairs. In your solution, state the physical 
quantities you take as data and the values you measure or 
estimate for them. Do you consider your peak power or your 
sustainable power?

25. You are working with a team that is designing a new roller 
coaster–type amusement park ride for a major theme park. 
You are present for the testing of the ride, in which an 
empty 250-kg car is sent along the entire ride. Near the end 
of the ride, the car is at near rest at the top of a 110-m tall 
track. It then enters a final section, rolling down an undu-
lating hill to ground level. The total length of track for this 
final section from the top to the ground is 250 m. For the 
first 230  m, a constant friction force of 50.0 N acts from 
computer-controlled brakes. For the last 20 m, which is hor-
izontal at ground level, the computer increases the friction 
force to a value required for the speed to be reduced to zero 
just as the car arrives at the point on the track at which the 
passengers exit. (a) Determine the required constant fric-
tion force for the last 20 m for the empty test car. (b) Find 
the highest speed reached by the car during the final sec-
tion of track length 250 m. (c) You are asked by your team 
supervisor to determine the answers to parts (a) and (b) for 
a fully loaded car with an upper limit of 450 kg of passenger 
mass. Find these new values. (d) The required friction force 
in part (c) is well within design limits. The fastest speed, 
however, is well below that of current leading rides, so you 
would like to increase the maximum speed. You can’t make 
the tower taller above ground, so you decide to include a 
feature where part of the track goes underground. Determine 
the depth to which the underground part of the ride must 
go to increase the maximum speed to 55.0 m/s. Assume the 
overall length of the first part of the track remains at 230 m 
and the length of track from the top to the lowest under-
ground point is 150 m. The same 50.0-N friction force acts 
on the entire 230-m section of track. (e) Is the construction 
in part (d) feasible?

26. Review. As shown in Fig-
ure P8.26, a light string 
that does not stretch 
changes from horizon-
tal to vertical as it passes 
over the edge of a table. 
The string connects m1, a  
3.50-kg block originally 
at rest on the horizontal 
table at a height h 5 1.20 m  
above the floor, to m2, a 
hanging 1.90-kg block orig-
inally a distance d 5 0.900 m above the floor. Neither the  
surface of the table nor its edge exerts a force of kinetic fric-
tion. The blocks start to move from rest. The sliding block 
m1 is projected horizontally after reaching the edge of the 
table. The hanging block m2 stops without bouncing when 
it strikes the floor. Consider the two blocks plus the Earth 
as the system. (a) Find the speed at which m1 leaves the 
edge of the table. (b) Find the impact speed of m1 on the 
floor. (c)  What is the shortest length of the string so that 

it does not go taut while m1 is in flight? (d) Is the energy of 
the system when it is released from rest equal to the energy 
of the system just before m1 strikes the ground? (e) Why or 
why not?

27. Consider the block–spring–surface system in part (B) of 
Example 8.6. (a) Using an energy approach, find the posi-
tion x of the block at which its speed is a maximum. (b) In 
the What If? section of this example, we explored the effects 
of an increased friction force of 10.0 N. At what position of 
the block does its maximum speed occur in this situation?

28. Why is the following situation impossible? A softball pitcher has 
a strange technique: she begins with her hand at rest at the 
highest point she can reach and then quickly rotates her 
arm backward so that the ball moves through a half-circle 
path. She releases the ball when her hand reaches the bot-
tom of the path. The pitcher maintains a component of 
force on the 0.180-kg ball of constant magnitude 12.0 N in 
the direction of motion around the complete path. As the 
ball arrives at the bottom of the path, it leaves her hand with 
a speed of 25.0 m/s.

29. Jonathan is riding a bicycle and encounters a hill of height 
7.30 m. At the base of the hill, he is traveling at 6.00 m/s. 
When he reaches the top of the hill, he is traveling at 
1.00  m/s. Jonathan and his bicycle together have a mass 
of 85.0 kg. Ignore friction in the bicycle mechanism and 
between the bicycle tires and the road. (a) What is the 
total external work done on the system of Jonathan and 
the bicycle between the time he starts up the hill and 
the time he reaches the top? (b) What is the change in 
potential energy stored in Jonathan’s body during this pro-
cess? (c) How much work does Jonathan do on the bicycle 
pedals within the Jonathan–bicycle–Earth system during 
this process?

30. Jonathan is riding a bicycle and encounters a hill of height 
h. At the base of the hill, he is traveling at a speed vi. When 
he reaches the top of the hill, he is traveling at a speed vf. 
Jonathan and his bicycle together have a mass m. Ignore fric-
tion in the bicycle mechanism and between the bicycle tires 
and the road. (a) What is the total external work done on 
the system of Jonathan and the bicycle between the time he 
starts up the hill and the time he reaches the top? (b) What 
is the change in potential energy stored in Jonathan’s body 
during this process? (c) How much work does Jonathan do 
on the bicycle pedals within the Jonathan–bicycle–Earth 
system during this process?

31. As the driver steps on the gas pedal, a car of mass 1 160 kg 
accelerates from rest. During the first few seconds of 
motion, the car’s acceleration increases with time according 
to the expression

a 5 1.16t 2 0.210t2 1 0.240t3

  where t is in seconds and a is in m/s2. (a) What is the change 
in kinetic energy of the car during the interval from t 5 0 to 
t 5 2.50 s? (b) What is the minimum average power output 
of the engine over this time interval? (c) Why is the value in 
part (b) described as the minimum value?

32. As it plows a parking lot, a snowplow pushes an ever-growing 
pile of snow in front of it. Suppose a car moving through 
the air is similarly modeled as a cylinder of area A pushing 
a growing disk of air in front of it. The originally stationary 
air is set into motion at the constant speed v of the cylinder 
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208 Chapter 8 Conservation of Energy

as shown in Figure P8.32. 
In a time interval Dt, a new 
disk of air of mass Dm must 
be moved a distance v Dt 
and hence must be given 
a kinetic energy 1

2 sDmdv2. 
Using this model, show that 
the car’s power loss owing 
to air resistance is 1

2rAv3 
and that the resistive force acting on the car is 12rAv2, where 
r is the density of air. Compare this result with the empirical 
expression 12DrAv2 for the resistive force.

33. Heedless of danger, a child leaps onto a pile of old mat-
tresses to use them as a trampoline. His motion between two 
particular points is described by the energy conservation 
equation

1
2s46.0 kgds2.40 mysd2 1 s46.0 kgds9.80 mys2ds2.80 m 1 xd 5  

1
2s1.94 3 104 Nymdx2

  (a) Solve the equation for x. (b) Compose the statement of 
a problem, including data, for which this equation gives the 
solution. (c) Add the two values of x obtained in part (a) 
and divide by 2. (d) What is the significance of the resulting 
value in part (c)?

34. Review. Why is the following situation impossible? A new high-
speed roller coaster is claimed to be so safe that the passen-
gers do not need to wear seat belts or any other restraining 
device. The coaster is designed with a vertical circular sec-
tion over which the coaster travels on the inside of the cir-
cle so that the passengers are upside down for a short time 
interval. The radius of the circular section is 12.0 m, and the 
coaster enters the bottom of the circular section at a speed of  
22.0 m/s. Assume the coaster moves without friction on the 
track and model the coaster as a particle.

35. A horizontal spring attached to a wall has a force constant 
of k 5 850 N/m. A block of mass m 5 1.00 kg is attached 
to the spring and rests on a frictionless, horizontal sur-
face as in Figure P8.35. (a) The block is pulled to a posi-
tion xi 5 6.00 cm from equilibrium and released. Find the 
elastic potential energy stored in the spring when the block 
is 6.00  cm from equilibrium and when the block passes 
through equilibrium. (b) Find the speed of the block as it 
passes through the equilibrium point. (c) What is the speed 
of the block when it is at a position xi /2 5 3.00 cm? (d) Why 
isn’t the answer to part (c) half the answer to part (b)?

36. More than 2 300 years ago, the Greek teacher Aristotle 
wrote the first book called Physics. Put into more precise ter-
minology, this passage is from the end of its Section Eta:

Let P be the power of an agent causing motion; w, the 
load moved; d, the distance covered; and Dt, the time 
interval required. Then (1) a power equal to P will in 

an interval of time equal to Dt move w/2 a distance 2d; 
or (2)  it will move w/2 the given distance d in the time 
interval Dt/2. Also, if (3) the given power P moves the 
given load w a distance d/2 in time interval Dt/2, then 
(4) P/2 will move w/2 the given distance d in the given 
time interval Dt.

  (a) Show that Aristotle’s proportions are included in the 
equation P  Dt 5 bwd, where b is a proportionality constant. 
(b)  Show that our theory of motion includes this part of 
Aristotle’s theory as one special case. In particular, describe 
a situation in which it is true, derive the equation represent-
ing Aristotle’s proportions, and determine the proportion-
ality constant.

37. Review. As a prank, someone has balanced a pumpkin at the 
highest point of a grain silo. The silo is topped with a hemi-
spherical cap that is frictionless when wet. The line from 
the center of curvature of the cap to the pumpkin makes 
an angle ui 5 08 with the vertical. While you happen to be 
standing nearby in the middle of a rainy night, a breath of 
wind makes the pumpkin start sliding downward from rest. 
It loses contact with the cap when the line from the center of 
the hemisphere to the pumpkin makes a certain angle with 
the vertical. What is this angle?

38. Review. Why is the following 
situation impossible? An ath-
lete tests her hand strength 
by having an assistant hang 
weights from her belt as she 
hangs onto a horizontal 
bar with her hands. When 
the weights hanging on her 
belt have increased to 80% 
of her body weight, her 
hands can no longer sup-
port her and she drops to 
the floor. Frustrated at not 
meeting her hand-strength 
goal, she decides to swing on a trapeze. The trapeze consists 
of a bar suspended by two parallel ropes, each of length ,, 
allowing performers to swing in a vertical circular arc (Fig. 
P8.38). The athlete holds the bar and steps off an elevated 
platform, starting from rest with the ropes at an angle ui 5 
60.08 with respect to the vertical. As she swings several times 
back and forth in a circular arc, she forgets her frustration 
related to the hand-strength test. Assume the size of the 
performer’s body is small compared to the length , and air 
resistance is negligible.

39. An airplane of mass 1.50 3 104 kg is in level flight, initially 
moving at 60.0 m/s. The resistive force exerted by air on 
the airplane has a magnitude of 4.0 3 104 N. By Newton’s 
third law, if the engines exert a force on the exhaust gases 
to expel them out of the back of the engine, the exhaust 
gases exert a force on the engines in the direction of the 
airplane’s travel. This force is called thrust, and the value 
of the thrust in this situation is 7.50 3 104 N. (a) Is the work 
done by the exhaust gases on the airplane during some 
time interval equal to the change in the airplane’s kinetic 
energy? Explain. (b) Find the speed of the airplane after it 
has traveled 5.0 3 102 m.

40. A pendulum, comprising a light string of length L and a 
small sphere, swings in the vertical plane. The string hits 
a peg located a distance d below the point of suspension 
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Figure P8.32

x � xix � xi/2
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m

x � 0

Figure P8.35
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Figure P8.38
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(Fig. P8.40). (a) Show that if the 
sphere is released from a height 
below that of the peg, it will return 
to this height after the string strikes 
the peg. (b) Show that if the pendu-
lum is released from rest at the hor-
izontal position (u 5 908) and is to 
swing in a complete circle centered 
on the peg, the minimum value of d 
must be 3L/5.

41. A ball whirls around in a vertical circle at the end of a 
string. The other end of the string is fixed at the cen-
ter of the circle. Assuming the total energy of the ball– 
Earth system remains constant, show that the tension in the 
string at the bottom is greater than the tension at the top by 
six times the ball’s weight.

42. You are working in the distribution center of a large online 
shopping site. Efforts are being made to increase the num-
ber of packages per unit time that are being loaded onto a 
conveyor belt to be carried to waiting trucks. But the motor 
driving the conveyor belt is having difficulty keeping up 
with the increased demands. Your supervisor has asked you 
to determine the requirements for a new motor that can 
provide enough power to keep the conveyor belt moving 
smoothly under the increased loading rate. You are given 
the following information: The design goal is to have 50.0-kg  
packages loaded onto the belt at several locations at an aver-
age rate of 5.00 packages per second. The belt moves at a 
horizontal speed of 1.35 m/s. Humans at the various loca-
tions along the belt place the package on the belt so that 
it is initially at rest relative to the floor of the building just 
before being dropped from negligible height onto the belt. 
Your task is to determine the minimum power the driving 
motor must have to accelerate these packages and keep the 
belt moving at constant speed.

43. Consider the block–spring collision discussed in Exam-
ple 8.8. (a) For the situation in part (B), in which the sur-
face exerts a friction force on the block, show that the block 
never arrives back at x 5 0. (b) What is the maximum value 
of the coefficient of friction that would allow the block to 
return to x 5 0?

challenge ProbleMs

44. Starting from rest, a 64.0-kg person bungee jumps from 
a tethered hot-air balloon 65.0 m above the ground. The 
bungee cord has negligible mass and unstretched length 
25.8 m. One end is tied to the basket of the balloon and the 
other end to a harness around the person’s body. The cord 
is modeled as a spring that obeys Hooke’s law with a spring 
constant of 81.0 N/m, and the person’s body is modeled as 

a particle. The hot-air balloon does not move. (a) Express 
the gravitational potential energy of the person–Earth sys-
tem as a function of the person’s variable height y above the 
ground. (b) Express the elastic potential energy of the cord 
as a function of y. (c) Express the total potential energy of 
the person–cord–Earth system as a function of y. (d) Plot a 
graph of the gravitational, elastic, and total potential ener-
gies as functions of y. (e) Assume air resistance is negligible. 
Determine the minimum height of the person above the 
ground during his plunge. (f) Does the potential energy 
graph show any equilibrium position or positions? If so, at 
what elevations? Are they stable or unstable? (g) Determine 
the jumper’s maximum speed.

45. Review. A uniform board of length L is sliding along a 
smooth, frictionless, horizontal plane as shown in Figure 
P8.45a. The board then slides across the boundary with a 
rough horizontal surface. The coefficient of kinetic friction 
between the board and the second surface is mk. (a)  Find 
the acceleration of the board at the moment its front end 
has traveled a distance x beyond the boundary. (b) The 
board stops at the moment its back end reaches the bound-
ary as shown in Figure P8.45b. Find the initial speed v of 
the board.

46. A uniform chain of length 8.00 m initially lies stretched 
out on a horizontal table. (a) Assuming the coefficient of 
static friction between chain and table is 0.600, show that 
the chain will begin to slide off the table if at least 3.00 m 
of it hangs over the edge of the table. (b) Determine the 
speed of the chain as its last link leaves the table, given that 
the coefficient of kinetic friction between the chain and the 
table is 0.400.

47. What If? Consider the roller coaster described in Prob-
lem 34. Because of some friction between the coaster and 
the track, the coaster enters the circular section at a speed of 
15.0 m/s rather than the 22.0 m/s in Problem 34. Is this sit-
uation more or less dangerous for the passengers than that in 
Problem 34? Assume the circular section is still frictionless.
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Figure P8.40

BoundaryvS

a

b

L

v � 0

Figure P8.45
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Your excitement about 
winning a game of pool is 

overcome by the physics of 
an interesting shot made 

by your friend. The purple 
ball in the middle never 

moves during the process. 

1

2

3

9.1 Linear Momentum

9.2 Analysis Model: 
Isolated System 
(Momentum)

9.3 Analysis Model: 
Nonisolated System 
(Momentum)

9.4 Collisions in One 
Dimension

9.5 Collisions in Two 
Dimensions

9.6 The Center of Mass

9.7 Systems of Many 
Particles

9.8 Deformable Systems

9.9 Rocket Propulsion

Storyline You decide to play pool at the student center at the 
university. You and your friend are in the middle of a game when one shot made 
by your friend fascinates you and starts your mind thinking again. The initial sit-
uation is shown in diagram #1 above. Two balls, yellow and purple, are at rest 
and touching each other. You friend shoots the white cue ball along a line drawn 
through the centers of all three balls, and the cue ball makes a direct hit, so that 
the centers of all three balls are momentarily lined up, as in diagram #2. The cue 
ball stops and only the yellow ball moves away from the collision, as shown in 
diagram #3. The purple ball in the middle remains stationary during the entire 
interaction. You think, “Wait a minute! Why did that happen? The energy of the 
system of three balls must be conserved. So why couldn’t both of the initially 
stationary balls move off after the collision at smaller speeds so that their kinetic 
energies add up to that of the cue ball?” Your friend pleads with you to continue 
the game, but your mind is elsewhere, analyzing this interesting situation.

ConneCtions While the energy approach studied in the previous chapters 
is powerful, there are still some problems we cannot solve in an easy way with the 
physics we’ve studied so far. In this chapter, we find that there is another conserved 
quantity besides energy. While this new quantity is a combination of mass and veloc-
ity, similar to kinetic energy, it is a vector, very different from energy. We find that 
the new conservation principle for this quantity, momentum, allows us to solve even 
more new types of problems, such as the one in the storyline. This conservation 
principle is particularly useful in analyzing collisions between two or more objects. As 
with energy, the analysis of systems is important; we will generate momentum prin-
ciples for both isolated and nonisolated systems. Furthermore, our study of momen-
tum in systems will lead to the important concept of the center of mass of a system 
of particles. The principles associated with momentum will join those associated with 
energy in several future chapters to allow us to understand many physical situations.

9 Linear Momentum 
and Collisions
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    9.1 Linear Momentum 211

   9.1    Linear Momentum
In Chapter 8, we studied situations that are difficult to analyze with Newton’s laws. 
We were able to solve problems involving these situations by identifying a system and 
applying a conservation principle, conservation of energy. Let us consider another 
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow hori-
zontally at 85 m/s. With what velocity does the archer move across the ice after 
firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow 
is paired with a force in the opposite direction on the bow (and the archer). This 
force causes the archer to slide backward on the ice with the speed requested in the 
problem. We cannot determine this speed using motion models such as the particle 
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net 
force because we don’t know anything about forces in this situation. Energy models 
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.

Despite our inability to solve the archer problem using models learned so far, 
this problem is very simple to solve if we introduce a new quantity that describes 
motion, linear momentum. To generate this new quantity, consider an isolated system 
of two particles (Fig. 9.1) with masses m1 and m2 moving with velocities vS1 and vS2 at 
an instant of time. Because the system is isolated, the only force on one particle is 
that from the other particle. If a force from particle 1 (for example, a gravitational 
force) acts on particle 2, there must be a second force—equal in magnitude but 
opposite in direction—that particle 2 exerts on particle 1. That is, the forces on the 
particles form a Newton’s third law action–reaction pair, and F

S
12 5 2F

S
21. We can 

express this condition as

F
S

21 1 F
S

12 5 0

From a system point of view, this equation says that if we add up the forces on the 
particles in an isolated system, the sum is zero.

Let us further analyze this situation by incorporating Newton’s second law,  
Equation 5.2. At the instant shown in Figure 9.1, the interacting particles in the sys-
tem have accelerations corresponding to the forces on them. Therefore, replacing 
the force on each particle in the previous equation with maS for the particle gives

m1 aS1 1 m2 aS2 5 0

Now we replace each acceleration with its definition from Equation 4.5:

m1 
d vS1

dt
1 m2 

d vS2

dt
5 0

If the masses m1 and m2 are constant, we can bring them inside the derivative oper-
ation, which gives

dsm1 vS1d
dt

1
dsm2 vS2d

dt
5 0

 
d
dt

 sm1 vS1 1 m2 vS2d 5 0 (9.1)

Notice that the derivative of the sum m1 vS1 1 m2 vS2 with respect to time is zero. Con-
sequently, this sum must be constant over an arbitrary time interval. We saw in 
Chapter 8 that the total energy of an isolated system is constant over a time inter-
val, because energy is conserved. We learn from this discussion that the quantity 

m2

m1

F21
S

F12
S

v1
S

v2
S

Figure 9.1  Two particles interact 
with each other. According to 
Newton’s third law, we must have 
F
S

12 5 2 F
S

21.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



212 Chapter 9 Linear Momentum and Collisions

mvS for a particle is important in that the sum of these quantities for an isolated 
system of particles is also conserved. We call this quantity linear momentum:

The linear momentum pS of a particle or an object that can be modeled as a 
particle of mass m moving with a velocity vS is defined to be the product of the 
mass and velocity of the particle:

 pS ; mvS (9.2)

Definition of linear  
momentum of a particle

Linear momentum is a vector quantity because it equals the product of a scalar 
quantity m and a vector quantity vS. Its direction is along vS, it has dimensions ML/T, 
and its SI unit is kg ? m/s.

If a particle is moving in an arbitrary direction, pS has three components, and 
Equation 9.2 is equivalent to the component equations

px 5 mvx  py 5 mvy  pz 5 mvz

As you can see from its definition, the concept of momentum1 provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For 
example, the magnitude of the momentum of a bowling ball is much greater than 
that of a tennis ball moving at the same speed. Newton called the product mvS quan-
tity of motion; this term is perhaps a more graphic description than our present-day 
word momentum, which comes from the Latin word for movement.

We have seen another quantity, kinetic energy, that is a combination of mass 
and speed. It would be a legitimate question to ask why we need a second quan-
tity, momentum, based on mass and velocity. There are clear differences between 
kinetic energy and momentum. First, kinetic energy is a scalar, whereas momen-
tum is a vector. Consider a system of two equal-mass particles heading toward each 
other along a line with equal speeds. There is kinetic energy associated with this 
system because members of the system are moving. Because of the vector nature of 
momentum, however, the momentum of this system is zero. A second major differ-
ence is that kinetic energy can transform to other types of energy, such as potential 
energy or internal energy. There is only one type of linear momentum, so we see no 
such transformations when using a momentum approach to a problem. These dif-
ferences are sufficient to make models based on momentum separate from those 
based on energy, providing an independent tool to use in solving problems.

Using Newton’s second law of motion, we can relate the linear momentum of a 
particle to the resultant force acting on the particle. We start with Newton’s second 
law and substitute the definition of acceleration:

 o F
S

5 maS 5 m 
d vS

dt
 

In Newton’s second law, the mass m is assumed to be constant. Therefore, we can 
bring m inside the derivative operation to give us

 o F
S

5
dsmvSd

dt
5

d pS

dt
 (9.3)

This equation shows that the time rate of change of the linear momentum of a 
particle is equal to the net force acting on the particle. In Chapter 5, we identified 
force as that which causes a change in the motion of an object (Section 5.2). In 
Newton’s second law (Eq. 5.2), we used acceleration aS to represent the change in 
motion. We see now in Equation 9.3 that we can use the derivative of momentum pS 
with respect to time to represent the change in motion.

Newton’s second law 
for a particle

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11, we shall use 
the term angular momentum for a different quantity when dealing with rotational motion.
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This alternative form of Newton’s second law is the form in which Newton pre-
sented the law, and it is actually more general than the form introduced in Chapter 5.  
In addition to situations in which the velocity vector varies with time, we can use 
Equation 9.3 to study phenomena in which the mass changes. For example, the 
mass of a rocket changes as fuel is burned and ejected from the rocket. We cannot 
use oF

S
5 maS to analyze rocket propulsion; we must use a momentum approach, as 

we will show in Section 9.9.

Q uick Quiz 9.1  Two objects have equal kinetic energies. How do the mag-
nitudes of their momenta compare? (a) p1 , p2 (b) p1 5 p2 (c) p1 . p2 (d) not 
enough information to tell

Q uick Quiz 9.2   Your physical education teacher throws a baseball to you at 
a certain speed and you catch it. The teacher is next going to throw you a medi-
cine ball whose mass is ten times the mass of the baseball. You are given the fol-
lowing choices: You can have the medicine ball thrown with (a) the same speed 
as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank 
these choices from easiest to hardest to catch.

   9.2    Analysis Model: Isolated System (Momentum)
Using the definition of momentum, Equation 9.1 can be written

d
dt

 spS1 1 pS2d 5 0

Because the time derivative of the total momentum pStot 5 pS1 1 pS2 is zero, we con-
clude that the total momentum of the isolated system of the two particles in Figure 9.1  
must remain constant:

 pStot 5 constant (9.4)

or, equivalently, over some time interval,

 DpStot 5 0  (9.5)

Equation 9.5 can be written for a two-particle system as

 pS1i 1 pS2i 5 pS1f 1 pS2f  

where pS1i and pS2i are the initial values and pS1f  and pS2f  are the final values of the 
momenta for the two particles for the time interval during which the particles 
interact. This equation in component form demonstrates that the total momenta in 
the x, y, and z directions are all independently conserved:

 p1ix 1 p2ix 5 p1fx 1 p2fx  p1iy 1 p2iy 5 p1fy 1 p2fy  p1iz 1 p2iz 5 p1fz 1 p2fz (9.6)

Equation 9.5 is the mathematical statement of a new analysis model, the isolated 
system (momentum). It can be extended to any number of particles in an isolated 
system, as we show in Section 9.7. For momentum, an isolated system is one on 
which no external forces act. We studied the energy version of the isolated system 
model in Chapter 8 (DE system 5 0) and now we have a momentum version. In gen-
eral, Equation 9.5 can be stated in words as follows:

Whenever two or more particles in an isolated system interact, the total 
momentum of the system does not change.

  The momentum version of the 
isolated system model

This statement tells us that the total momentum of an isolated system at all times 
equals its initial momentum.

Pitfall Prevention 9.1
Momentum of an Isolated System  
Is Conserved Although the 
momentum of an isolated system is 
conserved, the momentum of one 
particle within an isolated system is 
not necessarily conserved because 
other particles in the system may 
be interacting with it. Avoid apply-
ing conservation of momentum to 
a single particle.
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214 Chapter 9 Linear Momentum and Collisions

Notice that we have made no statement concerning the type of forces acting on 
the particles of the system. Furthermore, we have not specified whether the forces 
are conservative or nonconservative. We have also not indicated whether or not 
the forces are constant. The only requirement is that the forces must be internal to 
the system. This single requirement should give you a hint about the power of this 
new model.

analYsis Model Isolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If there are no external forces on the system, the system is isolated. 
In that case, the total momentum of the system, which is the vector sum of the 
momenta of all members of the system, is conserved: 

 DpStot 5 0 (9.5)

Examples: 

 ● a cue ball strikes another ball on a pool table
 ● a spacecraft fires its rockets and moves faster through space (Section 9.9)
 ● molecules in a gas at a specific temperature move about and strike each 

other (Chapter 20)
 ● an incoming particle strikes a nucleus, creating a new nucleus and a different outgoing particle (Chapter 43)
 ● an electron and a positron annihilate to form two outgoing photons (Chapter 44)

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

 Example 9.1     The Archer 

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg 
archer stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 
85 m/s (Fig. 9.2). With what velocity does the archer move across the ice after firing 
the arrow?

S O L U T I O N

Conceptualize  You may have conceptualized this problem already when it was intro-
duced at the beginning of Section 9.1. Imagine the arrow being fired one way and 
the archer recoiling in the opposite direction.

Categorize  As discussed in Section 9.1, we cannot solve this problem with models 
based on motion, force, or energy. Nonetheless, we can solve this problem very easily 
with an approach involving momentum.
 Let us take the system to consist of the archer (including the bow) and the arrow. 
The system is not isolated because the gravitational force and the normal force from 
the ice act on the system. These forces, however, are vertical and perpendicular to the  
motion of the system. There are no external forces in the horizontal direction, and 
we can apply the isolated system (momentum) model in terms of momentum compo-
nents in this direction.

Analyze  The total horizontal momentum of the system before the arrow is fired is zero because nothing in the system is 
moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We choose the 
direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow as particle 2, we 
have m1 5 60 kg, m2 5 0.030 kg, and vS2 f 5 85  i

⁄
 mys.

Using the isolated system (momentum) model,  DpS 5 0    S    pSf  2 pSi 5 0    S    pSf  5 pSi    S    m1 vS1f 1 m2 vS2f 5 0 
begin with Equation 9.5:

Solve this equation for vS1f  and substitute vS1f 5 2
m2

m1

 vS2f 5 2S0.030 kg

60 kg Ds85  i
⁄
 mysd 5  20.042  i

⁄
 mys 

numerical values:

Figure 9.2  (Example 9.1) An 
archer fires an arrow horizontally 
to the right. Because he is standing 
on frictionless ice, he will begin to 
slide to the left across the ice.
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W H A T  I F ? What if the arrow were fired in a direction 
that makes an angle u with the horizontal? How will that 
change the recoil velocity of the archer?

Answer  The recoil velocity should decrease in magnitude 
because only a component of the velocity of the arrow is in 
the x direction. Conservation of momentum in the x direc-
tion gives

m1v1f 1 m2v2f  cos u 5 0

leading to

v1f 5 2
m2

m1

 v2f  cos u

For u 5 0, cos u 5 1 and the final velocity of the archer reduces 
to the value when the arrow is fired horizontally. For nonzero 
values of u, the cosine function is less than 1 and the recoil 
velocity is less than the value calculated for u 5 0. If u 5 908, 
then cos u 5 0 and v1f 5 0, so there is no recoil velocity. In this 
case, the arrow is fired directly upward and the archer is simply 
pushed downward harder against the ice as the arrow is fired.

9.1 c o n t i n u e d

Finalize  The negative sign for vS1f  indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in the 
direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer is much 
more massive than the arrow, his acceleration and consequent velocity are much smaller than the acceleration and velocity 
of the arrow. Notice that this problem sounds very simple, but we could not solve it with models based on motion, force, or 
energy. Our new momentum model, however, shows us that it not only sounds simple, it is simple!

 Example 9.2    Can We Really Ignore the Kinetic Energy of the Earth?

In Section 7.6, we claimed that we can ignore the kinetic energy of the Earth when considering the energy of a system con-
sisting of the Earth and a dropped ball. Verify this claim.

S O L U T I O N

Conceptualize Imagine dropping a ball at the surface of the Earth. From your point of view, the ball falls while the Earth 
remains stationary. By Newton’s third law, however, the Earth experiences an upward force and therefore an upward accelera-
tion while the ball falls. In the calculation below, we will show that this motion is extremely small and can be ignored.

Categorize  We identify the system as the ball and the Earth. We assume there are no forces on the system from outer space, 
so the system is isolated. Let’s use the momentum version of the isolated system model.

Analyze  We begin by setting up a ratio of the kinetic energy of the Earth to that of the ball. We identify vE and vb as the 
speeds of the Earth and the ball, respectively, after the ball has fallen through some distance.

Use the definition of kinetic energy to set up this ratio: (1)   
KE

Kb

5

1
2mEvE

2

1
2mbvb

2
5 SmE

mb
DSvE

vb
D2

Apply the isolated system (momentum) model, recognizing  DpS 5 0    S    pi 5 pf     S    0 5 mbvb 1 mEvE 
that the initial momentum of the system is zero:

Solve the equation for the ratio of velocity components: 
vE

vb

5 2
mb

mE

Take the absolute value of this ratio to make it a ratio of  
KE

Kb

5 SmE

mb
DSmb

mE
D2

5
mb

mE

 
speeds and substitute for vE/vb in Equation (1):

Substitute order-of-magnitude numbers for the masses: 
KE

Kb

5
mb

mE

,
1 kg

1025 kg
, 10225

Finalize The kinetic energy of the Earth is a very small fraction of the kinetic energy of the ball, so we are justified in ignor-
ing it in the kinetic energy of the system.

   9.3    Analysis Model: Nonisolated System (Momentum)
In the previous section, we found that the momentum of a system is conserved if 
there are no external forces on the system. What if there is an external force on 
the system? According to Equation 9.3, the momentum of a particle changes if a 
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216 Chapter 9 Linear Momentum and Collisions

net force acts on the particle. The same can be said about a net force applied to a 
system as we will show explicitly in Section 9.7: the momentum of a system changes 
if a net force from the environment acts on the system. This may sound similar to 
our discussion of energy in Chapter 8: the energy of a system changes if energy 
crosses the boundary of the system to or from the environment. In this section, we 
consider a nonisolated system. For energy considerations, a system is nonisolated if 
energy transfers across the boundary of the system by any of the means listed in 
Section 8.1. For momentum considerations, a system is nonisolated if a net force 
acts on the system for a time interval. In this case, we can imagine momentum 
being transferred to the system from the environment by means of the net force. 
Knowing the change in momentum caused by a force is useful in solving some 
types of problems. To build a better understanding of this important concept, let 
us assume a net force oF

S
 acts on a system consisting of a single particle and this 

force may vary with time. According to Newton’s second law, in the form expressed 
in Equation 9.3, oF

S
5 d pSydt, we can write

 d pS 5 oF
S

 dt (9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle 
changes from pSi at time ti to pSf  at time tf , integrating Equation 9.7 gives

 DpS 5 pSf 2 pSi 5 #
tf

ti

oF
S

 dt (9.8)

To evaluate the integral, we need to know how the net force varies with time. The 
quantity on the right side of this equation is a vector called the impulse of the net 
force oF

S
 acting on a particle over the time interval Dt 5 tf 2 ti:

  I
S

; #
tf

ti

 o F
S

 dt  (9.9)

From its definition, we see that impulse  I
S

 is a vector quantity having a magnitude 
equal to the area under the force–time curve as described in Figure 9.3a. It is 
assumed the force varies in time in the general manner shown in the figure and 
is nonzero in the time interval Dt 5 tf 2 ti . The direction of the impulse vector is 
the same as the direction of the change in momentum. Impulse has the dimen-
sions of momentum, that is, ML/T. Impulse is not a property of a particle; rather, 
it is a measure of the degree to which an external force changes the particle’s 
momentum.

Because the net force imparting an impulse to a particle can generally vary in 
time, it is convenient to define a time-averaged net force:

 so F
S

davg ;
1
Dt

 #
tf

ti

o  F
S

 dt (9.10)

where Dt 5 tf 2 ti. (This equation is an application of the mean value theorem of 
calculus.) Therefore, we can express Equation 9.9 as

  I
S

5 so  F
S

davg Dt (9.11)

This time-averaged force, shown in Figure 9.3b, can be interpreted as the constant 
force that would give to the particle in the time interval Dt the same impulse that 
the time-varying force gives over this same interval.

Impulse of a force 

2Here we are integrating force with respect to time. Compare this strategy with our efforts in Chapter 7, where we 
integrated force with respect to position to find the work done by the force.
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In principle, if oF
S

 is known as a function of time, the impulse can be calculated 
from Equation 9.9. The calculation becomes especially simple if the force acting on 
the particle is constant. In this case, soF

S
davg 5 oF

S
, where oF

S
 is the constant net 

force, and Equation 9.11 becomes

  I
S

5 o F
S

 Dt  (constant net force) (9.12)

Combining Equations 9.8 and 9.9 gives us an important statement known as the 
impulse–momentum theorem:

The change in the momentum of a particle is equal to the impulse of the net 
force acting on the particle:

 DpS 5  I
S

 (9.13)

  Impulse–momentum theorem 
for a particle

This statement is equivalent to Newton’s second law. When we say that an impulse is 
given to a particle, we mean that momentum is transferred from an external agent 
to that particle. Equation 9.13 is identical in form to the conservation of energy 
equation, Equation 8.1, and its full expansion, Equation 8.2. Equation 9.13 is the 
most general statement of the principle of conservation of momentum and is called 
the conservation of momentum equation. In the case of a momentum approach, 
isolated systems tend to appear in problems more often than nonisolated systems, 
so, in practice, the conservation of momentum equation is often identified as the 
special case of Equation 9.5.

The left side of Equation 9.13 represents the change in the momentum of the 
system, which in our discussion so far is a single particle. The right side is a measure 
of how much momentum crosses the boundary of the system due to the net force 
being applied to the system. Equation 9.13 is the mathematical statement of a new 
analysis model, the nonisolated system (momentum) model. Although this equation 
is similar in form to Equation 8.2, there are several differences in its application to 
problems. First, Equation 9.13 is a vector equation, whereas Equation 8.2 is a sca-
lar equation. Therefore, directions are important for Equation 9.13. Second, there 
is only one type of momentum and therefore only one way to store momentum in a 
system. In contrast, as we see from Equation 8.2, there are three ways to store energy 
in a system: kinetic, potential, and internal. Third, there is only one way to transfer 
momentum into a system: by the application of a force on the system over a time 
interval. Equation 8.2 shows six ways we have identified as transferring energy into a 
system. Therefore, there is no expansion of Equation 9.13 analogous to Equation 8.2.

As a real-world example of Equation 9.13, consider the crash-test dummy in  
Figure 9.4 (page 218), representing a human driver in an accident. As the car 

t i t f

t i

F

t f
t

F

t

F )avg

�

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

The impulse imparted to the 
particle by the force is the 
area under the curve.

t i t f

t i t f
t

F

t

F )avg

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

Figure 9.3   (a) A net force acting 
on a particle may vary in time. (b) 
The value of the constant force 
(o F  )avg (horizontal dashed line) 
is chosen so that the area (o F  )avg 
Dt of the rectangle is the same as 
the area under the curve in (a).
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218 Chapter 9 Linear Momentum and Collisions

is brought to rest from its initial speed, the dummy experiences a given change 
in momentum. Now consider the impulse on the right side of Equation 9.13, 
expressed with Equation 9.11. The same impulse can occur with a large average 
force over a short time interval or a small average force over a long time interval. 
In the absence of an air bag, the dummy is brought to rest by the sudden collision 
of his head with the steering wheel or dashboard. This is an example of the former 
possibility, and the large average force could result in serious injury to a human 
driver. If an air bag is present, however, the dummy can be brought to rest grad-
ually over a longer time interval, resulting in a smaller average force. As a result, 
there is a possibility of avoiding injury to a human driver.

In many physical situations, we shall use what is called the impulse approxima-
tion, in which we assume one of the forces exerted on a particle acts for a short time 
but is much greater than any other force present. In this case, the net force o F

S
 in 

Equation 9.9 is replaced with a single force F
S

 to find the impulse on the particle. 
This approximation is especially useful in treating collisions in which the duration 
of the collision is very short. When this approximation is made, the single force is 
referred to as an impulsive force. For example, when a baseball is struck with a bat, 
the time of the collision is about 0.01 s and the average force that the bat exerts 
on the ball in this time is typically several thousand newtons. Because this contact 
force is much greater than the magnitude of the gravitational force, the impulse 
approximation justifies our ignoring the gravitational forces exerted on the ball 
and bat during the collision. When we use this approximation, it is important to 
remember that pSi and pSf  represent the momenta immediately before and after the 
collision, respectively. Therefore, in any situation in which it is proper to use the 
impulse approximation, the particle moves very little during the collision.

Q uick Quiz 9.3  Two objects are at rest on a frictionless surface. Object 1 has 
a greater mass than object 2. (i) When a constant force is applied to object 1, it 
accelerates through a distance d in a straight line. The force is removed from 
object 1 and is applied to object 2. At the moment when object 2 has accelerated 
through the same distance d, which statements are true? (a) p1 , p2 (b) p1 5 p2 
(c) p1 . p2 (d) K1 , K2 (e) K1 5 K2 (f) K1 . K2 (ii) When a force is applied to 
object 1, it accelerates for a time interval Dt. The force is removed from object 1  
and is applied to object 2. From the same list of choices, which statements are 
true after object 2 has accelerated for the same time interval Dt?

Q uick Quiz 9.4  Rank an automobile dashboard, seat belt, and air bag, each used 
alone in separate collisions from the same speed, in terms of (a) the impulse and 
(b) the average force each delivers to a front-seat passenger, from greatest to least.

analYsis Model Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If external forces are applied on the system, the system is nonisolated.  
In that case, the change in the total momentum of the system is equal to the 
impulse on the system, a statement known as the impulse–momentum theorem: 

 DpS 5 I
S

 (9.13)

Examples: 

 ● a baseball is struck by a bat
 ● a spool sitting on a table is pulled by a string (Example 10.14 in Chapter 10)
 ● a gas molecule strikes the wall of the container holding the gas (Chapter 20)
 ● photons strike an absorbing surface and exert pressure on the surface  

(Chapter 33)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Figure 9.4 A crash-test dummy 
is brought to rest by an air bag 
in a test collision. The air bag 
increases the time interval dur-
ing which the dummy is brought 
to rest, thereby decreasing the 
force on the dummy. Air bags in 
automobiles have saved countless 
human lives in accidents.
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    9.4 Collisions in One Dimension 219

   9.4    Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 

 Example 9.3    How Good Are the Bumpers? 

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.5. The initial and 
final velocities of the car are vSi 5 215.0 i

⁄
 mys and 

vSf 5 2.60 i
⁄
 mys, respectively. If the collision lasts 0.150 s,  

find the impulse on the car during the collision and the 
average net force exerted on the car.

S O L U T I O N

Conceptualize  The collision time is short, so we can imag-
ine the car being brought to rest very rapidly and then mov-
ing back in the opposite direction with a reduced speed.

Categorize  Let us assume the net force exerted on the 
car by the wall and friction from the ground is large com-
pared with other forces on the car (such as air resistance). 
Furthermore, the gravitational force and the normal force 
exerted by the road on the car are perpendicular to the 
motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as one in which we can 
apply the impulse approximation in the horizontal direction. We also see that the car’s momentum changes due to an impulse 
from the environment. Therefore, we can apply the nonisolated system (momentum) model to the system of the car.

Analyze

Use Equation 9.13 to find the impulse I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m svSf 2 vSi 
d

on the car:
   5 s1 500 kgdf2.60  i

⁄
 mys 2 s215.0  i

⁄
 mysdg 5 2.64 3 104

 i
⁄
 kg ? mys

Use Equation 9.11 to evaluate the average _o F
S+avg 5

 I
S

Dt
5

2.64 3 104
 i
⁄
 kg ? mys

0.150 s
5 1.76 3 105

 i
⁄
 N  

net force exerted on the car:

Finalize  The net force found above is a combination of the normal force on the car from the wall and any friction force 
between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash occurs and 
the crumpling metal does not interfere with the free rotation of the tires, this friction force could be relatively small due to the 
freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal of directions. What would the 
mathematics be describing if both the initial and final velocities had the same sign?

 W H A T  I F ?   What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time 
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer In the original situation in which the car rebounds, the net force on the car does two things during the time interval:  
(1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car does not 
rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
 Mathematically, in the case of the car that does not rebound, the impulse is

  I
S

5 DpS 5 pSf 2 pSi 5 0 2 s1 500 kgds215.0  i
⁄
 mysd 5 2.25 3 104

 i
⁄
 kg ? mys

The average net force exerted on the car is

_o F
S+avg 5

I
S

Dt
5

2.25 3 104
 i
⁄
 kg ? mys

0.150 s
5 1.50 3 105

 i
⁄
 N

which is indeed smaller than the previously calculated value, as was argued conceptually.

+2.60 m/s

–15.0 m/s

Before

After

a b

Figure 9.5  (Example 9.3) (a) This car’s momentum changes as a 
result of its collision with the wall. (b) In a crash test, much of the 
car’s initial kinetic energy is transformed into energy associated 
with the damage to the car.
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220 Chapter 9 Linear Momentum and Collisions

interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.

A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.6a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.6b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”

When two particles of masses m1 and m2 collide as shown in Figure 9.6, the impul-
sive forces may vary in time in complicated ways, such as that shown in Figure 9.3. 
Regardless of the complexity of the time behavior of the impulsive force, however, this 
force is internal to the system of two particles. Therefore, the two particles form an 
isolated system and the momentum of the system must be conserved in any collision.

In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.

An elastic collision between two particles, or objects that can be modeled as 
particles, is one in which the total kinetic energy (as well as total momentum) of 
the system is the same before and after the collision. Collisions between certain 
objects in the macroscopic world, such as billiard balls, are only approximately elastic 
because some deformation and loss of kinetic energy take place. For example, you 
can hear a billiard ball collision, so you know that some of the energy is being trans-
ferred away from the system by sound. An elastic collision must be perfectly silent! 
Truly elastic collisions occur between atomic and subatomic particles. These colli-
sions are described by the isolated system model for both energy and momentum.

An inelastic collision is one in which the total kinetic energy of the system is 
not the same before and after the collision (even though the momentum of the sys-
tem is conserved). Inelastic collisions are further divided into two types. When the 
objects stick together after they collide, as happens when a meteorite collides with 
the Earth, the collision is called perfectly inelastic. When the colliding objects do 
not stick together but some kinetic energy is transformed or transferred away, the 
collision is called inelastic (with no modifying adverb). The collision of a rubber 
ball bouncing from a hard surface is inelastic, but not perfectly inelastic, because 
the ball does not stick to the surface. It is not elastic because some of the initial 
kinetic energy of the ball has been transformed to internal energy in the ball and 
the surface as the ball deformed during the time interval of contact.

In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly inelastic collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and 
vS2i along the same straight line as shown in Figure 9.7. The two particles collide 
head-on, stick together, and then move with some common velocity vSf  after the 
collision. For example, two carts with Velcro on their bumpers colliding on an air 
track will behave in this way. Because the momentum of an isolated system is con-
served in any collision, we can say that the total momentum before the collision 
equals the total momentum of the composite system after the collision:

 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 sm1 1 m2dvSf  (9.14)

Solving for the final velocity gives

 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2

 (9.15)

Pitfall Prevention 9.2
Inelastic Collisions Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6 (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.
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Figure 9.7 Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.
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elastic collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.8. The two particles collide head- 
on and then leave the collision site with different velocities, vS1f  and vS2f . In an elastic  
collision, both the momentum and kinetic energy of the system are conserved. 
Therefore, considering velocities along the horizontal direction in Figure 9.8,  
we have

   pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f (9.16)

 Ki 5 Kf    S    12m1v1i 
2 1 1

2m2v2i 
2 5 1

2m1v1f 
2 1 1

2m2v2f 
2 (9.17)

Because all velocities in Figure 9.8 are either to the left or the right, they can be 
represented by the corresponding speeds along with algebraic signs indicating 
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.

In a typical problem involving elastic collisions, there are two unknown quan-
tities, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An 
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the 
factor 1

2 in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the 
left and 2 on the right:

 m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2) 

Factoring both sides of this equation gives

 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i)(v2f 1 v2i) (9.18)

Next, let us separate the terms containing m1 and m2 in Equation 9.16 in a simi-
lar way to obtain

 m1(v1i 2 v1f) 5 m2(v2f 2 v2i) (9.19)

To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain

 v1i 1 v1f 5 v2f 1 v2i 

Now rearrange terms once again so as to have initial quantities on the left and final 
quantities on the right:

 v1i 2 v2i 5 2(v1f
 2 v2f) (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems 
dealing with elastic collisions. This pair of equations (Eqs. 9.16 and 9.20) is easier 
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic 
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v1i 2 v2i, equals the negative of their 
relative velocity after the collision, 2(v1f 2 v2f).

Suppose the masses and initial velocities of both particles are known. Equations 
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities 
because there are two equations and two unknowns:

 v1f 5 Sm1 2 m2

m1 1 m2
Dv1i 1 S 2m2

m1 1 m2
Dv2i (9.21)

 v2f 5 S 2m1

m1 1 m2
Dv1i 1 Sm2 2 m1

m1 1 m2
Dv2i (9.22)

It is important to use the appropriate signs for v1i and v2i in Equations 9.21 and 9.22.

1i 2i

1f 2f

m1 m2

Before the collision, the 
particles move separately.

After the collision, the 
particles continue to move 
separately with new velocities.

a

b

vS vS

vS vS

Figure 9.8 Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3
Not a General Equation Equation 
9.20 can only be used in a very spe-
cific situation, a one- dimensional, 
elastic collision between two 
objects. The general  concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.
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222 Chapter 9 Linear Momentum and Collisions

Let us consider some special cases. If m1 5 m2, Equations 9.21 and 9.22 show that 
v1f 5 v2i and v2f 5 v1i, which means that the particles exchange velocities if they 
have equal masses. That is approximately what one observes in head-on billiard ball 
collisions: the cue ball stops and the struck ball moves away from the collision with 
the same velocity the cue ball had.

If particle 2 is initially at rest, then v2i 5 0, and Equations 9.21 and 9.22 become

 v1f 5 Sm1 2 m2

m1 1 m2
Dv1i (9.23)

 v2f 5 S 2m1

m1 1 m2
Dv1i (9.24)

If m1 is much greater than m2 and v2i 5 0, we see from Equations 9.23 and 9.24 that 
v1f < v1i and v2f < 2v1i. That is, when a very heavy particle collides head-on with a 
very light one that is initially at rest, the heavy particle continues its motion unal-
tered after the collision and the light particle rebounds with a speed equal to about 
twice the initial speed of the heavy particle. An example of such a collision is that 
of a moving heavy atom, such as uranium, striking a light atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then v1f < –v1i and 
v2f < 0. That is, when a very light particle collides head-on with a very heavy particle 
that is initially at rest, the light particle has its velocity reversed and the heavy one 
remains approximately at rest. For example, imagine what happens when you throw 
a table tennis ball at a bowling ball as in Quick Quiz 9.6 below.

Q uick Quiz 9.5  In a perfectly inelastic one-dimensional collision between two  
moving objects, what condition alone is necessary so that the final kinetic 
energy of the system is zero after the collision? (a) The objects must have initial 
momenta with the same magnitude but opposite directions. (b) The objects 
must have the same mass. (c) The objects must have the same initial velocity.  
(d) The objects must have the same initial speed, with velocity vectors in  
opposite directions.

Q uick Quiz 9.6  A table-tennis ball is thrown at a stationary bowling ball. 
The table-tennis ball makes a one-dimensional elastic collision and bounces 
back along the same line. Compared with the bowling ball after the collision, 
does the table-tennis ball have (a) a larger magnitude of momentum and more 
kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy, 
(c) a larger magnitude of momentum and less kinetic energy, (d) a smaller 
magnitude of momentum and less kinetic energy, or (e) the same magnitude of 
momentum and the same kinetic energy?

Elastic collision: particle 2  
initially at rest

PROBLEM-SOLvING STRATEGy  One-Dimensional Collisions

You should use the following approach when solving collision problems in one dimension:

1. Conceptualize. Imagine the collision occurring in your mind. Draw simple diagrams of the particles before and after the 
collision and include appropriate velocity vectors. At first, you may have to guess at the directions of the final velocity vectors.

2. Categorize. Is the system of particles isolated? If so, use the isolated system (momentum) model. Further categorize the 
collision as elastic, inelastic, or perfectly inelastic.

3. Analyze. Set up the appropriate mathematical representation for the problem. If the collision is perfectly inelastic, use 
Equation 9.15. If the collision is elastic, use Equations 9.16 and 9.20. If the collision is inelastic, use Equation 9.16. To find the 
final velocities in this case, you will need some additional information.

4. Finalize. Once you have determined your result, check to see if your answers are consistent with the mental and pictorial 
representations and that your results are realistic.
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 Example 9.4    The Executive Stress Reliever

An ingenious device that illustrates 
conservation of momentum and kin-
etic energy is shown in Figure 9.9a.  
It consists of five identical hard balls 
supported by strings of equal lengths. 
When ball 1 is pulled out and released, 
after the almost-elastic collision between 
it and ball 2, ball 1 stops and ball 5  
moves out as shown in Figure 9.9b.  
If balls 1 and 2 are pulled out and 
released, they stop after the collision 
and balls 4 and 5 swing out, and so 
forth. Even if four balls (1–4) are pulled 
out and released, four balls (2–5) swing 
out after the collision! Is it ever possi-
ble that when ball 1 is released, it stops 
after the collision and balls 4 and 5 
will swing out on the opposite side and 
travel with half the speed of ball 1 as in 
Figure 9.9c?

S O L U T I O N

Conceptualize  With the help of Figure 9.9c, imagine one ball coming in from the left and two balls exiting the collision on 
the right. That is the phenomenon we want to test to see if it could ever happen.

Categorize   Because of the very short time interval between the arrival of the ball from the left and the departure  
of the ball(s) from the right, we can use the impulse approximation to ignore the gravitational forces on the balls and model 
the five balls as an isolated system in terms of both momentum and energy. Because the balls are hard, we can categorize the colli-
sions between them as elastic for purposes of calculation.

This can happen

This cannot happen

b

c

vS

vS

vS

v/2S

a
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Figure 9.9  (Example 9.4) (a) An executive stress reliever. (b) If one ball swings 
down, we see one ball swing out at the other end. (c) Is it possible for one ball to swing 
down and two balls to leave the other end with half the speed of the first ball? In (b) 
and (c), the velocity vectors shown represent those of the balls immediately before and 
immediately after the collision.

continued

Analyze  Let’s consider the situation shown in Figure 9.9c. 
The momentum of the system just before the collision is 
mv, where m is the mass of ball 1 and v is its speed imme-
diately before the collision. After the collision, we imagine 
that ball 1 stops and balls 4 and 5 swing out, each moving 
with speed v/2. The total momentum of the system after 
the collision would be m(v/2) 1 m(v/2) 5 mv. Therefore, 

Finalize  Our analysis shows that it is not possible for balls 4 
and 5 to swing out when only ball 1 is released. The only way 
to conserve both momentum and kinetic energy of the system 
is for one ball to move out when one ball is released, two balls 
to move out when two are released, and so on. A similar anal-
ysis can be applied to the billiard ball collision in the opening 

the momentum of the system is conserved in the situation 
shown in Figure 9.9c! 
 The kinetic energy of the system immediately before 
the collision is Ki 5 1

2mv2 and that after the collision is 
Kf 5 1

2msvy2d2 1 1
2msvy2d2 5 1

4mv2. This calculation shows that 
the kinetic energy of the system is not conserved, which is incon-
sistent with our assumption that the collisions are elastic.

storyline. In that case, there are two billiard balls in contact 
rather than four steel balls as in Figure 9.9. When the cue ball 
strikes the pair of balls, the only way to conserve both momen-
tum and kinetic energy for the system of three balls is for 
only one ball to leave the collision. Therefore, the purple ball 
remains stationary, just like balls 2 through 4 in Figure 9.9.

W H A T  I F ? Consider what would happen if balls 4 and 5 are glued together. Now what happens when ball 1 is pulled out 
and released?

Answer  In this situation, balls 4 and 5 must move together as a single object after the collision. We have argued that both 
momentum and energy of the system cannot be conserved in this case. We assumed, however, ball 1 stopped after striking ball 
2. What if we do not make this assumption? Consider the conservation equations with the assumption that ball 1 moves after 
the collision. For conservation of momentum,

pi 5 pf

mv1i 5 mv1f 1 2mv4,5

where v4,5 refers to the final speed of the ball 4–ball 5 combination. Conservation of kinetic energy gives us

Ki 5 Kf

1
2mv1i

2  5 1
2mv1f

2   1 1
2  
s2mdv4,5

2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



224 Chapter 9 Linear Momentum and Collisions

9.4 c o n t i n u e d

Combining these equations gives

v4,5 5 2
3  
v1i  v1f 5 21

3v1i

Therefore, balls 4 and 5 move together as one object after the collision while ball 1 bounces back from the collision with one 
third of its original speed.

 Example 9.5    Carry Collision Insurance! 

An 1 800-kg car stopped at a traffic light is struck from the rear by a 900-kg car. The two cars become entangled, moving 
along the same path as that of the originally moving car. If the smaller car were moving at 20.0 m/s before the collision, 
what is the velocity of the entangled cars after the collision?

S O L U T I O N

Conceptualize  This kind of collision is easily visualized, and one can predict that after the collision both cars will be moving 
in the same direction as that of the initially moving car. Because the initially moving car has only half the mass of the station-
ary car, we expect the final velocity of the cars to be relatively small.

Categorize  We identify the two cars as an isolated system in terms of momentum in the horizontal direction and apply the 
impulse approximation during the short time interval of the collision. The phrase “become entangled” tells us to categorize 
the collision as perfectly inelastic.

Analyze  The magnitude of the total momentum of the system before the collision is equal to that of the smaller car because 
the larger car is initially at rest.

Use the isolated system model for momentum: DpS 5 0    S   pi 5 pf    S   m1vi 5 (m1 1 m2)vf

Solve for vf  and substitute numerical values: vf 5
m1vi

m1 1 m2

5
s900 kgds20.0 mysd
900 kg 1 1 800 kg

5 6.67 mys

Finalize  Because the final velocity is positive, the direction of the final velocity of the combination is the same as the velocity of 
the initially moving car as predicted. The speed of the combination is also much lower than the initial speed of the moving car.

W H A T  I F ?  Suppose we reverse the masses of the cars. What if a stationary 900-kg car is struck by a moving 1 800-kg 
car? Is the final speed the same as before?

Answer  Intuitively, we can guess that the final speed of the combination is higher than 6.67 m/s if the initially moving car is 
the more massive car. Mathematically, that should be the case because the system has a larger momentum if the initially mov-
ing car is the more massive one. Solving for the new final velocity, we find

vf 5
m1vi

m1 1 m2

5
s1 800 kgds20.0 mysd
1 800 kg 1 900 kg

5 13.3 mys

which is two times the previous final velocity.

 Example 9.6   The Ballistic Pendulum

The ballistic pendulum (Fig. 9.10) is an apparatus used to measure the speed of a fast-moving projectile such as a bullet. A 
projectile of mass m1 is fired into a large block of wood of mass m2 suspended from some light wires. The projectile embeds 
in the block, and the entire system swings through a height h. How can we determine the speed of the projectile from a 
measurement of h?

S O L U T I O N

Conceptualize  Figure 9.10a helps conceptualize the situation. Run the animation in your mind: the projectile enters the pen-
dulum, which swings up to some height at which it momentarily comes to rest.
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9.6 c o n t i n u e d

Categorize  Let’s focus first on the collision between the projectile and the block. The projectile and the block form an isolated 
system in terms of momentum in the horizontal direction if we identify configuration A as immediately before the collision and 
configuration B as immediately after the collision. Because the projectile imbeds in the block, we can categorize the collision 
between them as perfectly inelastic.

Analyze  To analyze the collision, we use Equation 9.15, which gives the speed of the system immediately after the collision 
when we assume the impulse approximation.

Noting that v2A 5 0, write Equation 9.15 for vB: (1)   vB 5
m1v1A

m1 1 m2

Categorize   For the second process, during which the projectile–block combination swings upward to height h (ending at a 
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize this 
part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

Analyze   Write an expression for the total kinetic energy of  (2)   KB 5 1
2  
sm1 1 m2dvB

2 
the system immediately after the collision:

Substitute the value of vB from Equation (1) into Equation (2): KB 5
m1

2  v1A
2

2sm1 1 m2d

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile as is 
expected in an inelastic collision.
 We define the gravitational potential energy of the system for configuration B to be zero. Therefore, UB 5 0, whereas  
UC 5 (m1 1 m2)gh.

Apply the isolated system model for energy (Eq. 8.2) to the system: DK 1 DU 5 0    S   (KC 2 KB) 1 (UC 2 UB) 5 0

Substitute the energies: 30 2
m1

2  v1A
2

2sm1 1 m2d4 1 fsm1 1 m2dgh 2 0g 5 0

Solve for v1A: v1A 5 Sm1 1 m2

m1
DÏ2gh

Finalize   We had to solve this problem in two steps. Each step involved a different system and a different analysis model: 
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was 
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision. There-
fore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating the ini-
tial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile–block–Earth 
combination.

m2m1
1A B

m1 � m2

h
vS vS

a

Figure 9.10  (Example 9.6) (a) Diagram of a ballistic pendulum. Notice that vS1A is the velocity of the projectile imme-
diately before the collision and vSB is the velocity of the projectile–block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.
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 Example 9.7    A Two-Body Collision with a Spring 

A block of mass m1 5 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track collides 
with a light spring attached to a second block of mass m2 5 2.10 kg initially moving to the left with a speed of 2.50 m/s as 
shown in Figure 9.11a. The spring constant is 600 N/m.

(A) Find the velocities of the two blocks when they are again moving separately after the collision.

S O L U T I O N

Conceptualize   With the help of Figure 9.11a, run an ani-
mation of the collision in your mind. Figure 9.11b shows an 
instant during the collision when the spring is compressed. 
Eventually, block 1 and the spring will again separate, so the 
system will look like Figure 9.11a again but with different 
velocity vectors for the two blocks.

Categorize   Because the spring force is conservative, kinetic 
energy in the system of two blocks and the spring is not 
transformed to internal energy during the compression of 
the spring. Ignoring any sound made when the block hits 
the spring, we can categorize the collision as being elastic 
and categorize the two blocks and the spring as an isolated 
system for both energy and momentum.

Analyze   Because momentum of  (1)   m1v1i 1 m2v2i 5 m1v1f 1 m2v2f 
the system is conserved, apply  
Equation 9.16:

Because the collision is elastic,  (2)   v1i 2 v2i 5 2(v1f 2 v2f) 
apply Equation 9.20:

Multiply Equation (2) by m1: (3)   m1v1i 2 m1v2i 5 2m1v1f 1 m1v2f

Add Equations (1) and (3): 2m1v1i 1 (m2 2 m1)v2i 5 (m1 1 m2)v2f

Solve for v2f : v2f 5
2m1v1i 1 sm2 2 m1dv2i

m1 1 m2

Substitute numerical values: v2f 5
2s1.60 kgds4.00 mysd 1 s2.10 kg 2 1.60 kgds22.50 mysd

1.60 kg 1 2.10 kg
5 3.12 mys

Solve Equation (2) for v1f and  v1f 5 v2f 2 v1i 1 v2i 5 3.12 m/s 2 4.00 m/s 1 (22.50 m/s) 5   2 3.38 m/s 
substitute numerical values:

 Finalize Notice that both blocks have reversed direction due to the collision. Also notice that we did not need to know any-
thing about the spring to find the answer in this part of the problem. The spring is just another mechanism for the two blocks 
to exert forces of equal magnitude and opposite direction on one another, just like those between the objects and particles 
shown in Figure 9.6.

(B) Determine the velocity of block 2 during the collision, at the instant block 1 is moving to the right with a velocity  
of 13.00 m/s as in Figure 9.11b.

S O L U T I O N

Conceptualize    Focus your attention now on Figure 9.11b, which represents the final configuration of the system at the end of 
the time interval of interest.

Categorize  Because the momentum of the isolated system of two blocks and the spring are conserved throughout the collision, 
the collision can be categorized as elastic for any final instant of time. Let us now choose the final instant to be when block 1 
is moving with a velocity of 13.00 m/s.

1i  4.00î m/s 1f  3.00 î m/s 2f2i  –2.50î m/svS vS vS vS

x

k
m1

m
k

2m1 m2

a

b

� � �

Figure 9.11  (Example 9.7) A moving block approaches a second 
moving block that is attached to a spring.
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   9.5    Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a 
familiar example involving multiple collisions of objects moving on a two-dimen-
sional surface. For such two-dimensional collisions between two particles, we obtain 
two component equations for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations represent, 
respectively, the identification of the object (1, 2), initial and final values (i, f ), and 
the velocity component (x, y).

9.7 c o n t i n u e d

Analyze  Apply Equation 9.16: m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

Solve for v2f  : v2f 5
m1v1i 1 m2v2i 2 m1v1f

m2

 

Substitute numerical values: v2f 5
s1.60 kgds4.00 mysd 1 s2.10 kgds22.50 mysd 2 s1.60 kgds3.00 mysd

2.10 kg
 

     5 21.74 mys

Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

S O L U T I O N

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.11b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the system. 
Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. The system 
also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the spring 
and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

Write the appropriate reduction of  DK 1 DU 5 0 
Equation 8.2:

Evaluate the energies, recognizing that two  fs1
2m1v1f

2 1 1
2m2v2f

2d 2 s1
2m1v1i

2 1 1
2m2v2i

2dg 1 _12kx2 2 0+ 5 0 
objects in the system have kinetic energy  
and that the potential energy is elastic:

Solve for x 2:  x2 5
1
k

fm1sv1i
2 2 v1f

2 d 1 m2sv2 i
2 2 v2f

2dg

Substitute  x2 5 S 1
600 NymDhs1.60 kgdfs4.00 mysd2 2 s3.00 mysd2g 1 s2.10 kgdfs2.50 mysd2 2 s1.74 mysd2gj 

numerical values:
  S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward each 
other at the instant shown in Figure 9.11b. Can you determine the maximum compression of the spring?
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Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.12a. After the collision 
(Fig. 9.12b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)

where the minus sign in Equation 9.26 is included because after the collision par-
ticle 2 has a y component of velocity that is downward. (The symbols v in these 
particular equations are speeds, not velocity components. The direction of the 
component vector is indicated explicitly with plus or minus signs.) We now have 
two independent equations. As long as no more than two of the seven quantities in 
Equations 9.25 and 9.26 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.17 (conservation of kinetic 
energy) with v2i 5 0:

 Ki 5 Kf    S    12m1v1i
2  5 1

2m1v1f
2  1 1

2m2v2f
2 (9.27)

Knowing the initial speed of particle 1 and both masses, we are left with four 
unknowns (v1f , v2f , u, and f). Because we have only three equations, one of the four 
remaining quantities must be given to determine the motion after the elastic colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.27 
does not apply. Then we have four unknowns and only two equations!

m1

m2

Before the collision

After the collision

v2f  cos

v1f  cos

v1f  sin

2f  sin

θ

φ
φ

φ

θ

θ

v

a

b

v1i
S

v1f
S

v2f
S

Figure 9.12 An elastic, glancing 
collision between two particles.

PROBLEM-SOLvING STRATEGy  Two-Dimensional Collisions

The following procedure is recommended when dealing with problems involving colli-
sions between two particles in two dimensions.

1. Conceptualize. Imagine the collisions occurring and predict the approximate direc-
tions in which the particles will move after the collision. Set up a coordinate system and 
define your velocities in terms of that system. It is convenient to have the x axis coincide 
with one of the initial velocities. Sketch the coordinate system, draw and label all velocity 
vectors, and include all the given information.

2. Categorize. Is the system of particles truly isolated? If so, categorize the collision as 
elastic, inelastic, or perfectly inelastic.

3. Analyze. Write expressions for the x and y components of the momentum of each 
object before and after the collision. Remember to include the appropriate signs for the 
components of the velocity vectors and pay careful attention to signs throughout the 
calculation.
 Apply the isolated system model for momentum DpS 5 0. When applied in each direc-
tion, this equation will generally reduce to pix 5 pfx and piy 5 pf  y, where each of these 
terms refer to the sum of the momenta of all objects in the system. Write expressions for 
the total momentum in the x direction before and after the collision and equate the two. 
Repeat this procedure for the total momentum in the y direction.
 Proceed to solve the momentum equations for the unknown quantities. If the colli-
sion is inelastic, kinetic energy is not conserved and additional information is probably 
required. If the collision is perfectly inelastic, the final velocities of the two objects are 
equal.
 If the collision is elastic, kinetic energy is conserved and you can equate the total 
kinetic energy of the system before the collision to the total kinetic energy after the colli-
sion, providing an additional relationship between the velocity magnitudes.

4. Finalize. Once you have determined your result, check to see if your answers are consis-
tent with the mental and pictorial representations and that your results are realistic.

Pitfall Prevention 9.4
Don’t Use Equation 9.20 Equation 
9.20, relating the initial and final 
relative velocities of two colliding 
objects, is only valid for one- 
dimensional elastic collisions.  
Do not use this equation when ana-
lyzing two-dimensional collisions.
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 Example 9.9     Proton–Proton Collision

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of  
3.50 3 105 m/s and makes a glancing collision with the second proton as in Figure 9.12. (At close separations, the protons 
exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.08 to the orig-
inal direction of motion and the second deflects at an angle of f to the same axis. Find the final speeds of the two protons 
and the angle f.

S O L U T I O N

Conceptualize  This collision is like that shown in Figure 9.12, which will help you conceptualize the behavior of the system. 
We define the x axis to be along the direction of the velocity vector of the initially moving proton.

Categorize The pair of protons form an isolated system. Both momentum and kinetic energy of the system are conserved in 
this glancing elastic collision.

 Example 9.8     Collision at an Intersection

A 1 500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2 500-kg truck traveling north at a 
speed of 20.0 m/s as shown in Figure 9.13. Find the direction and magnitude of the velocity of the wreckage after the colli-
sion, assuming the vehicles stick together after the collision.

S O L U T I O N

Conceptualize  Figure 9.13 should help you conceptualize the situation before and after 
the collision. Let us choose east to be along the positive x direction and north to be 
along the positive y direction.

Categorize  Because we consider instants of time immediately before and immediately 
after the collision as defining our time interval, we ignore the small effect that friction 
would have on the wheels of the vehicles and model the two vehicles as an isolated system 
in terms of momentum. We also ignore the vehicles’ sizes and model them as particles. 
The collision is perfectly inelastic because the car and the truck stick together after the 
collision.

Analyze   Before the collision, the only object having momentum in the x direction 
is the car. Therefore, the magnitude of the total initial momentum of the system 
(car plus truck) in the x direction is that of only the car. Similarly, the total initial 
momentum of the system in the y direction is that of the truck. Immediately after the 
collision, let us assume the wreckage moves at an angle u with respect to the x axis 
with speed vf  .

Apply the isolated system model for momentum  Dpx 5 0    S   o pxi 5 o pxf    S   (1)   m1v1i 5 (m1 1 m2)vf  cos u 
in the x direction:

Apply the isolated system model for momentum  Dpy 5 0    S   o pyi 5 o pyf    S   (2)   m2v2i 5 (m1 1 m2)vf  sin u 
in the y direction:

Divide Equation (2) by Equation (1): 
m2v2i

m1v1i

5
sin u
cos u

5 tan u

Solve for u and substitute numerical values: u 5 tan21Sm2v2i

m1v1i
D 5 tan213s2 500 kgds20.0 mysd

s1 500 kgds25.0 mysd4 5  53.18

Use Equation (2) to find the value of vf  and  vf 5
m2v2i

sm1 1 m2d sin u
5

s2 500 kgds20.0 mysd
s1 500 kg 1 2 500 kgd sin 53.18

5  15.6 mys 
substitute numerical values:

Finalize Notice that the angle u is qualitatively in agreement with Figure 9.13. Also notice that the final speed of the combina-
tion is less than the initial speeds of the two cars. This result is consistent with the kinetic energy of the system being reduced 
in an inelastic collision. It might help if you draw the momentum vectors of each vehicle before the collision and the two vehi-
cles together after the collision.

25.0i m/sˆ

20.0j m/sˆ

y

xu

vf
S

Figure 9.13  (Example 9.8) An 
eastbound car colliding with a north-
bound truck.

continued
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9.9 c o n t i n u e d

Analyze Using the isolated system model for both  (1) v1i 5 v1f  cos u 1 v2f  cos f 
momentum and energy for a two- dimensional elastic  (2) 0 5 v1f  sin u 2 v2f  sin f 
collision, set up the mathematical representation  (3) v1i

2 5 v1f
2 1 v2f

2 
with Equations 9.25 through 9.27:

Rearrange Equations (1) and (2): v2f  cos f 5 v1i 2 v1f  cos u

    v2f  sin f 5 v1f  sin u

Square these two equations and add them: v2f
2 cos2 f 1 v2f

2 sin2 f 5

     v1i
2 2 2v1iv1f  cos u 1 v1f

2 cos2 u 1 v1f
2 sin2 u

Incorporate that the sum of the squares of sine  (4)   v2f
2 5 v1i

2 2 2v1iv1f  cos u 1 v1f
2 

and cosine for any angle is equal to 1:

Substitute Equation (4) into Equation (3): v1f
2 1 (v1i

2 2 2v1iv1f  cos u 1 v1f
2) 5 v1i

2

    (5)   v1f
2 2 v1iv1f  cos u 5 0

One possible solution of Equation (5) is v1f 5 0, which corresponds to a head-on, one-dimensional collision in which the first 
proton stops and the second continues with the same speed in the same direction. That is not the solution we want.

Divide both sides of Equation (5) by v1f  and solve  v1f 5 v1i cos u 5 (3.50 3 105 m/s) cos 37.08 5   2.80 3 105 m/s 
for the remaining factor of v1f :

Use Equation (3) to find v2f : v2f 5 Ïv1i
2 2 v1f

2 5 Ïs3.50 3 105 mysd2 2 s2.80 3 105 mys)2 

    5 2.11 3 105 mys

Use Equation (2) to find f: (2)   f 5 sin21Sv1f sin u

v2f
D 5 sin213s2.80 3 105 mysd sin 37.08

s2.11 3 105 mysd 4
 5 53.08

Finalize It is interesting that u 1 f 5 908. This result is not accidental. Whenever two objects of equal mass collide elastically 
in a glancing collision and one of them is initially at rest, their final velocities are perpendicular to each other.

   9.6    The Center of Mass
In this section, we describe the overall motion of a system in terms of a special 
point called the center of mass of the system. The system can be either a small 
number of distinct particles or an extended, continuous object, such as a gymnast 
leaping through the air. We shall see that the translational motion of the center of 
mass of the system is the same as if all the mass of the system were concentrated 
at that point. That is, the system moves as if the net external force were applied to 
a single particle located at the center of mass. This model, the particle model, was 
introduced in Chapter 2. This behavior is independent of other motion, such as 
rotation or vibration of the system or deformation of the system (for instance, when 
a gymnast folds her body). 

Consider a system consisting of a pair of particles that have different masses and 
are connected by a light, rigid rod (Fig. 9.14). The position of the center of mass of a 
system can be described as being the average position of the system’s mass. The center 
of mass of the system is located somewhere on the line joining the two particles and 
is closer to the particle having the larger mass. If a single force is applied at a point 
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on the rod above the center of mass, the system rotates clockwise (see Fig. 9.14a). If 
the force is applied at a point on the rod below the center of mass, the system rotates 
counterclockwise (see Fig. 9.14b). If the force is applied at the center of mass, the sys-
tem moves in the direction of the force without rotating (see Fig. 9.14c). The center 
of mass of an object can be located with this procedure.

The center of mass of the pair of particles described in Figure 9.15 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2

 (9.28)

For example, if x1 5 0, x 2 5 d, and m 2 5 2m 1, we find that xCM 5 2
3d. That is, the cen-

ter of mass lies closer to the more massive particle. If the two masses are equal, the 
center of mass lies midway between the particles.

We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 Á 1 mnxn

m1 1 m2 1 m3 1 Á 1 mn

5
o

i

mixi

o
i

mi

5
o

i

mixi

M
5

1
Mo

i

mixi (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
Mo

i

miyi and zCM ;
1
Mo

i

mizi (9.30)

The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM i
⁄

1 yCM  j
⁄

1 zCM k
⁄

5
1
Mo

i

mixi i
⁄

1
1
Mo

i

miyi  j
⁄

1
1
Mo

i

mizi k
⁄

 rSCM ;
1
Mo

i

mi r
S

i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi i
⁄

1 yi  j
⁄

1 zi k
⁄

Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object 
as a system containing a large number of small mass elements such as the cube in 
Figure 9.16 (page 232). Because the separation between elements is very small, the 
object can be considered to have a continuous mass distribution. By dividing the 
object into elements of mass Dmi with coordinates xi, yi, zi, we see that the x coordi-
nate of the center of mass is approximately

xCM <
1
M

 o
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

CM

CM

CM

a

b

c

The system rotates clockwise 
when a force is applied 
above the center of mass. 

The system rotates counter-
clockwise when a force is applied 
below the center of mass. 

The system moves in the 
direction of the force without 
rotating when a force is applied 
at the center of mass.

Figure 9.14 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.15 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.

y

m1

x1

x 2

CM

m 2

x

x CM
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y

x

z

ri
S

rCM
S

CM
�mi

An extended object can be 
considered to be a distribution 
of small elements of mass �mi .

Figure 9.16  The center of mass 
is located at the vector position 
r
S

CM, which has coordinates xCM, 
yCM, and zCM.

A
B

C

D

The wrench is hung 
freely first from point A 
and then from point C.

The intersection of 
the two lines AB 
and CD locates the 
center of gravity.

A

B

Figure 9.17  An experimental 
technique for determining the 
center of gravity of a wrench.

 xCM 5 lim
Dmi

S 0

1
M

 o
i

xi Dmi 5
1
M

 # x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 # y dm and zCM 5
1
M

 # z dm (9.33)

We can express the vector position of the center of mass of an extended object in 
the form

 rSCM 5
1
M

 # rS dm  (9.34)

which is equivalent to the three expressions given by Equations 9.32 and 9.33.
The center of mass of any symmetric object of uniform density lies on an axis of 

symmetry and on any plane of symmetry. For example, the center of mass of a uni-
form rod lies in the rod, midway between its ends. The center of mass of a sphere or 
a cube lies at its geometric center.

Because an extended object is a continuous distribution of mass, each small mass 
element is acted upon by the gravitational force. The net effect of all these forces is 
equivalent to the effect of a single force M gS acting through a special point, called 
the center of gravity. If gS is constant over the mass distribution, the center of grav-
ity coincides with the center of mass. If an extended object is pivoted at its center of 
gravity, it balances in any orientation.

The center of gravity of an irregularly shaped object such as a wrench can be 
determined by suspending the object first from one point and then from another. 
In Figure 9.17, a wrench is hung from point A and a vertical line AB (which can be 
established with a plumb bob) is drawn when the wrench has stopped swinging. 
The wrench is then hung from point C, and a second vertical line CD is drawn. The 
center of gravity is halfway through the thickness of the wrench, under the intersec-
tion of these two lines. In general, if the wrench is hung freely from any point, the 
vertical line through this point must pass through the center of gravity.

Q uick Quiz 9.7  A baseball bat of uniform density is cut at the location of 
its center of mass as shown in Figure 9.18. Which piece has the smaller mass? 
(a) the piece on the right (b) the piece on the left (c) both pieces have the same 
mass (d) impossible to determine

Figure 9.18  (Quick 
Quiz 9.7) A baseball bat 
cut at the location of its 
center of mass.

 Example 9.10    The Center of Mass of Three Particles

A system consists of three particles located as shown in Figure 9.19. Find the center of 
mass of the system. The masses of the particles are m1 5 m2 5 1.0 kg and m3 5 2.0 kg.

S O L U T I O N

Conceptualize  Figure 9.19 shows the three masses. 
Your intuition should tell you that the center of mass 
is located somewhere in the region between the blue 
particle and the pair of tan particles as shown in the 
figure.

rCM
S 

2

0
21

1

3

y (m)

x (m)
3

m1

m3

m2

Figure 9.19  (Example 9.10) Two 
particles are located on the x axis, 
and a single particle is located on 
the y axis as shown. The vector indi-
cates the location of the system’s 
center of mass.
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9.10 c o n t i n u e d

Categorize  We categorize this example as a substitution problem because we will be using the equations for the center of 
mass developed in this section.

Use the defining equations for  xCM 5
1
Mo

i

mi xi 5
m1x1 1 m2x2 1 m3x3

m1 1 m2 1 m3

 
the coordinates of the center of  
mass and notice that zCM 5 0:   

5
s1.0 kgds1.0 md 1 s1.0 kgds2.0 md 1 s2.0 kgds0d

1.0 kg 1 1.0 kg 1 2.0 kg
5

3.0 kg ? m

4.0 kg
5 0.75 m

  yCM 5
1
Mo

i

mi yi 5
m1y1 1 m2y2 1 m3y3

m1 1 m2 1 m3

    5
s1.0 kgds0d 1 s1.0 kgds0d 1 s2.0 kgds2.0 md

4.0 kg
5

4.0 kg ? m

4.0 kg
5 1.0 m

Write the position vector of the  rSCM ; xCM  i
⁄

1 yCM  j
⁄

5 s0.75  i
⁄

1 1.0  j
⁄
d m  

center of mass:

 Example 9.11    The Center of Mass of a Rod

(A) Show that the center of mass of a rod of mass M and length L lies midway between 
its ends, assuming the rod has a uniform mass per unit length.

S O L U T I O N

Conceptualize The rod is shown aligned along the x axis in Figure 9.20, so yCM 5  
zCM 5 0. What is your prediction of the value of xCM?

Categorize  We categorize this example as an analysis problem because we need to divide 
the rod into small mass elements to perform the integration in Equation 9.32.

Analyze  The mass per unit length (this quantity is called the linear mass density) can be written as l 5 M/L for the uniform 
rod. If the rod is divided into elements of length dx, the mass of each element is dm 5 l dx.

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  # x dm 5
1
M

  #
L

0
 xl dx 5

l

M
  

x 2

2 *
L

0

5
lL2

2M

Substitute l 5 M/L: xCM 5
L2

2MSM
LD 5 1

2 L

One can also use symmetry arguments to obtain the same result.

(B) Suppose a rod is nonuniform such that its mass per unit length varies linearly with x according to the expression  
l 5 ax, where a is a constant. Find the x coordinate of the center of mass as a fraction of L.

S O L U T I O N

Conceptualize Because the mass per unit length is not constant in this case but is proportional to x, elements of the rod to the 
right are more massive than elements near the left end of the rod.

Categorize This problem is categorized similarly to part (A), with the added twist that the linear mass density is not constant.

Analyze  We replace dm in Equation 9.32 by l dx, where, in this case, l 5 ax.

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  # x dm 5
1
M

  #
L

0
  xl dx 5

1
M

  #
L

0
  xax dx

      5
a

M
  #

L

0  
x2 dx 5

aL3

3M

x

dm = l dx
y

dx

x

L

Figure 9.20  (Example 9.11) The 
geometry used to find the center 
of mass of a uniform rod.

continued
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   9.7    Systems of Many Particles
Consider a system of two or more particles for which we have identified the center 
of mass. We can begin to further understand the physical significance and utility 
of the center of mass concept by taking the time derivative of the position vector 
for the center of mass given by Equation 9.31. From Section 4.1, we know that the 
time derivative of a position vector is by definition the velocity vector. Assuming M 
remains constant for a system of particles—that is, no particles enter or leave the 
system—we obtain the following expression for the velocity of the center of mass 
of the system:

 vSCM 5
d rSCM

dt
5

1
Mo

i

mi 
d rSi

dt
5

1
Mo

i

mi v
S

i (9.35)

where vSi is the velocity of the ith particle. Rearranging Equation 9.35 gives

 M vSCM 5 o
i

mi v
S

i 5 o
i

pSi 5 pStot (9.36)

Therefore, the total linear momentum of the system equals the total mass multi-
plied by the velocity of the center of mass. In other words, the total linear momen-
tum of the system is equal to that of a single particle of mass M moving with a 
velocity vSCM.

Differentiating Equation 9.35 with respect to time, we obtain the acceleration of 
the center of mass of the system:

 aSCM 5
d vSCM

dt
5

1
Mo

i

mi 
d vSi

dt
5

1
Mo

i

mi a
S

i (9.37)

Rearranging this expression and using Newton’s second law gives

 M aSCM 5 o
i

mi a
S

i 5 o
i

F
S

i (9.38)

where F
S

i is the net force on particle i.
The forces on any particle in the system may include both external forces (from 

outside the system) and internal forces (from within the system). By Newton’s third 
law, however, the internal force exerted by particle 1 on particle 2, for example, 
is equal in magnitude and opposite in direction to the internal force exerted by 
particle 2 on particle 1. Therefore, when we sum over all internal force vectors in 
Equation 9.38, they cancel in pairs and we find that the net force on the system is 
caused only by external forces. We can then write Equation 9.38 in the form

 o F
S

ext 5 M aSCM (9.39)

That is, the net external force on a system of particles equals the total mass 
of the system multiplied by the acceleration of the center of mass. Comparing 
Equation 9.39 with Newton’s second law for a single particle, we see that the 

Velocity of the center of 
mass of a system of particles

Total momentum of a 
system of particles

Acceleration of the center of 
mass of a system of particles

Newton’s second law for 
a system of particles

9.11 c o n t i n u e d

Find the total mass of the rod: M 5 # dm 5 #
L

0
 l dx 5 #

L

0
 ax dx 5

aL2

2

Substitute M into the expression for xCM: xCM 5
aL3

3aL2y2
5  2

3L

Finalize  Notice that the center of mass in part (B) is farther to the right than that in part (A). That result is reasonable 
because the elements of the rod become more massive as one moves to the right along the rod in part (B).
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particle model we have used in several chapters can be described in terms of 
the center of mass:

The center of mass of a system of particles having combined mass M moves 
like an equivalent single particle of mass M would move under the influence 
of the net external force on the system.

Let us integrate Equation 9.39 over a finite time interval:

#o F
S

ext dt 5 # M aSCM dt 5 # M 
d vSCM

dt
 dt 5 M  # d vSCM 5 M DvSCM

Notice that this equation can be written as

 DpStot 5  I
S

 (9.40)

where  I
S

 is the impulse imparted to the system by external forces and pStot  is the 
momentum of the system. Equation 9.40 is the generalization of the impulse–
momentum theorem for a particle (Eq. 9.13) to a system of many particles. It is also 
the mathematical representation of the nonisolated system (momentum) model for 
a system of many particles.

Finally, if the net external force on a system is zero so that the system is isolated, 
it follows from Equation 9.39 that

M aSCM 5 M 
d vSCM

dt
5 0

Therefore, the isolated system model for momentum for a system of many particles 
is described by

 DpStot 5 0 (9.41)

which can be rewritten as

 M vSCM 5 pStot 5 constant swhen o F
S

ext 5 0d (9.42)

That is, the total linear momentum of a system of particles is conserved if no net 
external force is acting on the system. It follows that for an isolated system of par-
ticles, both the total momentum and the velocity of the center of mass are con-
stant in time. This statement is a generalization of the isolated system (momentum) 
model for a many-particle system.

Suppose the center of mass of an isolated system consisting of two or more mem-
bers is at rest. The center of mass of the system remains at rest if there is no net 
force on the system. For example, consider a system of a swimmer standing on a 
raft, with the system initially at rest. When the swimmer dives horizontally off the 
raft, the raft moves in the direction opposite that of the swimmer and the center of 
mass of the system remains at rest (if we neglect friction between raft and water). 
Furthermore, the linear momentum of the diver is equal in magnitude to that of 
the raft, but opposite in direction.

Q uick Quiz 9.8  A cruise ship is moving at constant speed through the water. 
The vacationers on the ship are eager to arrive at their next destination. They 
decide to try to speed up the cruise ship by gathering at the bow (the front) and 
running together toward the stern (the back) of the ship. (i) While they are run-
ning toward the stern, is the speed of the ship (a) higher than it was before,  
(b) unchanged, (c) lower than it was before, or (d) impossible to determine?  
(ii) The vacationers stop running when they reach the stern of the ship. After they 
have all stopped running, is the speed of the ship (a) higher than it was before they 
started running, (b) unchanged from what it was before they started running,  
(c) lower than it was before they started running, or (d) impossible to determine?

  Impulse–momentum theorem 
for a system of particles
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 Conceptual Example 9.12    Exploding Projectile

A projectile fired into the air suddenly explodes into several fragments (Fig. 9.21).

(A) What can be said about the motion of the center of mass of the system made up 
of all the fragments after the explosion?

S O L U T I O N

Neglecting air resistance, the only external force on the projectile is the gravitational 
force. Therefore, if the projectile did not explode, it would continue to move along the 
parabolic path indicated by the dashed line in Figure 9.21. Because the forces caused by 
the explosion are internal, they do not affect the motion of the center of mass of the sys-
tem (the fragments). Therefore, after the explosion, the center of mass of the fragments 
follows the same parabolic path the projectile would have followed if no explosion had 
occurred.

(B) If the projectile did not explode, it would land at a distance R from its launch 
point. Suppose the projectile explodes and splits into two pieces of equal mass. One 
piece lands at a distance 2R to the right of the launch point. Where does the other 
piece land?

S O L U T I O N

As discussed in part (A), the center of mass of the two-piece system lands at a distance R from the launch point. One of 
the pieces lands at a farther distance R from the landing point (or a distance 2R from the launch point), to the right in  
Figure 9.21. Because the two pieces have the same mass, the other piece must land a distance R to the left of the landing point 
in Figure 9.21, which places this piece right back at the launch point!

Figure 9.21 (Conceptual  
Example 9.12) When a projectile 
explodes into several fragments, the 
center of mass of the system made up 
of all the fragments follows the same 
parabolic path the projectile would 
have taken had there been  
no explosion.

R

 Example 9.13    The Exploding Rocket

A rocket is fired vertically upward. At the instant it reaches an altitude of 1 000 m and a speed of vi 5 300 m/s, it explodes 
into three fragments having equal mass. One fragment moves upward with a speed of v1 5 450 m/s following the explosion. 
The second fragment has a speed of v2 5 240 m/s and is moving east right after the explosion. What is the velocity of the 
third fragment immediately after the explosion?

S O L U T I O N

Conceptualize  Picture the explosion in your mind, with one piece going upward and a second piece moving horizontally 
toward the east. Do you have an intuitive feeling about the direction in which the third piece moves?

Categorize  This example is a two-dimensional problem 
because we have two fragments moving in perpendicular direc-
tions after the explosion as well as a third fragment moving in 
an unknown direction in the plane defined by the velocity vec-
tors of the other two fragments. We assume the time interval 
of the explosion is very short, so we use the impulse approx-
imation in which we ignore the gravitational force and air  

resistance. Because of the short time interval and the ignoring 
of external forces, the center of mass of the system remains 
fixed in space during the explosion. Therefore, the rocket is 
an isolated system in terms of momentum. Equation 9.41 describes 
the situation, and the total momentum pSi of the rocket imme-
diately before the explosion must equal the total momentum pSf  
of the fragments immediately after the explosion.

Analyze Because the three fragments have equal mass, the mass of each fragment is M/3, where M is the total mass of the 
rocket. We will let vS3  represent the unknown velocity of the third fragment.

Use the isolated system (momentum) model to equate  DpS 5 0    S    pSi 5 pSf     S    M vSi 5
M
3

 vS1 1
M
3

 vS2 1
M
3

 vS3 
the initial and final momenta of the system and  
express the momenta in terms of masses and velocities:

Solve for vS3: vS3 5 3vSi 2 vS1 2 vS2

Substitute the numerical values: vS3 5 3s300 j
⁄
 mysd 2 s450  j

⁄
 mysd 2 s240  i

⁄
 mysd 5 s2240 i

⁄
1 450 j

⁄
d mys
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   9.8    Deformable Systems
So far in our discussion of mechanics, we have analyzed the motion of particles or 
nondeformable objects that can be modeled as particles. The discussion in Section 9.7  
can be applied to an analysis of the motion of deformable systems. For example, 
suppose you stand on a skateboard and push off a wall, setting yourself in motion 
away from the wall. Your body has deformed during this event: your arms were bent 
before the event, and they straightened out while you pushed off the wall. How 
would we describe this event?

The force from the wall on your hands moves through no displacement; the 
force is always located at the interface between the wall and your hands. Therefore, 
the force does no work on the system, which is you and your skateboard. Pushing 
off the wall, however, does indeed result in a change in the kinetic energy of the 
system. If you try to use the work–kinetic energy theorem, W 5 DK, to describe this 
event, you will notice that the left side of the equation is zero but the right side is 
not zero. The work–kinetic energy theorem is not valid for this event and is often 
not valid for systems that are deformable. 

To analyze the motion of deformable systems, we appeal to Equation 8.2, the 
conservation of energy equation, and Equation 9.40, the impulse–momentum the-
orem. For the example of you pushing off the wall on your skateboard, identifying 
the system as you and the skateboard, Equation 8.2 gives

DK 1 DU 5 0

where DK is the change in kinetic energy, which is related to the increased speed 
of the system, and DU is the decrease in potential energy stored in your body from 
previous meals. This equation tells us that the system transformed potential energy 
in your body into kinetic energy by virtue of the muscular exertion necessary to 
push off the wall. Notice that the system is isolated in terms of energy but noniso-
lated in terms of momentum.

Applying Equation 9.40 to the system in this situation gives us

DpStot 5  I
S

 S m DvS 5 # F
S

wall dt

where F
S

wall is the force exerted by the wall on your hands, m is the mass of you and 
the skateboard, and DvS is the change in the velocity of the system during the event. 
To evaluate the right side of this equation, we would need to know how the force 
from the wall varies in time. In general, this process might be complicated. In the 
case of constant forces, or well-behaved forces, however, the integral on the right 
side of the equation can be evaluated.

Deformable systems occur often in common situations. Any time you run or 
jump, your body is a deformable system. A gymnast or a platform diver perform-
ing a routine is a deformable system. In Example 9.14 (page 238), we investigate a 
deformable system with two blocks and a spring. Beginning in Chapter 18, we will 
look at very important deformable systems: samples of gas changing in size as they 
undergo thermodynamic processes.

9.13 c o n t i n u e d

Finalize  Notice that this event is the reverse of a perfectly inelastic collision. There is one object before the collision and 
three objects afterward. Imagine running a movie of the event backward: the three objects would come together and become 
a single object. In a perfectly inelastic collision, the kinetic energy of the system decreases. If you were to calculate the kinetic 
energy before and after the event in this example, you would find that the kinetic energy of the system increases. (Try it!) 
This increase in kinetic energy comes from the potential energy stored in whatever fuel exploded to cause the breakup of 
the rocket.
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 Example 9.14    Pushing on a Spring3

As shown in Figure 9.22a, two blocks are at rest on a frictionless, level table. Both 
blocks have the same mass m, and they are connected by a spring of negligible mass. 
The separation distance of the blocks when the spring is relaxed is L. During a time 
interval Dt, a constant force of magnitude F is applied horizontally to the left block,  
moving it through a distance x1 as shown in Figure 9.22b. During this time interval, 
the right block moves through a distance x2. At the end of this time interval, the force 
F is removed.

(A)  Find the resulting speed vSCM of the center of mass of the system.

S O L U T I O N

Conceptualize Imagine what happens as you push on the left block. It begins to move to 
the right in Figure 9.22, and the spring begins to compress. As a result, the spring pushes 
to the right on the right block, which begins to move to the right. At any given time, the 
blocks are generally moving with different velocities. As the center of mass of the system 
moves to the right with a constant speed after the force is removed, the two blocks oscil-
late back and forth with respect to the center of mass.

Categorize  We apply three analysis models in this problem: the deformable system of 
two blocks and a spring is modeled as a nonisolated system in terms of energy because work is being done on it by the applied 
force. It is also modeled as a nonisolated system in terms of momentum because of the force acting on the system during a time 
interval. Because the applied force on the system is constant, the acceleration of its center of mass is constant and the center of 
mass is modeled as a particle under constant acceleration.

Analyze  Using the nonisolated system (momentum) model, we apply the impulse–momentum theorem to the system of two 
blocks, recognizing that the force F  is constant during the time interval Dt while the force is applied.

Write Equation 9.40 for the system: Dpx 5 Ix  S   s2mdsvCM 2 0d 5  F Dt

   (1)   2mvCM 5  F Dt

During the time interval Dt, the center of mass of the  Dt 5

1
2  
sx1 1 x2d

vCM,avg

 
system moves a distance 12sx1 1 x2d. Use this fact to  
express the time interval in terms of vCM,avg:

Because the center of mass is modeled as a particle  Dt 5

1
2  
sx1 1 x2d

1
2  
s0 1 vCMd

5
sx1 1 x2d

vCM

 
under constant acceleration, the average velocity of  
the center of mass is the average of the initial velocity,  
which is zero, and the final velocity vCM:

Substitute this expression into Equation (1): 2mvCM 5 F  
sx1 1 x2d

vCM

Solve for vCM: vCM 5  ÎF  
sx1 1 x2d

2m

(B) Find the total energy of the system associated with vibration relative to its center of mass after the force F  is removed.

S O L U T I O N

Analyze  The vibrational energy is all the energy of the system other than the kinetic energy associated with translational 
motion of the center of mass. To find the vibrational energy, we apply the conservation of energy equation (Eq. 8.2). The 
kinetic energy of the system can be expressed as K 5 KCM 1 Kvib, where Kvib is the kinetic energy of the blocks relative to  
the center of mass due to their vibration. The potential energy of the system is Uvib, which is the potential energy stored in the 
spring when the separation of the blocks is some value other than L.

mm

L

F

x2x1

m m

a

b

Figure 9.22 (Example 9.14)  
(a) Two blocks of equal mass are 
connected by a spring. (b) The left 
block is pushed with a constant 
force of magnitude F and moves a 
distance x1 during some time inter-
val. During this same time interval, 
the right block moves through a 
distance x2.

3Example 9.14 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher 43:10, 2005.
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   9.9    Rocket Propulsion
When ordinary vehicles such as cars are propelled, the driving force for the motion 
is friction. In the case of the car, the driving force is the force exerted by the road 
on the car. We can model the car as a nonisolated system in terms of momentum. 
An impulse is applied to the car from the roadway, and the result is a change in the 
momentum of the car as described by Equation 9.40.

A rocket moving in space, however, has no road to push against. The rocket is an 
isolated system in terms of momentum. Therefore, the source of the propulsion of 
a rocket must be something other than an external force. The operation of a rocket 
depends on the law of conservation of linear momentum as applied to an isolated 
system, where the system is the rocket plus its ejected fuel.

Rocket propulsion can be understood by first considering our archer standing 
on frictionless ice in Example 9.1. Imagine the archer fires several arrows hori-
zontally. For each arrow fired, the archer receives a compensating momentum 
in the opposite direction. As more arrows are fired, the archer moves faster and 
faster across the ice. In addition to this analysis in terms of momentum, we can also 
understand this phenomenon in terms of Newton’s second and third laws. Every 
time the bow pushes an arrow forward, the arrow pushes the bow (and the archer) 
backward, and these forces result in an acceleration of the archer. Figure 9.23a 
shows this mechanism used for maneuvering an astronaut in space. Instead of fir-
ing arrows like the archer, the astronaut fires short bursts of nitrogen gas.

In a similar manner, as a rocket moves in free space, its linear momentum 
changes when some of its mass is ejected in the form of exhaust gases. Because 
the gases are given momentum when they are ejected out of the engine, the rocket 
receives a compensating momentum in the opposite direction. Therefore, the 
rocket is accelerated as a result of the “push,” or thrust, from the exhaust gases. In 
free space, the center of mass of the system (rocket plus expelled gases) moves uni-
formly, independent of the propulsion process.4

Suppose at some time t the magnitude of the momentum of a rocket plus its fuel is 
Mv, where v is the speed of the rocket relative to the Earth (Fig. 9.23b). Over a short 
time interval Dt, the rocket ejects fuel of mass Dm. At the end of this interval, the 
rocket’s mass is M 2 Dm and its speed is v 1 Dv, where Dv is the change in speed of 

9.14 c o n t i n u e d

From the nonisolated system (energy) model,  (2)   DKCM 1 DK vib 1 DUvib 5 W 
express Equation 8.2 for this system:

Express Equation (2) in an alternate form, noting that  DKCM 1 DEvib 5 W 
Kvib 1 Uvib 5 Evib:

Substitute for each of the terms in this equation: sKCM 2 0d 1 sEvib 2 0d 5 Fx1 S Evib 5 Fx1 2 KCM

Use the result from part (A): Evib 5 Fx12
1
2  
s2mdv 2

CM 5 Fx12
1
2  
s2md3F  

sx1 1 x2d

2m 4 5 F  
sx1 2 x2d

2

Finalize  Neither of the two answers in this example depends on the spring length, the spring constant, or the time interval. 
Notice also that the magnitude x1 of the displacement of the point of application of the applied force is different from the 
magnitude 1

2 sx1 1 x2d of the displacement of the center of mass of the system. This difference reminds us that the displace-
ment in the definition of work (Eq. 7.1) is that of the point of application of the force.

4The rocket and the archer represent cases of the reverse of a perfectly inelastic collision: momentum is conserved, 
but the kinetic energy of the rocket–exhaust gas system increases (at the expense of chemical potential energy in 
the fuel), as does the kinetic energy of the archer–arrow system (at the expense of potential energy from the archer’s 
previous meals when he pulls back on the bowstring and stretches it).

Figure 9.23  Rocket propulsion. 
(a) The force from a nitrogen- 
propelled, hand-controlled device 
allows an astronaut to move about 
freely in space without restrictive 
tethers, using the thrust force 
from the expelled nitrogen. (b) 
The initial mass of a rocket plus 
all its fuel is M at a time t, and its 
speed is v. (c) At a time t 1 Dt, the 
rocket’s mass has been reduced 
to M 2 Dm and an amount of fuel 
Dm has been ejected. The rocket’s 
speed increases by an amount Dv.
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240 Chapter 9 Linear Momentum and Collisions

the rocket (Fig. 9.23c). If the fuel is ejected with a speed ve relative to the rocket (the 
subscript e stands for exhaust, and ve is usually called the exhaust speed), the velocity 
of the fuel relative to the Earth is v 2 ve. Because the system of the rocket and the 
ejected fuel is isolated, we apply the isolated system model for momentum and obtain

 Dp 5 0   S   pi 5 pf   S   Mv 5 sM 2 Dmdsv 1 Dvd 1 Dm sv 2 ve 
d 

Simplifying this expression gives

 MDv 2 DmDv 5 ve Dm (9.43)

Solving for the change in speed, we find

 Dv 5
veDm

M 2 Dm
 (9.44)

This equation is valid for a one-time ejection of mass from the rocket. It is also valid 
for any situation in which an object ejects mass, causing the object to move in the 
opposite direction. The equation can be applied to the archer problem in Example 
9.1, recognizing that the initial mass of the system was that of both the archer and 
the arrow, M = 60.030 kg.

If we now take the limit as Dt goes to zero, we let Dv S dv and Dm S dm in 
Equation 9.43. In addition, we ignore the term dm dv because this product of two 
infinitesimal quantities is much smaller than the other terms in the equation. Fur-
thermore, the increase in the exhaust mass dm corresponds to an equal decrease in 
the rocket mass, so dm 5 2dM. Using this fact gives

 M dv 5 ve dm 5 2ve dM (9.45)

Now divide the equation by M and integrate, taking the initial mass of the rocket 
plus fuel to be Mi and the final mass of the rocket plus its remaining fuel to be Mf . 
The result is

#
vf

vi

 dv 5 2ve #
Mf

Mi

 
dM
M

 vf 2 vi 5 ve lnSMi

Mf
D (9.46)

which is the basic expression for rocket propulsion. First, Equation 9.46 tells us that 
the increase in rocket speed is proportional to the exhaust speed ve of the ejected 
gases. Therefore, the exhaust speed should be very high. Second, the increase in 
rocket speed is proportional to the natural logarithm of the ratio Mi/Mf . Therefore, 
this ratio should be as large as possible; that is, the mass of the rocket without its fuel 
should be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust gases. 
We obtain the following expression for the thrust from Newton’s second law and 
Equation 9.45:

 Thrust 5 M 
dv
dt

5 *ve 
dM
dt * (9.47)

This expression shows that the thrust increases as the exhaust speed increases and 
as the rate of change of mass (called the burn rate) increases.

Expression for rocket  
propulsion

 Example 9.15   A Rocket in Space

A rocket moving in space, far from all other objects, has a speed of 3.0 3 103 m/s relative to the Earth. Its engines are 
turned on, and fuel is ejected in a direction opposite the rocket’s motion at a speed of 5.0 3 103 m/s relative to the rocket.

(A)  What is the speed of the rocket relative to the Earth once the rocket’s mass is reduced to half its mass before ignition?
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9.15 c o n t i n u e d

S O L U T I O N

Conceptualize  Figure 9.23 shows the situation in this problem. From the discussion in this section and scenes from science 
fiction movies, we can easily imagine the rocket accelerating to a higher speed as the engine operates.

Categorize  This problem is a substitution problem in which we use given values in the equations derived in this section.

Solve Equation 9.46 for the final velocity and substitute  vf 5 vi 1 ve lnSMi

Mf
D 

the known values:

    5 3.0 3 103 mys 1 s5.0 3 103 mysd lnS Mi

0.50Mi
D

  5   6.5 3 103 m/s

(B) What is the thrust on the rocket if it burns fuel at the rate of 50 kg/s?

S O L U T I O N

Use Equation 9.47, noting that dM/dt 5 50 kg/s:

Thrust 5 *ve 
dM
dt * 5 s5.0 3 103 mysds50 kgysd 5 2.5 3 105 N

 Example 9.16    Fighting a Fire

Two firefighters must apply a total force of 600 N to steady a hose that is discharging water at the rate of 3 600 L/min. Esti-
mate the speed of the water as it exits the nozzle.

S O L U T I O N

Conceptualize  As the water leaves the hose, it acts in a way similar to the gases being ejected from a rocket engine. As a result, a 
force (thrust) acts on the firefighters in a direction opposite the direction of motion of the water. In this case, we want the end 
of the hose to be modeled as a particle in equilibrium rather than to accelerate as in the case of the rocket. Consequently, the 
firefighters must apply a force of magnitude equal to the thrust in the opposite direction to keep the end of the hose stationary.

Categorize  This example is a substitution problem in which we use given values in an equation derived in this section. The 
water exits at 3 600 L/min, which is 60 L/s. Knowing that 1 L of water has a mass of 1 kg, we estimate that about 60 kg of water 
leaves the nozzle each second.

Use Equation 9.47 for the thrust: Thrust 5 *ve 
dM
dt

 *
Solve for the exhaust speed:  ve 5

Thrust
udMydtu

Substitute numerical values: ve 5
600 N

60 kgys
5 10 mys

summary
 › Definitions

The linear momentum pS of a particle of mass m moving with a 
velocity vS is

 pS ; mvS (9.2)

The impulse imparted to a particle by a net force oF
S

 is 
equal to the time integral of the force:

  I
S

; #
tf

t i

 o F
S

 dt (9.9)

continued
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An inelastic collision is one for which the total 
kinetic energy of the system of colliding parti-
cles is not conserved. A perfectly inelastic colli-
sion is one in which the colliding particles stick 
together after the collision. An elastic collision is 
one in which the kinetic energy of the system is 
conserved.

The position vector of the center of mass of a system of particles is  
defined as

 rSCM ;
1
M

 o
i

mi r
S

i (9.31)

where M 5 oi mi is the total mass of the system and rSi is the position vector 
of the ith particle.

 › Concepts and Principles

 › Analysis Models for Problem Solving

The position vector of the center of mass of an extended object can be 
obtained from the integral expression

 rSCM 5
1
M

 # rS dm (9.34)

The velocity of the center of mass for a system of particles is

 vSCM 5
1
Mo

i

mi v
S

i (9.35)

The total momentum of a system of particles equals the total mass 
multiplied by the velocity of the center of mass.

Nonisolated System (Momentum).  If a system interacts 
with its environment in the sense that there is an exter-
nal force on the system, the behavior of the system is 
described by the impulse–momentum theorem:

 DpStot 5 I
S

 (9.40)

Newton’s second law applied to a system of particles is

 o F
S

ext 5 M aSCM  (9.39)

where aSCM is the acceleration of the center of mass 
and the sum is over all external forces. The center 
of mass moves like an imaginary particle of mass M 
under the influence of the resultant external force on 
the system.

Isolated System (Momentum).  The total momentum of an isolated 
system (no external forces) is conserved regardless of the nature of 
the forces between the members of the system:

 DpStot 5 0 (9.41)

The system may be isolated in terms of momentum but nonisolated 
in terms of energy, as in the case of inelastic collisions.

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are a football player on your school’s team. In practice, 
you kick a 0.400-kg football from the ground at the 20-yard 
line of a football field laid out exactly along a north–south 
line. The ball’s initial velocity vector is directed at 30.0° 
above the horizontal, toward the north, and has a magni-
tude of 27.0 m/s. You watch the ball as it rises in the air. 
Just as the ball reaches its highest point in its parabolic 

trajectory, a 4.18-kg eagle flying due south and along a  
horizontal line collides with the ball. Assume that the highly 
inflated ball makes an elastic collision with the hard beak 
of the bird, and that the ball rebounds from the collision 
with a velocity vector that is horizontal and due south. The 
ball lands back at the exact point on the ground from which 
it was kicked. (a) How fast was the eagle flying? (Ignore air 
resistance.) (b) How fast and in what direction is the eagle 
moving just after the collision? (Assume no flapping of 
wings has occurred yet!) (c) In reality, the collision will not 
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be elastic: some kinetic energy will be converted to other 
forms. With the assumption of some kinetic energy lost in 
an inelastic collision, will the required speed of the eagle be 
higher or lower than in part (a)?

2. ACTIvITy  Carefully draw a right triangle on a piece of card-
board, such that one of its non-hypotenuse legs is 30–40 cm 
in length and the other leg is much shorter. Measure the exact 
midpoint of each of the three sides of the triangle and mark 
these three points. Draw a line across the triangle, from a cor-
ner of the triangle to the midpoint of the opposite side. Repeat 
for the other two corners. The three lines happen to intersect 

at the center of mass of the triangle. Draw a fourth line perpen-
dicular to the longer non-hypotenuse leg, passing through the 
center of mass, and ending as it crosses the hypotenuse of the 
triangle. Punch a hole in the cardboard just inside the edge of  
the triangle where the fourth line crosses the hypotenuse. 
Carefully cut the triangle out of the cardboard. Tie a string 
through the hole and hang the triangle from the string. The 
longer side of the triangle should be parallel to the table. Why 
should this be true? Now measure the distance along the lon-
ger leg from the smaller angle to the fourth line. What fraction 
of the entire longer leg is this distance?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

section 9.1 Linear Momentum

1. A particle of mass m moves with momentum of magnitude p. 
(a) Show that the kinetic energy of the particle is K 5 p2/2m. 
(b) Express the magnitude of the particle’s momentum in 
terms of its kinetic energy and mass.

2. A 3.00-kg particle has a velocity of s3.00  i
⁄

2 4.00 j
⁄
d m/s. (a) 

Find its x and y components of momentum. (b) Find the 
magnitude and direction of its momentum.

3. A baseball approaches home plate at a speed of 45.0 m/s,  
moving horizontally just before being hit by a bat. The batter 
hits a pop-up such that after hitting the bat, the baseball is 
moving at 55.0 m/s straight up. The ball has a mass of 145 g 
and is in contact with the bat for 2.00 ms. What is the average 
vector force the ball exerts on the bat during their interaction?

section 9.2 Analysis Model: Isolated System (Momentum)

4. A 65.0-kg boy and his 40.0-kg sister, both wearing roller 
blades, face each other at rest. The girl pushes the boy hard, 
sending him backward with velocity 2.90 m/s toward the 
west. Ignore friction. (a) Describe the subsequent motion of 
the girl. (b) How much potential energy in the girl’s body is 
converted into mechanical energy of the boy–girl system? 
(c) Is the momentum of the boy–girl system conserved in 
the pushing-apart process? If so, explain how that is possible 
considering (d) there are large forces acting and (e) there is 
no motion beforehand and plenty of motion afterward.

5. Two blocks of masses m and 3m 
are placed on a frictionless, hor-
izontal surface. A light spring 
is attached to the more mas-
sive block, and the blocks are 
pushed together with the spring 
between them (Fig. P9.5).  
A cord initially holding the 
blocks together is burned; after 
that happens, the block of mass 
3m moves to the right with a 
speed of 2.00 m/s. (a) What is 
the velocity of the block of mass 
m? (b) Find the system’s original 
elastic potential energy, taking  

m 5 0.350 kg. (c) Is the original energy in the spring or 
in the cord? (d) Explain your answer to part (c). (e) Is the 
momentum of the system conserved in the bursting-apart 
process? Explain how that is possible considering (f) there 
are large forces acting and (g) there is no motion before-
hand and plenty of motion afterward?

6. When you jump straight up as high as you can, what is the 
order of magnitude of the maximum recoil speed that you 
give to the Earth? Model the Earth as a perfectly solid object. 
In your solution, state the physical quantities you take as 
data and the values you measure or estimate for them.

section 9.3 Analysis Model: Nonisolated System (Momentum)

7. A glider of mass m is free to slide along a horizontal air 
track. It is  pushed against a launcher at one end of the 
track. Model the launcher as a light spring of force constant 
k compressed by a distance x. The glider is released from 
rest. (a) Show that the glider attains a speed of v 5 x(k/m)1/2. 
(b) Show that the magnitude of the impulse imparted to the 
glider is given by the expression I  5 x(km)1/2. (c) Is more 
work done on a cart with a large or a small mass?

8. You and your brother argue often about how to safely secure 
a toddler in a moving car. You insist that special toddler 
seats are critical in improving the chances of a toddler sur-
viving a crash. Your brother claims that, as long as his wife 
is buckled in next to him with a seat belt while he drives, she 
can hold onto their toddler on her lap in a crash. You decide 
to perform a calculation to try to convince your brother. 
Consider a hypothetical collision in which the 12-kg tod-
dler and his parents are riding in a car traveling at 60 mi/h  
relative to the ground. The car strikes a wall, tree, or another 
car, and is brought to rest in 0.10 s. You wish to demonstrate 
to your brother the magnitude of the force necessary for his 
wife to hold onto their child during the collision.

9. The front 1.20 m of a 1 400-kg car is designed as a “crumple 
zone” that collapses to absorb the shock of a collision. If a car 
traveling 25.0 m/s stops uniformly in 1.20 m, (a) how long 
does the collision last, (b) what is the magnitude of the aver-
age force on the car, and (c) what is the magnitude of the 
acceleration of the car? Express the acceleration as a multiple 
of the acceleration due to gravity.

10. The magnitude of the net force exerted in the x direction 
on a 2.50-kg particle varies in time as shown in Figure P9.10 
(page 244). Find (a) the impulse of the force over the 5.00-s 
time interval, (b) the final velocity the particle attains if it is 
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244 Chapter 9 Linear Momentum and Collisions

originally at rest, (c) its final 
velocity if its original velocity 
is 22.00 i

⁄
 m/s, and (d) the 

average force exerted on the 
particle for the time interval 
between 0 and 5.00 s.

11. Water falls without splashing 
at a rate of 0.250 L/s from a 
height of 2.60 m into a bucket 
of mass 0.750 kg on a scale. If 
the bucket is originally empty, what does the scale read in 
newtons 3.00 s after water starts to accumulate in it?

section 9.4 Collisions in One Dimension

12. A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an east-
erly direction crashes into the back of a 9 000-kg truck mov-
ing in the same direction at vTi 5 20.0 m/s (Fig. P9.12). The 
velocity of the car immediately after the collision is vCf 5 
18.0 m/s to the east. (a) What is the velocity of the truck 
immediately after the collision? (b) What is the change in 
mechanical energy of the car–truck system in the collision? 
(c) Account for this change in mechanical energy.

13. A railroad car of mass 2.50 3 104 kg is moving with a speed 
of 4.00 m/s. It collides and couples with three other coupled 
railroad cars, each of the same mass as the single car and mov-
ing in the same direction with an initial speed of 2.00 m/s.  
(a) What is the speed of the four cars after the collision? (b) 
What is the decrease in mechanical energy in the collision?

14. Four railroad cars, each of mass 2.50 3 104 kg, are coupled 
together and coasting along horizontal tracks at speed vi 
toward the south. A very strong but foolish movie actor, 
riding on the second car, uncouples the front car and gives 
it a big push, increasing its speed to 4.00 m/s southward. 
The remaining three cars continue moving south, now at 
2.00 m/s. (a) Find the initial speed of the four cars. (b) By 
how much did the potential energy within the body of the 
actor change? (c) State the relationship between the process 
described here and the process in Problem 13.

15. A car of mass m moving at a speed v1 collides and couples 
with the back of a truck of mass 2m moving initially in the 
same direction as the car at a lower speed v2. (a) What is the 
speed vf of the two vehicles immediately after the collision? 
(b) What is the change in kinetic energy of the car–truck 
system in the collision?

16. A 7.00-g bullet, when fired from a gun into a 1.00-kg block 
of wood held in a vise, penetrates the block to a depth of 
8.00 cm. This block of wood is next placed on a frictionless 
horizontal surface, and a second 7.00-g bullet is fired from 
the gun into the block. To what depth will the bullet penet-
rate the block in this case?

17. A tennis ball of mass 57.0 g is held just above a basketball 
of mass 590 g as shown in Figure P9.17. With their centers  

vertically aligned, both balls are released 
from rest at the same time, to fall through 
a distance of 1.20 m. (a) Find the mag-
nitude of the downward velocity with 
which the basketball reaches the ground. 
(b) Assume that an elastic collision with 
the ground instantaneously reverses the 
velocity of the basketball while the tennis 
ball is still moving down. Next, the two balls meet in an elastic 
collision. To what height does the tennis ball rebound?

18. (a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, and  
m3 5 3.00 kg move on a frictionless, horizontal track with 
speeds of v1 5 5.00 m/s to the right, v2 5 3.00 m/s to the 
right, and v3 5 4.00 m/s to the left as shown in Figure P9.18. 
Velcro couplers make the carts stick together after colliding. 
Find the final velocity of the train of three carts. (b) What 
If? Does your answer in part (a) require that all the carts 
collide and stick together at the same moment? What if they 
collide in a different order?

section 9.5 Collisions in Two Dimensions

19. You have been hired as an expert witness by an attorney 
for a trial involving a traffic accident. The attorney’s client, 
the plaintiff in this case, was traveling eastbound toward an 
intersection at 13.0 m/s as measured just before the acci-
dent by a roadside speed meter, and as seen by a trustworthy 
witness. As the plaintiff entered the intersection, his car 
was struck by a northbound driver, the defendant in this 
case, driving a car with identical mass to the plaintiff’s. The 
vehicles stuck together after the collision and left parallel 
skid marks at an angle of u 5 55.08 north of east, as meas-
ured by accident investigators. The defendant is claiming 
that he was traveling within the 35-mi/h speed limit. What 
advice do you give to the attorney?

20. Two shuffleboard disks of equal mass, one orange and the 
other yellow, are involved in an elastic, glancing collision. 
The yellow disk is initially at rest and is struck by the orange 
disk moving with a speed of 5.00 m/s. After the collision, 
the orange disk moves along a direction that makes an 
angle of 37.08 with its initial direction of motion. The veloc-
ities of the two disks are perpendicular after the collision.  
Determine the final speed of each disk.

21. Two shuffleboard disks of equal mass, one orange and the 
other yellow, are involved in an elastic, glancing collision. 
The yellow disk is initially at rest and is struck by the orange 
disk moving with a speed vi. After the collision, the orange 
disk moves along a direction that makes an angle u with its 
initial direction of motion. The velocities of the two disks 
are perpendicular after the collision. Determine the final 
speed of each disk.

22. A 90.0-kg fullback running east with a speed of 5.00 m/s is 
tackled by a 95.0-kg opponent running north with a speed 
of 3.00 m/s. (a) Explain why the successful tackle consti-
tutes a perfectly inelastic collision. (b) Calculate the velocity 
of the players immediately after the tackle. (c) Determine 
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the decrease in mechanical energy as a result of the colli-
sion. Account for this decrease.

23. A proton, moving with a velocity of vi i
⁄
, collides elastically 

with another proton that is initially at rest. Assuming that the 
two protons have equal speeds after the collision, find (a) the 
speed of each proton after the collision in terms of vi and  
(b) the direction of the velocity vectors after the collision.

section 9.6 The Center of Mass

24. A uniform piece of sheet 
metal is shaped as shown in 
Figure P9.24. Compute the x 
and y coordinates of the cen-
ter of mass of the piece.

25. Explorers in the jungle find 
an ancient monument in the 
shape of a large isosceles trian-
gle as shown in Figure P9.25. 
The monument is made from 
tens of thousands of small stone blocks of density 3 800 kg/m3.  
The monument is 15.7 m high and 64.8 m wide at its base 
and is everywhere 3.60 m thick from front to back. Before 
the monument was built many years ago, all the stone blocks 
lay on the ground. How much work did laborers do on the 
blocks to put them in position while building the entire mon-
ument? Note: The gravitational potential energy of an object–
Earth system is given by Ug 5 MgyCM, where M is the total 
mass of the object and yCM is the elevation of its center of 
mass above the chosen reference level.

26. A rod of length 30.0 cm has linear density (mass per length) 
given by

l 5 50.0 1 20.0x

  where x is the distance from one end, measured in meters, 
and l is in grams/meter. (a) What is the mass of the rod? (b) 
How far from the x 5 0 end is its center of mass?

section 9.7 Systems of Many Particles

27. Consider a system of two particles in the xy plane: m1 5 2.00 kg  
is at the location rS1 5 s1.00i

⁄
1 2.00j

⁄
d m and has a velocity of 

s3.00i
⁄

1 0.500j
⁄
d m/s; m2 5 3.00 kg is at rS2 5 s

 
24.00i

⁄
2 3.00j

⁄
d m  

and has velocity s3.00i
⁄

2 2.00j
⁄
d m/s. (a) Plot these particles 

on a grid or graph paper. Draw their position vectors and 
show their velocities. (b) Find the position of the center of 
mass of the system and mark it on the grid. (c) Determine the 
velocity of the center of mass and also show it on the diagram.  
(d) What is the total linear momentum of the system? 

28. The vector position of a 3.50-g particle moving in the xy  
plane varies in time according to rS1 5 s3  i

⁄
1 3  j

⁄
dt 1 2 j

⁄
t2, 

where t is in seconds and rS is in centimeters. At the same 

time, the vector position of a 5.50  g particle varies as 
rS2 5 3  i

⁄
2 2  i

⁄
t2 2 6 j

⁄
t. At t 5 2.50 s, determine (a) the vector 

position of the center of mass of the system, (b) the linear 
momentum of the system, (c) the velocity of the center of 
mass, (d) the acceleration of the center of mass, and (e) the 
net force exerted on the two-particle system.

29. You have been hired as an expert witness in an investiga-
tion of a quadcopter drone incident. The incident occurred 
during a very rare meteor shower during which several 
unusually massive chunks of meteoric material were passing 
through the atmosphere and striking the ground. The 
unmanned drone was hovering at rest over the center of 
a house on fire, having just dropped fire retardant, when 
it seemed to spontaneously explode into four large pieces. 
The locations of the four pieces on the ground were meas-
ured as follows, relative to the center of the house over 
which the drone was hovering:

Piece # Mass (kg)
Distance from Center 

of House (m)
Direction 
from House

1 80.0 150 Due west
2 120 75.0 Due north
3 50.0 90.0 20.0° west  

of south
4 150 50.0 20.0° north 

of east

  The fire department is suggesting that the drone was defec-
tive and exploded while in use. The drone manufacturer is 
suggesting that the drone was struck by a meteorite, causing 
the explosion. Perform a calculation that will show evidence 
suggesting agreement with one of these positions.

section 9.8 Deformable Systems

30. For a technology project, a stu-
dent has built a vehicle, of total 
mass 6.00 kg, that moves itself. 
As shown in Figure  P9.30, it 
runs on four light wheels. A reel 
is attached to one of the axles, 
and a cord originally wound on 
the reel goes up over a pulley 
attached to the vehicle to support 
an elevated load. After the vehicle 
is released from rest, the load des-
cends very slowly, unwinding the 
cord to turn the axle and make 
the vehicle move forward (to the 
left in Fig. P9.30). Friction is neg-
ligible in the pulley and axle bearings. The wheels do not 
slip on the floor. The reel has been constructed with a con-
ical shape so that the load descends at a constant low speed 
while the vehicle moves horizontally across the floor with 
constant acceleration, reaching a final velocity of 3.00  i

⁄
 m/s.  

(a) Does the floor impart impulse to the vehicle? If so, how 
much? (b) Does the floor do work on the vehicle? If so, how 
much? (c) Does it make sense to say that the final momentum 
of the vehicle came from the floor? If not, where did it come 
from? (d)  Does it make sense to say that the final kinetic 
energy of the vehicle came from the floor? If not, where did 
it come from? (e) Can we say that one particular force causes 
the forward acceleration of the vehicle? What does cause it?
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246 Chapter 9 Linear Momentum and Collisions

31. A 60.0-kg person bends his knees and then jumps straight up. 
After his feet leave the floor, his motion is unaffected by air res-
istance and his center of mass rises by a maximum of 15.0 cm. 
Model the floor as completely solid and motionless. (a) Does 
the floor impart impulse to the person? (b) Does the floor 
do work on the person? (c) With what momentum does the 
person leave the floor? (d) Does it make sense to say that this 
momentum came from the floor? Explain. (e) With what kin-
etic energy does the person leave the floor? (f) Does it make 
sense to say that this energy came from the floor? Explain.

section 9.9 Rocket Propulsion

32. A garden hose is held as 
shown in Figure P9.32. 
The hose is originally full 
of motionless water. What 
additional force is neces-
sary to hold the nozzle 
stationary after the water 
flow is turned on if the dis-
charge rate is 0.600 kg/s 
with a speed of 25.0 m/s?

33. A rocket for use in deep space is to be capable of boosting 
a total load (payload plus rocket frame and engine) of 3.00 
metric tons to a speed of 10 000 m/s. (a) It has an engine 
and fuel designed to produce an exhaust speed of 2 000 
m/s. How much fuel plus oxidizer is required? (b) If a dif-
ferent fuel and engine design could give an exhaust speed 
of 5 000 m/s, what amount of fuel and oxidizer would be 
required for the same task? (c) Noting that the exhaust 
speed in part (b) is 2.50 times higher than that in part (a), 
explain why the required fuel mass is not simply smaller by 
a factor of 2.50.

34. A rocket has total mass Mi 5 360 kg, including Mfuel 5  
330  kg of fuel and oxidizer. In interstellar space, it 
starts from rest at the position x 5 0, turns on its 
engine at time t 5 0, and puts out exhaust with rel-
ative speed ve 5 1 500 m/s at the constant rate k 5  
2.50 kg/s. The fuel will last for a burn time of Tb 5 Mfuel/k 5  
330 kg/(2.5 kg/s) 5 132 s. (a) Show that during the burn 
the velocity of the rocket as a function of time is given by

vstd 5 2ve lnS1 2
kt
Mi
D

(b) Make a graph of the velocity of the rocket as a function 
of time for times running from 0 to 132 s. (c) Show that the 
acceleration of the rocket is

a std 5
kve

Mi 2 kt

(d) Graph the acceleration as a function of time. (e) Show 
that the position of the rocket is

x std 5 ve SMi

k
2 tD ln S1 2

kt
Mi
D 1 vet

(f) Graph the position during the burn as a function of time.

additional ProbleMs

35. An amateur skater of mass M is trapped in the middle of an 
ice rink and is unable to return to the side where there is 
no ice. Every motion she makes causes her to slip on the ice 
and remain in the same spot. She decides to try to return 

to safety by throwing her gloves of mass m in the direction 
opposite the safe side. (a) She throws the gloves as hard as 
she can, and they leave her hand with a  horizontal veloc-
ity vSgloves. Explain whether or not she moves. (b) If she does 
move, calculate her velocity vSgirl  relative to the Earth after 
she throws the gloves. (c) Discuss her motion from the point 
of view of the forces acting on her.

36. (a) Figure P9.36 shows three points in the operation of the 
ballistic pendulum discussed in Example 9.6 (and shown in 
Fig. 9.10b). The projectile approaches the pendulum in  
Figure P9.36a. Figure P9.36b shows the situation just after 
the projectile is captured in the pendulum. In Figure P9.36c, 
the pendulum arm has swung upward and come to rest 
momentarily at a height h above its initial position. Prove that 
the ratio of the kinetic energy of the projectile–pendulum 
system immediately after the collision to the kinetic energy 
immediately before is m1/(m1 1 m2). (b) What is the ratio of 
the momentum of the system immediately after the collision 
to the momentum immediately before? (c) A student believes 
that such a large decrease in mechanical energy must be 
accompanied by at least a small decrease in momentum. How 
would you convince this student of the truth?

37. Review. A 60.0-kg person running at an initial speed of  
4.00 m/s jumps onto a 120-kg cart initially at rest (Fig. P9.37).  
The person slides on the cart’s top surface and finally comes 
to rest relative to the cart. The coefficient of kinetic friction 
between the person and the cart is 0.400. Friction between 
the cart and ground can be ignored. (a) Find the final velo-
city of the person and cart relative to the ground. (b) Find the 
friction force acting on the person while he is sliding across 
the top surface of the cart. (c) How long does the friction 
force act on the person? (d) Find the change in momentum 
of the person and the change in momentum of the cart. 
(e) Determine the displacement of the person relative to 
the ground while he is sliding on the cart. (f) Determine  
the displacement of the cart relative to the ground while the  
person is sliding. (g) Find the change in kinetic energy of 
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Figure P9.36 Problems 36 and 43. (a) A metal ball 
moves toward the pendulum. (b) The ball is captured 
by the pendulum. (c) The ball–pendulum combination 
swings up through a height h before coming to rest.
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the person. (h) Find the change in kinetic energy of the 
cart. (i) Explain why the answers to (g) and (h) differ. 
(What kind of collision is this one, and what accounts for 
the loss of mechanical energy?)

38. A cannon is rigidly 
attached to a carriage, 
which can move along 
horizontal rails but is 
connected to a post 
by a large spring, ini-
tially unstretched and 
with force constant 
k 5 2.00 3 104 N/m,  
as shown in Fig ure 
P9.38. The cannon  
fires a 200-kg projectile at a velocity of 125 m/s directed 
45.0° above the horizontal. (a) Assuming that the mass of 
the cannon and its carriage is 5 000 kg, find the recoil speed 
of the cannon. (b) Determine the maximum extension of 
the spring. (c) Find the maximum force the spring exerts 
on the carriage. (d) Consider the system consisting of the 
cannon, carriage, and projectile. Is the momentum of this 
system conserved during the firing? Why or why not? 

39. A 1.25-kg wooden block 
rests on a table over a 
large hole as in Figure 
P9.39. A 5.00-g bullet 
with an initial velocity vi 
is fired upward into the 
bottom of the block and 
remains in the block 
after the collision. The 
block and bullet rise to 
a maximum height of 
22.0 cm. (a) Describe how you would find the initial velocity 
of the bullet using ideas you have learned in this chapter. (b) 
Calculate the initial velocity of the bullet from the informa-
tion provided.

40. A wooden block of mass M rests on a table over a large 
hole as in Figure P9.39. A bullet of mass m with an initial 
velocity of vi is fired upward into the bottom of the block 
and remains in the block after the collision. The block and 
bullet rise to a maximum height of h. (a) Describe how you 
would find the initial velocity of the bullet using ideas you 
have learned in this chapter. (b) Find an expression for the 
initial velocity of the bullet.

41. Two gliders are set in motion on a horizontal air track. A 
light spring of force constant k is attached to the back end of 
the second glider. As shown in Figure P9.41, the first glider, 
of mass m1, moves to the right with speed v1, and the second 
glider, of mass m2, moves more slowly to the right with speed 
v2. When m1 collides with the spring attached to m2, the 
spring compresses by a distance xmax, and the gliders then 
move apart again. In terms of v1, v2, m1, m2, and k, find (a)  

the speed v at maximum compression, (b) the maximum 
compression xmax, and (c) the velocity of each glider after m1 
has lost contact with the spring.

42. Pursued by ferocious wolves, you are in a sleigh with no 
horses, gliding without friction across an ice-covered lake. 
You take an action described by the equations

s270 kgds7.50 mysd  i
⁄
 5 s15.0 kgds2v1f  i

⁄
d 1 s255 kgdsv2f  i

⁄
d

  v1f 1 v2f 5 8.00 mys

(a) Complete the statement of the problem, giving the data 
and identifying the unknowns. (b) Find the values of v1f 
and v2f . (c) Find the amount of energy that has been trans-
formed from potential energy stored in your body to kinetic 
energy of the system.

43. Review. A student performs a ballistic pendulum experi-
ment using an apparatus similar to that discussed in  
Example 9.6 and shown in Figure P9.36. She obtains the fol-
lowing average data: h 5 8.68 cm, projectile mass m1 5 68.8 g,  
and pendulum mass m2 5 263 g. (a) Determine the initial 
speed v1A of the projectile. (b) The second part of her experi-
ment is to obtain v1A by firing the same projectile horizont-
ally (with the pendulum removed from the path) and meas-
uring its final horizontal position x and distance of fall y  
(Fig. P9.43). What numerical value does she obtain for v1A 
based on her measured values of x 5 257 cm and y 5 85.3 cm?  
(c) What factors might account for the difference in this 
value compared with that obtained in part (a)?

44. Why is the following situation impossible? An astronaut, together 
with the equipment he carries, has a mass of 150 kg. He is 
taking a space walk outside his spacecraft, which is drift-
ing through space with a constant velocity. The astronaut 
accidentally pushes against the spacecraft and begins mov-
ing away at 20.0 m/s, relative to the spacecraft, without a 
tether. To return, he takes equipment off his space suit and 
throws it in the direction away from the spacecraft. Because 
of his bulky space suit, he can throw equipment at a max-
imum speed of 5.00 m/s relative to himself. After throwing 
enough equipment, he starts moving back to the spacecraft 
and is able to grab onto it and climb inside.

45. Review. A bullet of mass m 5 8.00 g is fired into a block of 
mass M 5 250 g that is initially at rest at the edge of a fric-
tionless table of height h 5 1.00 m (Fig. P9.45). The bullet 
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248 Chapter 9 Linear Momentum and Collisions

remains in the block, and after the impact the block lands 
d 5 2.00 m from the bottom of the table. Determine the ini-
tial speed of the bullet.

46. Review. A bullet of mass m is fired into a block of mass M 
initially at rest at the edge of a frictionless table of height 
h (Fig. P9.45). The bullet remains in the block, and after 
impact the block lands a distance d from the bottom of the 
table. Determine the initial speed of the bullet.

47. A 0.500-kg sphere moving with a velocity expressed as 
s2.00  i

⁄
2 3.00 j

⁄
1 1.00k

⁄
d m/s strikes a second, lighter 

sphere of mass 1.50 kg moving with an initial velocity of 
s21.00  i

⁄
1 2.00 j

⁄
2 3.00k

⁄
d m/s. (a) The velocity of the 0.500-

kg sphere after the collision is s21.00 i
⁄

1 3.00  j
⁄

2 8.00k
⁄
d 

m/s. Find the final velocity of the 1.50-kg sphere and identify 
the kind of collision (elastic, inelastic, or perfectly inelastic). 
(b) Now assume the velocity of the 0.500-kg sphere after the 
collision is (20.250  i

⁄
 1 0.750  j

⁄
 2 2.00k

⁄
) m/s. Find the final 

velocity of the 1.50-kg sphere and identify the kind of colli-
sion. (c) What If? Take the velocity of the 0.500-kg sphere 
after the collision as s21.00  i

⁄
1 3.00 j

⁄
1 a k

⁄
d m/s. Find the 

value of a and the velocity of the 1.50-kg sphere after an 
elastic collision.

48. Review. A metal cannonball of mass m rests next to a tree 
at the very edge of a cliff 36.0 m above the surface of the 
ocean. In an effort to knock the cannonball off the cliff, 
some children tie one end of a rope around a stone of mass 
80.0 kg and the other end to a tree limb just above the can-
nonball. They tighten the rope so that the stone just clears 
the ground and hangs next to the cannonball. The children 
manage to swing the stone back until it is held at rest 1.80 m  
above the ground. The children release the stone, which 
then swings down and makes a head-on, elastic collision 
with the cannonball, projecting it horizontally off the cliff. 
The cannonball lands in the ocean a horizontal distance R 
away from its initial position. (a) Find the horizontal com-
ponent R of the cannonball’s displacement as it depends 
on m. (b) What is the maximum possible value for R, and  
(c) to what value of m does it correspond? (d) For the stone– 
cannonball–Earth system, is mechanical energy conserved 
throughout the process? Is this principle sufficient to solve 
the entire problem? Explain. (e) What if? Show that R does 
not depend on the value of the gravitational acceleration. Is 
this result remarkable? State how one might make sense of it.

49. Review. A light spring of force constant 3.85 N/m is com-
pressed by 8.00 cm and held between a 0.250-kg block on the 
left and a 0.500-kg block on the right. Both blocks are at rest on 
a horizontal surface. The blocks are released simultaneously so 
that the spring tends to push them apart. Find the maximum 
velocity each block attains if the coefficient of kinetic friction 
between each block and the surface is (a) 0, (b) 0.100, and  
(c) 0.462. Assume the coefficient of static friction is greater 
than the coefficient of kinetic friction in every case.

50. Consider as a system the Sun with the Earth in a circular 
orbit around it. Find the magnitude of the change in the 
velocity of the Sun relative to the center of mass of the sys-
tem over a six-month period. Ignore the influence of other 
celestial objects. You may obtain the necessary astronomical 
data from the endpapers of the book.

51. Review. There are (one can say) three coequal theories of 
motion for a single particle: Newton’s second law, stating 
that the total force on the particle causes its acceleration; 
the work–kinetic energy theorem, stating that the total work 

on the particle causes its change in kinetic energy; and the 
impulse–momentum theorem, stating that the total impulse 
on the particle causes its change in momentum. In this 
problem, you compare predictions of the three theories in 
one particular case. A 3.00-kg object has velocity 7.00  j

⁄
 m/s.  

Then, a constant net force 12.0  i
⁄
 N acts on the object for 

5.00 s. (a) Calculate the object’s final velocity, using the 
impulse–momentum theorem. (b) Calculate its accelera-
tion from aS 5 s vSf 2 vSi dyDt. (c) Calculate its acceleration 
from aS 5 o F

S
ym . (d) Find the object’s vector displacement 

from D rS 5 vSit 1 1
2 aSt 2. (e) Find the work done on the object 

from W 5 F
S 

? D rS. (f) Find the final kinetic energy from 
1
2 mvf

2 5 1
2  
mvSf ? v

S
f . (g) Find the final kinetic energy from 

1
2 mvi

2 1 W. (h) State the result of comparing the answers to 
parts (b) and (c), and the answers to parts (f) and (g).

challenge ProbleMs

 52. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s as shown in Figure P9.52. 
The conveyor belt is supported by frictionless rollers and 
moves at a constant speed of v 5 0.750 m/s under the 
action of a constant horizontal external force F

S
ext supplied 

by the motor that drives the belt. Find (a) the sand’s rate of 
change of momentum in the horizontal direction, (b) the 
force of friction exerted by the belt on the sand, (c) the 
external force F

S
ext , (d) the work done by F

S
ext in 1  s, and 

(e)  the kinetic energy acquired by the falling sand each 
second due to the change in its horizontal motion.  
(f) Why are the answers to parts (d) and (e) different?

 53. Two particles with masses m and 3m are moving toward 
each other along the x axis with the same initial speeds 
vi. Particle m is traveling to the left, and particle 3m is 
traveling to the right. They undergo an elastic glancing 
collision such that particle m is moving in the negative  
y direction after the collision at a right angle from its initial 
direction. (a) Find the final speeds of the two particles in 
terms of vi. (b) What is the angle u at which the particle 3m  
is scattered?

 54. On a horizontal air track, a glider of mass m carries a 
G-shaped post. The post supports a small dense sphere, 
also of mass m, hanging just above the top of the glider 
on a cord of length L. The glider and sphere are initially 
at rest with the cord vertical. A constant horizontal force 
of magnitude F is applied to the glider, moving it through 
displacement x1; then the force is removed. During the 
time interval when the force is applied, the sphere moves 
through a displacement with horizontal component x2. 
(a) Find the horizontal component of the velocity of the 
center of mass of the glider–sphere system when the force 
is removed. (b) After the force is removed, the glider con-
tinues to move on the track and the sphere swings back 
and forth, both without friction. Find an expression for 
the largest angle the cord makes with the vertical.

v
Fext
S

Figure P9.52
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Rotation of a Rigid Object 
About a Fixed Axis

10.1 Angular Position, 
Velocity, and 
Acceleration

10.2 Analysis Model: Rigid 
Object Under Constant  
Angular Acceleration

10.3 Angular and 
Translational Quantities

10.4 Torque

10.5 Analysis Model:  
Rigid Object Under  
a Net Torque

10.6 Calculation of 
Moments  
of Inertia

10.7 Rotational Kinetic 
Energy

10.8 Energy Considerations 
in Rotational Motion

10.9 Rolling Motion of  
a Rigid Object

Storyline You are back at home after your game of pool in the 
previous chapter. You go back into your garage to work on another project. For 
this project, you need some pieces of metal from an older project. The pieces of 
metal have been joined together for years by nuts and bolts, which are now quite 
rusty. Using a wrench, you try to loosen a bolt. You are unable to do so because 
of the rust. You instinctively reach for a piece of hollow pipe that is longer than 
the handle of the wrench and slip it over the handle. Pushing on the far end of the 
pipe, you are now able to loosen the bolt. You say to yourself, “Wait a minute! 
How did I know to use a long piece of pipe? Why did the long pipe make it possi-
ble for me to loosen the rusted bolt?” Your project sits idle while you ponder this 
new development. Then your thoughts progress further. You applied a force on 
the pipe, like the forces studied in Chapter 5. But you didn’t achieve an accelera-
tion of something through space like the objects in Chapter 5. Something rotated: 
the bolt. This is new: force causes rotation. You have more thinking to do. Your 
project sits idle for the rest of the day.

ConneCtions We have focused our attention so far on particles in trans-
lational motion. When we analyzed the motion of objects with a size in previous 
chapters, we ignored any spinning motion of the object. It is now time to not 
ignore this spinning motion. In this chapter, we focus on the rotational motion of 
an object. We will be following the outline of earlier chapters for this new type 
of motion; we will find rotational analogs for position, speed, acceleration, mass, 
force, and energy. Many objects exhibit both translational and rotational motion 
at the same time. We will investigate how to reduce the apparently complicated 
motion of such an object to a combination of the two types of motion. In dealing 

A rusty bolt resists efforts 
to turn it with a wrench. 
How can you loosen the 
bolt? (Scott Richardson/
Shutterstock)
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250 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

with a rotating object, analysis is greatly simplified by assuming the object is 
rigid. A rigid object is one that is nondeformable; that is, the relative locations of 
all particles of which the object is composed remain constant. All real objects are 
deformable to some extent; our rigid-object model, however, is useful in many 
situations in which deformation is negligible. We have developed analysis mod-
els based on particles and systems. In this chapter, we introduce another class 
of analysis models based on the simplification model of a rigid object. In future 
chapters, we will see rotating objects for which we will need these models: the 
spinning Earth in Chapter 13, the armature of a motor in Chapter 30, and an HCl 
molecule in Chapter 42, for example.

   10.1    Angular Position, Velocity, and Acceleration
As mentioned in the introduction, we will develop our understanding of rotational 
motion in a manner parallel to that used for translational motion in previous chap-
ters. We began in Chapter 2 by defining kinematic variables for translational motion: 
position, velocity, and acceleration. We do the same here for rotational motion.

Figure 10.1 illustrates an overhead view of a rotating Blu-ray Disc. The disc rotates 
about a fixed axis perpendicular to the plane of the figure and passing through the 
center of the disc at O. A small element of the disc modeled as a particle at P is at a 
fixed distance r from the origin and rotates about it in a circle of radius r. (In fact, 
every element of the disc undergoes circular motion about O.) It is convenient to rep-
resent the position of P with its polar coordinates (r, u), where r is the distance from 
the origin to P and u is measured counterclockwise from some reference line fixed in 
space as shown in Figure 10.1a. In this representation, the angle u changes in time 
while r remains constant. As the particle moves along the circle from the reference 
line, which is at angle u 5 0, it moves through an arc of length s as in Figure 10.1b. We 
can define the angle u as the ratio of the arc length s to the radius r:

 u 5
s
r

 (10.1a)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1a that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

usradd 5
p

1808
 usdegd

For example, 608 equals p/3 rad and 458 equals p/4 rad.
Based on the definition of the angle u in Equation 10.1a, we can express the arc 

length s through which the particle at P moves in Figure 10.1b as

 s 5 ru  (10.1b)

Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid object 
as well as with an individual particle, which allows us to define the angular position of 
a rigid object in its rotational motion. We choose a reference line on the object, such 
as a line connecting O and a chosen particle on the object. The angular position of 
the rigid object is the angle u between this reference line on the object and the fixed 
reference line in space, which is often chosen as the x axis. Such identification is sim-
ilar to the way we define the position of an object in one-dimensional translational 

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position for 
the disc, a reference line fixed 
in space is chosen. A particle at 
P is located at a distance r from 
the rotation axis through O.

As the disc rotates, the particle at 
P moves through an arc length s 
on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A Blu-ray Disc rotat-
ing about a fixed axis through O 
perpendicular to the plane of the 
figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.
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    10.1 Angular Position, Velocity, and Acceleration 251

motion as the distance x between the object and the reference position, which is the 
origin, x 5 0. Therefore, the angle u plays the same role in rotational motion that 
the position x does in one-dimensional translational motion.

As the particle in question on our rigid object travels from position Ⓐ to posi-
tion Ⓑ in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular 
displacement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
Du

Dt
 (10.2)

In analogy to translational speed, the instantaneous angular speed v is defined 
as the limit of the average angular speed as Dt approaches zero:

 v ; lim
Dt S 0

 
Du

Dt
5

du

dt
 (10.3)

Angular speed has units of radians per second (rad/s), which can be written as s21 
because radians are not dimensional. We take v to be positive when u is increasing 
(counterclockwise motion in Fig. 10.2) and negative when u is decreasing (clock-
wise motion in Fig. 10.2).

Q uick Quiz 10.1  A rigid object rotates in a counterclockwise sense around a 
fixed axis. Each of the following pairs of quantities represents an initial angular 
position and a final angular position of the rigid object. (i) Which of the sets 
can only occur if the rigid object rotates through more than 1808? (a) 3 rad,  
6 rad (b) 21 rad, 1 rad (c) 1 rad, 5 rad (ii) Suppose the change in angular posi-
tion for each of these pairs of values occurs in 1 s. Which choice represents the 
lowest average angular speed?

If the instantaneous angular speed of an object changes from vi to vf in the time 
interval Dt, the object has an angular acceleration. The average angular acceleration  
aavg (Greek letter alpha) of a rotating rigid object is defined as the ratio of the 
change in the angular speed to the time interval Dt during which the change in the 
angular speed occurs:

 aavg ;
Dv

Dt
5

vf 2 vi

tf 2 ti

 (10.4)

In analogy to translational acceleration, the instantaneous angular acceleration 
is defined as the limit of the average angular acceleration as Dt approaches zero:

 a ; lim
Dt S 0

 
Dv

Dt
5

d v

dt
 (10.5)

Angular acceleration has units of radians per second squared (rad/s2), or simply s22. 
Notice that a is positive when a rigid object rotating counterclockwise is speeding up or 
when a rigid object rotating clockwise is slowing down during some time interval.

When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular 
speed and the same angular acceleration. Therefore, like the angular position u, 

  Angular displacement  
(Compare to Equation 2.1)

  Average angular speed  
(Compare to Equation 2.2)

  Instantaneous angular speed 
(Compare to Equation 2.5)

  Average angular acceleration 
(Compare to Equation 2.9)

  Instantaneous angular  
acceleration (Compare to 
Equation 2.10)

x

y

�, t f

�, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from Ⓐ to 
Ⓑ along the arc of a circle. In the 
time interval Dt 5 tf 2 ti, the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.
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252 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

the quantities v and a characterize the rotational motion of the entire rigid object 
as well as individual particles in the object.

Angular position (u), angular speed (v), and angular acceleration (a) are anal-
ogous to translational position (x), translational speed (v), and translational accel-
eration (a). The variables u, v, and a differ dimensionally from the variables x, v, 
and a only by a factor having the unit of length. (See Section 10.3.)

We have not specified any direction in space for angular speed and angular 
acceleration. Strictly speaking, v and a are the magnitudes of the angular velocity 
and the angular acceleration vectors1 vS and aS, respectively, and they should always 
be positive. Because we are considering rotation about a fixed axis, however, we 
can use nonvector notation and indicate the vectors’ directions by assigning a pos-
itive or negative sign to v and a as discussed earlier with regard to Equations 10.3 
and 10.5. For rotation about a fixed axis, the only direction that uniquely specifies 
the rotational motion is the direction along the axis of rotation. Therefore, the 
directions of vS and aS are along this axis. If a particle rotates in the xy plane as in 
Figure 10.2, the direction of vS for the particle is out of the plane of the diagram 
when the rotation is counterclockwise and into the plane of the diagram when the 
rotation is clockwise. To illustrate this convention, it is convenient to use the right-
hand rule demonstrated in Figure 10.3. When the four fingers of the right hand 
are wrapped in the direction of rotation, the extended right thumb points in the 
direction of vS . The direction of aS follows from its definition aS ; dvS ydt. It is in the 
same direction as vS if the angular speed is increasing in time, and it is antiparallel 
to vS if the angular speed is decreasing in time.

   10.2    Analysis Model: Rigid Object  
Under Constant Angular Acceleration
In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 

Imagine a rigid object such as the disc in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

 vf 5 vi 1 at (for constant a)  (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 
allows us to find the angular speed vf of the object at any later time t. Substituting  
Equation 10.6 into Equation 10.3 and integrating once more, we obtain

 uf 5 ui 1 vit 1 1
2at2 sfor constant ad  (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

 vf
2 5 vi

2 1 2a(uf 2 ui ) (for constant a)  (10.8)

Rotational kinematic  
equations

Pitfall Prevention 10.2
Specify Your Axis In solving rota-
tion problems, you must specify 
an axis of rotation. This new fea-
ture does not exist in our study of 
translational motion. The choice 
of axis is arbitrary, but once you 
make it, you must maintain that 
choice consistently throughout 
the problem. In some problems, 
the physical situation suggests a 
natural axis, such as one along the 
axle of an automobile wheel. In 
other problems, there may not be 
an obvious choice, and you must 
exercise judgment.

 

 v
S

v
S

Figure 10.3  The right-hand rule 
for determining the direction of 
the angular velocity vector.

1Although we do not verify it here, the instantaneous angular velocity and instantaneous angular acceleration are 
vector quantities, but the corresponding average values are not because angular displacements do not add as vector 
quantities for finite rotations.
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    10.2 Analysis Model: Rigid Object Under Constant Angular Acceleration  253

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf  . If we eliminate a between Equations 10.6 and 10.7, we obtain

 uf 5 ui 1 1
2svi 1 vf dt sfor constant ad  (10.9)

Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (see Table 10.1). They can be generated from the equations 
for translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q uick Quiz 10.2  Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration

 vf 5 vi 1 at (10.6) vf 5 vi 1 at (2.13)
 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
 vf

2 5 vi
2 1 2a(uf 2 ui ) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi ) (2.17)

 uf 5 ui 1 12(vi 1 vf )t (10.9) xf 5 xi 1 12(vi 1 vf )t (2.15)

 table 10.1  Kinematic Equations for Rotational and Translational Motion

Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kine-
matics is just like translational 
kinematics. That is almost true, 
with two key differences. (1) In 
rotational kinematics, you must 
specify a rotation axis (per Pitfall 
Prevention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

analYsis Model Rigid Object Under Constant Angular Acceleration

Imagine an object that undergoes 
a spinning motion such that its 
angular acceleration is constant. 
The equations describing its angular 
position and angular speed are anal-
ogous to those for the particle under 
constant acceleration model: 

  vf 5 vi 1 at (10.6)

 uf 5 ui 1 vit 1 1
2at 

2 (10.7)

 vf
2 5 vi

2 1 2a(uf 2 ui) (10.8)

 uf 5 ui 1 1
2  
svi 1 vf  

dt (10.9)

Examples: 

 ● during its spin cycle, the tub of a clothes washer begins 
from rest and accelerates up to its final spin speed

 ● a workshop grinding wheel is turned off and comes to rest 
under the action of a constant friction force in the bear-
ings of the wheel

 ● a gyroscope is powered up and approaches its operating 
speed (Chapter 11)

 ● the crankshaft of a diesel engine changes to a higher 
angular speed (Chapter 21)

a� constant

 Example 10.1    Rotating Wheel

A wheel rotates with a constant angular acceleration of 3.50 rad/s2.

(A)  If the angular speed of the wheel is 2.00 rad/s at ti 5 0, through what angular displacement does the wheel rotate in 2.00 s?

S O L U T I O N

Conceptualize  Look again at Figure 10.1. Imagine that the disc rotates with its angular speed increasing at a constant rate. 
You start your stopwatch when the disc is rotating at 2.00 rad/s. This mental image is a model for the motion of the wheel in 
this example.

continued
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254 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

10.1 c o n t i n u e d

Categorize  The phrase “with a constant angular acceleration” tells us to apply the rigid object under constant angular acceleration 
model to the wheel.

Analyze From the rigid object under constant angular 
acceleration model, choose Equation 10.7 and rearrange it 
so that it expresses the angular displacement of the wheel:

Du 5 uf 2 ui 5 vit 1 1
2at 

2

Substitute the known values to find the angular  Du 5 (2.00 rad/s)(2.00 s) 1 12(3.50 rad/s2)(2.00 s)2 
displacement at t 5 2.00 s:     5  11.0 rad  5 (11.0 rad)(1808/p rad) 5  6308

(B)  Through how many revolutions has the wheel turned during this time interval?

S O L U T I O N

Multiply the angular displacement found in part (A) by a  Du 5 6308S1 rev
3608D 5   1.75 rev 

conversion factor to find the number of revolutions:

(C)  What is the angular speed of the wheel at t 5 2.00 s?

S O L U T I O N

Use Equation 10.6 from the rigid object under constant  vf 5 vi 1 at 5 2.00 rad/s 1 (3.50 rad/s2)(2.00 s) 
angular acceleration model to find the angular speed at   5  9.00 rad/s 
t 5 2.00 s:

Finalize  We could also obtain this result using Equation 10.8 and the results of part (A). (Try it!)

W H A T  I F ? Suppose a particle moves along a straight line with a constant acceleration of 3.50 m/s2. If the velocity of the 
particle is 2.00 m/s at ti 5 0, through what displacement does the particle move in 2.00 s? What is the velocity of the particle at 
t 5 2.00 s?

Answer  Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathematical 
solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

 Dx 5 xf 2 xi 5 vit 1 1
2at 

2  

5 s2.00 mysds2.00 sd 1 1
2s3.50 mys2ds2.00 sd2 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.

   10.3    Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis, every particle of the object moves in a circle whose center 
is on the axis of rotation. We looked at a flat, circular object in Figure 10.1. Let us 
now generalize to an arbitrary, three-dimensional object, as in Figure 10.4. A ref-
erence axis fixed in space is chosen—the x axis in Figure 10.4—and we look at the 
motion of one point P contained within the object.
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Because point P in Figure 10.4 moves in a circle, the translational velocity vec-
tor vS is always tangent to the circular path and hence is called tangential velocity.  
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v 5 ds/dt, where s is the distance traveled by this point measured along 
the circular path. Recalling that s 5 r u (Eq. 10.1b) and noting that, for a given 
point on the object, r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because du/dt 5 v (see Eq. 10.3), it follows that

 v 5 rv  (10.10)

As we saw in Equation 4.24, the tangential speed of a particle moving in a circle 
equals the distance of the particle from the center of the circle multiplied by the 
angular speed. We find the same relationship for particles at every point on a rigid 
object. Although every point on the rigid object has the same angular speed, not 
every point has the same tangential speed because r is not the same for all points on 
the object. Equation 10.10 shows that the tangential speed of a point on the rotat-
ing object increases as one moves outward from the center of rotation, as we would 
intuitively expect. For example, the outer end of a swinging golf club moves much 
faster than a point near the handle.

We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v in Equation 10.10:

at 5
dv
dt

5 r 
dv

dt
 

 at 5 ra  (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.

In Section 4.4, we found that a point moving in a circular path undergoes a radial 
acceleration ar directed toward the center of rotation and whose magnitude is that 
of the centripetal acceleration v2/r (Fig. 10.5). Because v 5 rv for a point P on a 
rotating object, we can express the centripetal acceleration at that point in terms of 
angular speed as we did for a particle moving in a circular path in Equation 4.25:

 ac 5
v2

r
5 rv2  (10.12)

The total acceleration vector at the point is aS 5 aSt 1 aSr , where the magnitude of 
aSr is the centripetal acceleration ac. Because aS is a vector having a radial and a tan-
gential component, the magnitude of aS at the point P on the rotating rigid object is

 a 5 Ïat
2 1 ar

2 5 Ïr 2 a2 1 r 2 v4 5 r Ïa2 1 v4 (10.13)

Q uick Quiz 10.3  Ethan and Rebecca are riding on a merry-go-round. Ethan 
rides on a horse at the outer rim of the circular platform, twice as far from 
the center of the circular platform as Rebecca, who rides on an inner horse. 
(i) When the merry-go-round is rotating at a constant angular speed, what is 
Ethan’s angular speed? (a) twice Rebecca’s (b) the same as Rebecca’s (c) half of 
Rebecca’s (d) impossible to determine (ii) When the merry-go-round is rotating 
at a constant angular speed, describe Ethan’s tangential speed from the same 
list of choices.

  Relation between tangential 
acceleration and angular 
acceleration

Figure 10.4 As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P has 
a tangential velocity vS that  
is always tangent to the circular 
path of radius r.

y

P

x
O

r s

u

vS

x

y

O

ar

at

P
aS

The total acceleration 
of point P is a � at � ar .

S S S

Figure 10.5  As a rigid object 
rotates about a fixed axis (the z 
axis) through O, the point P expe-
riences a tangential component of 
translational acceleration at and a 
radial component of translational 
acceleration ar .
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 Example 10.2    CD Player

Despite the availability of music in digital form, the compact disc, or CD, remains a popular format for music and data. On 
a CD (Fig. 10.6), audio information is stored digitally in a series of pits and flat areas on the surface of the disc. The alterna-
tions between pits and flat areas on the surface represent binary ones and zeros to be read by the CD player and converted 
back to sound waves. The pits and flat areas are detected by a system consisting of a laser and lenses. The length of a string 
of ones and zeros representing one piece of information is the same everywhere on the disc, whether the information is 
near the center of the disc or near its outer edge. So that this length of ones and zeros always passes by the laser–lens system 
in the same time interval, the tangential speed of the disc surface at the location of the lens must be constant. According 
to Equation 10.10, the angular speed must therefore vary as the laser–lens system moves radially along the disc. In a typical 
CD player, the constant speed of the surface at the point of the laser–lens system is 1.3 m/s.

(A)  Find the angular speed of the disc in revolutions per minute when information is being read from the innermost first 
track (r 5 23 mm) and the outermost final track (r 5 58 mm).

S O L U T I O N

Conceptualize  Figure 10.6 shows a photograph of a compact disc. Trace your fin-
ger around the circle marked “23 mm” and mentally estimate the time interval to go 
around the circle once. Now trace your finger around the circle marked “58 mm,” 
moving your finger across the surface of the page at the same speed as you did when 
tracing the smaller circle. Notice how much longer in time it takes your finger to go 
around the larger circle. If your finger represents the laser reading the disc, you can 
see that the disc rotates once in a longer time interval when the laser reads the infor-
mation in the outer circle. Therefore, the disc must rotate more slowly when the laser 
is reading information from this part of the disc.

Categorize  This part of the example is categorized as a simple substitution problem. 
In later parts, we will need to identify analysis models.

Use Equation 10.10 to find the angular speed that  vi 5
v
ri

5
1.3 mys

2.3 3 1022 m
5 57 radys 

gives the required tangential speed at the position of  
the inner track:   

5 s57 radysdS 1 rev
2p radDS 60 s

1 minD 5 5.4 3 102 revymin

Do the same for the outer track:  vf 5
v
rf

5
1.3 mys

5.8 3 1022 m
5 22 radys 5 2.1 3 102 revymin

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective lens at a 
constant rate.

(B) The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc make  
during that time?

S O L U T I O N

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a constant. 
We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is (74 min)
(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Use Equation 10.9 to find the angular displacement of  Du 5 uf 2 ui 5 1
2  
svi 1 vf dt  

the disc at t 5 4 473 s:       
5 1

2 s57 radys 1 22 radysds4 473 sd 5 1.8 3 105 rad

Convert this angular displacement to revolutions: Du 5 s1.8 3 105 raddS 1 rev
2p radD 5 2.8 3 104 rev

(c) What is the angular acceleration of the compact disc over the 4 473-s time interval?

S O L U T I O N

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives the 
value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular acceleration. 

23 mm

58 mm

©
 C

en
ga

ge

Figure 10.6  (Example 10.2) A 
compact disc.
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   10.4    Torque
In our study of translational motion, after investigating the description of motion 
in Chapters 2–4, we studied the cause of changes in motion: force, in Chapters 5–6. 
We follow the same plan here: What is the cause of changes in rotational motion? 

When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. Imagine trying to rotate a door by applying a force of 
magnitude F perpendicular to the door surface near the hinges and then at various 
distances from the hinges. You will achieve a more rapid rate of rotation for the 
door by applying the force near the doorknob than by applying it near the hinges. 
Because the same force was applied at different positions on the door, this experi-
ment indicates that the cause of changes in rotational motion must also depend on 
the location at which the force is applied.

The cause of changes in the rotational motion of an object about some axis is 
measured by a quantity called torque tS(Greek letter tau). Torque is a vector, but we 
will consider only its magnitude here; we will explore its vector nature in Chapter 11.

Consider the wrench and bolt from the opening storyline for this chapter. We 
show these objects with some geometry added in Figure 10.7. We wish to rotate 
the wrench around an axis that is perpendicular to the page and passes through 
the center of the bolt. The applied force F

S
 acts at an angle f to the horizontal. We 

define the magnitude of the torque associated with the force F
S

 around the axis 
passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S
. (The line of action of a force is an imaginary line extending out both ends of the 

vector representing the force. The dashed line extending from the tail of F
S

 in Fig. 
10.7 is part of the line of action of F

S
.) From the right triangle in Figure 10.7 that has 

the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called the 
moment arm (or lever arm) of F

S
.

In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hor-
izontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition of 
torque in Equation 10.14, the cause of changes in rotational motion increases as F 
increases and as d increases, which explains why it is easier to rotate a door if we 
push at the doorknob rather than at a point close to the hinges. We also want to 
apply our push as closely perpendicular to the door as we can so that f is close to 
908, which maximizes the moment arm. Pushing sideways on the doorknob (f 5 0) 
will not cause the door to rotate.

Equation 10.14 allows us to understand the use of the pipe to turn the wrench 
in the opening storyline. The maximum force you can apply to the wrench is not 

 Moment arm

10.2 c o n t i n u e d

In this case, we are not assuming the angular acceleration is constant. The answer is the same from both equations; only the 
interpretation of the result is different.

Analyze  Use Equation 10.6 to find the angular  
a 5

vf 2 vi

t
5

22 radys 2 57 radys
4 473 s

5 27.6 3 1023 radys2  
acceleration:

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval required 
for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of the disc is not 
constant. Problem 46 allows you to explore the actual time behavior of the angular acceleration.

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.
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258 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

enough to turn the bolt. You cannot apply more force F
S

, but you can increase 
the torque on the bolt by putting the pipe over the wrench handle. This allows 
you to apply the same force at a larger distance d from the axis of rotation. You 
have increased the moment arm of the force and, therefore, increased the torque 
applied by the same force.

If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2.  
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not con-
fuse torque and work (Chapter 7), which have the same units but are very different 
concepts.

Q uick Quiz 10.4 If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? 

O

d2

d1

F2
S

F1
S

Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

 Example 10.3    The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protruding 
from the larger drum. The cylinder is free to rotate about the central z axis shown in 
the drawing. A rope wrapped around the drum, which has radius R1, exerts a force T

S
1 

to the right on the cylinder. A rope wrapped around the core, which has radius R2, 
exerts a force T

S
2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is the 
z axis in Fig. 10.9)?

S O L U T I O N

Conceptualize  Imagine that the cylinder in Figure 10.9 is a shaft in a machine. The force 
T
S

1 could be applied by a drive belt wrapped around the drum. The force T
S

2 could be 
applied by a friction brake at the surface of the core.

Categorize  This example is a substitution problem in which we evaluate the net torque 
using Equation 10.14.
 The torque due to T

S
1 about the rotation axis is 2R1T1. (The sign is negative because the torque tends to produce clockwise 

rotation.) The torque due to T
S

2 is 1R2T2. (The sign is positive because the torque tends to produce counterclockwise rotation 
of the cylinder.)

Evaluate the net torque about the rotation axis: o t 5 t1 1 t2 5  R2T2 2 R1T1

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R1 . R2. Starting 
from rest with both forces of equal magnitude acting on it, the cylinder would rotate clockwise because T

S
1 would be more 

effective at turning it than would T
S

2.

z

x

y

R 1

R 2

O

T1
S

T2
S

Figure 10.9  (Example 10.3)  
A solid cylinder pivoted about the  
z axis through O. The moment  
arm of T

S
1 is R1, and the moment arm 

of T
S

2 is R2.
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   10.5    Analysis Model: Rigid Object Under a Net Torque
In Chapter 5, we learned that a net force on an object causes an acceleration of the 
object and that the acceleration is proportional to the net force. These facts are the 
basis of the particle under a net force model whose mathematical representation 
is Newton’s second law. In this section, we show the rotational analog of Newton’s 
second law: the angular acceleration of a rigid object rotating about a fixed axis is 
proportional to the net torque acting about that axis. Before discussing the more 
complex case of rigid-object rotation, however, it is instructive first to discuss the 
case of a particle moving in a circular path about some fixed point under the influ-
ence of an external force.

Consider a particle of mass m rotating in a circle of radius r under the influence 
of a tangential net force o F

S
t  and a radial net force o F

S
r  as shown in Figure 10.10. 

The radial net force causes the particle to move in the circular path with a centrip-
etal acceleration. The tangential force provides a tangential acceleration aSt , and

o Ft 5 mat

The magnitude of the net torque due to o F
S

t on the particle about an axis perpen-
dicular to the page through the center of the circle is

o t 5 o Ftr 5 (mat )r

Because the tangential acceleration is related to the angular acceleration through 
the relationship at 5 ra (Eq. 10.11), the net torque can be expressed as

 o t 5 (mra)r 5 (mr2)a (10.15)

Let us denote the quantity mr2 with the symbol I for now. We will say more about 
this quantity below. Using this notation, Equation 10.15 can be written as

  o t 5 Ia (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that o t 5 Ia has the same mathematical form as Newton’s second law 
of motion, o F 5 ma (Eq. 5.2).

Now let us extend this discussion to a rigid object of arbitrary shape rotating 
about a fixed axis passing through a point O as in Figure 10.11. The object can be 
regarded as a collection of particles of mass mi. If we impose a Cartesian coordinate 
system on the object, each particle rotates in a circle about the origin and each 
has a tangential acceleration ai produced by an external tangential force of magni-
tude Fi. For any given particle, we know from Newton’s second law that

Fi 5 mi ai

The external torque tSi associated with the force F
S

i acts about the origin and its 
magnitude is given by

ti 5 ri Fi 5 ri mi ai

10.3 c o n t i n u e d

(B)  Suppose T1 5 5.0 N, R1 5 1.0 m, T2 5 15 N, and R2 5 0.50 m. What is the net torque about the rotation axis, and which 
way does the cylinder rotate starting from rest?

S O L U T I O N

Substitute the given values: o t 5 (0.50 m)(15 N) 2 (1.0 m)(5.0 N) 5  2.5 N ? m

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.

r

m

� Ft
S

� Fr
S

The tangential force on the 
particle results in a torque on the 
particle about an axis through 
the center of the circle.

Figure 10.10  A particle rotating  
in a circle under the influence of a  
tangential net force o F

S
t . A radial 

net force o F
S

r  also must be present 
to maintain the circular motion.

Fi
Sy

x
O

r

mi

The particle of mass mi of the 
rigid object experiences a 
torque in the same way that the 
particle in Figure 10.10 does.

Figure 10.11  A rigid object rotat-
ing about an axis through O. Each 
particle of mass mi rotates about 
the axis with the same angular 
acceleration a.
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260 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

Because ai 5 ri a, the expression for ti becomes

ti 5 mi ri
2a

Although different particles in the rigid object may have different translational 
accelerations ai, they all have the same angular acceleration a. With that in mind, 
we can add the torques on all of the particles making up the rigid object to obtain 
the net torque on the object about an axis through O due to all external forces:

 otext 5 o
i

ti 5 o
i

mi ri
2a 5 So

i

mi ri
2Da (10.17)

where a can be taken outside the summation because it is common to all particles. 
Calling the quantity in parentheses I, the expression for o text becomes

 o text 5 Ia  (10.18)

This equation for a rigid object is the same as that found for a particle moving in 
a circular path (Eq. 10.16). The net torque about the rotation axis is proportional 
to the angular acceleration of the object, with the proportionality factor being I, 
a quantity that we have yet to describe fully. Equation 10.18 is the mathematical 
representation of the analysis model of a rigid object under a net torque, the rota-
tional analog to the particle under a net force. 

Let us now address the quantity I, defined as follows:

 I 5 o
i

mi ri
2 (10.19)

This quantity is called the moment of inertia of the object, and depends on 
the masses of the particles making up the object and their distances from the 
rotation axis. Notice that Equation 10.19 reduces to I 5 mr2 for a single parti-
cle, consistent with our use of the notation I in going from Equation 10.15 to  
Equation 10.16. Note that moment of inertia has units of kg · m2 in SI units.

Equation 10.18 has the same form as Newton’s second law for a system of parti-
cles as expressed in Equation 9.39:

 oFext

S
5 M aSCM 

Consequently, the moment of inertia I must play the same role in rotational motion 
as the role that mass plays in translational motion: the moment of inertia is the 
resistance to changes in rotational motion. This resistance depends not only on 
the mass of the object, but also on how the mass is distributed around the rotation 
axis. Table 10.2 gives the moments of inertia2 for a number of objects about specific 
axes. The moments of inertia of rigid objects with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis 
of symmetry, as we show in the next section.

Q uick Quiz 10.5  You turn off your electric drill and find that the time inter-
val for the rotating bit to come to rest due to frictional torque in the drill is Dt. 
You replace the bit with a larger one that results in a doubling of the moment of 
inertia of the drill’s entire rotating mechanism. When this larger bit is rotated 
at the same angular speed as the first and the drill is turned off, the frictional 
torque remains the same as that for the previous situation. What is the time 
interval for this second bit to come to rest? (a) 4Dt (b) 2Dt (c) Dt (d) 0.5Dt  
(e) 0.25Dt (f) impossible to determine

Torque on a rigid object is  
proportional to angular 

acceleration

Pitfall Prevention 10.5
No Single Moment of Inertia  
There is one major difference 
between mass and moment of iner-
tia. Mass is an inherent property of 
an object. The moment of inertia of 
an object depends on your choice 
of rotation axis. Therefore, there 
is no single value of the moment 
of inertia for an object. There is a 
minimum value of the moment of 
inertia, which is that calculated 
about an axis passing through the 
center of mass of the object.

2Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such structures as loaded 
beams. Hence, it is often useful even in a nonrotational context.
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 table 10.2  Moments of Inertia of Homogeneous Rigid Objects with Different Geometries

Hoop or thin
cylindrical shell
ICM � MR 

2
R

Solid cylinder
or disk

R

Long, thin rod
with rotation axis
through center

Solid sphere

Hollow cylinder

R 2

Long, thin
rod with
rotation axis
through end

L Thin spherical
shell

R1

R

Rectangular plate

b

a

L

I  1
2

ICM � M(R1
2 � R2

2)

MR 

21
2

ICM �

 1
12

ICM � M(a2 � b2)

 1
12

ICM � ML2

 2
5

ICM � MR 

2

 2
3

ICM � MR 

2

1
3

ML2I �

R

analYsis Model Rigid Object Under a Net Torque

Imagine you are analyzing the motion of an object that is free to rotate about a fixed axis. The cause of 
changes in rotational motion of this object is torque applied to the object and, in parallel to Newton’s sec-
ond law for translation motion, the torque is equal to the product of the moment of inertia of the object 
and the angular acceleration:

 o text 5 Ia (10.18)

The torque, the moment of inertia, and the angular acceleration must all be evaluated around the same 
rotation axis. 

Examples: 

 ● a bicycle chain around the sprocket of a bicycle causes the rear wheel of the bicycle to rotate
 ● an electric dipole moment in an electric field rotates due to the electric force from the field  (Chapter 22)
 ● a magnetic dipole moment in a magnetic field rotates due to the magnetic force from the field  (Chapter 28)
 ● the armature of a motor rotates due to the torque exerted by a surrounding magnetic field (Chapter 30)

a

 Example 10.4    Rotating Rod

A uniform rod of length L and mass M is attached at one end to a frictionless pivot 
and is free to rotate about the pivot in the vertical plane as in Figure 10.12. The rod 
is released from rest in the horizontal position. What are the initial angular accelera-
tion of the rod and the initial translational acceleration of its right end?

S O L U T I O N

Conceptualize  Imagine what happens to the rod in Figure 10.12 when it is released. It 
rotates clockwise around the pivot at the left end. When an object is pivoted at a point 
other than its center of mass, the gravitational force, assumed to be acting through the 
center of mass, provides a torque about the pivot.

L

Pivot

M gS

Figure 10.12 (Example 10.4) A rod 
is free to rotate around a pivot at the 
left end. The gravitational force on 
the rod acts at its center of mass.

continued
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262 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

10.4 c o n t i n u e d

Categorize  The rod is categorized as a rigid object under a net torque. The torque is due only to the gravitational force on the 
rod if the rotation axis is chosen to pass through the pivot in Figure 10.12. We cannot categorize the rod as a rigid object under 
constant angular acceleration because the torque exerted on the rod and therefore the angular acceleration of the rod vary 
with its angular position.

Analyze  The only force contributing to the torque about an axis through the pivot is the gravitational force M gS exerted 
on the rod. (The force exerted by the pivot on the rod has zero torque about the pivot because its moment arm is zero.) To 
compute the torque on the rod, we assume the gravitational force acts at the center of mass of the rod a distance L/2 from the 
pivot as shown in Figure 10.12.

Write an expression for the magnitude of the net external  o  text 5 MgSL
2D 

torque due to the gravitational force about an axis through  
the pivot:

Use Equation 10.18 to obtain the angular acceleration of the (1)   a 5  
otext

I
5

Mg sLy2d
1
3ML2

5   
3g

2L
 

rod, using the moment of inertia for the rod from Table 10.2:

Use Equation 10.11 with r 5 L to find the initial translational  at 5 La 5   32 g  
acceleration of the right end of the rod:

Finalize These values are the initial values of the angular and translational accelerations. Once the rod begins to rotate, 
the gravitational force is no longer perpendicular to the rod and the values of the two accelerations decrease, going to zero 
at the moment the rod passes through the vertical orientation. Also, because the value of at at a point on the rod depends 
on the distance of that point from the pivot, every point along the rod will have the same angular acceleration but a different 
tangential acceleration.

 Conceptual Example 10.5    Falling Smokestacks and Tumbling Blocks

When a tall smokestack falls over, it often breaks somewhere along its length before it 
hits the ground as shown in Figure 10.13. Why?

S O L U T I O N

As the smokestack rotates around its base, each higher portion of the smokestack falls with 
a larger tangential acceleration than the portion below it according to Equation 10.11.  
The angular acceleration increases as the smokestack tips farther. Eventually, higher 
portions of the smokestack experience a tangential acceleration greater than the accel-
eration that could result from gravity alone; this situation is similar to that for the end 
of the rod in Example 10.4. That can happen only if these portions are being pulled 
downward by a force in addition to the gravitational force. The force that causes that 
to occur is the shear force from lower portions of the smokestack. Eventually, the shear 
force that provides this acceleration is greater than the smokestack can withstand, and 
the smokestack breaks. The same thing happens with a tall tower of children’s toy blocks. Borrow some blocks from a child 
and build such a tower. Push it over and watch it come apart at some point before it strikes the floor.

Figure 10.13  (Conceptual 
Example 10.5) A falling smoke-
stack breaks at some point along 
its length.

©
 K

ev
in

 S
pr

ee
km

ee
st

er
/A

GE
 F

ot
os

to
ck

 Example 10.6    Angular Acceleration of a Wheel

A wheel of radius R, mass M, and moment of inertia I is mounted on a frictionless, horizontal axle as in Figure 10.14. A light 
cord wrapped around the wheel supports an object of mass m. When the wheel is released, the object accelerates down-
ward, the cord unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expressions for the angular 
acceleration of the wheel, the translational acceleration of the object, and the tension in the cord.

S O L U T I O N

Conceptualize  Imagine that the object is a bucket in an old-fashioned water well. It is tied to a cord that passes around a 
cylinder equipped with a crank for raising the bucket. After the bucket has been raised, the system is released and the bucket 
accelerates downward while the cord unwinds off the cylinder.
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10.6 c o n t i n u e d

Categorize  We apply two analysis models here. The object is modeled as a particle under a net 
force. The wheel is modeled as a rigid object under a net torque.

Analyze  The magnitude of the torque acting on the wheel about its axis of rotation is  
t 5 TR, where T is the force exerted by the cord on the rim of the wheel. (The gravitational 
force exerted by the Earth on the wheel and the normal force exerted by the axle on the wheel 
both pass through the axis of rotation and therefore produce no torque about the axle.)

From the rigid object under a net torque model,  o text 5 Ia 
write Equation 10.18:

Solve for a and substitute the net torque: (1)   a 5
otext

I
5

TR
I

From the particle under a net force model, apply   o Fy 5 mg 2 T 5 ma 
Newton’s second law to the motion of the object,  
taking the downward direction to be positive:

Solve for the acceleration a: (2)   a 5
mg 2 T

m
 

Equations (1) and (2) have three unknowns: a, a, and T. Because the object and wheel are 
connected by a cord that does not slip, the translational acceleration of the suspended object 
is equal to the tangential acceleration of a point on the wheel’s rim. Therefore, the angular acceleration a of the wheel and 
the translational acceleration of the object are related by a 5 Ra (Eq. 10.11).

Use this fact together with Equations (1) and (2): (3)    a 5 Ra 5
TR 2

I
5

mg 2 T

m
 

Solve for the tension T : (4)   T 5 
mg

1 1 smR 2yI d

Substitute Equation (4) into Equation (2) and solve for a: (5)   a 5 
g

1 1 sIymR 2d

Use a 5 Ra and Equation (5) to solve for a: a 5
a
R

5
g

R 1 sIymR d

Finalize We finalize this problem by imagining the behavior of the system in some extreme limits.

W H A T  I F ? What if the wheel were to become very massive so that I becomes very large? What happens to the acceleration 
a of the object and the tension T?

Answer  If the wheel becomes infinitely massive, we can imagine that the object of mass m will simply hang from the cord 
without causing the wheel to rotate.
 We can show that mathematically by taking the limit I S `. Equation (5) then becomes

a 5 lim
I S `

 
g

1 1 sIymR 2d
 5 0

which agrees with our conceptual conclusion that the object will hang at rest. Also, Equation (4) becomes

T 5 lim
I S `

 
mg

1 1 smR 2yI d 5 mg

which is consistent because the object simply hangs at rest in equilibrium between the gravitational force and the tension in 
the string.

M

R

m

mgS 

T
S

T
S

O

Figure 10.14  (Example 10.6) 
An object hangs from a cord 
wrapped around a wheel.

   10.6    Calculation of Moments of Inertia
The moment of inertia of a system of discrete particles can be calculated in a 
straightforward way with Equation 10.19. On the other hand, suppose we consider 
a continuous rigid object. We can evaluate its moment of inertia by imagining the 
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264 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

object to be divided into many small elements, each of which has mass Dmi. We use 
the definition I 5 oi  ri

2 Dmi and take the limit of this sum as Dmi S 0. In this limit, 
the sum becomes an integral over the volume of the object:

 I 5 lim
Dmi

S 0
 o

i

ri
2  Dmi 5 #r 2 dm  (10.20)

It is usually easier to calculate moments of inertia in terms of the volume of 
the elements rather than their mass, and we can easily make that change by using 
Equation 1.1, r ; m/V, where r is the density of the object and V is its volume. From 
this equation, the mass of a small element is dm 5 r dV. Substituting this result into 
Equation 10.20 gives

 I 5 #rr 2 dV  (10.21)

If the object is homogeneous, r is constant and the integral can be evaluated for a 
known geometry. If r is not constant, its variation with position must be known to 
complete the integration.

The density given by r 5 m/V sometimes is referred to as volumetric mass density 
because it represents mass per unit volume. Often we use other ways of express-
ing density. For instance, when dealing with a sheet of uniform thickness t, we 
can define a surface mass density s 5 m/A 5 rt, which represents mass per unit area. 
Finally, when mass is distributed along a rod of uniform cross-sectional area A, we 
sometimes use linear mass density l 5 m/L 5 rA, which is the mass per unit length.

Moment of inertia  
of a rigid object

 Example 10.7    Uniform Rigid Rod

Calculate the moment of inertia of a uniform thin rod of length L and mass M  
(Fig. 10.15) about an axis perpendicular to the rod (the y axis) and passing through its 
center of mass.

S O L U T I O N

Conceptualize  Imagine twirling the rod in Figure 10.15 
with your fingers around its midpoint. If you have a 
meterstick handy, use it to simulate the spinning of a thin 
rod and feel the resistance it offers to being spun.

Categorize  This example is a substitution problem, using 
the definition of moment of inertia in Equation 10.20. As 
with any integration problem, the solution involves reduc-
ing the integrand to a single variable.
 The shaded length element dx in Figure 10.15 has a mass dm equal to the mass per unit length l multiplied by dx.

Express dm in terms of dx: dm 5 l dx 5
M
L

 dx

Substitute this expression into Equation 10.20, with Iy 5 #r 2 dm 5 #
Ly2

2Ly2
 x2 

M
L

 dx 5
M
L

 #
Ly2

2Ly2
 x2 dx 

r 2 5 x2:

   5
M
L

 3x3

3
 4Ly2

2Ly2

5 1
12ML2

Check this result in Table 10.2.

L

x

O
x

dx

yy�

L
2

Figure 10.15  (Example 10.7) 
A uniform rigid rod of length 
L. The moment of inertia about 
the y axis is less than that about 
the y9 axis. The latter axis is 
examined in Example 10.9.

 Example 10.8    Uniform Solid Cylinder

A uniform solid cylinder has a radius R, mass M, and length L. Calculate its moment of inertia about its central axis (the z axis 
in Fig. 10.16).
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The calculation of moments of inertia of an object about an arbitrary axis can be 
cumbersome, even for a highly symmetric object. For example, imagine trying to 
find the moment of inertia of the cylinder in Figure 10.16 around an axis parallel 
to the z axis, but offset by the radius R of the cylinder, so that the axis just grazes 
along the outer surface of the cylinder. There is no symmetry around this axis! 
Fortunately, use of an important theorem, called the parallel-axis theorem, often 
simplifies the calculation.

To generate the parallel-axis theorem, suppose the object in Figure 10.17a  
(page 266) rotates about the z9 axis. The moment of inertia does not depend on 
how the mass is distributed along the z9 axis; as we found in Example 10.8, for 
example, the moment of inertia of a cylinder is independent of its length. Imagine 
collapsing the three-dimensional object in Figure 10.17a into a planar object of the 
same mass as in Figure 10.17b. In this imaginary process, all mass moves parallel 
to the z9 axis until it lies in the x9y9 plane. The coordinates of the object’s center of 
mass are now x9CM, y9CM, and z9CM 5 0. Let the mass element dm have coordinates  
(x9, y9, 0) as shown in the view down the z9 axis in Figure 10.17c. Because this ele-
ment is a distance r 9 5 Ï(x 9)2 1 (y9)2  from the z9 axis, the moment of inertia of 
the entire object about the z9 axis is

I 5 #(r 9)2 dm 5 #[(x 9)2 1 (y9)2] dm

We can relate the coordinates x9, y9 of the mass element dm to the coordinates 
of this same element located in a coordinate system having the object’s center 

10.8 c o n t i n u e d

S O L U T I O N

Conceptualize  To simulate this situation, imagine twirling a can of fro-
zen juice around its central axis. Don’t twirl a nonfrozen can of vegeta-
ble soup; it is not a rigid object! The liquid is able to move relative to the 
metal can.

Categorize  This example is a substitution problem, using the definition 
of moment of inertia. As with Example 10.7, we must reduce the inte-
grand to a single variable.
 It is convenient to divide the cylinder into many cylindrical shells, 
each having radius r, thickness dr, and length L as shown in Figure 10.16. 
The density of the cylinder is r. The volume dV of each shell is its cross- 
sectional area multiplied by its length: dV 5 L dA 5 L(2pr) dr.

Express dm in terms of dr: dm 5 r dV 5 rL(2pr) dr

Substitute this expression into Equation 10.20: Iz 5 #r 2 dm 5 #r 2 frLs2prd drg 5 2prL #
R

0
 r 3 dr 5 1

2 prLR 4

Use the total volume pR 2L of the cylinder to express  r 5
M
V

5
M

pR 2L
 

its density:

Substitute this value into the expression for Iz: Iz 5 1
2pS M

pR 2LDLR 4 5 1
2MR 2

Check this result in Table 10.2.

W H A T  I F ?  What if the length of the cylinder in Figure 10.16 is increased to 2L, while the mass M and radius R are held 
fixed? (The density becomes half as large.) How does that change the moment of inertia of the cylinder?

Answer  Notice that the result for the moment of inertia of a cylinder does not depend on L, the length of the cylinder. It 
applies equally well to a long cylinder and a flat disk having the same mass M and radius R. Therefore, the moment of inertia 
of the cylinder around the central axis is not affected by how the mass is distributed along its length.

L

dr

z

r

R

Figure 10.16  (Example 
10.8) Calculating I about 
the z axis for a  
uniform solid cylinder.
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266 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

of mass as its origin. If the coordinates of the center of mass are x9CM, and y9CM 
in the original coordinate system centered on O, we see from Figure 10.17c that  
the relationships between the unprimed and primed coordinates are x9 5 x 1 x9CM,  
y9 5 y 1 y9CM, and z9 5 z 5 0. Therefore,

 I 5 #fsx 1 x9CMd2 1 sy 1 y9CMd2 g dm

5 #(x 
2 1  y)2

 dm 1 2x 9CM #x dm 1 2y9CM #y dm 1 sx9CM
2 1 y9CM

2       d# dm

The first integral is, by definition, the moment of inertia ICM about an axis that is par-
allel to the z9 axis and passes through the center of mass. The second two integrals are 
zero because, by definition of the center of mass, e x dm 5 e y dm 5 0. The last integral 
is simply MD2 because e dm 5 M and D 2 5 x9CM

2 1 y9CM
2. Therefore, we conclude that

 I 5 I CM 1 MD 2  (10.22)

The parallel axis theorem allows us to evaluate the moment of inertia of an object 
of mass M about any axis that is parallel to its central axis as the moment of inertia 
around the central axis plus the term MD2, where D is the perpendicular distance 
between the axes.

Parallel-axis theorem  

Axis through
CM

x�

y�

z� z
Rotation
axis

O

a

Axis through
CM

x�

y�

z� z

Rotation
axis

b

Figure 10.17  (a) An arbitrarily shaped rigid object. The origin of the coordinate system is not at the 
center of mass of the object. Imagine the object rotating about the z9 axis. (b) All mass elements of 
the object are collapsed parallel to the z9 axis to form a planar object. (c) An arbitrary mass element 
dm is indicated in blue in this view down the z9 axis. The parallel axis theorem can be used with the 
geometry shown to determine the moment of inertia of the original object around the z9 axis.
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 Example 10.9    Applying the Parallel-Axis Theorem

Consider once again the uniform rigid rod of mass M and length L shown in Figure 10.15. Find the moment of inertia of 
the rod about an axis perpendicular to the rod through one end (the y9 axis in Fig. 10.15).

S O L U T I O N

Conceptualize  Imagine twirling the rod around an endpoint rather than the midpoint. If you have a meterstick handy, try it 
and notice the degree of difficulty in rotating it around the end compared with rotating it around the center.
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   10.7    Rotational Kinetic Energy
After investigating the role of forces in our study of translational motion, we turned 
our attention to approaches involving energy in Chapters 7 and 8. We do the same 
thing in our current study of rotational motion.

In Chapter 7, we defined the kinetic energy of an object as the energy associated 
with its motion through space. An object rotating about a fixed axis remains station-
ary in space, so there is no kinetic energy associated with translational motion. The 
individual particles making up the rotating object, however, are moving through 
space; they follow circular paths. Consequently, there is kinetic energy associated 
with rotational motion.

Let us consider an object as a system of particles and assume it rotates about a 
fixed z axis with an angular speed v. Figure 10.18 shows the rotating object and 
identifies one particle on the object located at a distance ri from the rotation axis. 
If the mass of the ith particle is mi and its tangential speed is vi, its kinetic energy is

Ki 5 1
2mivi

2

To proceed further, recall that although every particle in the rigid object has the 
same angular speed v, the individual tangential speeds depend on the distance ri 
from the axis of rotation according to Equation 10.10. The total kinetic energy of the 
rotating rigid object is the sum of the kinetic energies of the individual particles:

KR 5 o
i

 Ki 5 o
i

 12mivi
2 5 1

2o
i

miri
2v2

We can write this expression in the form

 KR 5 1
2 So

i

mi ri
2Dv2 (10.23)

where we have factored v2 from the sum because it is common to every particle. 
We recognize the quantity in parentheses as the moment of inertia of the object, 
introduced in Section 10.5.

Therefore, Equation 10.23 can be written

 KR 5 1
2Iv2  (10.24)

Compare Equation 10.24 to Equation 7.16 for the kinetic energy of an object in 
translational motion. Again, as in the discussion following Equation 10.19, we see 
that moment of inertia I plays the same role in rotational motion as mass m does 
in translational motion. Although we commonly refer to the quantity 1

2Iv2 as rota-
tional kinetic energy, it is not a new form of energy. It is ordinary kinetic energy 
because it is derived from a sum over individual kinetic energies of the particles 
contained in the rigid object. The mathematical form of the kinetic energy given 
by Equation 10.24 is convenient when we are dealing with rotational motion, pro-
vided we know how to calculate I.

  Rotational kinetic energy 
(Compare to Equation 7.16)

10.9 c o n t i n u e d

Categorize  This example is a substitution problem, involving the parallel-axis theorem.
 Intuitively, we expect the moment of inertia to be greater than the result ICM 5 1

12ML2 from Example 10.7 because there is 
mass up to a distance of L away from the rotation axis, whereas the farthest distance in Example 10.7 was only L/2. The dis-
tance between the center-of-mass axis and the y9 axis is D 5 L/2.

Use the parallel-axis theorem: I 5 ICM 1 MD 2 5 1
12ML2 1 MSL

2D2

5 1
3ML2

Check this result in Table 10.2. As predicted in Example 10.7, it is more difficult to rotate the rod about one end than about 
the center of mass.

vi
Sy

x
O

ri

mi

The particle of mass mi of the rigid 
object has the same kinetic energy 
as if it were moving through space 
with the same speed.

v

Figure 10.18  A rigid object 
rotating about the z axis with 
angular speed v. The kinetic 
energy of the particle of mass mi is 
1
2mi vi

2. The total kinetic energy of 
the object is called its rotational 
kinetic energy.
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Q uick Quiz 10.6 A section of hollow pipe and a solid cylinder have the same 
radius, mass, and length. They both rotate about their long central axes with 
the same angular speed. Which object has the higher rotational kinetic energy? 
(a) The hollow pipe does. (b) The solid cylinder does. (c) They have the same 
rotational kinetic energy. (d) It is impossible to determine.

 Example 10.10    An Unusual Baton

Four tiny spheres are fastened to the ends of two rods of 
negligible mass lying in the xy plane to form an unusual 
baton (Fig. 10.19). We shall assume the radii of the spheres 
are small compared with the dimensions of the rods.

(A)  If the system rotates about the y axis (Fig. 10.19a) with 
an angular speed v, find the moment of inertia and the 
rotational kinetic energy of the system about this axis.

S O L U T I O N

Conceptualize  Figure 10.19 is a pictorial representation 
that helps conceptualize the system of spheres and how it 
spins. Model the spheres as particles. Notice that only the 
blue spheres contribute to the moment of inertia around 
the y axis.

Categorize  This example is a substitution problem because 
it is a straightforward application of the definitions dis-
cussed in this section.

Apply Equation 10.19 to the system: Iy 5 o
i

mi ri
2 5 Ma2 1 Ma2 5  2Ma2

Evaluate the rotational kinetic energy using  KR 5 1
2Iy v2 5 1

2  
s2Ma2dv2 5  Ma2v2 

Equation 10.24:

That the two spheres of mass m do not enter into this result makes sense because they have no motion about the axis of rota-
tion; hence, they have no rotational kinetic energy. By similar logic, we expect the moment of inertia about the x axis to be  
Ix 5 2mb2 with a rotational kinetic energy about that axis of KR 5 mb2v2.

(B)  Suppose the system rotates in the xy plane about an axis (the z axis) through the center of the baton (Fig. 10.19b).  
Calculate the moment of inertia and rotational kinetic energy about this axis.

S O L U T I O N

Apply Equation 10.19 for this new rotation axis: Iz 5 o
i

miri
2 5 Ma2 1 Ma2 1 mb2 1 mb2 5  2Ma2  1 2mb2

Evaluate the rotational kinetic energy using  KR 5 1
2Iz v

2 5 1
2 s2Ma2 1 2mb2dv2 5  (Ma2 1 mb2)v2 

Equation 10.24:

Comparing the results for parts (A) and (B), we conclude that the moment of inertia and therefore the rotational kinetic 
energy associated with a given angular speed depend on the axis of rotation. In part (B), we expect the result to include all 
four spheres and distances because all four spheres are rotating in the xy plane. Based on the work–kinetic energy theorem, 
the smaller rotational kinetic energy in part (A) than in part (B) indicates it would require less work to set the system into 
rotation about the y axis than about the z axis.

W H A T  I F ?  What if the mass M is much larger than m? How do the answers to parts (A) and (B) compare?

Answer  If M .. m, then m can be neglected and the moment of inertia and the rotational kinetic energy in part (B) become

Iz 5 2Ma2 and KR 5 Ma2v2

which are the same as the answers in part (A). If the masses m of the two tan spheres in Figure 10.19 are negligible, these 
spheres can be removed from the figure and rotations about the y and z axes are equivalent.

b

y

b

b

xa a

a

M

M

m

m

x

y

a

a

b

b

m

M M

m

Figure 10.19  (Example 10.10) Four spheres form an unusual 
baton. (a) The baton is rotated about the y axis. (b) The baton is 
rotated about the z axis.
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   10.8    Energy Considerations in Rotational Motion
Having introduced rotational kinetic energy in Section 10.7, let us now see how an 
energy approach can be useful in solving rotational problems. We begin by consid-
ering the relationship between the torque acting on a rigid object and its resulting 
rotational motion so as to generate expressions for power and a rotational ana-
log to the work–kinetic energy theorem. Consider the rigid object pivoted at O in 
Figure 10.20. Suppose a single external force F

S
 is applied at P, where F

S
 lies in the 

plane of the page. The work done on the object by F
S

 as its point of application 
rotates through an infinitesimal distance ds 5 r du is

dW 5 F
S 

? d sS 5 sF sin fdr du

where F sin f is the tangential component of F
S
, or, in other words, the component 

of the force along the displacement. Notice that the radial component vector of 
F
S

 does no work on the object because it is perpendicular to the displacement of  
the point of application of F

S
.

Because the magnitude of the torque due to F
S

 about an axis through O is 
defined as rF sin f by Equation 10.14, we can write the work done for the infinites-
imal rotation as

 dW 5 t du (10.25)

The rate at which work is being done by F
S

 as the object rotates about the fixed axis 
through the angle du in a time interval dt is

dW
dt

5 t 
du

dt

Because dW/dt is the instantaneous power P (see Section 8.5) delivered by the force 
and du/dt 5 v, this expression reduces to

 P 5
dW
dt

5 tv (10.26)

This equation is analogous to P 5 Fv (Eq. 8.18) in the case of translational motion, 
and Equation 10.25 is analogous to dW 5 Fx dx.

In studying translational motion, we have seen that models based on an energy 
approach can be extremely useful in describing a system’s behavior. From what we 
learned of translational motion, we expect that when a symmetric object rotates 
frictionlessly about a fixed axis, the work done by external forces equals the change 
in the rotational energy of the object.

To prove that fact, let us begin with the rigid object under a net torque model, 
whose mathematical representation is o text 5 Ia. Using the chain rule from calcu-
lus, we can express the net torque as

otext 5 Ia 5 I 
dv

dt
5 I 

dv

du
 
du

dt
5 I 

dv

du
 v

Rearranging this expression and noting that o text du 5 dW from Equation 10.25 gives

o text du 5 dW 5 Iv dv

Integrating this expression, we obtain for the work W done by the net external 
force acting on a rotating system

 W 5 #
vf

vi

 Iv dv 5 1
2Ivf

2 2 1
2Ivi

2 (10.27)

where the angular speed changes from vi to vf . Equation 10.27 is the work–kinetic 
energy theorem for rotational motion. Similar to the work–kinetic energy theorem 
in translational motion (Section 7.5), Equation 10.27 states that the net work done 
by external forces in rotating a symmetric rigid object about a fixed friction-free 
axis equals the change in the object’s rotational energy.

  Power delivered to a rotating 
rigid object

   Work–kinetic energy theorem 
for rotational motion

O

P
rd u

f

F
S

d sS

Figure 10.20  A rigid object 
rotates about an axis through O 
under the action of an external 
force F

S
 applied at P.
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Equation 10.27 is a form of the nonisolated system (energy) model discussed in 
Chapter 8. Work is done on the system of the rigid object, which represents a trans-
fer of energy across the boundary of the system that appears as an increase in the 
object’s rotational kinetic energy.

In general, we can combine Equation 10.27 with the translational form of 
the work–kinetic energy theorem from Chapter 7. Therefore, the net work done 
by external forces on an object is the change in its total kinetic energy, which is 
the sum of the translational and rotational kinetic energies. For example, when a 
pitcher throws a baseball, the work done by the pitcher’s hands appears as kinetic 
energy associated with the ball moving through space as well as rotational kinetic 
energy associated with the spinning of the ball.

In addition to the work–kinetic energy theorem, other energy principles can 
also be applied to rotational situations. For example, if a system involving rotating 
objects is isolated and no nonconservative forces act within the system, the isolated 
system model and the principle of conservation of mechanical energy can be used 
to analyze the system as in Example 10.11 below. In general, Equation 8.2, the con-
servation of energy equation, applies to rotational situations, with the recognition 
that the change in kinetic energy DK will include changes in both translational and 
rotational kinetic energies.

Finally, in some situations an energy approach does not provide enough infor-
mation to solve the problem and it must be combined with a momentum approach. 
Such a case is illustrated in Example 10.14 in Section 10.9.

Table 10.3 lists the various equations we have discussed pertaining to rotational 
motion together with the analogous expressions for translational motion. Notice 
the similar mathematical forms of the equations. The last two equations in the 
left-hand column of Table 10.3, involving angular momentum L, are discussed in  
Chapter 11 and are included here only for the sake of completeness.

 Example 10.11    Rotating Rod Revisited

A uniform rod of length L and mass M is free to rotate on a frictionless pin passing through one end (Fig 10.21). The rod is 
released from rest in the horizontal position.

(A) What is its angular speed when the rod reaches its lowest position?

S O L U T I O N

Conceptualize  Consider Figure 10.21 and imagine the rod rotating downward through a quarter turn about the pivot at the 
left end. Also look back at Example 10.4. This physical situation is the same.

Rotational Motion About a Fixed Axis Translational Motion

Angular speed v 5 du/dt Translational speed v 5 dx/dt
Angular acceleration a 5 dv/dt Translational acceleration a 5 dv/dt
Net torque otext 5 Ia Net force oF  5 ma
If vf 5 vi 1 at If vf 5 vi 1 at
a 5 constant uf 5 ui 1 vit 1 12at2 a 5 constant xf 5 xi 1 vit 1 12at 2

 vf
2 5 vi

2 1 2a(uf 2 ui)  vf
2 5 vi

2 1 2a(xf 2 xi)

Work W 5  #
uf

ui

 t du Work W 5  #
xf

xi

 Fx dx

Rotational kinetic energy KR 5 12Iv2 Kinetic energy K 5 12mv2

Power P 5 tv  Power P 5 Fv
Angular momentum L 5 Iv Linear momentum p 5 mv
Net torque ot 5 dL/dt Net force oF 5 dp/dt

 table 10.3  Useful Equations in Rotational and Translational Motion
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 Example 10.12    Energy and the Atwood Machine

Two blocks having different masses m1 and m2 are connected by a string passing over a pulley as shown in Figure 10.22  
(page 272). The pulley has a radius R and moment of inertia I about its axis of rotation. The string does not slip on the 
pulley, and the system is released from rest. Find the translational speeds of the blocks after block 2 descends through a 
distance h and find the angular speed of the pulley at this time.

10.11 c o n t i n u e d

Categorize  As mentioned in Example 10.4, the angular acceleration of the rod is not 
constant. Therefore, the kinematic equations for rotation (Section 10.2) cannot be used 
to solve this example. We categorize the system of the rod and the Earth as an isolated 
system in terms of energy with no nonconservative forces acting and use the principle of 
conservation of mechanical energy.

Analyze  We choose the configuration in which the rod is hanging straight down as 
the reference configuration for gravitational potential energy and assign a value of zero 
for this configuration. When the rod is in the horizontal position, it has no rotational 
kinetic energy. The potential energy of the system in this configuration relative to the 
reference configuration is MgL/2 because the center of mass of the rod is at a height 
L/2 higher than its position in the reference configuration. When the rod reaches its 
lowest position, the energy of the system is entirely rotational energy 12Iv2, where I is the 
moment of inertia of the rod about an axis passing through the pivot.

Using the isolated system (energy) model, write an  DK 1 DU 5 0 
appropriate reduction of Equation 8.2:

Substitute for each of the final and initial energies: s1
2Iv2 2 0d 1 s0 2 1

2MgLd 5 0

Solve for v and use I 5 1
3ML2 (see Table 10.2) for the rod: v 5ÎMgL

I
5ÎMgL

1
3ML2

5 Î3g

L

(B) Determine the tangential speed of the center of mass and the tangential speed of the lowest point on the rod when it 
is in the vertical position.

S O L U T I O N

Use Equation 10.10 and the result from part (A): vCM 5 r v 5
L
2

 v 5  1
2 Ï3gL

Because r for the lowest point on the rod is twice what it  v 5 2vCM 5 Ï3gL  
is for the center of mass, the lowest point has a tangential  
speed twice that of the center of mass:

Finalize The initial configuration in this example is the same as that in Example 10.4. In Example 10.4, however, we could 
only find the initial angular acceleration of the rod. Applying an energy approach in the current example allows us to find 
additional information, the angular speed of the rod at the lowest point. Convince yourself that you could find the angular 
speed of the rod at any angular position by knowing the location of the center of mass at this position.

W H A T  I F ?  What if we want to find the angular speed of the rod when the angle it makes with the horizontal is 45.08? 
Because this angle is half of 90.08, for which we solved the problem above, is the angular speed at this configuration half the 
answer in the calculation above, that is, 12Ï3gyL?

Answer  Imagine the rod in Figure 10.21 at the 45.08 position. Use a pencil or a ruler to represent the rod at this position. 
Notice that the center of mass has dropped through more than half of the distance L/2 in this configuration. Therefore, more 
than half of the initial gravitational potential energy has been transformed to rotational kinetic energy. So, we should not 
expect the value of the angular speed to be as simple as proposed above.
 Note that the center of mass of the rod drops through a distance of 0.500L as the rod reaches the vertical configuration. 
When the rod is at 45.08 to the horizontal, we can show that the center of mass of the rod drops through a distance of 0.354L. 
Continuing the calculation, we find that the angular speed of the rod at this configuration is 0.841Ï3gyL , (not 12Ï3gyL).

CM

L/2

O

Figure 10.21  (Example 10.11) 
A uniform rigid rod pivoted at O 
rotates in a vertical plane under the 
action of the gravitational force.

continued
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10.12 c o n t i n u e d

S O L U T I O N

Conceptualize  We have already seen the Atwood machine in Exam-
ple 5.9, so the motion of the objects in Figure 10.22 should be easy 
to visualize.

Categorize  Because the string does not slip, the pulley rotates 
about the axle. We can neglect friction in the axle because the 
axle’s radius is small relative to that of the pulley. Hence, the fric-
tional torque is much smaller than the net torque applied by the 
two blocks provided that their masses are significantly different. 
Consequently, the system consisting of the two blocks, the pulley, 
and the Earth is an isolated system in terms of energy with no noncon-
servative forces acting. 

Analyze  We define the zero configuration for gravitational potential energy as that which exists when the system is released. 
From Figure 10.22, we see that the descent of block 2 is associated with a decrease in system potential energy and that the rise 
of block 1 represents an increase in potential energy.

Using the isolated system (energy) model, write  DK 1 DU 5 0 
an appropriate reduction of the conservation of  
energy equation:

Substitute for each of the energies: fs1
2m1vf

2 1 1
2m2vf

2 1 1
2Ivf

2  d 2 0g 1 fsm1gh 2 m2ghd 2 0g 5 0 

The two blocks, the string, and the outer rim of  1
2m 1vf

2 1 1
2m 2vf

2 1 1
2I 

vf
2

R 2 5 m 2gh 2 m 1gh 
the pulley all move at the same speed. Therefore,  
use vf 5 Rvf to substitute for vf : 

1
2Sm1 1 m2 1

I
R 2Dvf

2  5 sm2 2 m1dgh

Solve for vf : (1)   vf 5 3 2sm2 2 m1dgh

m1 1 m2 1 IyR 2 41y2

Use vf 5 Rvf to solve for vf : vf 5
vf

R
5  

1
R

 3 2sm2 2 m1dgh

m1 1 m2 1 IyR 2 41y2

Finalize Each block can be modeled as a particle under constant acceleration because it experiences a constant net force. Think 
about what you would need to do to use Equation (1) to find the acceleration of one of the blocks. Then imagine the pulley 
becoming massless and determine the acceleration of a block. How does this result compare with the result of Example 5.9?

   10.9    Rolling Motion of a Rigid Object
In this section, we treat the motion of a rigid object rolling along a flat surface. In 
general, such motion is complex. For example, suppose a cylinder is rolling on a 
straight path such that the axis of rotation remains parallel to its initial orienta-
tion in space. As Figure 10.23 shows, a point on the rim of the cylinder moves in a 
complex path called a cycloid. We can simplify matters, however, by focusing on the 
center of mass rather than on a point on the rim of the rolling object. As shown in 

h

h

R

m2

m1Figure 10.22 (Example 10.12) 
An Atwood machine with a 
massive pulley.

Figure 10.23  Two points on a 
rolling object take different paths 
through space.

One light source at the center of a 
rolling cylinder and another at one 
point on the rim illustrate the 
different paths these two points take. 

The point on the 
rim moves in the 
path called a cycloid 
(red curve).

The center 
moves in a 
straight line 
(green line). 
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    10.9 Rolling Motion of a Rigid Object 273

Figure 10.23, the center of mass moves in translational motion in a straight line. If 
an object such as a cylinder rolls without slipping on the surface (called pure rolling 
motion), a simple relationship exists between its rotational and translational motions.

Consider a uniform cylinder of radius R rolling without slipping on a horizontal 
surface (Fig. 10.24). As the cylinder rotates through an angle u, its center of mass 
moves a linear distance s 5 Ru (see Eq. 10.1b). Therefore, the translational speed of 
the center of mass for pure rolling motion is given by

 vCM 5
ds
dt

5 R 
du

dt
5 Rv (10.28)

where v is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion. 
The magnitude of the linear acceleration of the center of mass for pure rolling 
motion is

 aCM 5
dvCM 

dt
5 R 

dv

dt
5 Ra (10.29)

where a is the angular acceleration of the cylinder.
Imagine that you are moving along with a rolling object at speed vCM, staying 

in a frame of reference at rest with respect to the center of mass of the object. As 
you observe the object, you will see the object in pure rotation around its center 
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom 
of the object as observed by you. In addition to these velocities, every point on the 
object moves in the same direction with speed vCM relative to the surface on which 
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the 
object is the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25c 
shows the results of adding these velocities.

Notice that the contact point between the surface and object in Figure 10.25c 
has a translational speed of zero. At this instant, the rolling object is moving in 
exactly the same way as if the surface were removed and the object were pivoted at 
point P and spun about an axis passing through P. We can express the total kinetic 
energy of this imagined spinning object as

 K 5 1
2IP v2 (10.30)

where IP is the moment of inertia about a rotation axis through P.
Because the motion of the imagined spinning object is the same at this instant as 

our actual rolling object, Equation 10.30 also gives the kinetic energy of the rolling 
object. Applying the parallel-axis theorem, we can substitute IP 5 ICM 1 MR2 into 
Equation 10.30 to obtain

K 5 1
2ICMv2 1 1

2MR 2v2

s � R

R s

u

u

Figure 10.24 For pure rolling 
motion, as the cylinder rotates 
through an angle u its center 
moves a linear distance s 5 Ru.

Pitfall Prevention 10.6
Equation 10.28 Looks Familiar  
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to be 
clear on the difference. Equation 
10.10 gives the tangential speed of 
a point on a rotating object located 
a distance r from a fixed rotation 
axis if the object is rotating with 
angular speed v. Equation 10.28 
gives the translational speed of the 
center of mass of a rolling object 
of radius R rotating with angular 
speed v.

vCM

CM
vCM

vCM
P

CM v � 0  

P

v � R

v � R

CM

P
v � 0

v � vCM

v � vCM � R  � 2vCMv
v

v

Pure rotation Pure translation Combination of 
translation and rotation

a b c

Figure 10.25 The motion of a 
rolling object can be modeled as 
a combination of pure translation 
and pure rotation. Equation 10.28 
tells us that vCM 5 Rv.
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Using vCM 5 Rv, this equation can be expressed as

 K 5 1
2 ICMv2 1 1

2MvCM
2  (10.31)

The term 1
2ICMv2 represents the rotational kinetic energy of the object about its 

center of mass, and the term 12MvCM
2  represents the kinetic energy the object would 

have if it were just translating through space without rotating. Therefore, the total 
kinetic energy of a rolling object is the sum of the rotational kinetic energy about 
the center of mass and the translational kinetic energy of the center of mass. This 
statement is consistent with the situation illustrated in Figure 10.25, which shows 
that the velocity of a point on the object is the sum of the velocity of the center of 
mass and the tangential velocity around the center of mass.

Energy methods can be used to treat a class of problems concerning the roll-
ing motion of an object on a rough incline. For example, consider Figure 10.26, 
which shows a sphere rolling without slipping after being released from rest at 
the top of the incline. Accelerated rolling motion is possible only if a friction 
force is present between the sphere and the incline to produce a net torque 
about the center of mass. Despite the presence of friction, no loss of mechanical 
energy occurs because the contact point is at rest relative to the surface at any 
instant. (On the other hand, if the sphere were to slip, mechanical energy of the 
sphere–incline–Earth system would decrease due to the nonconservative force of 
kinetic friction.)

In reality, rolling friction causes mechanical energy to transform to internal 
energy. Rolling friction is due to deformations of the surface and the rolling object. 
For example, automobile tires flex as they roll on a roadway, representing a trans-
formation of mechanical energy to internal energy. The roadway also deforms a 
small amount, representing additional rolling friction. In our problem-solving 
models, we ignore rolling friction unless stated otherwise.

Using vCM 5 Rv for pure rolling motion, we can express Equation 10.31 as

  K 5 1
2ICM SvCM 

R D2

 1 1
2MvCM

2

  K 5 1
2 SICM 

R 2  1 MDvCM
2 (10.32)

For the sphere–Earth system in Figure 10.26, we define the zero configuration of 
gravitational potential energy to be when the sphere is at the bottom of the incline. 
Therefore, Equation 8.2 gives

DK 1 DU 5 0

 31
2 SICM 

R 2  1 MDvCM
2 2 04 1 s0 2 Mgh d 5 0 

  vCM 5 3 2gh

1 1 sICM yMR 2d
 41y2

 (10.33)

While this calculation was performed for the sphere in Figure 10.26, Equation 
10.33 is general enough that it provides the speed of any object with a circular cross 
section that rolls from rest down an incline of height h.

Q uick Quiz 10.7  A ball rolls without slipping down incline A, starting from 
rest. At the same time, a box starts from rest and slides down incline B, which is 
identical to incline A except that it is frictionless. Which arrives at the bottom 
first? (a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the 
same time. (d) It is impossible to determine.

Total kinetic energy  
of a rolling object

x

M

u

v
h

vCM
S

R

Figure 10.26 A sphere rolling 
down an incline. Mechanical 
energy of the sphere–Earth system 
is conserved if no slipping occurs.
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 Example 10.13    Sphere Rolling Down an Incline

Suppose the sphere shown in Figure 10.26 is solid and uniform. Calculate the translational speed of the center of mass at 
the bottom of the incline and the magnitude of the translational acceleration of the center of mass.

S O L U T I O N

Conceptualize Roll a golf ball or a marble down a ramp to visualize the motion of the sphere.

Categorize  We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces acting. 
This model is the one that led to Equation 10.33, so we can use that result. To find its acceleration, we will model the sphere 
as a particle under constant acceleration.

Analyze  Evaluate the speed of the center of mass of the  (1)   vCM 5 3 2gh

1 1 s2
5MR 2yMR 2d

 41y2

5 s10
7 ghd1y2  

sphere from Equation 10.33, using the moment of inertia  
from Table 10.2:
 This result is less than Ï2gh, which is the speed an object would have if it simply slid down the incline without rotating. 
(Eliminate the rotation by setting ICM 5 0 in Eq. 10.33.)
 To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere is 
related to the distance x it moves along the incline through the relationship h 5 x sin u.

Use this relationship to rewrite Equation (1):  vCM 2 5 10
7 gx sin u

Write Equation 2.17 for an object starting from rest and  vCM
2 5 2aCMx 

moving through a distance x under constant acceleration:

Equate the preceding two expressions to find aCM:   aCM 5 5
7g sin u

 Example 10.14    Pulling on a Spool3

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal 
table with friction (Fig. 10.27). With your hand on a light string wrapped around 
the axle of radius r, you pull on the spool with a constant horizontal force of mag-
nitude T to the right. As a result, the spool rolls without slipping a distance L 
along the table with no rolling friction.

(A) Find the final translational speed of the center of mass of the spool.

S O L U T I O N

Conceptualize  Use Figure 10.27 to visualize the motion of the spool when you pull 
the string. For the spool to roll through a distance L, notice that your hand on the 
string must pull through a distance different from L.

Categorize  The spool is a rigid object under a net torque, but the net torque includes that due to the friction force at the bottom 
of the spool, about which we know nothing. Therefore, an approach based on the rigid object under a net torque model might 
be difficult. Work is done by your hand on the spool and string, which form a nonisolated system in terms of energy. Let’s see 
if an approach based on the nonisolated system (energy) model is fruitful.

R
T
S

L

r

f
S

Figure 10.27  (Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.

continued

3Example 10.14 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher, 43:10, 2005.

Finalize Both the speed and the acceleration of the center 
of mass are independent of the mass and the radius of the 
sphere. That is, all uniform solid spheres experience the 
same speed and acceleration on a given incline. Try to ver-
ify this statement experimentally with balls of different sizes, 
such as a marble and a croquet ball.
 If we were to repeat the acceleration calculation for a 
hollow sphere, a solid cylinder, or a hoop, we would obtain  

similar results in which only the numerical factor in front 
of g sin u would differ. The numerical factors that appear in 
the expressions for vCM and aCM depend only on the moment 
of inertia about the center of mass for the specific object. In 
all cases, the acceleration of the center of mass is less than  
g sin u, the value the acceleration would have if the incline 
were frictionless and no rolling occurred.
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10.14 c o n t i n u e d

Analyze  The only type of energy that changes in the system is the kinetic energy of the spool. There is no rolling friction, so 
there is no change in internal energy. The only way that energy crosses the system’s boundary is by the work done by your hand 
on the string. No work is done by the static force of friction on the bottom of the spool (to the left in Fig. 10.27) because the 
point of application of the force moves through no displacement.

Write the appropriate reduction of the conservation of  (1)   W 5 DK 5 DKtrans 1 DKrot 
energy equation, Equation 8.2:

In this expression, W is the work done on the string by your hand. To find this work, we need to find the displacement of your 
hand during the process. We first find the length of string that has unwound off the spool. If the spool rolls through a dis-
tance L, the total angle through which it rotates is u 5 L/R. The axle also rotates through this angle.

Use Equation 10.1b to find the total arc length through  / 5 r u 5
r
R

 L 
which the axle turns:

This result also gives the length of string pulled off the axle. Your hand will move through this distance plus the distance L 
through which the spool moves. Therefore, the magnitude of the displacement of the point of application of the force applied 
by your hand is , 1 L 5 L(1 1 r/R).

Evaluate the work done by your hand on the string: (2)   W 5 TLS1 1
r
RD

Substitute Equation (2) into Equation (1): TLS1 1
r
RD 5 1

2mvC M
2 1 1

2Iv2

where I is the moment of inertia of the spool about its center of mass and vCM and v are the final values after the wheel rolls 
through the distance L.

Apply the nonslip rolling condition v 5 vCM/R: TLS1 1
r
RD 5 1

2mvC M
21 1

2I 
vC M

2

R 2

Solve for vCM: (3)   vCM 5 Î2TL s1 1 ryR d
m s1 1 IymR 2d

(B) Find the value of the friction force f.

S O L U T I O N

Categorize  Because the friction force does no work, we cannot evaluate it from an energy approach. We model the spool as a 
nonisolated system, but this time in terms of momentum. The string applies a force across the boundary of the system, resulting 
in an impulse on the system. Because the forces on the spool are constant, we can model the spool’s center of mass as a particle 
under constant acceleration.

Analyze  Write the impulse–momentum theorem  m(vCM 2 0) 5 (T 2 f )Dt 
(Eq. 9.40) for the spool: (4)   mvCM 5 (T 2 f )Dt

For a particle under constant acceleration starting from rest, Equation 2.14 tells us that the average velocity of the center of 
mass is half the final velocity.

Use this fact and Equation 2.2 to find the time interval for  (5)   Dt 5
L

vCM,avg 
5

2L
vCM

 
the center of mass of the spool to move a distance L from  
rest to a final speed vCM:

Substitute Equation (5) into Equation (4): mvCM 5 sT 2 f d 
2L
vCM

Solve for the friction force f: f 5 T 2
mvC M

2

2L
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Substitute vCM from Equation (3): f 5 T 2
m
2L

 3 2TL s1 1 ryRd
m s1 1 IymR 2d

 4 

     5 T 2 T 
s1 1 ryRd

s1 1 IymR 2d
5 T 3 I 2 mrR

I 1 mR 24

10.14 c o n t i n u e d

summary
 › Definitions

The angular position of a rigid object is defined as the angle u 
between a reference line attached to the object and a reference 
line fixed in space. The angular displacement of a particle moving  
in a circular path or a rigid object rotating about a fixed axis is  
Du ; uf 2 ui.
 The instantaneous angular speed of a particle moving in a circular 
path or of a rigid object rotating about a fixed axis is

 v ;
du

dt
 (10.3)

The instantaneous angular acceleration of a particle moving in a 
circular path or of a rigid object rotating about a fixed axis is

 a ;
dv

dt
 (10.5)

 When a rigid object rotates about a fixed axis, every part 
of the object has the same angular speed and the same angular 
acceleration.

The magnitude of the torque associated with a force F
S

 
acting on an object at a distance r from the rotation axis is

 t 5 rF sin f 5 Fd (10.14)

where f is the angle between the position vector of the 
point of application of the force and the force vector, and 
d is the moment arm of the force, which is the perpendic-
ular distance from the rotation axis to the line of action 
of the force.

The moment of inertia of a system of particles is defined as

 I ; o
i

miri
2 (10.19)

where mi is the mass of the ith particle and ri is its distance 
from the rotation axis.

 › Concepts and Principles

When a rigid object rotates about a fixed axis, the 
angular position, angular speed, and angular accel-
eration are related to the translational position, trans-
lational speed, and translational acceleration through 
the relationships

 s 5 ru (10.1b)

 v 5 rv (10.10)

 at 5 ra (10.11)

The moment of inertia of a rigid object is

 I 5 #r 2 dm (10.20)

where r is the distance from the mass element dm to the axis of rotation.

The rate at which work is done by an external force in rotating a rigid 
object about a fixed axis, or the power delivered, is

 P 5 tv (10.26)

If work is done on a rigid object and the only result of the work is rotation 
about a fixed axis, the net work done by external forces in rotating the 
object equals the change in the rotational kinetic energy of the object:

 W 5 1
2 Ivf

2 2 1
2 Ivi

2 (10.27)

If a rigid object rotates about a fixed axis with angular 
speed v, its rotational kinetic energy can be written

 KR 5 1
2Iv2 (10.24)

where I is the moment of inertia of the object about 
the axis of rotation.

Finalize Notice that we could use the impulse–momentum 
theorem for the translational motion of the spool while 
ignoring that the spool is rotating! This fact demonstrates 
the power of our growing list of approaches to solving prob-
lems. To challenge yourself, solve part (A) again, using the 

rigid object under a net torque model for the spool and the 
particle under constant acceleration model for the center of 
mass of the spool, to derive Equation (3). Calculate torque 
and moment of inertia around the base of the spool to elim-
inate the unknown friction force from the torque equation.

continued
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278 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

The total kinetic energy of a rigid object rolling on a rough surface without slipping equals the rotational kinetic energy about its 
center of mass plus the translational kinetic energy of the center of mass:

 K 5 1
2 ICM v2 1 1

2 MvCM
2 (10.31)

 › Analysis Models for Problem Solving

Rigid Object Under Constant Angular Accel-
eration. If a rigid object rotates about a fixed 
axis under constant angular acceleration, one 
can apply equations of kinematics that are 
analogous to those for translational motion 
of a particle under constant acceleration:

 vf 5 vi 1 at (10.6)

 uf 5 ui 1 vit 1 1
2at 

2 (10.7)

 vf
2 5 vi

2 1 2a(uf 2 ui) (10.8)

 uf 5 ui 1 1
2  
svi 1 vf  

dt (10.9)

Rigid Object Under a Net 
Torque. If a rigid object 
free to rotate about a 
fixed axis has a net exter-
nal torque acting on it, 
the object undergoes an 
angular acceleration a, 
where

 o text 5 Ia (10.18)

 This equation is the rotational analog to 
Newton’s second law in the particle under a net 
force model.

a� constant a

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You have a summer internship, working with other interns 
on an archeological dig. Your intern team has found a per-
fectly cylindrical object of an unknown material. Exami-
nation of the visible surface shows that the composition of 
the object seems to be uniform. The object has a mass of 
15.7 kg and a radius of 5.00 cm. The lead archeologist wants 
to know if the artifact is hollow, but the x-ray machine and 
other scanning equipment have broken down, so there is 
no way to look inside. Your team comes up with the idea of 
building U-shaped supports from wood and laying the cylin-
der horizontally between the supports as shown in the end 
view in Figure TP10.1a. The wood can be sanded and oiled 
to almost eliminate friction. In this way, the cylindrical arti-
fact is free to rotate around its long, horizontal axis. You 
wrap a long piece of twine several times around the cylinder 

and attach a 2.00-kg pickax to the free hanging end of the 
twine as shown in the side view in Figure TP10.1b. When 
the pickax is released from rest, it descends and causes the 
cylinder to rotate. (a) You measure the falling of the pickax 
and find that it falls 1.50 m in 1.45 s. Is the cylinder hollow? 
(b) Suppose you measure the falling of the pickax through 
the same distance and find it to take 1.13 s. What can you 
conclude about the cylinder now?

2. In order to save money on construction costs, a circular 
race track has been built with a flat roadway rather than a 
banked roadway, like that discussed in Example 6.4. During 
testing of the track, several race cars start, one at a time, at 
the beginning of the track and at the same radial distance 
from the center of the track, and undergo constant transla-
tional acceleration of magnitude a. All cars have identical 
tires. Show that all of the cars skid outward off the track 
at the same angular position around the track, regardless 
of their mass. To solve this problem, the stubborn owner 
still does not want to spend the money on banked roadways, 
so he simply has a circular track built with the same road 
material but a larger radius. What happens?

3. ACTIVITY  (a) Place ten pennies on a horizontal meterstick, 
with a penny at 10 cm, 20 cm, 30 cm, etc., out to 100 cm.  
Carefully pick up the meterstick, keeping it horizontal, and 
have a member of the group make a video recording of the 
following event, using a smartphone or other device. While 
the video recording is underway, release the 100-cm end of 
the meterstick while the 0-cm end rests on someone’s fin-
ger or the edge of the desk. By stepping through the video 
images or watching the video in slow motion, determine 
which pennies first lose contact with the meterstick as it 
falls. (b) Make a theoretical determination of which pen-
nies should first lose contact and compare to your experi-
mental result.

a b

Figure TP10.1
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

section 10.1 Angular Position, Velocity, and Acceleration

1. (a) Find the angular speed of the Earth’s rotation about its 
axis. (b) How does this rotation affect the shape of the Earth?

2. A bar on a hinge starts from rest and rotates with an 
angular acceleration a 5 10 1 6t, where a is in rad/s2  
and t is in seconds. Determine the angle in radians through 
which the bar turns in the first 4.00 s.

section 10.2 Analysis Model: Rigid Object Under Constant 
Angular Acceleration

3. A wheel starts from rest and rotates with constant angular 
acceleration to reach an angular speed of 12.0 rad/s in 3.00 s.  
Find (a) the magnitude of the angular acceleration of the 
wheel and (b) the angle in radians through which it rotates 
in this time interval.

4. A machine part rotates at an angular speed of 0.060 rad/s; 
its speed is then increased to 2.2 rad/s at an angular accel-
eration of 0.70 rad/s2. (a) Find the angle through which the 
part rotates before reaching this final speed. (b) If both 
the initial and final angular speeds are doubled and the 
angular acceleration remains the same, by what factor is the 
angular displacement changed? Why?

5. A dentist’s drill starts from rest. After 3.20 s of constant angu-
lar acceleration, it turns at a rate of 2.51 3 104 rev/min. (a) 
Find the drill’s angular acceleration. (b) Determine the angle 
(in radians) through which the drill rotates during this period.

6. Why is the following situation impossible? Starting from rest, 
a disk rotates around a fixed axis through an angle of 
50.0  rad in a time interval of 10.0 s. The angular accelera-
tion of the disk is constant during the entire motion, and its 
final angular speed is 8.00 rad/s.

7. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground with 
respect to an inertial reference frame because the person 
on the ground is closer to the Earth’s axis. Consequently, 
if an object is dropped from the top floor to the ground a 
distance h below, it lands east of the point vertically below 
where it was dropped. (a) How far to the east will the object 
land? Express your answer in terms of h, g, and the angular 
speed v of the Earth. Ignore air resistance and assume the 
free-fall acceleration is constant over this range of heights. 
(b) Evaluate the eastward displacement for h 5 50.0 m.  
(c) In your judgment, were we justified in ignoring this 
aspect of the Coriolis effect in our previous study of free 
fall? (d) Suppose the angular speed of the Earth were to 
decrease with constant angular acceleration due to tidal 
friction. Would the eastward displacement of the dropped 
object increase or decrease compared with that in part (b)?

section 10.3 Angular and Translational Quantities

8. Make an order-of-magnitude estimate of the number of rev-
olutions through which a typical automobile tire turns in 
one year. State the quantities you measure or estimate and 
their values.

9. A discus thrower (Fig. P10.9) 
accelerates a discus from 
rest to a speed of 25.0 m/s  
by whirling it through 
1.25  rev. Assume the dis-
cus moves on the arc of 
a circle 1.00 m in radius.  
(a) Calculate the final 
angular speed of the discus.  
(b) Determine the mag-
nitude of the angular 
acceleration of the discus, 
assuming it to be constant. 
(c) Calculate the time inter-
val required for the discus 
to accelerate from rest to 
25.0 m/s.

10. A straight ladder is leaning against the wall of a house. The 
ladder has rails 4.90 m long, joined by rungs 0.410 m long. 
Its bottom end is on solid but sloping ground so that the 
top of the ladder is 0.690 m to the left of where it should 
be, and the ladder is unsafe to climb. You want to put a 
flat rock under one foot of the ladder to compensate for 
the slope of the ground. (a) What should be the thickness 
of the rock? (b) Does using ideas from this chapter make 
it easier to explain the solution to part (a)? Explain your 
answer.

11. A car accelerates uniformly from rest and reaches a speed 
of 22.0 m/s in 9.00 s. Assuming the diameter of a tire is 
58.0 cm, (a) find the number of revolutions the tire makes 
during this motion, assuming that no slipping occurs. 
(b) What is the final angular speed of a tire in revolutions 
per second?

12. Review. A small object with mass 4.00 kg moves counter-
clockwise with constant angular speed 1.50 rad/s in a circle 
of radius 3.00 m centered at the origin. It starts at the point 
with position vector 3.00 i

⁄
 m. It then undergoes an angular 

displacement of 9.00 rad. (a) What is its new position vec-
tor? Use unit-vector notation for all vector answers. (b) In 
what quadrant is the particle located, and what angle does 
its position vector make with the positive x axis? (c) What is 
its velocity? (d) In what direction is it moving? (e) What is 
its acceleration? (f) Make a sketch of its position, velocity, 
and acceleration vectors. (g) What total force is exerted on  
the object?

13. In a manufacturing process, a large, cylindrical roller is 
used to flatten material fed beneath it. The diameter of 
the roller is 1.00 m, and, while being driven into rotation 
around a fixed axis, its angular position is expressed as

u 5 2.50t2 2 0.600t 3

where u is in radians and t is in seconds. (a) Find the maximum 
angular speed of the roller. (b) What is the maximum tangen-
tial speed of a point on the rim of the roller? (c) At what time t 
should the driving force be removed from the roller so that the 
roller does not reverse its direction of rotation? (d) Through 
how many rotations has the roller turned between t 5 0 and 
the time found in part (c)?

V
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Figure P10.9
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section 10.4 Torque

14.  Find the net torque on the wheel in Figure P10.14 about the 
axle through O, taking a 5 10.0 cm and b 5 25.0 cm.

section 10.5 Analysis Model: Rigid Object Under a Net Torque

15. A grinding wheel is in the form of a uniform solid disk of 
radius 7.00 cm and mass 2.00 kg. It starts from rest and 
accelerates uniformly under the action of the constant 
torque of 0.600 N ? m that the motor exerts on the wheel. (a) 
How long does the wheel take to reach its final operating 
speed of 1 200 rev/min? (b) Through how many revolutions 
does it turn while accelerating?

16.  Review. A block of mass m1 5 2.00 kg and a block of mass 
m2 5 6.00 kg are connected by a massless string over a pulley 
in the shape of a solid disk having radius R 5 0.250 m and 
mass M 5 10.0 kg. The fixed, wedge-shaped ramp makes an 
angle of u 5 30.08 as shown in Figure P10.16. The coefficient 
of kinetic friction is 0.360 for both blocks. (a) Draw force 
diagrams of both blocks and of the pulley. Determine (b) 
the acceleration of the two blocks and (c) the tensions in the 
string on both sides of the pulley.

17. A model airplane with mass 0.750 kg is tethered to the 
ground by a wire so that it flies in a horizontal circle 30.0 m in 
radius. The airplane engine provides a net thrust of 0.800 N 
perpendicular to the tethering wire. (a) Find the torque the 
net thrust produces about the center of the circle. (b) Find 
the angular acceleration of the airplane. (c) Find the transla-
tional acceleration of the airplane tangent to its flight path.

18. A disk having moment of inertia 100 kg ? m2 is free to 
rotate without friction, starting from rest, about a fixed axis 
through its center. A tangential force whose magnitude can 
range from F 5 0 to F 5 50.0 N can be applied at any dis-
tance ranging from R 5 0 to R 5 3.00 m from the axis of 
rotation. (a) Find a pair of values of F and R that cause the 
disk to complete 2.00 rev in 10.0 s. (b) Is your answer for part 
(a) a unique answer? How many answers exist?

19. Your grandmother enjoys creating pottery as a hobby. She 
uses a potter’s wheel, which is a stone disk of radius R 5 
0.500 m and mass M 5 100 kg. In operation, the wheel 

rotates at 50.0 rev/min. While the wheel is spinning, your  
grandmother works clay at the center of the wheel with 
her hands into a pot-shaped object with circular symme-
try. When the correct shape is reached, she wants to stop 
the wheel in as short a time interval as possible, so that the 
shape of the pot is not further distorted by the rotation. She 
pushes continuously with a wet rag as hard as she can radi-
ally inward on the edge of the wheel and the wheel stops in 
6.00 s. (a) You would like to build a brake to stop the wheel 
in a shorter time interval, but you must determine the coef-
ficient of friction between the rag and the wheel in order to 
design a better system. You determine that the maximum 
pressing force your grandmother can sustain for 6.00 s is 
70.0 N. (b) What If? If your grandmother instead chooses to 
press down on the upper surface of the wheel a distance r 5 
0.300 m from the axis of rotation, what is the force needed 
to stop the wheel in 6.00 s? Assume that the coefficient of 
kinetic friction between the wet rag and the wheel remains 
the same as before.

20. At a local mine, a cave-in has trapped a number of miners. 
You and some classmates rush to the scene to see how you 
can help. The trapped miners have been able to reach a 
point in the mine at the bottom of a tall vertical shaft to 
the surface, allowing them access to fresh air. But they are 
in desperate need of fresh water and bandages for injuries. 
Some rescue workers ask you to help pack a light plastic 
cylindrical container with bottles of water and bandages. 
Simply dropping the container into the shaft risks damaging 
the container and contents and injuring the miners. Tying 
a rope to the container and lowering it on the end of the 
rope takes a long time. A quick and relatively safe method 
is to wrap a lightweight rope around the container. One 
end of the rope will be secured and the container will be 
released into the vertical shaft. The container will unroll off 
the rope like a falling yo-yo. (a) If immediate access to the 
lightweight bandages is needed due to injuries, so that you 
want the container to reach the bottom of the shaft in the 
shortest possible time interval, should you pack the heavy 
water bottles at the center of the container or near the outer 
edges? (b) If the medical necessity is not so urgent and, for 
safety considerations, you want the container to arrive at the 
bottom of the shaft with the lowest possible speed, should 
you pack the heavy water bottles at the center of the con-
tainer or near the outer edges? Assume that the center of 
mass of the container is at its center.

21. You have just bought a new bicycle. On your first riding trip, 
it seems that the bike comes to rest relatively quickly after 
you stop pedaling and let the bicycle coast on flat ground. 
You call the bicycle shop from which you purchased the 
vehicle and describe the problem. The technician says that 
they will replace the bearings in the wheels or do whatever 
else is necessary if you can prove that the frictional torque 
in the axle of the wheels is worse than –0.02 N · m. At first, 
you are discouraged by the technical sound of what you have 
been told and by the absence of any tool to measure torque 
in your garage. But then you remember that you are taking 
a physics class! You take your bike into the garage, turn it 
upside down and start spinning the wheel while you think 
about how to determine the frictional torque. The driveway 
outside the garage had a small puddle, so you notice that 
droplets of water are flying off the edge of one point on the 
tire tangentially, including drops that are projected straight  
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upward, as shown in Figure P10.21. Ah-ha! Here is your 
torque-measuring method! The upward-projected drops 
leave the rim of the wheel at the same level as the axle. You 
measure the height to which a drop rises from the level 
of the axle: h1 5 54.0 cm. The wet spot on the tire makes 
one revolution and another drop is projected upward. You 
measure its highest point:  
h2 5 51.0 cm. You measure 
the radius of the wheel: 
r 5 0.381 m. Finally, you 
take the wheel off the 
bike and find its mass:  
m 5 0.850 kg. Because 
most of the mass of the 
wheel is at the tire, you 
model the wheel as a 
hoop. What do you tell 
the technician when you 
call back?

section 10.6 Calculation of Moments of Inertia

22. Imagine that you stand tall and turn about a vertical 
axis through the top of your head and the point halfway 
between your ankles. Compute an order-of-magnitude esti-
mate for the moment of inertia of your body for this rota-
tion. In your solution, state the quantities you measure or 
estimate and their values.

23. Following the procedure used in Example 10.7, prove that 
the moment of inertia about the y9 axis of the rigid rod in 
Figure 10.15 is 13ML2.

24. Two balls with masses M and m are connected by a rigid rod 
of length L and negligible mass as shown in Figure P10.24. 
For an axis perpendicular to the rod, (a) show that the system 
has the minimum moment of inertia when the axis passes 
through the center of mass. (b) Show that this moment of 
inertia is I 5 mL2, where m 5 mM/(m 1 M).

section 10.7 Rotational Kinetic Energy

25. Rigid rods of negligible mass 
lying along the y axis connect 
three particles (Fig. P10.25). The 
system rotates about the x axis 
with an angular speed of 2.00 
rad/s. Find (a)  the moment of 
inertia about the x axis, (b) the 
total rotational kinetic energy 
evaluated from 12Iv2, (c) the tan-
gential speed of each particle, 
and (d) the total kinetic energy 
evaluated from o1

2mivi
2 . (e) 

Compare the answers for kinetic 
energy in parts (a) and (b).

26. A war-wolf or trebuchet is a device used during the Middle Ages 
to throw rocks at castles and now sometimes used to fling 
large vegetables and pianos as a sport. A simple trebuchet is 

shown in Figure P10.26. Model it as a stiff rod of negligible 
mass, 3.00 m long, joining particles of mass m1 5 0.120 kg and 
m2 5 60.0 kg at its ends. It can turn on a frictionless, horizon-
tal axle perpendicular to the rod and 14.0 cm from the large-
mass particle. The operator releases the trebuchet from rest 
in a horizontal orientation. (a) Find the maximum speed that 
the small-mass object attains. (b) While the small-mass object 
is gaining speed, does it move with constant acceleration?  
(c) Does it move with constant tangential acceleration?  
(d) Does the trebuchet move with constant angular accelera-
tion? (e) Does it have constant momentum? (f) Does the tre-
buchet–Earth system have constant mechanical energy?

section 10.8 Energy Considerations in Rotational Motion

27. Big Ben, the nickname for the clock in Elizabeth Tower 
(named after the Queen in 2012) in London, has an hour 
hand 2.70 m long with a mass of 60.0 kg and a minute hand 
4.50 m long with a mass of 100 kg (Fig. P10.27). Calculate 
the total rotational kinetic energy of the two hands about 
the axis of rotation. (You may model the hands as long, thin 
rods rotated about one end. Assume the hour and minute 
hands are rotating at a constant rate of one revolution per 
12 hours and 60 minutes, respectively.)

28. Consider two objects with m1 . m2 
connected by a light string that passes 
over a pulley having a moment of 
inertia of I about its axis of rotation 
as shown in Figure P10.28. The string 
does not slip on the pulley or stretch. 
The pulley turns without friction. The 
two objects are released from rest 
separated by a vertical distance 2h. 
(a) Use the principle of conservation 
of energy to find the translational 
speeds of the objects as they pass each 
other. (b) Find the angular speed of 
the pulley at this time. 

29. Review. An object with a mass of m 5 5.10 kg is attached to  
the free end of a light string wrapped around a reel of radius  
R 5 0.250 m and mass M 5 3.00 kg. The reel is a solid disk, free 
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to rotate in a vertical plane 
about the horizontal axis pass-
ing through its center as shown 
in Figure  P10.29. The sus-
pended object is released from 
rest 6.00  m above the floor. 
Determine (a) the tension in 
the string, (b) the acceleration 
of the object, and (c) the speed 
with which the object hits the 
floor. (d) Verify your answer to 
part (c) by using the isolated 
system (energy) model.

30. Why is the following situation 
impossible? In a large city with 
an air-pollution problem, a 
bus has no combustion engine. 
It runs over its citywide route 
on energy drawn from a large, rapidly rotating flywheel under 
the floor of the bus. The flywheel is spun up to its maximum 
rotation rate of 3 000 rev/min by an electric motor at the bus 
terminal. Every time the bus speeds up, the flywheel slows 
down slightly. The bus is equipped with regenerative braking 
so that the flywheel can speed up when the bus slows down. 
The flywheel is a uniform solid cylinder with mass 1 200 kg 
and radius 0.500 m. The bus body does work against air resis-
tance and rolling resistance at the average rate of 25.0 hp as it 
travels its route with an average speed of 35.0 km/h.

31. A uniform solid disk of radius R 
and mass M is free to rotate on 
a frictionless pivot through a 
point on its rim (Fig. P10.31). If 
the disk is released from rest in 
the position shown by the cop-
per-colored circle, (a) what is 
the speed of its center of mass 
when the disk reaches the posi-
tion indicated by the dashed 
circle? (b) What is the speed of 
the lowest point on the disk in the dashed position? 
(c) What If? Repeat part (a) using a uniform hoop.

32. This problem describes one experi-
mental method for determining the 
moment of inertia of an irregularly 
shaped object such as the payload 
for a satellite. Figure P10.32 shows a 
counterweight of mass m suspended 
by a cord wound around a spool of 
radius r, forming part of a turntable 
supporting the object. The turn-
table can rotate without friction. 
When the counterweight is released 
from rest, it descends through a 
distance h, acquiring a speed v. Show that the moment of  
inertia I of the rotating apparatus (including the turntable) is 
mr 2(2gh/v 2 2 1).

section 10.9 Rolling Motion of a Rigid Object

33. A tennis ball is a hollow sphere with a thin wall. It is set roll-
ing without slipping at 4.03 m/s on a horizontal section of a 
track as shown in Figure P10.33. It rolls around the inside of 

a vertical circular loop of radius r  5 45.0  cm. As the ball 
nears the bottom of the loop, the shape of the track deviates 
from a perfect circle so that the ball leaves the track at a 
point h 5 20.0 cm below the horizontal section. (a) Find the 
ball’s speed at the top of the loop. (b) Demonstrate that the 
ball will not fall from the track at the top of the loop.  
(c) Find the ball’s speed as it leaves the track at the bottom. 
(d) What If? Suppose that static friction between ball and 
track were negligible so that the ball slid instead of rolling. 
Describe the speed of the ball at the top of the loop in this 
situation. (e) Explain your answer to part (d).

34. A smooth cube of mass m and edge length r slides with 
speed v on a horizontal surface with negligible friction. The 
cube then moves up a smooth incline that makes an angle u 
with the horizontal. A cylinder of mass m and radius r rolls 
without slipping with its center of mass moving with speed 
v and encounters an incline of the same angle of inclina-
tion but with sufficient friction that the cylinder continues 
to roll without slipping. (a) Which object will go the greater 
distance up the incline? (b) Find the difference between 
the maximum distances the objects travel up the incline. 
(c) Explain what accounts for this difference in distances 
traveled.

35. A metal can containing condensed mushroom soup has mass 
215 g, height 10.8 cm, and diameter 6.38 cm. It is placed 
at rest on its side at the top of a 3.00-m-long incline that is  
at 25.08 to the horizontal and is then released to roll straight 
down. It reaches the bottom of the incline after 1.50 s.  
(a) Assuming mechanical energy conservation, calculate 
the moment of inertia of the can. (b) Which pieces of data, 
if any, are unnecessary for calculating the solution? (c) Why 
can’t the moment of inertia be calculated from I 5 12mr 2 for 
the cylindrical can?

additional ProbleMs

36. You have been hired as an expert witness in the case of a 
factory owner suing a demolition company. The particular 
case involves a smokestack at a factory being demolished. 
In order to save money, the factory owner wanted to move 
the smokestack to a nearby factory that was being built. The 
demolition company guaranteed to deliver the undamaged 
smokestack to the new factory by toppling the smokestack 
freely onto a huge cushioned platform lying on the ground. 
The then-horizontal smokestack would have been loaded 
onto a long truck rig for transport to the new factory. How-
ever, as the smokestack toppled, it broke apart at a point 
along its length. The factory owner is blaming the demo-
lition company for the destruction of his smokestack. The 
demolition company is claiming that there was a defect in 
the smokestack and that is the reason for its destruction. 
What advice do you give the attorney who is handling the 
case on the side of the factory owner?
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37. A shaft is turning at 65.0 rad/s at time t 5 0. Thereafter, its 
angular acceleration is given by

a 5 210.0 2 5.00t

where a is in rad/s2 and t is in seconds. (a) Find the angular 
speed of the shaft at t 5 3.00 s. (b) Through what angle does 
it turn between t 5 0 and t 5 3.00 s?

38. A shaft is turning at angular speed v at time t 5 0. Thereaf-
ter, its angular acceleration is given by

a 5 A 1 Bt

(a) Find the angular speed of the shaft at time t. (b) Through 
what angle does it turn between t 5 0 and t ?

39. An elevator system in a tall building consists of a 800-kg car 
and a 950-kg counterweight joined by a light cable of con-
stant length that passes over a pulley of mass 280 kg. The 
pulley, called a sheave, is a solid cylinder of radius 0.700 m 
turning on a horizontal axle. The cable does not slip on 
the sheave. A number n of people, each of mass 80.0 kg, 
are riding in the elevator car, moving upward at 3.00 m/s 
and approaching the floor where the car should stop. As an 
energy-conservation measure, a computer disconnects the 
elevator motor at just the right moment so that the sheave–car– 
counterweight system then coasts freely without friction and 
comes to rest at the floor desired. There it is caught by a sim-
ple latch rather than by a massive brake. (a) Determine the 
distance d the car coasts upward as a function of n. Evaluate 
the distance for (b) n 5 2, (c) n 5 12, and (d) n 5 0. (e) For 
what integer values of n does the expression in part (a) apply? 
(f) Explain your answer to part (e). (g) If an infinite number 
of people could fit on the elevator, what is the value of d ?

40. The hour hand and the minute hand of Big Ben, the Eliza-
beth Tower clock in London, are 2.70 m and 4.50 m  
long and have masses of 60.0 kg and 100 kg, respectively 
(see Fig. P10.27). (a) Determine the total torque due to the 
weight of these hands about the axis of rotation when the 
time reads (i) 3:00, (ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. 
(You may model the hands as long, thin, uniform rods.) (b) 
Determine all times when the total torque about the axis of 
rotation is zero. Determine the times to the nearest second, 
solving a transcendental equation numerically.

41. Review. A string is wound around a 
uniform disk of radius R and mass M. 
The disk is released from rest with the 
string vertical and its top end tied to 
a fixed bar (Fig.  P10.41). Show that 
(a)  the tension in the string is one 
third of the weight of the disk, (b) 
the magnitude of the acceleration of 
the center of mass is 2g/3, and (c) the 
speed of the center of mass is (4gh/3)1/2 
after the disk has descended through distance h. (d) Verify 
your answer to part (c) using the energy approach.

42. Review. A spool of wire of mass M and radius R is unwound 
under a constant force F

S
 (Fig. P10.42). Assuming the spool is 

a uniform, solid cylinder that doesn’t slip, show that (a) the 
acceleration of the center of mass is 4 F

S
y3M  and (b) the force 

of friction is to the right and equal in magnitude to F/3. (c) If 
the cylinder starts from rest and rolls without slipping, what 
is the speed of its center of mass after it has rolled through a 
distance d?

43. Review. A clown balances a small spherical grape at the top 
of his bald head, which also has the shape of a sphere. After 
drawing sufficient applause, the grape starts from rest and 
rolls down without slipping. It will leave contact with the 
clown’s scalp when the radial line joining it to the center of 
curvature makes what angle with the vertical?

challenge ProbleMs

 44. As a gasoline engine operates, a flywheel turning with the 
crankshaft stores energy after each fuel explosion, provid-
ing the energy required to compress the next charge of fuel 
and air. For the engine of a certain lawn tractor, suppose 
a flywheel must be no more than 18.0 cm in diameter. Its 
thickness, measured along its axis of rotation, must be 
no larger than 8.00 cm. The flywheel must release energy 
60.0  J when its angular speed drops from 800 rev/min to  
600 rev/min. Design a sturdy steel (density 7.85 3 103 kg/m3)  
flywheel to meet these requirements with the smallest mass 
you can reasonably attain. Specify the shape and mass of 
the flywheel.

 45. A spool of thread consists of a cylinder of radius R1 with end 
caps of radius R2 as depicted in the end view shown in Figure 
P10.45. The mass of the spool, including the thread, is m, and 
its moment of inertia about an axis through its center is I. 
The spool is placed on a rough, horizontal surface so that 
it rolls without slipping when a force T

S
 acting to the right 

is applied to the free end of the thread. (a)  Show that the 
magnitude of the friction force exerted by the surface on the 
spool is given by

f 5 SI 1 mR1R 2

I 1 mR 2
2 DT

(b) Determine the direction of the force of friction.

 46. To find the total angular displacement during the playing 
time of the compact disc in part (B) of Example 10.2, the 
disc was modeled as a rigid object under constant angular 
acceleration. In reality, the angular acceleration of a disc 
is not constant. In this problem, let us explore the actual 
time dependence of the angular acceleration. (a)  Assume 
the track on the disc is a spiral such that adjacent loops of 

h
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284 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

the track are separated by a small distance h. Show that the 
radius r of a given portion of the track is given by

r 5 ri 1
hu

2p

where ri is the radius of the innermost portion of the track 
and u is the angle through which the disc turns to arrive at 
the location of the track of radius r. (b) Show that the rate of 
change of the angle u is given by

du

dt
5

v
ri 1 shuy2pd

where v is the constant speed with which the disc surface 
passes the laser. (c) From the result in part (b), use integra-
tion to find an expression for the angle u as a function of 
time. (d) From the result in part (c), use differentiation to 
find the angular acceleration of the disc as a function of time.

 47. A uniform, hollow, cylindri-
cal spool has inside radius 
R/2, outside radius R, and 
mass M (Fig. P10.47). It is 
mounted so that it rotates on a 
fixed, horizontal axle. A coun-
terweight of mass m is con-
nected to the end of a string 
wound around the spool. The 
counterweight falls from rest 
at t 5 0 to a position y at time 
t. Show that the torque due 
to the friction forces between 
spool and axle is

tf 5 R 3mSg 2
2y

t2D2 M 
5y

4t24

 48. A cord is wrapped around a pulley that is shaped like a disk 
of mass m and radius r. The cord’s free end is connected to a 
block of mass M. The block starts from rest and then slides 
down an incline that makes an angle u with the horizontal 
as shown in Figure P10.48. The coefficient of kinetic friction 
between block and incline is m. (a) Use energy methods to 
show that the block’s speed as a function of position d down 
the incline is

v 5Î4Mgdssin u 2 m cos ud
m 1 2M

(b) Find the magnitude of the acceleration of the block in 
terms of m, m, M, g, and u.

M

mR/2

yR/2

Figure P10.47

r
m

u

M
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11Angular Momentum

An Olympic diver does a fancy spinning dive. When she tucks into the position shown, she spins 
faster. Where does the extra rotational kinetic energy come from? (Paolo Bona/Shutterstock.com)

Storyline While preparing to do your physics homework, you are 
browsing among various YouTube videos and stumble on one of a spinning ice 
skater. You notice that he skates into a relatively slow spin, pulls his arms in, and 
then spins faster and faster. You wonder where the energy comes from to make 
him spin faster. Next, you find a slow-motion video of an Olympic high diver 
who is diving into a pool. You notice that after leaving the diving board, she spins 
slowly, but then tucks in and spins faster. Just like the ice skater, where did the 
additional rotational kinetic energy come from? In the suggested videos to the 
side of the web page, you see one about a falling cat. You watch that video and 
marvel about how a cat dropped upside down can always turn itself over and land 
on its feet. Just like the ice skater and the diver, there is rotational energy seem-
ingly coming from nowhere. What’s going on here? Spinning motion seems to 
have magical qualities associated with it!

CONNECTIONS The central topic of this chapter is angular momentum, a 
quantity that plays a key role in rotational dynamics. In analogy to the principle 
of conservation of linear momentum in Chapter 9, there is also a principle of 
conservation of angular momentum. The angular momentum of an isolated sys-
tem is constant. For angular momentum, an isolated system is one for which 
no external torques act on the system. If a net external torque does act on a 
system, it is nonisolated, and the angular momentum of the system changes. 
Like the law of conservation of linear momentum, the law of conservation of 
angular momentum is a fundamental law of physics, equally valid for relativistic 
and quantum systems. This new fundamental principle allows us to understand 
more phenomena, such as the spinning skaters, divers, and cats in the opening 

11.1 The Vector Product  
and Torque

11.2 Analysis Model: 
Nonisolated System 
(Angular Momentum)

11.3 Angular Momentum of  
a Rotating Rigid Object

11.4 Analysis Model:  
Isolated System  
(Angular Momentum)

11.5 The Motion of 
Gyroscopes and Tops
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286 Chapter 11 Angular Momentum

storyline. In addition, we will apply this new principle to the motion of planets in 
a solar system in Chapter 13, to atomic models in Chapter 41, and to molecular 
spectra in Chapter 42.

   11.1    The Vector Product and Torque
An important consideration to address before defining angular momentum is 
the process of  multiplying two vectors by means of the operation called the vec-
tor product. We will introduce the vector product by considering the vector nature  
of torque.

Consider a force F
S

 acting on a particle located at point P and described by the 
vector position rS (Fig. 11.1). As we saw in Section 10.4, the magnitude of the torque 
on the particle due to this force about an axis through the origin is rF sin f, where 
f is the angle between rS and F

S
. The axis about which F

S
 tends to produce rotation is 

perpendicular to the plane formed by rS and F
S
.

The torque vector tS is related to the two vectors rS and F
S
. We can establish a 

mathematical relationship between tS, rS, and F
S

 using a mathematical operation 
called the vector product:

 tS ; rS 3 F
S

 (11.1)

We now give a formal definition of the vector product. Given any two vectors 
A
S

 and B
S

, the vector product A
S

3 B
S

 is defined as a third vector C
S

, which has a 
magnitude of AB sin u, where u is the angle between A

S
 and B

S
. That is, if C

S
 is 

given by

 C
S

5 A
S

3 B
S

 (11.2)

its magnitude is

 C 5 AB sin u (11.3)

The quantity AB sin u is equal to the area of the parallelogram formed by A
S

 and 
B
S

 as shown in Figure 11.2. The direction of C
S

 is perpendicular to the plane formed 
by A

S
 and B

S
, and the best way to determine this direction is to use the right- 

hand rule illustrated in Figure 11.2. The four fingers of the right hand are pointed 
along A

S
 and then “wrapped” in the direction that would rotate A

S
 into B

S
 through 

the angle u. The direction of the upright thumb is the direction of A
S

3 B
S

5 C
S

. 
Because of the notation, A

S
3 B

S
 is often read “A

S
 cross B

S
,” so the vector product is 

also called the cross product.
Some properties of the vector product that follow from its definition are as 

follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, 
the order in which the two vectors are multiplied in a vector product is 
important:

 A
S

3 B
S

5 2B
S

3 A
S

 (11.4)

  Therefore, if you change the order of the vectors in a vector product, you 
must change the sign. You can easily verify this relationship with the right-
hand rule.

2. If A
S

 is parallel to B
S

 (u 5 0 or 1808), then A
S

3 B
S

5 0; therefore, it follows 
that A

S
3 A

S
5 0.

3. If A
S

 is perpendicular to B
S

, then uA
S

3 B
S

u 5 AB.
4. The vector product obeys the distributive law:

 A
S

3 sB
S

1 C
S

d 5 A
S

3 B
S

1 A
S

3 C
S

 (11.5)

Properties of the  
vector product

Figure 11.1 The torque vector 
t
S on a particle lies in a direc-
tion perpendicular to the plane 
formed by the position vector rS of 
the particle and the applied force 
vector F

S
. In the situation shown, 

rS and F
S

 lie in the xy plane, so the 
torque is along the z axis.

O

P

x

y

z

f

rS 

rS 

F
S

F
S

� �t
S

 

� � �

� �

u

A
S

B
S

C
S

A
S

B
S

A
S

B
S

C
S

S S

S
The direction of C is perpendicular 
to the plane formed by A and B,
and its direction is determined by 
the right-hand rule.

Figure 11.2  The vector product 
A
S

3 B
S

 is a third vector C
S

 having 
a magnitude AB sin u equal to the 
area of the parallelogram shown.
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    11.1 The Vector Product and Torque 287

5. The derivative of the vector product with respect to some variable such as t is

 
d
dt

sA
S

3 B
S

d 5
dA

S

dt
3 B

S
1 A

S
3

dB
S

dt
 (11.6)

  where it is important to preserve the multiplicative order of the terms on 
the right side in view of Equation 11.4.

It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and 
from the definition of unit vectors that the cross products of the unit vectors  i

⁄
,  j

⁄
, 

and k
⁄
 obey the following rules:

  i
⁄

3  i
⁄

5  j
⁄

3  j
⁄

5 k
⁄

3 k
⁄

5 0 (11.7a)

  i
⁄

3  j
⁄

5 2 j
⁄

3  i
⁄

5 k
⁄
 (11.7b)

  j
⁄

3 k
⁄

5 2k
⁄

3  j
⁄

5  i
⁄
 (11.7c)

 k
⁄

3  i
⁄

5 2 i
⁄

3 k
⁄

5  j
⁄
 (11.7d)

Signs are interchangeable in cross products. For example, A
S

3 s2B
S

d 5 2A
S

3 B
S

 
and  i

⁄
3 s2 j

⁄
d 5 2 i

⁄
3  j

⁄
.

The cross product of any two vectors A
S

 and B
S

 can be expressed in unit-vector 
notation by using the following determinant form:

A
S

3 B
S

5 *  i
⁄

 j
⁄

k
⁄

Ax Ay Az

Bx By Bz

* 5 *Ay Az

By Bz
* i

⁄
1 *Az Ax

Bz Bx
* j

⁄
1 *Ax Ay

Bx By
*k⁄

Expanding these determinants gives the result

 A
S

3 B
S

5 sAyBz 2 AzByd  i
⁄

1 sAzBx 2 AxBzd  j
⁄

1 sAxBy 2 AyBxd k
⁄
 (11.8)

Given the definition of the cross product, we can now assign a direction to the 
torque vector. If the force lies in the xy plane as in Figure 11.1, the torque tS is rep-
resented by a vector parallel to the z axis. The force in Figure 11.1 creates a torque 
that tends to rotate the particle counterclockwise about the z axis; the direction of 
tS is toward increasing z, and tS is therefore in the positive z direction. If we reversed 
the direction of F

S
 in Figure 11.1, tS would be in the negative z direction.

In Figure 11.1 and its discussion, we investigated the torque on a particle. Imag-
ine that the particle is part of a rigid object free to rotate around the z axis. Then 
the torque that we found in Equation 11.1 is the torque applied to the entire rigid 
object due to the force F

S
.

Q uick Quiz 11.1  Which of the following statements about the relationship 
between the magnitude of the cross product of two vectors and the product of 
the magnitudes of the vectors is true? (a) uA

S
3 B

S
u is larger than AB. (b) uA

S
3 B

S
u 

is smaller than AB. (c) uA
S

3 B
S

u could be larger or smaller than AB, depending on 
the angle between the vectors. (d) uA

S
3 B

S
u could be equal to AB.

  Cross products of 
unit vectors

Pitfall Prevention 11.1
The Vector Product Is a Vector  
Remember that the result of tak-
ing a vector product between two 
vectors is a third vector. Equation 
11.3 gives only the magnitude of 
this vector.

 Example 11.1    The Vector Product

Two vectors lying in the xy plane are given by the equations A
S

5 2 i
⁄

1 3  j
⁄
 and  B

S
5 2 i

⁄
1 2  j

⁄
. Find A

S
3 B

S
 and verify that 

A
S

3 B
S

5 2B
S

3 A
S.

S O L U T I O N

Conceptualize  Given the unit-vector notations of the vectors, think about the directions the vectors point in space. Draw them 
on graph paper and imagine the parallelogram shown in Figure 11.2 for these vectors.

continued
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288 Chapter 11 Angular Momentum

11.1 c o n t i n u e d

Categorize Because we use the definition of the cross product discussed in this section, we categorize this example as a sub-
stitution problem.

Write the cross product of the two vectors: A
S

3 B
S

5 s2  i
⁄

1 3  j
⁄
d 3 s2 i

⁄
1 2  j

⁄
d

Perform the multiplication using the  A
S

3 B
S

5 2  i
⁄

3 s2 i
⁄
d 1 2  i

⁄
3 2  j

⁄
1 3  j

⁄
3 s2 i

⁄
d 1 3  j

⁄
3 2  j

⁄
 

distributive law: 

Use Equations 11.7a through 11.7d to evaluate  A
S

3 B
S

5 0 1 4 k
⁄

1 3 k
⁄

1 0 5 7 k
⁄

 
the various terms:

To verify that A
S

3 B
S

5 2B
S

3 A
S

, evaluate  B
S

3 A
S

5 s2 i
⁄

1 2  j
⁄
d 3 s2  i

⁄
1 3  j

⁄
d 

B
S

3 A
S

:

Perform the multiplication: B
S

3 A
S

5  s2 i
⁄
d 3  2  i

⁄
1 s2 i

⁄
d 3 3  j

⁄
1 2  j

⁄
3 2  i

⁄
1 2  j

⁄
3 3  j

⁄

Use Equations 11.7a through 11.7d to evaluate  B
S

3 A
S

5 0 2 3 k
⁄

2 4 k
⁄

1 0 5 27 k
⁄

 
the various terms:

Therefore, A
S

3 B
S

5 2B
S

3 A
S

. As an alternative method for finding A
S

3 B
S

, you could use Equation 11.8. Try it!

 Example 11.2    The Torque Vector

A force of F
S

5 s2.00  i
⁄

1 3.00  j
⁄
d N is applied to a rigid object that is pivoted about a fixed axis aligned along the z coordi-

nate axis. The force is applied at a point located at rS 5 s4.00  i
⁄

1 5.00  j
⁄
d m relative to the axis. Find the torque tS applied 

to the object.

S O L U T I O N

Conceptualize Given the unit-vector notations, think about the directions of the force and position vectors. If this force were 
applied at this position, in what direction would an object pivoted at the origin turn?

Categorize Because we use the definition of the cross product discussed in this section, we categorize this example as a sub-
stitution problem.

Set up the torque vector using Equation 11.1: tS 5 rS 3 F
S

5 fs4.00  i
⁄

1 5.00  j
⁄
d mg 3 fs2.00  i

⁄
1 3.00  j

⁄
d Ng

Perform the multiplication using the distributive law: tS 5 fs4.00ds2.00d  i
⁄

3  i
⁄

1 s4.00ds3.00d  i
⁄

3  j
⁄
 

  1 s5.00ds2.00d j
⁄

3  i
⁄

1 s5.00ds3.00d j
⁄

3  j
⁄
g N ? m

Use Equations 11.7a through 11.7d to evaluate the  tS 5 f0 1 12.0 k
⁄

2 10.0 k
⁄

1 0g N ? m 5 2.0 k
⁄
 N ? m  

various terms:

Notice that both rS and F
S

 are in the xy plane. As expected, the torque vector is perpendicular to this plane, having only a z 
component. We have followed the rules for significant figures discussed in Section 1.6, which lead to an answer with two sig-
nificant figures. We have lost some precision because we ended up subtracting two numbers that are close.

   11.2    Analysis Model: Nonisolated System  
(Angular Momentum)
Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.3). 
From the left in the figure, a skater glides rapidly along a straight line toward 
the pole, aiming a little to the side so that she does not hit it. As she passes the 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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pole, she reaches out to her side and grabs it, an action that causes her to move 
in a circular path around the pole. Just as the idea of linear momentum helps 
us analyze translational motion, a rotational analog—angular momentum—helps 
us analyze the motion of this skater and other objects undergoing rotational 
motion.

In Chapter 9, we developed the mathematical form of linear momentum and 
then proceeded to show how this new quantity was valuable in problem solving. We 
will follow a similar procedure for angular momentum.

Consider a particle of mass m located at the vector position rS and moving with 
linear momentum pS as in Figure 11.4. In describing translational motion, we 
found that the net force on the particle equals the time rate of change of its linear 
momentum, o F

S
5 d pSydt (see Eq. 9.3). Let us take the cross product of each side 

of Equation 9.3 with rS, which gives the net torque on the particle on the left side of 
the equation:

 rS 3 o F
S

5 o tS 5 rS 3
d pS

dt
 (11.9)

Now, let’s write Equation 11.6 with A
S

 5 rS and B
S

 5 pS:

 
d
dt

 s rS 3 pSd 5
d rS

dt
3 pS 1 rS 3

d pS

dt
5 rS 3

d pS

dt
 (11.10)

where we recognize that the cross product of d rS/dt 5 vS with pS 5 m vS is zero 
because vS and pS are parallel. Because the right sides of Equations 11.9 and 11.10 
are the same, we equate the left sides:

 o tS 5
d s rS 3 pSd

dt
 (11.11)

which looks very similar in form to Equation 9.3, o F
S

5 d pSydt. Because torque 
plays the same role in rotational motion that force plays in translational motion, 
this result suggests that the combination rS 3 pS should play the same role in rota-
tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through a chosen origin O is defined by the cross product of the particle’s 
instantaneous position vector rS relative to that origin and its instantaneous 
linear momentum pS:

 L
S

; rS 3 pS  (11.12)

  Angular momentum  
of a particle

We can now write Equation 11.11 as

 o tS 5
d L

S

dt  (11.13)

which is the rotational analog of Newton’s second law, o F
S

5 d pSydt. Torque causes 
the angular momentum L

S
 to change just as force causes linear momentum pS to 

change.
Notice that Equation 11.13 is valid only if o tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial 
frame.

The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 

Figure 11.3 As the skater passes 
the pole, she grabs hold of it, 
which causes her to swing around 
the pole rapidly in a circular path.

Figure 11.4 The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S

� �
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290 Chapter 11 Angular Momentum

rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L
S

 points in the z direction. 
Because pS 5 m vS, the magnitude of L

S
 is

 L 5 mvr sin f (11.14)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
offset by a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva  
(d) impossible to determine

Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight line 
such as the skater in Figure 11.3 
has angular momentum about any 
axis displaced from the path of the 
particle, such as an axis through 
the pole in Figure 11.3. See the 
What If? in Example 11.3.

 Example 11.3    Angular Momentum of a Particle in Uniform Circular Motion

A particle moves at constant speed in the xy plane in a circular path of radius r as shown 
in Figure 11.5. Find the magnitude and direction of its angular momentum relative to an 
axis through O when its velocity is vS.

S O L U T I O N

Conceptualize The linear momentum of the parti-
cle is always changing in direction (but not in mag-
nitude). You might therefore be tempted to conclude 
that the angular momentum of the particle is always 
changing. In this situation, however, that is not the 
case. Let’s see why.

Categorize We use the definition of the angular momentum of a particle discussed in this section, so we categorize this exam-
ple as a substitution problem.

Use Equation 11.14 to evaluate the magnitude of L
S

: L 5 mvr sin 908 5   mvr

 This value of L is constant because all three factors on the right are constant. The direction of L
S

 also is constant, even 
though the direction of pS 5 m vS keeps changing. To verify this statement, apply the right-hand rule to find the direction of 
L
S

5 rS 3 pS 5 m rS 3 vS in Figure 11.5. Your thumb points out of the page, so that is the direction of L
S

. Hence, we can write the  
vector expression L

S
5 smvrd k

⁄
. If the particle were to move clockwise, L

S
 would point downward and into the page and L

S
5 2smvrd k

⁄
. 

A particle in uniform circular motion has a constant angular momentum about an axis through the center of its path.

 W H A T  I F ?    The particle in Figure 11.4 moves in a straight line at constant speed along a path parallel to the linear 
momentum vector pS. Is the angular momentum of the particle constant in this case?

Answer Yes. In Equation 11.14, m and v are constant while r and f vary in time. However, the product r sinf represents  
the perpendicular distance between the y axis and the path of the particle. This distance is constant. Therefore, L in  
Equation 11.14 has a fixed value even though the distance between the particle and the origin changes.

x

y

m

O

vS

rS 
Figure 11.5  (Example 11.3) A par-
ticle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

angular Momentum of a System of Particles
Using the techniques of Section 9.7, we can show that Newton’s second law for a 
system of particles is

o F
S

ext 5
d pStot

dt
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This equation states that the net external force on a system of particles is equal to 
the time rate of change of the total linear momentum of the system. Let’s see if a 
similar statement can be made for rotational motion. The total angular momen-
tum of a system of particles about some axis is defined as the vector sum of the 
angular momenta of the individual particles:

L
S

tot 5 L
S

1 1 L
S

2 1 Á 1 L
S

n 5 o
i

L
S

i

where the vector sum is over all n particles in the system.
Differentiating this equation with respect to time gives

d L
S

tot

dt
5 o

i

d L
S

i

dt
5 o

i

tSi

where we have used Equation 11.13 to replace the time rate of change of the angu-
lar momentum of each particle with the net torque on the particle.

The torques acting on the individual particles of the system are those associ-
ated with internal forces between particles and those associated with external 
forces. The net torque associated with all internal forces, however, is zero. Recall 
that Newton’s third law tells us that internal forces between particles of the system 
occur in pairs that are equal in magnitude and opposite in direction. If we assume 
these forces lie along the line of separation of each pair of particles, the total 
torque around some axis passing through an origin O due to each action–reaction  
force pair is zero (that is, the moment arm d from O to the line of action of the 
forces is equal for both particles, and the forces are in opposite directions). In the 
summation, therefore, the net internal torque is zero. We conclude that the total 
angular momentum of a system can vary with time only if a net external torque is 
acting on the system:

 o tSext 5
dL

S
tot

dt
 (11.15)

This equation is indeed the rotational analog of o F
S

ext 5 d pS totydt for a system 
of particles. Equation 11.15 is the mathematical representation of the angular 
momentum version of the nonisolated system model. If a system is nonisolated in 
the sense that there is a net external torque on it, the net external torque on the 
system is equal to the time rate of change of the angular momentum of the system.

Although we do not prove it here, this statement is true regardless of the motion 
of the center of mass. It applies even if the center of mass is accelerating, provided 
the torque and angular momentum are evaluated relative to an axis through the 
center of mass.

Equation 11.15 can be rearranged and integrated to give

DL
S

tot 5 #so tSextddt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

  The net external torque on a 
system equals the time rate of 
change of angular momentum 
of the system

analySiS Model Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the system, the time rate of change of 
the angular momentum of the system is equal to the net external torque:

 o tSext 5
dL

S
tot

dt
 (11.15)

continued
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292 Chapter 11 Angular Momentum

analySiS Model Nonisolated System (Angular Momentum) continued

Examples:

 ● a flywheel in an automobile engine increases its angular momentum when the engine 
applies torque to it

 ● the tub of a washing machine decreases in angular momentum due to frictional torque 
after the machine is turned off

 ● the axis of the Earth undergoes a precessional motion due to the torque exerted on the 
Earth by the gravitational force from the Sun 

 ● the armature of a motor increases its angular momentum due to the torque exerted by a 
surrounding magnetic field (Chapter 30)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

 Example 11.4    A System of Objects

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes over 
a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of the thin 
rim is M. The spokes of the pulley have negligible mass. The block slides on a friction-
less, horizontal surface. Find an expression for the linear acceleration of the two objects, 
using the concepts of angular momentum and torque.

S O L U T I O N

Conceptualize When the system is released, the block slides to the left, the sphere drops 
downward, and the pulley rotates counterclockwise. This situation is similar to problems we 
have solved earlier except that now we want to use an angular momentum approach.

Categorize We identify the block, pulley, and sphere as a nonisolated system for angular 
momentum, subject to the external torque due to the gravitational force on the sphere. We 
shall calculate the angular momentum about an axis that coincides with the axle of the pul-
ley. The angular momentum of the system includes that of two objects moving translation-
ally (the sphere and the block) and one object undergoing pure rotation (the pulley).

Analyze At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the sphere 
about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pulley also move 
with speed v, so the angular momentum of the pulley is MvR.
 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm of zero, 
the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force acting on the 
block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The gravitational force m1gS 
acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R is the moment arm of the force 
about the axle. This result is the total external torque about the pulley axle; that is, o text 5 m1gR.

Write an expression for the total angular momentum of  (1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR 
the system:

Substitute this expression and the total external torque  otext 5
dL
dt

 
into Equation 11.15, the mathematical representation of  
the nonisolated system model for angular momentum: m1gR 5

d
dt

 fsm1 1 m2 1 MdvRg

  (2)   m1gR 5 sm1 1 m2 1 MdR 
dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a: (3)   a 5  
m1g

m1 1 m2 1 M

m2

m1

R

vS

vS

Figure 11.6  (Example 11.4) 
When the system is released, the 
sphere moves downward and 
the block moves to the left.
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   11.3    Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri. Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miviri 5 mi(riv)ri 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
We can now find the angular momentum (which in this situation has only a z 

component) of the whole object by taking the sum of Li over all particles:

Lz 5 o
i

Li 5 o
i

mi ri
 2v 5 So

i

mi ri 
2Dv

 Lz 5 Iv  (11.16)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.16 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.

Now let’s differentiate Equation 11.16 with respect to time, noting that I is con-
stant for a rigid object:

 
dLz

dt
5 I 

dv

dt
5 Ia (11.17)

where a is the angular acceleration relative to the axis of rotation. Because dLz/dt 
is equal to the net external torque (see Eq. 11.15), we can express Equation 11.17 as

 o text 5 Ia  (11.18)

That is, the net external torque acting on a rigid object rotating about a fixed axis 
equals the moment of inertia about the rotation axis multiplied by the object’s 
angular acceleration relative to that axis. This result is the same as Equation 10.18, 
which was derived using a force approach, but we derived Equation 11.18 using the 
concept of angular momentum. As we saw in Section 10.5, Equation 11.18 is the 
mathematical representation of the rigid object under a net torque analysis model. 
This equation is also valid for a rigid object rotating about a moving axis, provided 
the moving axis (1) passes through the center of mass and (2) is a symmetry axis.

If a symmetrical object rotates about a fixed axis passing through its center  
of mass, you can write Equation 11.16 in vector form as L

S
5 I vS, where L

S
 is the  

total angular momentum of the object measured with respect to the axis of rotation. 

  Rotational form of  
Newton’s second law

11.4 c o n t i n u e d

Finalize When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the objects 
because these forces are internal to the system under consideration. Instead, we analyzed the system as a whole. Only external 
torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) and call the result Equation A. 
Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B. Do Equations A and B match? Looking 
at Figures 5.16 and 11.6 in these limits, should the two equations match?

y

z

x

mi
vi
S

L
S

rS 

v
S

Figure 11.7  When a rigid object 
rotates about an axis, the angu-
lar momentum L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S.
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294 Chapter 11 Angular Momentum

Furthermore, the expression is valid for any object, regardless of its symmetry,  
if L

S
 stands for the component of angular momentum along the axis of rotation.1

Q uick Quiz 11.3  A solid sphere and a hollow sphere have the same mass 
and radius. They are rotating with the same angular speed. Which one has the 
higher angular momentum? (a) the solid sphere (b) the hollow sphere (c) both 
have the same angular momentum (d) impossible to determine

1In general, the expression L
S

5 I vS is not always valid. If a rigid object rotates about an arbitrary axis, then L
S

 and vS 
may point in different directions. In this case, the moment of inertia cannot be treated as a scalar. Strictly speaking, 
L
S

5 I vS applies only to rigid objects of any shape that rotate about one of three mutually perpendicular axes (called 
principal axes) through the center of mass. This concept is discussed in more advanced texts on mechanics.

 Example 11.5     The Seesaw

A father of mass mf  and his daughter of mass md sit on oppo-
site ends of a seesaw at equal distances from the pivot at the 
center (Fig. 11.8). The seesaw is modeled as a rigid rod of 
mass M and length , and is pivoted without friction. At a 
given moment, the combination rotates in a vertical plane 
with an angular speed v.

(A)  Find an expression for the magnitude of the system’s 
angular momentum.

S O L U T I O N

Conceptualize Identify the z axis through O as the axis of rotation in Figure 11.8. The rotating system has angular momen-
tum about that axis.

Categorize Ignore any movement of arms or legs of the father and daughter and model them both as particles. The system is 
therefore modeled as a rigid object. This first part of the example is categorized as a substitution problem.
 The moment of inertia of the system equals the sum of the moments of inertia of the three components: the seesaw and the 
two individuals. We can refer to Table 10.2 to obtain the expression for the moment of inertia of the rod and use the particle 
expression I 5 mr2 for each person.

Find the total moment of inertia of the system about the   I 5 1
12M/2 1 mfS/

2D2

1 mdS/
2D2

5
/2

4 SM
3

1 mf 1 mdD 
z axis through O:

Find the magnitude of the angular momentum of the  L 5 Iv 5 
/2

4 SM
3

1 mf 1 mdDv  
system:

(B)  Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle u with 
the horizontal.

S O L U T I O N

Conceptualize Generally, fathers are more massive than daughters, so the system is not in equilibrium and has an angular 
acceleration. We expect the angular acceleration to be positive in Figure 11.8.

Categorize The combination of the board, father, and daughter is a rigid object under a net torque because of the external torque 
associated with the gravitational forces on the father and daughter. We again identify the axis of rotation as the z axis in Figure 11.8.

Analyze To find the angular acceleration of the system at any angle u, we first calculate the net torque on the system and then 
use o text 5 Ia from the rigid object under a net torque model to obtain an expression for a.

Evaluate the torque due to the gravitational force on the  tf 5 mf g  
/
2

  cos u s tSf out of paged 
father:

Evaluate the torque due to the gravitational force on the  td 5 2md g  

/
2

  cos u   s tSd into paged 
daughter:

mf

�

O

y

xu

mdgS 

gS 

Figure 11.8  (Exam-
ple 11.5) A father and 
daughter demonstrate 
angular momentum on 
a seesaw.
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11.5 c o n t i n u e d

Evaluate the net external torque exerted on the system: otext 5 tf 1 td 5 1
2smf 2 mddg / cos u

Use Equation 11.18 and I from part (A) to find a: a 5
otext

I
5  

2smf 2 mddg cos u

/ fsMy3d 1 mf 1 mdg

Finalize For a father more massive than his daughter, the angular acceleration is positive as expected. If the seesaw begins 
in a horizontal orientation (u 5 0) and is released, the rotation is counterclockwise in Figure 11.8 and the father’s end of the 
seesaw drops, which is consistent with everyday experience.

 W H A T  I F ?    Imagine the father moves inward on the seesaw to a distance d from the pivot to try to balance the two sides. 
What is the angular acceleration of the system in this case when it is released from an arbitrary angle u?

Answer The angular acceleration of the system should decrease if the system is more balanced.

Find the total moment of inertia about the z axis  I 5 1
12M/2 1 mf d

2 1 mdS/
2D2

5
/2

4
 SM

3
1 mdD 1 mf d

2 
through O for the modified system:

Find the net torque exerted on the modified  otext 5 tf 1 td 5 mf gd cos u 2 1
2md g/ cos u 

system about an axis through O :

Find the new angular acceleration of the system: a 5
otext

I
5

smf d 2 1
2md /dg cos u

s/2y4d fsMy3d 1 mdg 1 mf d
2

 W H A T  I F ?    Where must the father sit for the seesaw to be balanced?

Answer The seesaw is balanced when the angular acceleration is zero. In this situation, both father and daughter can push 
off the ground and rise to the highest possible point.

For the seesaw to be balanced, the required position  a 5
smf d 2 1

2md /dg cos u

s/2y4dfsMy3d 1 mdg 1 mf d
2 5 0 

of the father is found by setting a 5 0:

   mf d 2 1
2md / 5 0  S   d 5 Smd

mf
D /

2

The heavier the father, the closer he must sit to the pivot to balance the seesaw. In the rare case that the father and daughter 
have the same mass, the father is located at the end of the seesaw, d 5 ,/2.

  11.4    Analysis Model: Isolated System 
(Angular Momentum)
In Chapter 9, we found that the total linear momentum of a system of particles 
remains constant if the system is isolated, that is, if the net external force acting 
on the system is zero. We have an analogous conservation law in rotational motion:

The total angular momentum of a system is constant in both magnitude and 
direction if the net external torque acting on the system is zero, that is, if the 
system is isolated.

  Conservation of angular 
momentum 

This statement is often called2 the principle of conservation of angular momentum 
and is the basis of the angular momentum version of the isolated system model. 
This principle follows directly from Equation 11.15, which indicates that if

 o tSext 5
d L

S
tot

dt
5 0 

2The most general conservation of angular momentum equation is Equation 11.15, which describes how the system 
interacts with its environment.
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then

 DL
S

tot 5 0  (11.19)

Equation 11.19 can be written as

 L
S

tot 5 constant or L
S

i 5 L
S

f  (11.20)

For an isolated system consisting of a small number of particles, we write this  
conservation law as L

S
tot 5 o L

S
n 5 constant, where the index n denotes the nth par-

ticle in the system. If the system consists of a large number of particles, so that it 
is difficult to evaluate the individual Ln, then we can express the magnitude of the 
angular momentum of the system with Equation 11.16, L = Iv.

If an isolated rotating system is deformable so that its mass undergoes redistri-
bution in some way, the system’s moment of inertia changes. Combining Equations 
11.16 and 11.20, we see that conservation of angular momentum requires that the 
product of I and v must remain constant. Therefore, a change in I for an isolated 
system requires a change in v. In this case, we can express the principle of conser-
vation of angular momentum as

 Iivi 5 If vf 5 constant  (11.21)

This expression is valid both for rotation about a fixed axis and for rotation about 
an axis through the center of mass of a moving system as long as that axis remains 
fixed in direction. We require only that the net external torque be zero.

Many examples demonstrate conservation of angular momentum for a deform-
able system. You may have observed a figure skater spinning in the finale of a 
program (Fig. 11.9). The angular speed of the skater is large when his hands and 
feet are close to the trunk of his body. (Notice the skater’s hair!) Ignoring friction 
between skater and ice, there are no external torques on the skater. The moment 
of inertia of his body increases as his hands and feet are moved away from his 
body, and therefore from the rotation axis, at the finish of the spin. According 
to the isolated system model for angular momentum, his angular speed must 
decrease, and he can perform his finishing flourish after coming to rest. In a 
similar way, when divers or acrobats wish to make several rotations, they pull their 
hands and feet close to their bodies to rotate at a higher rate, as shown in the 
photograph opening this chapter. In these cases, the external force due to gravity 
acts through the center of mass and hence exerts no torque about an axis through 
this point. Therefore, the angular momentum of the diver or acrobat about the 
center of mass must be conserved; that is, Iivi 5 If  vf  . For example, when divers 
wish to double their angular speed, they must reduce their moment of inertia to 
half its initial value.

The introductory storyline to this chapter asked about the additional rota-
tional kinetic energy possessed by spinning skaters and rotating divers when 
they pull their limbs inward. This energy comes from within the body. The 
muscles of the rotating athlete must do internal work to pull the limbs inward. 
This work is a transformation mechanism by which potential energy in the body 
from previous meals is transformed to rotational kinetic energy. The storyline 
also mentioned a falling cat, which is yet again an example of a deformable 
system, first introduced in Section 9.8. The cat is released with zero angular 
momentum, yet is able to rotate and right itself before landing. A number of 
theories have been proposed for this phenomenon, including a popular one 
modeling the cat as a pair of cylinders. Perform some online research to learn 
more about falling cats.

In Equation 11.20, we have a third version of the isolated system model. We 
can now state that the energy, linear momentum, and angular momentum of an 

Figure 11.9  Angular momentum 
is conserved as Russian gold med-
alist Evgeni Plushenko performs 
during the Turin 2006 Winter 
Olympic Games. 

When his arms and legs are close 
to his body, the skater’s moment 
of inertia is small and his angular 
speed is large.
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To slow down for the finish of his 
spin, the skater moves his arms 
and legs outward, increasing his 
moment of inertia.

Al
 B

el
lo

/G
et

ty
 Im

ag
es

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



   11.4 Analysis Model: Isolated System (Angular Momentum) 297

isolated system are all constant:

 DEsystem 5 0 (if there are no energy transfers across the system boundary)

 DpStot 5 0 (if the net external force on the system is zero)

 DL
S

tot 5 0 (if the net external torque on the system is zero)

Notice that the definition of an isolated system varies for the three conserved quan-
tities. A system may be isolated in terms of one of these quantities but not in terms of 
another. If a system is nonisolated in terms of momentum or angular momentum, it 
will often be non iso lated also in terms of energy because the system has a net force 
or torque on it and the net force or torque will do work on the system. We can, how-
ever, identify systems that are nonisolated in terms of energy but isolated in terms of 
momentum. For example, imagine pushing inward on a balloon (the system) between 
your hands. Work is done in compressing the balloon, so the system is nonisolated in 
terms of energy, but there is zero net force on the system, so the system is isolated in 
terms of momentum. A similar statement could be made about twisting the ends of a 
long, flat, springy piece of metal with both hands. Work is done on the metal (the sys-
tem), so energy is stored in the nonisolated system as elastic potential energy, but the 
net torque on the system is zero. Therefore, the system is isolated in terms of angular 
momentum. Other examples are collisions of macroscopic objects, which represent 
isolated systems in terms of momentum but nonisolated systems in terms of energy 
because of the output of energy from the system by mechanical waves (sound).

Q uick Quiz 11.4  A competitive diver leaves the diving board and falls toward 
the water with her body straight and rotating slowly. She pulls her arms and legs 
into a tight tuck position. What happens to her rotational kinetic energy? (a) It 
increases. (b) It decreases. (c) It stays the same. (d) It is impossible to determine. 

analySiS Model Isolated System (Angular Momentum)

Imagine a system rotates 
about an axis. If there is 
no net external torque 
on the system, there is no 
change in the angular 
momentum of the system:

  DL
S

tot 5 0 (11.19)

Applying this law of 
conservation of angular 
momentum to a system 
whose moment of inertia 
changes gives

 Iivi 5 Ifvf 5 constant (11.21)

Examples:

 ● after a supernova explosion, the core of a star collapses  
to a small radius and spins at a much higher rate  
(Example 11.6, below).

 ● the square of the orbital period of a planet is propor-
tional to the cube of its semimajor axis; Kepler’s third  
law (Chapter 13)

 ● in atomic transitions, selection rules on the quantum 
numbers must be obeyed in order to conserve angular 
momentum (Chapter 41)

 ● in beta decay of a radioactive nucleus, a neutrino must  
be emitted in order to conserve angular momentum 
(Chapter 43)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

 Example 11.6      Formation of a Neutron Star 

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a point 
on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a supernova 
explosion, the stellar core, which had a radius of 1.0 3 104 km, collapses into a neutron star of radius 10.0 km. Determine 
the period of rotation of the neutron star.

S O L U T I O N

Conceptualize The change in the neutron star’s motion is similar to that of the skater described earlier and illustrated in  
Figure 11.9, but in the reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

continued

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



298 Chapter 11 Angular Momentum

11.6 c o n t i n u e d

Categorize Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains spherical 
with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an isolated system in terms 
of angular momentum. We do not know the mass distribution of the star, but we have assumed the distribution is symmetric, so 
the moment of inertia can be expressed as kMR2, where k is some numerical constant. (From Table 10.2, for example, we see 
that k 5 25 for a solid sphere and k 5 23 for a spherical shell.)

Analyze Let’s use the symbol T for the period, with Ti being the initial period of the star and Tf being the period of the neu-
tron star. The star’s angular speed is given by v 5 2p/T.

From the isolated system model for angular  Iivi 5 If vf 
momentum, write Equation 11.21 for the star:

Use v 5 2p/T to rewrite this equation in terms  IiS2p

Ti
D 5 If S2p

Tf
D 

of the initial and final periods:

Substitute the moments of inertia in the preceding  kMR i 
2S2p

Ti
D 5 kMR f 

2S2p

Tf
D 

equation:

Solve for the final period of the star: Tf 5 SR f

R i
D2

Ti

Substitute numerical values: Tf 5 S 10.0 km
1.0 3 104 kmD2

s30 daysd 5 3.0 3 1025 days 5  2.6 s

Finalize The neutron star does indeed rotate faster after it collapses, as predicted. While it may seem difficult to believe that 
the core of a star could rotate as fast as once every 2.6 s, this is a relatively slow rotation rate. Some neutron stars rotate with a 
period of 1–2 milliseconds!

 Example 11.7    The Merry-Go-Round 

A horizontal platform in the shape of a circular disk rotates freely in a horizontal plane 
about a frictionless, vertical axle (Fig. 11.10). The platform has a mass M 5 100 kg  
and a radius R 5 2.0 m. A student whose mass is m 5 60 kg walks slowly from the rim 
of the disk toward its center. If the angular speed of the system is 2.0 rad/s when the 
student is at the rim, what is the angular speed when she reaches a point r 5 0.50 m  
from the center?

S O L U T I O N

Conceptualize The speed change here is similar to those of the spinning skater and 
the neutron star in preceding discussions. This problem is different because part of the 
moment of inertia of the system changes (that of the student) while part remains fixed 
(that of the platform).

Categorize Because the platform rotates on a frictionless axle, we identify the system of 
the student and the platform as an isolated system in terms of angular momentum.

Analyze Let us denote the moment of inertia of the platform as Ip and that of the  
student as Is. We model the student as a particle.

Write Equation 11.21 for the system: Iivi 5 If vf

Substitute the moments of inertia, using r , R  s1
2 MR 2 1 mR 2dvi 5 s1

2MR 2 1 mr 2dvf  
for the final position of the student:

R

M

m

Figure 11.10  (Example 11.7) As 
the student walks toward the center 
of the rotating platform, the angu-
lar speed of the system increases 
because the angular momentum of 
the system remains constant.
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11.7 c o n t i n u e d

Solve for the final angular speed: vf 5 S1
2 MR 2 1 mR 2

1
2 MR 2 1 mr 2Dvi

Substitute numerical values: vf 5 3
1
2s100 kgds2.0 md2 1 s60 kgds2.0 md2

1
2s100 kgds2.0 md2 1 s60 kgds0.50 md24s2.0 radysd 5 3440 kg ? m2

215 kg ? m24s2.0 radysd 5  4.1 rad/s

Finalize As expected, the angular speed increases. The fastest that this system could spin would be when the student moves to 
the center of the platform. Do this calculation to show that this maximum angular speed is 4.4 rad/s. Notice that the activity 
described in this problem is dangerous as discussed with regard to the Coriolis force in Section 6.3.

 W H A T  I F ?    What if you measured the kinetic energy of the system before and after the student walks inward? Are the 
initial kinetic energy and the final kinetic energy the same?

Answer You may be tempted to say yes because the system is isolated. Remember, however, that energy can be transformed 
among several forms, so we have to handle an energy question carefully.

Find the initial kinetic energy: Ki 5 1
2Ii vi 

2 5 1
2  
s440 kg ? m2ds2.0 radysd2 5 880 J

Find the final kinetic energy: Kf 5 1
2 If vf

2  5 1
2  
s215 kg ? m2ds4.1 radysd2 5 1.80 3 103 J

Therefore, the kinetic energy of the system increases by more than a factor of 2. The student must perform muscular activity to 
move herself closer to the center of rotation, so this extra kinetic energy comes from potential energy stored in the student’s 
body from previous meals. The system is isolated in terms of energy, but a transformation process within the system changes 
potential energy to kinetic energy.

 Example 11.8     Disk and Stick Collision

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of length 4.0 m that is lying flat on 
nearly frictionless ice as shown in the overhead view of Figure 11.11a. The disk strikes 
at the endpoint of the stick, at a distance r 5 2.0 m from the stick’s center. Assume the 
collision is elastic and the disk does not deviate from its original line of motion. Find 
the translational speed of the disk, the translational speed of the stick, and the angular 
speed of the stick after the collision. The moment of inertia of the stick about its center 
of mass is 1.33 kg ? m2.

S O L U T I O N

Conceptualize Examine Figure 11.11a and imagine what happens 
after the disk hits the stick. Figure 11.11b shows what you might 
expect: the disk continues to move at a slower speed, and the stick 
is in both translational and rotational motion. We assume the 
disk does not deviate from its original line of motion because the 
force exerted by the stick on the disk is parallel to the original 
path of the disk.

Categorize Because the ice is frictionless, the disk and stick form 
an isolated system in terms of momentum and angular momentum. Ignor-
ing the sound made in the collision, we also model the system as an 
isolated system in terms of energy. In addition, because the collision is 
assumed to be elastic, the kinetic energy of the system is constant.

Analyze First notice that we have three unknowns, so we need three equations to solve simultaneously.

Apply the isolated system model for momentum to DpStot 5 0   S   smdvdf 1 msvsd 2 md vdi 5 0 
the system and then rearrange the result: (1)   md(vdi 2 vdf  ) 5 msvs

After

Before

v

a

b

vdf
S

vs
S

r

vdi
S

Figure 11.11  (Example 
11.8) Overhead view of 
a disk striking a stick 
in an elastic collision. 
(a) Before the collision, 
the disk moves toward the 
stick. (b) The collision 
causes the stick to rotate 
and move to the right.

continued
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11.8 c o n t i n u e d

Apply the isolated system model for angular DL
S

tot 5 0   S   s2rmdvdf 1 Ivd 2 s2rmd vdi d 5 0 
momentum to the system and rearrange the result. 

(2)   2rmd(vdi 2 vdf  ) 5 Iv
 

Use an axis passing through the center of the stick  
as the rotation axis so that the path of the disk is  
a distance r from the rotation axis:

Apply the isolated system model for energy to the  DK 5 0   S   (1
2mdvdf

2 1 1
2msvs

2 1 1
2Iv2) 2 1

2mdvdi
2 5 0 

system, rearrange the equation, and factor the  
(3)   md(vdi 2 vdf)(vdi 1 vdf) 5 msvs

2 1 Iv2
 

combination of terms related to the disk:

Multiply Equation (1) by r and add to Equation (2):   rmd(vdi 2 vdf) 5 rmsvs

   2rmd(vdi 2 vdf) 5 Iv

   0 5 rmsvs 1 Iv

Solve for v: (4)   v 5 2
rmsvs

I

Divide Equation (3) by Equation (1): 
md 

svdi 2 vdf dsvdi 1 vdf d

md 
svdi 2 vdf d

5
msvs

2  1 Iv2

msvs

   (5)   vdi 1 vdf 5 vs 1
Iv2

msvs

Substitute Equation (4) into Equation (5): (6)   vdi 1 vdf 5 vsS1 1
r 2ms

I D
Substitute vdf from Equation (1) into  vdi 1 Svdi 2

ms

md

 vsD 5 vsS1 1
r 2ms

I D 
Equation (6):

Solve for vs and substitute numerical  vs 5
2vdi

1 1 smsymdd 1 sr 2ms yI d
 

values:

       5 
2s3.0 mysd

1 1 s1.0 kgy2.0 kgd 1 fs2.0 md2s1.0 kgdy1.33 kg ? m2g
 5  1.3 m/s

Substitute numerical values into  v 5 2
s2.0 mds1.0 kgds1.3 mysd

1.33 kg ? m2 5 22.0 radys  
Equation (4):

Solve Equation (1) for vdf and substitute  vdf 5 vdi 2
ms

md

 vs 5 3.0 mys 2
1.0 kg

2.0 kg
s1.3 mysd 5 2.3 mys  

numerical values:

Finalize These values seem reasonable. The disk is moving more slowly after the collision than it was before the collision. The stick 
has a small translational speed and is rotating clockwise. Table 11.1 summarizes the initial and final values of variables for the disk 
and the stick, and it verifies the conservation of linear momentum, angular momentum, and kinetic energy for the isolated system.

 table 11.1  Comparison of Values in Example 11.8 Before and After the Collision

 v (m/s) v (rad/s) p (kg ? m/s) L (kg ? m2/s) K trans ( J) K rot ( J)

Before
Disk 3.0 — 6.0 212 9.0 —
Stick 0 0 0 0 0 0
Total for system — — 6.0 212 9.0 0
After
Disk 2.3 — 4.7 29.3 5.4 —
Stick 1.3 22.0 1.3 22.7 0.9 2.7
Total for system — — 6.0 212 6.3 2.7

Note: Linear momentum, angular momentum, and total kinetic energy of the system are all conserved.
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   11.5    The Motion of Gyroscopes and Tops
An unusual and fascinating type of motion you have probably observed is that of 
a top spinning about its axis of symmetry as shown in Figure 11.12a. If the top 
spins rapidly, the symmetry axis rotates about the z axis, sweeping out a cone  
(see Fig. 11.12b). The motion of the symmetry axis about the vertical—known as 
precessional motion—is usually slow relative to the spinning motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center 
of mass is not directly above the pivot point O, a net torque is acting on the top 
about an axis passing through O, a torque resulting from the gravitational force 
M gS. The top would certainly fall over if it were not spinning. Because it is spinning, 
however, it has an angular momentum L

S
 directed along its symmetry axis. We shall 

show that this symmetry axis moves about the z axis (precessional motion occurs) 
because the torque produces a change in the direction of the symmetry axis. This 
illustration is an excellent example of the importance of the vector nature of angu-
lar momentum.

The essential features of precessional motion can be illustrated by considering 
the top to act as a simple gyroscope. The two forces acting on the gyroscope are 
shown in Figure 11.12a: the downward gravitational force M gS and the normal force 
nS acting upward at the pivot point O. The normal force produces no torque about 
an axis passing through the pivot because its moment arm through that point is 
zero. The gravitational force, however, produces a torque tS 5 rS 3 M gS about an 
axis passing through O, where the direction of tS is perpendicular to the plane 
formed by rS and M  gS. By necessity, the vector tS lies in a horizontal xy plane per-
pendicular to the angular momentum vector. The net torque and angular momen-
tum of the gyroscope are related through Equation 11.15:

o tSext 5
d L

S

dt

This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direction as 

tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to L
S

. The over-
head view in Figure 11.12c illustrates the resulting precessional motion of the symmetry  
axis of the gyroscope. In a time interval dt, the change in angular momentum  
is d L

S
 5 L

S
f 2 L

S
i 5 tS dt. Because d L

S
 is perpendicular to L

S
, the magnitude of L

S
  

does not change suL
S

iu 5 uL
S

f ud. Rather, what is changing is the direction of L
S

. Because 
the change in angular momentum dL

S
 is in the direction of tS, which lies in the xy 

plane, the gyroscope undergoes precessional motion.
The vector diagram in Figure 11.12c shows that in the time interval dt, the angu-

lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
L
S

i , L
S

f ,  and dL
S

, we see that

df 5
dL
L

5
otext dt

L
5

sMgrCMd dt

L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is

 vp 5
df

dt
5

MgrCM

Iv
 (11.22)

The angular speed vp is called the precessional frequency. This result is valid only 
when vp ,, v. Otherwise, a much more complicated motion is involved. As you can 
see from Equation 11.22, the condition vp ,, v is met when v is large, that is, when the 
wheel spins rapidly. Furthermore, notice that the precessional frequency decreases as v 
increases, that is, as the wheel spins faster about its axis of symmetry.

y
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The right-hand rule indicates 
that    �    �     �    �         is 
in the xy plane.          
 

F
S
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The direction of �    is parallel 
to that of     in      .�

S
L
S

a

f

df
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c

The torque results in a change 
in angular momentum       in a 
direction parallel to the torque 
vector. The gyroscope axle 
sweeps out an angle df in a 
time interval dt.

L
S

d

L
S

L
S

iL
S

d
t
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Figure 11.12  Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L

S
f 5 DL

S
1 L

S
i , the  

top precesses about the z axis.  
(c) Overhead view (looking down 
the z axis) of the gyroscope’s ini-
tial and final angular momentum 
vectors for an infinitesimal time 
interval dt.
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Summary
 › Definitions

Given two vectors A
S

 and B
S

, the vector prod-
uct A

S
3 B

S
 is a vector C

S
 having a magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S

 and B
S

. The  
direction of the vector C

S
5 A

S
3 B

S
 is  

perpendicular to the plane formed by A
S

  
and B

S
, and this direction is determined by 

the right-hand rule.

The torque tS on a particle due to a force F
S

 about an axis through the origin in an 
inertial frame is defined to be
 tS ; rS 3 F

S
 (11.1)

The angular momentum L
S

 about an axis through the origin of a particle having 
linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.12)

where rS is the vector position of the particle relative to the origin.

 › Concepts and Principles

The z component of angular momentum of a rigid object rotating about a fixed z axis is

 Lz 5 Iv (11.16)

where I is the moment of inertia of the object about the axis of rotation and v is its angular speed.

 › Analysis Models for Problem Solving

Nonisolated System (Angular Momentum). If a system inter-
acts with its environment in the sense that there is an external 
torque on the system, the net external torque acting on a system 
is equal to the time rate of change of its angular momentum:

 o tSext 5
dL

S
tot

dt
 (11.15)

Isolated System (Angular Momentum). If a system experi-
ences no external torque from the environment, the total 
angular momentum of the system is conserved:

 DL
S

tot 5 0 (11.20)

Applying this law of conservation of angular momentum to 
a system whose moment of inertia changes gives

 Iivi 5 If vf 5 constant (11.21)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. ACTIVITy  In your group, have someone donate temporarily 
a set of keys for the cause. Tie one end of a string about a 
meter long to the ring. To the other end attach a light weight, 
such as a paper clip or binder clip. If you hold the clip in 
your hand with the keys hanging on the string from your 

hand and drop it, everything of course falls to the ground. 
Now try something different. Suspend the keys from a  
horizontal pencil held in your left hand so that they hang 
down from the pencil on a short segment of the string as 
shown in Figure TP11.1. The rest of the string lies over the 
pencil and extends horizontally to the binder clip, which 
you hold with your right hand. Now release the binder clip. 
What happens? Explain this result.
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2.  A disk with moment of inertia I1 rotates about a friction-
less, vertical axle with angular speed vi. A second disk, this 
one having moment of inertia I2 and initially not rotating, 
drops onto the first disk (Fig. TP11.2). Because of friction 
between the surfaces, the two eventually reach the same 
angular speed vf  . Discuss in your group the following.  
(a) Calculate vf  . (b) What fraction of the initial kinetic 
energy of the two-disk system remains after the disks rotate 
with the same angular speed? (c) Find the value of the answer 
in part (b) for the following limits: (i) I2 S 0, (ii) I1 5 I2,  
(iii) I2 S ,̀ and (iv) I1 S .̀ (d) Explain how each of the 
results in part (c) makes sense. (e) In the general case in 
which the kinetic 
energy of the system 
decreases in the pro-
cess, where does that 
energy go? (f) What 
If? In Figure TP11.2, 
what is vf if the second 
disk is also rotating, 
but in the clockwise 
direction, opposite 
that of disk 1, with an 
angular speed of v9 
before the collision?

3. You are attending a county fair with your friend from your 
physics class. While walking around the fairgrounds, you dis-
cover a new game of skill. A thin rod of mass M 5 0.500 kg and 
length / 5 2.00 m hangs from a friction-free pivot at its upper 
end as shown in Figure TP11.3. The front surface of the rod 
is covered with Velcro. You are to throw a Velcro-covered ball 
of mass m 5 1.00 kg at the rod in an attempt to make it swing 
backward and rotate all the way across the top. The ball must 
stick to the rod at all times after striking it. If you cause the rod 
to rotate over the top position, you win a stuffed animal. Your 
friend volunteers to try his luck. He feels that the most torque 
would be applied to the rod by striking it at its lowest end. After 
several tries, he fails to win the stuffed animal by throwing the 
ball so that it sticks at the end of the rod. He just couldn’t throw 
the ball fast enough and accurately enough. (See Problem 43 
to find out how fast he must throw the ball.) You analyze things 
differently from your friend. What if you were to throw the 
ball at a point above the end of the rod, a distance y below the 
pivot as shown in Figure TP11.3? This would reduce the torque 
on the rod, but torque is proportional to r, while moment of 
inertia is proportional to r2. After the collision, the ball is part 
of the rotating system, so the moment of inertia of the system 
is reduced if the ball is stuck somewhere along the length of 
the rod, rather than at its end. (a) You pull out some sheets 
of paper and calculate an 
algebraic expression for the 
minimum required speed 
to spin the rod to the verti-
cal position as a function of 
the point y along the rod at 
which the ball strikes and 
sticks to the rod. (b) Then, 
based on numerical values, 
you determine the point 
along the rod where you 
should strike it with the ball 
and make it go over the top 
by throwing the ball with the 
lowest speed. (c) Finally, you 
determine that lowest speed.
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Figure TP11.1

Before After
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S

Figure TP11.2
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�

Figure TP11.3

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 11.1 The Vector Product and Torque

1. Given M
S

5 2 i
⁄

2 3 j
⁄

1 k
⁄
 and N

S
5 4 i

⁄
1 5 j

⁄
2 2k

⁄
, calculate the  

vector product M
S

3 N
S

.

2. The displacement vectors 42.0 cm at 15.08 and 23.0 cm  
at 65.08 both start from the origin and form two sides of 
a parallelogram. Both angles are measured counterclock-
wise from the x axis. (a) Find the area of the parallelogram. 
(b) Find the length of its longer diagonal.

3. If uA
S

3 B
S

u 5 A
S

 ? B
S

, what is the angle between A
S

 and B
S

?

4. Use the definition of the vector product and the defini-
tions of the unit vectors  i

⁄
,  j

⁄
, and k

⁄
 to prove Equations 11.7. 

You may assume the x axis points to the right, the y axis 
up, and the z axis horizontally toward you (not away from 
you). This choice is said to make the coordinate system a 
right-handed system.

5. Two forces F
S

1 and F
S

2 act along the two sides of an equilateral 
triangle as shown in Figure P11.5. Point O is the intersection of 
the altitudes of the triangle. (a) Find the magnitude of a third 
force F

S
3 to be applied at B and along BC that will make the total 

torque zero about the point O. (b) What If? Will the total torque 
change if F

S
3 is applied not at B but at any other point along BC?

6. A student claims that he has found a vector A
S

 such that 
s2 i

⁄
2 3 j

⁄
1 4k

⁄
d 3 A

S
5 s4 i

⁄
1 3 j

⁄
2 k

⁄
d. (a) Do you believe this 

claim? (b) Explain why or why not.
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304 Chapter 11 Angular Momentum

7. A particle is located at a point described by the position vector 
rS 5 s4.00 i

⁄
1 6.00 j

⁄
d m, and a force exerted on it is given by  

F
S

5 s3.00 i
⁄

1 2.00  j
⁄
d N. (a) What is the torque acting on the 

particle about the origin? (b) Can there be another point 
about which the torque caused by this force on this particle 
will be in the opposite direction and half as large in mag-
nitude? (c) Can there be more than one such point? (d) Can 
such a point lie on the y axis? (e) Can more than one such 
point lie on the y axis? (f) Determine the position vector of 
one such point.

Section 11.2  Analysis Model: Nonisolated System  
(Angular Momentum)

8. A 1.50-kg particle moves in the xy plane with a velocity of 
vS 5 s4.20 i

⁄
2 3.60 j

⁄
d m/s. Determine the angular momen-

tum of the particle about the origin when its position vector 
is rS 5 s1.50 i

⁄
1 2.20 j

⁄
d m.

9. A particle of mass m moves in the xy plane with a velo-
city of vS 5 vx i

⁄
1 vy j

⁄
. Determine the angular momentum  

of the particle about the origin when its position vector is 
rS 5 x i

⁄
1 y j

⁄
.

10. Heading straight toward the summit of Pike’s Peak, an air-
plane of mass 12 000 kg flies over the plains of Kansas at nearly 
constant altitude 4.30 km with constant velocity 175 m/s west. 
(a) What is the airplane’s vector angular momentum relat-
ive to a wheat farmer on the ground directly below the air-
plane? (b) Does this value change as the airplane continues its 
motion along a straight line? (c) What If? What is its angular 
momentum relative to the summit of Pike’s Peak?

11. Review. A projectile of mass m is launched with an initial 
velocity vSi making an angle u with the horizontal as shown 
in Figure P11.11. The projectile moves in the gravitational 
field of the Earth. Find the angular momentum of the pro-
jectile about the origin (a) when the projectile is at the ori-
gin, (b) when it is at the highest point of its trajectory, and 
(c) just before it hits the ground. (d) What torque causes its 
angular momentum to change?

12. Review. A conical pendulum consists of 
a bob of mass m in motion in a circular 
path in a horizontal plane as shown in  
Figure P11.12. During the motion, the sup-
porting wire of length , maintains a con-
stant angle u with the vertical. Show that 
the magnitude of the angular momentum 
of the bob about the vertical dashed line is

L 5 Sm2g /3 sin4 u

cos u D1y2

13. A particle of mass m moves in a circle of radius R at a constant 
speed v as shown in Fig ure P11.13. Time t 5 0 is defined as 

when the particle is at point Q. Determine the angular 
momentum of the particle about the axis perpendicular to 
the page through point P as a function of time.

14. A 5.00-kg particle starts from the origin at time zero. Its velo-
city as a function of time is given by

vS 5 6t 
2

 i
⁄

1 2t j
⁄
 

where vS is in meters per second and t is in seconds. (a) Find 
its position as a function of time. (b) Describe its motion 
qualitatively. Find (c) its acceleration as a function of time, 
(d) the net force exerted on the particle as a function of 
time, (e) the net torque about the origin exerted on the par-
ticle as a function of time, (f) the angular momentum of the 
particle as a function of time, (g) the kinetic energy of the 
particle as a function of time, and (h) the power injected 
into the system of the particle as a function of time.

15. A ball having mass m is fastened at 
the end of a flagpole that is con-
nected to the side of a tall build-
ing at point P as shown in Figure 
P11.15. The length of the flagpole 
is ,, and it makes an angle u with 
the x axis. The ball becomes loose 
and starts to fall with acceleration 
2g j

⁄
. (a)  Determine the angular 

momentum of the ball about point 
P as a function of time. (b) For 
what physical reason does the angular momentum change? (c) 
What is the rate of change of the angular momentum of the 
ball about point P ?

Section 11.3  Angular Momentum of a Rotating Rigid Object

16. A uniform solid sphere of radius r 5 0.500 m and mass m 5 
15.0 kg turns counterclockwise about a vertical axis through 
its center. Find its vector angular momentum about this axis 
when its angular speed is 3.00 rad/s.

17. A uniform solid disk of mass m 5 3.00 kg and radius r 5 
0.200 m rotates about a fixed axis perpendicular to its face 
with angular frequency 6.00 rad/s. Calculate the magni-
tude of the angular momentum of the disk when the axis of 
rotation (a) passes through its center of mass and (b) passes 
through a point midway between the center and the rim.

18. Show that the kinetic energy of an object rotating about a 
fixed axis with angular momentum L 5 Iv can be written 
as K 5 L2/2I.

19. Big Ben (Fig. P10.27, page 281), the Parliament tower clock in 
London, has hour and minute hands with lengths of 2.70 m 
and 4.50 m and masses of 60.0 kg and 100 kg, respectively. 
Calculate the total angular momentum of these hands about 
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the center point. (You may model the hands as long, thin 
rods rotating about one end. Assume the hour and minute 
hands are rotating at a constant rate of one revolution per  
12 hours and 60 minutes, respectively.)

20. Model the Earth as a uniform sphere. (a) Calculate the 
angular momentum of the Earth due to its spinning motion 
about its axis. (b) Calculate the angular momentum of the 
Earth due to its orbital motion about the Sun. (c) Explain 
why the answer in part (b) is larger than that in part (a) 
even though it takes significantly longer for the Earth to go 
once around the Sun than to rotate once about its axis.

21. The distance between the centers of the wheels of a motor-
cycle is 155 cm. The center of mass of the motorcycle, 
including the rider, is 88.0 cm above the ground and 
halfway between the wheels. Assume the mass of each wheel 
is small compared with the body of the motorcycle. The 
engine drives the rear wheel only. What horizontal acceler-
ation of the motorcycle will make the front wheel rise off  
the ground?

Section 11.4  Analysis Model: Isolated System  
(Angular Momentum)

22. You are working in an observatory, taking data on electromag-
netic radiation from neutron stars. You happen to be analyz-
ing results from the neutron star in Example 11.6, verifying 
that the period of the 10.0-km-radius neutron star is indeed 
2.6 s. You go through weeks of data showing the same period. 
Suddenly, as you analyze the most recent data, you notice 
that the period has decreased to 2.3 s and remained at that 
level since that time. You ask your supervisor about this, who 
becomes excited and says that the neutron star must have 
undergone a glitch, which is a sudden shrinking of the radius 
of the star, resulting in a higher angular speed. As she runs to 
her computer to start writing a paper on the glitch, she calls 
back to you to calculate the new radius of the planet, assum-
ing it has remained spherical. She is also talking about vortices 
and a superfluid core, but you don’t understand those words.

23. A 60.0-kg woman stands at the western rim of a horizontal 
turntable having a moment of inertia of 500  kg  ?  m2 and a 
radius of 2.00 m. The turntable is initially at rest and is free 
to rotate about a frictionless, vertical axle through its center. 
The woman then starts walking around the rim clockwise (as 
viewed from above the system) at a constant speed of 1.50 m/s  
relative to the Earth. Consider the woman–turntable system as 
motion begins. (a) Is the mechanical energy of the system con-
stant? (b) Is the momentum of the system constant? (c) Is the 
angular momentum of the system constant? (d) In what direc-
tion and with what angular speed does the turntable rotate? 
(e) How much potential energy in the woman’s body is conver-
ted into mechanical energy of the woman–turntable system as 
the woman sets herself and the turntable into motion?

24. Figure P11.13 represents a small, flat puck with mass m 5  
2.40 kg sliding on a frictionless, horizontal surface. It is 
held in a circular orbit about a fixed axis by a rod with neg-
ligible mass and length R 5 1.50 m, pivoted at one end. 
Initially, the puck has a speed of v 5 5.00 m/s. A 1.30-kg 
ball of putty is dropped vertically onto the puck from a 
small distance above it and immediately sticks to the puck. 
(a) What is the new period of rotation? (b) Is the angular 
momentum of the puck–putty system about the axis of rota-
tion constant in this process? (c) Is the momentum of the 
system constant in the process of the putty sticking to the 

puck? (d) Is the mechanical energy of the system constant 
in the process?

25. A uniform cylindrical turntable of radius 1.90 m and mass 
30.0 kg rotates counterclockwise in a horizontal plane with an 
initial angular speed of 4p rad/s. The fixed turntable bearing 
is frictionless. A lump of clay of mass 2.25 kg and negligible 
size is dropped onto the turntable from a small distance above 
it and immediately sticks to the turntable at a point 1.80 m to 
the east of the axis. (a) Find the final angular speed of the clay 
and turntable. (b) Is the mechanical energy of the turntable–
clay system constant in this process? Explain and use numer-
ical results to verify your answer. (c) Is the momentum of the 
system constant in this process? Explain your answer.

26. A puck of mass m1 5 80.0 g and radius r1 5 4.00 cm glides 
across an air table at a speed of vS 5 1.50 m/s as shown in 
Figure P11.26a. It makes a glancing collision with a second 
puck of radius r2 5 6.00 cm and mass m2 5 120 g (initially at 
rest) such that their rims just touch. Because their rims are 
coated with instant-acting glue, the pucks stick together and 
rotate after the collision (Fig. P11.26b). (a) What is the angu-
lar momentum of the system relative to the center of mass? 
(b) What is the angular speed about the center of mass?

27. A wooden block of mass M resting on a frictionless, hori-
zontal surface is attached to a rigid rod of length , and of 
negligible mass (Fig. P11.27). The rod is pivoted at the other 
end. A bullet of mass m traveling parallel to the horizontal 
surface and perpendicular to the rod with speed v hits the 
block and becomes embedded in it. (a) What is the angular 
momentum of the bullet–block system about a vertical axis 
through the pivot? (b) What fraction of the original kinetic 
energy of the bullet is converted into internal energy in the 
system during the collision?

28. Why is the following situation impossible? A space station shaped 
like a giant wheel (Fig. P11.28, page 306) has a radius of r 5  
100 m and a moment of inertia of 5.00 3 108 kg ? m2. A crew 
of 150 people of average mass 65.0 kg is living on the rim, 
and the station’s rotation causes the crew to experience 
an apparent free-fall acceleration of g. A research tech-
nician is assigned to perform an experiment in which a 
ball is dropped at the rim of the station every 15 minutes 
and the time interval for the ball to drop a given distance 
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306 Chapter 11 Angular Momentum

is measured as a test to make sure the apparent value of g 
is correctly maintained. One evening, 100 average people 
move to the center of the station for a union meeting. The 
research technician, who has already been performing his 
experiment for an hour before the meeting, is disappointed 
that he cannot attend the meeting, and his mood sours even 
further by his boring experiment in which every time inter-
val for the dropped ball is identical for the entire evening.

29. A wad of sticky clay with mass m and velocity vSi is fired at a 
solid cylinder of mass M and radius R (Fig. P11.29). The cyl-
inder is initially at rest and is mounted on a fixed horizontal 
axle that runs through its center of mass. The line of motion 
of the projectile is perpendicular to the axle and at a dis-
tance d , R from the center. (a) Find the angular speed of 
the system just after the clay strikes and sticks to the surface 
of the cylinder. (b) Is the mechanical energy of the clay– 
cylinder system constant in this process? Explain your 
answer. (c) Is the momentum of the clay–cylinder system 
constant in this process? Explain your answer.

30. A 0.005 00-kg bullet traveling horizontally with a speed of 
1.00 3 103 m/s strikes an 18.0-kg door, embedding itself 
10.0 cm from the side opposite the hinges as shown in Fig-
ure  P11.30. The 1.00-m wide door is free to swing on its 
frictionless hinges. (a) Before it hits the door, does the bul-
let have angular momentum relative to the door’s axis of 
rotation? (b) If so, evaluate this angular momentum. If not, 
explain why there is no angular momentum. (c) Is the mech-
anical energy of the bullet–door system constant during this 
collision? Answer without doing a calculation. (d) At what 
angular speed does the door swing open immediately after 
the collision? (e) Calculate the 
total energy of the bullet–door 
system and determine whether 
it is less than or equal to the 
kinetic energy of the bullet 
before the collision. (f) What 
If? Imagine now that the door 
is hanging vertically downward, 
hinged at the top, so that Figure 
P11.30 is a side view of the door 
and bullet during the collision. 
What is the maximum height 
that the bottom of the door will 
reach after the collision?

Section 11.5  The Motion of Gyroscopes and Tops

31. The angular momentum vector of a precessing gyroscope 
sweeps out a cone as shown in Figure P11.31. The angular 
speed of the tip of the angular momentum vector, called 
its precessional frequency, is given by vp 5 t/L, where t 
is the magnitude of the torque on the gyroscope and L is 
the magnitude of its angular momentum. In the motion 
called precession of the equinoxes, the Earth’s axis of rotation 
precesses about the perpendicular to its orbital plane with 
a period of 2.58 3 104 yr. Model the Earth as a uniform 
sphere and calculate the torque on the Earth that is causing 
this precession.

additional ProbleMS

32. A light rope passes over a light, fric-
tionless pulley. One end is fastened to a 
bunch of bananas of mass M, and a mon-
key of mass M clings to the other end 
(Fig. P11.32). The monkey climbs the 
rope in an attempt to reach the bananas. 
(a) Treating the system as consisting of 
the monkey, bananas, rope, and pulley, 
find the net torque on the system about 
the pulley axis. (b) Using the result 
of part (a), determine the total angu-
lar momentum about the pulley axis 
and describe the motion of the system. 
(c) Will the monkey reach the bananas?

33. Review. A thin, uniform, rectangular signboard hangs ver-
tically above the door of a shop. The sign is hinged to a sta-
tionary horizontal rod along its top edge. The mass of the 
sign is 2.40 kg, and its vertical dimension is 50.0 cm. The 
sign is swinging without friction, so it is a tempting target 
for children armed with snowballs. The maximum angular 
displacement of the sign is 25.08 on both sides of the ver-
tical. At a moment when the sign is vertical and moving to 
the left, a snowball of mass 400 g, traveling horizontally with 
a velocity of 160 cm/s to the right, strikes perpendicularly 
at the lower edge of the sign and sticks there. (a) Calcu-
late the angular speed of the sign immediately before the 
impact. (b) Calculate its angular speed immediately after 
the impact. (c) The spattered sign will swing up through 
what maximum angle?

34. You are advising a fellow student who wants to learn to 
perform multiple flips on the trampoline. You have him 
bounce vertically as high as he can, keeping his body per-
fectly straight and vertical. You determine that he can raise 
his center of mass by a distance of h 5 6.00 m above its  
level when he initiates the jump. He can do a single flip by 
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bouncing gently, throwing his arms forward over his head, 
and tucking his body. You use your smartphone to make a 
video of him doing a single flip. Based on analysis of this 
video, you determine that his moment of inertia is Istraight 5 
26.7 kg ? m2 when his body is straight and Ituck 5 5.62 kg ? m2  
in the tuck position. You suggest that he keep his body in 
the straight position for Dt9 5 0.400 s after leaving the 
trampoline surface and then immediately go into a tuck 
position. As he lands, he should straighten his body out  
Dt9 5 0.400 s before he lands. From analysis of the video 
recording, you determine that throwing his arms forward 
causes him to have an initial angular speed of vi 5 2.88 rad/s 
as he leaves the trampoline surface. If he tries to bounce as 
high as he can, do some flips, and land back on the same 
spot on the trampoline, predict how many flips he can safely 
do such that he lands on his feet on the trampoline.

35. We have all complained that there aren’t enough hours in 
a day. In an attempt to fix that, suppose all the people in 
the world line up at the equator and all start running east at 
2.50 m/s relative to the surface of the Earth. By how much 
does the length of a day increase? Assume the world popula-
tion to be 7.00 3 109 people with an average mass of 55.0 kg 
each and the Earth to be a solid homogeneous sphere. In 
addition, depending on the details of your solution, you may 
need to use the approximation 1/(1 2 x) < 1 1 x  for small x.

36. Why is the following situation impossible? A meteoroid strikes the 
Earth directly on the equator. At the time it lands, it is traveling 
exactly vertical and downward. Due to the impact, the time for 
the Earth to rotate once increases by 0.5 s, so the day is 0.5 s 
longer, undetectable to laypersons. After the impact, people on 
the Earth ignore the extra half-second each day and life goes 
on as normal. (Assume the density of the Earth is uniform.)

37. A rigid, massless rod has three particles with equal masses 
attached to it as shown in Figure P11.37. The rod is free to 
rotate in a vertical plane about a frictionless axle perpen-
dicular to the rod through the point P and is released from 
rest in the horizontal position at t 5 0. Assuming m and d 
are known, find (a) the moment of inertia of the system of 
three particles about the pivot, (b) the torque acting on the 
system at t 5 0, (c) the angular acceleration of the system 
at t 5 0, (d) the linear acceleration of the particle labeled 
3 at t 5 0, (e) the maximum kinetic energy of the system,  
(f) the maximum angular speed reached by the rod, (g) the  
maximum angular momentum of the system, and (h) the 
maximum speed reached by the particle labeled 2.

38. Review. Two boys are sliding toward each other on a friction-
less, ice-covered parking lot. Jacob, mass 45.0 kg, is gliding  
to the right at 8.00 m/s, and Ethan, mass 31.0 kg, is gliding 
to the left at 11.0 m/s along the same line. When they meet, 
they grab each other and hang on. (a) What is their velocity 
immediately thereafter? (b) What fraction of their original 
kinetic energy is still mechanical energy after their collision?  
That was so much fun that the boys repeat the collision  
with the same original velocities, this time moving along  

parallel lines 1.20 m apart. At closest approach, they lock arms 
and start rotating about their common center of mass. Model 
the boys as particles and their arms as a cord that does not 
stretch. (c) Find the velocity of their center of mass. (d) Find 
their angular speed. (e) What fraction of their original kinetic 
energy is still mechanical energy after they link arms? (f) Why 
are the answers to parts (b) and (e) so different?

39. Two astronauts (Fig. P11.39), each having a mass of 75.0 kg, 
are connected by a 10.0-m rope of negligible mass. They are 
isolated in space, orbiting their center of mass at speeds of 
5.00 m/s. Treating the astronauts as particles, calculate 
(a) the magnitude of the angular momentum of the two- 
astronaut system and (b) the rotational energy of the sys-
tem. By pulling on the rope, one astronaut shortens the dis-
tance between them to 5.00 m. (c) What is the new angular 
momentum of the system? (d) What are the astronauts’ new 
speeds? (e) What is the new rotational energy of the system?  
(f) How much potential energy in the body of the astronaut 
was converted to mechanical energy in the system when he 
shortened the rope?

40. Two astronauts (Fig. P11.39), each having a mass M, are con-
nected by a rope of length d having negligible mass. They 
are isolated in space, orbiting their center of mass at speeds 
v. Treating the astronauts as particles, calculate (a) the mag-
nitude of the angular momentum of the two-astronaut system 
and (b) the rotational energy of the system. By pulling on the 
rope, one of the astronauts shortens the distance between 
them to d/2. (c) What is the new angular momentum of the sys-
tem? (d) What are the astronauts’ new speeds? (e) What is the 
new rotational energy of the system? (f) How much potential 
energy in the body of the astronaut was converted to mechan-
ical energy in the system when he shortened the rope?

41. Native people throughout North and South America used 
a bola to hunt for birds and animals. A bola can consist of 
three stones, each with mass m, at the ends of three light 
cords, each with length ,. The other ends of the cords 
are tied together to form a Y. The hunter holds one stone 
and swings the other two above his head (Figure P11.41a, 
page 308). Both these stones move together in a horizontal 
circle of radius 2, with speed v0. At a moment when the 
horizontal component of their velocity is directed toward 
the quarry, the hunter releases the stone in his hand. As 
the bola flies through the air, the cords quickly take a stable 
arrangement with constant 120-degree angles between 
them (Fig. P11.41b). In the vertical direction, the bola is in 
free fall. Gravitational forces exerted by the Earth make the 
junction of the cords move with the downward acceleration 
gS. You may ignore the vertical motion as you proceed to 
describe the horizontal motion of the bola. In terms of m, 
,, and v0, calculate (a) the magnitude of the momentum of 
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308 Chapter 11 Angular Momentum

the bola at the moment of release and, after release, (b) the 
horizontal speed of the center of mass of the bola, and 
(c) the angular momentum of the bola about its center of 
mass. (d) Find the angular speed of the bola about its cen-
ter of mass after it has settled into its Y shape. Calculate the 
kinetic energy of the bola (e) at the instant of release and 
(f) in its stable Y shape. (g) Explain how the conservation 
laws apply to the bola as its configuration changes. Robert 
Beichner suggested the idea for this problem.

42. Two children are playing on stools at a restaurant counter. 
Their feet do not reach the footrests, and the tops of the 
stools are free to rotate without friction on pedestals fixed 
to the floor. One of the children catches a tossed ball, in a 
process described by the equation

s0.730 kg ? m2ds2.40 j
⁄
 radysd

1 s0.120 kgds0.350 i
⁄
 md 3 s4.30 k

⁄
 mysd

5 f0.730 kg ? m2 1 s0.120 kgds0.350 md2g vS

(a) Solve the equation for the unknown vS. (b) Complete 
the statement of the problem to which this equation applies. 
Your statement must include the given numerical informa-
tion and specification of the unknown to be determined. 
(c) Could the equation equally well describe the other child 
throwing the ball? Explain your answer.

43. You are attending a county 
fair with your friend from  
your physics class. While 
walking around the fair-
grounds, you discover a 
new game of skill. A thin 
rod of mass M 5 0.500 kg  
and length , 5 2.00 m 
hangs from a friction-free 
pivot at its upper end as 
shown in Figure P11.43. 
The front surface of the 
rod is covered with Velcro. 
You are to throw a Velcro-
covered ball of mass m 5 
1.00 kg at the rod in an 
attempt to make it swing 
backward and rotate all the way across the top. The ball 
must stick to the rod at all times after striking it. If you cause 
the rod to rotate over the top position, you win a stuffed ani-
mal. Your friend volunteers to try his luck. He feels that the 
most torque would be applied to the rod by striking it at its 
lowest end. While he prepares to aim at the lowest point on 
the rod, you calculate how fast he must throw the ball to win 
the stuffed animal with this technique.

44. A uniform rod of mass 300 g and length 50.0 cm rotates in 
a horizontal plane about a fixed, frictionless, vertical pin 
through its center. Two small, dense beads, each of mass 
m, are mounted on the rod so that they can slide without 
friction along its length. Initially, the beads are held by 
catches at positions 10.0 cm on each side of the center and 
the system is rotating at an angular speed of 36.0 rad/s. The 
catches are released simultaneously, and the beads slide out-
ward along the rod. (a) Find an expression for the angular 
speed vf of the system at the instant the beads slide off the 
ends of the rod as it depends on m. (b) What are the max-
imum and the minimum possible values for vf and the val-
ues of m to which they correspond?

45. Global warming is a cause for concern because even small 
changes in the Earth’s temperature can have significant con-
sequences. For example, if the Earth’s polar ice caps were to 
melt entirely, the resulting additional water in the oceans 
would flood many coastal areas. Model the polar ice as hav-
ing mass 2.30 3 1019 kg and forming two flat disks of radius 
6.00 3 105 m. Assume the water spreads into an unbroken 
thin, spherical shell after it melts. Calculate the resulting 
change in the duration of one day both in seconds and as a 
percentage.

46. The puck in Figure P11.46 has a mass of 0.120 kg. The dis-
tance of the puck from the center of rotation is originally 
40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. 
The string is pulled downward 15.0 cm through the hole in 
the frictionless table. Determine the work done on the puck. 
(Suggestion: Consider the change of kinetic energy.)

47. You operate a restaurant that has many large, circular 
tables. At the center of each table is a Lazy Susan that can 
turn to deliver salt, pepper, jam, hot sauce, bread, and other 
items to diners on the other side of the table. A fancy flower 
arrangement is located at the center of each Lazy Susan, 
and the turning of the flower arrangement is beautiful to 
you. Because of your interest in model trains, you decide to 
replace each Lazy Susan with a circular track on the table 
around which a model train will run. You can load the vari-
ous condiments in the cars of the train and press a button to 
operate the train, causing the train to begin moving around 
the circle and deliver the load to your fellow diners! The 
train is of mass 1.96 kg and moves at a speed of 0.18 m/s rel-
ative to the track. After a few days, you realize that you miss 
the beautiful turning flower arrangements. So you come up 
with a new scheme. You return the Lazy Susan to the table 
and mount the circular track on the platform of the Lazy 
Susan, which has a friction-free axle at its center. The radius 
of the circular track is 40.0 cm (measured halfway between 
the rails) and the platform of the Lazy Susan is a uniform 
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disk of mass 3.00 kg and radius 48.0 cm. You finally equip all 
of your tables with the new apparatus and open your restau-
rant. As a demonstration to the diners, you mount one salt 
shaker and one pepper shaker, having a mass of 0.100 kg 
each, onto a flatcar and push the button to deliver the con-
diments to the other side of the table! How long does it take 
to deliver the condiments to the exact opposite side of the 
table? Ignore the moment of inertia of the flower arrange-
ment, since its mass is all close to the rotation axis.

challenge ProbleMS

 48. A solid cube of wood of side 2a and mass M is resting on a 
horizontal surface. The cube is constrained to rotate about 
a fixed axis AB (Fig. P11.48). A bullet of mass m and speed 
v is shot at the face opposite ABCD at a height of 4a/3. The 
bullet becomes embedded in the cube. Find the minimum 
value of v required to tip the cube so that it falls on face 
ABCD. Assume m ,, M.

 49. In Example 11.8, we investigated an elastic collision between 
a disk and a stick lying on a frictionless surface. Suppose 
everything is the same as in the example except that the col-
lision is perfectly inelastic so that the disk adheres to the 
stick at the endpoint at which it strikes. Find (a) the speed of 
the center of mass of the system and (b) the angular speed 
of the system after the collision.

 50. A solid cube of side 2a and mass M is sliding on a frictionless 
surface with uniform velocity vS as shown in Figure P11.50a. 
It hits a small obstacle at the end of the table that causes the 
cube to tilt as shown in Figure P11.50b. Find the minimum 
value of the magnitude of vS such that the cube tips over and 
falls off the table. Note: The cube undergoes an inelastic col-
lision at the edge.
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12

Storyline In the previous chapter, you were taking a break from 
your physics homework and browsing videos online about rotational motion. 
While thinking about the spinning phenomena in those videos, you pick up a 
meterstick and start twirling it and sliding it back and forth in your hands. At one 
point, something about the meterstick’s behavior makes you forget about the 
rotational motion videos. You say, “Wait a minute! What just happened there?” 
You reproduce the behavior as follows. You support the meterstick horizontally on 
one finger of each hand, the fingers pointing out horizontally in a forward direc-
tion from your body. One finger supports the meterstick near the 0-cm end and 
the other near the 100-cm end. Now you slowly start moving your hands toward 
each other. The meterstick slides on one finger while sticking to the other finger. 
Then, it switches to slide on the other finger! And then back to the first finger! 
This alternation continues until your fingers meet. No matter what efforts you 
make to move only one finger at a time, this sticking and sliding behavior always 
occurs, the meterstick always stays supported on your fingers, and your fingers 
always meet at the 50-cm mark!

ConneCtions In Chapters 10 and 11, we studied the dynamics of rigid 
objects in motion. This chapter addresses the conditions under which a rigid 
object is in equilibrium. The term equilibrium implies that the object moves with 
both constant velocity and constant angular velocity relative to an observer in 

12.1 Analysis Model: Rigid 
Object in Equilibrium

12.2 More on the Center  
of Gravity

12.3 Examples of Rigid 
Objects in Static 
Equilibrium

12.4 Elastic Properties  
of Solids

Support a meterstick near 
the ends on your fingers and 

move your hands toward 
each other. Your hands 

always meet at the 50-cm 
mark! (Science Source)

Static Equilibrium and Elasticity
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    12.1 Analysis Model: Rigid Object in Equilibrium 311

an inertial reference frame. In this chapter, we consider only the special case 
in which both of these velocities are equal to zero. In this case, the object is in 
what is called static equilibrium. In the meterstick phenomenon described in the 
storyline, anytime you momentarily stop your fingers so that the meterstick is at 
rest relative to the ground, it is in static equilibrium. Static equilibrium represents 
a common situation in engineering practice, and the principles it involves are of 
special interest to civil engineers, architects, and mechanical engineers. If you 
are an engineering student, you will undoubtedly take an advanced course in 
statics in the near future. The last section of this chapter deals with how objects 
deform under load conditions. An elastic object returns to its original shape when 
the deforming forces are removed. Several elastic constants are defined, each 
corresponding to a different type of deformation. In future chapters, we will see 
examples of rigid objects in static equilibrium: for example, polarized molecules in 
an electric field and a loop of wire carrying a current in a magnetic field.

   12.1    Analysis Model: Rigid Object in Equilibrium
In Chapter 5, we discussed the particle in equilibrium model, in which a particle 
moves with constant velocity because the net force acting on it is zero. The situation 
with real (extended) objects is more complex because these objects often cannot be 
modeled as particles. For an extended object to be in equilibrium, a second condi-
tion must be satisfied. This second condition involves the rotational motion of the 
extended object.

Consider a single force F
S

 acting on a rigid object at point P as shown in  
Figure 12.1. Recall that the torque associated with the force F

S
 about an axis through 

O is given by Equation 11.1:

 tS 5 rS 3 F
S

 

The magnitude of tS is Fd (see Equation 10.14), where d is the moment arm shown 
in Figure 12.1. According to Equation 10.18, the net torque on a rigid object causes 
it to undergo an angular acceleration.

In this discussion, we investigate those rotational situations in which the angular 
acceleration of a rigid object is zero. Such an object is in rotational equilibrium. 
Because o text 5 Ia for rotation about a fixed axis, the necessary condition for rota-
tional equilibrium is that the net torque about any axis must be zero. We now have 
two necessary conditions for equilibrium of a rigid object:

1. The net external force on the object must equal zero:

 o F
S

ext 5 0  (12.1)

2. The net external torque on the object about any axis must be zero:

 o tSext 5 0  (12.2)

These conditions describe the rigid object in equilibrium analysis model. The first 
condition is a statement of translational equilibrium; it states that the translational 
acceleration of the object’s center of mass must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium; 
it states that the angular acceleration about any axis must be zero. In the special 
case of static equilibrium, which is the main subject of this chapter, the object in 
equilibrium has a further requirement in addition to Equations 12.1 and 12.2: it is 
at rest relative to the observer and so has no translational or angular speed (that is, 
vCM 5 0 and v 5 0).

F
S

rS

P

O

d

u

Figure 12.1  A single force F
S

 acts 
on a rigid object at the point P.

PItfall PreventIon 12.1
Zero Torque Zero net torque does 
not mean an absence of rotational 
motion. An object that is rotating 
at a constant angular speed can 
be under the influence of a net 
torque of zero. This possibility 
is analogous to the translational 
situation: zero net force does not 
mean an absence of translational 
motion.
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Q uIck QuIz 12.1  Consider the object subject to the two forces of equal magni-
tude in Figure 12.2. Choose the correct statement with regard to this situation.  
(a) The object is in force equilibrium but not torque equilibrium. (b) The object 
is in torque equilibrium but not force equilibrium. (c) The object is in both 
force equilibrium and torque equilibrium. (d) The object is in neither force 
equilibrium nor torque equilibrium.

Q uIck QuIz 12.2  Consider the object subject to the three forces in Figure 12.3.  
Choose the correct statement with regard to this situation from the choices  
(a)–(d)  in Quick Quiz 12.1.

The two vector expressions given by Equations 12.1 and 12.2 are equivalent, 
in general, to six scalar equations: three from the first condition for equilibrium 
and three from the second (corresponding to x, y, and z components). Hence, in a 
complex system involving several forces acting in various directions, you could be 
faced with solving a set of equations with many unknowns. Here, we restrict our 
discussion to situations in which all the forces lie in the xy plane. (Forces whose 
vector representations are in the same plane are said to be coplanar.) With this 
restriction, we must deal with only three scalar equations. Two come from balanc-
ing the forces in the x and y directions. The third comes from the torque equa-
tion, namely that the net torque about a perpendicular axis through any point 
in the xy plane must be zero. This perpendicular axis will necessarily be parallel  
to the z axis, so the two conditions of the rigid object in equilibrium model pro-
vide the equations

 o Fx 5 0    o Fy 5 0    o tz 5 0 (12.3)

where the location of the axis of the torque equation is arbitrary.

F2
S

 

F1
S

 

F3
S

 

Figure 12.3  (Quick Quiz 12.2) 
Three forces act on an object. 
Notice that the lines of action of 
all three forces pass through a 
common point.

F
S

d

d

CM

F
S

Figure 12.2  (Quick Quiz 12.1) 
Two forces of equal magnitude are 
applied at equal distances from 
the center of mass of a rigid object.

analysIs Model Rigid Object in Equilibrium

Imagine an object that can rotate, 
but is exhibiting no translational 
acceleration a and no rotational 
acceleration a. Such an object is in 
both translational and rotational 
equilibrium, so the net force and the 
net torque about any axis are both 
equal to zero:

 o F
S

ext 5 0 (12.1)

 o tSext 5 0 (12.2)

Examples: 

 ● a balcony juts out from a building and must 
support the weight of several humans without 
collapsing

 ● a gymnast performs the difficult iron cross 
maneuver in an Olympic event (Problem 37)

 ● a ship moves at constant speed through calm 
water and maintains a perfectly level orienta-
tion (Chapter 14)

 ● polarized molecules in a dielectric material in a 
constant electric field take on an average equi-
librium orientation that remains fixed in time (Chapter 25)

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0

O

y

x

   12.2    More on the Center of Gravity
Whenever we deal with a rigid object, one of the forces we must consider is the grav-
itational force acting on it, and we must know the point of application of this force. 
As we learned in Section 9.5, associated with every object is a special point called its 
center of gravity. The combination of the various gravitational forces acting on all 
the various mass elements of the object is equivalent to a single gravitational force 
acting through this point. Therefore, to compute the torque due to the gravita-
tional force on an object of mass M, we need only consider the force M gS acting at 
the object’s center of gravity.

312 Chapter 12 Static Equilibrium and Elasticity
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    12.3 Examples of Rigid Objects in Static Equilibrium 313

How do we find this special point? As mentioned in Section 9.5, if we assume gS is 
uniform over the object, the center of gravity of the object coincides with its cen-
ter of mass. To see why, consider an object of arbitrary shape lying in the xy plane 
as illustrated in Figure 12.4. Suppose the object is divided into a large number of 
particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . .  
In Equation 9.29, we defined the x coordinate of the center of mass of such an 
object to be

 xCM 5
m1x1 1 m2x2 1 m3x3 1 Á

m1 1 m2 1 m3 1 Á 5
o

i

mixi

o
i

mi

 (9.29)

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.

Let us now examine the situation from another point of view by considering the 
gravitational force exerted on each particle as shown in Figure 12.5. Each particle 
contributes a torque about an axis through the origin equal in magnitude to the 
particle’s weight mg multiplied by its moment arm. For example, the magnitude of 
the torque due to the force m1gS1 is m1g1x1, where g1 is the value of the gravitational 
acceleration at the position of the particle of mass m1. We wish to locate the center 
of gravity, the point at which application of the single gravitational force M gSCG 
(where M 5 m1 1 m2 1 m3 1 ? ? ? is the total mass of the object and gSCG is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on 
rotation as does the combined effect of all the individual gravitational forces mi g

S
i . 

Equating the torque resulting from M gSCG acting at the center of gravity to the sum 
of the torques acting on the individual particles gives

sm1 1 m2 1 m3 1 Á dgCG xCG 5 m1g1x1 1 m2g2x2 1 m3g3x3 1 Á

This expression accounts for the possibility that the value of g can in general vary 
over the object. If we assume uniform g over the object (as is usually the case), all 
the g factors are identical and cancel; we obtain

 xCG 5
m1x1 1 m2x2 1 m3x3 1 Á

m1 1 m2 1 m3 1 Á 5
o

i

mixi

o
i

mi

 (12.4)

Comparing this result with Equation 9.29 shows that the center of gravity is located 
at the center of mass as long as gS is uniform over the entire object. Several exam-
ples in the next section deal with homogeneous, symmetric objects. The center of 
gravity for any such object coincides with its geometric center.

Q uIck QuIz 12.3  A meterstick of uniform density is hung from a string tied 
at the 25-cm mark. A 0.50-kg object is hung from the zero end of the meter-
stick, and the meterstick is balanced horizontally. What is the mass of the 
meterstick? (a) 0.25 kg (b) 0.50 kg (c) 0.75 kg (d) 1.0 kg (e) 2.0 kg (f) impossible 
to determine

   12.3    Examples of Rigid Objects in Static Equilibrium
The photograph of the one-bottle wine holder in Figure 12.6 shows one example 
of a balanced mechanical system that seems to defy gravity. For the system (wine 
holder plus bottle) to be in equilibrium, the net external force must be zero (see 
Eq. 12.1) and the net external torque around an axis passing through the support 
point must be zero (see Eq. 12.2). The second condition can be satisfied only when 
the center of gravity of the system in Figure 12.6 is directly over the support point.

CM
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x

(x1, y1) (x2, y2)

(x3, y3)
m1

m2

m3 

O

Each particle of the object has 
a specific mass and specific 
coordinates. 

Figure 12.4  An object can be 
divided into many small particles. 
These particles can be used to 
locate the center of mass.
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Figure 12.5  By dividing an 
object into many particles, we can 
find its center of gravity.

The center of gravity of the 
system (bottle plus holder) is 
directly over the support point.

Figure 12.6  This one-bottle wine 
holder is a surprising display of 
static equilibrium.
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PROblEM-SOlvinG STRATEGy  Rigid Object in Equilibrium

When analyzing a rigid object in equilibrium under the action of several external forces, use the following procedure.

1. Conceptualize.  Think about the object that is in equilibrium and identify all the forces on it. Imagine what effect each 
force would have on the rotation of the object if it were the only force acting.

2. Categorize. Confirm that the object under consideration is indeed a rigid object in equilibrium. The object must have 
zero translational acceleration and zero angular acceleration.

3. Analyze. Draw a diagram and label all external forces acting on the object. Try to guess the correct direction for any 
forces that are not specified. When using the particle under a net force model, the object on which forces act can be repre-
sented in a free-body diagram with a dot because it does not matter where on the object the forces are applied. When using 
the rigid object in equilibrium model, however, we cannot use a dot to represent the object because the location where forces 
act is important in the calculation. Therefore, in a diagram showing the forces on an object, we must show the actual object 
or a simplified version of it.

Resolve all forces into rectangular components, choosing a convenient coordinate system. Then apply the first condition 
for equilibrium, Equation 12.1. Remember to keep track of the signs of the various force components.

Choose a convenient axis for calculating the net torque on the rigid object. Remember that the choice of the axis for 
the torque equation is arbitrary; therefore, choose an axis that simplifies your calculation as much as possible. Usually, 
the most convenient axis for calculating torques is one through a point through which the lines of action of several 
forces pass, so their torques around this axis are zero. If you don’t know a force or don’t need to know a force, it is often 
beneficial to choose an axis through the point at which this force acts. Apply the second condition for equilibrium, 
Equation 12.2.

Solve the simultaneous equations for the unknowns in terms of the known quantities.

4. Finalize.  Make sure your results are consistent with your diagram. If you selected a direction that leads to a negative sign 
in your solution for a force, do not be alarmed; it merely means that the direction of the force is the opposite of what you 
guessed. Add up the vertical and horizontal forces on the object and confirm that each set of components adds to zero. Add 
up the torques on the object and confirm that the sum equals zero.

 Example 12.1    The Seesaw Revisited

A seesaw consisting of a uniform board of mass M and length , sup-
ports at rest a father and daughter with masses mf and md, respectively, 
as shown in Figure 12.7. The support (called the fulcrum) is under the 
center of gravity of the board, the father is a distance d from the cen-
ter, and the daughter is a distance ,/2 from the center.

(A)  Determine the magnitude of the upward force nS exerted by the 
support on the board.

S O L U T I O N

Conceptualize  Let us focus our attention on the board and consider the 
gravitational forces on the father and daughter as forces applied directly 
to the board. For force equilibrium, the location of the point of applica-
tion of each force is not important.

Categorize  Because the text of the problem states that the system is at rest, we model the board as a rigid object in equilibrium. 
Because we will only need the first condition of equilibrium to solve this part of the problem, however, we could also simply 
model the board as a particle in equilibrium.

Analyze  Define upward as the positive y direction and n 2 mf g  2 mdg  2 Mg 5 0 
substitute the forces on the board into Equation 12.1:

Solve for the magnitude of the force nS: (1)   n 5 mf g 1 mdg 1 Mg 5  (mf 1 md 1 M)g

(b)  Determine where the father should sit to balance the system at rest.

d

M

mf
mdgS 

nS

gS 

gS 

2
�

Figure 12.7  (Example 12.1) A balanced system.
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12.1 c o n t i n u e d

S O L U T I O N

Conceptualize  For torque equilibrium, we need to pay attention to the location of the point of application of each force. The 
daughter would cause a clockwise rotation of the board around the support, whereas the father would cause a counterclock-
wise rotation.

Categorize  This part of the problem requires the introduction of torque to find the position of the father, so we model the 
board as a rigid object in equilibrium.

Analyze The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we choose a 
rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by nS and the gravita-
tional force on the board about this axis are zero.

Substitute expressions for the torques on the board due smf g dsd d 2 smd g d 

/
2

5 0 
to the father and daughter into Equation 12.2:

Solve for d: d 5 Smd

mf
D /

2

Finalize  This result is the same one we obtained in Example 11.5 by evaluating the angular acceleration of the system and 
setting the angular acceleration equal to zero.

W H A T  I F ? Suppose we had chosen another point through which the rotation axis were to pass. For example, suppose 
the axis is perpendicular to the page and passes through the location of the father. Does that change the results to  
parts (A) and (B)?

Answer  Part (A) is unaffected because the calculation of the net force does not involve a rotation axis. In part (B), we would 
conceptually expect there to be no change if a different rotation axis is chosen because the second condition of equilibrium 
claims that the torque is zero about any rotation axis.
 Let’s verify this answer mathematically. Recall that the sign of the torque associated with a force is positive if that force 
tends to rotate the system counterclockwise, whereas the sign of the torque is negative if the force tends to rotate the system 
clockwise. Let’s choose a rotation axis perpendicular to the page and passing through the location of the father.

Substitute expressions for the torques on the board  nsdd 2 sMgdsdd 2 smd gdSd 1
/
2D 5 0 

around this axis into Equation 12.2:

Substitute from Equation (1) in part (A) and solve for d: smf 1 md 1 Mdg sdd 2 sMgdsdd 2 smd gdSd 1
/
2D 5 0

   smf gdsdd 2 smd gdS/
2D 5 0 S d 5 Smd

mf
D/

2

This result is in agreement with the one obtained in part (B).

 Example 12.2     Standing on a Horizontal beam

A uniform horizontal beam with a length of , 5 8.00 m and a weight of Wb 5 200 N is attached to a wall by a pin connection. Its far 
end is supported by a cable that makes an angle of f 5 53.08 with the beam (Fig. 12.8a, page 316). A person of weight Wp 5 600 N  
stands a distance d 5 2.00 m from the wall. Find the tension in the cable as well as the magnitude and direction of the  
force exerted by the wall on the beam.

S O L U T I O N

Conceptualize Imagine the person in Figure 12.8a moving outward on the beam. It seems reasonable that the farther he 
moves outward, the larger the torque he applies about the pivot and the larger the tension in the cable must be to balance this 
torque.

Categorize Because the system is at rest, we categorize the beam as a rigid object in equilibrium.

continued
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12.2 c o n t i n u e d

Analyze We identify all the external forces acting on the beam: the 200-N gravitational force, the force T
S

 exerted by the 
cable, the force R

S
 exerted by the wall at the pivot, and the 600-N force that the person exerts on the beam. These forces are 

all indicated in the force diagram for the beam shown in Figure 12.8b. When we assign directions for forces, it is sometimes 
helpful to imagine what would happen if a force were suddenly removed. For example, if the wall were to vanish suddenly, the 
left end of the beam would move to the left as it begins to fall. This scenario tells us that the wall is not only holding the beam 
up but is also pressing outward against it. Therefore, we draw the vector R

S
 in the direction shown in Figure 12.8b. Figure 12.8c 

shows the horizontal and vertical components of T
S

 and R
S

.

Applying the first condition of equilibrium, substitute  (1)   o Fx 5 R cos u 2 T cos f 5 0 
expressions for the forces on the beam into component  

(2)   o 
Fy 5 R sin u 1 T sin f 2 Wp 2 Wb 5 0

 
equations from Equation 12.1:

where we have chosen rightward and upward as our positive directions. Because R, T, and u are all unknown, we cannot obtain 
a solution from these expressions alone. (To solve for the unknowns, the number of simultaneous equations must generally 
equal the number of unknowns.)
 Now let’s invoke the condition for rotational equilibrium. A convenient axis to choose for our torque equation is the one 
that passes through the pin connection. The feature that makes this axis so convenient is that the force R

S
 and the horizontal 

component of T
S

 both have a moment arm of zero; hence, these forces produce no torque about this axis. 

Substitute expressions for the torques on  otz 5 sT sin fds/d 2 Wp d 2 WbS/
2D 5 0 

the beam into Equation 12.2:

This equation contains only T as an  T 5
Wp d 1 Wbs/y2d

/ sin f
5

s600 Nds2.00 md 1 s200 Nds4.00 md
s8.00 md sin 53.08

5 313 N  
unknown because of our choice of  
rotation axis. Solve for T and substitute  
numerical values:

Rearrange Equations (1) and (2) and then  
R sin u
R cos u

5 tan u 5
Wp 1 Wb 2 T sin f

T cos f
 

divide:

Solve for u and substitute numerical  u 5 tan21SWp 1 Wb 2 T sin f

T cos f D 
values:

   5 tan213600 N 1 200 N 2 s313 Nd sin 53.08

s313 Nd cos 53.08 4 5 71.18

Solve Equation (1) for R and substitute  R 5
T cos f

cos u
5

s313 Nd cos 53.08

cos 71.18
5 581 N  

numerical values:

Finalize  The positive value for the angle u indicates that our estimate of the direction of R
S

 was accurate.
 Had we selected some other axis for the torque equation, the solution might differ in the details but the answers would be 
the same. For example, had we chosen an axis through the center of gravity of the beam, the torque equation would involve 
both T and R. This equation, coupled with Equations (1) and (2), however, could still be solved for the unknowns. Try it!

u

f

f

�

Wb

Wp

Wb

Wp

R cos u  

R sin u  

T cos f

T sin f

d

R
S

T
S

a b

c

2
�

u

f

f

�

Wb

Wp

Wb

Wp

R cos u  

R sin u  

T cos f

T sin f

d

a b

c

2
�

Figure 12.8  (Example 12.2) (a) A uniform beam supported by a cable. A person walks outward on the beam. 
(b) The force diagram for the beam. (c) The force diagram for the beam showing the components of R

S
 and T

S
.
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12.2 c o n t i n u e d

 Example 12.3     The leaning ladder

A uniform ladder of length , rests against a smooth, vertical wall  
(Fig. 12.9a). The mass of the ladder is m, and the coefficient of static fric-
tion between the ladder and the ground is ms 5 0.40. Find the minimum 
angle umin at which the ladder does not slip.

S O L U T I O N

Conceptualize Think about any ladders you have climbed. Do you want a 
large friction force between the bottom of the ladder and the surface or a 
small one? If the friction force is zero, will the ladder stay up? Simulate a lad-
der with a ruler leaning against a vertical surface. Does the ruler slip at some 
angles and stay up at others?

Categorize  We do not wish the ladder to slip, so we model it as a rigid object in 
equilibrium.

Analyze  A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted by 
the ground on the ladder is the vector sum of a normal force nS and the force of static friction f

S
s . The wall exerts a normal 

force P
S

 on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force on the top of 
the ladder is perpendicular to the wall and of magnitude P.

Apply the first condition for equilibrium to the ladder in  (1)   o  Fx 5 fs 2 P 5 0 
both the x and the y directions: 

(2)   o Fy 5 n 2 mg 5 0

Solve Equation (1) for P : (3)   P 5 fs

Solve Equation (2) for n: (4)   n 5 mg 

When the ladder is on the verge of slipping, the force  (5)   Pmax 5 fs,max 5 msn 5 msmg 
of static friction must have its maximum value, which is  
given by fs,max 5 msn. Combine this equation with  
Equations (3) and (4):

Apply the second condition for equilibrium to the ladder,  otO 5 P/ sin u 2 mg 
/
2

 cos u 5 0 
evaluating torques about an axis perpendicular to the page  
through O:

Solve for tan u: 
sin u
cos u

5 tan u 5
mg

2P
   S   u 5 tan21 Smg

2PD
Under the conditions that the ladder is just  umin 5 tan21 S mg

2Pmax
D 5 tan21 S 1

2ms
D 5 tan21 3 1

2s0.40d4 5 518  
ready to slip, u becomes umin and Pmax is given  
by Equation (5). Substitute:

Finalize  Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

�

O m

u

u

P
S

nS

fs
S

gS

a

b

�

O m

u

u

P
S

nS

fs
S

gS

a

b

Figure 12.9  (Example 12.3) (a) A uniform 
ladder at rest, leaning against a smooth wall. The 
ground is rough. (b) The forces on the ladder.
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W H A T  I F ?  What if the person walks farther out on 
the beam? Does T change? Does R change? Does u change?

Answer  T must increase because the gravitational force 
on the person exerts a larger torque about the pin con-
nection, which must be countered by a larger torque in 
the opposite direction due to an increased value of T. If 
T increases, the vertical component of R

S
 decreases to 

maintain force equilibrium in the vertical direction. Force 
equilibrium in the horizontal direction, however, requires 
an increased horizontal component of R

S
 to balance the 

horizontal component of the increased T
S

. This fact sug-
gests that u becomes smaller, but it is hard to predict what 
happens to R . Problem 50 asks you to explore the behavior 
of R .
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 Example 12.4     negotiating a Curb

(A)  Estimate the magnitude of the force F
S

 a person must 
apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in 
contact with the curb has a radius r, and the height of 
the curb is h.

S O L U T I O N

Conceptualize  Think about wheelchair access to buildings. 
Generally, there are ramps built for individuals in wheel-
chairs or scooters. Steplike structures such as curbs are seri-
ous barriers to a wheelchair.

Categorize  Imagine the person exerts enough force so that 
the bottom of the main wheel just loses contact with the 
lower surface and hovers at rest. We model the wheel in this 
situation as a rigid object in equilibrium.

Analyze Usually, the person’s hands supply the required 
force to a slightly smaller wheel that is concentric with the 
main wheel. For simplicity, let’s assume the radius of this 
second wheel is the same as the radius of the main wheel. 
Let’s estimate a combined gravitational force of magnitude  
mg  5 1 400 N for the person and the wheelchair, acting along 
a line of action passing through the axle of the main wheel, 
and choose a wheel radius of r 5 30 cm. We also pick a curb 
height of h 5 10 cm. Let’s also assume the wheelchair and 
occupant are symmetric and each wheel supports a weight 
of 700 N. We then proceed to analyze only one of the main 
wheels. Figure 12.10b shows the geometry for a single wheel.
 When the wheel is just about to be raised from the street, the 
normal force exerted by the ground on the wheel at point B goes 
to zero. Hence, at this time only three forces act on the wheel 
as shown in the force diagram in Figure 12.10c. The force R

S
, 

which is the force exerted by the curb on the wheel, acts at point 
A, so if we choose to have our axis of rotation be perpendicular 
to the page and pass through point A, we do not need to include  
R
S

 in our torque equation. The moment arm of F
S

 relative to an 
axis through A is given by 2r 2 h (see Fig. 12.10c).

Use the triangle OAC in Figure 12.10b to find the  (1)   d 5 Ïr 2 2 sr 2 hd2 5 Ï2rh 2 h2 
moment arm d of the gravitational force m gS acting on  
the wheel relative to an axis through point A:

Apply the second condition for equilibrium to the wheel,  (2)   otA 5 mgd 2 F s2r 2 hd 5 0 
taking torques about an axis through A:

Substitute for d from Equation (1): mgÏ2rh 2 h2 2 F s2r 2 hd 5 0

Solve for F : (3)   F 5
mgÏ2rh 2 h2

2r 2 h

Simplify: F 5 mg 
Ïh Ï2r 2 h

2r 2 h
5 mgÎ h

2r 2 h

Substitute numerical values: F 5 s700 NdÎ 0.1 m
2s0.3 md 2 0.1 m

    5   3 3 102 N

a b

c d

F
S

r � h

h

d

r
A

O

C

B

F
S

F
S

R
S

R
S2r � h
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A

D

uu

mgS

mgS

Figure 12.10  (Example 12.4) (a) A person in a wheelchair 
attempts to roll up over a curb. (b) Details of the wheel and curb. 
The person applies a force F

S
 to the top of the wheel. (c) A force 

diagram for the wheel when it is just about to be raised. Three 
forces act on the wheel at this instant: F

S
, which is exerted by the 

hand; R
S

, which is exerted by the curb; and the gravitational force 
m gS. (d) The vector sum of the three external forces acting on the 
wheel is zero.
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12.4 c o n t i n u e d

(b)  Determine the magnitude and direction of R
S

.

S O L U T I O N

Apply the first condition for equilibrium to the x and y  (4)   o Fx 5 F 2 R cos u 5 0 
components of the forces on the wheel: 

(5)   o Fy 5 R sin u 2 mg 5 0

Divide Equation (5) by Equation (4): 
R sin u
 R cos u

5 tan u 5
mg

 F

Solve for the angle u: u 5 tan21 Smg

F D 5 tan21 S700 N
300 ND 5 708

Solve Equation (5) for R and substitute numerical values: R 5
mg

sin u
5

700 N
sin 708

5 8 3 102 N

Finalize  Notice that we have kept only one digit as significant because we have guessed at some numbers and made some 
assumptions. (We have written the angle as 708 because 7 3 1018 is awkward!) For example, we assumed that the center of mass 
of the wheelchair–person system was directly over the axle of the wheel. How likely do you think that is to be true? The results 
indicate that the force that must be applied to each wheel is substantial. You may want to estimate the force required to roll a 
wheelchair up a typical sidewalk accessibility ramp for comparison.

W H A T  I F ? Would it be easier to negotiate the curb if the person grabbed the wheel at point D in Figure 12.10c and 
pulled upward?

Answer  If the force F
S

 in Figure 12.10c is rotated counterclockwise by 908 and applied at D, its moment arm about an axis 
through A is d 1 r. Let’s call the magnitude of this new force F 9.

Modify Equation (2) for this situation: o tA 5 mgd 2 F 9(d 1 r) 5 0

Solve this equation for F 9 and substitute for d: F 9 5
mgd

d 1 r
5

mgÏ2rh 2 h2

Ï2rh 2 h2 1 r

Take the ratio of this force to the original force  
F 9

F
5

mgÏ2rh 2 h2

Ï2rh 2 h2 1 r
mgÏ2rh 2 h2

2r 2 h

5
2r 2 h

Ï2rh 2 h2
 1 r

5

2 2 Sh
rD

Î2Sh
rD 2 Sh

rD2

1 1

 
from Equation (3) and express the result in  
terms of h/r, the ratio of the curb height to  
the wheel radius:

Substitute the ratio h/r 5 0.33 from the given values: 
F 9

F
5

2 2 0.33

Ï2s0.33d 2 s0.33d2 1 1
5 0.96

This result tells us that, for these values, it is slightly easier to pull upward at D than horizontally at the top of the wheel. For very 
high curbs, so that h/r is close to 1, the ratio F 9/F drops to about 0.5 because point A is located near the right edge of the wheel in  
Figure 12.10b. The force at D is applied at a distance of about 2r from A, whereas the force at the top of the wheel has a moment arm 
of only about r. For high curbs, then, it is best to pull upward at D, although a large value of the force is required. For small curbs, it 
is best to apply the force at the top of the wheel. The ratio F 9/F becomes larger than 1 at about h/r 5 0.3 because point A is now close 
to the bottom of the wheel and the force applied at the top of the wheel has a larger moment arm than when applied at D.
 Finally, let’s comment on the validity of these mathematical results. Consider Figure 12.10d and imagine that the vector 
F
S

 is upward instead of to the right. There is no way the three vectors can add to equal zero as required by the first equilib-
rium condition. Therefore, our results above may be qualitatively valid, but not exact quantitatively. To cancel the horizontal 
component of R

S
, the force at D must be applied at an angle to the vertical rather than straight upward. This feature makes the 

calculation more complicated and requires both conditions of equilibrium.

   12.4    Elastic Properties of Solids
In Section 9.8, we explored deformable systems consisting of masses and springs. 
We continue and generalize that discussion in this section. We have assumed 
objects remain rigid when external forces act on them. In reality, all objects are 
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deformable to some extent. That is, it is possible to change the shape or the size (or 
both) of an object by applying external forces. As these changes take place, how-
ever, internal forces in the object resist the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress and 
strain. Stress is a quantity that is proportional to the force causing a deformation; more 
specifically, stress is the external force acting on an object per unit cross-sectional 
area. The result of a stress is strain, which is a measure of the degree of deformation. 
It is found that, for sufficiently small stresses, stress is proportional to strain; the con-
stant of proportionality depends on the material being deformed and on the nature 
of the deformation. We call this proportionality constant the elastic modulus. The 
elastic modulus is therefore defined as the ratio of the stress to the resulting strain:

 Elastic modulus ;
stress
strain

 (12.5)

The elastic modulus in general relates what is done to a solid object (a force is applied) 
to how that object responds (it deforms to some extent). It is similar in nature to the 
spring constant k in Hooke’s law (Eq. 7.9) that relates a force applied to a spring and 
the resultant deformation of the spring, measured by its extension or compression.

We consider three types of deformation and define an elastic modulus for each:

1.  Young’s modulus measures the resistance of a solid to a change in its length.
2.  Shear modulus measures the resistance to motion of the planes within a solid 

parallel to each other.
3.  Bulk modulus measures the resistance of solids or liquids to changes in  

their volume.

young’s Modulus: elasticity in length
Consider a long bar of cross-sectional area A and initial length Li that is clamped at 
one end as in Figure 12.11. When an external force is applied perpendicular to the 
cross section, internal molecular forces in the bar resist distortion (“stretching”), 
but the bar reaches an equilibrium situation in which its final length Lf is greater 
than Li and in which the external force is exactly balanced by the internal forces. 
In such a situation, the bar is said to be stressed. We define the tensile stress as the 
ratio of the magnitude of the external force F to the cross-sectional area A, where 
the cross section is perpendicular to the force vector. The tensile strain in this 
case is defined as the ratio of the change in length DL to the original length Li. We 
define Young’s modulus by a combination of these two ratios:

 Y ;
tensile stress
tensile strain

5
FyA

DLyLi

 (12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under either 
tension or compression. Because strain is a dimensionless quantity, Y has units of 
force per unit area. Typical values are given in Table 12.1.

Young’s modulus 

Figure 12.11 A force F
S

 is applied 
to the free end of a bar clamped at 
the other end.

Li

�L

A

F
S

The amount by 
which the length
of the bar changes 
due to the applied
force is �L.

 Young’s Modulus Shear Modulus Bulk Modulus 
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 3 1010 14 3 1010 20 3 1010

Steel 20 3 1010 8.4 3 1010 6 3 1010

Copper 11 3 1010 4.2 3 1010 14 3 1010

Brass 9.1 3 1010 3.5 3 1010 6.1 3 1010

Aluminum 7.0 3 1010 2.5 3 1010 7.0 3 1010

Glass 6.5–7.8 3 1010 2.6–3.2 3 1010 5.0–5.5 3 1010

Quartz 5.6 3 1010 2.6 3 1010 2.7 3 1010

Water — — 0.21 3 1010

Mercury — — 2.8 3 1010

 table 12.1  Typical Values for Elastic Moduli
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For relatively small stresses, the bar returns to its initial length when the force is 
removed. The elastic limit of a substance is defined as the maximum stress that can 
be applied to the substance before it becomes permanently deformed and does not 
return to its initial length. It is possible to exceed the elastic limit of a substance by 
applying a sufficiently large stress as seen in Figure 12.12. Initially, a stress-versus-
strain curve is a straight line. As the stress increases, however, the curve is no longer 
a straight line. When the stress exceeds the elastic limit, the object is permanently 
distorted and does not return to its original shape after the stress is removed. As 
the stress is increased even further, the material ultimately breaks.

shear Modulus: elasticity of shape
Another type of deformation occurs when an object is subjected to a force par-
allel to one of its faces while the opposite face is held fixed by another force  
(Fig. 12.13a). The stress in this case is called a shear stress. If the object is originally 
a rectangular block, a shear stress results in a shape whose cross section is a paral-
lelogram. A book pushed sideways as shown in Figure 12.13b is an example of an 
object subjected to a shear stress. To a first approximation (for small distortions), 
no change in volume occurs with this deformation.

We define the shear stress as F/A, the ratio of the tangential force to the area 
A of the face being sheared. The shear strain is defined as the ratio Dx/h, where 
Dx is the horizontal distance that the sheared face moves and h is the height of the 
object. In terms of these quantities, the shear modulus is

 S ;
shear stress
shear strain

5
FyA

Dxyh
 (12.7)

Values of the shear modulus for some representative materials are given in  
Table 12.1. Like Young’s modulus, the unit of shear modulus is the ratio of that for 
force to that for area.

bulk Modulus: volume elasticity
Bulk modulus characterizes the response of an object to changes in a force of uni-
form magnitude applied perpendicularly over the entire surface of the object as 
shown in Figure 12.14. (We assume here the object is made of a single substance.) 
As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of stress undergoes a 
change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail 
in Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the 
object experiences a volume change DV. The volume strain is equal to the change 
in volume DV divided by the initial volume Vi. Therefore, from Equation 12.5,  

 Shear modulus

Elastic
limit Breaking

point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MN/m2)

Strain

Figure 12.12  Stress-versus-strain 
curve for an elastic solid.
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Figure 12.13 (a) A shear defor-
mation in which a rectangular 
block is distorted by two forces 
of equal magnitude but opposite 
directions applied to two parallel 
faces. (b) A book is under shear 
stress when a hand placed on the 
cover applies a horizontal force 
away from the spine.
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we can characterize a volume (“bulk”) compression in terms of the bulk modulus, 
which is defined as

 B ;
volume stress
volume strain

5 2
DFyA
DVyVi

5 2
DP

DVyVi

 (12.8)

A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.

Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.

Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q uIck QuIz 12.4  For the three parts of this Quick Quiz, choose from the 
following choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed concrete
If the stress on a solid object exceeds a certain value, the object fractures. The 
maximum stress that can be applied before fracture occurs—called the tensile 
strength, compressive strength, or shear strength—depends on the nature of the 
material and on the type of applied stress. For example, concrete has a tensile 
strength of about 2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and 
a shear strength of 2 3 106 N/m2. If the applied stress exceeds these values, the 
concrete fractures. It is common practice to use large safety factors to prevent 
failure in concrete structures.

Concrete is normally very brittle when it is cast in thin sections. Therefore, con-
crete slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. 
The slab can be strengthened by the use of steel rods to reinforce the concrete 
as illustrated in Figure 12.15b. Because concrete is much stronger under compres-
sion (squeezing) than under tension (stretching) or shear, vertical columns of con-
crete can support very heavy loads, whereas horizontal beams of concrete tend to 

Bulk modulus 

Figure 12.14 A cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides 
of the cube that are not visible are 
hidden by the cube.

Vi

Vi � �V

Ftop
S

Fback
S

Fright
S

Fbottom
S

Ffront
S

Fleft
S

The cube undergoes a change in 
volume but no change in shape.

a b c

Concrete Cracks

Load force Steel
reinforcing

rod

Steel rod
under

tension

Figure 12.15  (a) A concrete  
slab with no reinforcement tends  
to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.
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sag and crack. A significant increase in shear strength is achieved, however, if the 
reinforced concrete is prestressed as shown in Figure 12.15c. As the concrete is 
being poured, the steel rods are held under tension by external forces. The exter-
nal forces are released after the concrete cures; the result is a permanent tension in 
the steel and hence a compressive stress on the concrete. The concrete slab can now 
support a much heavier load.

 Example 12.5    Stage Design

In Example 8.3, we analyzed a cable used to support an actor as he swings onto the stage. Now suppose the tension in the 
cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-long steel cable have if we do not want it 
to stretch more than 0.50 cm under these conditions?

S O L U T I O N

Conceptualize Look back at Example 8.3 to recall what is happening in this situation. We ignored any stretching of the cable 
there, but we wish to address this phenomenon in this example.

Categorize We perform a simple calculation involving Equation 12.6, so we categorize this example as a substitution problem.

Solve Equation 12.6 for the cross-sectional  A 5
FLi

Y DL
 

area of the cable:

Assuming the cross section is circular, find the   d 5 2r 5 2ÎA
p

5 2Î FL i

pYDL
 

diameter of the cable from d 5 2r and A 5 pr2:

Substitute numerical values:  d 5 2Î s940 Nds10 md
p s20 3 1010 Nym2ds0.005 0 md

5 3.5 3 1023 m 5 3.5 mm

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a total 
cross-sectional area substantially greater than our calculated value.

 Example 12.6    Squeezing a brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 3 105 N/m2 (normal atmospheric 
pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 3 107 N/m2. The volume of the sphere 
in air is 0.50 m3. By how much does this volume change once the sphere is submerged?

S O L U T I O N

Conceptualize Think about movies or television shows you have seen in which divers go to great depths in the water in sub-
mersible vessels. These vessels must be very strong to withstand the large pressure under water. This pressure squeezes the 
vessel and reduces its volume.

Categorize  We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution problem.

Solve Equation 12.8 for the volume change of the sphere: DV 5 2
Vi DP

 B
 

Substitute numerical values: DV 5 2
s0.50 m3ds2.0 3 107 Nym2 2 1.0 3 105 Nym2d

6.1 3 1010 Nym2

  5   21.6 3 1024 m3

The negative sign indicates that the volume of the sphere decreases.
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324 Chapter 12 Static Equilibrium and Elasticity

summary
 › Definitions

The gravitational force exerted on 
an object can be considered as acting 
at a single point called the center of 
gravity. An object’s center of gravity 
coincides with its center of mass if the 
object is in a uniform gravitational 
field.

We can describe the elastic properties of a substance using the concepts of stress and 
strain. Stress is a quantity proportional to the force producing a deformation; strain is 
a measure of the degree of deformation. Stress is proportional to strain, and the con-
stant of proportionality is the elastic modulus:

 Elastic modulus ;
stress
strain

 (12.5)

 › Concepts and Principles

 › Analysis Model for Problem Solving

Three common types of deformation are represented by (1) the resistance of a solid to elongation under a load, characterized by 
Young’s modulus Y; (2) the resistance of a solid to the motion of internal planes sliding past each other, characterized by the shear 
modulus S; and (3) the resistance of a solid or fluid to a volume change, characterized by the bulk modulus B.

Rigid Object in Equilibrium  A rigid object in equilibrium exhibits no translational or angular 
acceleration. The net external force acting on it is zero, and the net external torque on it is zero 
about any axis:

 o F
S

ext 5 0 (12.1)

 o tSext 5 0 (12.2)

The first condition is the condition for translational equilibrium, and the second is the condition 
for rotational equilibrium.

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0

O

y

x

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. A father and his son are painting a wall. To reach the higher 
portions of the wall, they place a 20.0-kg plank of wood, 
3.50 m long and of uniform consistency, on two sawhorses. 
A sawhorse is placed 1.00 m from each end of the plank. 
The son has a mass 50.0 kg. He and the father, of mass 
85.0 kg, climb up and stand on the plank. Discuss in your 
group and respond to the following. (a) The father stands 
at rest on the plank, directly over one of the sawhorses. Can 
the son move to any position he wishes on the plank with-
out the plank tipping? (b) After learning about the tipping 
possibilities in part (a), the father and son decide to use a 
more massive plank. What must the mass of the plank be 
so that both father and son are free to move anywhere on 
the plank that they wish? (c) They find a plank of just the 
mass found in part (b) and test it by standing on the right-
hand end together. Will they be safe from tipping if they 
both stand on the left-hand end together? (d) After using 
the plank of the required mass determined in part (b) and 
being exhausted from moving it to new positions along the 

wall, the father and son decide to set it aside and continue 
to use the 20.0-kg plank, while being careful to stay far 
apart on the plank. But the use of the massive plank in part 
(b) has damaged one of the sawhorses so that it can only 
support a force of 1.75 3 103 N. When the father and son 
get back on the 20.0-kg plank and move around, will the 
damaged sawhorse collapse?

2. ACTiviTy  If an object is set on a table such that part of 
it extends off the edge of the table, the center of mass of 
the object must be over part of the table surface to avoid 
the object falling. If the center of mass is beyond the edge 
of the table, the gravitational force will exert a torque on 
the object and tip it off the table. Gather four metersticks 
together. (a) Determine a way that you can stack all four 
metersticks so that (1) all four metersticks are parallel;  
(2) each higher meterstick is further out over the edge of 
the table than the one below it, and (3) the topmost meter-
stick has no part of its length above the table surface. Hint: 
Begin from the top; put the topmost meterstick on the 
second one so that the top one does not tip off. Then put 
the stack of two on the third meterstick so that the top 
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two do not tip, and so on. (b) After successfully building 
the appropriate stack, calculate the position of the center 
mass of the stack and show that it is over the table surface, 
not over the air beyond the edge of the table. (c) What if 
you were to rotate the top meterstick by 90° around a ver-
tical axis so that it sits on the end of the third meterstick, 
perpendicular to the other three metersticks? Would the 
system still be in equilibrium? (d) Now stack the meter-
sticks as follows with the zero ends of the metersticks all 
to the right in the diagram at the top of the next column:

  The right ends of the two metersticks at the upper left are 
above the 50-cm mark on the bottom meterstick. Place the 
system of metersticks on a table and move it off the edge to  
the right until a small additional outward movement 
would cause them to tip clockwise off the table. What 
reading on the bottom meterstick coincides with the edge 
of the table?

 Problems 325

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

sectIon 12.1  Analysis Model: Rigid Object in Equilibrium

1. You are building additional storage space in your garage. You 
decide to suspend a 10.0-kg sheet of plywood of dimensions 
0.600 m wide by 2.25 m long from the ceiling. The plywood 
will be held in a horizontal orientation by four light vertical 
chains attached to the plywood at its corners and mounted to 
the ceiling. After you complete the job of suspending the ply-
wood from the ceiling, you choose three cubic boxes to place 
on the shelf.  Each box is 0.750 m on a side. Box 1 has a mass 
of 50.0 kg, box 2 has a mass of 100 kg, and box 3 has a mass of 
125 kg. The mass of each box is uniformly distributed within 
the box and each box is centered on the front-to-back width of 
the shelf. Unbeknownst to you, one of the chains on the right-
hand end of your shelf is defective and will break if subjected 
to a force of more than 700 N. There are six possible arrange-
ments of the three boxes on the shelf, for example, from 
left to right, Box 1, Box 2, Box 3, and Box 1, Box 3, Box, 2,  
and four more. Which arrangements are safe (that is, the 
defective chain will not break if the boxes are arranged in 
this way), and which arrangements are dangerous?

2. Why is the following situation impossible? A uniform beam of 
mass mb 5 3.00 kg and length ,  5 1.00 m supports blocks 
with masses m1 5 5.00 kg and m2 5 15.0 kg at two positions 
as shown in Figure P12.2. The beam rests on two triangular 
blocks, with point P a distance d 5 0.300 m to the right of 
the center of gravity of the beam. The position of the object 
of mass m2 is adjusted along the length of the beam until the 
normal force on the beam at O is zero.

sectIon 12.2  More on the Center of Gravity

Problems 24 and 26 in Chapter 9 can also be assigned with 
this section.

3. A carpenter’s square has the shape of an L as shown in  
Figure P12.3. Locate its center of gravity.

4. A circular pizza of radius R has a circular piece of radius 
R/2 removed from one side as shown in Figure P12.4. The 
center of gravity has moved from C to C9 along the x axis. 
Show that the distance from C to C9 is R/6. Assume the 
thickness and density of the pizza are uniform throughout.

5. Your brother is opening a skateboard shop. He has created 
a sign for his shop made from a uniform material and in the 
shape shown in Figure P12.5. The shape of the sign represents 
one of the hills in the skateboard park he plans on building 
on land adjacent to the shop. The curve on the top of the 
sign is described by the function y = (x – 3)2/9. When the sign 
arrives in his shop, your brother wants to hang it from a single 
wire outside the shop. But he doesn’t know where on the sign 
to attach the wire so that the bottom edge of the sign will 
hang in a horizontal orientation. He asks for your help.
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326 Chapter 12 Static Equilibrium and Elasticity

sectIon 12.3  Examples of Rigid Objects in Static Equilibrium

Problems 14, 16, 18, 19, 34, 45, and 52 in Chapter 5 can also be 
assigned with this section.

6. A uniform beam of length 7.60 m and weight 4.50 3 102 N is 
carried by two workers, Sam and Joe, as shown in Figure P12.6. 
Determine the force that each person exerts on the beam.

7. Find the mass m of the counterweight needed to balance a 
truck with mass M  5 1 500  kg on an incline of u  5 458 
(Fig.  P12.7). Assume both pulleys are frictionless and 
massless.

8. A uniform beam of length L and 
mass m shown in Figure P12.8  
is inclined at an angle u to the 
horizontal. Its upper end is con-
nected to a wall by a rope, and 
its lower end rests on a rough, 
horizontal surface. The coeffi-
cient of static friction between 
the beam and surface is ms. 
Assume the angle u is such that 
the static friction force is at its maximum value. (a) Draw a 
force diagram for the beam. (b) Using the condition of rota-
tional equilibrium, find an expression for the tension T in 
the rope in terms of m, g, and u. (c)  Using the condition 
of translational equilibrium, find a second expression for T 
in terms of ms , m, and g. (d) Using the results from parts  
(a) through (c), obtain an expression for ms involving only 
the angle u. (e) What happens if the ladder is lifted upward 
and its base is placed back on the ground slightly to the left 
of its position in Figure P12.8? Explain.

9. A flexible chain weighing 40.0 N hangs between two hooks 
located at the same height (Fig. P12.9). At each hook, the 
tangent to the chain makes an angle u 5 42.08 with the hori-
zontal. Find (a) the magnitude of the force each hook exerts 
on the chain and (b) the tension in the chain at its mid-
point. Suggestion: For part (b), make a force diagram for half 
of the chain.

10. A 20.0-kg floodlight in a park is supported 
at the end of a horizontal beam of negligi-
ble mass that is hinged to a pole as shown 
in Figure P12.10. A cable at an angle of 
u  5 30.08 with the beam helps support 
the light. (a) Draw a force diagram for 
the beam. By computing torques about 
an axis at the hinge at the left-hand end 
of the beam, find (b) the tension in the 
cable, (c) the horizontal component of the force exerted 
by the pole on the beam, and (d) the vertical component 
of this force. Now solve the same problem from the force 
diagram from part (a) by computing torques around the 
junction between the cable and the beam at the right-hand 
end of the beam. Find (e) the vertical component of the 
force exerted by the pole on the beam, (f) the tension in 
the cable, and (g) the horizontal component of the force 
exerted by the pole on the beam. (h) Compare the solu-
tion to parts (b) through (d) with the solution to parts  
(e) through (g). Is either solution more accurate?

11. Sir Lost-a-Lot dons his armor and sets out from the castle on 
his trusty steed (Fig. P12.11). Usually, the drawbridge is low-
ered to a horizontal position so that the end of the bridge 
rests on the stone ledge. Unfortunately, Lost-a-Lot’s squire 
didn’t lower the drawbridge far enough and stopped it at  
u 5 20.08 above the horizontal. The knight and his horse 
stop when their combined center of mass is d 5 1.00 m from 
the end of the bridge. The uniform bridge is , 5 8.00 m 
long and has mass 2 000 kg. The lift cable is attached to the 
bridge 5.00 m from the hinge at the castle end and to a 
point on the castle wall h 5 12.0 m above the bridge. Lost-a-
Lot’s mass combined with his armor and steed is 1 000 kg. 
Determine (a) the tension in the cable and (b) the horizon-
tal and (c) the vertical force components acting on the 
bridge at the hinge.

12. Review. While Lost-a-Lot ponders his next move in the situa-
tion described in Problem 11 and illustrated in Figure P12.11,  
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the enemy attacks! An incoming projectile breaks off the 
stone ledge so that the end of the drawbridge can be low-
ered past the wall where it usually rests. In addition, a 
fragment of the projectile bounces up and cuts the draw-
bridge cable! The hinge between the castle wall and the 
bridge is frictionless, and the bridge swings down freely 
until it is vertical and smacks into the vertical castle wall 
below the castle entrance. (a) How long does Lost-a-Lot 
stay in contact with the bridge while it swings downward?  
(b) Find the angular acceleration of the bridge just as it 
starts to move. (c) Find the angular speed of the bridge when 
it strikes the wall below the hinge. Find the force exerted 
by the hinge on the bridge (d) immediately after the cable 
breaks and (e) immediately before it strikes the castle wall.

13. Figure P12.13 shows a claw hammer being used to pull a nail 
out of a horizontal board. The mass of the hammer is 1.00 kg.  
A force of 150 N is exerted horizontally as shown, and  
the nail does not yet move relative to the board. Find  
(a) the force exerted by the hammer claws on the nail and 
(b) the force exerted by the surface on the point of con-
tact with the hammer head. Assume the force the hammer 
exerts on the nail is parallel to the nail.

14. A 10.0-kg monkey climbs a uniform 
ladder with weight 1.20 3 102 N and 
length L 5 3.00 m as shown in Fig-
ure P12.14. The ladder rests against 
the wall and makes an angle of u 5 
60.08 with the ground. The upper 
and lower ends of the ladder rest on 
frictionless surfaces. The lower end is 
connected to the wall by a horizontal 
rope that is frayed and can support 
a maximum tension of only 80.0  N. 
(a) Draw a force diagram for the lad-
der. (b) Find the normal force exerted on the bottom of the 
ladder. (c) Find the tension in the rope when the monkey is 
two-thirds of the way up the ladder. (d) Find the maximum 
distance d that the monkey can climb up the ladder before 
the rope breaks. (e) If the horizontal surface were rough 
and the rope were removed, how would your analysis of the 
problem change? What other information would you need 
to answer parts (c) and (d)?

15. John is pushing his daughter Rachel in a wheelbarrow when 
it is stopped by a brick 8.00  cm high (Fig. P12.15). The  
handles make an angle of u 5 15.08 with the ground. Due to 

the weight of Rachel and the wheelbarrow, a downward force 
of 400 N is exerted at the center of the wheel, which has a 
radius of 20.0 cm. (a) What force must John apply along the 
handles to just start the wheel over the brick? (b)  What is 
the force (magnitude and direction) that the brick exerts on  
the wheel just as the wheel begins to lift over the brick? In 
both parts, assume the brick remains fixed and does not 
slide along the ground. Also assume the force applied by 
John is directed exactly toward the center of the wheel.

16. John is pushing his daughter Rachel in a wheelbarrow when 
it is stopped by a brick of height h (Fig. P12.15). The han-
dles make an angle of u with the ground. Due to the weight 
of Rachel and the wheelbarrow, a downward force mg is 
exerted at the center of the wheel, which has a radius R. (a) 
What force F must John apply along the handles to just start 
the wheel over the brick? (b) What are the components of 
the force that the brick exerts on the wheel just as the wheel 
begins to lift over the brick? In both parts, assume the brick 
remains fixed and does not slide along the ground. Also 
assume the force applied by John is directed exactly toward 
the center of the wheel.

sectIon 12.4  Elastic Properties of Solids

17. The deepest point in the ocean is in the Mariana Trench, 
about 11 km deep, in the Pacific. The pressure at this depth 
is huge, about 1.13 3 108 N/m2. (a) Calculate the change in 
volume of 1.00 m3 of seawater carried from the surface to this 
deepest point. (b) The density of seawater at the surface is 
1.03 3 103 kg/m3. Find its density at the bottom. (c) Explain 
whether or when it is a good approximation to think of water 
as incompressible.

18. A steel wire of diameter 1 mm can support a tension of 
0.2 kN. A steel cable to support a tension of 20 kN should 
have diameter of what order of magnitude?

19. A child slides across a floor in a pair of rubber-soled shoes. 
The friction force acting on each foot is 20.0 N. The foot-
print area of each shoe sole is 14.0 cm2, and the thickness of 
each sole is 5.00 mm. Find the horizontal distance by which 
the upper and lower surfaces of each sole are offset. The 
shear modulus of the rubber is 3.00 MN/m2.

20. Evaluate Young’s modulus for the material whose stress–
strain curve is shown in Figure 12.12.

21. Assume if the shear stress in steel exceeds about 4.00  3 
108 N/m2, the steel ruptures. Determine the shearing force 
necessary to (a) shear a steel bolt 1.00 cm in diameter  
and (b) punch a 1.00-cm-diameter hole in a steel plate 
0.500 cm thick.

22. When water freezes, it expands by about 9.00%. What pres-
sure increase would occur inside your automobile engine 
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328 Chapter 12 Static Equilibrium and Elasticity

block if the water in it froze? (The bulk modulus of ice is 
2.00 3 109 N/m2.)

23. Review. A 30.0-kg hammer, moving with speed 20.0 m/s, 
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the aver-
age strain in the spike during the impact?

addItIonal ProbleMs

24. A uniform beam resting on two pivots has a length L 5 6.00 m  
and mass M 5 90.0 kg. The pivot under the left end exerts a 
normal force n1 on the beam, and the second pivot located a 
distance , 5 4.00 m from the left end exerts a normal force 
n2. A woman of mass m 5 55.0 kg steps onto the left end of the 
beam and begins walking to the right as in Figure P12.24.  
The goal is to find the woman’s position when the beam 
begins to tip. (a) What is the appropriate analysis model for 
the beam before it begins to tip? (b) Sketch a force diagram 
for the beam, labeling the gravitational and normal forces 
acting on the beam and placing the woman a distance x to 
the right of the first pivot, which is the origin. (c) Where is 
the woman when the normal force n1 is the greatest?  
(d) What is n1 when the beam is about to tip? (e) Use Equa-
tion 12.1 to find the value of n2 when the beam is about to tip.  
(f) Using the result of part (d) and Equation 12.2, with torques 
computed around the second pivot, find the woman’s position 
x when the beam is about to tip. (g) Check the answer to part 
(e) by computing torques around the first pivot point.

25. A bridge of length 50.0 m and mass 8.00 3 104 kg is supported 
on a smooth pier at each end as shown in Figure P12.25. A 
truck of mass 3.00 3 104 kg is located 15.0 m from one end. 
What are the forces on the bridge at the points of support?

26. In exercise physiology studies, it is sometimes important to 
determine the location of a person’s center of mass. This 
determination can be done with the arrangement shown in 
Figure P12.26. A light plank rests on two scales, which read 
Fg1 5 380 N and Fg2 5 320 N. A distance of 1.65 m sepa-
rates the scales. How far from the woman’s feet is her center  
of mass?

27. The lintel of prestressed reinforced concrete in Fig-
ure P12.27 is 1.50 m long. The concrete encloses one steel 
reinforcing rod with cross-sectional area 1.50 cm2. The rod 
joins two strong end plates. The cross- sectional area of the 
concrete perpendicular to the rod is 50.0 cm2. Young’s mod-
ulus for the concrete is 30.0 3 109 N/m2. After the concrete 
cures and the original tension T1 in the rod is released, the 
concrete is to be under compressive stress 8.00 3 106 N/m2.  
(a) By what distance will the rod compress the concrete 
when the original tension in the rod is released? (b) What is 
the new tension T2 in the rod? (c) The rod will then be how 
much longer than its unstressed 
length? (d)  When the concrete 
was poured, the rod should have 
been stretched by what exten-
sion distance from its unstressed 
length? (e)  Find the required 
original tension T1 in the rod.

28. The following equations are obtained from a force diagram 
of a rectangular farm gate, supported by two hinges on the 
left-hand side. A bucket of grain is hanging from the latch.

 2A  1 C 5 0

   1B 2 392 N 2 50.0 N 5 0

A(0) 1 B(0) 1 C(1.80 m) 2 392 N(1.50 m)

2 50.0 N(3.00 m) 5 0

  (a) Draw the force diagram and complete the statement of the 
problem, specifying the unknowns. (b) Determine the values 
of the unknowns and state the physical meaning of each.

29. A hungry bear weighing 700 N walks out on a beam in an 
attempt to retrieve a basket of goodies hanging at the end of 
the beam (Fig. P12.29). The beam is uniform, weighs 200 N, 
and is 6.00 m long, and it is supported by a wire at an angle 
of u 5 60.0°. The basket weighs 80.0 N. (a) Draw a force dia-
gram for the beam. (b) When the bear is at x 5 1.00 m, find 
the tension in the wire supporting the beam and the compo-
nents of the force exerted by the wall on the left end of the 
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beam. (c) What If? If the wire can withstand a maximum 
tension of 900 N, what is the maximum distance the bear 
can walk before the wire breaks?

30. A 1 200-N uniform boom at f 5 658 to the vertical is sup-
ported by a cable at an angle u 5 25.08 to the horizontal as 
shown in Figure P12.30. The boom is pivoted at the bottom, 
and an object of weight m 5 2 000 N hangs from its top. Find 
(a) the tension in the support cable and (b) the components 
of the reaction force exerted by the floor on the boom.

31. A uniform sign of weight Fg and width 2L hangs from a 
light, horizontal beam hinged at the wall and supported 
by a cable (Fig. P12.31). Determine (a) the tension in 
the cable and (b) the components of the reaction force 
exerted by the wall on the beam in terms of Fg , d, L, and u.

32. When a person stands on tiptoe on one foot (a strenuous 
position), the position of the foot is as shown in Fig-
ure P12.32a. The total gravitational force F

S
g  on the body is 

supported by the normal force nS exerted by the floor on the 
toes of one foot. A mechanical model of the situation is 
shown in Figure P12.32b, where T

S
 is the force exerted on 

the foot by the Achilles tendon and R
S

 is the force exerted 
on the foot by the tibia. Find the values of T, R, and u when 
Fg 5 700 N.

33. A 10 000-N shark is supported 
by a rope attached to a 4.00-m 
rod that can pivot at the base. 
(a) Calculate the tension in 
the cable between the rod and 
the wall, assuming the cable is 
holding the system in the posi-
tion shown in Figure P12.33.  
Find (b) the horizontal force 
and (c)  the vertical force 
exerted on the base of the rod. 
Ignore the weight of the rod.

34. Assume a person bends for-
ward to lift a load “with his 
back” as shown in Figure P12.34a. The spine pivots mainly 
at the fifth lumbar vertebra, with the principal supporting 
force provided by the erector spinalis muscle in the back. 
To see the magnitude of the forces involved, consider the 
model shown in Figure P12.34b for a person bending for-
ward to lift a 200-N object. The spine and upper body are 
represented as a uniform horizontal rod of weight 350 N, 
pivoted at the base of the spine. The erector spinalis mus-
cle, attached at a point two-thirds of the way up the spine, 
maintains the position of the back. The angle between 
the spine and this muscle is u 5 12.08. Find (a) the ten-
sion T in the back muscle and (b) the compressional force 
in the spine. (c) Is this method a good way to lift a load? 
Explain your answer, using the results of parts (a) and (b).  
(d) Can you suggest a better method to lift a load?

35. A uniform beam of mass m is inclined at an angle u to the 
horizontal. Its upper end (point P) produces a 908 bend in 
a very rough rope tied to a wall, and its lower end rests on 
a rough floor (Fig. P12.35). Let ms represent the coefficient 
of static friction between beam 
and floor. Assume ms is less than 
the cotangent of u. (a) Find an 
expression for the maximum 
mass M that can be suspended 
from the top before the beam 
slips. Determine (b) the magni-
tude of the reaction force at the 
floor and (c) the magnitude of 
the force exerted by the beam 
on the rope at P in terms of m, 
M, and ms.

36. Why is the following situation impossible? A worker in a factory 
pulls a cabinet across the floor using a rope as shown in Fig-
ure  P12.36a. The rope make an angle u 5 37.08 with the 
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330 Chapter 12 Static Equilibrium and Elasticity

floor and is tied h1 5 10.0 cm from the bottom of the cabi-
net. The uniform rectangular cabinet has height , 5 100 cm  
and width w 5 60.0 cm, and it weighs 400 N. The cabinet 
slides with constant speed when a force F 5 300 N is applied 
through the rope. The worker tires of walking backward. He 
fastens the rope to a point on the cabinet h2 5 65.0 cm off 
the floor and lays the rope over his shoulder so that he can 
walk forward and pull as shown in Figure P12.36b. In this 
way, the rope again makes an angle of u 5 37.08 with the 
horizontal and again has a tension of 300 N. Using this tech-
nique, the worker is able to slide the cabinet over a long dis-
tance on the floor without tiring.

37. When a circus performer performing on the rings executes 
the iron cross, he maintains the position at rest shown in  
Figure P12.37a. In this maneuver, the gymnast’s feet (not 
shown) are off the floor. The primary muscles involved in sup-
porting this position are the latissimus dorsi (“lats”) and the 
pectoralis major (“pecs”). One of the rings exerts an upward 
force F

S
h on a hand as shown in Figure P12.37b. The force F

S
s 

is exerted by the shoulder joint on the arm. The latissimus 
dorsi and pectoralis major muscles exert a total force F

S
m on 

the arm. (a) Using the information in the figure, find the 

magnitude of the force F
S

m for an athlete of weight 750 N. 
(b) Suppose a performer in training cannot perform the iron 
cross but can hold a position similar to the figure in which the 
arms make a 458 angle with the horizontal rather than being 
horizontal. Why is this position easier for the performer?

38. Figure P12.38 shows a light truss formed from three struts 
lying in a plane and joined by three smooth hinge pins at  
their ends. The truss supports a downward force of F

S
 5 

1 000  N applied at the point B. The truss has negligible 
weight. The piers at A and C are smooth. (a) Given u1 5 30.0° 
and u2 5 45.08, find nA and nC. (b) One can show that the  
force any strut exerts on a pin must be directed along the 
length of the strut as a force of tension or compression. Use 
that fact to identify the directions of the forces that the struts 
exert on the pins joining them. Find the force of tension or of 
compression in each of the three bars.

39. One side of a plant shelf 
is supported by a bracket 
mounted on a vertical wall by 
a single screw as shown in Fig-
ure P12.39. Ignore the weight 
of the bracket. (a) Find the 
horizontal component of the 
force that the screw exerts on 
the bracket when an 80.0  N 
vertical force is applied as 
shown. (b) As your grand-
father waters his geraniums, 
the 80.0-N load force is increasing at the rate 0.150 N/s.  
At what rate is the force exerted by the screw changing?  
Suggestion: Imagine that the bracket is slightly loose.

40. A stepladder of negligible 
weight is constructed as shown 
in Figure P12.40, with AC 5 
BC 5 , 5 4.00 m. A painter of 
mass m 5 70.0 kg stands on the 
ladder d 5 3.00 m from the bot-
tom. Assuming the floor is fric-
tionless, find (a)  the tension 
in the horizontal bar DE con-
necting the two halves of the 
ladder, (b) the normal forces 
at A and B, and (c) the compo-
nents of the reaction force at 
the single hinge C that the left 
half of the ladder exerts on the 
right half. Suggestion: Treat the 
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ladder as a single object, but also treat each half of the ladder 
separately.

41. A stepladder of negligible weight is constructed as shown in 
Figure P12.40, with AC 5 BC 5 ,. A painter of mass m stands 
on the ladder a distance d from the bottom. Assuming  
the floor is frictionless, find (a) the tension in the hor-
izontal bar DE connecting the two halves of the ladder,  
(b) the normal forces at A and B, and (c) the components of 
the reaction force at the single hinge C that the left half of 
the ladder exerts on the right half. Suggestion: Treat the lad-
der as a single object, but also treat each half of the ladder 
separately.

42. Review. A wire of length L, Young’s modulus Y, and cross-
sectional area A is stretched elastically by an amount DL. By 
Hooke’s law, the restoring force is 2k DL. (a) Show that k 5 
YA/L. (b) Show that the work done in stretching the wire by 
an amount DL is W 5 1

2YAsDLd2yL .

43. Two racquetballs, each having a mass 
of 170 g, are placed in a glass jar as 
shown in Figure P12.43. Their cen-
ters lie on a straight line that makes 
a 458 angle with the horizontal. 
(a) Assume the walls are frictionless 
and determine P1, P2, and P3. (b) 
Determine the magnitude of the 
force exerted by the left ball on the 
right ball.

44. Consider the rectangular cabinet of 
Problem 36 shown in Figure P12.36,  
but with a force F

S
 applied horizontally at the upper edge.  

(a) What is the minimum force required to start to tip the cab-
inet? (b) What is the minimum coefficient of static friction 
required for the cabinet not to slide with the application of 
a force of this magnitude? (c) Find the magnitude and direc-
tion of the minimum force required to tip the cabinet if the 
point of application can be chosen anywhere on the cabinet.

45. Review. An aluminum wire is 0.850 m long and has a cir-
cular cross section of diameter 0.780 mm. Fixed at the top 
end, the wire supports a 1.20-kg object that swings in a hor-
izontal circle. Determine the angular speed of the object 
required to produce a strain of 1.00 3 1023.

46. You have been hired as an expert witness in a case involv-
ing an injury in a factory. The attorney who hired you rep-
resents the injured worker. The worker was told to lift one 
end of a long, heavy crate that was lying horizontally on the 
floor and tilt it up so that it is standing on end. He began 
lifting the end of the crate, always applying a force that was 
perpendicular to the top of the crate. As the end of the 
crate got higher, at a certain angle, the bottom of the crate 
slipped on the floor, and the worker, in trying to recover, 
stepped forward and the crate landed on his foot, injuring 
it badly. As part of your investigation, you go to the factory 
and measure the coefficient of static friction between a 
crate and the smooth concrete floor. You find it to be 0.340. 
Prepare an argument for the attorney showing that it was 
impossible to lift the crate in the manner described without 
it slipping on the floor.

47. A 500-N uniform rectangular sign 4.00 m wide and 3.00  m  
high is suspended from a horizontal, 6.00-m-long, uniform, 
100-N rod as indicated in Figure P12.47. The left end of the 
rod is supported by a hinge, and the right end is supported 
by a thin cable making a 30.0° angle with the vertical. 
(a)  Find the tension T in the cable. (b)  Find the horizon-
tal and vertical components of force exerted on the left end 
of the rod by the hinge.

48. A steel cable 3.00 cm2 in cross-sectional area has a mass of 
2.40 kg per meter of length. If 500 m of the cable is hung 
over a vertical cliff, how much does the cable stretch under 
its own weight? Take Ysteel 5 2.00 3 1011 N/m2.

challenge ProbleMs

 49. A uniform rod of weight Fg and length L is supported at 
its ends by a frictionless trough as shown in Figure P12.49. 
(a) Show that the center of gravity of the rod must be verti-
cally over point O when the rod is in equilibrium. (b) Deter-
mine the equilibrium value of the angle u. (c) Is the equilib-
rium of the rod stable or unstable?

 50. In the What If? section of Example 12.2, let d represent the 
distance in meters between the person and the hinge at the 
left end of the beam. (a) Show that the cable tension is given 
by T 5 93.9d 1 125, with T in newtons. (b) Show that the 
direction angle u of the hinge force is described by

tan u 5 S 32
3d 1 4

2 1D tan 53.08

  (c) Show that the magnitude of the hinge force is given by

R 5 Ï8.82 3 103d2 2 9.65 3 104d 1 4.96 3 105

  (d) Describe how the changes in T, u, and R as d increases 
differ from one another.
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Universal Gravitation13

13.1 Newton’s Law of 
Universal Gravitation

13.2 Free-Fall Acceleration 
and the Gravitational 
Force

13.3 Analysis Model: 
Particle in a Field 
(Gravitational) 

13.4 Kepler’s Laws and the 
Motion of Planets

13.5 Gravitational Potential 
Energy

13.6 Energy Considerations 
in Planetary and 
Satellite Motion

Storyline In Chapter 11, you were trying to do your physics 
homework and were distracted by spinning skaters and divers. In Chapter 12, you 
were distracted by a surprising phenomenon with a meterstick. Now, you finally 
begin to work on your physics homework and you open your physics textbook. 
You look again at the tables in the front, before the title page. In the table of Solar 
System Data, you notice an entry for the mass of the Sun. After remarking to 
yourself that that’s a lot of mass, you say, “Wait a minute! How did they find the 
mass of the Sun? In fact, how did they find the mass of any of the planets?” That 
leads you to think about the mass of the entire Milky Way galaxy. Looking online, 
you find different estimates of the mass of the galaxy, some in the range of hun-
dreds of billions of solar masses, and others in the trillions of solar masses. Why 
can’t we come up with a single number for the mass of the galaxy? Your physics 
homework goes undone as you ponder these new questions.

ConneCtionS We first studied gravity in Section 2.8, where we talked 
about freely falling objects. There, and in Section 4.3 on projectile motion, we con-
sidered the effects of gravity on objects near the surface of the Earth. In Section 
5.5, we related the gravitational force on such objects to their weight. In Chapter 7, 
we related the gravitational force on an object near the surface of the Earth to grav-
itational potential energy of the object–Earth system. In this chapter, we remove 
the assumption that objects are near the surface of the Earth. How does the 
gravitational force on an object vary as we move the object far from the surface of 
the Earth? The answer to that question will allow us to understand the motion of 
planets around the Sun and has allowed scientists to place many objects in orbit 
around the Earth, the Moon, and Mars. The principle that allows this understanding 

Hubble Space Telescope 
image of a spiral galaxy, NGC 
1566, taken in 2014. In the 
spiral arms of the galaxy, 
hydrogen gas is compressed 
to create new stars. It is 
theorized that our own 
galaxy, the Milky Way, has a 
similar structure with spiral 
arms. (ESA/Hubble & NASA)
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    13.1 Newton’s Law of Universal Gravitation 333

is the law of universal gravitation. We emphasize a description of planetary motion 
because astronomical data provide an important test of this law’s validity. After 
introducing this law, we will show connections between it and the angular momen-
tum of Chapter 11 and the energy techniques in Chapters 7 and 8. As preparation 
for the remainder of the book, we recognize gravitation as one of four “fundamen-
tal forces” of nature. The others are the electromagnetic force (Chapters 22–33), 
the nuclear strong force (Chapters 43–44), and the weak force (Chapter 44).

   13.1    Newton’s Law of Universal Gravitation
You may have heard the legend that, while napping under a tree, Newton was struck 
on the head by a falling apple. This alleged accident supposedly prompted him to 
imagine that perhaps all objects in the Universe were attracted to each other in the 
same way the apple was attracted to the Earth. Newton analyzed astronomical data 
on the motion of the Moon around the Earth. From that analysis, he made the bold 
assertion that the force law governing the motion of planets was the same as the 
force law that attracted a falling apple to the Earth. This assertion was contradic-
tory to earlier thought that had lasted for centuries, which claimed that the laws of 
physics on the Earth did not apply to the heavens.

In 1687, Newton published his work on the law of gravity in his treatise Mathemat-
ical Principles of Natural Philosophy. Newton’s law of universal gravitation states that

every particle in the Universe attracts every other particle with a force that 
is directly proportional to the product of their masses and inversely propor-
tional to the square of the distance between them.

   The law of universal 
gravitation

If the particles have masses m1 and m2 and are separated by a distance r, the magni-
tude of this gravitational force is

 Fg 5 G 
m1m2

r 2  (13.1)

where G is a constant, called the universal gravitational constant. Its value in SI 
units is

 G 5 6.674 3 10211 N ? m2/kg2 (13.2)

The universal gravitational constant G was first evaluated in the late nineteenth 
century, based on results of an important experiment by Sir Henry Cavendish (1731–
1810) in 1798. The law of universal gravitation was not expressed by Newton in the 
form of Equation 13.1, and Newton did not mention a constant such as G. In fact, 
even by the time of Cavendish, a unit of force had not yet been included in the exist-
ing system of units. Cavendish’s goal was to measure the density of the Earth. His 
results were then used by other scientists 100 years later to generate a value for G. 

Cavendish’s apparatus consists of two small spheres, each of mass m, fixed to the 
ends of a light, horizontal rod suspended by a fine fiber or thin metal wire as illus-
trated in Figure 13.1. When two large spheres, each of mass M, are placed near the 
smaller ones, the attractive gravitational force between smaller and larger spheres 
causes the rod to rotate and twist the wire suspension to a new equilibrium orienta-
tion. The angle of rotation is measured by the deflection of a light beam reflected 
from a mirror attached to the vertical suspension.

The form of the force law given by Equation 13.1 is often referred to as an 
inverse-square law because the magnitude of the force varies as the inverse square 
of the separation of the particles.1 We shall see other examples of this type of force 

Mirror

r
m

Light
source

The dashed line represents the 
original position of the rod.

M

Figure 13.1  Cavendish apparatus 
for measuring gravitational forces.

1 An inverse proportionality between two quantities x and y is one in which y 5 k/x, where k is a constant. A direct pro-
portion between x and y exists when y 5 kx.
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334 Chapter 13 Universal Gravitation

law in subsequent chapters. We can express this force in vector form by defining a 
unit vector r⁄12 (Fig. 13.2). Because this unit vector is directed from particle 1 toward 
particle 2, the force exerted by particle 1 on particle 2 is

 F
S

12 5 2G 
m1m 2

r 2  r⁄12 (13.3)

where the negative sign indicates that particle 2 is attracted to particle 1; hence, 
the force on particle 2 must be directed toward particle 1. By Newton’s third law, 
the force exerted by particle 2 on particle 1, designated F

S
21, is equal in magni-

tude to F
S

12 and in the opposite direction. That is, these forces form an action–
reaction pair, and F

S
21 5 2F

S
12.

Two features of Equation 13.3 deserve mention. First, the gravitational force is a 
field force that always exists between two particles, regardless of the medium that 
separates them. Second, because the force varies as the inverse square of the dis-
tance between the particles, it decreases rapidly with increasing separation.

Equation 13.3 can also be used to show that the gravitational force exerted by a 
finite-size, spherically symmetric mass distribution on a particle outside the distri-
bution is the same as if the entire mass of the distribution were concentrated at the 
center. For example, the magnitude of the force exerted by the Earth on a particle 
of mass m near the Earth’s surface is

 Fg 5 G 
MEm

RE
2  (13.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the 
center of the Earth.

Q uICk QuIz 13.1 A planet has two moons of equal mass. Moon 1 is in a circular 
orbit of radius r. Moon 2 is in a circular orbit of radius 2r. What is the magnitude 
of the gravitational force exerted by the planet on Moon 2? (a) four times as large 
as that on Moon 1 (b) twice as large as that on Moon 1 (c) equal to that on Moon 1 
(d) half as large as that on Moon 1 (e) one-fourth as large as that on Moon 1

 Example 13.1    Billiards, Anyone?

Three 0.300-kg billiard balls are placed on a table at the corners of a right trian-
gle as shown in Figure 13.3. The sides of the triangle are of lengths a 5 0.400 m,  
b 5 0.300 m, and c 5 0.500 m. Calculate the gravitational force vector on the cue ball 
(designated m1) resulting from the other two balls as well as the magnitude and direc-
tion of this force.

S O L U T I O N

Conceptualize Notice in Figure 13.3 that the cue ball is 
attracted to both other balls by the gravitational force. We 
can see graphically that the net force should point upward 
and toward the right. We locate our coordinate axes as shown 
in Figure 13.3, placing our origin at the position of the 
cue ball.

Categorize This problem involves evaluating the gravitational forces on the cue ball using Equation 13.3. Once these forces 
are evaluated, it becomes a vector addition problem to find the net force.

Analyze Find the force exerted by m2 on the cue ball: F
S

21 5 G 
m2m1

a2  j
⁄

  5 s6.674 3 10211 N ? m2ykg2d 
s0.300 kgds0.300 kgd

s0.400 md2   j
⁄

  5 3.75 3 10211
  j
⁄
 N

a

m2

c

m1 b m3

x
21

31u

y

F
S F

S

F
SFigure 13.3  (Example 

13.1) The resultant gravita-
tional force acting on the 
cue ball is the vector sum 
F
S

21 1 F
S

31.

PItfall PreventIon 13.1 
Be Clear on g and G The symbol g  
represents the magnitude of 
the free-fall acceleration near 
a planet. At the surface of the 
Earth, g has an average value of 
9.80 m/s2. On the other hand, G 
is a universal constant that has 
the same value everywhere in the 
Universe.

Figure 13.2 The gravitational 
force between two particles is 
attractive. The unit vector r⁄12 is 
directed from particle 1 toward 
particle 2.

m1

m2
r

r̂12

F21
S

F12
S

Consistent with Newton’s 
third law, F21 � �F12.  

SS

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    13.2 Free-Fall Acceleration and the Gravitational Force  335

   13.2    Free-Fall Acceleration  
and the Gravitational Force
We have called the magnitude of the gravitational force on an object near the 
Earth’s surface the weight of the object, where the weight is given by Equation 5.6, 
F 5 mg. Equation 13.4 is another expression for this force. Therefore, we can set 
Equations 5.6 and 13.4 equal to each other to obtain

 mg 5 G 
MEm

RE
2  

 g 5 G 
ME

RE
2 (13.5)

Equation 13.5 relates the free-fall acceleration g to physical parameters of the 
Earth—its mass and radius—and explains the origin of the value of 9.80 m/s2 
that we have used in earlier chapters. Now consider an object of mass m located a  
distance h above the Earth’s surface or a distance r from the Earth’s center, where  
r 5 RE 1 h. The magnitude of the gravitational force acting on this object is

Fg 5 G 
MEm

r 2 5 G 
MEm

sRE 1 hd2

The magnitude of the gravitational force acting on the object at this position is also 
Fg 5 mg, where g is the value of the free-fall acceleration at the altitude h. Substitut-
ing this expression for Fg into the last equation shows that g is given by

 g 5
GME

r 2 5
GME

sRE 1 hd2 (13.6)

Therefore, it follows that g decreases with increasing altitude. Values of g for the Earth 
at various altitudes are listed in Table 13.1. Because an object’s weight is mg, we see 
that as r S ,̀ the weight of the object approaches zero.

 Variation of g with altitude

 table 13.1  Free-Fall 
Acceleration g at Various 
Altitudes Above  
the Earth’s Surface
 Altitude h (km) g (m/s2)

 0 9.80
 1 000 7.33
 2 000 5.68
 3 000 4.53
 4 000 3.70
 5 000 3.08
 6 000 2.60
 7 000 2.23
 8 000 1.93
 9 000 1.69
 10 000 1.49
 50 000 0.13
 ` 0

13.1 c o n t i n u e d

Find the force exerted by m3 on the cue ball: F
S

31 5 G 
m3m1

b2   i
⁄
 

  5 s6.674 3 10211 N ? m2ykg2d 
s0.300 kgds0.300 kgd

s0.300 md2   i
⁄

  5 6.67 3 10211
  i
⁄
 N

Find the net gravitational force on the cue ball by  F
S

5 F
S

31 1 F
S

21 5  s6.67 i
⁄

1 3.75 j
⁄
d 3 10211 N  

adding these force vectors:

Find the magnitude of this force: F 5 ÏF31 
2 1 F21

2 5 Ïs6.67d2 1 s3.75d2 3 10211 N

 5   7.66 3 10211 N

Find the tangent of the angle u for the  tan u 5
Fy

Fx

5
F21

F31

5
3.75 3 10211 N
6.67 3 10211 N

5 0.562 
net force vector: 

Evaluate the angle u: u 5 tan21 (0.562) 5  29.4°

Finalize The result for F shows that the gravitational forces between everyday objects have extremely small magnitudes.
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336 Chapter 13 Universal Gravitation

   13.3    Analysis Model: Particle  
in a Field (Gravitational)
When Newton published his theory of universal gravitation, it was considered 
a success because it satisfactorily explained the motion of the planets. It rep-
resented strong evidence that the same laws that describe phenomena on the 
Earth can be used on large objects like planets and throughout the Universe. 
Since 1687, Newton’s theory has been used to account for the motions of comets, 
the deflection of a Cavendish balance, the orbits of binary stars, and the rota-
tion of galaxies. Nevertheless, both Newton’s contemporaries and his successors 
found it difficult to accept the concept of a force that acts at a distance. They 
asked how it was possible for two objects such as the Sun and the Earth to inter-
act when they were not in contact with each other. Newton himself could not 
answer that question.

An approach to describing interactions between objects that are not in con-
tact came well after Newton’s death. This approach enables us to look at the 
gravitational interaction in a different way, using the concept of a gravitational 
field that exists at every point in space. The concept of a field occurs often in 

Q uICk QuIz 13.2  Superman stands on top of a very tall mountain and throws 
a baseball horizontally with a speed such that the baseball goes into a circular 
orbit around the Earth. While the baseball is in orbit, what is the magnitude of 
the acceleration of the ball? (a) It depends on how fast the baseball is thrown. 
(b) It is zero because the ball does not fall to the ground. (c) It is slightly less 
than 9.80 m/s2. (d) It is equal to 9.80 m/s2.

 Example 13.2    The Density of the Earth

Using the known radius of the Earth and that g 5 9.80 m/s2 at the Earth’s surface, find the average density of the Earth.

S O L U T I O N

Conceptualize Assume the Earth is a perfect sphere. The density of material in the Earth varies, but let’s adopt a simplified 
model in which we assume the density to be uniform throughout the Earth. The resulting density is the average density of 
the Earth.

Categorize This example is a relatively simple substitution problem.

Using Equation 13.5, solve for the mass  ME 5
gR E

2

G
 

of the Earth:

Substitute this mass and the volume of  rE 5
ME

VE

5
gR E

2yG
4
3pR E

3
5 3

4 
g

pGR E

 
a sphere into the definition of density  
(Eq. 1.1):
 5 34 

9.80 mys2

ps6.674 3 10211 N ? m2ykg2ds6.37 3 106 md
5  5.50 3 103 kgym3

W H A T  I F ?  What if you were told that a typical density of granite at the Earth’s surface is 2.75 3 103 kg/m3? What would 
you conclude about the density of the material in the Earth’s interior?

Answer Because this value is about half the density we calculated as an average for the entire Earth, we would conclude 
that the inner core of the Earth has a density much higher than the average value. It is most amazing that the Cavendish 
experiment—which can be used to determine G and can be done today on a tabletop—combined with simple free-fall mea-
surements of g provides information about the core of the Earth!
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physics. A field is a physical quantity that exists everywhere in space, is sin-
gle-valued at all points, and is established by a source of some kind. For exam-
ple, atmospheric pressure near the surface of the Earth is a field. At all points 
within the atmosphere, there is a value of the pressure. These values generally 
decrease with increasing altitude, and also change in time depending on cur-
rent weather conditions. The source of atmospheric pressure is the air itself (see 
Chapter 14).

The source of a gravitational field is a source particle with mass M. Generally, 
this particle is planet- or star-sized, and can be modeled as a particle as long as we 
make observations outside of the planet or star. The source particle affects space 
about itself so that there is a quantity called the gravitational field everywhere 
in space.

This discussion of fields raises a couple of questions. First, how do we detect 
that a field exists at some point? And second, how do we define the value of the 
field at that point? To answer the first question, we must put a test particle at the 
point. A test particle is something that is sensitive to the altered space around 
the source. In the case of the atmosphere, imagine placing a helium-filled bal-
loon at some point in the air. Because there is a pressure field at that point, and 
the pressure varies over the height of the balloon, the balloon will rise upward. 
(If a helium balloon were placed in empty space at a pressure of zero, it would 
remain stationary.) Therefore, the balloon detects the presence of the pressure 
field. In the case of the gravitational field, the test particle is a second particle, 
with mass m0. If this particle is placed in the gravitational field, there is a gravita-
tional force on the test particle. This force shows that a gravitational field exists 
at that point.

Now, how do we define the field so that we can assign a numerical value to it? For 
the balloon in the atmospheric pressure field, we could perhaps base the definition 
on the acceleration with which the balloon moves when released. In the case of 
gravity, we define the gravitational field gS as

 gS ;
F
S

g

m0

 (13.7)

That is, the gravitational field at a point in space equals the gravitational force F
S

g 
experienced by a test particle placed at that point divided by the mass m0 of the 
test particle. Notice that the presence of the test particle is not necessary for the 
field to exist: the source particle creates the gravitational field. The gravitational 
field describes the effect that a source particle (for example, the Earth) has on 
the empty space around itself in terms of the force that would be present if a sec-
ond object were somewhere in that space. It turns out to be useful to replace the 
direct gravitational force between two particles (Equation 13.1) with this “two-step” 
process: (1) one particle establishes a gravitational field, and (2) a second particle 
placed in the field experiences a force.2

The concept of a field is at the heart of the particle in a field analysis model. In 
Equation 13.7, the test particle of mass m0 is placed in the field solely in order to 
determine the value of the gravitational field gS. Once the value is determined, any 
arbitrary particle of mass m can be placed in the field and will experience a force  
mgS. Therefore, the mathematical representation of the gravitational version of the 
particle in a field model is Equation 5.5:

 F
S

g 5 mgS (5.5)

2 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of gravitation 
in Chapter 38.
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In the case of the pressure field in the atmosphere, we might recognize the 
force between the air and the balloon as a contact force, as discussed in Section 5.1. 
There is physical contact between the air and the balloon. What puzzled Newton 
and other scientists is that gravity is a field force: There is no physical contact 
between a star acting as a source particle and an orbiting planet placed in the 
resulting field.

In future chapters, we will see two other versions of the particle in a field 
model that turn out to be useful. In the electric version, the property of a source 
particle that results in an electric field is electric charge: when a second electrically-
charged particle is placed in the electric field, it experiences a force. The mag-
nitude of the force is the product of the electric charge and the field, in analogy 
with the gravitational force in Equation 5.5. In the magnetic version of the par-
ticle in a field model, a charged particle is placed in a magnetic field. One other 
property of this particle is required for the particle to experience a force: the 
particle must have a velocity at some nonzero angle to the magnetic field. The 
electric and magnetic versions of the particle in a field model are critical to 
the understanding of the principles of electromagnetism, which we will study in 
Chapters 22–33.

Because the gravitational force acting on a test particle of mass m0 near the 
Earth has a magnitude GMEm0/r 2 (see Eq. 13.4), the gravitational field gS at a dis-
tance r from the center of the Earth is

 gS 5
F
S

g

m0

5 2
GME

r 2  r⁄ (13.8)

where r⁄ is a unit vector pointing radially outward from the Earth (see Fig. 3.15) 
and the negative sign indicates that the field points toward the center of the Earth 
as illustrated in Figure 13.4a. The field vectors at different points surrounding the 
Earth vary in both direction and magnitude. In a small region near the Earth’s sur-
face, the downward field gS is approximately constant and uniform as indicated in 
Figure 13.4b. Equation 13.8 is valid at all points outside the Earth’s surface, assum-
ing the Earth is spherical. At the Earth’s surface, where r 5 RE, gS has a magnitude 
of 9.80 N/kg. (The unit N/kg is the same as m/s2.)

analysIs Model Particle in a Field (Gravitational)

Imagine an object with mass that we call a source particle. The source particle establishes a gravita-
tional field gS throughout space. The gravitational field is evaluated by measuring the force on a  
test particle of mass m0 and then using Equation 13.7. Now imagine a particle of mass m is placed 
in that field. The particle interacts with the gravitational field so that it experiences a gravitational 
force given by

 F
S

g 5 mgS (5.5)

Examples: 

 ● an object of mass m near the surface of the Earth has a weight, which is the result of the gravitational field established in 
space by the Earth

 ● a planet in the solar system is in orbit around the Sun, due to the gravitational force on the planet exerted by the gravita-
tional field established by the Sun

 ● an object near a black hole is drawn into the black hole, never to escape, due to the tremendous gravitational field estab-
lished by the black hole (Section 13.6)

 ● in the general theory of relativity, the gravitational field of a massive object is imagined to be described by a curvature of 
spacetime (Chapter 38)

 ● the gravitational field of a massive object is imagined to be mediated by particles called gravitons, which have never been 
detected (Chapter 44)

mgS 

Fg � mg
S S

a

b

The field vectors point in the 
direction of the acceleration a 
particle would experience if it 
were placed in the field. The 
magnitude of the field vector at 
any location is the magnitude 
of the free-fall acceleration at 
that location.

Figure 13.4  (a) The gravitational 
field vectors in the vicinity of a 
uniform spherical mass such as the 
Earth vary in both direction and 
magnitude. (b) The gravitational 
field vectors in a small region near 
the Earth’s surface are uniform in 
both direction and magnitude.
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   13.4    Kepler’s Laws and the Motion of Planets
Humans have observed the movements of the planets, stars, and other celestial 
objects for thousands of years. In early history, these observations led scientists 
to design a structural model in which the Earth was regarded as the center of the 
Universe. This geocentric model was elaborated and formalized by the Greek astron-
omer Claudius Ptolemy (c. 100–c. 170) in the second century and was accepted 
for the next 1 400 years. In 1543, Polish astronomer Nicolaus Copernicus (1473–
1543) offered another structural model for the solar system that suggested that 
the Earth and the other planets revolved in circular orbits around the Sun (the 
heliocentric model).3

Danish astronomer Tycho Brahe (1546–1601) performed more observations to 
determine how the heavens were constructed and pursued a project to measure the 
positions of both stars and planets. Those observations of the planets and 777 stars 
visible to the naked eye were carried out with only a large sextant and a compass. 
(The telescope had not yet been invented.)

German astronomer Johannes Kepler was Brahe’s assistant for a short while 
before Brahe’s death, whereupon he acquired his mentor’s astronomical data 
and spent 16 years trying to deduce a mathematical model for the motion of 
the planets. Such data are difficult to sort out because the moving planets are 
observed from a moving Earth. After many laborious calculations, Kepler found 
that Brahe’s data on the revolution of Mars around the Sun led to a successful 
model.

 Example 13.3    The Weight of the Space Station

The International Space Station operates at an altitude of 350 km. An online search for the station shows that a weight of 
4.11 3 106 N, measured at the Earth’s surface, has been lifted off the surface by various spacecraft during the construction 
process. What is the weight of the space station as it moves in its orbit?

S O L U T I O N

Conceptualize The mass of the space station is fixed; it is independent of its location. Based on the discussions in this section 
and Section 13.2, we realize that the value of g is smaller at the height of the space station’s orbit than at the surface of the 
Earth. Therefore, the weight of the Space Station is smaller than that at the surface of the Earth.

Categorize We model the Space Station as a particle in a gravitational field.

Analyze From the particle in a field model,  m 5
Fg,surface

gsurface

5
4.11 3 106 N

9.80 mys2 5 4.19 3 105 kg 
find the mass of the space station from its  
weight at the surface of the Earth:

Use Equation 13.6 with h 5 350 km to find  gorbit 5
GME

sR E 1 hd2 
the magnitude of the gravitational field at  
the orbital location: 

5
s6.674 3 10211 N ? m2ykg2ds5.97 3 1024 kgd

s6.37 3 106 m 1 0.350 3 106 md2 5 8.82 mys2

Use the particle in a field model again to  Fg,orbit 5 mgorbit 5 (4.19 3 105 kg)(8.82 m/s2) 5 3.70 3 106 N   
find the space station’s weight in orbit:

Finalize Notice that the weight of the Space Station is less when it is in orbit, as we expected. It has about 10% less weight than 
it has when on the Earth’s surface, representing a 10% decrease in the magnitude of the gravitational field.

3 The heliocentric model was proposed by Aristarchus of Samos (c. 310 BC–c. 230 BC) several centuries before 
Copernicus, but the theory was not widely accepted.
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kepler’s first law
Ptolemy’s geocentric model and Copernicus’s heliocentric model of the solar sys-
tem both suggested circular orbits for heavenly bodies. Kepler’s first law indicates 
that the circular orbit is a very special case and elliptical orbits are the general 
situation. This notion was difficult for scientists to accept because they believed, as 
had scientists for centuries before them, that perfect circular orbits of the planets 
reflected the perfection of heaven.

Figure 13.5 shows the geometry of an ellipse, which serves as our model for the 
elliptical orbit of a planet. An ellipse is mathematically defined by choosing two 
points F1 and F2, each of which is a called a focus, and then drawing a curve through 
points for which the sum of the distances r1 and r2 from F1 and F2, respectively, is 
a constant. The longest distance through the center between points on the ellipse 
(and passing through each focus) is called the major axis, and this distance is 2a. In 
Figure 13.5, the major axis is drawn along the x direction. The distance a is called 
the semimajor axis. Similarly, the shortest distance through the center between 
points on the ellipse is called the minor axis of length 2b, where the distance b is the 
semiminor axis. Either focus of the ellipse is located at a distance c from the center 
of the ellipse, where a2 5 b2 1 c2. In the elliptical orbit of a planet around the Sun, 
the Sun is at one focus of the ellipse. There is nothing at the other focus.

The eccentricity of an ellipse is defined as e 5 c/a, and it describes the general 
shape of the ellipse. For a circle, c 5 0, and the eccentricity is therefore zero. The 
smaller b is compared with a, the shorter the ellipse is along the y direction com-
pared with its extent in the x direction in Figure 13.5. As b decreases, c increases 
and the eccentricity e increases. Therefore, higher values of eccentricity correspond 
to longer and thinner ellipses. The range of values of the eccentricity for an ellipse 
is 0 , e , 1.

Eccentricities for planetary orbits vary widely in the solar system. The eccentricity 
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the 
eccentricity of Mercury’s orbit is 0.21, the highest of the eight planets. Figure 13.6a 
shows an ellipse with an eccentricity equal to that of Mercury’s orbit. Notice that 
even this highest-eccentricity orbit is difficult to distinguish from a circle, which is 

The Sun is located at a focus of the ellipse. There is 
nothing physical located at the center (the black dot) or 
the other focus (the blue dot).

Sun

Center

Sun

CenterOrbit of
Mercury

Orbit of
Comet Halley

Comet Halley

a b

Figure 13.6  (a) The shape of 
the orbit of Mercury, which has 
the highest eccentricity (e 5 0.21) 
among the eight planets in the 
solar system. The broken line is 
not a circle. Measure the horizon-
tal and vertical diameters. They 
differ by about 0.5 mm on the 
printed page. (Copy and enlarge 
to see the difference more eas-
ily!) (b) The shape of the orbit of 
Comet Halley. The shape of the 
orbit is correct; the comet and the 
Sun are shown larger than in real-
ity for clarity.

Figure 13.5 Plot of an ellipse.

a

c b

F2F1

r1

r2

y

x

The semimajor axis has 
length a, and the semiminor 
axis has length b.

Each focus is located at a 
distance c from the center.

Johannes kepler
German astronomer (1571–1630)
Kepler is best known for developing the 
laws of planetary motion based on the  
careful observations of Tycho Brahe.
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1.  All planets move in elliptical orbits with the Sun at one focus.
2.  The radius vector drawn from the Sun to a planet sweeps out equal areas 

in equal time intervals.
3.  The square of the orbital period of any planet is proportional to the cube 

of the semimajor axis of the elliptical orbit.

Kepler’s laws 

Kepler’s structural model of planetary motion is summarized in three statements 
known as Kepler’s laws:
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one reason Kepler’s first law is an admirable accomplishment. The eccentricity of 
the orbit of Comet Halley is 0.97, describing an orbit whose major axis is much lon-
ger than its minor axis, as shown in Figure 13.6b. As a result, Comet Halley spends 
much of its 76-year period far from the Sun and invisible from the Earth. It is only 
visible to the naked eye during a small part of its orbit when it is near the Sun.

Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with 
the Sun at focus F2. When the planet is at the far left in the diagram, the distance  
between the planet and the Sun is a 1 c. At this point, called the aphelion, the 
planet is at its maximum distance from the Sun. (For an object in orbit around the 
Earth, this point is called the apogee.) Conversely, when the planet is at the right end 
of the ellipse, the distance between the planet and the Sun is a 2 c. At this point, 
called the perihelion (for an Earth orbit, the perigee), the planet is at its minimum 
distance from the Sun.

Kepler’s first law is a direct result of the inverse-square nature of the gravita-
tional force. Circular and elliptical orbits correspond to objects that are bound to 
the gravitational force center. These objects include planets, asteroids, and comets 
that move repeatedly around the Sun as well as moons orbiting a planet. There 
are also unbound objects, such as a meteoroid from deep space that might pass by 
the Sun once and then never return. The gravitational force between the Sun and 
these objects also varies as the inverse square of the separation distance, and the 
allowed paths for these objects include parabolas (e 5 1) and hyperbolas (e . 1).

kepler’s second law
Kepler’s second law (page 340) can be shown to be a result of the isolated system 
model for angular momentum. Consider a planet of mass Mp moving about the Sun 
in an elliptical orbit (Fig. 13.7a). Let’s consider the planet as a system. We model the 
Sun to be so much more massive than the planet that the Sun does not move. The 
gravitational force exerted by the Sun on the planet is a central force, always along 
the radius vector, directed toward the Sun (Fig. 13.7a). The torque on the planet due 
to this central force about an axis through the Sun is zero because F

S
g is parallel to rS.

Therefore, because the external torque on the planet is zero, it is modeled as an 
isolated system for angular momentum (Section 11.4), and the angular momentum 
L
S

 of the planet is a constant of the motion:

 DL
S

 5 0   S   L
S

 5 constant 

Evaluating L
S

 for the planet,

 L
S

 5 rS 3 pS 5 Mp rS 3 vS   S   L 5 Mp u rS 3  vSu (13.9)

We can relate this result to the following geometric consideration. In a time 
interval dt, the radius vector rS in Figure 13.7b sweeps out the area dA, which 
equals half the area u rS 3  d rSu of the parallelogram formed by the vectors rS and d rS. 
Because the displacement of the planet in the time interval dt is given by d rS 5 vS dt,

 dA 5 1
2 u rS 3  d rSu 5 1

2u r
S 3  vSdtu 5 1

2u rS 3  vSudt 

Substitute for the absolute value of the cross product from Equation 13.9:

 dA 5 1
2S L

Mp
Ddt 

Divide both sides by dt to obtain

  
dA
dt

 5
L

2Mp

 (13.10)

where L and Mp are both constants. This result shows that the derivative dA/dt is 
constant—the radius vector from the Sun to any planet sweeps out equal areas in 
equal time intervals as stated in Kepler’s second law.

Figure 13.7 (a) The gravita-
tional force acting on a planet  
is directed toward the Sun.  
(b) During a time interval dt,  
a parallelogram is formed by the 
vectors rS and d rS 5 vS dt.

Sun

MS

Mp

Sun

dA

Fg
S

rS

d  �  dtrS vS

vS

The area swept out by r in 
a time interval dt is half the 
area of the parallelogram.

S

a

b

PItfall PreventIon 13.2
Where Is the Sun? The Sun is 
located at one focus of the ellip-
tical orbit of a planet. It is not 
located at the center of the ellipse.
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This conclusion is a result of the gravitational force being a central force, which 
in turn implies that angular momentum of the planet is constant. Therefore, the law 
applies to any situation that involves a central force, whether inverse square or not.

kepler’s third law
Kepler’s third law (page 340) can be predicted from the inverse-square law for cir-
cular orbits and our analysis models. Consider a planet of mass Mp that is assumed 
to be moving about the Sun (mass MS) in a circular orbit as in Figure 13.8. Because 
the gravitational force provides the centripetal acceleration of the planet as it moves 
in a circle, we model the planet as a particle under a net force and as a particle in 
uniform circular motion and incorporate Newton’s law of universal gravitation,

 Fg 5 Mpa  S   
GMSMp

r 2 5 Mp Sv 2

r D 

The orbital speed of the planet is 2pr/T, where T is the period; therefore, the pre-
ceding expression becomes

 
GMS

r 2 5
s2pryT d2

r
 

 T 2 5 S 4p2

GMS
Dr 3 5 KSr 3 

where KS is a constant given by

 KS 5
4p2

GMS

5 2.97 3 10219 s2ym3 

This equation is also valid for elliptical orbits if we replace r with the length a of the 
semimajor axis (Fig. 13.5):

 T 2 5 S 4p2

GMS
Da3 5 KSa

3  (13.11)

Equation 13.11 is Kepler’s third law: the square of the period is proportional to 
the cube of the semimajor axis. Because the semimajor axis of a circular orbit is its 
radius, this equation is valid for both circular and elliptical orbits. Notice that the 
constant of proportionality KS is independent of the mass of the planet.4 Equation 
13.11 is therefore valid for any planet. If we were to consider the orbit of a satellite 
such as the Moon about the Earth, the constant would have a different value, with 
the Sun’s mass replaced by the Earth’s mass; that is, KE 5 4p2/GME.

Table 13.2 is a collection of useful data for planets and other objects in the solar 
system. The far-right column verifies that the ratio T 2/r3 is constant for all objects 
orbiting the Sun. The small variations in the values in this column are the result of 
uncertainties in the data measured for the periods and semimajor axes of the objects.

Recent astronomical work has revealed the existence of a large number of solar 
system objects beyond the orbit of Neptune. In general, these objects lie in the 
Kuiper belt, a region that extends from about 30 AU (the orbital radius of Neptune) 
to 50 AU. (An AU is an astronomical unit, equal to the radius of the Earth’s orbit.) 
Current estimates identify at least 100 000 objects in this region with diameters 
larger than 100 km. The first Kuiper belt object (KBO) is Pluto, discovered in 1930 
and formerly classified as a planet. Starting in 1992, many more KBOs have been 
detected. Several have diameters in the 1 000-km range, such as Varuna (discov-
ered in 2000), Ixion (2001), Quaoar (2002), Sedna (2003), Haumea (2004), Orcus 
(2004), and Makemake (2005). One KBO, Eris, discovered in 2005, is believed to be 

Kepler’s third law 

4 Equation 13.11 is indeed a proportion because the ratio of the two quantities T 2 and a3 is a constant. The variables 
in a proportion are not required to be limited to the first power only.

r

MS

Mp

vS

Figure 13.8  A planet of mass 
Mp moving in a circular orbit 
around the Sun. The orbits of all 
planets except Mercury are nearly 
circular.
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similar in size to Pluto and about 27% more massive. Other KBOs do not yet have 
names, but are currently indicated by their year of discovery and a code, such as 
2010 EK139 and 2015 FG345.

A subset of about 1 400 KBOs are called “Plutinos” because, like Pluto, they 
exhibit a resonance phenomenon, orbiting the Sun two times in the same time 
interval as Neptune revolves three times. The contemporary application of Kepler’s 
laws and such exotic proposals as planetary angular momentum exchange and 
migrating planets suggest the excitement of this active area of current research.

Q uICk QuIz 13.3  An asteroid is in a highly eccentric elliptical orbit around 
the Sun. The period of the asteroid’s orbit is 90 days. Which of the following 
statements is true about the possibility of a collision between this asteroid and 
the Earth? (a) There is no possible danger of a collision. (b) There is a possi-
bility of a collision. (c) There is not enough information to determine whether 
there is danger of a collision.

 table 13.2  Useful Planetary Data
  Mean Period of Mean Distance
Body Mass (kg) Radius (m) Revolution (s) from the Sun (m) 

 T 2

r 3 ss2ym3d

Mercury 3.30 3 1023 2.44 3 106 7.60 3 106 5.79 3 1010 2.98 3 10219

Venus 4.87 3 1024 6.05 3 106 1.94 3 107 1.08 3 1011 2.99 3 10219

Earth 5.97 3 1024 6.37 3 106 3.156 3 107 1.496 3 1011 2.97 3 10219

Mars 6.42 3 1023 3.39 3 106 5.94 3 107 2.28 3 1011 2.98 3 10219

Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011 2.97 3 10219

Saturn 5.68 3 1026 5.82 3 107 9.29 3 108 1.43 3 1012 2.95 3 10219

Uranus 8.68 3 1025 2.54 3 107 2.65 3 109 2.87 3 1012 2.97 3 10219

Neptune 1.02 3 1026 2.46 3 107 5.18 3 109 4.50 3 1012 2.94 3 10219

Plutoa 1.25 3 1022 1.20 3 106 7.82 3 109 5.91 3 1012 2.96 3 10219

Moon 7.35 3 1022 1.74 3 106 — — —
Sun 1.989 3 1030 6.96 3 108 — — —

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as 
a “dwarf planet” like the asteroid Ceres.

 Example 13.4    The Mass of the Sun

In the opening storyline, you were wondering how to determine the mass of the Sun. Now that we have discussed Kepler’s 
third law, calculate the mass of the Sun.

S O L U T I O N

Conceptualize Based on the mathematical representation of Kepler’s third law expressed in Equation 13.11, we realize that 
the mass of the central object in a gravitational system is related to the orbital size and period of objects in orbit around the 
central object.

Categorize This example is a relatively simple substitution problem.

Solve Equation 13.11 for the mass of the Sun: MS 5
4p2r 3

GT 2

Substitute numerical values, using data  MS 5
4p2s1.496 3 1011 md3

s6.674 3 10211 N ? m2ykg2ds3.156 3 107 sd2
5  1.99 3 1030 kg 

from Table 13.2:

In Example 13.2, an understanding of gravitational forces enabled us to find out something about the density of the Earth’s 
core, and now we have used this understanding to answer your question about the mass of the Sun! To answer your question 
about the masses of planets, we can perform the same calculation using the orbital size and period of a moon of a planet to 
find the planet mass. Neither Kepler’s third law or Newton’s law of universal gravitation can be used to determine the mass 
of the orbiting object, and the planets and KBOs for which we have precise mass data are the ones with moons or ones about 
which we have placed a spacecraft in orbit.
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 Example 13.5    A Geosynchronous Satellite 

Consider a satellite of mass m moving in a circular orbit around the Earth at a constant 
speed v and at an altitude h above the Earth’s surface as illustrated in Figure 13.9.

(A) Determine the speed of the satellite in terms of G, h, RE (the radius of the Earth), 
and ME (the mass of the Earth).

S O L U T I O N

Conceptualize Imagine the satellite moving around the Earth in a circular orbit under 
the influence of the gravitational force. Figure 13.9 is a polar view of this motion. This 
motion is similar to that of the International Space Station, the Hubble Space Tele-
scope, and other objects in orbit around the Earth.

Categorize The satellite moves in a circular orbit at a constant speed. Therefore, we cate-
gorize the satellite as a particle in uniform circular motion as well as a particle under a net force.

Analyze The only external force acting on the satellite is the gravitational force  
from the Earth, which acts toward the center of the Earth and keeps the satellite in its 
circular orbit.

Apply the particle under a net force and particle in  Fg 5 ma  S   G 
MEm

r 2 5 mSv2

r D 
uniform circular motion models to the satellite:

Solve for v, noting that the distance r from the center of  (1)   v 5ÎGME

r
5Î GME

RE 1 h
 

the Earth to the satellite is r 5 RE 1 h:

(B) If the satellite is to be geosynchronous (that is, appearing to remain over a fixed position on the Earth), how fast is it moving 
through space?

S O L U T I O N

To appear to remain over a fixed position on the Earth, the period of the satellite must be 24 h 5 86 400 s and the satellite 
must be in orbit directly over the equator.

Solve Kepler’s third law (Equation 13.11, with  r 5 SGMET
2

4p2 D1y3

 
a 5 r and MS S ME) for r:

Substitute numerical values: r 5 3s6.674 3 10211 N ? m2ykg2ds5.97 3 1024 kgds86 400 sd2

4p2 4
1y3

5 4.22 3 107 m

Use Equation (1) to find the speed of the satellite:  v 5Îs6.674 3 10211 N ? m2ykg2ds5.97 3 1024 kgd
4.22 3 107 m

5   3.07 3 103 m/s

Finalize The value of r calculated here translates to a height of the satellite above the surface of the Earth of almost 
36 000 km. Therefore, geosynchronous satellites have the advantage of allowing an earthbound antenna to be aimed in 
a fixed direction, but there is a disadvantage in that the signals between the Earth and the satellite must travel a long 
distance. It is difficult to use geosynchronous satellites for optical observation of the Earth’s surface because of their 
high altitude.

W H A T  I F ?  What if the satellite motion in part (A) were taking place at height h above the surface of another planet 
more massive than the Earth but of the same radius? Would the satellite be moving at a higher speed or a lower speed than it 
does around the Earth?

Answer If the planet exerts a larger gravitational force on the satellite due to its larger mass, the satellite must move with 
a higher speed to avoid moving toward the surface. This conclusion is consistent with the predictions of Equation (1), which 
shows that because the speed v is proportional to the square root of the mass of the planet, the speed increases as the mass of 
the planet increases.

RE

Fg
S

vS

m

r

h

Figure 13.9  (Example 13.5) A 
satellite of mass m moving around 
the Earth in a circular orbit of 
radius r with constant speed v. 
The only force acting on the sat-
ellite is the gravitational force F

S
g . 

(Not drawn to scale.)
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   13.5    Gravitational Potential Energy
In Chapter 7, we introduced the concept of gravitational potential energy, which 
is the energy associated with the configuration of a system of objects interacting 
via the gravitational force. The gravitational potential energy function Ug 5 mgy 
(Eq. 7.19) for a particle–Earth system is restricted to situations where a very massive 
object (such as the Earth) establishes a gravitational field of magnitude g and a 
particle of much smaller mass m resides in that field. It is also restricted to positions 
of the object near the surface of the Earth, where g is independent of y. In reality, 
however, because the gravitational field varies as 1/r2 as shown in Equation 13.8, we 
expect that a more general potential energy function—one that is valid without the 
restrictions mentioned above—will be different from Ug 5 mgy.

Recall from Equation 7.27 that the change in the potential energy of a system 
associated with a given displacement of a member of the system is defined as 
the negative of the internal work done by the force on that member during the 
displacement:

 DU 5 Uf 2 Ui 5 2#
rf

ri

 F srd dr  (13.12)

We can use this result to evaluate the general gravitational potential energy func-
tion. Consider a particle of mass m moving between two points Ⓐ and Ⓑ above the 
Earth’s surface (Fig. 13.10). The particle is subject to the gravitational force given 
by Equation 13.1. We can express this force as

 F srd 5 2
GMEm

r 2  

where the negative sign indicates that the force is attractive. Substituting this 
expression for F(r) into Equation 13.12, we can compute the change in the gravi-
tational potential energy function for the particle–Earth system as the separation 
distance r changes:

 Uf 2 Ui 5 GMEm #
rf

ri

  
dr
r 2 5 GMEm32

1
r 4

rf

ri

 

  Uf 2 Ui 5 2GMEmS1
rf

2
1
ri
D (13.13)

As always, the choice of a reference configuration for the potential energy is com-
pletely arbitrary. It is customary to choose the reference configuration for zero 
potential energy to be the same as that for which the force is zero. Taking Ui 5 0 at 
ri 5 ,̀ we obtain the important result

 Ug srd 5 2 

GMEm

r
 (13.14)

This expression applies when the particle is separated from the center of the Earth 
by a distance r, provided that r $ RE. The result is not valid for particles inside the 
Earth, where r , RE. Because of our choice of Ui, the function Ug is always negative 
(Fig. 13.11).

Although Equation 13.14 was derived for the particle–Earth system, a similar 
form of the equation can be applied to any two particles. That is, the gravitational 
potential energy associated with a system of two particles of masses m1 and m2 sepa-
rated by a distance r is

 Ugsrd 5 2 

Gm1m2

r
 (13.15)

This expression shows that the gravitational potential energy for any pair of par-
ticles varies as 1/r, whereas the force between them varies as 1/r2. Furthermore, 

  Gravitational potential energy 
of the Earth–particle system

�

�

m

rf

ri

ME

RE

Fg
S

Fg
S

Figure 13.10  As a particle of 
mass m moves from Ⓐ to Ⓑ above 
the Earth’s surface, the gravi-
tational potential energy of the 
particle–Earth system changes 
according to Equation 13.12.

Earth

R E

O

GME m

Ug

r

R E

ME

�

The potential 
energy goes to 
zero as r 
approaches 
infinity.

Figure 13.11  Graph of the gravi-
tational potential energy Ug versus 
r for the system of an object above 
the Earth’s surface. 
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346 Chapter 13 Universal Gravitation

the potential energy is negative because the force is attractive and we have chosen 
the potential energy as zero when the particle separation is infinite. Because the 
force between the particles is attractive, an external agent must do positive work to 
increase the separation between the particles. The work done by the external agent 
produces an increase in the potential energy as the two particles are separated. 
That is, Ug becomes less negative as r increases.

We can extend this concept to three or more particles. In this case, the total 
potential energy of the system is the sum over all pairs of particles. Each pair con-
tributes a term of the form given by Equation 13.15. For example, if the system con-
tains three particles as in Figure 13.12,

 Utotal 5 U12 1 U13 1 U23 5 2GSm1m2

r12

1
m1m3

r13

1
m2m3

r23
D 

The absolute value of Utotal represents the work needed to separate the three parti-
cles by an infinite distance.

1

2

3r 13

r 12 r 23

Figure 13.12  Three interacting 
particles.

 Example 13.6    The Change in Potential Energy

A particle of mass m is displaced through a small vertical distance Dy near the Earth’s surface. Show that in this situation 
the general expression for the change in gravitational potential energy given by Equation 13.13 reduces to the familiar 
relationship DUg 5 mg Dy.

S O L U T I O N

Conceptualize Compare the two different situations for which we have developed expressions for gravitational potential 
energy: (1) a planet and an object that are far apart for which the energy expression is Equation 13.14 and (2) a small object at 
the surface of a planet for which the energy expression is Equation 7.19. We wish to show that these two expressions are equiv-
alent under the conditions described in the problem.

Categorize This example is a substitution problem.

Combine the fractions in Equation 13.13: (1)   DUg 5 2GMEmS1
rf

2
1
ri
D 5 GMEmSrf 2 ri

ri rf
D

Evaluate rf 2 ri and rirf  if both the initial and final positions  rf 2 ri 5 Dy ri rf < R E
2 

of the particle are close to the Earth’s surface:

Substitute these expressions into Equation (1): DUg < GMEm 1Dy

RE
22 5 m 1GME

RE
2 2Dy 5 mg Dy

where g 5 GME/RE
2 from Equation 13.5.

W H A T  I F ?  Suppose you are performing upper-atmosphere studies and are asked by your supervisor to find the height 
in the Earth’s atmosphere at which the “surface equation” DUg 5 mg Dy gives a 1.0% error in the change in the potential 
energy. What is this height?

Answer Because the surface equation assumes a constant value for g, it will give a DUg value that is larger than the value given 
by the general equation, Equation 13.13.

Set up a ratio reflecting a 1.0% error: 
DUsurface

DUgeneral

5 1.010

Substitute the expressions for each of these  
mg Dy

GMEm sDyyri rf d
5

gri rf

GME

5 1.010 
changes DUg :

Substitute for ri, rf , and g from Equation 13.5: 
sGMEyR E

2  dR EsR E 1 Dyd

GME

5
RE 1 Dy

R E

5 1 1
Dy

R E

5 1.010

Solve for Dy: Dy 5 0.010RE 5 0.010s6.37 3 106 md 5 6.37 3 104 m 5 63.7 km
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   13.6    Energy Considerations in Planetary  
and Satellite Motion
Given the general expression for gravitational potential energy developed in Sec-
tion 13.5, we can now apply the analysis models that we have developed for energy 
to gravitational systems. Consider an object of mass m moving with a speed v in the 
vicinity of a massive object of mass M, where M .. m. The system might be a planet 
moving around the Sun, a satellite in orbit around the Earth, or a comet making a 
one-time flyby of the Sun. If we assume the object of mass M is at rest in an inertial 
reference frame, the total mechanical energy E of the two-object system when the 
objects are separated by a distance r is the sum of the kinetic energy of the object of 
mass m and the gravitational potential energy of the system, given by Equation 13.15:

 E 5 K 1 Ug 

 E 5 1
2mv2 2

GMm
r

 (13.16)

If the system of objects of mass m and M is isolated, and there are no nonconserva-
tive forces acting within the system, the mechanical energy of the system given by 
Equation 13.16 is the total energy of the system and this energy is conserved:

 DK 1 DUg 5 0   S   Ei 5 Ef 

Therefore, as the object of mass m moves from Ⓐ to Ⓑ in Figure 13.10, the total 
energy remains constant and Equation 13.16 gives

 1
2mvi

2 2
GMm

ri

5 1
2mvf 

2 2
GMm

rf

 (13.17)

Combining this statement of energy conservation with our earlier discussion of conser-
vation of angular momentum, we see that both the total energy and the total angular 
momentum of a gravitationally bound, two-object system are constants of the motion.

Equation 13.16 shows that E may be positive, negative, or zero, depending on the 
value of v. For a bound system such as the Earth–Sun system, however, E is necessar-
ily less than zero because we have chosen the convention that Ug S 0 as r S .̀

We can easily establish that E , 0 for the system consisting of an object of mass 
m moving in a circular orbit about an object of mass M .. m (Fig. 13.13). Modeling 
the object of mass m as a particle under a net force and a particle in uniform circu-
lar motion gives

 Fg 5 ma  S   
GMm

r 2 5
mv2

r
 

Multiplying both sides by r and dividing by 2 gives

 1
2mv2 5

GMm
2r

 (13.18)

Substituting this equation into Equation 13.16, we obtain

 E 5
GMm

2r
2

GMm
r

 

 E 5 2
GMm

2r
 scircular orbitsd (13.19)

This result shows that the total mechanical energy is negative in the case of circular 
orbits. Notice that the kinetic energy is positive and equal to half the absolute value 
of the potential energy. 

The total mechanical energy is also negative in the case of elliptical orbits. The 
expression for E for elliptical orbits is the same as Equation 13.19 with r replaced by 

  Total energy for circular orbits 
of an object of mass m around 
an object of mass M .. m

r

M

m

vS

Figure 13.13  An object of mass 
m moving in a circular orbit about 
a much larger object of mass M.
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the semimajor axis length a:

 E 5 2
GMm

2a
 selliptical orbitsd (13.20)

Q uICk QuIz 13.4  A comet moves in an elliptical orbit around the Sun. Which 
point in its orbit (perihelion or aphelion) represents the highest value of (a) the 
speed of the comet, (b) the potential energy of the comet–Sun system, (c) the 
kinetic energy of the comet, and (d) the total energy of the comet–Sun system?

Total energy for elliptical 
orbits of an object of  

mass m around an object of  
mass M .. m

M  E

R E

h

m

rmax

� 0vf
S

vi
S

Figure 13.14  An object of mass m 
projected upward from the Earth’s 
surface with an initial speed vi 
reaches a maximum altitude h.

 Example 13.7    Changing the Orbit of a Satellite

A space transportation vehicle releases a 470-kg communications satellite while in a circular orbit 280 km above the surface 
of the Earth. A rocket engine on the satellite boosts it into a geosynchronous orbit. How much energy does the engine have 
to provide for this boost?

S O L U T I O N

Conceptualize Notice that the height of 280 km is much lower than that for a geosynchronous satellite, 36 000 km, as men-
tioned in Example 13.5. Therefore, energy must be expended to raise the satellite to this much higher position.

Categorize This example is a substitution problem.

Find the initial radius of the satellite’s orbit when it is  ri 5 RE 1 280 km 5 6.65 3 106 m 
still in the vehicle’s cargo bay:

Use Equation 13.19 to find the difference in energies  DE 5 Ef 2 Ei 5 2
GMEm

2rf

2S2
GMEm

2ri
D 5 2

GMEm

2
 S1

rf

2
1
ri
D 

for the satellite–Earth system with the satellite at the  
initial and final radii:

Substitute numerical values, using rf 5 4.22 3 107 m  DE 5 2
s6.674 3 10211 N ? m2ykg2ds5.97 3 1024 kgds470 kgd

2
 

from Example 13.5:

3 S 1
4.22 3 107 m

2
1

6.65 3 106 mD 5  1.19 3 1010 J

which is the energy equivalent of 89 gal of gasoline. NASA engineers must account for the changing mass of the spacecraft 
as it ejects burned fuel, something we have not done here. Would you expect the calculation that includes the effect of this 
changing mass to yield a greater or a lesser amount of energy required from the engine?

escape speed
Suppose an object of mass m is projected vertically upward from the Earth’s surface 
with an initial speed vi as illustrated in Figure 13.14. We can use energy consider-
ations to find the value of the initial speed needed to allow the object to reach a 
certain distance away from the center of the Earth. Equation 13.16 gives the total 
energy of the system for any configuration. As the object is projected upward from 
the surface of the Earth, v 5 vi and r 5 ri 5 RE. When the object reaches its maxi-
mum altitude, v 5 vf 5 0 and r 5 rf 5 rmax. Because the object–Earth system is iso-
lated, we substitute these values into the isolated-system model expression given by 
Equation 13.17:

 1
2mvi

2 2
GME m

RE

5 2
GMEm

rmax

 

Solving for vi
2 gives

 vi
2 5 2GMES 1

RE

2
1

rmax
D (13.21)

For a given maximum altitude h 5 rmax 2 RE, we can use this equation to find the 
required initial speed.
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We are now in a position to calculate the escape speed, which is the mini-
mum speed the object must have at the Earth’s surface to approach an infinite 
separation distance from the Earth. Traveling at this minimum speed, the object 
continues to move farther and farther away from the Earth as its speed asymptot-
ically approaches zero. Letting rmax S ` in Equation 13.21 and identifying vi as 
vesc gives

 vesc 5Î2GME

RE

  (13.22)

This expression for vesc is independent of the mass of the object. In other words, 
a spacecraft has the same escape speed as a molecule. Furthermore, the result is 
independent of the direction of the velocity and ignores air resistance. Keep in 
mind that an object already has some initial speed at the surface of the Earth due 
to its rotation.

If the object is given an initial speed equal to vesc, the total energy of the system 
is equal to zero. Notice that when r S ,̀ the object’s kinetic energy and the poten-
tial energy of the system are both zero. If vi is greater than vesc, however, the total 
energy of the system is greater than zero and the object has some residual kinetic 
energy as r S .̀

  Escape speed from 
the Earth

PItfall PreventIon 13.3
You Can’t Really Escape Although 
Equation 13.22 provides the 
“escape speed” from the Earth, 
complete escape from the Earth’s 
gravitational influence is impos-
sible because the gravitational 
force is of infinite range. In addi-
tion, escape from the Earth to 
an infinite distance also requires 
escape from the Sun, requiring 
additional energy.

 Example 13.8    Escape Speed of a Rock

Superman picks up a 20-kg rock and hurls it into space. What minimum speed must it have at the Earth’s surface to move 
infinitely far away from the Earth?

S O L U T I O N

Conceptualize Imagine Superman throwing the rock from the Earth’s surface so that it moves farther and farther away, trav-
eling more and more slowly, with its speed approaching zero. Its speed will never reach zero, however, so the rock will never 
turn around and come back.

Categorize This example is a substitution problem.

Use Equation 13.22 to find the escape speed: vesc 5Î2GME

RE
5Î2s6.674 3 10211 N ? m2ykg2ds5.97 3 1024 kgd

6.37 3 106 m

5   1.12 3 104 m/s

The calculated escape speed corresponds to about 25 000 mi/h. The mass of the rock does not appear in the calculation. 
Therefore, this is also the escape speed for Superman throwing a 5 000-kg spacecraft from the surface of the Earth. Further-
more, if a spacecraft is in an orbit around the Earth, its orbital radius r is close to that of the Earth, RE, so the escape speed 
we have calculated is also valid for the non-superhero situation of a spacecraft in orbit firing its engines to escape that orbit.

Equations 13.21 and 13.22 can be applied to objects projected from any planet. 
That is, in general, the escape speed from the surface of any planet of mass M and 
radius R is

 vesc 5Î2GM
R

 (13.23)

Escape speeds for the planets, the Moon, and the Sun are provided in Table 13.3 
(page 350). The values vary from 2.3 km/s for the Moon to about 618 km/s for the 
Sun. These results, together with some ideas from the kinetic theory of gases (see 
Chapter 20), explain why some planets have atmospheres and others do not. As 
we shall see later, at a given temperature the average kinetic energy of a gas mole-
cule depends only on the mass of the molecule. Lighter molecules, such as hydro-
gen and helium, have a higher average speed than heavier molecules at the same 

  Escape speed from the  
surface of a planet of  
mass M and radius R
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350 Chapter 13 Universal Gravitation

temperature. When the average speed of the lighter molecules is not much less than 
the escape speed of a planet, a significant fraction of them are moving faster than 
the average speed and have a chance to escape the planet.

This mechanism also explains why the Earth does not retain hydrogen mol-
ecules and helium atoms in its atmosphere but does retain heavier molecules, 
such as oxygen and nitrogen. On the other hand, the very large escape speed 
for Jupiter enables that planet to retain hydrogen, the primary constituent of its 
atmosphere.

black Holes
In Example 11.6, we briefly described a rare event called a supernova, the cata-
strophic explosion at the end of the life of a very massive star. The material that 
remains in the central core of such an object continues to collapse, and the core’s 
ultimate fate depends on its mass. As the star collapses inward, electrons and 
protons fuse to form neutrons, and an object made purely of neutrons, a neutron 
star, is born, as discussed in Example 11.6. The inward collapse of such a star is 
halted by the quantum mechanical repulsion of neutrons called neutron degener-
acy pressure, and the mass of the star is compressed to a radius of about 10 km. 
(On the Earth, a teaspoon of this material would weigh about 5 billion tons!). 
The escape speed from a neutron star is typically . 0.5c, where c is the speed 
of light.

An even more unusual death occurs when the core has a mass greater than 
about 2–3 solar masses. Neutron degeneracy pressure is unable to halt the collapse 
of the star, and the star becomes a very small object in space, commonly referred to 
as a black hole. In effect, black holes are remains of stars that have collapsed under 
their own gravitational force. If an object such as a spacecraft comes close to a black 
hole, the object experiences an extremely strong gravitational force and is trapped 
forever.

The escape speed for a black hole is very high because of the concentration of 
the star’s mass into a sphere of very small radius (see Eq. 13.23). If the escape speed 
exceeds the speed of light c, radiation from the object (such as visible light) cannot 
escape and the object appears to be black (hence the origin of the terminology 
“black hole”). The critical radius RS at which the escape speed is c is called the 
Schwarzschild radius (Fig. 13.15). The imaginary surface of a sphere of this radius 
surrounding the black hole is called the event horizon, which is the limit of how 
close you can approach the black hole and hope to escape.

There is evidence that supermassive black holes exist at the centers of galax-
ies, with masses very much larger than the Sun. (There is strong evidence of a 
supermassive black hole of mass 4.0–4.3 million solar masses at the center of our 
galaxy.)

dark Matter
Equation (1) in Example 13.5 shows that the speed of an object in orbit around the 
Earth decreases as the object is moved farther away from the Earth:

 v 5ÎGME

r
 (13.24)

Using data in Table 13.2 to find the speeds of planets in their orbits around the 
Sun, we find the same behavior for the planets. Figure 13.16 shows this behavior 
for the eight planets of our solar system. The theoretical prediction of the planet 
speed as a function of distance from the Sun is shown by the red-brown curve, 
using Equation 13.24 with the mass of the Earth replaced by the mass of the Sun. 
Data points for the individual planets lie right on this curve. This behavior results 
from the vast majority (99.9%) of the mass of the solar system being concentrated 
in a small space, i.e., the Sun.

Event
horizon

Black
hole

RS

Any event occurring within the  
event horizon is invisible to an 
outside observer.

Figure 13.15  A black hole. 
The distance RS equals the 
Schwarzschild radius.

Mercury
v (km/s)

r (1012 m)

Venus
Earth
Mars Jupiter

Saturn
Uranus

20

20

40

4

Neptune

Figure 13.16  The orbital speed 
v as a function of distance r from 
the Sun for the eight planets of 
the solar system. The theoretical 
curve is in red-brown, and the 
data points for the planets are 
in black.

 table 13.3  Escape Speeds 
from the Surfaces of the 
Planets, Moon, and Sun
Planet vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Moon 2.3
Sun (from Earth  
 orbit) 42
Sun (from Sun  
 surface) 618
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Extending this concept further, we might expect the same behavior in a galaxy. 
Much of the visible galactic mass, including that of a supermassive black hole, is 
near the central core of a galaxy. Measurements of the speeds of faraway objects in 
the galaxy can be used in Kepler’s third law to estimate the mass of the entire gal-
axy, a topic raised in the opening storyline. These estimates range from 0.8 3 1012  
to 4.5 3 1012 solar masses. Measurements made on these faraway objects are diffi-
cult and the results depend on the method used to make the observations. 

The opening photograph for this chapter shows the central core of the galaxy 
NGC 1566 as a very bright area surrounded by the “arms” of the galaxy, which 
contain material in orbit around the central core. Based on this distribution of 
matter in the galaxy, the speed of an object in the outer part of the galaxy would 
be smaller than that for objects closer to the center, just like for the planets of the 
solar system.

That is not what is observed, however. Figure 13.17 shows the results of mea-
surements of the speeds of objects in the Andromeda galaxy as a function of dis-
tance from the galaxy’s center.5 The red-brown curve shows the expected speeds 
for these objects if they were traveling in circular orbits around the mass con-
centrated in the central core. The data for the individual objects in the galaxy 
shown by the black dots are all well above the theoretical curve. These data, as 
well as an extensive amount of data taken over the past half century, show that 
for objects outside the central core of the galaxy, the curve of speed versus dis-
tance from the center of the galaxy is approximately f lat rather than decreasing 
at larger distances. Therefore, these objects (including our own Solar System in 
the Milky Way) are rotating faster than can be accounted for by gravity due to 
the visible galaxy! This surprising result means that there must be additional 
mass in a more extended distribution, causing these objects to orbit so fast, and 
has led scientists to propose the existence of dark matter. This matter is pro-
posed to exist in a large halo around each galaxy (with a radius up to 10 times 
as large as the visible galaxy’s radius). Because it is not luminous (i.e., does not 
emit electromagnetic radiation) it must be either very cold or electrically neu-
tral. Therefore, we cannot “see” dark matter, except through its gravitational 
effects.

The proposed existence of dark matter is also implied by earlier observations 
made on larger gravitationally bound structures known as galaxy clusters.6 These 
observations show that the orbital speeds of galaxies in a cluster are, on average, 
too large to be explained by the luminous matter in the cluster alone. The speeds 
of the individual galaxies are so high, they suggest that there is 50 times as much 
dark matter in galaxy clusters as in the galaxies themselves!

Why doesn’t dark matter affect the orbital speeds of planets like it does those 
of a galaxy? It seems that a solar system is too small a structure to contain enough 
dark matter to affect the behavior of orbital speeds. A galaxy or galaxy cluster, on 
the other hand, contains huge amounts of dark matter, resulting in the surprising 
behavior.

What, though, is dark matter? At this time, no one knows. One hypothesis claims 
that dark matter is based on a particle called a weakly interacting massive parti-
cle, or WIMP. If this theory is correct, calculations show that about 200 WIMPs 
pass through a human body at any given time. The new Large Hadron Collider in 
Europe (see Chapter 44) is the first particle accelerator with enough energy to pos-
sibly generate and detect the existence of WIMPs, which has generated much cur-
rent interest in dark matter. Keeping an eye on this research in the future should 
be exciting, and the creativity of physicists in generating whimsical names for newly 
proposed objects should be entertaining.

v (km/s)

r (1019 m)
20 40 60 800

200

400

600 Central
core

Figure 13.17  The orbital speed v 
of a galaxy object as a function of 
distance r from the center of the 
central core of the Andromeda 
galaxy. The theoretical curve is 
in red-brown, and the data points 
for the galaxy objects are in black. 
No data are provided on the left 
because the behavior inside the 
central core of the galaxy is more 
complicated.

5 V. C. Rubin and W. K. Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” 
Astrophysical Journal 159: 379–403 (1970).
6 F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophysical Journal 86: 217–246 (1937).
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summary
 › Definitions

The gravitational field at a point in space is defined as the gravitational force F
S

g  experienced by any test particle located at that 
point divided by the mass m0 of the test particle:

 gS ;
F
S

g

m0

 (13.7)

 › Concepts and Principles

Newton’s law of universal gravitation states that the gravitational 
force of attraction between any two particles of masses m1 and m2 
separated by a distance r has the magnitude

 Fg 5 G 
m1m2

r 2  (13.1)

where G 5 6.674 3 10211 N ? m2/kg2 is the universal gravitational 
constant. This equation enables us to calculate the force of attrac-
tion between masses under many circumstances.

The gravitational potential energy associated with a sys-
tem of two particles of mass m1 and m2 separated by a dis-
tance r is

 Ug(r) 5 2 

Gm1m2

r
 (13.15)

where Ug is taken to be zero as r S .̀

An object at a distance h above the Earth’s surface experiences a 
gravitational force of magnitude mg, where g is the free-fall accel-
eration at that elevation:

 g 5
GME

r 2 5
GME

sRE 1 hd2 (13.6)

In this expression, ME is the mass of the Earth and RE is its radius. 
Therefore, the weight of an object decreases as the object moves 
away from the Earth’s surface.

Kepler’s laws of planetary motion state:

1.  All planets move in elliptical orbits with the Sun at one focus.
2.  The radius vector drawn from the Sun to a planet sweeps 

out equal areas in equal time intervals.
3.  The square of the orbital period of any planet is proportional 

to the cube of the semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

 T 2 5 S 4p2

GMS
Da 3 (13.11)

where MS is the mass of the Sun and a is the semimajor axis. For a 
circular orbit, a can be replaced in Equation 13.11 by the radius r. 
Most planets have nearly circular orbits around the Sun.

The escape speed for an object projected from the surface 
of a planet of mass M and radius R is

 vesc 5Î2GM
R

 (13.23)

If an isolated system consists of an object of mass m moving 
with a speed v in the vicinity of a massive object of mass M, 
the total energy E of the system is the sum of the kinetic 
and potential energies:

 E 5 1
2mv2 2

GMm
r

 (13.16)

and the total energy of the system is a constant of the 
motion. If the object moves in an elliptical orbit of semima-
jor axis a around the massive object and M .. m, the total 
energy of the system is

 E 5 2 

GMm
2a

 (13.20)

For a circular orbit, this same equation applies with  
a 5 r.

 › Analysis Model for Problem Solving

Particle in a Field (Gravitational) A source particle with some mass establishes a gravitational field gS 
throughout space. When a particle of mass m is placed in that field, it experiences a gravitational force 
given by

 F
S

g 5 mgS (5.5)

mgS 

Fg � mg
S S
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think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Kepler’s third law should be obeyed for any group of objects 
orbiting a massive central object. Consider the five moons 
of Pluto: Charon, Styx, Nix, Kerberos, and Hydra. Data for 
these moons are given in the table below. If you evaluate the 
ratio T 2/a3 for these moons, where T is the orbital period and 
a is the length of the semimajor axis, the results are all very 
close, except for Charon, which doesn’t seem to follow Kepler’s 
third law. Discuss with your group why the value of the ratio 
T 2/a3 for Charon is different from those of the other moons.

Moon
Semimajor  

axis a (106 m)
Orbital period 

T (d)
Diameter 

(km)

Charon 17.54 6.387 1 208
Styx 42.66 20.16 ,12
Nix 48.69 24.85 ,40
Kerberos 57.78 32.17 ,14
Hydra 64.74 38.20 ,50

2. ACTIvITY  Jupiter has over 60 moons, most of them dis-
covered in the twenty-first century. The table shows astro-
nomically measured data for the first fifteen moons, in 
order of semimajor axis of the orbit around Jupiter. (a) For 
these moons, show that Kepler’s third law is satisfied within 
reasonable observational uncertainty for the data in the 
table. (b) Evaluate the ratio T 2/a3, where T is the orbital 
period and a is the length of the semimajor axis, for these 
moons and compare the results to the value for the solar 
system (Table 13.2). Why is the value of this ratio larger for 

the moons of Jupiter than for the solar system? (c) Before 
calculating the value of T 2/a3 from the data, could you have 
predicted what it would be?

Moon

Semimajor 
axis a  

(109 m)

Orbital 
period T  

(d) Eccentricity
Inclination 

Angle

Moons discovered by Galileo:

Io 0.421 7 1.769 1 0.004 1 0.05

Europa 0.671 0 3.551 2 0.009 4 0.47

Ganymede 1.070 4 7.154 6 0.001 1 0.20

Callisto 1.882 7 16.689 0.007 4 0.20

Inner moons:

Metis 0.127 7 0.294 8 0.000 02 0.06

Adrastea 0.128 7 0.298 3 0.001 5 0.03

Amalthea 0.181 4 0.498 2 0.003 2 0.37

Thebe 0.221 9 0.674 5 0.017 5 1.08

Outer moons:

Themisto 7.393 2 129.87 0.215 5 45.8

Leda 11.187 8 240.82 0.167 3 27.6

Himalia 11.452 0 250.23 0.151 3 30.5

Lysithea 11.740 6 259.89 0.132 2 27.0

Elara 11.778 0 257.62 0.194 8 29.7

Dia 12.570 4 287.93 0.205 8 27.6

Carpo 17.144 9 458.62 0.273 5 56.0

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

seCtIon 13.1 Newton’s Law of Universal Gravitation

1. In introductory physics laboratories, a typical Cavendish balance 
for measuring the gravitational constant G uses lead spheres 
with masses of 1.50 kg and 15.0 g whose centers are separated by 
about 4.50 cm. Calculate the gravitational force between these 
spheres, treating each as a particle located at the sphere’s center.

2. During a solar eclipse, the Moon, the Earth, and the Sun 
all lie on the same line, with the Moon between the Earth 
and the Sun. (a) What force is exerted by the Sun on the 
Moon? (b) What force is exerted by the Earth on the Moon? 
(c) What force is exerted by the Sun on the Earth? (d) Com-
pare the answers to parts (a) and (b). Why doesn’t the Sun 
capture the Moon away from the Earth?

3. Determine the order of magnitude of the gravitational force 
that you exert on another person 2 m away. In your solution, 
state the quantities you measure or estimate and their values.

4. Why is the following situation impossible? The centers of two 
homogeneous spheres are 1.00 m apart. The spheres are 
each made of the same element from the periodic table. 
The gravitational force between the spheres is 1.00 N.

seCtIon 13.2 Free-Fall Acceleration and the Gravitational Force

5. Review. Miranda, a satellite of Uranus, is shown in Fig-
ure P13.5a. It can be modeled as a sphere of radius 242 km 
and mass 6.68 3 1019 kg. (a) Find the free-fall acceleration on 
its surface. (b) A cliff on Miranda is 5.00 km high. It appears 
on the limb at the 11 o’clock position in Figure P13.5a and 
is magnified in Figure P13.5b. If a devotee of extreme sports 

T

a b

Figure P13.5
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354 Chapter 13 Universal Gravitation

runs horizontally off the top of the cliff at 8.50 m/s, for what 
time interval is he in flight? (c) How far from the base of 
the vertical cliff does he strike the icy surface of Miranda? 
(d) What will be his vector impact velocity?

seCtIon 13.3  Analysis Model: Particle in a Field (Gravitational)

6. (a) Compute the vector gravitational field at a point P on 
the perpendicular bisector of the line joining two objects 
of equal mass separated by a distance 2a as shown in Figure 
P13.6. (b) Explain physically why the field should approach 
zero as r S 0. (c) Prove mathematically that the answer to 
part (a) behaves in this way. (d) Explain physically why the 
magnitude of the field should approach 2GM/r2 as r S .̀ 
(e) Prove mathematically that the answer to part (a) behaves 
correctly in this limit.

7. A spacecraft in the shape of a long cylinder has a 
length of 100 m, and its mass with occupants is 1 000 kg.  
It has strayed too close to a black hole having a mass 100 
times that of the Sun (Fig. P13.7). The nose of the space-
craft points toward the black hole, and the distance between 
the nose and the center of the black hole is 10.0  km. 
(a) Determine the total force on the spacecraft. (b) What is 
the difference in the gravitational fields acting on the occu-
pants in the nose of the ship and on those in the rear of 
the ship, farthest from the black hole? (This difference in 
accelerations grows rapidly as the ship approaches the black 
hole. It puts the body of the ship under extreme tension and 
eventually tears it apart.)

seCtIon 13.4 Kepler’s Laws and the Motion of Planets

8. An artificial satellite circles the Earth in a circular orbit 
at a location where the acceleration due to gravity is  
9.00 m/s2. Determine the orbital period of the satellite.

9. You are out on a date, eating dinner in a restaurant that has 
several television screens. Most of the screens are showing 
sports events, but one near you and your date is showing a 
discussion of an upcoming voyage to Mars. (a) Your date 
says, “I wonder how long it takes to get to Mars?” Wanting to 
impress your date, you grab a napkin and draw Figure P13.9 
on it. Even more impressively, you tell your date that the 
minimum-energy transfer orbit from Earth to Mars is an 
elliptical trajectory with the departure planet correspond-
ing to the perihelion of the ellipse and the arrival planet at 

the aphelion. You pull out your smartphone, activate the cal-
culator feature, and perform a calculation on another nap-
kin to answer the question above that your date asked about 
the transfer time interval to Mars on this particular trajec-
tory. (b) What If? Your date is impressed, but then asks you 
to determine the transit time to an inner planet, like Venus.

10. A particle of mass m moves along a straight line with con-
stant velocity vS0 in the x direction, a distance b from the x 
axis (Fig. P13.10). (a) Does the particle possess any angular 
momentum about the origin? (b) Explain why the amount 
of its angular momentum should change or should stay 
constant. (c) Show that Kepler’s second law is satisfied by 
showing that the two shaded triangles in the figure have the 
same area when t

Ⓓ
 2 t

Ⓒ
 5 t

Ⓑ
 2 t

Ⓐ
.

11. Use Kepler’s third law to determine how many days it takes 
a spacecraft to travel in an elliptical orbit from a point 
6 670 km from the Earth’s center to the Moon, 385 000 km 
from the Earth’s center.

12. The Explorer VIII satellite, placed into orbit November 3, 
1960, to investigate the ionosphere, had the following orbit 
parameters: perigee, 459 km; apogee, 2 289 km (both dis-
tances above the Earth’s surface); period, 112.7 min. Find 
the ratio vp  /va of the speed at perigee to that at apogee.

13. Suppose the Sun’s gravity were switched off. The planets would 
leave their orbits and fly away in straight lines as described by 
Newton’s first law. (a) Would Mercury ever be farther from the 
Sun than Pluto? (b) If so, find how long it would take Mercury 
to achieve this passage. If not, give a convincing argument 
that Pluto is always farther from the Sun than is Mercury.

14. (a) Given that the period of the Moon’s orbit about the 
Earth is 27.32 days and the nearly constant distance between 
the center of the Earth and the center of the Moon is 3.84 3 
108 m, use Equation 13.11 to calculate the mass of the Earth. 
(b) Why is the value you calculate a bit too large?
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seCtIon 13.5  Gravitational Potential Energy

Note: In Problems 15 through 23, assume Ug 5 0 at r 5 .̀

15. How much energy is required to move a 1 000-kg object 
from the Earth’s surface to an altitude twice the Earth’s 
radius?

16. An object is released from rest at an altitude h above the sur-
face of the Earth. (a) Show that its speed at a distance r from 
the Earth’s center, where RE # r # RE 1 h, is

v 5Î2GMES1
r

2
1

R E 1 hD
  (b) Assume the release altitude is 500 km. Perform the 

integral

Dt 5 #
f

i
dt 5 2 #

f

i

dr
v

  to find the time of fall as the object moves from the release 
point to the Earth’s surface. The negative sign appears 
because the object is moving opposite to the radial direction, 
so its speed is v 5 2dr/dt. Perform the integral numerically.

17. A system consists of three particles, each of mass 5.00  g, 
located at the corners of an equilateral triangle with sides 
of 30.0 cm. (a) Calculate the gravitational potential energy 
of the system. (b) Assume the particles are released simulta-
neously. Describe the subsequent motion of each. Will any 
collisions take place? Explain.

seCtIon 13.6  Energy Considerations in Planetary  
and Satellite Motion

18. A “treetop satellite” moves in a circular orbit just above the 
surface of a planet, assumed to offer no air resistance. Show 
that its orbital speed v and the escape speed from the planet 
are related by the expression vesc 5 Ï2v.

19. A 500-kg satellite is in a circular orbit at an altitude of 
500 km above the Earth’s surface. Because of air friction, the 
satellite eventually falls to the Earth’s surface, where it hits 
the ground with a speed of 2.00 km/s. How much energy was 
transformed into internal energy by means of air friction?

20. Derive an expression for the work required to move an 
Earth satellite of mass m from a circular orbit of radius 2RE 
to one of radius 3RE.

21. An asteroid is on a collision course with Earth. An astronaut 
lands on the rock to bury explosive charges that will blow 
the asteroid apart. Most of the small fragments will miss the 
Earth, and those that fall into the atmosphere will produce 
only a beautiful meteor shower. The astronaut finds that the 
density of the spherical asteroid is equal to the average den-
sity of the Earth. To ensure its pulverization, she incorporates 
into the explosives the rocket fuel and oxidizer intended for 
her return journey. What maximum radius can the asteroid 
have for her to be able to leave it entirely simply by jumping 
straight up? On Earth she can jump to a height of 0.500 m.

22. (a) What is the minimum speed, relative to the Sun, neces-
sary for a spacecraft to escape the solar system if it starts at 
the Earth’s orbit? (b) Voyager 1 achieved a maximum speed 
of 125 000 km/h on its way to photograph Jupiter. Beyond 
what distance from the Sun is this speed sufficient to escape 
the solar system?

23. Ganymede is the largest of Jupiter’s moons. Consider a 
rocket on the surface of Ganymede, at the point farthest 
from the planet (Fig. P13.23). Model the rocket as a parti-
cle. (a) Does the presence of Ganymede make Jupiter exert 
a larger, smaller, or same size force on the rocket compared 
with the force it would exert if Ganymede were not inter-
posed? (b) Determine the escape speed for the rocket from 
the planet–satellite system. The radius of Ganymede is 
2.64 3 106 m, and its mass is 1.495 3 1023 kg. The distance 
between Jupiter and Ganymede is 1.071 3 109 m, and the 
mass of Jupiter is 1.90 3 1027 kg. Ignore the motion of Jupi-
ter and Ganymede as they revolve about their center of mass.

addItIonal ProbleMs

24. A rocket is fired straight up through the atmosphere from 
the South Pole, burning out at an altitude of 250 km when 
traveling at 6.00 km/s. (a) What maximum distance from 
the Earth’s surface does it travel before falling back to the 
Earth? (b) Would its maximum distance from the surface 
be larger if the same rocket were fired with the same fuel 
load from a launch site on the equator? Why or why not?

25. Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s 
moon Io and photographed active volcanoes spewing liquid 
sulfur to heights of 70 km above the surface of this moon. 
Find the speed with which the liquid sulfur left the volcano. 
Io’s mass is 8.9 3 1022 kg, and its radius is 1 820 km.

26. After reading Sections 13.2 and 13.3, your classmate looks 
online to gather information about neutron stars. He finds 
that a typical radius of a neutron star is 10 km, a typical 
mass is two solar masses, and that a typical rotation period is 
as short as 1.4 ms. He suggests that if a spherical neutron star 
were spinning that fast, it seems that material at the equator 
of the sphere would be flung away because the gravity of the 
star could not supply the needed centripetal acceleration of 
the material. Prepare an argument that shows that the grav-
ity at the surface of a neutron star is more than sufficient 
to provide the centripetal acceleration. (Note: Neutron stars 
typically have the same mass as our Sun.)

27. You are on a space station, in a circular orbit h 5 500 km 
above the surface of the Earth. You complete your tasks 
several days early and must wait for the next mission from 
the surface to bring you home. After days of boredom, you 
decide to play some golf. Walking on the space station sur-
face with magnetic shoes, you tee up a golf ball. You hit it 
with all of your might, sending it off with speed vrel, relative 
to the space station, in a direction parallel to the velocity 
vector of the space station at the moment the ball is hit. You 
notice that you then orbit the Earth exactly n 5 2.00 times 
and you reach up and catch the golf ball as it returns to the 
space station. With what speed vrel was the golf ball hit? Note: 
Your result will be unrealistically high—much higher than it 
is possible for a human to hit a golf ball.
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28. Why is the following situation impossible? A spacecraft is 
launched into a circular orbit around the Earth and circles 
the Earth once an hour.

29. Let DgM represent the difference in the gravitational fields 
produced by the Moon at the points on the Earth’s surface 
nearest to and farthest from the Moon. Find the fraction 
DgM/g, where g is the Earth’s gravitational field. (This dif-
ference is responsible for the occurrence of the lunar tides 
on the Earth.)

30. A sleeping area for a long space voyage consists of two cab-
ins each connected by a cable to a central hub as shown in 
Figure P13.30. The cabins are set spinning around the hub 
axis, which is connected to the rest of the spacecraft to gen-
erate artificial gravity in the cabins. A space traveler lies in a 
bed parallel to the outer wall as shown in Figure P13.30. (a) 
With r 5 10.0 m, what would the angular speed of the 60.0-
kg traveler need to be if he is to experience half his normal 
Earth weight? (b) If the astronaut stands up perpendicular 
to the bed, without holding on to anything with his hands, 
will his head be moving at a faster, a slower, or the same tan-
gential speed as his feet? Why? (c) Why is the action in part 
(b) dangerous?

31. (a) A space vehicle is launched vertically upward from the 
Earth’s surface with an initial speed of 8.76 km/s, which is 
less than the escape speed of 11.2 km/s. What maximum 
height does it attain? (b) A meteoroid falls toward the Earth. 
It is essentially at rest with respect to the Earth when it is 
at a height of 2.51 3 107 m above the Earth’s surface. With 
what speed does the meteorite (a meteoroid that survives to 
impact the Earth’s surface) strike the Earth?

32. (a) A space vehicle is launched vertically upward from the 
Earth’s surface with an initial speed of vi that is compara-
ble to but less than the escape speed vesc. What maximum 
height does it attain? (b) A meteoroid falls toward the 
Earth. It is essentially at rest with respect to the Earth when 
it is at a height h above the Earth’s surface. With what speed 
does the meteorite (a meteoroid that survives to impact the 
Earth’s surface) strike the Earth? (c) What If? Assume a 
baseball is tossed up with an initial speed that is very small 
compared to the escape speed. Show that the result from 
part (a) is consistent with Equation 4.19.

33. Assume you are agile enough to run across a horizontal sur-
face at 8.50 m/s, independently of the value of the gravita-
tional field. What would be (a) the radius and (b) the mass 
of an airless spherical asteroid of uniform density 1.10 3 
103 kg/m3 on which you could launch yourself into orbit by 
running? (c) What would be your period? (d) Would your 
running significantly affect the rotation of the asteroid? 
Explain.

34. Two spheres having masses M and 2M and radii R and 3R, 
respectively, are simultaneously released from rest when 
the distance between their centers is 12R. Assume the two 
spheres interact only with each other and we wish to find 
the speeds with which they collide. (a) What two isolated 
system models are appropriate for this system? (b) Write 
an equation from one of the models and solve it for vS1, the 
velocity of the sphere of mass M at any time after release in 
terms of vS2, the velocity of 2M. (c) Write an equation from 
the other model and solve it for speed v1 in terms of speed 
v2 when the spheres collide. (d) Combine the two equations 
to find the two speeds v1 and v2 when the spheres collide.

35. (a) Show that the rate of change of the free-fall acceleration 
with vertical position near the Earth’s surface is

dg

dr
5 2 

2GME

R E
3

  This rate of change with position is called a gradient. 
(b) Assuming h is small in comparison to the radius of the 
Earth, show that the difference in free-fall acceleration 
between two points separated by vertical distance h is

uDg u 5
2GMEh

R E
3

  (c) Evaluate this difference for h 5 6.00 m, a typical height 
for a two-story building.

36. A certain quaternary star system consists of three stars, 
each of mass m, moving in the same circular orbit of radius 
r about a central star of mass M. The stars orbit in the same 
sense and are positioned one-third of a revolution apart 
from one another. Show that the period of each of the three 
stars is given by

T 5 2pÎ r 3

G sM 1 myÏ3d

37. Studies of the relationship of the Sun to our galaxy—
the Milky Way—have revealed that the Sun is located 
near the outer edge of the galactic disc, about 30 000 ly  
(1 ly  5 9.46  3 1015 m) from the center. The Sun has an 
orbital speed of approximately 250 km/s around the galactic 
center. (a) What is the period of the Sun’s galactic motion? 
(b) What is the order of magnitude of the mass of the Milky 
Way galaxy? (c) Suppose the galaxy is made mostly of stars 
of which the Sun is typical. What is the order of magnitude 
of the number of stars in the Milky Way?

38. Review. Two identical hard spheres, each of mass m and 
radius r, are released from rest in otherwise empty space 
with their centers separated by the distance R. They are 
allowed to collide under the influence of their gravitational 
attraction. (a) Show that the magnitude of the impulse 
received by each sphere before they make contact is given 
by [Gm3(1/2r 2 1/R)]1/2. (b) What If? Find the magnitude 
of the impulse each receives during their contact if they col-
lide elastically.

39. The maximum distance from the Earth to the Sun (at 
aphelion) is 1.521 3 1011 m, and the distance of closest 
approach (at perihelion) is 1.471 3 1011 m. The Earth’s 
orbital speed at perihelion is 3.027 3 104 m/s. Determine 
(a) the Earth’s orbital speed at aphelion and the kinetic 
and potential energies of the Earth–Sun system (b) at 

r

ω

Figure P13.30
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perihelion and (c) at aphelion. (d) Is the total energy of the 
system constant? Explain. Ignore the effect of the Moon and 
other planets.

40. Many people assume air resistance acting on a moving 
object will always make the object slow down. It can, how-
ever, actually be responsible for making the object speed up. 
Consider a 100-kg Earth satellite in a circular orbit at an alti-
tude of 200 km. A small force of air resistance makes the sat-
ellite drop into a circular orbit with an altitude of 100 km. 
(a) Calculate the satellite’s initial speed. (b) Calculate its 
final speed in this process. (c) Calculate the initial energy 
of the satellite–Earth system. (d) Calculate the final energy 
of the system. (e) Show that the mechanical energy of the 
system has decreased and find the amount of the decrease 
due to friction. (f) What force makes the satellite’s speed 
increase? Hint: You will find a free-body diagram useful in 
explaining your answer.

41. Consider an object of mass m, not necessarily small  
compared with the mass of the Earth, released at a distance 
of 1.20 3 107 m from the center of the Earth. Assume the 
Earth and the object behave as a pair of particles, isolated 
from the rest of the Universe. (a) Find the magnitude of 
the acceleration arel with which each starts to move relative 
to the other as a function of m. Evaluate the acceleration 
(b) for m 5 5.00 kg, (c) for m 5 2 000 kg, and (d) for m 5 
2.00 3 1024 kg. (e) Describe the pattern of variation of arel 
with m.

42. Show that the minimum period for a satellite in orbit 
around a spherical planet of uniform density r is

Tmin 5Î3p

Gr

  independent of the planet’s radius.

43. As thermonuclear fusion proceeds in its core, the Sun loses 
mass at a rate of 3.64 3 109 kg/s. During the 5 000-yr period 
of recorded history, by how much has the length of the year 
changed due to the loss of mass from the Sun? Suggestions: 
Assume the Earth’s orbit is circular. No external torque acts 
on the Earth–Sun system, so 
the angular momentum of the 
Earth is constant.

44. Two stars of masses M and 
m, separated by a distance d, 
revolve in circular orbits about 
their center of mass (Fig. 
P13.44). Show that each star 
has a period given by

T 2 5
4p2d 3

G sM 1 md

CHallenge ProbleM

45. The Solar and Heliospheric Observatory (SOHO) space-
craft has a special orbit, located between the Earth and 
the Sun along the line joining them, and it is always close 
enough to the Earth to transmit data easily. Both objects 
exert gravitational forces on the observatory. It moves 
around the Sun in a near-circular orbit that is smaller 
than the Earth’s circular orbit. Its period, however, is not 
less than 1 yr but just equal to 1 yr. Show that its distance 
from the Earth must be 1.48 3 109 m. In 1772, Joseph Louis 
Lagrange determined theoretically the special location 
allowing this orbit. Suggestions: Use data that are precise to 
four digits. The mass of the Earth is 5.974 3 1024 kg. You 
will not be able to easily solve the equation you generate; 
instead, use a computer to verify that 1.48 3 109 m is the 
correct value.

M

CM

r1

r2d

m

v2
Sv1

S

Figure P13.44
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14.1 Pressure

14.2 Variation of Pressure  
with Depth

14.3 Pressure 
Measurements

14.4 Buoyant Forces and 
Archimedes’s Principle

14.5 Fluid Dynamics

14.6 Bernoulli’s Equation

14.7 Flow of Viscous Fluids 
in Pipes

14.8 Other Applications  
of Fluid Dynamics

Storyline It is an academic holiday and you are spending some 
time with your grandparents in Denver, Colorado. After visiting with them, your 
trip continues as you board an airplane to fly from Denver to see your other 
grandparents in Boston, Massachusetts. As the plane accelerates at the Denver 
airport, you notice that it is taking quite a while, compared to your previous flying 
experience, for the plane to leave the ground. You begin to worry that the plane 
will run out of runway length before it takes off. Finally, the plane lifts off and 
you breathe a sigh of relief. You think, “Why did it take so long for the plane to 
lift off? It didn’t take that long when I took off for my flight from Los Angeles.” 
Deciding that it would be worth it to pay for the Wi-Fi service on the plane, you 
look up runway lengths online. The longest runway at the airport at Los Angeles, 
at sea level, is 12 091 ft. The longest runway at Denver is 16 000 ft. The longest 
runway in the world is at Qamdo Bamda Airport in China: 18 045 ft. That airport 
is also at the second highest altitude in the world for an airport: 14 219 ft. (It was 
the highest until 2013.) Is there a relationship between airport altitude and runway 
length? Why?

ConneCtions In the previous chapters, we have considered the mechan-
ics of particles, systems, and rigid objects. Forces on these particles and objects 
have been applied by hands, strings, inclined planes, gravity, etc. In this chapter, 
we consider the forces acting between an object and a fluid. A fluid is a collec-
tion of molecules that are randomly arranged and held together by weak cohesive 
forces between molecules and also by forces exerted by the container holding 
the fluid. Both liquids and gases are fluids. We discussed such a situation briefly 
in Section 6.4, when we considered the resistive forces on objects moving  

An airplane takes off from an airport runway. How long does the runway have to be?  
(F. JIMENEZ MECA/Shutterstock)

Fluid Mechanics14
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    14.1 Pressure 359

through fluids. Here we will discuss forces that fluids exert on objects that are at 
rest relative to the fluid. This discussion will lead to an important new quantity, 
pressure, and a force called the buoyant force, which is not a new type of force, 
but our familiar forces acting in a specific situation. We will also investigate the 
physics of moving fluids in the later sections of this chapter. Understanding the 
concepts of moving fluids is important for a wide range of applications, from 
plumbing systems to automobile aerodynamics to blood flow in veins and arteries.

   14.1    Pressure
Fluids do not sustain shearing stresses or tensile stresses such as those discussed in 
Chapter 12; therefore, the only stress that can be exerted on an object submerged 
in a static fluid is one that tends to compress the object from all sides. In other 
words, the force exerted by a static fluid on an object is always perpendicular to 
the surfaces of the object as shown in Figure 14.1. We discussed this situation in 
Section 12.4.

The pressure in a fluid can be measured with the device pictured in Figure 14.2. 
The device consists of an evacuated cylinder that encloses a light piston connected 
to a spring. As the device is submerged in a fluid, the fluid presses on the piston 
and compresses the spring until the inward force exerted by the fluid is balanced 
by the outward force exerted by the spring. The fluid pressure can be measured 
directly if the spring is calibrated in advance. If F is the magnitude of the force 
exerted on the piston and A is the surface area of the piston, the pressure P of the 
fluid at the level to which the device has been submerged is defined as the ratio of 
the force exerted on the piston to its area:

 P ;
F
A

  (14.1)

Pressure is a scalar quantity because it is proportional to the magnitude of the force 
on the piston.

If the pressure varies over an area, the infinitesimal force dF on an infinitesimal 
surface element of area dA is

 dF 5 P dA (14.2)

where P is the pressure at the location of the area dA. To calculate the total force 
exerted on a surface of a container, we must integrate Equation 14.2 over the surface.

The units of pressure are newtons per square meter (N/m2) in the SI system. 
Another name for the SI unit of pressure is the pascal (Pa):

 1 Pa ; 1 N/m2 (14.3)

For a tactile demonstration of the definition of pressure, hold a tack between 
your thumb and forefinger, with the point of the tack on your thumb and the head 
of the tack on your forefinger. Now gently press your thumb and forefinger together. 
Your thumb will begin to feel pain immediately while your forefinger will not. The 
tack is exerting the same force on both your thumb and forefinger, but the pres-
sure on your thumb is much larger because of the small area over which the force  
is applied.

Q uIck QuIz 14.1  Suppose you are standing directly behind someone who 
steps back and accidentally stomps on your foot with the heel of one shoe. 
Would you be better off if that person were (a) a large, male professional basket-
ball player wearing sneakers or (b) a petite woman wearing spike-heeled shoes?

At any point on the surface of 
the object, the force exerted by 
the fluid is perpendicular to the 
surface of the object.

Figure 14.1  The forces exerted 
by a fluid on the surfaces of a sub-
merged object.

Vacuum

A

F
S

Figure 14.2  A simple device for 
measuring the pressure exerted 
by a fluid.

PItfall PreventIon 14.1
Force and Pressure Equations 
14.1 and 14.2 make a clear distinc-
tion between force and pressure. 
Another important distinction is 
that force is a vector and pressure is a 
scalar. There is no direction associ-
ated with pressure, but the direc-
tion of the force associated with the 
pressure is perpendicular to the 
surface on which the pressure acts.
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360 Chapter 14 Fluid Mechanics

 Example 14.1    The Water Bed

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep.

(A)  Find the weight of the water in the mattress.

S O L U T I O N

Conceptualize  Think about carrying a jug of water and how heavy it is. Now imagine a sample of water the size of a water bed. 
We expect the weight to be relatively large.

Categorize  This example is a substitution problem.

Find the volume of the water filling the mattress: V 5 ,wh

Use Equation 1.1 and the density of fresh water (see  Mg 5 ( rV  )g 5 rg,wh 
Table 14.1) to find the weight of the water bed:

Substitute numerical values: Mg 5 (1 000 kg/m3)(9.80 m/s2)(2.00 m)(2.00 m)(0.300 m)  
       5  1.18 3 104 N

which is approximately 2 650 lb. (A regular bed, including mattress, box spring, and metal frame, weighs approximately  
300 lb.) Because this load is so great, it is best to place a water bed in the basement or on a sturdy, well-supported floor.

(B)  Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the entire 
lower surface of the bed makes contact with the floor.

S O L U T I O N

When the water bed is in its normal position, the area in  P 5
Mg

/w
5

1.18 3 104 N
s2.00 mds2.00 md

5 2.94 3 103 Pa  
contact with the floor is A 5 ,w. Use Equation 14.1 to find  
the pressure:

W H A T  I F ? What if the water bed is replaced by a 300-lb regular bed that is supported by four legs? Each leg has a 
circular cross section of radius 2.00 cm. What pressure does this bed exert on the floor?

Answer  The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. Therefore,  
the pressure is

 P 5
F
A

5
mg

4spr 2d
 5

300 lb
4ps0.020 0 md2 S 1 N

0.225 lbD
 5 2.65 3 105 Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even though it is 
much less than the weight of the water bed, is applied over the very small area of the four legs. The high pressure on the floor 
at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.

   14.2    Variation of Pressure with Depth
As divers well know, water pressure increases with depth, resulting in a feeling of 
discomfort in the ears of the diver. Likewise, atmospheric pressure decreases with 
increasing altitude; for this reason, aircraft flying at high altitudes must have pres-
surized cabins for the comfort of the passengers.

We now show details of how the pressure in a liquid increases with depth. As 
Equation 1.1 describes, the density of a substance is defined as its mass per unit 
volume; Table 14.1 lists the densities of various substances. These values vary 
slightly with temperature because the volume of a substance is dependent on 
temperature (as shown in Chapter 18). Under standard conditions (at 08C and at 
atmospheric pressure), the densities of gases are about 1

1 000 the densities of solids 
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    14.2 Variation of Pressure with Depth 361

and liquids. This difference in densities implies that the average molecular spac-
ing in a gas under these conditions is about ten times greater than that in a solid 
or liquid.

Now consider a liquid of density r at rest as shown in Figure 14.3. We assume r 
is uniform throughout the liquid, which means the liquid is incompressible. Let us 
select a parcel of the liquid contained within an imaginary block of cross-sectional 
area A extending from depth d to depth d 1 h. The liquid external to our parcel 
exerts forces at all points on the surface of the parcel, perpendicular to the surface. 
The pressure exerted by the liquid on the bottom face of the parcel is P, and the 
pressure on the top face is P0. Therefore, the upward force exerted by the outside 
fluid on the bottom of the parcel has a magnitude PA, and the downward force 
exerted on the top has a magnitude P0A. The mass of liquid in the parcel is M 5 
rV 5 rAh; therefore, the weight of the liquid in the parcel is Mg 5 rAhg. Because the 
parcel is at rest and remains at rest, it can be modeled as a particle in equilibrium, 
so that the net force acting on it must be zero. Choosing upward to be the positive 
y direction, we see that

 o F
S

5 PA j
⁄

2 P0A j
⁄

2 Mg j
⁄

5 0 

or

 PA 2 P0A 2 rAhg 5 0 

 P 5 P0 1 rgh  (14.4)

That is, the pressure P at a depth h below a point in the liquid at which the pressure 
is P0 is greater by an amount rgh. If the liquid is open to the atmosphere and P0 is 
the pressure at the surface of the liquid, then P0 is atmospheric pressure. In our 
calculations and working of end-of-chapter problems, we usually take atmospheric 
pressure to be

 P0 5 1.00 atm 5 1.013 3 105 Pa 

Equation 14.4 implies that the pressure is the same at all points having the same 
depth, independent of the shape of the container.

Because the pressure in a fluid depends on depth and on the value of P0, any 
increase in pressure at the surface must be transmitted to every other point in the 
fluid. This concept was first recognized by French scientist Blaise Pascal (1623–1662)  
and is called Pascal’s law: a change in the pressure applied to a fluid is transmit-
ted undiminished to every point of the fluid and to the walls of the container.

   Variation of pressure  
with depth

 Pascal’s law

Substance r (kg/m3) Substance r (kg/m3)

Air 1.29 
Air (at 20°C and 
 atmospheric pressure) 1.20
Aluminum 2.70 3 103

Benzene 0.879 3 103

Brass 8.4 3 103

Copper 8.92 3 103

Ethyl alcohol 0.806 3 103

Fresh water 1.00 3 103

Glycerin 1.26 3 103

Gold 19.3 3 103

Helium gas 1.79 3 1021

Hydrogen gas 8.99 3 1022

Ice 0.917 3 103

Iron 7.86 3 103

Lead 11.3 3 103

Mercury 13.6 3 103

Nitrogen gas 1.25
Oak 0.710 3 103

Osmium 22.6 3 103

Oxygen gas 1.43
Pine 0.373 3 103

Platinum 21.4 3 103

Seawater 1.03 3 103

Silver 10.5 3 103

Tin 7.30 3 103

Uranium 19.1 3 103

 table 14.1  Densities of Some Common Substances at Standard Temperature (08C) 
and Pressure (Atmospheric)

�Mg PA j

�P0A j

d

d � h 

ˆ

ˆĵ

The parcel of fluid is in 
equilibrium, so the net 
force on it is zero.

Figure 14.3  A parcel of fluid in a 
larger volume of fluid is singled out.
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362 Chapter 14 Fluid Mechanics

An important application of Pascal’s law is the hydraulic lift illustrated in  
Figure 14.4a. A force of magnitude F1 is applied to a small piston of surface area 
A1. The pressure is transmitted through an incompressible liquid to a larger pis-
ton of surface area A2. Because the pressure must be the same on both sides,  
P 5 F1/A1 5 F2/A2. Therefore, the force F2 is greater than the force F1 by a factor of  
A2/A1. By designing a hydraulic lift with appropriate areas A1 and A2, a large output 
force can be applied by means of a small input force. Hydraulic brakes, car lifts, 
hydraulic jacks, and forklifts all make use of this principle (Fig. 14.4b).

Because liquid is neither added to nor removed from the system, the volume 
of liquid pushed down on the left in Figure 14.4a as the piston moves downward 
through a displacement Dx1 equals the volume of liquid pushed up on the right as 
the right piston moves upward through a displacement Dx2. That is, A1 Dx1 5 A2 Dx2;  
therefore, A2/A1 5 Dx1/Dx2. We have already shown that A2/A1 5 F2/F1. Therefore, 
F2/F1 5 Dx1/Dx2, so F1 Dx1 5 F2 Dx2. Each side of this equation is the work done by 
the force on its respective piston. Therefore, the work done by F

S
1 on the input pis-

ton equals the work done by F
S

2 on the output piston, as it must to conserve energy. 
(The process can be modeled as a special case of the nonisolated system model: the 
nonisolated system in steady state. There is energy transfer into and out of the system, 
but these energy transfers balance, so that there is no net change in the energy of 
the system.) One could also consider the equation as indicating that you “trade” 
force for distance. Imagine jacking up a car. You can lift a heavy car with a relatively 
small force on the jack handle from your hand, but you have to move your hand 
through a very large total distance when you add up all the times you must move 
the end of the handle up and down!

Q uIck QuIz 14.2  The pressure at the bottom of a filled glass of water (r 5  
1 000 kg/m3) is P. The water is poured out, and the glass is filled with ethyl alco-
hol (r 5 806 kg/m3). What is the pressure at the bottom of the glass? (a) smaller 
than P   (b) equal to P   (c) larger than P   (d) indeterminate

Figure 14.4  (a) Diagram of 
a hydraulic lift. (b) A vehicle 
 undergoing repair is supported  
by a hydraulic lift in a garage.
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Because the increase in 
pressure is the same on 
the two sides, a small
force F1 at the left 
produces a much greater 
force F2 at the right.
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 Example 14.2     The Car Lift

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular cross section of 
radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of 15.0 cm. 

(A) What force must the compressed air exert to lift a car weighing 13 300 N?

S O L U T I O N

Conceptualize  Review the material just discussed about Pascal’s law to understand the operation of a car lift.
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    14.2 Variation of Pressure with Depth 363

14.2 c o n t i n u e d

Categorize  This example is a substitution problem.

Solve F1/A1 5 F2/A2 for F1:  F1 5 SA1

A2
DF2 5

p s5.00 3 1022 md2

p s15.0 3 1022 md2 s1.33 3 104 Nd

      5 1.48 3 103 N

(B) What air pressure produces this force?

S O L U T I O N

Use Equation 14.1 to find the air pressure that produces   P 5
F1

A1

5
1.48 3 103 N

p s5.00 3 1022 md2 
this force:   

5 1.88 3 105 Pa
This pressure is approximately twice atmospheric pressure.

 Example 14.3     A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a pool that  
is 5.0 m deep.

S O L U T I O N

Conceptualize  As you descend in the water, the pressure increases. You may have noticed this increased pressure in your 
ears while diving in a swimming pool, a lake, or the ocean. We can find the pressure difference exerted on the eardrum from 
the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine the net force the water 
exerts on it.

Categorize  This example is a substitution problem.

The air inside the middle ear is normally at atmospheric pressure P0. Therefore, to find the net force on the eardrum, we must 
consider the difference between the total pressure Pbot at the bottom of the pool and atmospheric pressure. Let’s estimate 
the surface area of the eardrum to be approximately 1 cm2 5 1 3 1024 m2.

Use Equation 14.4 to find this pressure  Pbot 2 P0 5 rgh 
difference:      5 (1.00 3 103 kg/m3)(9.80 m/s2)(5.0 m) 5 4.9 3 104 Pa

Use Equation 14.1 to find the magnitude of the  F 5 (Pbot 2 P0)A 5 (4.9 3 104 Pa)(1 3 1024 m2) < 5 N  
net force on the ear:

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while under 
water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure on the two 
sides of the eardrum and relieves the discomfort.

 Example 14.4     The Force on a Dam

Water is filled to a height H behind a dam of width w (Fig. 14.5, page 364). Determine the resultant force exerted by the water  
on the dam.

S O L U T I O N

Conceptualize  Because pressure varies with depth, we cannot calculate the force simply by multiplying the area by the pres-
sure. As the pressure in the water increases with depth, the force on the adjacent portion of the dam also increases.

Categorize  Because of the variation of pressure with depth, we must use integration to solve this example, so we categorize it 
as an analysis problem.

continued
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364 Chapter 14 Fluid Mechanics

14.4 c o n t i n u e d

Analyze  Let’s imagine a vertical y axis, with y 5 0 at the bottom of the dam. We divide 
the face of the dam into narrow horizontal strips at a distance y above the bottom, such 
as the red strip in Figure 14.5. The pressure on each such strip is due only to the water; 
atmospheric pressure acts on both sides of the dam.

Use Equation 14.4 to calculate the pressure  P 5 rgh 5 rg(H 2 y) 
due to the water at the depth h :

Use Equation 14.2 to find the force exerted  dF 5 P dA 5 rg(H 2 y)w dy 
on the shaded strip of area dA 5 w dy :

Integrate to find the total force on the dam: F 5 #P dA 5 #
H

0
rg sH 2 ydw dy 5 1

2rgwH 2

Finalize Notice that the thickness of the dam shown in Figure 14.5 increases with 
depth. This design accounts for the greater force the water exerts on the dam at greater 
depths.

W H A T  I F ? What if you were asked to find this force without using calculus? How could you determine its value?

Answer  We know from Equation 14.4 that pressure varies linearly with depth. Therefore, the average pressure due to the 
water over the face of the dam is the average of the pressure at the top and the pressure at the bottom:

Pavg 5
Ptop 1 Pbottom

2
5

0 1 rgH

2
5 1

2rgH

The total force on the dam is equal to the product of the average pressure and the area of the face of the dam:

F 5 Pavg A 5 _ 
1
2rgH +sHwd 5 1

2rgwH 2

which is the same result we obtained using calculus.

O

dy

y

h

w

H

y

x

Figure 14.5  (Example 14.4) Water 
exerts a force on a dam.

   14.3    Pressure Measurements
During the weather report on a television news program, the barometric pressure is 
often provided. This reading is the current local pressure of the atmosphere, which 
varies over a small range from the standard value for P0 provided earlier. How is 
this pressure measured?

One instrument used to measure atmospheric pressure is the common barom-
eter, invented by Evangelista Torricelli (1608–1647). A long tube closed at one end 
is filled with mercury and then inverted into a container of mercury (Fig. 14.6a). 
The closed end of the tube is nearly a vacuum, so the pressure at the top of the 
mercury column can be taken as zero. In Figure 14.6a, the pressure at point A, due 
to the column of mercury, must equal the pressure at point B, due to the atmo-
sphere. If that were not the case, there would be a net force that would move mer-
cury from one point to the other until equilibrium is established. Therefore, P0 5 
rHggh, where rHg is the density of the mercury and h is the height of the mercury 
column. As atmospheric pressure varies, the height of the mercury column varies, 
so the height can be calibrated to measure atmospheric pressure. Let us determine 
the height of a mercury column for one atmosphere of pressure, P0 5 1 atm 5  
1.013 3 105 Pa:

P0 5 rHggh S h 5
P0

rHgg
5

1.013 3 105 Pa
s13.6 3 103 kgym3ds9.80 mys2d

5 0.760 m

Based on such a calculation, one atmosphere of pressure is defined to be the pres-
sure equivalent of a column of mercury that is exactly 0.760 0 m in height at 08C.

a

P � 0

P

P0

P0

A B

h

h

A B

b

Figure 14.6  Two devices for 
measuring pressure: (a) a mercury 
barometer and (b) an open-tube 
manometer.
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A device for measuring the pressure of a gas contained in a vessel is the open-
tube manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing 
a liquid is open to the atmosphere, and the other end is connected to a container of 
gas at pressure P. In an equilibrium situation, the pressures at points A and B must 
be the same (otherwise, the curved portion of the liquid between points A and B 
would experience a net force and would accelerate), and the pressure at A is the 
unknown pressure of the gas. Therefore, equating the unknown pressure P to the 
pressure at point B, we see that P 5 P0 1 rgh. Again, we can calibrate the height h 
to the pressure P.

The difference in the pressures in each part of Figure 14.6 (that is, P 2 P0) is 
equal to rgh. The pressure P is called the absolute pressure, and the difference 
P 2 P0 is called the gauge pressure. For example, the pressure you measure in your 
bicycle tire is gauge pressure, the difference between the absolute pressure of the 
air inside the tire and the atmospheric pressure outside the tire.

Q uIck QuIz 14.3  Several common barometers are built, with a variety of flu-
ids. For which of the following fluids will the column of fluid in the barometer 
be the highest? (a) mercury   (b) water   (c) ethyl alcohol   (d) benzene

   14.4    Buoyant Forces and Archimedes’s Principle
Have you ever tried to push a beach ball down under water (Fig. 14.7a)? It is 
extremely difficult to do because of the large upward force exerted by the water 
on the ball. The upward force exerted by a fluid on any immersed object is called 
a buoyant force. The buoyant force is what allows huge ships made of steel to float 
on the surface of the ocean. We can determine the magnitude of a buoyant force 
by applying some logic. Imagine a beach ball–sized parcel of water beneath the 
water surface as in Figure 14.7b. Because this parcel can be modeled as a particle 
in equilibrium, there must be an upward force that balances the downward gravi-
tational force on the parcel. This upward force is the buoyant force, and its magni-
tude is equal to the weight of the water in the parcel. The buoyant force is the resultant 
force on the parcel due to all forces applied on the parcel by the fluid surrounding  
the parcel.

Now imagine replacing the beach ball–sized parcel of water with an actual 
beach ball of the same size. The net force applied to the spherical volume indi-
cated by the dashed line in Figure 14.7b is due to the surrounding fluid and 
is the same, regardless of whether it is applied to a beach ball or to a parcel of 
water. Consequently, the magnitude of the buoyant force on an object always 
equals the weight of the fluid displaced by the object. This statement is known 
as Archimedes’s principle.

With the beach ball under water, the buoyant force, equal to the weight of a 
beach ball–sized parcel of water, is much larger than the weight of the beach ball. 

a b

The buoyant force B 
on a beach ball that 
replaces this parcel 
of water is exactly the 
same as the buoyant 
force on the parcel.

B
S

Fg
S

S

Figure 14.7  (a) A swimmer 
pushes a beach ball under water. 
(b) The forces on a beach  
ball–sized parcel of water.

archimedes
Greek Mathematician, Physicist, 
and Engineer (c. 287–212 BC)
Archimedes was perhaps the greatest 
scientist of antiquity. He was the first to 
compute accurately the ratio of a circle’s 
circumference to its diameter, and he 
also showed how to calculate the volume 
and surface area of spheres, cylinders, 
and other geometric shapes. He is well 
known for discovering the nature of the 
buoyant force and was also a gifted 
inventor. One of his practical inventions, 
still in use today, is Archimedes’s screw, 
an inclined, rotating, coiled tube used 
originally to lift water from the holds of 
ships. He also invented the catapult and 
devised systems of levers, pulleys, and 
weights for raising heavy loads. Such 
inventions were successfully used to 
defend his native city, Syracuse, during a 
two-year siege by Romans.
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Therefore, there is a large net upward force on the ball, which explains why it is 
so hard to hold the beach ball under the water. Note that Archimedes’s principle 
does not refer to the makeup of the object experiencing the buoyant force. The 
object’s composition is not a factor in the buoyant force because the buoyant force 
is exerted by the surrounding fluid.

To better understand the origin of the buoyant force, consider a cube of solid 
material immersed in a liquid as in Figure 14.8. According to Equation 14.4, the 
pressure Pbot at the bottom of the cube is greater than the pressure Ptop at the top 
by an amount  rfluidgh, where h is the height of the cube and rfluid is the density of the 
fluid. The pressure at the bottom of the cube causes an upward force equal to PbotA, 
where A is the area of the bottom face. The pressure at the top of the cube causes a 
downward force equal to PtopA. The resultant of these two forces is the buoyant force 
B
S

 with magnitude

 B 5 (Pbot 2 Ptop)A 5 (rfluidgh)A 

 B 5 rfluidgVdisp  (14.5)

where Vdisp 5 Ah is the volume of the fluid displaced by the cube. Because the prod-
uct rfluidVdisp is equal to the mass of fluid displaced by the object,

 B 5 Mfluidg 

where Mfluidg is the weight of the fluid displaced by the cube. This result is consis-
tent with our initial statement about Archimedes’s principle above, based on the 
discussion of the beach ball.

Buoyant forces are very important for the movement of fish through water. 
Under normal conditions, the weight of a fish is slightly greater than the buoyant 
force on the fish. Hence, the fish would sink if it did not have some mechanism for 
adjusting the buoyant force. The fish accomplishes that by internally regulating the 
size of its air-filled swim bladder to increase its volume and the magnitude of the 
buoyant force acting on it, according to Equation 14.5. In this manner, fish are able 
to swim to various depths.

Before we proceed with a few examples, it is instructive to discuss two common 
situations: a totally submerged object and a floating (partly submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a fluid 
of density rfluid, the volume Vdisp of the displaced fluid is equal to the volume Vobj 
of the object; so, from Equation 14.5, the magnitude of the upward buoyant force 
is B 5 rfluidgVobj. If the object has a mass M and density robj, its weight is equal to  
Fg 5 Mg 5 robjgVobj, and the net force on the object is B 2 Fg 5 (rfluid 2 robj)gVobj.  
Hence, if the density of the object is less than the density of the fluid, the down-
ward gravitational force is less than the buoyant force and the unsupported object 
accelerates upward (Fig. 14.9a). A block of wood held under water and released will 
rise to the surface. If the density of the object is greater than the density of the fluid, 
the upward buoyant force is less than the downward gravitational force and the 
unsupported object sinks (Fig. 14.9b). A rock will sink to the bottom when released 
in water. If the density of the submerged object equals the density of the fluid, the 
net force on the object is zero and the object remains in equilibrium. Therefore, 
the direction of motion of an object submerged in a fluid is determined only by the 
densities of the object and the fluid.

It is important to point out that gases exert buoyant forces also. Imagine a 
balloon surrounded by air. The balloon displaces a volume of air, so there is an 
upward buoyant force on it. If the balloon is filled with air, the effective density 
of the balloon–air combination is larger than that of air, due to the density of the 
balloon material. Therefore, the weight of the balloon is larger than that of the dis-
placed air, and the released balloon falls to the ground. If the balloon is filled with 
helium, however, the effective density of the balloon-helium combination is less 
than that of air, and the balloon rises into the air when released.

B
S

Fg
S

h

The buoyant force on the 
cube is the resultant of the 
forces exerted on its top and 
bottom faces by the liquid.

Figure 14.8  The external forces 
acting on an immersed cube are 
the gravitational force F

S
g  and the 

buoyant force B
S

.

PItfall PreventIon 14.2
Buoyant Force Is Exerted by the 
Fluid Remember that the buoyant 
force is exerted by the fluid. It is 
not determined by properties of 
the object except for the amount 
of fluid displaced by the object. 
Therefore, if several objects of 
different densities but the same 
volume are immersed in a fluid, 
they will all experience the same 
buoyant force. Whether they sink 
or float is determined by the 
relationship between the buoyant 
force and the gravitational force.

Figure 14.9 (a) A totally sub-
merged object that is less dense 
than the fluid in which it is sub-
merged experiences a net upward 
force and rises to the surface after 
it is released. (b) A totally sub-
merged object that is denser than 
the fluid experiences a net down-
ward force and sinks.
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robj � rfluid robj � rfluid
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Case 2: Floating Object Now consider the object of volume Vobj and density robj ,  
rfluid in Figure 14.9a after it reaches the surface. After bobbing a bit, it will settle 
into static equilibrium on the surface of the fluid: it will float, and will be only par-
tially submerged (Fig. 14.10). In this case, the object is modeled as a particle in equi-
librium: the upward buoyant force is balanced by the downward gravitational force 
acting on the object. We no longer have Vdisp 5 Vobj as in Case 1, because only a por-
tion of the object’s volume is below the surface of the fluid. If Vdisp is the volume of 
the fluid displaced by the object (this volume is the same as the volume of that part 
of the object beneath the surface of the fluid), the buoyant force has a magnitude 
B 5 rfluidgVdisp. Because the weight of the object is Fg 5 Mg 5 robjgVobj and because  
Fg 5 B, we see that rfluidgVdisp 5 robjgVobj, or

 
Vdisp

Vobj

5
robj

rfluid

 (14.6)

This equation shows that the fraction of the volume of a floating object that is 
below the fluid surface is equal to the ratio of the density of the object to that of 
the fluid. For example, the density of ice is less than that of liquid water. There-
fore, when an ice cube floats in your water glass or an iceberg floats on the sur-
face of the ocean, part of the ice is below the water surface and part is above. We 
explore this situation in Example 14.6.

Q uIck QuIz 14.4  You are shipwrecked and floating in the middle of the 
ocean on a raft. Your cargo on the raft includes a treasure chest full of 
gold that you found before your ship sank, and the raft is just barely afloat. 
To keep you floating as high as possible in the water, should you (a) leave 
the treasure chest on top of the raft, (b) secure the treasure chest to the 
underside of the raft, or (c) hang the treasure chest in the water with a rope 
attached to the raft? (Assume throwing the treasure chest overboard is not an 
option you wish to consider.)

Figure 14.10 An object floating 
on the surface of a fluid experi-
ences two forces, the gravitational 
force F

S
g  and the buoyant force B

S
.

Fg
S

B
S

Because the object f loats 
in equilibrium, B � Fg .

 Example 14.5   Eureka!

Archimedes supposedly was asked to determine whether a crown 
made for the king consisted of pure gold. According to legend, he 
solved this problem by weighing the crown first in air and then in 
water as shown in Figure 14.11. Suppose the scale read 7.84 N when 
the crown was in air and 6.84 N when it was in water. What should 
Archimedes have told the king?

S O L U T I O N

Conceptualize  Figure 14.11 helps us imagine what is happening in this 
example. Because of the upward buoyant force on the crown, the scale 
reading is smaller in Figure 14.11b than in Figure 14.11a.

Categorize  This problem is an example of Case 1 discussed ear-
lier because the crown is completely submerged. The scale reading 
is a measure of one of the forces on the crown, and the crown is 
stationary. Therefore, we can categorize the crown as a particle in 
equilibrium.

Analyze  When the crown is suspended in air, the scale reads the 
true weight T1 5 Fg (neglecting the small buoyant force due to the sur-
rounding air). When the crown is immersed in water, the buoyant force 
B
S

 due to the water reduces the scale reading to an apparent weight of  
T2 5 Fg 2 B.

B
S

Fg
S

T2
S

T1
S

Fg
S

a b

Figure 14.11  (Example 14.5) (a) When the crown is 
suspended in air, the scale reads its true weight because 
T1 5 Fg (the buoyancy of air is negligible). (b) When the 
crown is immersed in water, the buoyant force B

S
 changes 

the scale reading to a lower value T 2 5 Fg 2 B.
continued
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14.5 c o n t i n u e d

Apply the particle in equilibrium model to the crown in  o F 5 B 1 T2 2 Fg 5 0 
water:

Solve for B : B 5 Fg 2 T2 5 mc g 2 T2

Because this buoyant force is equal in magnitude to the weight of the displaced water, B 5 rw gVdisp, where Vdisp is the volume of 
the displaced water and rw is its density. Also, the volume of the crown Vc is equal to the volume of the displaced water because 
the crown is completely submerged, so B 5 rw gVc.

Find the density of the crown from Equation 1.1:  rc 5
mc

Vc

5
mc g

Vc g
5

mc g

sByrw 
d

5
mc g rw

B
5

mc g rw

Fg 2 T2

5
mc g rw

mc 
g 2 T2

Substitute numerical values:  rc 5
s7.84 Nds1 000 kgym3d

7.84 N 2 6.84 N
5 7.84 3 103 kgym3

Finalize  From Table 14.1, we see that the density of gold is 19.3 3 103 kg/m3. Therefore, Archimedes should have reported 
that the king had been cheated. Either the crown was hollow, or it was not made of pure gold.

W H A T  I F ?  Suppose the crown has the same weight but is indeed pure gold and not hollow. What would the scale 
reading be when the crown is immersed in water?

Answer  Find the buoyant force on the crown:  B 5 rw gVdisp 5 rw gVc 5 rw gSmc

rc
D 5 rwSmc g

rc
D

Substitute numerical values:  B 5 s1.00 3 103 kgym3d 

7.84 N
19.3 3 103 kgym3 5 0.406 N

Find the tension in the string hanging from the scale: T2 5 mc g 2 B 5 7.84 N 2 0.406 N 5 7.43 N

 Example 14.6    A Titanic Surprise

An iceberg floating in seawater as shown in Figure 14.12a 
is extremely dangerous because most of the ice is below 
the surface. This hidden ice can damage a ship that is still 
a considerable distance from the visible ice. What fraction 
of the iceberg lies below the water level?

S O L U T I O N

Conceptualize  You are likely familiar with the phrase, “That’s 
only the tip of the iceberg.” The origin of this popular saying 
is that most of the volume of a floating iceberg is beneath the 
surface of the water (Fig. 14.12b).

Categorize  This example corresponds to Case 2 because 
only part of the iceberg is underneath the water. It is also a 
simple substitution problem involving Equation 14.6.

Evaluate Equation 14.6 using the densities of ice and  f 5
Vdisp

Vice

5
rice

rseawater

5
917 kgym3

1 030 kgym3 5  0.890 or 89.0%  
seawater (Table 14.1):

Therefore, the visible fraction of ice above the water’s surface is about 11%. It is the unseen 89% below the water that rep-
resents the danger to a passing ship.
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Figure 14.12  (Example 14.6) (a) Much of the volume of this  
iceberg is beneath the water. (b) A ship can be damaged even 
when it is not near the visible ice.

   14.5    Fluid Dynamics
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our 
attention to moving fluids. When fluid is in motion, its flow can be characterized 
as being one of two main types. The flow is said to be steady, or laminar, if each 
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particle of the fluid follows a smooth path such that the paths of different particles 
never cross each other as shown in Figure 14.13. Laminar flow is predictable. If 
you determine the velocity vector of a fluid particle arriving at a certain position 
in space, every other particle arriving at that same position afterward will have the 
same velocity.

Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow 
is irregular, unpredictable flow characterized by small whirlpool-like regions as 
shown in Figure 14.14.

The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous 
force, is associated with the resistance that two adjacent layers of fluid have to moving 
relative to each other. Viscosity causes part of the fluid’s kinetic energy to be trans-
formed to internal energy. This mechanism is similar to the one by which the kinetic 
energy of an object sliding over a rough, horizontal surface decreases as discussed in 
Sections 8.3 and 8.4. We will address more details on viscosity in Section 14.7.

Because the motion of real fluids is very complex and not fully understood, we 
make some simplifying assumptions in our approach. In our simplification model 
of ideal fluid flow, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is 
neglected. An object moving through the fluid experiences no viscous 
force.

2. The flow is laminar. In laminar flow, all particles passing through a point 
have the same velocity and follow the same path.

3. The fluid is incompressible. The density of an incompressible fluid is the 
same throughout the fluid.

4. The flow is irrotational. In irrotational flow, the fluid has no angular 
momentum about any point. If a small paddle wheel placed anywhere 
in the fluid does not rotate about the wheel’s center of mass, the flow is 
irrotational.

The path taken by a fluid particle under laminar flow is called a streamline. The 
velocity of the particle is always tangent to the streamline as shown in Figure 14.15. 
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid 
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.

Consider ideal fluid flow through a section of pipe of nonuniform size as 
illustrated in Figure 14.16. Let’s focus our attention on a segment of fluid in the 
pipe. Figure 14.16a shows the segment at time t 5 0 consisting of the gray portion 
between point 1 and point 2 and the short blue portion to the left of point 1. At this 
time, the fluid in the short blue portion is flowing through a cross section of area 
A1 at speed v1. During the time interval Dt, the small length Dx1 of fluid in the blue 
portion moves into the section of pipe past point 1. During the same time interval, 
fluid at the right end of the segment moves out of the section of pipe past point 2.  

Figure 14.13  Laminar flow of 
smoke over an automobile in a test 
wind tunnel.

An
dy

 S
ac

ks
/G

et
ty

 Im
ag

es

Figure 14.14  Hot gases from a 
cigarette made visible by smoke 
particles. The smoke first moves 
in laminar flow at the bottom and 
then in turbulent flow above.
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At each point along its path, 
the particle’s velocity is 
tangent to the streamline.

Figure 14.15  A particle 
in laminar flow follows a 
streamline.

v2

v1

At t � 0, fluid in the blue
portion is moving past
point 1 at velocity v1.

After a time interval �t,
the fluid in the blue 
portion is moving past 
point 2 at velocity v2.

�x1

�x2

Point 2

Point 1

A1

A2

a

S

S

S

S
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Figure 14.16  A fluid moving 
with steady flow through a pipe of 
varying cross-sectional area.  
(a) At t 5 0, the small blue-colored 
portion of the fluid at the left is 
moving into the section of pipe 
through area A1. (b) After a time 
interval Dt, the blue-colored por-
tion shown here is that fluid that 
has moved out of the section of 
pipe through area A2.
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Figure 14.16b shows the situation at the end of the time interval Dt. The blue por-
tion at the right end represents the fluid that was originally in the pipe and has 
moved past point 2 through an area A2 at a speed v2.

The mass of fluid contained in the blue portion in Figure 14.16a is given by m1 5 
rA1 Dx1 5 rA1v1 Dt, where r is the (unchanging) density of the ideal fluid. Similarly, 
the fluid in the blue portion in Figure 14.16b has a mass m2 5 rA2 Dx2 5 rA2v2 Dt. 
Because the fluid is incompressible and the flow is laminar, however, the mass of 
fluid that passes point 1 in a time interval Dt must equal the mass that passes point 2 
in the same time interval. That is, m1 5 m2 or rA1v1 Dt 5 rA2v2 Dt, which means that

 A1v1 5 A2v2 5 constant  (14.7)

This expression is called the equation of continuity for fluids. It states that the 
product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. Equation 14.7 shows that the speed is high where the tube 
is constricted (small A) and low where the tube is wide (large A). The product Av, 
which has the dimensions of volume per unit time, is called either the volume flux or 
the flow rate. The condition Av 5 constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume 
leaving the other end of the tube in the same time interval if no leaks are present.

You demonstrate the equation of continuity each time you water your garden 
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-
ing the opening with your thumb, you reduce the cross-sectional area through 
which the water passes. As a result, the speed of the water increases as it exits the 
hose, and the water can be sprayed over a long distance.

Equation of Continuity  
for Fluids

PItfall PreventIon 14.3 
The Language We Are Using 
Here To help understand this dis-
cussion, keep in mind three words 
that we are using: section, segment, 
and portion. Section: this word refers 
to the length of pipe between 
points 1 and 2 in Figure 14.16.  
Segment: this word refers to the total 
length of fluid that we are focusing 
on. In Figure 14.16a, this segment 
appears as the short blue portion 
to the left of point 1 plus the gray 
portion between points 1 and 2. In 
Figure 14.16b, the same segment of 
fluid has moved and appears as the 
gray portion plus the blue portion 
beyond point 2. Portion: this word 
refers to a piece of the segment of 
fluid. The portions appear either 
blue or gray in Figure 14.16.

Figure 14.17  The speed of water spraying from 
the end of a garden hose increases as the size of 
the opening is decreased with the thumb.©
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 Example 14.7    Watering a Garden

A gardener uses a water hose to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket. A nozzle 
with an opening of cross-sectional area 0.500 cm2 is then attached to the hose. The nozzle is held so that water is projected 
horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

S O L U T I O N

Conceptualize  Imagine any past experience you have with projecting water from a horizontal hose or a pipe using either your 
thumb or a nozzle, which can be attached to the end of the hose. The faster the water is traveling as it leaves the hose, the far-
ther it will land on the ground from the end of the hose.

Categorize  Once the water leaves the hose, it is in free fall. Therefore, we categorize a given element of the water as a projec-
tile. The element is modeled as a particle under constant acceleration (due to gravity) in the vertical direction and a particle under 
constant velocity in the horizontal direction. The horizontal distance over which the element is projected depends on the speed 
with which it is projected. This example involves a change in area for the pipe, so we also categorize it as one in which we use 
the continuity equation for fluids.

Analyze

Express the volume flow rate IV in terms of area and speed  IV 5 A1v1 
of the water in the hose (we will discuss the origin for this  
notation in Section 14.7): 
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14.7 c o n t i n u e d

Solve for the speed of the water in the hose: v1 5 
IV

A1

We have labeled this speed v1 because we identify point 1 within the hose. We identify point 2 in the air just outside the nozzle. 
We must find the speed v2 5 vxi with which the water exits the nozzle (v2) and begins its projectile motion (vxi  ). The subscript i 
anticipates that it will be the initial velocity component of the water projected from the hose, and the subscript x indicates that 
the initial velocity vector of the projected water is horizontal.

Solve the continuity equation for fluids for v2: (1)   v2 5 vxi 5
A1

A2

 v1 5 
A1

A2
S IV

A1
D 5

IV

A2

We now shift our thinking away from fluids and to projectile motion. In the vertical direction, an element of the water starts 
from rest and falls through a vertical distance of 1.00 m.

Write Equation 2.16 for the vertical position of an element  yf 5 yi 1 vyi t 2 1
2g t2 

of water, modeled as a particle under constant acceleration:

Identify the origin as the initial position of the water as it (2)   yf 5 0 1 0 2 1
2g t2   S   t 5Î22yf

g
 

leaves the hose, and recognize that the water begins with a  
vertical velocity component of zero. Solve for the time at which  
the water reaches the ground:

Use Equation 2.7 to find the horizontal position of the element at  xf 5 xi 1 vxit  5 0 1 v2t  5 v2t 
this time, modeled as a particle under constant velocity:

Substitute from Equations (1) and (2): xf 5
IV

A 2
Î22yf

g

Substitute numerical values: xf 5
30.0 Lymin
0.500 cm2 Î22s21.00 md

9.80 mys2 S103 cm3

1 L DS1 min
60 s D 5 452 cm 5 4.52 m

Finalize The time interval for the element of water to fall to the ground is unchanged if the projection speed is changed 
because the projection is horizontal. Increasing the projection speed results in the water hitting the ground farther from the 
end of the hose, but requires the same time interval to strike the ground.

   14.6    Bernoulli’s Equation
You have probably experienced driving on a highway and having a large truck pass 
you at high speed. In this situation, you may have had the frightening feeling that your  
car was being pulled in toward the truck as it passed. We will investigate the origin 
of this effect in this section.

As a fluid moves through a region where its speed or elevation above the Earth’s 
surface changes, the pressure in the fluid varies with these changes. The relationship 
between fluid speed, pressure, and elevation was first derived in 1738 by Swiss physi-
cist Daniel Bernoulli. Consider the flow of a segment of an ideal fluid through a non-
uniform section of pipe in a time interval Dt as illustrated in Figure 14.18 (page 372). 
This figure is very similar to Figure 14.16, which we used to develop the continuity 
equation. We have added two features: the forces on the outer ends of the blue por-
tions of fluid and the heights of these portions above the reference position y 5 0.

The force exerted on the segment by the fluid to the left of the blue portion in 
Figure 14.18a has a magnitude P1A1. During a time interval Dt, the point of appli-
cation of this force moves through a displacement of magnitude Dx1, as the blue 
portion of fluid enters the section of pipe past point 1. The work done by this force 
on the segment in a time interval Dt is W1 5 F1 Dx1 5 P1A1 Dx1 5 P1V, where V is the 
volume of the blue portion of fluid passing point 1 in Figure 14.18a. In a similar 
manner, the work done on the segment by the fluid to the right of the segment in 
the same time interval Dt (Fig. 14.18b) is W2 5 2P2A2 Dx2 5 2P2V, where V is the  

Daniel bernoulli
Swiss physicist (1700–1782)
Bernoulli made important discoveries in 
fluid dynamics. Bernoulli’s most famous 
work, Hydrodynamica, was published in 
1738; it is both a theoretical and a prac-
tical study of equilibrium, pressure, and 
speed in fluids. He showed that as the 
speed of a fluid increases, its pressure 
decreases. Referred to as “Bernoulli’s 
principle,” Bernoulli’s work is used to 
produce a partial vacuum in chemical lab-
oratories by connecting a vessel to a tube 
through which water is running rapidly.
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372 Chapter 14 Fluid Mechanics

volume of the blue portion of fluid passing point 2. (The volumes of the blue por-
tions of fluid in Figures 14.18a and 14.18b are equal because the fluid is incom-
pressible.) This work is negative because the force on the segment of fluid is to 
the left and the displacement of the point of application of the force is to the 
right. Therefore, the net work done on the segment by these forces in the time  
interval Dt is

 W 5 (P1 2 P2)V (14.8)

Part of this work goes into changing the kinetic energy of the segment of fluid, and 
part goes into changing the gravitational potential energy of the segment–Earth 
system. The appropriate reduction of Equation 8.2 for the nonisolated system of 
the Earth and the segment of fluid is

 DK 1 DUg 5 W (14.9)

Because we are assuming laminar flow, the kinetic energy Kgray of the gray por-
tion of the segment is the same in both parts of Figure 14.18. Therefore, the change 
in the kinetic energy of the segment of fluid is

 DK 5 _ 
1
2mv2

2 1 Kgray+ 2 _ 
1
2mv1

2 1 Kgray+ 5 1
2mv2

2 2 1
2mv1

2 (14.10)

where m is the mass of the blue portions of fluid in both parts of Figure 14.18. 
(Because the volumes of both portions are the same, they also have the same mass.)

Considering the gravitational potential energy of the segment–Earth system, 
once again there is no change during the time interval for the gravitational poten-
tial energy Ugray associated with the gray portion of the fluid. Consequently, the 
change in gravitational potential energy of the system is

 DUg 5 smgy2 1 Ugrayd 2 smgy1 1 Ugrayd 5 mgy2 2 mgy1  (14.11)

Substituting Equations 14.8, 14.10. and 14.11 into Equation 14.9 gives

_ 
1
2mv2

2 2 1
2mv1

2+ 2 smgy2 2 mgy1d 5 sP1 2 P2dV

If we divide each term by the blue portion volume V and recall that r 5 m/V, this 
expression reduces to

1
2rv2

2 2 1
2rv1

2 1 rgy2 2 rgy1 5 P1 2 P2

Rearranging terms gives

 P1 1 1
2rv1

2 1 rgy1 5 P2 1 1
2rv2

2 1 rgy2 (14.12)

y1

y2

The pressure at
point 1 is P1. 

P1A1 i

The pressure at
point 2 is P2. v2

v1
�x1

�x2

Point 2

Point 1
a

S

S

�P2A2 i

ˆ

ˆ

b

Figure 14.18  A fluid in laminar 
flow through a section of pipe.  
(a) A segment of the fluid at time 
t 5 0. A small portion of the blue-
colored fluid is at height y1 above a 
reference position and is entering 
the section of pipe. (b) After a 
time interval Dt, the entire seg-
ment has moved to the right. The 
blue-colored portion of the fluid 
is that which has left the section of 
pipe at point 2 and is at height y2.

PItfall PreventIon 14.4 
The Language We Are Using Again 
Here We are using the same  
section–segment–portion 
language here as we did in the 
discussion leading to the  
equation of continuity for  
fluids in Section 14.5.
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which is Bernoulli’s equation as applied to an ideal fluid. This equation is often 
expressed as

 P 1 1
2rv2 1 rgy 5 constant  (14.13)

Bernoulli’s equation shows that the pressure of a fluid decreases as the speed of 
the fluid increases. In addition, the pressure decreases as the elevation increases. 
This latter point explains why water pressure from faucets on the upper floors of a 
tall building is weak unless measures are taken to provide higher pressure for these 
upper floors.

When the fluid is at rest, v1 5 v2 5 0 and Equation 14.12 becomes

 P1 2 P2 5 rg sy2 2 y1d 5 rgh 

This result is in agreement with Equation 14.4.
Although Equation 14.13 was derived for an incompressible fluid, the general 

behavior of pressure with speed is true even for gases: as the speed increases, the 
pressure decreases. This Bernoulli effect explains the experience with the truck on 
the highway at the opening of this section. As air passes between you and the truck, 
it must pass through a relatively narrow channel. According to the continuity equa-
tion for fluids, the speed of the air in this channel is higher than that of the air on 
the other side of your car. According to the Bernoulli effect, this higher-speed air 
exerts less pressure on your car than the air on the other side. Therefore, there is a 
net force pushing you toward the truck!

Q uIck QuIz 14.5  You observe two helium balloons floating next to each other 
at the ends of strings secured to a table. The facing surfaces of the balloons are 
separated by 1–2 cm. You blow through the small space between the balloons. 
What happens to the balloons? (a) They move toward each other. (b) They move 
away from each other. (c) They are unaffected.

 Bernoulli’s equation

 Example 14.8    The Venturi Tube

The horizontal constricted pipe illustrated in Figure 14.19, 
known as a Venturi tube, can be used to measure the flow speed of 
an incompressible fluid. Determine the flow speed at point 2 of  
Figure 14.19a if the pressure difference P1 2 P2 is known.

S O L U T I O N

Conceptualize  Bernoulli’s equation shows how the pressure of an 
ideal fluid decreases as its speed increases. Therefore, we should be 
able to calibrate a device to give us the fluid speed if we can mea-
sure pressure.

Categorize Because the problem states that the fluid is incom-
pressible, we can categorize it as one in which we can use the equa-
tion of continuity for fluids and Bernoulli’s equation.

Analyze Apply Equation 14.12 to points 1 and 2, noting  (1)   P1 1 1
2rv1

2 5 P2 1 1
2rv2

2 
that y1 5 y2 because the pipe is horizontal:

Solve the equation of continuity for v1: v1 5
A2

A1

 v2

Substitute this expression into Equation (1): P1 1 1
2rSA2

A1

D2

v2
2  5 P2 1 1

2rv2
2

Solve for v2: v2 5 A1Î 2sP1 2 P2d

rsA1
2 2 A2

2  d

a

P1 P2

A2

A1

v1
S v2

S
�

�

b
Ch

ar
le

s D
. W

in
te

rs

Figure 14.19  (Example 14.8) (a) Pressure P1 is greater than 
pressure P2 because v1 , v2. This device can be used to mea-
sure the speed of fluid flow. (b) A Venturi tube, located at the 
top of the photograph. Air is blown through the tube from 
the left. The higher level of fluid in the middle column shows 
that the pressure of the moving air at the top of that column, 
which is in the constricted region of the Venturi tube, is lower.

continued
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14.8 c o n t i n u e d

Finalize From the design of the tube (areas A1 and A2) and 
measurements of the pressure difference P1 2 P2, we can cal-
culate the speed of the fluid with this equation. To see the 
relationship between fluid speed and pressure difference, 
place two empty soda cans on their sides about 2 cm apart 
on a table. Gently blow a stream of air horizontally between 

the cans and watch them roll together slowly due to a mod-
est pressure difference between the stagnant air on their 
outside edges and the moving air between them. Now blow 
more strongly and watch the increased pressure difference 
move the cans together more rapidly.

 Example 14.9    Torricelli’s Law

An enclosed tank containing a liquid of density r has a hole in its side at a distance 
y1 from the tank’s bottom (Fig. 14.20). The hole is open to the atmosphere, and its 
diameter is much smaller than the diameter of the tank. The air above the liquid is 
maintained at a pressure P. Determine the speed of the liquid as it leaves the hole 
when the liquid’s level is a distance h above the hole.

S O L U T I O N

Conceptualize Imagine that the tank is a fire extinguisher. When the hole is opened, 
liquid leaves the hole with a certain speed. If the pressure P at the top of the liquid is 
increased, the liquid leaves with a higher speed. If the pressure P falls too low, the liquid 
leaves with a low speed and the extinguisher must be replaced. Because A2 .. A1, the 
liquid is approximately at rest at the top of the tank, where the pressure is P, so v2 5 0. 
At the hole, the liquid is open to the external atmosphere, so P1 is equal to atmospheric 
pressure P0.

Categorize  Looking at Figure 14.20, we know the pressure at two points and the velocity at point 2. We wish to find the veloc-
ity at point 1. Therefore, we can categorize this example as one in which we can apply Bernoulli’s equation.

Analyze

Apply Bernoulli’s equation between points 1 and 2: P0 1 1
2 rv1

2 1 rgy1 5 P 1 rgy2

Solve for v1, noting that y2 2 y1 5 h: v1 5Î2sP 2 P0d

r
1 2gh

Finalize  When P is much greater than P0 (so that the term 2gh can be neglected), the exit speed of the water is mainly a func-
tion of P. If the tank is open at the top to the atmosphere, then P 5 P0 and v1 5 Ï2gh. In other words, for an open tank, the 
speed of the liquid leaving a hole a distance h below the surface is equal to that acquired by an object falling freely through a 
vertical distance h. This phenomenon is known as Torricelli’s law.

W H A T  I F ? What if the position of the hole in Figure 14.20 could be adjusted vertically? If the top of the tank is open to 
the atmosphere and sitting on a table, what position of the hole would cause the water to land on the table at the farthest 
distance from the tank?

Answer  Model a parcel of water exiting the hole as   yf 5 yi 1 vyit 2 1
2g t2 

a projectile. From the particle under constant acceleration  
 0 5 y1 1 0 2 1

2g t2 
model, find the time at which the parcel strikes the  
table from a hole at an arbitrary position y1:  

 t 5Î2y1

g

From the particle under constant velocity model, find the   xf 5 xi 1 vxit 5 0 1 Ï2g sy2 2 y1d Î2y1

g
 

horizontal position of the parcel at the time it strikes  
the table:    5 2Ïsy2y1 2 y1

2  d

Maximize the horizontal position by taking the derivative of 
dxf

dy1

5 1
2s2dsy2 y1 2 y1

2  d21y2sy2 2 2y1d 5 0 
xf with respect to y1 (because y1, the height of the hole, is the 
variable that can be adjusted) and setting it equal to zero:

Solve for y1: y1 5 1
2 y2

A2

A1

P0

h

P

y2

y1

v1
S

Point 2 is the surface 
of the liquid.

Point 1 is 
the exit 
point of 
the hole.

Figure 14.20  (Example 14.9) A liq-
uid leaves a hole in a tank at speed v1.
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   14.7    Flow of Viscous Fluids in Pipes
In Section 14.5, we discussed the flow of an ideal fluid. The results obtained there 
and in Section 14.6 are applicable to many situations. On the other hand, there are 
other situations in which we must investigate the flow of real, non-idealized fluids.

As an example, consider the flow of a fluid in a closed pipe, such as water in a 
plumbing system or blood in a human circulatory system. According to Bernoul-
li’s principle, if the pipe were of uniform cross section, the pressure difference 
between two locations in a horizontal section of the pipe would be zero. Therefore, 
once set in motion, the fluid would flow without any external influence. This is not 
true in reality. If this were true, why would humans need hearts to continuously 
pump the blood?

In a real situation, the pressure differential to keep fluid moving at a fixed speed 
in a horizontal pipe is given by

 DP 5 IV R  (14.14)

In this equation, IV represents the volume rate of fluid flow in m3/s. This quantity 
is equal to the product Av in Equation 14.7, as mentioned in Example 14.7. The 
parameter R is a measure of the resistance of the system to the movement of fluid 
in the pipe.

The notation IV may appear odd, but it is chosen in order to make a comparison 
with a similar equation in electricity that we will see in Chapter 26:

 DV 5 IR  (14.15)

In this equation DV is an electric potential difference, which represents the exter-
nal influence that attempts to move electrons through a wire. The quantity I is the 
current, representing the flow of electrons in the wire, and R is the resistance of the 
flow of those electrons through the wire. Compare this equation to Equation 14.14, 
in which DP represents a pressure difference that attempts to move fluid through a 
pipe. The quantity IV represents the flow of fluid in the pipe, and R is the resistance 
of the flow of that fluid through the pipe. Equations 14.14 and 14.15 are both types 
of transport equations, in which an entity attempts to move something through space 
and encounters resistance to the effort. We will see a similar situation in Chapter 19,  
where a temperature difference attempts to move energy through a material by 
heat, and encounters resistance based on how good a thermal insulator the material 
is. We could even reverse the variables on the right side of Equation 5.2 to cast it in 
a form to compare with Equations 14.14 and 14.15:

oF 5 ma 5 am

Here, a net force on the left attempts to move an object through space, measured 
by its acceleration, and encounters resistance in the form of the mass of the object. 
Other transport situations also exist, such as a concentration difference driving a 
diffusion of molecules through another substance.

Now, what determines the resistance R for the fluid flow? One contribution 
to the physical origin of the resistance is the viscous resistive forces (Section 6.4) 
between the fluid and the inner wall of the pipe and between the layers of fluid that 
may be moving at different speeds relative to one another. To begin to evaluate the 
effect of these viscous forces, consider Figure 14.21 (page 376), which shows a layer 
of fluid of thickness h. Initially, the visible side of the layer forms a rectangle ABCD.  

Therefore, to maximize the horizontal distance, the hole should be halfway between the bottom of the tank and the  
upper surface of the water. Below this location, the water is projected at a higher speed but falls for a short time interval, 
reducing the horizontal range. Above this point, the water is in the air for a longer time interval but is projected with a smaller 
horizontal speed.

14.9 c o n t i n u e d
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At t 5 0, a force of magnitude F is applied to the right on the upper surface while 
the lower surface remains fixed. After a time interval Dt, the visible side of the layer 
now forms the parallelogram AEFD. The top surface of the liquid is moving with 
speed v, while lower portions of the layer move with progressively lower speeds.

Compare Figure 14.21 with Figure 12.13, in which we apply a shearing force to a 
solid material, and notice the similarities in the two situations. Based on this com-
parison, let us modify Equation 12.7 to fit the current circumstances. Solve Equa-
tion 12.7 for the force on the upper surface:

 F 5 SA 

Dx
h

 (14.16)

where S is the shear modulus of the material. This equation represents the defor-
mation of a solid, but let us imagine it representing the deformation of the viscous 
liquid in Figure 14.21, with the top surface moving at speed v. The deformation 
behavior is the same, although we will ultimately replace the shear modulus with 
another parameter. Therefore, we can write Equation 14.16 as a proportionality:

 F ~ A 

Dx
h

 (14.17)

For a given time interval, Dx is proportional to the speed v of the upper surface, so 
we can write

F ~ A 

v
h

We can turn this inequality to an equality by introducing a proportionality constant h:

 F 5 hA 

v
h

 (14.18)

The constant h is called the viscosity of the fluid and has units of N ? s/m2 5 Pa ? s. 
Another common unit of viscosity is the poise (P), where 1 Pa · s 5 10 P. Table 14.2 
lists viscosities of some fluids. Notice that a “thick” fluid such as honey has a high 
viscosity, while fluids such as water and air have lower viscosity values.

Looking again at our representation of a viscous fluid in Figure 14.21, the speed 
of the bottom surface is zero and the speed of subsequent portions higher toward 
the top increases, with the highest surface having the highest speed. Applying this 
notion to the flow of fluid in a pipe, we find that, because of the viscous force 
between layers of fluid, the flow of a fluid in a pipe is not uniform across the area 
of the pipe. Figure 14.22 shows that the speed of the fluid is greatest at the center of 
the pipe and approaches zero at the pipe walls.

Figure 14.21 The lower surface 
of a layer of liquid is held fixed 
while a force is applied to the 
upper surface. As a result, the 
layer deforms in shape.

B E C F

A D

h

F
S

vS

∆x � v∆t

 table 14.2  Viscosities of Various Fluidsa

Fluid Viscosity (mPa ? s)

Air
Helium
Liquid nitrogen (2196°C)
Acetone
Water
Ethanol
Blood (37.0°C)
Olive oil
Motor oil (SAE 40, 20°C)
Corn syrup
Glycerin
Honeyb

Peanut butter

0.018 
0.020
0.158
0.306
0.894
1.07
2.70

81
319

1 381
1 500

2 000–10 000
250 000

aAll values at 25.0°C unless noted otherwise.
bValue depends on moisture content.

L

r

Figure 14.22 Flow of a viscous 
fluid in a pipe. The red velocity 
vectors show the variation in 
speed of the fluid across a diam-
eter of the pipe. The fluid flows 
fastest at the center and slowly at 
the walls of the pipe.
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Let us return again to Equation 14.14. What is it that determines the resistance R 
to the flow of the fluid in the pipe? Clearly, the viscosity plays a role, but there are 
other factors. It can be shown that the resistance of the fluid in the segment of pipe 
in Figure 14.22 of length L and radius r is given by

 R 5
8hL
pr 

4 (14.19)

Therefore, Equation 14.14 becomes

 DP 5
8hL
pr 4 IV  (14.20)

This equation is known as Poiseuille’s law, or the Hagen–Poiseuille equation.1 
Notice the important dependence of the pressure difference on r : the pressure dif-
ference is inversely proportional to r to the fourth power. Therefore, if the radius of 
the pipe drops by 50%, the pressure difference required to maintain the same flow 
through the pipe increases by a factor of 16.

This dependence is very important in blood flow in the human circulatory sys-
tem. If a blood vessel becomes occluded by plaque so that the radius through which 
blood can flow is decreased, the pressure required to maintain the blood flow rises 
rapidly. Conversely, for a given pressure, the flow rate IV of the blood is reduced.

   14.8    Other Applications of Fluid Dynamics
Let’s consider the opening storyline for this chapter. What forces are responsible 
for lifting an airplane into the air? Consider the streamlines that flow around an 
airplane wing as shown in Figure 14.23. Let’s assume the airstream approaches the 
wing horizontally from the right with a velocity vS1, which is equivalent to the air-
plane moving to the right through still air. The tilt of the wing causes the airstream 
to be deflected downward with a velocity vS2. Because the airstream is deflected by 
the wing, the wing must exert a force on the airstream. According to Newton’s third 
law, the airstream therefore exerts a force F

S
 on the wing that is equal in magnitude 

and opposite in direction. This force has a vertical component called lift (or aero-
dynamic lift) and a horizontal component called drag. The lift depends on several 
factors, such as the speed of the airplane, the area of the wing, the wing’s curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing 
surfaces causes the pressure above the wing to be lower than that below the wing  
due to the Bernoulli effect. This pressure difference assists with the lift on the 
wing. As the angle between the wing and the horizontal increases, turbulent flow 
can set in above the wing to reduce the lift.

The lift force exerted by the air on the wing according to Newton’s law and the 
pressure difference between the top and bottom of the wing caused by the Ber-
noulli effect will both depend on the density of the air surrounding the wings. 
What do we know about the location of Denver in our opening storyline? Denver 
is often called the “Mile-High City.” That is because it is in the Rocky Mountains, 
at an altitude of 1 610 m above sea level. Because of that altitude, the air is of lower 
density than that at the airport at Los Angeles, by an average of about 15%. Con-
sequently, aircraft must attain a higher speed in order for the forces and pressure 
differences to be sufficient to lift the aircraft. This leads to a longer distance on the 
runway for the aircraft to move before reaching this higher speed.

In general, an object moving through a fluid experiences lift as the result of any 
effect that causes the fluid to change its direction as it flows past the object. Some 
factors that influence lift are the shape of the object, its orientation with respect 
to the fluid flow, any spinning motion it might have, and the texture of its surface. 

  Poiseuille’s Law (Hagen–
Poiseuille equation)

1Named after Jean Leonard Marie Poiseuille (1797–1869), a French physicist, and Gotthilf Heinrich Ludwig Hagen 
(1797–1884), a German civil engineer. The unit poise is named after Poiseuille.

Drag

LiftF
S

The air approaching from 
the right is deflected 
downward by the wing.

Figure 14.23  Streamline flow 
around a moving airplane wing. 
By Newton’s third law, the air 
deflected by the wing results in 
an upward force on the wing from 
the air: lift. Because of air resis-
tance, there is also a force oppo-
site the velocity of the wing: drag.
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Summary

For example, a golf ball struck with a club is given a rapid backspin due to the slant 
of the club. The dimples on the ball increase the friction force between the ball 
and the air so that air adheres to the ball’s surface and is deflected downward as 
a result. Because the ball pushes the air down, the air must push up on the ball. 
Without the dimples, the friction force is lower and the golf ball does not travel as 
far. It may seem counterintuitive to increase the range by increasing the friction 
force, but the lift gained by spinning the ball more than compensates for the loss of 
range due to the effect of friction on the translational motion of the ball. For the 
same reason, a baseball’s cover helps the spinning ball “grab” the air rushing by 
and helps deflect it when a “curve ball” is thrown.

 › Definitions

The pressure P in a fluid is the force per unit area exerted by the fluid on a surface:

 P ;
F

A
   (14.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 1 N/m2 5 1 pascal (Pa).

 › Concepts and Principles

The pressure in a fluid at rest varies with depth h in the fluid according to the 
expression

 P 5 P0 1 rgh (14.4)

where P0 is the pressure at h 5 0 and r is the density of the fluid, assumed 
uniform.
 Pascal’s law states that when pressure is applied to an enclosed fluid, the 
pressure is transmitted undiminished to every point in the fluid and to every 
point on the walls of the container.

When an object is partially or fully submerged 
in a fluid, the fluid exerts on the object an 
upward force called the buoyant force. Accord-
ing to Archimedes’s principle, the magnitude 
of the buoyant force is equal to the weight of 
the fluid displaced by the object:

 B 5 rfluid gV disp (14.5)

The flow rate (volume flux) through a pipe that varies in cross-sectional area 
is constant; that is equivalent to stating that the product of the cross-sectional 
area A and the speed v at any point is a constant. This result is expressed in 
the equation of continuity for fluids:

 A1v1 5 A2v2 5 constant (14.7)

The sum of the pressure, kinetic energy per 
unit volume, and gravitational potential energy 
per unit volume has the same value at all points 
along a streamline for an ideal fluid. This result 
is summarized in Bernoulli’s equation:
 P 1 1

2rv2 1 rgy 5 constant (14.13)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are a member of an expert witness group that provides 
scientific services to the legal community. Your group has 
been asked to defend an NFL football team, which has been 
caught in an embarrassing practice: they have been filling 
their teams’ footballs with helium instead of air, believing 
that the helium would provide an increased buoyant force 
on the footballs, causing their passes and kicks to be lon-
ger. Despite your unhappiness with the efforts of the team 
to gain an unfair advantage, your legal group believes that 

everyone deserves a defense, so you agree to take the case. 
(a) Develop an argument that filling the footballs with 
helium would not provide additional buoyant force on the 
footballs; therefore, the team was not trying to gain an 
advantage. (b) Develop a private argument to present to the 
team that filling the balls with helium will actually decrease 
the performance.

2. It is a warm day, and a student decides he would like to 
spend a few hours swimming in the pool. Using his snorkel 
equipment, he views the bottom of the pool. After a while, 
he notices a piece of PVC pipe leaning against the house 
and thinks about using it as a long snorkel. He takes the 
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mouthpiece off his snorkel and attaches it to the bottom of the 
PVC pipe. His plan is to have his mouth on the mouthpiece  
of the long snorkel and sink into the deep end of the pool, 
breathing all the way to the bottom! While he is preparing 
his long snorkel, his uncle, who is a pulmonologist, arrives 
for a visit. He asks the student what he is doing with the 
pipe and he explains. The uncle is horrified and says that 
it is very dangerous to attempt this activity. The student is 
disappointed, but then tells his uncle that he will hold his 
breath while he sinks to the bottom, keeping the mouth-
piece closed with his thumb, put the mouthpiece on as he 
arrives at the bottom, and begin breathing. His uncle looks 

even more horrified, and tells him that that activity could 
be fatal! Discuss in your group: Why is deep snorkeling so 
dangerous?

3. ACTIVITY  Perform the following activities and discuss the 
physics behind the results with your group members:

(a)  Place a can of diet soda and regular soda of the same 
brand in a large container of water. Do they both float? 
Explain the results.

(b)   Open a can of clear carbonated beverage and fill a 
transparent glass with the liquid. Now drop a few raisins into 
the beverage and record their behavior.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Note: In all problems, assume the density of air is the 20°C 
value from Table 14.1, 1.20 kg/m3, unless noted otherwise.

SectIon 14.1 Pressure

1. A large man sits on a four-legged chair with his feet off the 
floor. The combined mass of the man and chair is 95.0 kg. If 
the chair legs are circular and have a radius of 0.500 cm at 
the bottom, what pressure does each leg exert on the floor?

2. The nucleus of an atom can be modeled as several protons 
and neutrons closely packed together. Each particle has a 
mass of 1.67 3 10227 kg and radius on the order of 10215 m. 
(a) Use this model and the data provided to estimate the 
density of the nucleus of an atom. (b) Compare your result 
with the density of a material such as iron. What do your 
result and comparison suggest concerning the structure  
of matter?

3. Estimate the total mass of the Earth’s atmosphere. (The 
radius of the Earth is 6.37 3 106 m, and atmospheric pres-
sure at the surface is 1.013 3 105 Pa.)

SectIon 14.2 Variation of Pressure with Depth

4. Why is the following situation impossible? Figure P14.4 shows 
Superman attempting to drink cold water through a straw 
of length , 5 12.0 m. The walls of the tubular straw are 
very strong and do not collapse. With his great strength, he 
achieves maximum possible suction and enjoys drinking the 
cold water.

5. What must be the contact area between a suction cup (com-
pletely evacuated) and a ceiling if the cup is to support the 
weight of an 80.0-kg student?

6. For the cellar of a new house, a hole is dug in the ground, 
with vertical sides going down 2.40 m. A concrete foundation 
wall is built all the way across the 9.60-m width of the excava-
tion. This foundation wall is 0.183 m away from the front of 
the cellar hole. During a rainstorm, drainage from the street 
fills up the space in front of the concrete wall, but not the 
cellar behind the wall. The water does not soak into the clay 
soil. Find the force the water causes on the foundation wall. 
For comparison, the weight of the water is given by 2.40 m 3  
9.60 m 3 0.183 m 3 1 000 kg/m3 3 9.80 m/s2 5 41.3 kN.

7. Review. A solid sphere of brass (bulk modulus of  
14.0 3 1010 N/m2) with a diameter of 3.00 m is thrown into 
the ocean. By how much does the diameter of the sphere 
decrease as it sinks to a depth of 1.00 km?

SectIon 14.3 Pressure Measurements

8. The human brain and spinal cord are immersed in the cere-
brospinal fluid. The fluid is normally continuous between 
the cranial and spinal cavities and exerts a pressure of 100 
to 200 mm of H2O above the prevailing atmospheric pres-
sure. In medical work, pressures are often measured in units 
of millimeters of H2O because body fluids, including the 
cerebrospinal fluid, typically have the same density as water. 
The pressure of the cerebrospinal fluid can be measured by 
means of a spinal tap as illustrated in Figure P14.8. A hollow 
tube is inserted into the spinal column, and the height to 
which the fluid rises is observed. If the fluid rises to a height 
of 160 mm, we write its gauge pressure as 160 mm H2O. (a) 
Express this pressure in pascals, in atmospheres, and in 
millimeters of mercury. (b) Some conditions that block or 
inhibit the flow of cerebrospinal fluid can be investigated 
by means of Queckenstedt’s test. In this procedure, the veins in 
the patient’s neck are compressed to make the blood pres-
sure rise in the brain, which in turn should be transmitted 
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380 Chapter 14 Fluid Mechanics

to the cerebrospinal fluid. Explain how the level of fluid in 
the spinal tap can be used as a diagnostic tool for the condi-
tion of the patient’s spine.

9. Blaise Pascal duplicated Torricelli’s barometer using a 
red Bordeaux wine, of density 984 kg/m3, as the working 
liquid (Fig. P14.9). (a) What was the height h of the wine 
column for normal atmospheric pressure? (b) Would you 
expect the vacuum above the column to be as good as  
for mercury?

10. A tank with a flat bottom of area A and vertical sides is filled 
to a depth h with water. The pressure is P0 at the top surface. 
(a) What is the absolute pressure at the bottom of the tank? 
(b) Suppose an object of mass M and density less than the 
density of water is placed into the tank and floats. No water 
overflows. What is the resulting increase in pressure at the 
bottom of the tank?

SectIon 14.4 Buoyant Forces and Archimedes’s Principle

11. The gravitational force exerted on a solid object is  
5.00 N. When the object is suspended from a spring scale 
and submerged in water, the scale reads 3.50 N (Fig. P14.11). 
Find the density of the object.

12. A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 
10.0 cm is suspended from a scale and immersed in water 
as shown in Figure P14.11b. The 12.0-cm dimension is ver-
tical, and the top of the block is 5.00 cm below the surface 
of the water. (a) What are the magnitudes of the forces act-
ing on the top and on the bottom of the block due to the 
surrounding water? (b) What is the reading of the spring 
scale? (c) Show that the buoyant force equals the difference 
between the forces at the top and bottom of the block.

13. A plastic sphere floats in water with 50.0% of its volume sub-
merged. This same sphere floats in glycerin with 40.0% of 
its volume submerged. Determine the densities of (a)  the 
glycerin and (b) the sphere.

14. The weight of a rectangular block of low-density material 
is 15.0 N. With a thin string, the center of the horizontal 
bottom face of the block is tied to the bottom of a bea-
ker partly filled with water. When 25.0% of the block’s 
volume is submerged, the tension in the string is 10.0 N.  
(a) Find the buoyant force on the block. (b) Oil of density 
800 kg/m3 is now steadily added to the beaker, forming a 
layer above the water and surrounding the block. The oil 
exerts forces on each of the four sidewalls of the block that 
the oil touches. What are the directions of these forces? 
(c) What happens to the string tension as the oil is added? 
Explain how the oil has this effect on the string tension.  
(d) The string breaks when its tension reaches 60.0 N. At 
this moment, 25.0% of the block’s volume is still below the 
water line. What additional fraction of the block’s volume is 
below the top surface of the oil?

15. A wooden block of volume 5.24 3 1024 m3 floats in water, and 
a small steel object of mass m is placed on top of the block. 
When m 5 0.310 kg, the system is in equilibrium and the top 
of the wooden block is at the level of the water. (a) What is the 
density of the wood? (b) What happens to the block when the 
steel object is replaced by an object whose mass is less than 
0.310 kg? (c) What happens to the block when the steel object 
is replaced by an object whose mass is greater than 0.310 kg?

16. A hydrometer is an instrument used to determine liquid den-
sity. A simple one is sketched in Figure P14.16. The bulb of 
a syringe is squeezed and released to let the atmosphere lift 
a sample of the liquid of interest into a tube containing a 
calibrated rod of known density. The rod, of length L and 
average density r0, floats partially immersed in the liquid of 
density r. A length h of the rod protrudes above the surface 
of the liquid. Show that the density of the liquid is given by

r 5
r0L

L 2 h

17. Refer to Problem 16 and Figure P14.16. A hydrometer is to 
be constructed with a cylindrical floating rod. Nine fidu-
ciary marks are to be placed along the rod to indicate den-
sities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3, 1.04 g/cm3, . . . ,  
1.14 g/cm3. The row of marks is to start 0.200 cm from 
the top end of the rod and end 1.80 cm from the top end.  
(a) What is the required length of the rod? (b) What must be 
its average density? (c) Should the marks be equally spaced? 
Explain your answer.

18. On October 21, 2001, Ian Ashpole of the United Kingdom 
achieved a record altitude of 3.35 km (11 000 ft) powered by 
600 toy balloons filled with helium. Each filled balloon had 
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a radius of about 0.50 m and an estimated mass of 0.30 kg. 
(a) Estimate the total buoyant force on the 600 balloons. (b) 
Estimate the net upward force on all 600 balloons. (c) Ash-
pole parachuted to the Earth after the balloons began to 
burst at the high altitude and the buoyant force decreased. 
Why did the balloons burst?

19. You have a job in a company that produces party supplies. 
You are designing helium-filled balloons to be sold as gifts. 
To save money on production costs, part of this design is to 
choose from an available selection the least massive token 
necessary to be tied to the lower end of the string hanging 
from the balloon in order to keep the balloon from rising 
off a table, hospital food tray, bedroom dresser, etc. In this 
way, the token remains stationary on the flat surface and the 
balloon is buoyed above the token at a fixed height, with the 
string straight. You are working on a balloon whose envelope 
is very thin and has a mass of 0.150 kg. The envelope is filled 
to a volume of 0.230 0 m3 with helium at atmospheric pres-
sure. The string has a mass of 0.070 0 kg. Among the selec-
tion of tokens are those with masses 10.0 g, 20.0 g, 30.0 g,  
40.0 g, and 50.0 g. Chose the appropriate token for the bal-
loon you are working on.

SectIon 14.5 Fluid Dynamics

20. Water flowing through a garden hose of diameter 2.74 cm 
fills a 25-L bucket in 1.50 min. (a) What is the speed of 
the water leaving the end of the hose? (b) A nozzle is now 
attached to the end of the hose. If the nozzle diameter is 
one-third the diameter of the hose, what is the speed of the 
water leaving the nozzle?

21. Water falls over a dam of height h with a mass flow rate of IV  , 
in units of kilograms per second. (a) Show that the power 
available from the water is

P 5 IV gh

where g is the free-fall acceleration. (b) Each hydroelectric 
unit at the Grand Coulee Dam takes in water at a rate of 
8.50 3 105 kg/s from a height of 87.0 m. The power devel-
oped by the falling water is converted to electric power with 
an efficiency of 85.0%. How much electric power does each 
hydroelectric unit produce?

SectIon 14.6 Bernoulli’s Equation

22. A legendary Dutch boy saved Holland by plugging a hole 
of diameter 1.20 cm in a dike with his finger. If the hole 
was 2.00 m below the surface of the North Sea (density 
1 030 kg/m3), (a) what was the force on his finger? (b) If he 
pulled his finger out of the hole, during what time interval 
would the released water fill 1 acre of land to a depth of 1 ft? 
Assume the hole remained constant in size.

23. Water is pumped up from the Colorado River to sup-
ply Grand Canyon Village, located on the rim of the 
canyon. The river is at an elevation of 564 m, and 
the village is at an elevation of 2 096 m. Imagine that  
the water is pumped through a single long pipe 15.0 cm  
in diameter, driven by a single pump at the bottom end. 
(a) What is the minimum pressure at which the water must 
be pumped if it is to arrive at the village? (b) If 4 500 m3 
of water is pumped per day, what is the speed of the water 
in the pipe? Note: Assume the free-fall acceleration and the 

density of air are constant over this range of elevations. 
The pressures you calculate are too high for an ordinary 
pipe. The water is actually lifted in stages by several pumps 
through shorter pipes.

24. In ideal flow, a liquid of density 850 kg/m3 moves from a 
horizontal tube of radius 1.00 cm into a second horizontal 
tube of radius 0.500 cm at the same elevation as the first 
tube. The pressure differs by DP between the liquid in  
one tube and the liquid in the second tube. (a) Find the vol-
ume flow rate as a function of DP. Evaluate the volume flow  
rate for (b) DP 5 6.00 kPa and (c) DP 5 12.0 kPa.

25. Review. Old Faithful Gey-
ser in Yellowstone National 
Park erupts at approxi-
mately one-hour intervals, 
and the height of the water 
column reaches 40.0 m 
(Fig.  P14.25). (a)  Model the 
rising stream as a series of 
 separate  droplets. Analyze 
the free-fall motion of one 
of the droplets to determine 
the speed at which the water 
leaves the ground. (b) What 
If? Model the rising stream 
as an ideal fluid in stream-
line flow. Use Bernoulli’s 
equation to determine the 
speed of the water as it leaves 
ground level. (c) How does 
the answer from part (a) compare with the answer from part 
(b)? (d) What is the pressure (above atmospheric) in the 
heated underground chamber if its depth is 175 m? Assume 
the chamber is large compared with the geyser’s vent.

26. You are working as an expert witness for the owner of a sky-
scraper complex in a downtown area. The owner is being 
sued by pedestrians on the streets below his buildings who 
were injured by falling glass when windows popped out-
ward from the sides of the building. The Bernoulli effect 
can have important consequences for windows in such 
buildings. For example, wind can blow around a skyscraper 
at remarkably high speed, creating low pressure on the 
outside surface of the windows. The higher atmospheric 
pressure in the still air inside the buildings can cause win-
dows to pop out. (a) In your research into the case, you 
find some overhead views of your client’s project, as shown 
below. The project includes two tall skyscrapers and some 
park area on a square plot. Plan (i) (Fig. P14.26(i), page 382) 
was submitted by the original architects and planners. At 
the last minute, the owner decided he didn’t want the park 
grounds to be divided into two areas and submitted Plan 
(ii) (Fig. P14.26(ii), which is the way the project was built. 
Explain to your client why Plan (ii) is a much more danger-
ous situation in terms of windows popping out than Plan (i).  
(b) Your client is not convinced by your conceptual argu-
ment in part (a), so you provide a numerical argument. Sup-
pose a horizontal wind blows with a speed of 11.2 m/s out-
side a large pane of plate glass with dimensions 4.00 m 3  
1.50 m. Assume the density of the air to be constant at 1.20 kg/
m3. The air inside the building is at atmospheric pressure. 
Calculate the total force exerted by air on the windowpane 
for your client. (c) What If? To further convince your client 
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382 Chapter 14 Fluid Mechanics

of the problems with the building design, calculate the total 
force exerted by air on the windowpane if the wind speed 
between the buildings is 22.4 m/s, twice as high as in part (b).

SectIon 14.7 Flow of Viscous Fluids in Pipes

27. A thin 1.50-mm coating of glycerin has been placed between 
two microscope slides of width 1.00 cm and length 4.00 cm. 
Find the force required to pull one of the microscope slides 
at a constant speed of 0.300 m/s relative to the other slide.

28. A hypodermic needle is 3.00 cm in length and 0.300 mm 
in diameter. What pressure difference between the input 
and output of the needle is required so that the flow rate of 
water through it will be 1.00 g/s? (Use 1.00 3 1023 Pa ? s as 
the viscosity of water.)

29. What radius needle should be used to inject a volume of 
500 cm3 of a solution into a patient in 30.0 min? Assume the 
length of the needle is 2.50 cm and the solution is elevated 
1.00 m above the point of injection. Further, assume the vis-
cosity and density of the solution are those of pure water, 
and that the pressure inside the vein is atmospheric.

SectIon 14.8 Other Applications of Fluid Dynamics

30. An airplane has a mass of 1.60 3 104 kg, and each wing has 
an area of 40.0 m2. During level flight, the pressure on the 
lower wing surface is 7.00 3 104 Pa. (a) Suppose the lift on 
the airplane were due to a pressure difference alone. Deter-
mine the pressure on the upper wing surface. (b) More real-
istically, a significant part of the lift is due to deflection of air 
downward by the wing. Does the inclusion of this force mean 
that the pressure in part (a) is higher or lower? Explain.

31. A siphon is used to drain water from a tank as illustrated  
in Figure P14.31. Assume steady flow without friction.  

(a)  If h 5 1.00 m, find the speed of outflow at the end of 
the siphon. (b) What If? What is the limitation on the 
height of the top of the siphon above the end of the siphon?  
Note: For the flow of the liquid to be continuous, its pressure 
must not drop below its vapor pressure. Assume the water is 
at 20.08C, at which the vapor pressure is 2.3 kPa.

aDDItIonal ProblemS

32. Decades ago, it was thought that huge herbivorous dino-
saurs such as Apatosaurus and Brachiosaurus habitually 
walked on the bottom of lakes, extending their long necks 
up to the surface to breathe. Brachiosaurus had its nos-
trils on the top of its head. In 1977, Knut Schmidt-Nielsen 
pointed out that breathing would be too much work for 
such a creature. For a simple model, consider a sample con-
sisting of 10.0 L of air at absolute pressure 2.00 atm, with 
density 2.40 kg/m3, located at the surface of a freshwater 
lake. Find the work required to transport it to a depth of 
10.3 m, with its temperature, volume, and pressure remain-
ing constant. This energy investment is greater than the 
energy that can be obtained by metabolism of food with the 
oxygen in that quantity of air.

33. A helium-filled balloon (whose envelope 
has a mass of mb 5 0.250 kg) is tied to a uni-
form string of length , 5 2.00 m and mass 
m 5 0.050 0 kg. The balloon is spherical 
with a radius of r 5 0.400 m. When released 
in air of temperature 208C and density rair 
5 1.20 kg/m3, it lifts a length h of string 
and then remains stationary as shown in 
Figure P14.33. We wish to find the length 
of string lifted by the balloon. (a) When the balloon remains 
stationary, what is the appropriate analysis model to describe 
it? (b) Write a force equation for the balloon from this model 
in terms of the buoyant force B, the weight Fb of the balloon, 
the weight FHe of the helium, and the weight Fs of the segment 
of string of length h. (c) Make an appropriate substitution for 
each of these forces and solve symbolically for the mass ms of 
the segment of string of length h in terms of mb, r, rair, and the 
density of helium rHe. (d) Find the numerical value of the 
mass ms. (e) Find the length h numerically.

34. The true weight of an object can be measured in a vacuum, 
where buoyant forces are absent. A measurement in air, 
however, is disturbed by buoyant forces. An object of volume 
V is weighed in air on an equal-arm balance with the use 
of counterweights of density r. Representing the density of 
air as rair and the balance reading as F 9g , show that the true 
weight Fg is

Fg 5 F 9g 1 SV 2
F 9g

rgDrairg

35. To an order of magnitude, how many helium-filled toy bal-
loons would be required to lift you? Because helium is an 
irreplaceable resource, develop a theoretical answer rather 
than an experimental answer. In your solution, state what 
physical quantities you take as data and the values you mea-
sure or estimate for them.

36. Review. Assume a certain liquid, with density 1 230 kg/m3, 
exerts no friction force on spherical objects. A ball of mass 
2.10 kg and radius 9.00 cm is dropped from rest into a 
deep tank of this liquid from a height of 3.30 m above the 
surface. (a) Find the speed at which the ball enters the 
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action of the total force exerted by the water is at a distance 
1
3H  above O.

41. The spirit-in-glass thermometer, invented 
in Florence, Italy, around 1654, con-
sists of a tube of liquid (the spirit) con-
taining a number of submerged glass 
spheres with slightly different masses 
(Fig.  P14.41). At sufficiently low tem-
peratures, all the spheres float, but 
as the temperature rises, the spheres 
sink one after another. The device is 
a crude but interesting tool for mea-
suring temperature. Suppose the 
tube is filled with ethyl alcohol, whose 
density is 0.789 45 g/cm3 at 20.0°C 
and decreases to 0.780 97 g/cm3 at 
30.0°C. (a) Assuming that one of the 
spheres has a radius of 1.000 cm and is 
in equilibrium halfway up the tube at 
20.0°C, determine its mass. (b) When 
the temperature increases to 30.0°C, 
what mass must a second sphere of the 
same radius have to be in equilibrium at the halfway point? 
(c) At 30.0°C, the first sphere has fallen to the bottom of the 
tube. What upward force does the bottom of the tube exert 
on this sphere?

42. A woman is draining her fish tank 
by siphoning the water into an out-
door drain as shown in Figure P14.42.  
The rectangular tank has footprint area 
A and depth h. The drain is located a 
distance d below the surface of the water 
in the tank, where d .. h. The cross- 
sectional area of the siphon tube is A9. 
Model the water as flowing without 
friction. Show that the time interval 
required to empty the tank is given by

Dt 5
Ah

A9Ï2gd

43. Review. You and your father are designing a waterfall for 
your backyard swimming pool. At the top of the waterfall is 
a tank containing water that is kept to a depth d 5 0.280 m  
by a pump. As shown in Figure P14.43, there is a small 
hatch of height h 5 0.100 m and width w 5 0.150 m, hinged 
at the top, that can be used to turn on and turn off the 
supply of water to the waterfall. You want to attach a simple 
latch at the center of the bottom of the hatch and are trying 
to decide what type of latch to buy at your local hardware 
store. To make that decision, you need to determine the 
force that the latch must be able to withstand to keep the 
hatch closed.

CR

liquid. (b) Evaluate the magnitudes of the two forces that 
are exerted on the ball as it moves through the liquid. (c) 
Explain why the ball moves down only a limited distance 
into the liquid and calculate this distance. (d)  With what 
speed will the ball pop up out of the liquid? (e) How does 
the time interval Dtdown, during which the ball moves from 
the surface down to its lowest point, compare with the 
time interval Dtup for the return trip between the same two 
points? (f) What If? Now modify the model to suppose the 
liquid exerts a small friction force on the ball, opposite in 
direction to its motion. In this case, how do the time inter-
vals Dtdown and Dtup compare? Explain your answer with a 
conceptual argument rather than a numerical calculation.

37. Evangelista Torricelli was the first person to realize that we 
live at the bottom of an ocean of air. He correctly surmised 
that the pressure of our atmosphere is attributable to the 
weight of the air. The density of air at 08C at the Earth’s sur-
face is 1.29 kg/m3. The density decreases with increasing 
altitude (as the atmosphere thins). On the other hand, if 
we assume the density is constant at 1.29 kg/m3 up to some 
altitude h and is zero above that altitude, then h would rep-
resent the depth of the ocean of air. (a) Use this model to 
determine the value of h that gives a pressure of 1.00 atm 
at the surface of the Earth. (b) Would the peak of Mount 
Everest rise above the surface of such an atmosphere?

38. A common parameter that can be used to predict turbu-
lence in fluid flow is called the Reynolds number. The Rey-
nolds number for fluid flow in a pipe is a dimensionless 
quantity defined as

Re 5
rvd

h

where r is the density of the fluid, v is its speed, d is the inner 
diameter of the pipe, and h is the viscosity of the fluid. The 
criteria for the type of flow are as follows:

•  If Re , 2 300, the flow is laminar.
•   If 2 300 , Re , 4 000, the flow is in a transition region 

between laminar and turbulent.
•  If Re . 4 000, the flow is turbulent.

(a) Let’s model blood of density 1.06 3 103 kg/m3 and vis-
cosity 3.00 3 10–3 Pa · s as a pure liquid, that is, ignore the 
fact that it contains red blood cells. Suppose it is flowing in 
a large artery of radius 1.50 cm with a speed of 0.067 0 m/s. 
Show that the flow is laminar. (b) Imagine that the artery 
ends in a single capillary so that the radius of the artery 
reduces to a much smaller value. What is the radius of the 
capillary that would cause the flow to become turbulent? 
(c) Actual capillaries have radii of about 5–10 micrometers, 
much smaller than the value in part (b). Why doesn’t the 
flow in actual capillaries become turbulent?

39. In 1983, the United States began coining the one-cent piece 
out of copper-clad zinc rather than pure copper. The mass 
of the old copper penny is 3.083 g and that of the new cent 
is 2.517 g. The density of copper is 8.920 g/cm3 and that of 
zinc is 7.133 g/cm3. The new and old coins have the same 
volume. Calculate the percent of zinc (by volume) in the 
new cent.

40. Review. With reference to the dam studied in Example 14.4 
and shown in Figure 14.5, (a) show that the total torque 
exerted by the water behind the dam about a horizontal 
axis through O is 16 rgwH 3. (b) Show that the effective line of 

Figure P14.41
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384 Chapter 14 Fluid Mechanics

44. Review. You and your father are designing a waterfall for 
your backyard swimming pool. At the top of the waterfall is 
a tank containing water that is kept to a depth d by a pump. 
As shown in Figure P14.43, there is a small hatch of height h 
and width w, hinged at the top, that can be used to turn on 
and turn off the supply of water to the waterfall. You want 
to attach a simple latch at the center of the bottom of the 
hatch and are trying to decide what type of latch to buy at 
your local hardware store. To make that decision, you need 
to determine the force that the latch must be able to with-
stand to keep the hatch closed.

45. Review. A uniform disk of mass 10.0 kg and radius 0.250 m 
spins at 300 rev/min on a low-friction axle. It must be brought 
to a stop in 1.00 min by a brake pad that makes contact 
with the disk at an average distance 0.220 m from the axis.  
The coefficient of friction between pad and disk is 0.500.  
A piston in a cylinder of diameter 5.00 cm presses the brake pad 
against the disk. Find the pressure required for the brake fluid  
in the cylinder.

46. Review. In a water pistol, a piston drives water through a large 
tube of area A1 into a smaller tube of area A2 as shown in  
Figure P14.46. The radius of the large tube is 1.00 cm and that 
of the small tube is 1.00 mm. The smaller tube is 3.00 cm above 
the larger tube. (a) If the pistol is fired horizontally at a height 
of 1.50 m, determine the time interval required for the water 
to travel from the nozzle to the ground. Neglect air resistance 
and assume atmospheric pressure is 1.00 atm. (b) If the desired 
range of the stream is 8.00 m, with what speed v2 must the 
stream leave the nozzle? (c) At what speed v1 must the plunger 
be moved to achieve the desired range? (d) What is the pres-
sure at the nozzle? (e) Find the pressure needed in the larger 
tube. (f) Calculate the force that must be exerted on the trigger 
to achieve the desired range. (The force that must be exerted is 
due to pressure over and above atmospheric pressure.)

47. An incompressible, nonviscous fluid is initially at rest in the 
vertical portion of the pipe shown in Figure P14.47a, where 

L 5 2.00 m. When the valve is opened, the fluid flows into 
the horizontal section of the pipe. What is the fluid’s speed 
when all the fluid is in the horizontal section as shown in 
Figure P14.47b? Assume the cross-sectional area of the 
entire pipe is constant.

48. The hull of an experimental boat is to be lifted above 
the water by a hydrofoil mounted below its keel as 
shown in Figure P14.48. The hydrofoil has a shape 
like that of an airplane wing. Its area projected onto a  
horizontal surface is A. When the boat is towed at suffi-
ciently high speed, water of density r moves in streamline 
flow so that its average speed at the top of the hydrofoil 
is n times larger than its speed vb below the hydrofoil. (a) 
Ignoring the buoyant force, show that the upward lift force 
exerted by the water on the hydrofoil has a magnitude

F < 1
2sn2 2 1drvb

2  A

(b) The boat has mass M. Show that the liftoff speed is  
given by

v < Î 2Mg

sn2 2 1dAr

challenge ProblemS

 49. Show that the variation of atmospheric pressure with alti-
tude is given by P 5 P0e

2ay, where a 5 r0g/P0, P0 is atmo-
spheric pressure at some reference level y 5 0, and r0 is the 
atmospheric density at this level. Assume the decrease in 
atmospheric pressure over an infinitesimal change in alti-
tude (so that the density is approximately uniform over the 
infinitesimal change) can be expressed from Equation 14.4 
as dP 5 2rg dy. Also assume the density of air is propor-
tional to the pressure, which, as we will see in Chapter 18, 
is equivalent to assuming the temperature of the air is the 
same at all altitudes.

 50. Why is the following situation impossible? A barge is carrying a 
load of small pieces of iron along a river. The iron pile is in 
the shape of a cone for which the radius r of the base of the 
cone is equal to the central height h of the cone. The barge 
is square in shape, with vertical sides of length 2r, so that 
the pile of iron comes just up to the edges of the barge. The 
barge approaches a low bridge, and the captain realizes that 
the top of the pile of iron is not going to make it under the 
bridge. The captain orders the crew to shovel iron pieces 
from the pile into the water to reduce the height of the pile. 
As iron is shoveled from the pile, the pile always has the 
shape of a cone whose diameter is equal to the side length 
of the barge. After a certain volume of iron is removed from 
the barge, it makes it under the bridge without the top of 
the pile striking the bridge.
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P a r t  2

Oscillations and  
Mechanical Waves

Falling drops of water cause a 
water surface to oscillate. These 
oscillations are associated with 
circular waves moving away 
from the point at which the drops 
fall. In Part 2 of the text, we will 
explore the principles related 
to oscillations and waves.  
(Ziga Camernik/Shutterstock)

In Part 1 of this text, we focused on one particular energy 
transfer term in Equation 8.2: work W. In Parts 2 through 5, we will focus 
our efforts in each part on a new term in Equation 8.2. Here in Part 2, we 
will investigate the term TMW: transfer of energy by mechanical waves. 
We begin this new part of the text by studying a special type of motion 
called periodic motion, the repeating motion of an object in which it con-
tinues to return to a given position after a fixed time interval. The repet-
itive movements of such an object are called oscillations. We will focus 
our attention on a special case of periodic motion called simple harmonic 
motion. All periodic motions can be modeled as combinations of simple 
harmonic motions.

Simple harmonic motion also forms the basis for our understanding 
of mechanical waves. Sound waves, seismic waves, waves on stretched 
strings, and water waves are all produced by some source of oscillation. 
As a sound wave travels through the air, elements of the air oscillate back 
and forth; as a water wave travels across a pond, elements of the water 
oscillate up and down and backward and forward. 

To explain many other phenomena in nature, we must understand 
the concepts of oscillations and waves. For instance, although skyscrap-
ers and bridges appear to be rigid, they actually oscillate, something 
the architects and engineers who design and build them must take into 
account. To understand how radio and television work, we must under-
stand the origin and nature of electromagnetic waves and how they prop-
agate through space. Finally, much of what scientists have learned about 
atomic structure has come from information carried by waves. ■
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Oscillatory Motion

Storyline In the previous chapter, you were taking off in an 
airplane from Denver, Colorado, to Boston, Massachusetts. You are now visiting 
your grandparents in Boston. There is an antique grandfather clock keeping time 
in one of the rooms. The gentle clicking of the swinging pendulum is relaxing 
to you. You recall that your grandparents used to live in Denver, like your other 
set of grandparents, and then moved from Denver to Boston, bringing the clock 
with them. Your grandmother enters the room and you mention your childhood 
memories of the clock. She tells you that she had it calibrated professionally 
in Denver and it kept perfect time for years. After they moved it here to their 
Massachusetts house, it has not been accurate. It runs too fast and has to 
be reset to the correct time every few days. You ask your grandmother what 
the clock shop in Denver did to calibrate the clock, but she doesn’t know. You 
wonder—could you do something to calibrate the clock?

ConneCtions This is a bridging chapter. For the most part so far, we have 
considered motion that occurs once and does not repeat—a thrown ball, an accel-
erating car, a pushed crate. In Section 4.4, we saw our first example of repeating 
motion: a particle moving in a circular path returns to the starting point and performs 
the same motion over and over. In this chapter, we will be applying the principles of 
mechanics to the special case of an oscillating object. From this point of view, this 
chapter is based on understanding a new and important situation based on material 

15.1 Motion of an Object 
Attached to a Spring

15.2 Analysis Model: 
Particle in Simple 
Harmonic Motion

15.3 Energy of the Simple 
Harmonic Oscillator

15.4 Comparing Simple 
Harmonic Motion 
with Uniform Circular 
Motion

15.5 The Pendulum

15.6 Damped Oscillations

15.7 Forced Oscillations

A grandfather clock keeps 
time in a room. The timing 

mechanism depends on the 
swinging of a pendulum. 

This repetitive swinging is 
an example of oscillatory 
motion. (Antonio Gravante/

Shutterstock)

15
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    15.1 Motion of an Object Attached to a Spring 387

we have studied in previous chapters. On the other hand, oscillations are the basis 
for understanding all types of waves. We mentioned mechanical waves and electro-
magnetic waves briefly in Section 8.1 and will study mechanical waves in the next 
two chapters and electromagnetic waves in Chapter 33. Therefore, this chapter, 
while based on principles from the past, is preparing us for our future study of waves. 

   15.1    Motion of an Object Attached to a Spring
As a model for oscillatory motion, consider a block of mass m attached to the end of 
a spring, with the block free to move on a frictionless, horizontal surface (Fig. 15.1). 
When the spring is neither stretched nor compressed, the block is at rest at the 
position called the equilibrium position of the system, which we identify as x 5 0 
(Fig. 15.1b). We know from experience that such a system oscillates back and forth 
if disturbed from its equilibrium position.

We can understand the oscillating motion of the block in Figure 15.1 qualita-
tively by first recalling that when the block is displaced to a position x, the spring 
exerts on the block a force that is proportional to the position and given by Hooke’s 
law (see Section 7.4):

 Fs 5 2kx (15.1)

We call Fs a restoring force because it is always directed toward the equilibrium 
position and therefore opposite the displacement of the block from equilibrium. 
That is, when the block is displaced to the right of x 5 0 in Figure 15.1a, the posi-
tion is positive and the restoring force is directed to the left. When the block is 
displaced to the left of x 5 0 as in Figure 15.1c, the position is negative and the 
restoring force is directed to the right.

When the block is displaced from the equilibrium point and released, it is a 
particle under a net force and consequently undergoes an acceleration. Applying 
the particle under a net force model to the motion of the block, with Equation 15.1 
providing the net force in the x direction, we obtain

o Fx 5 max   S   2kx 5 max

 ax 5 2 

k
m

 x (15.2)

That is, the acceleration of the block is proportional to its position, and the 
direction of the acceleration is opposite the direction of the displacement of the 
block from equilibrium. Systems that behave in this way are said to exhibit simple 
harmonic motion. An object moves with simple harmonic motion whenever its 
acceleration is proportional to its position and is oppositely directed to the dis-
placement from equilibrium.

  Hooke’s law

PItfall PreventIon 15.1
The Orientation of the Spring  
Figure 15.1 shows a horizontal 
spring, with an attached block 
sliding on a frictionless surface. 
Another possibility is a block 
hanging from a vertical spring. 
All the results we discuss for the 
horizontal spring are the same for 
the vertical spring with one excep-
tion: when the block is placed 
on the vertical spring, its weight 
causes the spring to extend. If the 
resting position of the block on 
the extended spring is defined as 
x 5 0, the results of this chapter 
also apply to this vertical system.

Figure 15.1 A block attached  
to a spring and moving on a fric-
tionless surface.
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When the block is displaced 
to the right of equilibrium, 
the force exerted by the 
spring acts to the left.

When the block is at its  
equilibrium position, the 
force exerted by the spring 
is zero.

When the block is displaced 
to the left of equilibrium, 
the force exerted by the 
spring acts to the right.
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388 Chapter 15 Oscillatory Motion

If the block in Figure 15.1 is displaced to a position x 5 A and released from 
rest, its initial acceleration is 2kA/m. When the block passes through the equilib-
rium position x 5 0, its acceleration is zero. At this instant, its speed is a maximum 
because the acceleration changes sign. The block then continues to travel to the 
left of equilibrium with a positive acceleration and finally reaches x 5 2A, at which 
time its acceleration is 1kA/m and its speed is again zero as discussed in Sections 7.4 
and 7.9. The block completes a full cycle of its motion by returning to the original 
position, again passing through x 5 0 with maximum speed. Therefore, the block 
oscillates between the turning points x 5 6A. In the absence of friction, this ideal-
ized motion will continue forever because the force exerted by the spring is conser-
vative. Real systems are generally subject to friction, so they do not oscillate forever. 
We shall explore the details of the situation with friction in Section 15.6.

Q uIck QuIz 15.1  A block on the end of a spring is pulled to position x 5 A 
and released from rest. In one full cycle of its motion, through what total dis-
tance does it travel? (a) A/2   (b) A   (c) 2A   (d) 4A

   15.2    Analysis Model: Particle  
in Simple Harmonic Motion
The idealized motion described in the preceding section is the basis for so many 
real motions of objects that we identify the particle in simple harmonic motion 
model to represent such situations. To develop a mathematical representation for 
this model, we will generally choose x as the axis along which the oscillation of an 
object occurs; hence, we will drop the subscript-x notation in this discussion. Recall 
that, by definition, a 5 dv/dt 5 d 2x/dt2, so we can express Equation 15.2 as

 
d 2x
dt2 5 2 

k
m

 x (15.3)

If we denote the ratio k/m with the symbol v2 (we choose v2 rather than v so as to 
make the solution we develop below simpler in form), then

 v2 5
k
m

 (15.4)

and Equation 15.3 can be written in the form

 
d 2x
dt2 5 2v2x (15.5)

Let’s now find a mathematical solution to Equation 15.5, that is, a function x(t) 
that satisfies this second-order differential equation and is a mathematical repre-
sentation of the position of the particle as a function of time. We seek a function 
whose second derivative is the same as the original function with a negative sign 
and multiplied by v2. The trigonometric functions sine and cosine exhibit this 
behavior, so we can build a solution around one or both of them. The following 
cosine function is a solution to the differential equation:

 x std 5 A cos svt 1 fd (15.6)

where A, v, and f are constants. To show explicitly that this solution satisfies Equa-
tion 15.5, notice that

 
dx
dt

5 A 
d
dt

 cos svt 1 fd 5 2vA sin svt 1 fd (15.7)

 
d 2x
dt2 5 2vA 

d
dt

 sin svt 1 fd 5 2v2A cos svt 1 fd (15.8)

Position versus time for  
a particle in simple  

harmonic motion

PItfall PreventIon 15.2
A Nonconstant Acceleration The 
acceleration of a particle in simple 
harmonic motion is not constant. 
Equation 15.3 shows that its 
acceleration varies with position x. 
Therefore, we cannot apply the 
kinematic equations of Chapter 2 
in this situation. Those equations 
describe a particle under constant 
acceleration.
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    15.2 Analysis Model: Particle in Simple Harmonic Motion  389

Comparing Equations 15.6 and 15.8, we see that d 2x/dt2 5 2v2x and Equation 15.5 
is satisfied.

The parameters A, v, and f are constants of the motion. To give physical signif-
icance to these constants, it is convenient to form a graphical representation of the 
motion by plotting x as a function of t as in Figure 15.2a. First, A, called the ampli-
tude of the motion, is simply the maximum value of the position of the particle 
in either the positive or negative x direction. The constant v is called the angular 
frequency, and it has units1 of radians per second. It is a measure of how rapidly the 
oscillations are occurring; the more oscillations per unit time, the higher the value 
of v. From Equation 15.4, the angular frequency is

 v 5Î k
m

 (15.9)

The quantity (vt 1 f) in Equation 15.6 is called the phase of the motion. The 
constant angle f is called the phase constant (or initial phase angle) and, along 
with the amplitude A, is determined uniquely by the position and velocity of the 
particle at t 5 0. Therefore, A and f are two parameters that define the initial 
conditions of the motion of an oscillating object, just as xi and vi describe the initial 
conditions of an object undergoing constant acceleration in Equation 2.16. If the 
particle is at its maximum position x 5 A at t 5 0, the phase constant is f 5 0 and 
the graphical representation of the motion is as shown in Figure 15.2b. Notice that 
the function x(t) is periodic and its value is the same each time vt increases by 2p 
radians.

Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation 
of the particle in simple harmonic motion model. If you are analyzing a situation 
and find that the force on an object modeled as a particle is of the mathematical 
form of Equation 15.1, you know the motion is that of a simple harmonic oscillator 
and the position of the particle is described by Equation 15.6. If you analyze a sys-
tem and find that it is described by a differential equation of the form of Equation 
15.5, the motion is that of a simple harmonic oscillator. If you analyze a situation 
and find that the position of a particle is described by Equation 15.6, you know the 
particle undergoes simple harmonic motion.

Q uIck QuIz 15.2  Consider a graphical representation (Fig. 15.3) of simple 
harmonic motion as described mathematically in Equation 15.6. When the par-
ticle is at point Ⓐ on the graph, what can you say about its position and velocity?  
(a) The position and velocity are both positive. (b) The position and velocity 
are both negative. (c) The position is positive, and the velocity is zero. (d) The 
position is negative, and the velocity is zero. (e) The position is positive, and the 
velocity is negative. (f) The position is negative, and the velocity is positive.

Q uIck QuIz 15.3  Figure 15.4 shows two curves representing particles under-
going simple harmonic motion. The correct description of these two motions is 
that the simple harmonic motion of particle B is (a) of larger angular frequency 
and larger amplitude than that of particle A, (b) of larger angular frequency 
and smaller amplitude than that of particle A, (c) of smaller angular frequency 
and larger amplitude than that of particle A, or (d) of smaller angular fre-
quency and smaller amplitude than that of particle A.

Let us investigate further the mathematical description of simple harmonic 
motion. The period T of the motion is the time interval required for the particle 
to go through one full cycle of its motion (Fig. 15.2a). That is, the values of x and v 

1 We have seen many examples in earlier chapters in which we evaluate a trigonometric function of an angle. The 
argument of a trigonometric function, such as the cosine function in Equation 15.6, must be a pure number with no 
units. The radian is a pure number because it is a ratio of lengths. Therefore, v must be expressed in radians per 
second (and not, for example, in revolutions per second) if t is expressed in seconds. 

Figure 15.2 (a) An x–t graph 
for a particle undergoing simple 
harmonic motion. The amplitude 
of the motion is A, and the period 
is T. (b) The x–t graph for the spe-
cial case in which x 5 A at t 5 0  
and hence f 5 0.
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Figure 15.3  (Quick Quiz 15.2) 
An x–t graph for a particle under-
going simple harmonic motion. 
At a particular time, the particle’s 
position is indicated by Ⓐ in the 
graph.
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Figure 15.4  (Quick Quiz 15.3) 
Two x–t graphs for particles 
undergoing simple harmonic 
motion. The amplitudes and fre-
quencies are different for the two 
particles.
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390 Chapter 15 Oscillatory Motion

for the particle at time t equal the values of x and v at time t 1 T. Because the phase 
increases by 2p radians in a time interval of T,

 [v(t 1 T) 1 f] 2 (vt 1 f) 5 2p 

Simplifying this expression gives vT 5 2p, or

 T 5
2p

v
 (15.10)

The inverse of the period is called the frequency f of the motion. Whereas the 
period is the time interval per oscillation, the frequency represents the number of 
oscillations the particle undergoes per unit time interval:

 f 5
1
T

5
v

2p
 (15.11)

The units of f are cycles per second, or hertz (Hz). Rearranging Equation 15.11 gives

 v 5 2pf 5
2p

T
 (15.12)

Equations 15.9 through 15.11 can be used to express the period and frequency 
of the motion for the particle in simple harmonic motion in terms of the character-
istics m and k of the system as

 T 5
2p

v
5 2pÎm

k
 (15.13)

 f 5
1
T

5
1

2pÎ k
m

 (15.14)

That is, the period and frequency depend only on the mass of the particle and the 
force constant of the spring and not on the parameters of the motion, such as A or 
f. As we might expect, the frequency is larger for a stiffer spring (larger value of k) 
and decreases with increasing mass of the particle.

We can obtain the velocity and acceleration2 of a particle undergoing simple 
harmonic motion from Equations 15.7 and 15.8:

 v 5
dx
dt

5 2vA sin svt 1 fd (15.15)

 a 5
d 2x
dt2 5 2v2A cos svt 1 fd (15.16)

From Equation 15.15, we see that because the sine and cosine functions oscillate 
between 61, the extreme values of the velocity v are 6vA. Likewise, Equation 15.16 
shows that the extreme values of the acceleration a are 6v2A. Therefore, the maxi-
mum values of the magnitudes of the velocity and acceleration are

 vmax 5 vA 5Î k
m

 A (15.17)

 amax 5 v2A 5
k
m

 A (15.18)

Period of a simple 
harmonic oscillator

Frequency of a simple 
harmonic oscillator

Velocity as a function 
of time for a simple 
harmonic oscillator

Acceleration as a function 
of time for a simple 
harmonic oscillator

Maximum magnitudes of 
 velocity and acceleration in 

simple harmonic motion

PItfall PreventIon 15.3
Two Kinds of Frequency We 
identify two kinds of frequency 
for a simple harmonic oscillator: 
f, called simply the frequency, is 
measured in hertz, and v, the 
angular frequency, is measured in 
radians per second. Be sure you 
are clear about which frequency 
is being discussed or requested in 
a given problem. Equations 15.11 
and 15.12 show the relationship 
between the two frequencies.

2 Because the motion of a simple harmonic oscillator takes place in one dimension, we denote velocity as v and accel-
eration as a, with the direction indicated by a positive or negative sign as in Chapter 2.
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Figure 15.5a plots position versus time for an arbitrary value of the phase constant. 
The associated velocity–time and acceleration–time curves are illustrated in Fig-
ures 15.5b and 15.5c, respectively. It is evident that all three curves have the same gen-
eral shape. The phase of the velocity, however, differs from the phase of the position by 
p/2 rad, or 908. That is, when x is a maximum or a minimum, the velocity is zero. Like-
wise, when x is zero, the speed is a maximum. Furthermore, notice that the phase of 
the acceleration differs from the phase of the position by p radians, or 1808. For exam-
ple, when x is a maximum, a has a maximum magnitude in the opposite direction.

Q uIck QuIz 15.4  An object of mass m is hung from a spring and set into oscil-
lation. The period of the oscillation is measured and recorded as T. The object 
of mass m is removed and replaced with an object of mass 2m. When this object 
is set into oscillation, what is the period of the motion? (a) 2T   (b) Ï2 T    (c) T   
(d) TyÏ2   (e) T/2

Equation 15.6 describes simple harmonic motion of a particle in terms of three 
constants of the motion. Let’s now see how to evaluate these constants. The angular 
frequency v is evaluated using Equation 15.9. The constants A and f are evaluated 
from the initial conditions, that is, the state of the oscillator at t 5 0.

Suppose a block is set into motion by pulling it from equilibrium by a distance 
A and releasing it from rest at t 5 0 as in Figure 15.6. We must then require our 
solutions for x(t) and v(t) (Eqs. 15.6 and 15.15) to obey the initial conditions that 
x(0) 5 A and v(0) 5 0:

x(0) 5 A cos f 5 A

 v(0) 5 2vA sin f 5 0 

These conditions are met if f 5 0, giving x 5 A cos vt as our solution. To check this 
solution, notice that it satisfies the condition that x(0) 5 A because cos 0 5 1.

The position, velocity, and acceleration of the block versus time are plotted in 
Figure 15.7a for this special case. The acceleration reaches extreme values of 7v2A 
when the position has extreme values of 6A. Furthermore, the velocity has extreme 
values of 6vA, which both occur at x 5 0. Hence, the quantitative solution agrees 
with our qualitative description of this system.

Let’s consider another possibility. Suppose the system is oscillating and we define 
t 5 0 as the instant the block passes through the unstretched position of the spring 
while moving to the right (Fig. 15.8). In this case, our solutions for x(t) and v(t) 
must obey the initial conditions that x(0) 5 0 and v(0) 5 vi:

 x(0) 5 A cos f 5 0 

 v(0) 5 2vA sin f 5 vi 

b

c

a

T

A

x

xi

t

t

t

v

vi

a

vmax

a max

Figure 15.5  Graphical repre-
sentation of simple harmonic 
motion. (a) Position versus time. 
(b) Velocity versus time. (c) Accel-
eration versus time. Notice that at 
any specified time the velocity is 
908 out of phase with the position 
and the acceleration is 1808 out of 
phase with the position.
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Figure 15.7  (a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under the 
initial conditions that at t 5 0, x(0) 5 A, and v(0) 5 0. (b) Position, velocity, and acceleration versus 
time for the block in Figure 15.8 under the initial conditions that at t 5 0, x(0) 5 0, and v(0) 5 vi.

Figure 15.6 A block–spring sys-
tem that begins its motion from 
rest with the block at x 5 A at t 5 0.

A

m

x � 0

t � 0
xi � A
vi � 0

Figure 15.8 The block–spring 
system is undergoing oscillation, 
and t 5 0 is defined at an instant 
when the block passes through the 
equilibrium position x 5 0 and is 
moving to the right with speed vi.

m

x � 0
t � 0

xi � 0
v � vi

vi
S
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392 Chapter 15 Oscillatory Motion

The first of these conditions tells us that f 5 6p/2. With these choices for f, 
the second condition tells us that A 5 7vi  /v. Because the initial velocity is positive 
and the amplitude must be positive, we must have f 5 2p/2. Hence, the solution is

 x 5
vi

v
 cos Svt 2

p

2D 

The graphs of position, velocity, and acceleration versus time for this choice of t 5 0 
are shown in Figure 15.7b. Notice that these curves are the same as those in Figure 
15.7a, but shifted to the right by one-fourth of a cycle. This shift is described mathe-
matically by the phase constant f 5 2p/2, which is one-fourth of a full cycle of 2p.

analysIs Model Particle in Simple Harmonic Motion

Imagine an object that is subject to a force that is proportional to the negative of the 
object’s position, F 5 2kx (Eq. 15.1). Such a force equation is known as Hooke’s law, and 
it describes the force applied to an object attached to an ideal spring. The parameter k 
in Hooke’s law is called the spring constant or the force constant. The position of an object 
acted on by a force described by Hooke’s law is given by

 x(t) 5 A cos (vt 1 f) (15.6)

where A is the amplitude of the motion, v is the angular frequency, and f is the phase constant. The values of A and f 
depend on the initial position and initial velocity of the particle.

The period of the oscillation of the particle is

 T 5
2p

v
5 2pÎm

k
 (15.13)

and the inverse of the period is the frequency.

Examples: 

 ● a bungee jumper hangs from a bungee cord and oscillates up and down
 ● a guitar string vibrates back and forth in a standing wave, with each element of the string moving in simple harmonic 

motion (Chapter 17)
 ● a piston in a gasoline engine oscillates up and down within the cylinder of the engine (Chapter 21)
 ● an atom in a diatomic molecule vibrates back and forth as if it is connected by a spring to the other atom in the molecule 

(Chapter 42)

x

A

–A

t

T

 Example 15.1    A Block–Spring System

A 200-g block connected to a light spring for which the force constant is 5.00 N/m is free to oscillate on a frictionless, 
horizontal surface. The block is displaced 5.00 cm from equilibrium and released from rest as in Figure 15.6.

(A) Find the period of its motion.

S O l U T I O n

Conceptualize Study Figure 15.6 and imagine the block moving back and forth in simple harmonic motion once it is released. 
Set up an experimental model in the vertical direction by hanging a heavy object such as a stapler from a strong rubber band.

Categorize The block is modeled as a particle in simple harmonic motion. 

Analyze

Use Equation 15.9 to find the angular frequency of the  v 5Î k
m

5Î 5.00 Nym
200 3 1023 kg

5 5.00 radys 
block–spring system:

Use Equation 15.13 to find the period of the system: T 5
2p

v
5

2p

5.00 radys
5  1.26 s
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15.1 c o n t i n u e d

(B) Determine the maximum speed of the block.

S O l U T I O n

Use Equation 15.17 to find vmax: vmax 5 vA 5 (5.00 rad/s)(5.00 3 1022 m) 5  0.250 m/s

(C) What is the maximum acceleration of the block?

S O l U T I O n

Use Equation 15.18 to find amax: amax 5 v2A 5 (5.00 rad/s)2(5.00 3 1022 m) 5  1.25 m/s2

(D) Express the position, velocity, and acceleration as functions of time in SI units.

S O l U T I O n

Find the phase constant from the initial condition that  x(0) 5 A cos f 5 A   S   f 5 0 
x 5 A at t 5 0:

Use Equation 15.6 to write an expression for x(t): x 5 A cos (vt 1 f) 5  0.050 0 cos 5.00t

Use Equation 15.15 to write an expression for v(t): v 5 2vA sin (vt 1 f) 5  20.250 sin 5.00t

Use Equation 15.16 to write an expression for a(t): a 5 2v2A cos (vt 1 f) 5  21.25 cos 5.00t

Finalize Consider part (a) of Figure 15.7, which shows the graphical representations of the motion of the block in this problem. 
Make sure that the mathematical representations found above in part (D) are consistent with these graphical representations.

W H A T  I F ?  What if the block were released from the same initial position, xi 5 5.00 cm, but with an initial velocity of  
vi 5 20.100 m/s? Which parts of the solution change, and what are the new answers for those that do change?

Answers Part (A) does not change because the period is independent of how the oscillator is set into motion. Parts (B), (C), 
and (D) will change.

Write position and velocity expressions for the initial  (1)    x(0) 5 A cos f 5 xi 
conditions:
 (2)    v(0) 5 2vA sin f 5 vi

Divide Equation (2) by Equation (1) to find the phase  
2vA sin f

A cos f
5

vi

xi

 
constant:

  tan f 5 2
vi

vxi

5 2
20.100 mys

s5.00 radysds0.050 0 md
5 0.400

 f 5 tan21 (0.400) 5 0.121p

Use Equation (1) to find A: A 5
xi

cos f
5

0.050 0 m
cos s0.121pd

5 0.053 9 m

Find the new maximum speed: vmax 5 vA 5 (5.00 rad/s)(5.39 3 1022 m) 5 0.269 m/s

Find the new magnitude of the maximum acceleration: amax 5 v2A 5 (5.00 rad/s)2(5.39 3 1022 m) 5 1.35 m/s2

Find new expressions for position, velocity, and  x 5 0.053 9 cos (5.00t 1 0.121p) 
acceleration in SI units:

v 5 20.269 sin (5.00t 1 0.121p)

a 5 21.35 cos (5.00t 1 0.121p)

As we saw in Chapters 7 and 8, many problems are easier to solve using an energy approach rather than one based on variables 
of motion. This particular What If? is easier to solve from an energy approach. Therefore, we shall investigate the energy of 
the simple harmonic oscillator in the next section.
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394 Chapter 15 Oscillatory Motion

 Example 15.2    More Details of the Block–Spring System

Consider again the block–spring system in Example 15.1, whose position, velocity, and acceleration are given in part (D) of 
the problem. Find a general expression for all times at which the block is located at x 5 11

2A.

S O l U T I O n

Conceptualize An important factor to keep in mind is that the block will be located at the requested position twice during 
each cycle. Our general expression should reflect that fact.

Categorize As in Example 15.1, the block is modeled as a particle in simple harmonic motion.

Analyze Write an expression for the  x 5 A cosvt 
position of the block knowing that the  
phase constant is equal to zero:

Enter the condition that the position  1
2A 5 A cosvt S t 5

1
v

 cos21_12+ 
be half the amplitude and solve for t:

Recognize that there are two angles in  cos21
 _12+ 5

p

3
1 2pn 5

p

3
(1 1 6n) n 5 0, 1, 2, . . . 

the first cycle at which the inverse cosine  
is one-half, plus additional angles can be  
found by adding integral multiples of 2p:

cos21
 _12+ 5

5p

3
1 2pn 5

p

3
(5 1 6n) n 5 0, 1, 2, . . .

Substitute these angles into  t 5
1

5.00 s21   cos21  _12+ 5
p

15.0 s21  (1 1 6n) or p

15.0 s21  (5 1 6n) n 5 0, 1, 2, . . . 
the expression for t:

Finalize Use these expressions to show that the first two times at which the block is at this position are 0.209 s  
and 1.05 s. These instants are shortly after the block is released and shortly before one full cycle has been completed  
at 1.26 s.

W H A T  I F ?  Suppose we measure the speed of the block at the instants found in the problem. At these instants, will the 
speed of the block be half the maximum speed?

Answer The velocity of the block depends on the sine function. The angles at which the cosine function is equal to one-half 
will not be the same as the angles at which the sine function is equal to one-half. Therefore, we expect the answer to be no. 
Notice that we asked about the speed of the block, not the velocity. Perform the calculation and show that there are four expres-
sions for the times at which the speed is one-half the maximum speed:

 t 5
p

30.0 s21  (1 1 12n) or p

30.0 s21  (5 1 12n) or p

30.0 s21  (7 1 12n) or p

30.0 s21  (11 1 12n) n 5 0, 1, 2, . . .

5

   15.3    Energy of the Simple Harmonic Oscillator
As we have done before, after studying the motion of an object modeled as a par-
ticle in a new situation (for example, as in Chapter 2) and investigating the forces 
involved in influencing that motion (for example, as in Chapter 5), we turn our 
attention to energy (for example, as in Chapter 7). Let us examine the mechanical 
energy of a system in which a particle undergoes simple harmonic motion, such 
as the block–spring system illustrated in Figure 15.1. Because the surface is fric-
tionless and the normal and gravitational forces on the block cancel, the system 
can be modeled as isolated with no nonconservative forces acting, and we expect 
the total mechanical energy of the system to be constant. We assume a massless 
spring, so the kinetic energy of the system corresponds only to that of the block. 
We can use Equation 15.15 to express the kinetic energy of the block as

 K 5 1
2mv2 5 1

2mv2A2 sin2 svt 1 fd (15.19)
Kinetic energy of a simple  

harmonic oscillator
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The elastic potential energy stored in the spring for any elongation x is given by 
1
2 kx2 (see Eq. 7.22). Using Equation 15.6 gives

 Us 5 1
2kx2 5 1

2kA2 cos2 svt 1 fd (15.20)

We see that K and Us are always positive quantities or zero. Because v2 5 k/m, we 
can express the total mechanical energy of the simple harmonic oscillator as

E 5 K 1 Us 5 1
2kA2fsin2 svt 1 fd 1 cos2 svt 1 fdg

From the identity sin2 u 1 cos2 u 5 1, we see that the quantity in square brackets is 
unity. Therefore, this equation reduces to

 E 5 1
2kA2 (15.21)

That is, the total mechanical energy of a simple harmonic oscillator is a constant of 
the motion and is proportional to the square of the amplitude. The total mechani-
cal energy is equal to the maximum potential energy stored in the spring when x 5 
6A because v 5 0 at these points and there is no kinetic energy. At the equilibrium 
position, where Us 5 0 because x 5 0, the total energy, now all in the form of kinetic 
energy, still has the value 12kA2.

Plots of the kinetic and potential energies versus time appear in Figure 15.9a, 
where we have taken f 5 0. At all times, the sum of the kinetic and potential ener-
gies is a constant equal to 12kA2, the total energy of the system.

The variations of K and Us with the position x of the block are plotted in Figure 
15.9b. Energy is continuously being transformed between potential energy stored 
in the spring and kinetic energy of the block.

Figure 15.10 (page 396) illustrates the position, velocity, acceleration, kinetic energy, 
and potential energy of the block–spring system for one full period of the motion. Most 
of the ideas discussed so far are incorporated in this important figure. Study it carefully.

Equation 15.15 gives the velocity of a particle in simple harmonic oscillation as 
function of time t. We can obtain the velocity of the block at an arbitrary position by 
expressing the total energy of the system at some arbitrary position x as

 E 5 K 1 Us 5 1
2mv 2 1 1

2kx2 5 1
2kA2 

 v 5 6Î k
m

sA2 2 x2d 5 6vÏA2 2 x2 (15.22)

When you check Equation 15.22 to see whether it agrees with known cases, you 
find that it verifies that the speed is a maximum at x 5 0 and is zero at the turning 
points x 5 6A.

You may wonder why we are spending so much time studying simple harmonic oscil-
lators. We do so because they are good models of a wide variety of physical phenomena. 

  Potential energy of a simple  
harmonic oscillator

  Total energy of a simple  
harmonic oscillator

  Velocity as a function  
of position for a simple har-
monic oscillator

Us �    kx2 K �   mv21
2

1
2

K , Us

A
x

–A

O

K , Us

1
2 kA2 1

2 kA2

Us K

T
t

T
2

a b

In either plot, notice that 
K � Us � constant.

Figure 15.9 (a) Kinetic energy 
and potential energy versus time 
for a simple harmonic oscillator 
with f 5 0. (b) Kinetic energy and 
potential energy versus position 
for a simple harmonic oscillator.
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Figure 15.10 (a) through (e) Several instants in the simple harmonic motion for a block–spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block–spring system, assuming at t 5 0, 
x 5 A; hence, x 5 A cos vt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

For example, recall the Lennard–Jones potential discussed in Example 7.9. This com-
plicated function describes the forces holding atoms together.  Figure 15.11a shows that 
for small displacements from the equilibrium position, the potential energy curve for 
this function approximates a parabola, which represents the potential energy function 
for a simple harmonic oscillator. Therefore, we can model the complex atomic binding 
forces as being due to tiny springs as depicted in Figure 15.11b.

The ideas presented in this chapter apply not only to block–spring systems and 
atoms, but also to a wide range of situations that include bungee jumping, playing 
a musical instrument, and viewing the light emitted by a laser. You will see more 
examples of simple harmonic oscillators as you work through this book.

r

U

a b

Figure 15.11  (a) If the atoms in a molecule 
do not move too far from their equilibrium 
positions, a graph of potential energy versus 
separation distance between atoms is similar 
to the graph of potential energy versus posi-
tion for a simple harmonic oscillator (dashed 
black curve). (b) The forces between atoms 
in a solid can be modeled by imagining 
springs between neighboring atoms.

 Example 15.3    Oscillations on a Horizontal Surface

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, horizontal 
air track. Use an energy approach to respond to the questions below.

(A) Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

S O l U T I O n

Conceptualize The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your mental 
image of the motion.
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15.3 c o n t i n u e d

Categorize The cart is modeled as a particle in simple harmonic motion.

Analyze Use Equation 15.21 to express the total energy  E 5 1
2kA2 5 1

2mvmax
2   

of the oscillator system and equate it to the kinetic  
energy of the system when the cart is at x 5 0:

Solve for the maximum speed and substitute numerical  vmax 5Î k
m

 A 5Î20.0 Nym
0.500 kg

s0.030 0 md 5  0.190 mys 
values:

(B) What is the velocity of the cart when the position is 2.00 cm?

S O l U T I O n

Use Equation 15.22 to evaluate the velocity:  v 5 6Î k
m

sA2 2 x2d

 5 6Î20.0 Nym
0.500 kg

fs0.030 0 md2 2 s0.020 0 md2g

5  60.141 m/s

The positive and negative signs indicate that the cart could be moving to either the right or the left at this instant.

(C) Compute the kinetic and potential energies of the system when the position of the cart is 2.00 cm.

S O l U T I O n

Use the result of part (B) to evaluate the kinetic energy  K 5 1
2mv2 5 1

2s0.500 kgds0.141 mysd2 5  5.00 3 1023 J 
at x 5 0.020 0 m:

Evaluate the elastic potential energy at x 5 0.020 0 m: Us 5 1
2kx2 5 1

2s20.0 Nymds0.020 0 md2 5  4.00 3 1023 J

Finalize The sum of the kinetic and potential energies in part (C) is equal to the total energy, which can be found from 
Equation 15.21. That must be true for any position of the cart.

W H A T  I F ?  The cart in this example could have been set into motion by releasing the cart from rest at x 5 3.00 cm. What 
if the cart were released from the same position, but with an initial velocity of v 5 20.100 m/s? What are the new amplitude 
and maximum speed of the cart?

Answer This question is of the same type we asked at the end of Example 15.1, but here we apply an energy approach.

First calculate the total energy of the system at t 5 0: E 5 1
2mv 2 1 1

2kx2 

 5 1
2s0.500 kgds20.100 mysd2 1 1

2s20.0 Nymds0.030 0 md2

5 1.15 3 1022 J

Equate this total energy to the potential energy of the  E 5 1
2kA2 

system when the cart is at the endpoint of the motion:

Solve for the amplitude A: A 5Î2E
k

5Î2s1.15 3 1022 Jd
20.0 Nym

5 0.033 9 m

Equate the total energy to the kinetic energy of the  E 5 1
2mv 2

max 
system when the cart is at the equilibrium position:

Solve for the maximum speed: vmax 5Î2E
m

5Î2s1.15 3 1022 Jd
0.500 kg

5 0.214 mys

The amplitude and maximum velocity are larger than the previous values because the cart was given an initial velocity  
at t 5 0.
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   15.4    Comparing Simple Harmonic Motion  
with Uniform Circular Motion
Some common devices in everyday life exhibit a relationship between oscillatory 
motion and circular motion. For example, consider the drive mechanism for a non- 
electric sewing machine in Figure 15.12. The operator of the machine places her 
feet on the treadle and rocks them back and forth. This oscillatory motion causes 
the large wheel at the right to undergo circular motion. The red drive belt seen in 
the photograph transfers this circular motion to the sewing machine mechanism 
(above the photo) and eventually results in the oscillatory motion of the sewing 
needle. In this section, we explore this interesting relationship between these two 
types of motion.

Figure 15.13 is a view of an experimental arrangement that shows this relation-
ship. A ball is attached to the rim of a turntable of radius A, which is illuminated 
from above by a lamp. The ball casts a shadow on a screen as the turntable rotates 
with constant angular speed. While the ball moves as a particle in uniform circular 
motion, the shadow of the ball moves back and forth on the screen as a particle in 
simple harmonic motion.

Consider a particle located at point P on the circumference of a circle of radius 
A as in Figure 15.14a, with the line OP making an angle f with the x axis at t 5 0. 
We call this circle a reference circle for comparing simple harmonic motion with uni-
form circular motion, and we choose the position of P at t 5 0 as our reference posi-
tion. If the particle moves counterclockwise along the circle with constant angular 
speed v until OP makes an angle u with the x axis as in Figure 15.14b, at some time 
t . 0 the angle between OP and the x axis is u 5 vt 1 f. As the particle moves along 
the circle, the projection of P on the x axis, labeled point Q , moves back and forth 
along the x axis between the limits x 5 6A.

Notice that points P and Q always have the same x coordinate. From the right 
triangle OPQ , we see that this x coordinate is

 x std 5 A cos svt 1 fd (15.23)

This expression is the same as Equation 15.6 and shows that the point Q moves 
with simple harmonic motion along the x axis. Therefore, the motion of an object 
described by the analysis model of a particle in simple harmonic motion along a 
straight line can be represented by the projection of an object that can be modeled 
as a particle in uniform circular motion along a diameter of a reference circle.

This geometric interpretation shows that the time interval for one complete rev-
olution of the point P on the reference circle is equal to the period of motion T for 

Lamp

A

A
Screen

Turntable

The ball rotates like 
a particle in uniform 
circular motion.

The ball’s shadow moves 
like a particle in simple 
harmonic motion.

Figure 15.13 An experimental 
setup for demonstrating the 
connection between a particle in 
simple harmonic motion and a 
corresponding particle in uniform 
circular motion.

Figure 15.12 The bottom of a treadle-style sewing machine from the early twentieth century. The 
treadle is the wide, flat foot pedal with the metal grillwork.

The oscillation of the treadle 
causes circular motion of the 
drive wheel, eventually 
resulting in additional up 
and down motion—of the 
sewing needle.

The back edge of 
the treadle goes up 
and down as one’s 
feet rock the treadle.
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    15.4 Comparing Simple Harmonic Motion with Uniform Circular Motion  399

simple harmonic motion between x 5 6A. Therefore, the angular speed v of P is 
the same as the angular frequency v of simple harmonic motion along the x axis 
(which is why we use the same symbol). The phase constant f for simple harmonic 
motion corresponds to the initial angle OP makes with the x axis. The radius A of 
the reference circle equals the amplitude of the simple harmonic motion.

Because the relationship between linear and angular speed for circular motion 
is v 5 rv (see Eq. 10.10), the particle moving on the reference circle of radius A has 
a velocity of magnitude vA. From the geometry in Figure 15.14c, we see that the x 
component of this velocity is 2vA sin(vt 1 f). By definition, point Q has a velocity 
given by dx/dt. Differentiating Equation 15.23 with respect to time, we find that the 
velocity of Q is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward 
O and has a magnitude v2/A 5 v2A. From the geometry in Figure 15.14d, we see 
that the x component of this acceleration is 2v2A cos(vt 1 f). This value is also the 
acceleration of the projected point Q along the x axis, as you can verify by taking 
the second derivative of Equation 15.23.

Q uIck QuIz 15.5  The ball in Figure 15.13 moves in a circle of radius 0.50 m. 
At t 5 0, the ball is located on the left side of the turntable, exactly opposite its 
position in Figure 15.13. What are the correct values for the amplitude and phase 
constant (relative to an x axis to the right) of the simple harmonic motion of the 
shadow? (a) 0.50 m and 0 (b) 1.00 m and 0 (c) 0.50 m and p (d) 1.00 m and p
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v v � Av a � 2Av
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A particle is at 
point P at t � 0.

At a later time t, the x 
coordinates of points P 
and Q are equal and are 
given by Equation 15.23.

The x component of 
the velocity of P equals 
the velocity of Q.

The x component of the 
acceleration of P equals 
the acceleration of Q.

a b c d

Figure 15.14  Relationship between the uniform circular motion of a point P and the simple harmonic motion of a point Q. A particle at P 
moves in a circle of radius A with constant angular speed v. 

 Example 15.4    Circular Motion with Constant Angular Speed

The ball in Figure 15.13 rotates counterclockwise in a circle of radius 3.00 m with a constant angular speed of 8.00 rad/s. At 
t 5 0, its shadow has an x coordinate of 2.00 m and is moving to the right.

(A) Determine the x coordinate of the shadow as a function of time in SI units.

S O l U T I O n

Conceptualize Be sure you understand the relationship between circular motion of the ball and simple harmonic motion of 
its shadow as described in Figure 15.13. Notice that the shadow is not at is maximum position at t 5 0.

Categorize The ball on the turntable is a particle in uniform circular motion. The shadow is modeled as a particle in simple 
harmonic motion.

continued
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400 Chapter 15 Oscillatory Motion

15.4 c o n t i n u e d

Analyze Use Equation 15.23 to write an expression for  x 5 A cos svt 1 fd 
the x coordinate of the rotating ball:

Solve for the phase constant: f 5 cos21 S x
AD 2 vt

Substitute numerical values for the initial conditions: f 5 cos21 S2.00 m
3.00 mD 2 0 5 648.28 5 60.841 rad

If we were to take f 5 10.841 rad as our answer, the shadow would be moving to the left at t 5 0. Because the shadow is mov-
ing to the right at t 5 0, we must choose f 5 20.841 rad.

Write the x coordinate as a function of time: x 5  3.00 cos (8.00t 2 0.841)

(B) Find the x components of the shadow’s velocity and acceleration at any time t.

S O l U T I O n

Differentiate the x coordinate with respect to time to  vx 5
dx
dt

5 s23.00 mds8.00 radysd sin s8.00t 2 0.841d 
find the velocity at any time in m/s:

5  224.0 sin (8.00t 2 0.841)

Differentiate the velocity with respect to time to find  ax 5
dvx

dt
5 s224.0 mysds8.00 radysd cos s8.00t 2 0.841d 

the acceleration at any time in m/s2:
5  2192 cos (8.00t 2 0.841)

Finalize Notice that the value of the phase constant puts the ball in the fourth quadrant of the xy coordinate system of 
Figure 15.14, which is consistent with the shadow having a positive value for x and moving toward the right.

   15.5    The Pendulum
The simple pendulum is another mechanical system that exhibits periodic motion. 
It consists of a particle-like bob of mass m suspended by a light string of length L 
that is fixed at the upper end as shown in Figure 15.15. The motion occurs in the 
vertical plane and is driven by the gravitational force. We shall show that, provided 
the angle u is small (less than about 108), the motion is very close to that of a simple 
harmonic oscillator.

The forces acting on the bob are the force T
S

 exerted by the string and the grav-
itational force mgS. The tangential component mg sin u of the gravitational force 
always acts toward u 5 0, opposite the displacement of the bob from the lowest posi-
tion. Therefore, the tangential component is a restoring force, and we can apply 
Newton’s second law for motion in the tangential direction:

 Ft 5 mat   S   2mg sin u 5 m 
d 2s
dt2  

where the negative sign indicates that the tangential force acts toward the equilib-
rium (vertical) position and s is the bob’s position measured along the arc. We have 
expressed the tangential acceleration as the second derivative of the position s.  
Because s 5 Lu (Eq. 10.1b with r 5 L) and L is constant, this equation reduces to

 
d 2u

dt2 5 2 

g

L
 sin u 

Considering u as the position, let us compare this equation with Equation 15.3. 
Does it have the same mathematical form? No! The right side is proportional to  
sin u rather than to u; hence, we would not expect simple harmonic motion because 
this expression is not of the same mathematical form as Equation 15.3. If we Figure 15.15 A simple pendulum.

L

s
m g sin

m

m g cos

u

u

u
u

T
S

mgS 

When u is small, a simple 
pendulum's motion can be 
modeled as simple harmonic 
motion about the equilibrium 
position u � 0.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    15.5 The Pendulum 401

assume u is small (less than about 108 or 0.2 rad), however, we can use the small 
angle approximation, in which sin u < u, where u is measured in radians. Table 15.1 
shows angles in degrees and radians and the sines of these angles. As long as u is 
less than approximately 108, the angle in radians and its sine are the same to within 
an accuracy of less than 1.0%. The table also shows the tangents of the angles, 
which we will use in the next chapter.

Therefore, for small angles, the equation of motion becomes

 
d 2u

dt2 5 2 

g

L
 u (for small values of u) (15.24)

Equation 15.24 has the same mathematical form as Equation 15.3, so we conclude 
that the motion for small amplitudes of oscillation can be modeled as simple har-
monic motion. Therefore, the solution of Equation 15.24 is modeled after Equation 
15.6 and is given by u 5 umax cos(vt 1 f), where umax is the maximum angular position 
and the angular frequency v is

 v 5Î g

L
 (15.25)

The period of the motion is

 T 5
2p

v
5 2pÎL

g
 (15.26)

In other words, the period and frequency of a simple pendulum depend only on the 
length of the string and the acceleration due to gravity. Because the period is inde-
pendent of the mass, we conclude that all simple pendula that are of equal length 
and are at the same location (so that g is the same) oscillate with the same period.

The simple pendulum can be used as a timekeeper because its period depends 
only on its length and the local value of g. It is also a convenient device for making 
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location 
of oil and other valuable underground resources.

Q uIck QuIz 15.6  The grandfather clock in the opening storyline depends 
on the period of a pendulum to keep correct time. (i) Suppose the clock is cal-
ibrated correctly and then a mischievous child slides the bob of the pendulum 
downward on the oscillating rod. Does the grandfather clock run (a) slow, 
(b) fast, or (c) correctly? (ii) Suppose a grandfather clock is calibrated correctly 
at sea level and is then taken to the top of a very tall mountain. Does the 
grandfather clock now run (a) slow, (b) fast, or (c) correctly?

Part (b) of Quick Quiz 15.6 relates to the grandfather clock at your grandpar-
ents’ house in the opening storyline. The clock has been transferred from Denver, 

  Angular frequency for a 
simple pendulum

 Period of a simple pendulum

 table 15.1  Sines and Tangents of Angles

Angle in Degrees Angle in Radians Sine of Angle Percent Difference Tangent of Angle Percent Difference

 08 0.000 0 0.000 0 0.0% 0.000 0 0.0%
 18 0.017 5 0.017 5 0.0% 0.017 5 0.0%
 28 0.034 9 0.034 9 0.0% 0.034 9 0.0%
 38 0.052 4 0.052 3 0.0% 0.052 4 0.1%
 58 0.087 3 0.087 2 0.1% 0.087 5 0.3%
 108 0.174 5 0.173 6 0.5% 0.176 3 1.0%
 158 0.261 8 0.258 8 1.2% 0.267 9 2.3%
 208 0.349 1 0.342 0 2.1% 0.364 0 4.3%
 308 0.523 6 0.500 0 4.7% 0.577 4 10.3%

PItfall PreventIon 15.4
Not True Simple Harmonic Motion  
The pendulum does not exhibit 
true simple harmonic motion for 
any angle. If the angle is less than 
about 108, the motion is close 
to and can be modeled as simple 
harmonic.
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402 Chapter 15 Oscillatory Motion

at an altitude of one mile, to Boston, essentially at sea level. As a result, the value of 
g, the acceleration due to gravity, has increased. As we can see from Equation 15.26, 
this decreases the period of the clock so that it runs fast. What can you do to adjust 
the clock? You can look at part (a) of Quick Quiz 15.6! The bob of the pendulum 
should have an adjustment mechanism that allows you to move the bob downward 
to increase the effective length of the pendulum and therefore increase the period.

 Example 15.5    A Connection Between Length and Time

Christiaan Huygens (1629–1695), the greatest clockmaker in history, suggested that an international unit of length could 
be defined as the length of a simple pendulum having a period of exactly 1 s. How much shorter would our length unit be 
if his suggestion had been followed?

S O l U T I O n

Conceptualize Imagine a pendulum that swings back and forth in exactly 1 second. Based on your experience in observing swing-
ing objects, can you make an estimate of the required length? Hang a small object from a string and simulate the 1-s pendulum.

Categorize This example involves a simple pendulum, so we categorize it as a substitution problem that applies the concepts 
introduced in this section.

Solve Equation 15.26 for the length and substitute  L 5
T 2g

4p2 5
s1.00 sd2s9.80 mys2d

4p2 5  0.248 m 
numerical values:

The meter’s length would be slightly less than one-fourth of its current length. Also, the number of significant digits depends 
only on how precisely we know g because the time has been defined to be exactly 1 s.

W H A T  I F ?  What if Huygens had been born on another planet? What would the value for g have to be on that planet 
such that the meter based on Huygens’s pendulum would have the same value as our meter?

Answer Solve Equation 15.26 for g:

g 5
4p2L
T 2 5

4p2s1.00 md
s1.00 sd2 5 4p2 mys2 5 39.5 mys2

No planet in our solar system has an acceleration due to gravity that large.

Physical Pendulum
Suppose you balance a wire coat hanger so that the hook is supported by your 
extended index finger. When you give the hanger a small angular displacement 
with your other hand and then release it, it oscillates. If a hanging object oscillates 
about a fixed axis that does not pass through its center of mass and the object can-
not be approximated as a point mass, we cannot treat the system as a simple pendu-
lum. In this case, the system is called a physical pendulum.

Consider a rigid object pivoted at a point O that is a distance d from the cen-
ter of mass (Fig. 15.16). The gravitational force provides a torque about an axis 
through O, and the magnitude of that torque is mgd sin u, where u is as shown in 
Figure 15.16. We apply the rigid object under a net torque analysis model to the 
object and use the rotational form of Newton’s second law, S text 5 Ia, where I is the 
moment of inertia of the object about the axis through O. The result is

 2mgd sin u 5 I 
d 2u

dt2  

The negative sign indicates that the torque about O tends to decrease u. That is, the 
gravitational force produces a restoring torque. If we again assume u is small, the 
approximation sin u < u is valid and the equation of motion reduces to

 
d 2u

dt2 5 2Smgd

I Du (15.27)

Pivot O

d

d sin
CM

m g

u

u

S

Figure 15.16  A physical pendu-
lum pivoted at O.
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    15.5 The Pendulum 403

Because this equation is of the same mathematical form as Equation 15.3, its solu-
tion is modeled after that of the simple harmonic oscillator. That is, the solution of 
Equation 15.27 is given by u 5 umax cos(vt 1 f), where umax is the maximum angular 
position and

 v 5Îmgd

I
 

The period is

 T 5
2p

v
5 2pÎ I

mgd
 (15.28)

This result can be used to measure the moment of inertia of a flat, rigid object. 
If the location of the center of mass—and hence the value of d—is known, the 
moment of inertia can be obtained by measuring the period. Finally, notice that 
Equation 15.28 reduces to the period of a simple pendulum (Eq. 15.26) when I 5 
md2, that is, when all the mass is concentrated at the center of mass.

 Period of a physical pendulum

 Example 15.6    A Swinging Rod

A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical 
plane (Fig. 15.17). 

(A) Find the period of oscillation if the amplitude of the motion is small.

S O l U T I O n

Conceptualize Imagine a rod swinging back and forth when 
pivoted at one end. Try it with a meterstick or a scrap piece 
of wood.

Categorize Because the rod is not a point particle, we catego-
rize it as a physical pendulum.

Analyze In Chapter 10, we found that the moment of iner-
tia of a uniform rod about an axis through one end is 1

3 ML2.  
The distance d from the pivot to the center of mass of the rod 
is L/2.

Substitute these quantities into Equation 15.28: T 5 2pÎ 1
3ML2

Mg sLy2d 5  2pÎ2L
3g

(B) Suppose the pivot is moved to a small hole drilled in the rod at a distance L/4 from the upper end. What is the period of 
oscillation of the rod when it is hung from this pivot point and swings through small oscillations?

The moment of inertia in Equation 15.28 is now  I 5 ICM 1 MD 
2 5 1

12 ML2 1 M  _14L + 
2 5 7

48 ML2 
that about the new pivot point. Use the parallel  
axis theorem (Eq. 10.22):

Substitute this moment of inertia and the  T 5 2pÎ 7
48ML2

Mg sLy4d 5  2pÎ 7L
12g

 
new value of d into Equation 15.28:

Finalize In one of the Moon landings, an astronaut walking on the Moon’s surface had a belt hanging from his space suit, 
and the belt oscillated as a physical pendulum. A scientist on the Earth observed this motion on television and used it to esti-
mate the free-fall acceleration on the Moon. How did the scientist make this calculation?

Pivot

O

L

d

CM

MgS 

Figure 15.17  (Example 15.6) 
A rigid rod oscillating about 
a pivot through one end is 
a physical pendulum with  
d 5 L/2.
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404 Chapter 15 Oscillatory Motion

torsional Pendulum
Figure 15.18 shows a rigid object such as a disk suspended by a wire attached at the 
top to a fixed support. When the object is twisted through some angle u, the twisted 
wire exerts on the object a restoring torque that is proportional to the angular posi-
tion. That is,

 t 5 2ku 

where k (Greek letter kappa) is called the torsion constant of the support wire and 
is a rotational analog to the force constant k for a spring. The value of k can be 
obtained by applying a known torque to twist the wire through a measurable 
angle u. Applying Newton’s second law for rotational motion, we find that

 o t 5 Ia   S   2ku 5 I 
d2u

dt2  

 
d 2u

dt2 5 2 

k

I
 u (15.29)

Again, this result is the equation of motion for a simple harmonic oscillator, with 
v 5 ÏkyI  and a period

 T 5 2pÎ I
k

 (15.30)

This system is called a torsional pendulum. There is no small-angle restriction in 
this situation as long as the elastic limit of the wire is not exceeded.

   15.6    Damped Oscillations
The oscillatory motions we have considered so far have been for ideal systems, that 
is, systems that oscillate indefinitely under the action of only one force, a linear 
restoring force. In many real systems, nonconservative forces such as friction or air 
resistance also act and retard the motion of the system. Consequently, the mechan-
ical energy of the system diminishes in time, and the motion is said to be damped. 
The mechanical energy of the system is transformed into internal energy in the 
object and the retarding medium. Figure 15.19 depicts one such system: an object 
attached to a spring and submersed in a viscous liquid. Another example is a simple 
pendulum oscillating in air. After being set into motion, the pendulum eventually 
stops oscillating due to air resistance. Figure 15.20 depicts damped oscillations in 
practice. The spring-loaded devices mounted below the bridge are dampers that 
transform mechanical energy of the oscillating bridge into internal energy, reduc-
ing the swaying motion of the bridge.

One common type of retarding force is that discussed in Section 6.4, where 
the force is proportional to the speed of the moving object and acts in the direc-
tion opposite the velocity of the object with respect to the medium. This retarding 
force is often observed when an object moves through air, for instance. Because 
the retarding force can be expressed as R

S
5 2b vS (where b is a constant called 

the damping coefficient) and the restoring force of the system is 2kx, we can write 
Newton’s second law as

 o Fx = 2kx 2 bvx = max 

which, by substituting derivatives for the velocity and acceleration, can be written as

 m 
d 

2x
dt 

2 1 b 
dx
dt

1 kx 5 0 (15.31)

The solution to this equation requires mathematics that may be unfamiliar to you; 
we simply state it here without proof. When the retarding force is small compared 

O

P
maxu

The object oscillates about the 
line OP with an amplitude umax.

Figure 15.18  A torsional 
pendulum.

m

Figure 15.19  One example of 
a damped oscillator is an object 
attached to a spring and sub-
mersed in a viscous liquid.

Figure 15.20 The London Millen-
nium Bridge over the River Thames 
in London. On opening day of 
the bridge, pedestrians noticed 
a swinging motion of the bridge, 
leading to its being named the 
“Wobbly Bridge.” The bridge was 
closed after two days and remained 
closed for two years. Over 50 tuned 
mass dampers were added to the 
bridge: the pairs of spring-loaded 
structures on top of the cross mem-
bers (arrow).
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    15.7 Forced Oscillations 405

with the maximum restoring force—that is, when the damping coefficient b is 
small—the solution to Equation 15.31 is

 x 5 Ae2(b/2m)t cos (vt 1 f) (15.32)

where the angular frequency of oscillation is

 v 5Î k
m

2 S b
2mD2

 (15.33)

This result can be verified by substituting Equation 15.32 into Equation 15.31. It 
is convenient to express the angular frequency of a damped oscillator in the form

 v 5Îv0
2 2 S b

2mD2

 

where v0 5 Ïkym represents the angular frequency in the absence of a retarding 
force (the undamped oscillator) and is called the natural frequency of the system.

Figure 15.21 shows the position as a function of time for an object oscillating 
in the presence of a retarding force. When the retarding force is small, the oscil-
latory character of the motion is preserved but the amplitude decreases exponen-
tially in time, with the result that the motion ultimately becomes undetectable. 
Any system that behaves in this way is known as a damped oscillator. The dashed 
black lines in Figure 15.21, which define the envelope of the oscillatory curve, rep-
resent the exponential factor in Equation 15.32. This envelope shows that the 
amplitude decays exponentially with time. For motion with a given spring constant 
and object mass, the oscillations dampen more rapidly for larger values of the 
retarding force.

When the magnitude of the retarding force is small such that b/2m , v0, the 
system is said to be underdamped. The resulting motion is represented by Fig-
ure 15.21 and the blue curve in Figure 15.22. As the value of b increases, the ampli-
tude of the oscillations decreases more and more rapidly. When b reaches a critical 
value bc such that bc /2m 5 v0, the system does not oscillate and is said to be criti-
cally damped. In this case, the system, once released from rest at some nonequilib-
rium position, approaches but does not pass through the equilibrium position. The 
graph of position versus time for this case is the red curve in Figure 15.22.

If the medium is so viscous that the retarding force is large compared with the 
restoring force—that is, if b/2m . v0—the system is overdamped. Again, the dis-
placed system, when free to move, does not oscillate but rather simply returns to its 
equilibrium position. As the damping increases, the time interval required for the 
system to approach equilibrium also increases as indicated by the black curve in 
Figure 15.22. For critically damped and overdamped systems, there is no angular 
frequency v and the solution in Equation 15.32 is not valid.

   15.7    Forced Oscillations
We have seen that the mechanical energy of a damped oscillator decreases in 
time as a result of the retarding force. It is possible to compensate for this energy 
decrease by applying a periodic external force that does positive work on the sys-
tem. At any instant, energy can be transferred into the system by an applied force 
that acts in the direction of motion of the oscillator. For example, a child on a 
swing can be kept in motion by appropriately timed “pushes.” The amplitude of 
motion remains constant if the energy input per cycle of motion exactly equals the 
decrease in mechanical energy in each cycle that results from retarding forces.

A common example of a forced oscillator is a damped oscillator driven by an 
external force that varies periodically, such as F(t) 5 F0 sin vt, where F0 is a con-
stant and v is the angular frequency of the driving force. In general, the frequency 
v of the driving force is variable, whereas the natural frequency v0 of the oscillator 

x

t

Figure 15.22  Graphs of position 
versus time for an underdamped 
oscillator (blue curve), a critically 
damped oscillator (red curve), 
and an overdamped oscillator 
(black curve).

A

x

0 t

The amplitude 
decreases as Ae�(b/2m)t.

Figure 15.21 Graph of posi-
tion versus time for a damped 
oscillator.
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406 Chapter 15 Oscillatory Motion

is fixed by the values of k and m. Modeling an oscillator with driving, retarding, 
and restoring forces as a particle under a net force, Newton’s second law in this 
situation gives

 oFx 5 max   S   F0 sin vt 2 b 
dx
dt

2 kx 5 m 
d 2x
dt2  (15.34)

Again, the solution of this equation is rather lengthy and will not be presented. 
After the driving force on an initially stationary object begins to act, the ampli-
tude of the oscillation will increase. The system of the oscillator and the surround-
ing medium is a nonisolated system: work is done by the driving force, such that 
the vibrational energy of the system (kinetic energy of the object, elastic potential 
energy in the spring) and internal energy of the object and the medium increase. 
After a sufficiently long period of time, when the energy input per cycle from the 
driving force equals the amount of mechanical energy transformed to internal 
energy for each cycle, a steady-state condition is reached in which the oscillations 
proceed with constant amplitude. In this situation, the solution of Equation 15.34 is

 x 5 A cos (vt 1 f) (15.35)

where

 A 5
F0ym

Îsv2 2 v0
2 d2 1 Sb v

m D2
 (15.36)

and where v0 5 Ïkym is the natural frequency of the undamped oscillator (b 5 0).
Equations 15.35 and 15.36 show that the forced oscillator vibrates at the fre-

quency of the driving force and that the amplitude of the oscillator is constant for 
a given driving force because it is being driven in steady-state by an external force. 
For small damping, the amplitude is large when the frequency of the driving force 
is near the natural frequency of oscillation, or when v < v0. The dramatic increase 
in amplitude near the natural frequency is called resonance, and the natural fre-
quency v0 is also called the resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that 
energy is being transferred to the system under the most favorable conditions. 
We can better understand this concept by taking the first time derivative of x in 
Equation 15.35, which gives an expression for the velocity of the oscillator. We find 
that v is proportional to sin(vt 1 f), which is the same trigonometric function as 
that describing the driving force. Therefore, the applied force F

S
 is in phase with 

the velocity. The rate at which work is done on the oscillator by F
S

 equals the dot 
product F

S  
? vS; this rate is the power delivered to the oscillator. Because the product 

F
S  

? vS is a maximum when F
S

 and vS are in phase, we conclude that at resonance, the 
applied force is in phase with the velocity and the power transferred to the oscilla-
tor is a maximum.

Figure 15.23 is a graph of amplitude as a function of driving frequency for a 
forced oscillator with and without damping. Notice that the amplitude increases 
with decreasing damping (b S 0) and that the resonance curve broadens as the 
damping increases. In the absence of a damping force (b 5 0), we see from Equation 
15.36 that the steady-state amplitude approaches infinity as v approaches v0. In 
other words, if there are no losses in the system and we continue to drive an initially 
motionless oscillator with a periodic force that is in phase with the velocity, the 
amplitude of motion builds without limit (see the red-brown curve in Fig. 15.23). 
This limitless building does not occur in practice because some damping is always 
present in reality.

Later in this book we shall see that resonance appears in other areas of physics. 
For example, certain electric circuits have natural frequencies and can be set into 
strong resonance by a varying voltage applied at a given frequency. A bridge has 

Amplitude of a 
driven oscillator

v
v

A
b � 0
Undamped

Small b

Large b

0

When the frequency v of the 
driving force equals the 
natural frequency v0 of the 
oscillator, resonance occurs.

Figure 15.23  Graph of ampli-
tude versus frequency for a 
damped oscillator when a peri-
odic driving force is present. 
Notice that the shape of the reso-
nance curve depends on the size 
of the damping coefficient b.
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natural frequencies that can be set into resonance by an appropriate driving force. 
A dramatic example of such resonance occurred in 1940 when the Tacoma Narrows 
Bridge in the state of Washington was destroyed by resonant vibrations. Although 
the winds were not particularly strong on that occasion, the “flapping” of the wind 
across the roadway (think of the “flapping” of a flag in a strong wind) provided a 
periodic driving force whose frequency matched that of the bridge. The resulting 
oscillations of the bridge caused it to ultimately collapse (Fig. 15.24) because the 
bridge design had inadequate built-in safety features.

Many other examples of resonant vibrations can be cited. A resonant vibration 
you may have experienced is the “singing” of telephone wires in the wind. Machines 
often break if one vibrating part is in resonance with some other moving part. Sol-
diers marching in cadence across a bridge have been known to set up resonant 
vibrations in the structure and thereby cause it to collapse. Whenever any real phys-
ical system is driven near its resonance frequency, you can expect oscillations of 
very large amplitudes.

Figure 15.24  (a) In 1940, 
turbulent winds set up torsional 
vibrations in the Tacoma Narrows 
Bridge, causing it to oscillate 
at a frequency near one of the 
natural frequencies of the bridge 
structure. (b) Once established, 
this resonance condition led to 
the bridge’s collapse. (Mathemati-
cians and physicists are currently 
challenging some aspects of this 
interpretation.)a b
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summary
 › Concepts and Principles

The kinetic energy and potential energy for  
an object of mass m oscillating at the end of a 
spring of force constant k vary with time and are 
given by

 K 5 1
2mv2 5 1

2mv2A2 sin2 svt 1 fd (15.19)

 Us 5 1
2kx2 5 1

2kA2 cos2 svt 1 fd (15.20)

The total energy of a simple harmonic oscillator 
is a constant of the motion and is given by

 E 5 1
2kA2 (15.21)

A simple pendulum of length L can be modeled to move in simple harmonic 
motion for small angular displacements from the vertical. Its period is

 T 5 2pÎL
g

 (15.26)

A physical pendulum is an extended object that, for small angular displace-
ments, can be modeled to move in simple harmonic motion about a pivot 
that does not go through the center of mass. The period of this motion is

 T 5 2pÎ I
mgd

 (15.28)

where I is the moment of inertia of the object about an axis through the pivot 
and d is the distance from the pivot to the center of mass of the object.

If an oscillator experiences a damping force R
S

5 2bvS, its position for small damping 
is described by

 x 5 Ae2(b/2m)t cos (vt 1 f) (15.32)

where

 v 5Î k
m

2 S b
2mD2

 (15.33)

If an oscillator is subject to a sinusoi-
dal driving force that is described by 
F(t) 5 F0 sin vt, it exhibits resonance, 
in which the amplitude is largest when 
the driving frequency v matches the 
natural frequency v0 5 Ïkym of the 
oscillator.

 Summary 407
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408 Chapter 15 Oscillatory Motion

 › Analysis Model for Problem Solving

Particle in Simple Harmonic Motion If a particle is subject to a force of the form of Hooke’s 
law F 5 2kx, the particle exhibits simple harmonic motion. Its position is described by

 x(t) 5 A cos (vt 1 f) (15.6)

where A is the amplitude of the motion, v is the angular frequency, and f is the phase 
constant. The value of f depends on the initial position and initial velocity of the particle.

The period of the oscillation of the particle is

 T 5
2p

v
5 2pÎm

k
 (15.13)

and the inverse of the period is the frequency.

x
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think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Two identical steel balls, each of mass m 5 67.4 g and diame-
ter d 5 25.4 mm, are moving in opposite directions, each at 
v 5 5.00 m/s. They collide head-on and bounce apart elas-
tically. (a) Split your group in two and have each half find 
the total time interval that the balls are in contact, using 
different models. Group (i): Model a given ball as having 
kinetic energy that is then completely transformed to elastic 
potential energy at the instant that the balls have momen-
tarily come to rest. Assume the acceleration of the ball dur-
ing this time interval is constant and use the particle under 
constant acceleration model to find the total time interval 
that the balls are in contact. Group (ii): By squeezing one of 
the balls in a vise while precise measurements are made of 
the resulting amount of compression, you have found that 
Hooke’s law is a good model of the ball’s elastic behavior. A 
force of F 5 16.0 kN exerted by each jaw of the vise reduces 
the diameter by a distance s 5 0.200 mm. The diameter 
returns to the original value when the force from the vise is 
removed. Model the motion of each ball, while the balls are 
in contact, as one-half of a cycle of simple harmonic motion. 
Find the total time interval that the balls are in contact. 
(b) Which result is more accurate?

2. ACTiviTy  Divide your group in half. Each subgroup should 
work on one of the situations below: 

(i) A hanging spring stretches by 35.0 cm when an object 
of mass 450 g is hung on it at rest. In this situation, we 
define its position as x 5 0, with positive x upward. 
The object is pulled down an additional 18.0 cm and 
released from rest to oscillate without friction. 

(ii) Another hanging spring stretches by 35.5 cm when an 
object of mass 440 g is hung on it at rest. We define this 
new position as x 5 0. This object is pulled down an 
additional 18.0 cm and released from rest to oscillate 
without friction.

(a) For each of these situations, answer the following 
two questions: (1) What is the position x of the object at 
a moment 84.4 s later? (2) What total distance has the 
vibrating object traveled in the 84.4-s time interval? 

When the calculations are finished, compare the 
results for the two situations. (b) Why are the answers 
to question 1 so different when the initial data in sit-
uations (i) and (ii) are so similar and the answers to 
question 2 are relatively close? (c) Does this circum-
stance reveal a fundamental difficulty in calculating 
the future?

3. ACTiviTy  Online, you read about a group of physics stu-
dents doing a simple pendulum lab. They used a small 
object attached to the end of a string to form a simple pen-
dulum. The students measured the total time intervals for 
50 oscillations of its harmonic motion for small angular 
displacements and three lengths. They posted their data 
online:

Length L (m) Time interval for 50 oscillations (s)

1.000 99.8
0.750 86.6
0.500 71.1

  Split your group in two and have each half find a value 
for g, the acceleration due to gravity, using different 
approaches. Group (i): Determine the period of motion 
T for each length of the pendulum. From that length, use 
Equation 15.26 to find a value of g for each length. Deter-
mine the mean value of g obtained from these three inde-
pendent measurements and compare it with the accepted 
value. Group (ii): Determine the period of motion T for 
each length of the pendulum. Plot T 2 versus length L and 
obtain a value for g from the slope of your best-fit straight-
line graph, using Equation 15.26. How do the values of g for 
the two groups compare?
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Note: Ignore the mass of every spring.

sectIon 15.1 Motion of an Object Attached to a Spring

Problems 11, 12, 41 in Chapter 7 can also be assigned with 
this section.

1. A 0.60-kg block attached to a spring with force constant 
130 N/m is free to move on a frictionless, horizontal surface 
as in Figure 15.1. The block is released from rest when the 
spring is stretched 0.13 m. At the instant the block is released, 
find (a) the force on the block and (b) its acceleration.

sectIon 15.2 Analysis Model: Particle in Simple Harmonic Motion

2. A piston in a gasoline engine is in simple harmonic motion. 
The engine is running at the rate of 3 600 rev/min. Tak-
ing the extremes of its position relative to its center point as 
65.00 cm, find the magnitudes of the (a) maximum velocity 
and (b) maximum acceleration of the piston.

3. The position of a particle is given by the expression  
x 5 4.00 cos (3.00pt 1 p), where x is in meters and t is in 
seconds. Determine (a) the frequency and (b) period of the 
motion, (c) the amplitude of the motion, (d) the phase con-
stant, and (e) the position of the particle at t 5 0.250 s.

4. A 7.00-kg object is hung from the bottom end of a vertical 
spring fastened to an overhead beam. The object is set into 
vertical oscillations having a period of 2.60 s. Find the force 
constant of the spring.

5. Review. A particle moves along the x axis. It is initially at the 
position 0.270 m, moving with velocity 0.140 m/s and accel-
eration 20.320 m/s2. Suppose it moves as a particle under 
constant acceleration for 4.50 s. Find (a) its position and 
(b) its velocity at the end of this time interval. Next, assume 
it moves as a particle in simple harmonic motion for 4.50 s 
and x 5 0 is its equilibrium position. Find (c) its position 
and (d) its velocity at the end of this time interval.

6. A ball dropped from a height of 4.00 m makes an elastic col-
lision with the ground. Assuming no decrease in mechani-
cal energy due to air resistance, (a) show that the ensuing 
motion is periodic and (b) determine the period of the 
motion. (c) Is the motion simple harmonic? Explain.

7. A particle moving along the x axis in simple harmonic 
motion starts from its equilibrium position, the origin, at 
t 5 0 and moves to the right. The amplitude of its motion is 
2.00 cm, and the frequency is 1.50 Hz. (a) Find an expres-
sion for the position of the particle as a function of time. 
Determine (b) the maximum speed of the particle and 
(c)  the earliest time (t . 0) at which the particle has this 
speed. Find (d) the maximum positive acceleration of the 
particle and (e) the earliest time (t . 0) at which the parti-
cle has this acceleration. (f) Find the total distance traveled 
by the particle between t 5 0 and t 5 1.00 s.

8. The initial position, velocity, and acceleration of an object 
moving in simple harmonic motion are xi, vi, and ai; the 

angular frequency of oscillation is v. (a) Show that the posi-
tion and velocity of the object for all time can be written as 

x(t) 5 xi cos vt 1 Svi

v
D sin vt

v(t) 5 2xiv sin vt 1 vi cos vt

  (b) Using A to represent the amplitude of the motion, 
show that 

v2 2 ax 5 vi
2 2 aixi 5 v2A2

9. You attach an object to the bottom end of a hanging vertical 
spring. It hangs at rest after extending the spring 18.3 cm. 
You then set the object vibrating. (a) Do you have enough 
information to find its period? (b) Explain your answer and 
state whatever you can about its period.

sectIon 15.3 Energy of the Simple Harmonic Oscillator

10. To test the resiliency of its bumper during low-speed colli-
sions, a 1 000-kg automobile is driven into a brick wall. The 
car’s bumper behaves like a spring with a force constant 
5.00 3 106 N/m and compresses 3.16 cm as the car is brought 
to rest. What was the speed of the car before impact, assum-
ing no mechanical energy is transformed or transferred 
away during impact with the wall?

11. A particle executes simple harmonic motion with an ampli-
tude of 3.00 cm. At what position does its speed equal half 
of its maximum speed?

12. The amplitude of a system moving in simple harmonic 
motion is doubled. Determine the change in (a) the total 
energy, (b) the maximum speed, (c) the maximum accelera-
tion, and (d) the period.

13. A simple harmonic oscillator of amplitude A has a total 
energy E. Determine (a) the kinetic energy and (b)  the 
potential energy when the position is one-third the ampli-
tude. (c) For what values of the position does the kinetic 
energy equal one-half the potential energy? (d) Are there 
any values of the position where the kinetic energy is greater 
than the maximum potential energy? Explain.

14. Review. A 65.0-kg bungee jumper steps off a bridge with 
a light bungee cord tied to her body and to the bridge. The 
unstretched length of the cord is 11.0 m. The jumper reaches 
the bottom of her motion 36.0 m below the bridge before 
bouncing back. We wish to find the time interval between 
her leaving the bridge and her arriving at the bottom of her 
motion. Her overall motion can be separated into an 11.0-m 
free fall and a 25.0-m section of simple harmonic oscillation. 
(a) For the free-fall part, what is the appropriate analysis 
model to describe her motion? (b) For what time interval is she 
in free fall? (c) For the simple harmonic oscillation part of the 
plunge, is the system of the bungee jumper, the spring, and 
the Earth isolated or nonisolated? (d) From your response in 
part (c) find the spring constant of the bungee cord. (e) What 
is the location of the equilibrium point where the spring 
force balances the gravitational force exerted on the jumper? 
(f) What is the angular frequency of the oscillation? (g) What 
time interval is required for the cord to stretch by 25.0 m? 
(h) What is the total time interval for the entire 36.0-m drop?

T

V

T
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410 Chapter 15 Oscillatory Motion

15. Review. A 0.250-kg block resting on a frictionless, horizon-
tal surface is attached to a spring whose force constant is 
83.8 N/m as in Figure P15.15. A horizontal force F

S
 causes 

the spring to stretch a distance of 5.46 cm from its equi-
librium position. (a) Find the magnitude of F

S
. (b)  What 

is the total energy stored in the system when the spring is 
stretched? (c) Find the magnitude of the acceleration of 
the block just after the applied force is removed. (d) Find 
the speed of the block when it first reaches the equilibrium 
position. (e) If the surface is not frictionless but the block 
still reaches the equilibrium position, would your answer to 
part (d) be larger or smaller? (f) What other information 
would you need to know to 
find the actual answer to part 
(d) in this case? (g) What is 
the largest value of the coef-
ficient of friction that would 
allow the block to reach the 
equilibrium position?

sectIon 15.4 Comparing Simple Harmonic Motion  
with Uniform Circular Motion

16. While driving behind a car traveling at 
3.00 m/s, you notice that one of the car’s 
tires has a small hemispherical bump 
on its rim as shown in Figure P15.16. 
(a)  Explain why the bump, from your 
viewpoint behind the car, executes sim-
ple harmonic motion. (b) If the radii of 
the car’s tires are 0.300 m, what is the 
bump’s period of oscillation? (c) What 
If? You hang a spring with spring con-
stant k  5 100 N/m from the rear view mirror of your car. 
What is the mass that needs to be hung from this spring to 
produce simple harmonic motion with the same period as the 
bump on the tire? (d) What would be the maximum speed of 
the hanging mass in your car if you initially pulled the mass 
down 8.00 cm beyond equilibrium before releasing it?

sectIon 15.5 The Pendulum

Problem 36 in Chapter 1 can also be assigned with this section.

17. A simple pendulum makes 120 complete oscillations in 
3.00  min at a location where g 5 9.80 m/s2. Find (a) the 
period of the pendulum and (b) its length.

18. A particle of mass m slides without friction inside a hemi-
spherical bowl of radius R. Show that if the particle starts 
from rest with a small displacement from equilibrium, it 
moves in simple harmonic motion with an angular fre-
quency equal to that of a simple pendulum of length R . 
That is, v 5 ÏgyR.

19. A physical pendulum in the form of a planar object moves in 
simple harmonic motion with a frequency of 0.450 Hz. The 
pendulum has a mass of 2.20 kg, and the pivot is located 
0.350 m from the center of mass. Determine the moment of 
inertia of the pendulum about the pivot point.

20. A physical pendulum in the form of a planar object moves in 
simple harmonic motion with a frequency f. The pendulum 
has a mass m, and the pivot is located a distance d from the 
center of mass. Determine the moment of inertia of the pen-
dulum about the pivot point.

21. A simple pendulum has a mass of 0.250 kg and a length of 
1.00 m. It is displaced through an angle of 15.08 and then 
released. Using the analysis model of a particle in simple 
harmonic motion, what are (a) the maximum speed of 
the bob, (b) its maximum angular acceleration, and (c) the 
maximum restoring force on the bob? (d) What If? Solve 
parts (a) through (c) again by using analysis models intro-
duced in earlier chapters. (e) Compare the answers.

22. Consider the physical pendulum of Figure 15.16. (a)  Rep-
resent its moment of inertia about an axis passing through 
its center of mass and parallel to the axis passing through its 
pivot point as ICM. Show that its period is

T 5 2pÎICM 1 md 2

mgd

  where d is the distance 
between the pivot point 
and the center of mass. 
(b)  Show that the period 
has a minimum value 
when d satisfies md 2 5 ICM.

23. A watch balance wheel 
(Fig. P15.23) has a period 
of oscillation of 0.250 s. 
The wheel is constructed 
so that its mass of 20.0 g 
is concentrated around 
a rim of radius 0.500 cm. 
What are (a) the wheel’s 
moment of inertia and 
(b) the torsion constant of 
the attached spring?

sectIon 15.6 Damped Oscillations

24. Show that the time rate of change of mechanical 
energy for a damped, undriven oscillator is given by  
dE/dt 5 2bv2 and hence is always negative. To do so, differ-
entiate the expression for the mechanical energy of an oscil-
lator, E 5 12mv2 1 12kx2, and use Equation 15.31.

25. Show that Equation 15.32 is a solution of Equation 15.31 
provided that b2 , 4mk.

sectIon 15.7 Forced Oscillations

26. As you enter a fine restaurant, you realize that you have acci-
dentally brought a small electronic timer from home instead 
of your cell phone. In frustration, you drop the timer into a 
side pocket of your suit coat, not realizing that the timer is 
operating. The arm of your chair presses the light cloth of 
your coat against your body at one spot. Fabric with a length 
L hangs freely below that spot, with the timer at the bottom. 
At one point during your dinner, the timer goes off and a 
buzzer and a vibrator turn on and off with a frequency of 
1.50 Hz. It makes the hanging part of your coat swing back 
and forth with remarkably large amplitude, drawing every-
one’s attention. Find the value of L.

27. A 2.00-kg object attached to a spring moves without fric-
tion (b 5 0) and is driven by an external force given by the 
expression F 5 3.00 sin (2pt), where F is in newtons and t is 
in seconds. The force constant of the spring is 20.0 N/m. 
Find (a) the resonance angular frequency of the system, 

T
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(b) the angular frequency of the driven system, and (c) the 
amplitude of the motion.

28. Considering an undamped, forced oscillator (b 5 0), show 
that Equation 15.35 is a solution of Equation 15.34, with an 
amplitude given by Equation 15.36.

29. You have scored a part-
time job at a company 
that makes small probes 
to be released from sat-
ellites to study the very 
thin atmosphere at the 
location of satellite orbits. 
In order to keep the 
probes in a proper orien-
tation in space, they will 
be spun about their axis 
before being released. It 
is important to know the 
moment of inertia of the 
odd-shaped probe. Your 
boss asks you to measure 
its moment of inertia. You 
set up a system such as that in Figure 15.18, modifying it 
by adding a very light frame (Fig. P15.29) into which you 
can place objects, centering them on the disk. The frame 
is attached at the edges of the disk. The support wire is rig-
idly connected to the top of the frame so that it does not 
interfere with the objects you wish to place on the disk. The 
disk is of mass M 5 5.25 kg and has a radius of R 5 25.8 cm. 
You rotate the empty disk from its equilibrium position and 
let it operate as a torsional pendulum. You carefully mea-
sure its period of oscillation to be Tempty 5 10.8 s. You then 
place the probe on the disk and adjust its position until the 
disk hangs exactly horizontal, so you know that the center 
of mass of the probe is directly over the center of the disk. 
You rotate the loaded disk from its equilibrium position 
and let it operate as a torsional pendulum. (a) You carefully 
measure its period of oscillation to be Tloaded 5 18.7 s, and 
from this result you determine the moment of inertia of the 
probe about its center of mass. (b) When you present your 
results to your supervisor, she asks you about the moment 
of inertia of the frame you built. You go back to your desk 
and think about it. When you consider that the frame has 
some moment of inertia, is the value calculated in part (a) 
too high or too low?

30. You take on a research assistantship with a molecular 
physicist. She is studying the vibrations of diatomic mol-
ecules. In these vibrations, the two atoms in the mole-
cule move back and forth along the line connecting them 
(see Figure 20.5c). As an introduction to her research, she 
asks you to familiarize yourself with the Lennard–Jones 
potential (see Example 7.9), which describes the poten-
tial energy function for a diatomic molecule. She asks you 
to determine the effective spring constant, in terms of 
the parameters s and e, for the bond holding the atoms 
together in the molecule for small vibrations around the 
equilibrium separation req. After being stumped for a 
while, you ask her for a hint. She responds, “Example 7.9 
provides the derivative of the potential energy function. 
Compare that to Equation 7.29 to find the force between 
the atoms. You want to show that F is of the form 2kx, and 
find k. Let the separation distance r 5 req 1 x, where x is 

small and take advantage of the series approximations in 
Appendix Section B.5.” Wow, that’s several hints! You sit 
down and get to work. 

addItIonal ProbleMs

31. An object of mass m moves in simple harmonic motion with 
amplitude 12.0 cm on a light spring. Its maximum accelera-
tion is 108 cm/s2. Regard m as a variable. (a) Find the period 
T of the object. (b) Find its frequency f. (c) Find the maxi-
mum speed vmax of the object. (d) Find the total energy E 
of the object–spring system. (e) Find the force constant k of 
the spring. (f) Describe the pattern of dependence of each 
of the quantities T, f, vmax, E, and k on m.

32. Review. This problem extends the reasoning of Problem 41 
in Chapter 9. Two gliders are set in motion on an air track. 
Glider 1 has mass m1 5 0.240 kg and moves to the right 
with speed 0.740 m/s. It will have a rear-end collision with 
glider 2, of mass m2 5 0.360 kg, which initially moves to the 
right with speed 0.120 m/s. A light spring of force constant 
45.0 N/m is attached to the back end of glider 2 as shown 
in Figure P9.41. When glider 1 touches the spring, super-
glue instantly and permanently makes it stick to its end of 
the spring. (a) Find the common speed the two gliders have 
when the spring is at maximum compression. (b) Find the 
maximum spring compression distance. The motion after 
the gliders become attached consists of a combination of 
(1) the constant-velocity motion of the center of mass of 
the two-glider system found in part (a) and (2) simple har-
monic motion of the gliders relative to the center of mass. 
(c) Find the energy of the center-of-mass motion. (d) Find 
the energy of the oscillation.

33. An object attached to a spring vibrates with simple har-
monic motion as described by Figure P15.33. For this 
motion, find (a)  the amplitude, (b) the period, (c) the 
angular frequency, (d) the maximum speed, (e) the maxi-
mum acceleration, and (f) an equation for its position x as a 
function of time.

34. Review. A rock rests on a concrete sidewalk. An earthquake 
strikes, making the ground move vertically in simple har-
monic motion with a constant frequency of 2.40 Hz and with 
gradually increasing amplitude. (a) With what amplitude 
does the ground vibrate when the rock begins to lose contact 
with the sidewalk? Another rock is sitting on the concrete 
bottom of a swimming pool full of water. The earthquake 
produces only vertical motion, so the water does not slosh 
from side to side. (b) Present a convincing argument that 
when the ground vibrates with the amplitude found in part 
(a), the submerged rock also barely loses contact with the 
floor of the swimming pool.
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412 Chapter 15 Oscillatory Motion

35. A pendulum of length L and mass 
M has a spring of force constant 
k connected to it at a distance  h 
below its point of suspension 
(Fig.  P15.35). Find the frequency 
of vibration of the system for small 
values of the amplitude (small u). 
Assume the vertical suspension rod 
of length L is rigid, but ignore its 
mass.

36. To account for the walking speed 
of a bipedal or quadrupedal ani-
mal, model a leg that is not con-
tacting the ground as a uniform 
rod of length ,, swinging as a physical pendulum through 
one-half of a cycle, in resonance. Let umax represent its 
amplitude. (a) Show that the animal’s speed is given by the 
expression 

v 5
Ï6g / sin umax

p

  if umax is sufficiently small that the motion is nearly simple 
harmonic. An empirical relationship that is based on the 
same model and applies over a wider range of angles is

v 5
Ï6g / cos sumaxy2d sin umax

p

  (b) Evaluate the walking speed of a human with leg length 
0.850 m and leg-swing amplitude 28.0°. (c) What leg 
length would give twice the speed for the same angular 
amplitude?

37. Review. A particle of mass 4.00 kg is attached to a spring 
with a force constant of 100 N/m. It is oscillating on a fric-
tionless, horizontal surface with an amplitude of 2.00 m. A 
6.00-kg object is dropped vertically on top of the 4.00-kg 
object as it passes through its equilibrium point. The two 
objects stick together. (a) What is the new amplitude of the 
vibrating system after the collision? (b) By what factor has 
the period of the system changed? (c) By how much does 
the energy of the system change as a result of the collision? 
(d) Account for the change in energy.

38. People who ride motorcycles and bicycles learn to look out 
for bumps in the road and especially for washboarding, a con-
dition in which many equally spaced ridges are worn into 
the road. What is so bad about washboarding? A motorcycle 
has several springs and shock absorbers in its suspension, 
but you can model it as a single spring supporting a block. 
You can estimate the force constant by thinking about 
how far the spring compresses when a heavy rider sits on 
the seat. A motorcyclist traveling at highway speed must be 
particularly careful of washboard bumps that are a certain 
distance apart. What is the order of magnitude of their sep-
aration distance?

39. A ball of mass m is connected to two rubber bands of length 
L, each under tension T as shown in Figure P15.39. The 
ball is displaced by a small distance y perpendicular to the 
length of the rubber bands. Assuming the tension does not 
change, show that (a) the restoring force is 2(2T/L)y and 
(b) the system exhibits simple harmonic motion with an 
angular frequency v 5 Ï2TymL.

40. Consider the damped oscillator illustrated in Figure 15.19. 
The mass of the object is 375 g, the spring constant is 
100 N/m, and b 5 0.100 N ? s/m. (a) Over what time interval 
does the amplitude drop to half its initial value? (b) What 
If? Over what time interval does the mechanical energy 
drop to half its initial value? (c) Show that, in general, 
the fractional rate at which the amplitude decreases in a 
damped harmonic oscillator is one-half the fractional rate 
at which the mechanical energy decreases.

41. Review. A lobsterman’s buoy is a solid wooden cylinder of 
radius r and mass M. It is weighted at one end so that it floats 
upright in calm seawater, having density r. A passing shark 
tugs on the slack rope mooring the buoy to a lobster trap, 
pulling the buoy down a distance x from its equilibrium 
position and releasing it. (a) Show that the buoy will execute 
simple harmonic motion if the resistive effects of the water 
are ignored. (b) Determine the period of the oscillations.

42. Your thumb squeaks on a plate you have just washed. Your 
sneakers squeak on the gym floor. Car tires squeal when 
you start or stop abruptly. You can make a goblet sing by 
wiping your moistened finger around its rim. When chalk 
squeaks on a blackboard, you can see that it makes a row of 
regularly spaced dashes. As these examples suggest, vibra-
tion commonly results when friction acts on a moving elas-
tic object. The oscillation is not simple harmonic motion, 
but is called stick-and-slip. This problem models stick-and- 
slip motion.

    A block of mass m is attached to a fixed support by a 
horizontal spring with force constant k and negligible mass 
(Fig.  P15.42). Hooke’s law describes the spring both in 
extension and in compression. The block sits on a long hor-
izontal board, with which it has coefficient of static friction 
ms and a smaller coefficient of kinetic friction mk. The board 
moves to the right at constant speed v. Assume the block 
spends most of its time sticking to the board and moving to 
the right with it, so the speed v is small in comparison to the 
average speed the block has as it slips back toward the left. 
(a) Show that the maximum extension of the spring from its 
unstressed position is very nearly given by msmg/k. (b) Show 
that the block oscillates around an equilibrium position 
at which the spring is stretched by mkmg/k. (c)  Graph the 
block’s position versus time. (d) Show that the amplitude of 
the block’s motion is

A 5
sms 2 mkdmg

k

h
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M
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  (e) Show that the period of the block’s motion is

T 5
2sms 2 mkdmg

vk
1 pÎm

k

  It is the excess of static over kinetic friction that is impor-
tant for the vibration. “The squeaky wheel gets the grease” 
because even a viscous fluid cannot exert a force of static 
friction.

43. Your father is preparing the backyard for the installation 
of new sod. He has finished cleaning the ground of roots 
and rocks, has raked it to the correct contours, and now 
must pull a heavy roller, shown in Figure P15.43a, over the 
ground several times to flatten and compact the dirt. He 
is tired after all of his work and asks you to do the rolling 
for him. He tells you that each section of the yard must be 
rolled over ten times with the roller. You are tired from your 
physics studying, but decide you can use your understand-
ing of physics to make the job easier. You attach the roller 
to a spring as shown in Figure P15.43b, with the other end 
attached to a post pounded into the ground. You then just 
pull the roller out once and let it oscillate over each part of 
the yard for ten rolls while you sit back and relax. Before 
beginning, you wonder how much time you will have to 
relax at each location before you have to move the post 
and roller to a new location. The mass of the roller is M 5 
400 kg, and the spring constant is k 5 3 500 N/m. The flat, 
smooth ground supplies enough friction that the roller rolls 
instead of sliding, but the rolling friction is negligible.

44. Why is the following situation impossible? Your job involves 
building very small damped oscillators. One of your designs 
involves a spring–object oscillator with a spring of force con-
stant k 5 10.0 N/m and an object of mass m 5 1.00 g. Your 
design objective is that the oscillator undergo many oscilla-
tions as its amplitude falls to 25.0% of its initial value in a 
certain time interval. Measurements on your latest design 
show that the amplitude falls to the 25.0% value in 23.1 ms. 
This time interval is too long for what is needed in your proj-
ect. To shorten the time interval, you double the damping 
constant b for the oscillator. This doubling allows you to 
reach your design objective.

45. A block of mass m is connected to two springs of force con-
stants k1 and k2 in two ways as shown in Figure P15.45. In both 
cases, the block moves on a frictionless table after it is dis-
placed from equilibrium and released. Show that in the two 
cases the block exhibits simple harmonic motion with periods

(a) T 5 2pÎm sk1 1 k 2d

k1k 2

    and    (b) T 5 2pÎ m
k 1 1 k 2

46. Review. A light balloon filled with helium of density 
0.179 kg/m3 is tied to a light string of length L 5 3.00 m. 
The string is tied to the ground forming an “inverted” 
simple pendulum (Fig. P15.46a). If the balloon is dis-
placed slightly from equilibrium as in Figure P15.46b and 
released, (a) show that the motion is simple harmonic and 
(b) determine the period of the motion. Take the density 
of air to be 1.20 kg/m3. Hint: Use an analogy with the sim-
ple pendulum and see Chapter 14. Assume the air applies a 
buoyant force on the balloon but does not otherwise affect 
its motion.

47. A particle with a mass of 0.500 kg is attached to a horizontal 
spring with a force constant of 50.0 N/m. At the moment 
t 5 0, the particle has its maximum speed of 20.0 m/s and 
is moving to the left. (a) Determine the particle’s equation 
of motion, specifying its position as a function of time. 
(b)  Where in the motion is the potential energy three 
times the kinetic energy? (c) Find the minimum time inter-
val required for the particle to move from x 5 0 to x 5 
1.00 m. (d) Find the length of a simple pendulum with the 
same period.

challenge ProbleMs

48. A smaller disk of radius r and 
mass m is attached rigidly to 
the face of a second larger 
disk of radius R and mass M 
as shown in Figure P15.48. 
The center of the small disk is 
located at the edge of the large 
disk. The large disk is mounted 
at its center on a frictionless 
axle. The assembly is rotated 
through a small angle u from 
its equilibrium position and 
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414 Chapter 15 Oscillatory Motion

released. (a) Show that the speed of the center of the small 
disk as it passes through the equilibrium position is

v 5 2 3 Rg s1 2 cos ud
sMymd 1 sryRd2 1 24

1y2

  (b) Show that the period of the motion is

T 5 2p 3sM 1 2mdR 2 1 mr 2

2mgR 41y2

49. Review. A system consists of a spring with force constant 
k 5 1 250 N/m, length L 5 1.50 m, and an object of mass 
m 5 5.00 kg attached to the end (Fig. P15.49). The object is 
placed at the level of the point of attachment with the spring 
unstretched, at position yi 5 L, and then it is released so 
that it swings like a pendulum. (a) Find the y position of the 
object at the lowest point. (b) Will the pendulum’s period be 
greater or less than the period of a simple pendulum with 
the same mass m and length L? Explain.

50. Review. Why is the following situation impossible? You are in 
the high-speed package delivery business. Your competitor 
in the next building gains the right-of-way to build an evac-
uated tunnel just above the ground all the way around the 
Earth. By firing packages into this tunnel at just the right 
speed, your competitor is able to send the packages into orbit 
around the Earth in this tunnel so that they arrive on the 
exact opposite side of the Earth in a very short time interval. 
You come up with a competing idea. Figuring that the dis-
tance through the Earth is shorter than the distance around 

the Earth, you obtain permits to build an evacuated tun-
nel through the center of the Earth (Fig. P15.50). By simply 
dropping packages into this tunnel, they fall downward and 
arrive at the other end of your tunnel, which is in a build-
ing right next to the other end of your competitor’s tunnel. 
Because your packages arrive on the other side of the Earth 
in a shorter time interval, you win the competition and your 
business flourishes. Note: An object at a distance r from the 
center of the Earth is pulled toward the center of the Earth 
only by the mass within the sphere of radius r (the reddish 
region in Fig. P15.50). Assume the Earth has uniform density.

51. A light, cubical container 
of volume a3 is initially 
filled with a liquid of mass 
density r as shown in Fig-
ure P15.51a. The cube is 
initially supported by a 
light string to form a sim-
ple pendulum of length Li, 
measured from the center 
of mass of the filled con-
tainer, where Li .. a. The 
liquid is allowed to flow 
from the bottom of the container at a constant rate (dM/dt). 
At any time t, the level of the liquid in the container is h and 
the length of the pendulum is L (measured relative to the 
instantaneous center of mass) as shown in Figure P15.51b. 
(a) Find the period of the pendulum as a function of time.  
(b) What is the period of the pendulum after the liquid 
completely runs out of the container?

vS

y

yi � L

x

L � yf

L
m

Figure P15.49

Earth

Tunnel

m
r

Figure P15.50

a

a
h

LLi

a b

Figure P15.51

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



415

16Wave Motion

16.1 Propagation of  
a Disturbance

16.2 Analysis Model:  
Traveling Wave 

16.3 The Speed of Waves  
on Strings

16.4 Rate of Energy Transfer 
by Sinusoidal Waves  
on Strings

16.5 The Linear Wave 
Equation

16.6 Sound Waves

16.7 Speed of Sound Waves

16.8 Intensity of Sound 
Waves

16.9 The Doppler Effect

Storyline During your visit to your grandparents’ house in Boston, 
you and your grandfather take a day trip. You stop at Quincy Quarries Reser-
vation, where there are large flat areas between the cliffs. While visiting, you 
notice that you can clap your hands and hear a distinct echo from a distant cliff. 
You say, “Watch this, Grandpa, let me show you something about cell phones.” 
You pull out your smartphone and activate the digital recording app. You ask your 
grandfather to clap his hands once, just after you start recording. You stop the 
recording after the echo from the cliff arrives. Seeing the pulses on the app dis-
play representing both the clap and the echo, you determine the time interval for 
the sound of the clap to travel to the cliff and back. Then you use the GPS sys-
tem on your phone to determine your latitude and longitude coordinates. At this 
point, you say, “Grandpa, let’s go for a hike!” You hike across the former lake to 
the base of the cliff that provided the echo and determine your coordinates again. 
Based on the two sets of coordinates, you use a Web site to determine the dis-
tance between the cliff and your original position. From this distance and the time 
interval you measured for the echo to arrive, you make a reasonably accurate cal-
culation of the speed of sound. Your grandfather is quite impressed with you.

ConneCtions In this chapter, we will continue crossing the bridge we 
mentioned at the beginning of Chapter 15. Wave motion represents phenomena 
in which a disturbance propagates through a medium. The disturbance carries 
energy from one point to another. But there is no matter that moves over that 
distance. For example, suppose you go bowling. You can knock the pins over by 
rolling the bowling ball at them. That is not wave motion. The energy is carried by 
the bowling ball—there is a transfer of matter. But suppose you could shout loud 

At the Quincy Quarries 
Reservation in Quincy, 
Massachusetts, rainwater 
filled in an old granite 
quarry, so that the water 
was surrounded by rocks 
and cliffs. When Boston 
undertook the Big Dig, in 
which huge amounts of dirt 
were removed from beneath 
the city to make way for 
underground tunnels, the 
water at Quincy Quarry 
was filled in with that dirt. 
Consequently, there are now 
large flat areas between 
granite cliffs. (© Cengage)
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416 Chapter 16 Wave Motion

enough to knock the pins over. (Do not try this!) That would be energy transfer  
by waves. The energy is carried by the sound wave of your voice—no matter 
transfers from your mouth to the pins. In our discussions in this chapter and 
the next, we discuss mechanical waves. These waves require a medium. For 
example, we will study one-dimensional waves traveling on a string. The string 
is the medium. We will also consider mechanical waves in three dimensions: the 
waves can travel in any direction through a bulk medium. When the medium is 
air, we call such mechanical waves sound. We will relate phenomena associated 
with sound waves to our sense of hearing. We will use our information from 
this chapter to study waves under boundary conditions in Chapter 17, which will 
lead to an understanding of musical instruments. Furthermore, the material in 
this chapter will form the foundation of our study of electromagnetic waves in 
Chapters 33–37 and quantum physics in Chapters 39–44.

   16.1    Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the 
list of energy transfer mechanisms in Equation 8.2, two mechanisms—mechanical 
waves TMW and electromagnetic radiation TER—depend on waves. By contrast, in 
another mechanism, matter transfer TMT, the energy transfer is accompanied by 
a movement of matter through space with no wave character at all in the process.

All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a constant speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other: as one element goes up, it pulls the 
next one upward. The pulse has a definite height and a definite speed of propaga-
tion along the medium. The shape of the pulse changes very little as it travels along 
the string.1

As the pulse in Figure 16.1 travels to the right, each disturbed element of the 
string moves in the vertical direction, perpendicular to the direction of propagation. 
Figure 16.2 illustrates this point for one particular element, labeled P. Notice that 
no part of the string ever moves in the direction of the propagation. A traveling 
wave or pulse that causes the elements of the disturbed medium to move perpen-
dicular to the direction of propagation is called transverse.

Compare the pulse in Figure 16.1 with another type of pulse, one moving down a 
long, stretched spring as shown in Figure 16.3. The left end of the spring is pushed 
briefly to the right and then pulled briefly to the left. This movement creates a 
sudden compression of a region of the coils. The compressed region travels along 
the spring (to the right in Fig. 16.3). Notice that the direction of the displacement 
of the coils is parallel to the direction of propagation of the compressed region. A 
traveling wave or pulse that causes the elements of the medium to move parallel to 
the direction of propagation is called longitudinal.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (black, double-headed 
arrow), causing a pulse to travel 
along the string.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

1 In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, 
is common to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in 
this chapter.
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    16.1 Propagation of a Disturbance 417

If the end of the string in Figure 16.1 were moved up and down continuously, 
the hand would generate a series of pulses called a transverse wave. We will study 
the details of waves such as this in Section 16.2. Sound waves, which we shall discuss 
later in this chapter, are an example of longitudinal waves. The disturbance in a 
sound wave is a series of high-pressure and low-pressure regions that travel through 
air, as we shall see in Section 16.6.

Some waves in nature exhibit a combination of transverse and longitudinal dis-
placements. Surface-water waves such as those in the ocean are a good example. 
When a water wave travels on the surface of deep water, elements of water at the 
surface move in nearly circular paths as shown in Figure 16.4. The disturbance has 
both transverse and longitudinal components. The transverse displacements seen 
in Figure 16.4 represent the variations in vertical position of the water elements. 
The longitudinal displacements represent elements of water moving back and forth 
in a horizontal direction. A point in Figure 16.4 at which the displacement of the 
element from its normal position is highest is called the crest of the wave. The low-
est point is called the trough.

An earthquake represents a disturbance that results in seismic waves. Two types 
of three-dimensional seismic waves travel out from a point under the Earth’s sur-
face at which an earthquake occurs: transverse and longitudinal. The longitudinal 
waves are the faster of the two, traveling at speeds in the range of 7 to 8 km/s near 
the surface. They are called P waves, with “P” standing for primary, because they 
travel faster than the transverse waves and arrive first at a seismograph (a device 
used to detect waves due to earthquakes). The slower transverse waves, called  
S waves, with “S” standing for secondary, travel through the Earth at 4 to 5 km/s 
near the surface. By recording the time interval between the arrivals of these two 
types of waves at a seismograph, the distance from the seismograph to the point of 
origin of the waves can be determined. This distance is the radius of an imaginary 
sphere centered on the seismograph. The origin of the waves is located somewhere 
on that sphere. The imaginary spheres from three or more monitoring stations 
located far apart from one another intersect at one region of the Earth, and this 
region is where the earthquake occurred.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first 
person leaves and a pulse of motion occurs as people step forward to fill the 
gap. As each person steps forward, the gap moves through the line. Is the prop-
agation of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” 
at a baseball game: people stand up and raise their arms as the pulse arrives at 
their location, and the resultant pulse moves around the stadium. Is this pulse 
(a) transverse or (b) longitudinal?

Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
At any time, the pulse can be represented by some mathematical function that we 
will write as y(x, t). At t 5 0, as in Figure 16.5a, let’s write this as y(x, 0) 5 f(x), where 
f(x) describes the shape of the pulse in space.

The function y(x, t), sometimes called the wave function, depends on the two 
variables x and t. For this reason, it is described as “y as a function of x and t.”

It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal pulse 
along a stretched spring.

Figure 16.4 The motion of water 
elements on the surface of deep 
water in which a wave is propagat-
ing is a combination of transverse 
and longitudinal displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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At t � 0,  the shape of the 
pulse is given by y � f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y � f(x � vt).

b

a

Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.
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418 Chapter 16 Wave Motion

As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. If we were to view the pulse at a particular instant of time, such as in the case 
of taking a snapshot of the pulse, we would see something like Figure 16.5a or 16.5b. 
The geometric shape f(x) of the pulse at a particular instant is called the waveform.

Because the speed of the pulse is v, the crest of the pulse has traveled to the right 
a distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0) 

In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 Example 16.1    A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y sx, td 5
2

sx 2 3.0td2 1 1

where x and y are measured in centimeters and t is measured in  
seconds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and 
t 5 2.0 s.

S o L u T I o n

Conceptualize Figure 16.6a shows the pulse represented by this wave func-
tion at t 5 0. Imagine this pulse moving to the right and maintaining its 
shape as suggested by Figures 16.6b and 16.6c.

Categorize We categorize this example as a relatively simple analy-
sis problem in which we interpret the mathematical representation of  
a pulse.

Analyze The wave function is of the form y 5 
f(x 2 vt). Inspection of the expression for y(x, t) 
and comparison to Equation 16.1 reveal that  
the wave speed is v 5 3.0 cm/s. Furthermore, 
we can maximize the value of y by letting  
x 2 3.0t 5 0, and find that ymax 5 2.0 cm.

Write the wave function expression at t 5 0: y(x, 0) 5  
2

x2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5  
2

sx 2 3.0d2 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5  
2

sx 2 6.0d2 1 1

t � 2.0 s

t � 1.0 s

t � 0

y (x, 2.0)

y (x, 1.0)

y (x, 0)

3.0 cm/s

3.0 cm/s

3.0 cm/s

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

a

b

c

Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.
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16.1 c o n t i n u e d

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields the wave 
functions shown in the three parts of Figure 16.6.

Finalize These snapshots show that the pulse moves to the right without changing its shape and that it has a constant speed 
of 3.0 cm/s.

W h A T  I f ? What if the wave function were

ysx, td 5
4

sx 1 3.0td2 1 1

How would that change the situation?

Answer One new feature in this expression is the plus sign in the denominator rather than the minus sign. The new expres-
sion represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses. Another new fea-
ture here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with twice the height of that 
in Figure 16.6.

   16.2    Analysis Model: Traveling Wave 
To generate the pulse on the rope in Figure 16.1, we shook the end of the rope up 
and down once. In this section, we introduce an important wave function whose 
shape is shown in Figure 16.7 and is produced by shaking the end of the rope up 
and down continuously in simple harmonic motion. The wave represented by this 
curve is called a sinusoidal wave because the curve is the same as that of the func-
tion sin u plotted against u. Because shaking the end of the rope in simple har-
monic motion leads to a sinusoidal wave, we see that there is a close relationship 
between simple harmonic motion and sinusoidal waves.

The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 17.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium. An element of 
the medium is described by the particle in simple harmonic motion model. A point 
on the wave, such as the crest, can be described with the particle under constant 
velocity model.

In the early chapters of this book, we developed several analysis models based 
on three simplification models: the particle, the system, and the rigid object. With 
our introduction to waves, we can develop a new simplification model, the wave, 
that will allow us to explore more analysis models for solving problems. In what 
follows, we will develop the principal features and mathematical representations of 
the analysis model of a traveling wave. This model is used in situations in which a 
wave moves through space without interacting with other waves or particles.

Figure 16.8a (page 420) shows a snapshot of a traveling wave moving through a 
medium. Figure 16.8b shows a graph of the position of one element of the medium 
as a function of time. Recall from Section 16.1 that the highest point on a wave is 
called the crest of the wave, and the lowest point is the trough. The distance from 
one crest to the next is called the wavelength l (Greek letter lambda). More gener-
ally, the wavelength is the minimum distance between any two identical points on 
adjacent waves as shown in Figure 16.8a.

t � 0 t

y

x

vt
vS

Figure 16.7 A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.
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420 Chapter 16 Wave Motion

If you count the number of seconds between the arrivals of two adjacent crests 
at a given location in space, you measure the period T of the waves. In general, 
the period is the time interval required for an element of the medium to undergo 
a complete cycle and return to the same position as shown in Figure 16.8b. The 
period of the wave is the same as the period of the simple harmonic oscillation of 
one element of the medium.

The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given location in 
a unit time interval. The frequency of a sinusoidal wave is related to the period by 
the expression

 f 5
1
T

 (16.3)

The frequency of the wave is the same as the frequency of the simple harmonic oscil-
lation of one element of the medium. The most common unit for frequency, as we 
learned in Chapter 15, is s21, or hertz (Hz). The corresponding unit for T is seconds.

An ideal particle has zero size. We can build physical objects with nonzero size as 
combinations of particles. Therefore, the particle can be considered a basic build-
ing block. An ideal wave has a single frequency and is infinitely long; that is, the 
wave exists throughout the Universe. (A wave of finite length must necessarily have 
a mixture of frequencies.) When this concept is explored in Section 17.8, we will 
find that ideal waves can be combined to build complex waves, just as we combined 
particles: the wave is a basic building block.

The maximum position of an element of the medium relative to its equilibrium 
position is called the amplitude A of the wave as indicated in Figure 16.8. Con-
sider the sinusoidal wave in Figure 16.8a, which shows the position of the wave at 
t 5 0. Because the wave is sinusoidal, we expect the wave function at this instant 
to be expressed as y(x, 0) 5 A sin ax, where A is the amplitude and a is a constant 
to be determined. At x 5 0, we see that y(0, 0) 5 A sin a(0) 5 0, consistent with 
Figure 16.8a. The next value of x for which y is zero is x 5 l/2. Therefore,

ySl

2
, 0D 5 A sin Sa 

l

2D 5 0

For this equation to be true, we must have a l/2 5 p, or a 5 2p/l. Therefore, the 
function describing the positions of the elements of the medium through which 
the sinusoidal wave is traveling can be written

 ysx, 0d 5 A sin S2p

l
 xD (16.4)

where the constant A represents the wave amplitude and the constant l is the wave-
length. Notice that the vertical position of an element of the medium is the same 
whenever x is increased by an integral multiple of l. Based on our discussion of 
Equation 16.1, if the wave moves to the right with a speed v, the wave function at 
some later time t is

 ysx, td 5 A sin 32p

l
sx 2 vtd4 (16.5)

If the wave were traveling to the left, the quantity x 2 vt would be replaced by x 1 vt 
as we learned when we developed Equations 16.1 and 16.2.

By definition, the wave travels through a displacement Dx equal to one wave-
length l in a time interval Dt of one period T. Therefore, the wave speed, wave-
length, and period are related by the expression

 v 5
Dx
Dt

5
l

T
 (16.6)

y

x

T

y

t

A

A

T

l

l

The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.

a

b

Figure 16.8 (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.

Pitfall Prevention 16.1
What’s the Difference Between 
Figures 16.8a and 16.8b? Notice 
the visual similarity between Fig-
ures 16.8a and 16.8b. The shapes 
are the same, but (a) is a graph of 
vertical position versus horizontal 
position, whereas (b) is vertical 
position versus time. Figure 16.8a 
is a pictorial representation of the 
wave for a series of elements of the 
medium; it is what you would see at 
an instant of time. Figure 16.8b is 
a graphical representation of the 
position of one element of the medium 
as a function of time. That both 
figures have the identical shape 
represents Equation 16.1: a wave is 
the same function of both x and t.
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Substituting this expression for v into Equation 16.5 gives

 ysx, td 5 A sin 32pSx
l

2
t
TD4 (16.7)

This form of the wave function shows the periodic nature of y(x, t). At any given time 
t, y(x, t) has the same value at the positions x, x 1 l, x 1 2l, and so on. Furthermore, 
at any given position x, the value of y(x, t) is the same at times t, t 1 T, t 1 2T, and 
so on.

We can express the wave function in a convenient form by defining two other 
quantities, the angular wave number k (usually called simply the wave number) 
and the angular frequency v:

 k ;
2p

l
 (16.8)

 v ;
2p

T
5 2pf  (16.9)

Using these definitions, Equation 16.7 can be written in the more compact form

 y(x, t) 5 A sin (kx 2 vt) (16.10)

Using Equations 16.3, 16.8, and 16.9, the wave speed v originally given in Equa-
tion 16.6 can be expressed in the following alternative forms:

 v 5
v

k
 (16.11)

 v 5 lf (16.12)

The wave function given by Equation 16.10 assumes the vertical position y of an 
element of the medium is zero at x 5 0 and t 5 0. That need not be the case. If it is 
not, we generally express the wave function in the form

 y(x, t) 5 A sin (kx 2 vt 1 f) (16.13)

where f is the phase constant, just as we learned in our study of periodic motion in 
Chapter 15. This constant can be determined from the initial conditions. The pri-
mary equations in the mathematical representation of the traveling wave analysis 
model are Equations 16.3, 16.10, and 16.12.

Q uick Quiz 16.2  A sinusoidal wave of frequency f is traveling along a 
stretched string. The string is brought to rest, and a second traveling wave of fre-
quency 2f is established on the string. (i) What is the wave speed of the second 
wave? (a) twice that of the first wave (b) half that of the first wave (c) the same 
as that of the first wave (d) impossible to determine (ii) From the same choices, 
describe the wavelength of the second wave. (iii) From the same choices, 
describe the amplitude of the second wave.

  Angular wave number

  Angular frequency

  Wave function for a  
sinusoidal wave

  Speed of a sinusoidal wave

  General expression for a 
sinusoidal wave

 Example 16.2    A Traveling Sinusoidal Wave

A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0 cm, a wavelength of 40.0 cm, and a 
frequency of 8.00 Hz. The vertical position of an element of the medium at t 5 0 and x 5 0 is also 15.0 cm as shown in 
Figure 16.9 (page 422).

(A) Find the wave number k, period T, angular frequency v, and speed v of the wave.

continued
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422 Chapter 16 Wave Motion

16.2 c o n t i n u e d

S o L u T I o n

Conceptualize Figure 16.9 shows the wave at t 5 0. Imagine 
this wave moving to the right and maintaining its shape.

Categorize From the description in the problem state-
ment, we see that we are analyzing a mechanical wave mov-
ing through a medium, so we categorize the problem with 
the traveling wave model.

Analyze
Evaluate the wave number from Equation 16.8: k 5

2p

l
5

2p rad
40.0 cm

5  15.7 rad/m

Evaluate the period of the wave from Equation 16.3: T 5
1
f

5
1

8.00 s21 5  0.125 s

Evaluate the angular frequency of the wave from  v 5 2pf 5 2p(8.00 s21) 5  50.3 rad/s 
Equation 16.9:

Evaluate the wave speed from Equation 16.12: v 5 lf 5 (40.0 cm)(8.00 s21) 5  3.20 m/s

(B) Determine the phase constant f and write a general expression for the wave function.

S o L u T I o n

Substitute A 5 15.0 cm, y 5 15.0 cm, x 5 0,  15.0 5 s15.0d sin f   S   sin f 5 1   S   f 5
p

2
 rad 

and t 5 0 into Equation 16.13:

Write the wave function: y sx, td 5 A sin Skx 2 vt 1
p

2D 5 A cos skx 2 vtd

Substitute the values for A, k, and v in SI units  y(x, t) 5  0.150 cos (15.7x 2 50.3t) 
into this expression:

Finalize Review the results carefully and make sure you understand them. How would the graph in Figure 16.9 change if 
the phase angle were zero? How would the graph change if the amplitude were 30.0 cm? How would the graph change if the 
wavelength were 10.0 cm?

y (cm)

40.0 cm

15.0 cm
x (cm)Figure 16.9  (Example 16.2) A 

sinusoidal wave of wavelength  
l 5 40.0 cm and amplitude  
A 5 15.0 cm.

Sinusoidal Waves on Strings
In Figure 16.1, we demonstrated how to create a pulse by jerking a taut string up 
and down once. To create a series of such pulses—a wave—let’s replace the hand 
with an oscillating blade whose end is vibrating in simple harmonic motion. Fig-
ure 16.10 represents snapshots of the wave created in this way at intervals of T/4. 
Because the end of the blade oscillates in simple harmonic motion, each element of 
the string, such as that at P, also oscillates vertically with simple harmonic motion. 
Therefore, every element of the string can be treated as a simple harmonic oscil-
lator vibrating with a frequency equal to the frequency of oscillation of the blade.2 
Notice that while each element oscillates in the y direction, the wave travels to the 
right in the 1x direction with a speed v. 

If we define t 5 0 as the time for which the configuration of the string is as 
shown in Figure 16.10a, the wave function can be written from Equation 16.10 as

y 5 A sin (kx 2 vt)

where we simplify y(x, t) by writing it simply as y. We can use this expression to 
describe the motion of any element of the string. An element at point P (or any 
other element of the string) moves only vertically, and so its x coordinate remains 

2 In this arrangement, we are assuming that a string element always oscillates in a vertical line. The tension in the 
string would vary if an element were allowed to move sideways. Such motion would make the analysis very complex.

Pitfall Prevention 16.2
Two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.
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constant. Therefore, the transverse speed vy (not to be confused with the wave 
speed v) and the transverse acceleration ay of elements of the string are

 vy 5
dy

dt4x 5 constant

5
−y

−t
5 2vA cos skx 2 vtd (16.14)

 ay 5
dvy

dt 4x 5 constant

5
−vy

−t
5 2v2 A sin skx 2 vtd (16.15)

These expressions incorporate partial derivatives because y depends on both x and 
t. In the operation −y/−t, for example, we take a derivative with respect to t while 
holding x constant. The maximum magnitudes of the transverse speed and trans-
verse acceleration are simply the absolute values of the coefficients of the cosine 
and sine functions:

 vy , max 5 vA (16.16)

 ay , max 5 v2A (16.17)

The transverse speed and transverse acceleration of elements of the string do not 
reach their maximum values simultaneously. The transverse speed reaches its max-
imum value (vA) when y 5 0, whereas the magnitude of the transverse acceleration 
reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 
are identical in mathematical form to the corresponding equations for simple har-
monic motion, Equations 15.17 and 15.18.

Q uick Quiz 16.3  The amplitude of a wave is doubled, with no other changes 
made to the wave. As a result of this doubling, which of the following statements 
is correct? (a) The speed of the wave changes. (b) The frequency of the wave 
changes. (c) The maximum transverse speed of an element of the medium 
changes. (d) Statements (a) through (c) are all true. (e) None of statements 
(a) through (c) is true.

P

t = 0

t =     T

A

P

P

P

l

4
1

t =     T
2
1

t =     T
4
3

a

b

c

d

x

y

Figure 16.10 One method for 
producing a sinusoidal wave on a 
string. The left end of the string 
is connected to a blade that is set 
into oscillation. Every element of 
the string, such as that at point P, 
oscillates with simple harmonic 
motion in the vertical direction.

analySiS MoDel Traveling Wave

Imagine a source vibrating such that it 
influences the medium that is in contact 
with the source. Such a source creates a 
disturbance that propagates through the 
medium. If the source vibrates in simple 
harmonic motion with period T, sinusoidal 
waves propagate through the medium at a 
speed given by

 v 5
l

T
5 lf  (16.6, 16.12)

where l is the wavelength of the wave and f is its frequency. A sinusoidal 
wave can be expressed as

 y sx, td 5 A sin skx 2 vtd (16.10)

where A is the amplitude of the wave, k is its 
wave number, and v is its angular frequency.

Examples: 

 ● a vibrating blade sends a sinusoidal wave 
down a string attached to the blade

 ● a piston vibrates back and forth, emitting 
sound waves into a tube filled with gas 
(Section 16.6)

 ● a guitar body vibrates, emitting sound 
waves into the air (Chapter 17)

 ● a vibrating electric charge creates an elec-
tromagnetic wave that propagates into 
space at the speed of light (Chapter 33)

y

 

 
x

A

l

vS

   16.3    The Speed of Waves on Strings
One aspect of the behavior of linear mechanical waves is that the wave speed 
depends only on the properties of the medium through which the wave travels. 
Waves for which the amplitude A is small relative to the wavelength l can be repre-
sented as linear waves. (See Section 16.5.) In this section, we determine the speed 
of a transverse wave traveling on a stretched string.
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424 Chapter 16 Wave Motion

Let us use a mechanical analysis to derive the expression for the speed of a pulse 
traveling on a stretched string under tension T. Consider a pulse moving to the right 
with a uniform speed v, measured relative to a stationary (with respect to the Earth) 
inertial reference frame as shown in Figure 16.11a. Newton’s laws are valid in any iner-
tial reference frame. Therefore, let us view this pulse from a different inertial reference 
frame, one that moves along with the pulse at the same speed so that the pulse appears 
to be at rest in the frame as in Figure 16.11b. In this reference frame, the pulse remains 
fixed and each element of the string moves to the left through the pulse shape.

A short element of the string, of length Ds, forms an approximate arc of a circle 
of radius R as shown in the magnified view in Figure 16.11b. In our  moving frame 
of reference, the element of the string moves to the left with speed v. As it travels 
through the arc, we can model the element as a particle in circular motion. This 
element has a centripetal (downward) acceleration of v2/R, which is supplied by 
components of the force T

S
 whose magnitude is the tension in the string. The force 

T
S

 acts on each side of the element, tangent to the arc, as in Figure 16.11b. The 
horizontal components of T

S
 cancel, and each vertical component T sin u acts down-

ward. Hence, the magnitude of the total radial force on the element is 2T sin u. 
Because the element is small, u is small and we can use the small-angle approxima-
tion sin u < u. Therefore, the magnitude of the total radial force is

Fr 5 2T sin u < 2Tu

The element has mass m 5 mDs, where m is the mass per unit length of the string. 
Because the element forms part of a circle and subtends an angle of 2u at the cen-
ter, Ds 5 R(2u), and

m 5 mDs 5 2mRu

The element of the string is modeled as a particle under a net force. Therefore, 
applying Newton’s second law to this element in the radial direction gives

Fr 5
mv2

R
   S   2Tu 5

2mR uv2

R
   S   T 5 mv2

Solving for v gives

 v 5ÎT
m

 (16.18)

Notice that this derivation is based on the assumption that the pulse height is small 
relative to the length of the pulse. Using this assumption, we were able to use the 
approximation sin u < u. Furthermore, the model assumes that the tension T is not 
 affected by the presence of the pulse, so T is the same at all points on the string. 
Finally, this proof does not assume any particular shape for the pulse. We therefore 
conclude that a pulse or a wave of any shape will travel on the string with speed v 5 
ÏTym, without any change in pulse shape.

Q uick Quiz 16.4  Suppose you create a pulse by moving the free end of a 
taut string up and down once with your hand beginning at t 5 0. The string is 
attached at its other end to a distant wall. The pulse reaches the wall at time t. 
Which of the following actions, taken by itself, decreases the time interval 
required for the pulse to reach the wall? More than one choice may be correct. 
(a) moving your hand more quickly, but still only up and down once by the same 
amount (b) moving your hand more slowly, but still only up and down once by 
the same amount (c) moving your hand a greater distance up and down in the 
same amount of time (d) moving your hand a lesser distance up and down in 
the same amount of time (e) using a heavier string of the same length and under 
the same tension (f) using a lighter string of the same length and under the same 
tension (g) using a string of the same linear mass density but under decreased ten-
sion (h) using a string of the same linear mass density but under increased tension

Speed of a wave on 
a stretched string

Figure 16.11 (a) In the reference 
frame of the Earth, a pulse moves 
to the right on a string with speed 
v. (b) In a frame of reference mov-
ing to the right with the pulse, the 
small element of length Ds moves 
to the left with speed v.

s�

O

s
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u

u

u

vS

vS

T
S

T
S

a

b

Pitfall Prevention 16.3
Multiple T ’s Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!
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 Example 16.3    The Speed of a Pulse on a Cord

A uniform string has a mass of 0.300 kg and a length of 6.00 m. The string passes over a pulley and supports a 2.00-kg 
object (Fig. 16.12). Find the speed of a pulse traveling along this string.

S o L u T I o n

Conceptualize In Figure 16.12, the hanging block establishes a 
tension in the horizontal string. This tension determines the speed 
with which waves move on the string.

Categorize To find the tension in the string, we model the hanging 
block as a particle in equilibrium. Then we use the tension to evaluate 
the wave speed on the string using Equation 16.18.

Analyze Apply the particle in equilibrium model to the block: o Fy 5 T 2 mblockg 5 0

Solve for the tension in the string: T 5 mblockg

Use Equation 16.18 to find the wave speed, using m 5  v 5ÎT
m

5Îm block g /
mstring

 
mstring/, for the linear mass density of the string:

Substitute numerical values: v 5Îs2.00 kgds9.80 mys2ds6.00 md
0.300 kg 5  19.8 m/s

Finalize The calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be exactly 
straight due to its weight; therefore, the tension is not uniform.

W h A T  I f ?  What if the block were swinging back and forth with respect to the vertical like a pendulum? How would that 
affect the wave speed on the string?

Answer The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the block 
is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave speed 
changes.

When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the block 
because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave speed must be 
greater than 19.8 m/s.

When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal acceleration 
at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by a component of the 
gravitational force on the block. Therefore, the tension is smaller than the weight and the wave speed is less than 19.8 m/s. 
With what frequency does the speed of the wave vary? Is it the same frequency as the pendulum?

2.00 kg

T

Figure 16.12  (Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 ÏTym.

 Example 16.4    Rescuing the Hiker

An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above him 
and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is attached 
to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. Terrified by 
hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the cable. A pulse 
takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the tension in the cable 
is uniform.

S o L u T I o n

Conceptualize Imagine the effect of the acceleration of the helicopter on the cable. The greater the upward acceleration, the 
larger the tension in the cable. In turn, the larger the tension, the higher the speed of pulses on the cable.

Categorize This problem is a combination of one involving the speed of pulses on a string and one in which the hiker and 
sling are modeled as a particle under a net force.

continued
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426 Chapter 16 Wave Motion

   16.4    Rate of Energy Transfer by Sinusoidal 
Waves on Strings
Waves transport energy TMW through a medium as they propagate. For example, 
suppose an object is hanging on a stretched string and a pulse is sent down the 
string as in Figure 16.13a. When the pulse meets the suspended object, the object is 
momentarily displaced upward as in Figure 16.13b. In the process, energy is trans-
ferred to the object and appears as an increase in the gravitational potential energy 
of the object–Earth system. This section examines the rate at which energy is trans-
ported along a string. We shall assume a one-dimensional sinusoidal wave in the 
calculation of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.14). The source of the 
energy is the vibrating blade at the left end of the string. We can consider the string 
to be a nonisolated system. As the blade performs work on the end of the string, 
moving it up and down, energy enters the system of the string and propagates 
along its length. Let’s focus our attention on an infinitesimal element of the string 
of length dx and mass dm. We can model each element of the string as a particle in 
simple harmonic motion, with the oscillation in the y direction. All elements have 
the same angular frequency v and the same amplitude A. The kinetic energy K 
associated with a moving particle is K 5 1

2mv 2. If we apply this equation to the infin-
itesimal element, the kinetic energy dK associated with the up and down motion of 
this element is

 dK 5 1
2 
sdmdvy

2 

where vy is the transverse speed of the element. If m is the mass per unit length of 
the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 
express the kinetic energy of an element of the string as

 dK 5 1
2 
sm dxdvy

2 (16.19)

Substituting for the general transverse speed of an element of the medium using 
Equation 16.14 gives

dK 5 1
2mf2vA cos skx 2 vtdg2 dx 5 1

2mv2A2 cos2 skx 2 vtd dx

16.4 c o n t i n u e d

Analyze Solve Equation 16.18 for the tension in the cable: (1)   v 5ÎT
m

    S   T 5 mv2

Model the hiker and sling as a particle under a net force,  o F 5 ma  S   T 2 mg 5 ma 
noting that the acceleration of this particle of mass m is  
the same as the acceleration of the helicopter:

Solve for the acceleration and substitute the tension  a 5
T
m

2 g 5
mv 2

m
2 g 5

mcable v
2

/cablem
2g 5

mcable

/cablem1Dx
Dt2

2

2g  
from Equation (1):

Substitute numerical values: a 5
s8.00 kgd

s15.0 mds150.0 kgd
 115.0 m

0.250 s2
2

2 9.80 mys2 5  3.00 m/s2

Finalize A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line shape 
even when it is not under tension. For example, a piano wire laid freely on a table straightens if released from a curved shape; 
package- wrapping string does not.

Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real cable, the 
acceleration of the helicopter is most likely smaller than what we calculated.

The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block–Earth system.

m

m

a

b

Figure 16.13  (a) A pulse travels 
to the right on a stretched string, 
carrying energy with it. (b) The 
energy of the pulse arrives at the 
hanging block.

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.14  A sinusoidal wave 
traveling along the x axis on a 
stretched string. 
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If we take a snapshot of the wave at time t 5 0, the kinetic energy of a given ele-
ment is

dK 5 1
2mv2 A2 cos2 kx dx

Integrating this expression over all the string elements in a wavelength of the wave 
gives the total kinetic energy K

l
 in one wavelength:

 K
l

5 #dK 5 #
l

0
 1

2 mv2A2 cos2 kx dx 5 1
2 mv2A2 #

l

0
 cos2 kx dx

 5 1
2mv2A2 31

2x 1
1
4k

 sin 2kx4l

0

5 1
2 mv2A2 f1

2lg 5 1
4 mv2A2l

In addition to kinetic energy, there is potential energy associated with each ele-
ment of the string due to its displacement from the equilibrium position and the 
restoring forces from neighboring elements. A similar analysis to that above for the 
total potential energy U

l
 in one wavelength gives exactly the same result:

 U
l

5 1
4 mv2A2l 

The total energy in one wavelength of the wave is the sum of the potential and 
kinetic energies:

 E
l

5 U
l

1 K
l

5 1
2 mv2A2l (16.20)

As the wave moves along the string, this amount of energy passes by a given point 
on the string during a time interval of one period of the oscillation. Therefore, the 
power P, or rate of energy transfer TMW associated with the mechanical wave, is

P 5
TMW

Dt
5

E
l

T
5

1
2mv2A2l

T
5 1

2 mv2A2 Sl

TD
 P 5 1

2mv2A2v (16.21)

Equation 16.21 shows that the rate of energy transfer by a sinusoidal wave on a 
string is proportional to (a) the square of the frequency, (b) the square of the 
amplitude, and (c) the wave speed. 

Q uick Quiz 16.5  Which of the following, taken by itself, would be most effec-
tive in increasing the rate at which energy is transferred by a wave traveling 
along a string? (a) reducing the linear mass density of the string by one-half 
(b) doubling the wavelength of the wave (c) doubling the tension in the string 
(d) doubling the amplitude of the wave

 Power of a wave

 Example 16.5    Power Supplied to a Vibrating String

A taut string for which m 5 5.00 3 1022 kg/m is under a tension of 80.0 N. How much power must be supplied to the string 
to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm?

S o L u T I o n

Conceptualize Consider Figure 16.14 again and notice that the vibrating blade supplies energy to the string at a certain rate. 
This energy then propagates to the right along the string.

Categorize We evaluate quantities from equations developed in the chapter, so we categorize this example as a substitution 
problem.

continued
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428 Chapter 16 Wave Motion

16.5 c o n t i n u e d

Use Equation 16.21 to evaluate the power: P 5 1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute  P 5 1
2ms2pf d2A2SÎT

m D 5 2p2f 2A2 ÏmT  
for v and v:

Substitute numerical values: P 5 2p 2s60.0 Hzd2s0.060 0 md2 Ïs0.050 0 kgymds80.0 Nd 5  512 W

W h A T  I f ?  What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all other 
parameters remain the same?

Answer Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold

5

1
2 mv2A 2

new v
1
2 mv2A 2

old v
5

A 2
new

A 2
old

Solving for the new amplitude gives

A new 5 A oldÎPnew

Pold

5 s6.00 cmdÎ1 000 W
512 W

5 8.39 cm

   16.5    The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Fur-
thermore, the linear wave equation is basic to many forms of wave motion. In this 
section, we derive this equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.15). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u (see 
Table 15.1) to express the net force as

 o Fy < T(tan uB 2 tan uA) (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 
the rope element in Figure 16.15 along the blue line representing the force T

S
. This 

displacement has infinitesimal x and y components and can be represented by the 
vector dx i

⁄
1 dy j

⁄
. The tangent of the angle with respect to the x axis for this dis-

placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
we must express it in partial derivative form as −y/−x. Substituting for the tangents 
in Equation 16.22 gives

 o Fy < T3S−y

−xDB

2 S−y

−xDA
4 (16.23)

Now, from the particle under a net force model, let’s apply Newton’s second law to 
the element, with the mass of the element given by m 5 m Dx:

 o Fy 5 may 5 m DxS−2y

−t2D (16.24)

B

A

x

A

B�
u

u

T
S

T
S

Figure 16.15  An element of a 
string under tension T.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



   16.6 Sound Waves 429

Combining Equation 16.23 with Equation 16.24 gives

 m DxS−2y

−t2D 5 T3S−y

−xDB

2 S−y

−xDA
4  

 
m

T
  

−2y

−t2 5
s−yy−xdB 2 s−yydxdA

Dx
  (16.25)

The right side of Equation 16.25 can be expressed in a different form if we note 
that the partial derivative of any function is defined as

 
−f

−x
; lim

Dx S 0
 
f sx 1 Dxd 2 f sxd

Dx
 

Associating f(x 1 Dx) with (−y/−x)B and f(x) with (−y/−x)A, we see that, in the limit 
Dx S 0, Equation 16.25 becomes

 
m

T
 
−2y

−t2 5
−2y

−x2 (16.26)

This expression is the linear wave equation as it applies to waves on a string.
The linear wave equation (Eq. 16.26) is often written in the form

 
−2y

−x2 5
1
v 2 

−2y

−t2  (16.27)

Equation 16.27 applies in general to various types of traveling waves whose speed 
is v. For waves on strings, y represents the vertical position of elements of the string. 
For sound waves propagating through a gas, y corresponds to longitudinal position 
of elements of the gas from equilibrium or variations in either the pressure or the 
density of the gas. In the case of electromagnetic waves, y corresponds to electric or 
magnetic field components.

We have shown that the sinusoidal wave function (Eq. 16.10) is one solution of 
the linear wave equation (Eq. 16.27). Although we do not prove it here, the linear 
wave equation is satisfied by any wave function having the form y 5 f(x 6 vt). 

  16.6    Sound Waves
We focus our attention now on sound waves, which travel through any material, but 
are most commonly experienced as the mechanical waves traveling through air that 
result in the human perception of hearing. As sound waves travel through air, ele-
ments of air are disturbed from their equilibrium positions. Accompanying these 
movements are changes in density and pressure of the air along the direction of 
wave motion. If the source of the sound waves vibrates sinusoidally, the density and 
pressure variations are also sinusoidal. The mathematical description of sinusoidal 
sound waves is very similar to that of sinusoidal waves on strings.

Sound waves are divided into three categories that cover different frequency 
ranges. (1) Audible waves lie within the range of sensitivity of the human ear. They 
can be generated in a variety of ways, such as by musical instruments, human 
voices, or loudspeakers. (2) Infrasonic waves have frequencies below the audible 
range. Elephants can use infrasonic waves to communicate with one another, even 
when separated by many kilometers. (3) Ultrasonic waves have frequencies above the 
audible range. You may have used a “silent” whistle to retrieve your dog. Dogs easily 
hear the ultrasonic sound this whistle emits, although humans cannot detect it at 
all. Ultrasonic waves are also used in medical imaging.

Earlier in the chapter, we began our investigation of waves by imagining the 
creation of a single pulse that traveled down a string (Figure 16.1) or a spring (Fig-
ure 16.3). Let’s do something similar for sound. We describe pictorially the motion 

  Linear wave equation  
for a string

  Linear wave equation  
in general
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430 Chapter 16 Wave Motion

of a one- dimensional longitudinal sound pulse moving through a long tube con-
taining a compressible gas as shown in Figure 16.16. A piston at the left end can be 
quickly moved to the right to compress the gas and create the pulse. Before the pis-
ton is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 16.16a. When the piston is pushed to the right 
(Fig. 16.16b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 16.16c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.

One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 16.16 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 16.17. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-
ton is pushed into the tube. This compressed region, called a compression, moves 
through the tube, continuously compressing the region just in front of itself. When 
the piston is pulled back, the gas in front of it expands and the pressure and density 
in this region fall below their equilibrium values (represented by the lighter parts 
of the colored areas in Fig. 16.17). These low-pressure regions, called rarefactions, 
also propagate along the tube, following the compressions. Both regions move at 
the speed of sound in the medium.

As the piston oscillates sinusoidally, regions of compression and rarefaction are 
continuously set up. The distance between two successive compressions (or two suc-
cessive rarefactions) equals the wavelength l of the sound wave. Because the sound 
wave is longitudinal, as the compressions and rarefactions travel through the tube, 
any small element of the gas moves with simple harmonic motion parallel to the 
direction of the wave. If s(x, t) is the position of a small element relative to its equi-
librium position,3 we can express this harmonic position function as

 s(x, t) 5 smax cos (kx 2 vt) (16.28)

where smax is the maximum position of the element relative to equilibrium. This 
parameter is often called the displacement amplitude of the wave. The parameter 
k is the wave number, and v is the angular frequency of the wave as defined in 
Equations 16.8 and 16.9. Notice that the displacement of the element is along x, in 
the direction of propagation of the sound wave.

The variation in the gas pressure DP measured from the equilibrium value is 
also periodic with the same wave number and angular frequency as for the dis-
placement in Equation 16.28. Therefore, we can write

 DP 5 DPmax sin (kx 2 vt) (16.29)

where the pressure amplitude DPmax is the maximum change in pressure from the 
equilibrium value.

Notice that we have expressed the displacement by means of a cosine function 
and the pressure by means of a sine function. We will justify this choice in the pro-
cedure that follows and relate the pressure amplitude DPmax to the displacement 
amplitude smax. Consider the piston–tube arrangement of Figure 16.16 once again. 
In Figure 16.18a, we focus our attention on a small cylindrical element of undis-
turbed gas of length Dx and area A. The volume of this element is Vi 5 A Dx.

Figure 16.18b shows this element of gas after a sound wave has moved it to a new 
position. The cylinder’s two flat faces move through different distances s1 and s2.  
The change in volume DV of the element in the new position is equal to A Ds, where 
Ds 5 s1 2 s2.

vS

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 16.16 Motion of a longi-
tudinal pulse through a compress-
ible gas. The compression (darker  
region) is produced by the 
moving piston.

Figure 16.17 A longitudinal 
wave propagating through a gas-
filled tube. The source of the wave 
is an oscillating piston at the left.

l

3 We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not perpendicular to 
the x direction.
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From the definition of bulk modulus (see Eq. 12.8), we express the pressure vari-
ation in the element of gas as a function of its change in volume:

DP 5 2B 
DV
Vi

Let’s substitute for the initial volume and the change in volume of the element:

DP 5 2B 
A Ds
A Dx

Let the length Dx of the cylinder approach zero so that the ratio Ds/Dx becomes a 
partial derivative:

 DP 5 2B 
−s
−x

 (16.30)

Substitute the position function given by Equation 16.28:

DP 5 2B 
−

−x
fsmax cos skx 2 vtdg 5 Bsmaxk  sin skx 2 vtd

From this result, we see that a displacement described by a cosine function leads 
to a pressure described by a sine function. We also see that the displacement and 
pressure amplitudes are related by

 DPmax 5 Bsmaxk (16.31)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 16.7, we will be able to provide an expression that relates DPmax and smax 
in terms of the density of the gas.

This discussion shows that a sound wave in a gas may be described equally well 
in terms of either pressure or displacement. A comparison of Equations 16.28 and 
16.29 shows that the pressure wave is 908 out of phase with the displacement wave. 
Graphs of these functions are shown in Figure 16.19. The pressure variation is a 
maximum when the displacement from equilibrium is zero, and the displacement 
from equilibrium is a maximum when the pressure variation is zero.

Q uick Quiz 16.6  If you blow across the top of an empty soft-drink bottle, a 
pulse of sound travels down through the air in the bottle. At the moment the 
pulse reaches the bottom of the bottle, what is the correct description of the 
displacement of elements of air from their equilibrium positions and the pres-
sure of the air at this point? (a) The displacement and pressure are both at a 
maximum. (b) The displacement and pressure are both at a minimum. (c) The 
displacement is zero, and the pressure is a maximum. (d) The displacement is 
zero, and the pressure is a minimum.

   16.7    Speed of Sound Waves
We now extend the discussion begun in Section 16.6 to evaluate the speed of 
sound in a gas. In Figure 16.20a (page 432), consider the cylindrical element of 
gas between the piston and the dashed line. This element of gas is in equilibrium 
under the influence of forces of equal magnitude, from the piston on the left and 
from the rest of the gas on the right. The magnitude of each of these forces is PA, 
where P is the pressure in the gas and A is the cross-sectional area of the tube. The 
length of the undisturbed element of gas is chosen to be v Dt, where v is the speed 
of sound in the gas and Dt is the time interval between the configurations in Fig-
ures 16.20a and 16.20b.

Area A

Undisturbed gas

�x

s1

s2b

a

Figure 16.18  (a) An undisturbed 
cylindrical element of gas of 
length Dx in a tube of cross- 
sectional area A. (b) When a 
sound wave propagates through 
the gas, the element is moved to a 
new position and has a different 
length. The parameters s1 and s2 
describe the displacements of the 
ends of the element from their 
equilibrium positions.

s

x

x

�P

�Pmax

smax

b

a

Figure 16.19 (a) Displacement 
amplitude and (b) pressure 
amplitude versus position for a 
sinusoidal longitudinal sound 
wave in a gas.
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432 Chapter 16 Wave Motion

Figure 16.20b shows the situation after this time interval Dt, during which the 
piston moves to the right at a constant speed vx due to a force from the left on the 
piston that has increased in magnitude to (P 1 DP)A. Because the speed of sound 
is v, the sound wave will just reach the right end of the cylindrical element of gas at 
the end of the time interval Dt. The gas to the right of the element is undisturbed 
because the sound wave has not reached it yet. At this moment every bit of gas in 
the element is moving with speed vx. That will not be true in general for a macro-
scopic element of gas, but it will become true if we shrink the length of the element 
to an infinitesimal value.

The element of gas is modeled as a nonisolated system in terms of momentum. 
The force from the piston has provided an impulse to the element, which in turn 
exhibits a change in momentum. Therefore, we evaluate both sides of the impulse–
momentum theorem, Equation 9.13:

 DpS 5 I
S

 (16.32)

On the right, the impulse is provided by the constant force due to the increased 
pressure on the piston:

I
S

5 o  F
S

 Dt 5 sA DP Dtd i
⁄

The pressure change DP can be related to the volume change and then to the 
speeds v and vx through the bulk modulus:

DP 5 2B 
DV
Vi

5 2B 
s2vx A Dtd

vA Dt
5 B 

vx

v

Therefore, the impulse becomes

 I
S

5 SAB 
vx

v
 DtD i

⁄
 (16.33)

On the left-hand side of the impulse–momentum theorem, Equation 16.32, the 
change in momentum of the element of gas of mass m is as follows:

 DpS 5 m DvS 5 srVi dsvx i
⁄

2 0d 5 srvvx A Dtd i
⁄
 (16.34)

Substituting Equations 16.33 and 16.34 into Equation 16.32, we find

rvvx A Dt 5 AB 
vx

v
 Dt

which reduces to an expression for the speed of sound in a gas:

 v 5ÎB
r

 (16.35)

It is interesting to compare this expression with Equation 16.18 for the 
speed of transverse waves on a string, v 5 ÏTym. In both cases, the wave speed 
depends on an elastic property of the medium (bulk modulus B or string ten-
sion T) and on an inertial property of the medium (volume density r or linear 
density m). In fact, the speed of all mechanical waves follows an expression of 
the general form

v 5Î elastic property

inertial property

For longitudinal sound waves in a solid rod of material, for example, the speed of 
sound depends on Young’s modulus Y and the density r. Table 16.1 provides the 
speed of sound in several different materials.

Undisturbed gas

Undisturbed gas

Compressed gas

v �t

vx �tb

a

(P � �P)A î

PA î
�PA î

vx î
�PA î

Figure 16.20  (a) An undis-
turbed element of gas of length v 
Dt in a tube of cross-sectional area 
A. The element is in equilibrium 
between forces on either end.  
(b) When the piston moves inward 
at constant velocity vx due to an 
increased force on the left, the 
element also moves with the 
same velocity.
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The speed of sound also depends on the temperature of the medium. For sound 
traveling through air, the relationship between wave speed and air temperature is

 v 5 331Î1 1
TC

273
 (16.36)

where v is in meters/second, 331 m/s is the speed of sound in air at 08C, and TC is 
the air temperature in degrees Celsius. Using this equation, one finds that at 208C, 
the speed of sound in air is approximately 343 m/s.

Because the speed of sound is constant in a uniform medium, we can relate the 
speed to distance and time by modeling a pulse of sound as a particle under con-
stant speed. For example, this model provides a convenient way to estimate the dis-
tance to a thunderstorm. First count the number of seconds between seeing the 
flash of lightning and hearing the thunder. Dividing this time interval by 3 gives 
the approximate distance to the lightning in kilometers because 343 m/s is approx-
imately 13 km/s. Dividing the time interval in seconds by 5 gives the approximate dis-
tance to the lightning in miles because the speed of sound is approximately 15 mi/s.

Similarly, the particle under constant speed model allows the calculation 
described in the opening storyline. The GPS coordinates allow you to find the dis-
tance between you and the cliff. The sound of the clap echoes from the cliff and 
returns to you. So the distance traveled by the sound is twice the distance to the 
cliff. Dividing that distance by the time interval measured by the smartphone gives 
the speed of sound.

Having an expression (Eq. 16.35) for the speed of sound, we can now express the 
relationship between pressure amplitude and displacement amplitude for a sound 
wave (Eq. 16.31) as

 DPmax 5 Bsmaxk 5 srv 
2dsmaxSv

vD 5 rvvsmax (16.37)

This expression is a bit more useful than Equation 16.31 because the density of a 
gas is more readily available than is the bulk modulus.

   16.8    Intensity of Sound Waves
In Section 16.4, we showed that a wave traveling on a taut string transports energy, 
consistent with the notion of energy transfer TMW by mechanical waves in Equa-
tion  8.2. Naturally, we would expect sound waves to also represent a transfer of 
energy. Consider the element of gas acted on by the piston in Figure 16.20. Imagine 
that the piston is moving back and forth in simple harmonic motion at angular 

 taBle 16.1  Speed of Sound in Various Media

Medium v (m/s) Medium v (m/s) Medium v (m/s)

Gases  Liquids at 258C  Solidsa

Hydrogen (08C) 1 286 Glycerol 1 904 Pyrex glass 5 640
Helium (08C) 972 Seawater 1 533 Iron 5 950
Air (208C) 343 Water 1 493 Aluminum 6 420
Air (08C) 331 Mercury 1 450 Brass 4 700
Oxygen (08C) 317 Kerosene 1 324 Copper 5 010
  Methyl alcohol 1 143 Gold 3 240
  Carbon tetrachloride 926 Lucite 2 680
    Lead 1 960
    Rubber 1 600
aValues given are for propagation of longitudinal waves in bulk media. Speeds for longitudinal waves in thin rods are 
smaller, and speeds of transverse waves in bulk are smaller yet.
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frequency v. Imagine also that the length of the element becomes very small so that 
the entire element moves with the same velocity as the piston. Then we can model 
the element as a particle on which the piston is doing work. The rate at which the 
piston is doing work on the element at any instant of time is given by Equation 8.18:

Power 5 F
S  

? vSx

where we have used Power rather than P so that we don’t confuse power P with pres-
sure P ! The force F

S
 on the element of gas is related to the pressure and the velocity 

vSx of the element is the derivative of the displacement function, so we find

Power 5 fDP sx, tdAg i
⁄

?  

−

−t
 fssx, td i

⁄
g

5 f rvvAsmax sin skx 2 vtdg5 −

−t
 fsmax cos skx 2 vtdg6

5 [ rvvAsmax sin skx 2 vtdgfvsmax sin skx 2 vtdg

5 rvv2As 2
max sin

2 skx 2 vtd

We now find the time average power over one period of the oscillation. For any 
given value of x, which we can choose to be x 5 0, the average value of sin2 (kx 2 vt) 
over one period T is

1
T

 #
T

0
 sin2 s0 2 vtd dt 5

1
T

 #
T

0
 sin2 vt dt 5

1
TS t

2
1

sin 2vt
2v

D*T

0
5 1

2

Therefore,

sPowerdavg 5 1
2 rAv2s2

maxv

Compare this equation to that for power transmitted on a string, Equation 16.21. 
The two equations have the same form! Be careful, though: A in Equation 16.21  
is the amplitude of the string wave, while A here is the area of the piston in 
Figure 16.20.

We define the intensity I of a wave, or the power per unit area, as the rate at 
which the energy transported by the wave transfers through a unit area A perpen-
dicular to the direction of travel of the wave:

 I ;
sPowerdavg

A
 (16.38)

In this case, the intensity is therefore

I 5 1
2 rv2s 

2
maxv

Hence, the intensity of a periodic sound wave is proportional to the square of the 
displacement amplitude and to the square of the angular frequency. This expres-
sion can also be written in terms of the pressure amplitude DPmax; in this case, we 
use Equation 16.37 to obtain

 I 5
sDPmaxd

2

2rv
 (16.39)

The sound waves we have studied with regard to Figures 16.16 through 16.18 
and 16.20 are constrained to move in one dimension along the length of the tube. 
Sound waves, however, can move through three-dimensional bulk media, so let’s 
place a sound source in the open air and study the results with regard to intensity. 

Consider the special case of a point source emitting sound waves equally in 
all directions. If the air around the source is perfectly uniform, the sound power 

Intensity of a sound wave 
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radiated in all directions is the same, and the speed of sound in all directions is 
the same. The result in this situation is called a spherical wave. Figure 16.21 shows 
these spherical waves as a series of circular arcs concentric with the source. Each 
arc represents a surface over which the phase of the wave is constant. For example, 
the arcs may connect corresponding crests on all the waves. We call such a surface 
of constant phase a wave front. The radial distance between adjacent wave fronts 
that have the same phase is the wavelength l of the wave. The radial lines pointing 
outward from the source, representing the direction of propagation of the waves, 
are called rays.

The average power emitted by the source must be distributed uniformly over 
each spherical wave front of area 4pr2, where r is the distance from the point source 
to the wave front. Hence, the wave intensity at a distance r from the source is

 I 5
sPowerdavg

A
5

sPowerdavg

4pr 2  (16.40)

The intensity decreases as the square of the distance from the source. This inverse-
square law is reminiscent of the behavior of gravity in Chapter 13.

Q uick Quiz 16.7  A vibrating guitar string makes very little sound if it is not 
mounted on the guitar body. Why does the sound have greater intensity if the 
string is attached to the guitar body? (a) The string vibrates with more energy. 
(b) The energy leaves the guitar more rapidly. (c) The sound power is spread 
over a larger area at the listener’s position. (d) The sound power is concentrated 
over a smaller area at the listener’s position. (e) The speed of sound is higher in 
the material of the guitar body. (f) None of these answers is correct.

Ray

Source

l

Wave front

The rays are radial lines pointing 
outward from the source, 
perpendicular to the wave fronts.

Figure 16.21  Spherical waves 
emitted by a point source. The cir-
cular arcs represent the spherical 
wave fronts that are concentric 
with the source.

 Example 16.6    Hearing Limits

The faintest sounds the human ear can detect at a frequency of 1 000 Hz correspond to an intensity of about 1.00 3 
10212 W/m2, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to 
an  intensity of about 1.00 W/m2, the threshold of pain. Determine the pressure amplitude and displacement amplitude 
associated with these two limits.

S o L u T I o n

Conceptualize Think about the quietest environment you have ever experienced. It is likely that the intensity of sound in even 
this quietest environment in your experience is higher than the threshold of hearing.

Categorize Because we are given intensities and asked to calculate pressure and displacement amplitudes, this problem is a 
substitution problem requiring the concepts discussed in this section.

To find the amplitude of the pressure variation   DPmax 5 Ï2rvI  
at the threshold of hearing, use Equation 16.39,     

 5 Ï2s1.20 kgym3ds343 mysds1.00 3 10212 Wym2d
 

taking the speed of sound waves in air to be v 5  
343 m/s and the density of air to be r 5 1.20 kg/m3:    5  2.87 3 1025 N/m2

Calculate the corresponding displacement amplitude   smax 5
DPmax

rvv
5

2.87 3 1025 Nym2

s1.20 kgym3ds343 mysds2p 3 1 000 Hzd
 

using Equation 16.37, recalling that v 5 2pf (Eq. 16.9):
5  1.11 3 10211 m

In a similar manner, one finds that the loudest sounds the human ear can tolerate (the threshold of pain) correspond to a 
pressure amplitude of   28.7 N/m2   and a displacement amplitude equal to   1.11 3 1025 m .

Because atmospheric pressure is about 105 N/m2, the result for the pressure amplitude tells us that the ear is sensitive 
to pressure fluctuations as small as 3 parts in 1010! The displacement amplitude is also a remarkably small number! If we 
compare this result for smax to the size of an atom (about 10210 m), we see that the ear is an extremely sensitive detector of 
sound waves.
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 Example 16.7    Intensity Variations of a Point Source

A point source emits sound waves with an average power output of 80.0 W.

(A) Find the intensity 3.00 m from the source.

S o L u T I o n

Conceptualize Imagine a small loudspeaker sending sound out at an average rate of 80.0 W uniformly in all directions. You 
are standing 3.00 m away from the speakers. As the sound propagates, the energy of the sound waves is spread out over an 
ever-expanding sphere, so the intensity of the sound falls off with distance.

Categorize We evaluate the intensity from an equation generated in this section, so we categorize this example as a substitu-
tion problem.

Because a point source emits energy in the  I 5
sPowerdavg

4pr 2 5
80.0 W

4p s3.00 md2 5  0.707 W/m2 
form of spherical waves, use Equation 16.40  
to find the intensity:

This intensity is close to the threshold of pain.

(B) Find the distance at which the intensity of the sound is 1.00 3 1028 W/m2.

S o L u T I o n

Solve for r in Equation 16.40 and use the given   r 5ÎsPowerdavg

4pI
5Î 80.0 W

4p s1.00 3 1028 Wym2d
 

value for I:
5  2.52 3 104 m

Sound level in Decibels
Example 16.6 illustrates the wide range of intensities the human ear can detect. 
Because this range is so wide, it is convenient to use a logarithmic scale, where the 
sound level b (Greek letter beta) is defined by the equation

 b ; 10 log  S I
I0
D (16.41)

This process compresses the range of hearing into a narrower scale of numbers. 
The constant I0 is the reference intensity, taken to be at the threshold of hearing  
(I0 5 1.00 3 10212 W/m2), and I is the intensity in watts per square meter to which 
the sound level b corresponds, where b is measured4 in decibels (dB). On this 
scale, the threshold of pain (I 5 1.00 W/m2) corresponds to a sound level of b 5  
10 log [(1 W/m2)/(10212 W/m2)] 5 10 log (1012) 5 120 dB, and the threshold of 
hearing corresponds to b 5 10 log [(10212 W/m2)/(10212 W/m2)] 5 0 dB.

Prolonged exposure to high sound levels may seriously damage the human ear. 
Ear plugs are recommended whenever sound levels exceed 90 dB. Recent evidence 
suggests that “noise pollution” may be a contributing factor to high blood pressure, 
anxiety, and nervousness. Table 16.2 gives some typical sound levels.

Q uick Quiz 16.8  Increasing the intensity of a sound by a factor of 100 causes 
the sound level to increase by what amount? (a) 100 dB (b) 20 dB (c) 10 dB  
(d) 2 dB

 taBle 16.2  Sound Levels

Source of Sound b (dB)

Nearby jet airplane 150
Jackhammer;  
 machine gun 130
Siren; rock concert 120
Subway; power  
 lawn mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conversation 60
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of hearing 0

4 The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922). The prefix deci - is 
the SI prefix that stands for 1021.
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 Example 16.8    Sound Levels

Two identical machines are positioned the same distance from a worker. The intensity of sound delivered by each operating 
machine at the worker’s location is 2.0 3 1027 W/m2.

(A) Find the sound level heard by the worker when one machine is operating.

S o L u T I o n

Conceptualize Imagine a situation in which one source of sound is active and is then joined by a second identical source, 
such as one person speaking and then a second person speaking at the same time or one musical instrument playing and then 
being joined by a second instrument.

Categorize This example is a substitution problem requiring Equation 16.41.

Use Equation 16.41 to calculate the sound  b1 5 10 log S 2.0 3 1027 Wym2

1.00 3 10212 Wym2D 5 10 log s2.0 3 105d 5  53 dB 
level at the worker’s location with one  
machine operating:

(B) Find the sound level heard by the worker when two machines are operating.

S o L u T I o n

Use Equation 16.41 to calculate the sound  b2 5 10 log S 4.0 3 1027 Wym2

1.00 3 10212 Wym2D 5 10 log s4.0 3 105d 5  56 dB 
level at the worker’s location with double  
the intensity:

These results show that when the intensity is doubled, the sound level increases by only 3 dB. This 3-dB increase is indepen-
dent of the original sound level. (Prove this to yourself!)

W h A T  I f ?  Loudness is a psychological response to a sound. It depends on both the intensity and the frequency of the 
sound. As a rule of thumb, a doubling in loudness is approximately associated with an increase in sound level of 10 dB. (This 
rule of thumb is relatively inaccurate at very low or very high frequencies.) If the loudness of the machines in this example is 
to be doubled, how many machines at the same distance from the worker must be running?

Answer Using the rule of thumb, a doubling of loudness corresponds to a sound level increase of 10 dB. Therefore,

b2 2 b1 5 10 dB 5 10 log SI2

I0
D 2 10 log SI1

I0
D 5 10 log SI2

I1
D

log1I2

I1
2 5 1   S   I2 5 10I1

Therefore, ten machines must be operating to double the loudness.

loudness and frequency
The discussion of sound level in decibels relates to a physical measurement of the 
strength of a sound. Let us now extend our discussion from the What If? section 
of Example 16.8 concerning the psychological “measurement” of the strength of a 
sound.

Of course, we don’t have instruments in our bodies that can display numerical 
values of our reactions to stimuli. We have to “calibrate” our reactions somehow 
by comparing different sounds to a reference sound, but that is not easy to accom-
plish. For example, earlier we mentioned that the threshold intensity is 10212 W/m2,  
corresponding to an intensity level of 0 dB. In reality, this value is the threshold 
only for a sound of frequency 1 000 Hz, which is a standard reference frequency in 
acoustics. If we perform an experiment to measure the threshold intensity at other 
frequencies, we find a distinct variation of this threshold as a function of frequency. 
For example, at 100 Hz, a barely audible sound must have an intensity level of about  
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30 dB! Unfortunately, there is no simple relationship between physical measure-
ments and psychological “measurements.” The 100-Hz, 30-dB sound is psychologi-
cally “equal” in loudness to the 1 000-Hz, 0-dB sound (both are just barely audible), 
but they are not physically equal in sound level (30 dB Þ 0 dB).

By using test subjects, the human response to sound has been studied, and the 
results are shown in the white area of Figure 16.22 along with the approximate fre-
quency and sound-level ranges of other sound sources. The lower curve of the white 
area corresponds to the threshold of hearing. Its variation with frequency is clear 
from this diagram. Notice that humans are sensitive to frequencies ranging from 
about 20 Hz to about 20 000 Hz. The upper bound of the white area is the thresh-
old of pain. Here the boundary of the white area appears straight because the psy-
chological response is relatively independent of frequency at this high sound level.

   16.9    The Doppler Effect
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle 
moves past you. The frequency of the sound you hear as the vehicle approaches you 
is higher than the frequency you hear as it moves away from you. This experience is 
one example of the Doppler effect.5

To see what causes this apparent frequency change, imagine you are in a boat 
that is lying at anchor on a gentle sea where the waves have a period of T 5 3.0 s.  
Hence, every 3.0 s a crest hits your boat. Figure 16.23a shows this situation, with 
the water waves moving toward the left. If you set your watch to t 5 0 just as one 
crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third crest 
hits, and so on. From these observations, you conclude that the wave frequency is  
f 5 1/T 5 1/(3.0 s) 5 0.33 Hz. Now suppose you pull up the anchor, start your 
motor, and head directly into the oncoming waves as in Figure 16.23b. Again you 
set your watch to t 5 0 as a crest hits the front (the bow) of your boat. Now, how-
ever, because you are moving toward the next wave crest as it moves toward you, 
it hits you less than 3.0 s after the first hit. In other words, the period you observe 
is shorter than the 3.0-s period you observed when you were stationary. Because  
f 5 1/T, you observe a higher wave frequency than when you were at rest.
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frequencies
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frequencies
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frequencies
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Jet engine (10 m away) Rifle
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overhead

Rock concert
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Figure 16.22  Approximate 
ranges of frequency and sound 
level of various sources and that of 
normal human hearing, shown by 
the white area. (From R. L. Reese, 
University Physics, Pacific Grove, 
Brooks/Cole, 2000.)

5 Named after Austrian physicist Christian Johann Doppler (1803–1853), who in 1842 predicted the effect for both 
sound waves and light waves.

Figure 16.23  (a) Waves moving 
toward a stationary boat. (b) The 
boat moving toward the wave 
source. (c) The boat moving away 
from the wave source.

In all frames, the waves 
travel to the left, and their 
source is far to the right 
of the boat, out of the 
frame of the figure.

a

b

c

vwaves
S

vwaves
S

vboat
S

vwaves
S

vboat
S
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If you turn around and move in the same direction as the waves (Fig. 16.23c), 
you observe the opposite effect. You set your watch to t 5 0 as a crest hits the back 
(the stern) of the boat. Because you are now moving away from the next crest, more 
than 3.0 s has elapsed on your watch by the time that crest catches you. Therefore, 
you observe a lower frequency than when you were at rest.

These effects occur because the relative speed between your boat and the waves 
depends on the direction of travel and on the speed of your boat. (See Section 4.6.) 
When you are moving toward the right in Figure 16.23b, this relative speed is 
higher than that of the wave speed, which leads to the observation of an increased 
frequency. When you turn around and move to the left, the relative speed is lower, 
as is the observed frequency of the water waves.

Let’s now examine an analogous situation with sound waves in which the water 
waves become sound waves, the water becomes the air, and the person on the boat 
becomes an observer listening to the sound. In this case, an observer O is moving with 
speed vO and a sound source S is stationary with respect to the medium, air (Fig. 16.24). 

If a point source emits sound waves and the medium is uniform, the waves move 
at the same speed in all directions radially away from the source; the result is a 
spherical wave as mentioned in Section 16.8. The distance between adjacent wave 
fronts equals the wavelength l. In Figure 16.24, the circles are the intersections of 
these three-dimensional wave fronts with the two-dimensional paper.

We take the frequency of the source in Figure 16.24 to be f, the wavelength to be 
l, and the speed of sound to be v. When the observer moves toward the source, the 
speed of the waves relative to the observer is v9 5 v 1 vO, as in the case of the boat in 
Figure 16.23, but the wavelength l is unchanged. Hence, using Equation 16.12, v 5 lf,  
we can say that the frequency f  9 heard by the observer is increased and is given by

f 9 5
v9

l
5

v 1 vO

l

Because l 5 v/f, we can express f  9 as

 f 9 5 Sv 1 vO

v D f sobserver moving toward sourced (16.42)

If the observer is moving away from the source, the speed of the wave relative to the 
observer is v9 5 v 2 vO. The frequency heard by the observer in this case is decreased 
and is given by

 f 9 5 Sv 2 vO

v D f    ( observer moving away from source) (16.43)

These last two equations can be reduced to a single equation by adopting a sign 
convention. Whenever an observer moves with a speed vO relative to a stationary 
source, the frequency heard by the observer is given by Equation 16.42, with vO 
interpreted as follows: a positive value is substituted for vO when the observer moves 
toward the source, and a negative value is substituted when the observer moves 
away from the source.

Now suppose the source is in motion and the observer is at rest. If the source 
moves directly toward observer A in Figure 16.25a (page 440), each new wave is 
emitted from a position to the right of the origin of the previous wave. As a result, 
the wave fronts heard by the observer are closer together than they would be if 
the source were not moving. (Fig. 16.25b shows this effect for waves moving on the 
surface of water.) As a result, the wavelength l9 measured by observer A is shorter 
than the wavelength l of the source. During each vibration, which lasts for a time 
interval T (the period), the source moves a distance vST 5 vS /f and the wavelength 
is shortened by this amount. Therefore, the observed wavelength l9 is

l9 5 l 2 Dl 5 l 2
vS

f

Figure 16.24 An observer O  
(the cyclist) moves with a speed  
vO toward a stationary point 
source S, the horn of a parked 
truck. The observer hears a fre-
quency f 9 that is greater than the 
source frequency f.

O

O

S

vS

Pitfall Prevention 16.4
Doppler Effect Does Not Depend  
on Distance Some people think 
that the Doppler effect depends 
on the distance between the 
source and the observer. Although 
the intensity of a sound varies 
as the distance changes, the 
apparent frequency depends only 
on the relative speed of source 
and observer. As you listen to 
an approaching source, you will 
detect increasing intensity but 
constant frequency. As the source 
passes, you will hear the frequency 
suddenly drop to a new constant 
value and the intensity begin 
to decrease.
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Because l 5 v/f, the frequency f 9 heard by observer A is

f 9 5
v
l9

5
v

l 2 svS yf d
5

v
svyf d 2 svS yf d

 f 9 5 S v
v 2 vS

D f     (source moving toward observer) (16.44)

That is, the observed frequency is increased whenever the source is moving toward 
the observer.

When the source moves away from a stationary observer, as is the case for 
observer B in Figure 16.25a, the observer measures a wavelength l9 that is greater 
than l and hears a decreased frequency:

 f 9 5 S v
v 1 vS

D f     (source moving away from observer) (16.45)

We can express the general relationship for the observed frequency when a 
source is moving and an observer is at rest as Equation 16.44, with the same sign 
convention applied to vS as was applied to vO : a positive value is substituted for vS 
when the source moves toward the observer, and a negative value is substituted 
when the source moves away from the observer.

Finally, combining Equations 16.42 and 16.44 gives the following general rela-
tionship for the observed frequency that includes all four conditions described by 
Equations 16.42 through 16.45:

 f 9 5 Sv 1 vO

v 2 vS
D f  (16.46)

In this expression, the signs for the values substituted for vO and vS depend on the 
direction of the velocity. A positive value is used for motion of the observer or the 
source toward the other (associated with an increase in observed frequency), and 
a negative value is used for motion of one away from the other (associated with a 
decrease in observed frequency).

Although the Doppler effect is most typically experienced with sound waves, it 
is a phenomenon common to all waves. For example, the relative motion of source 
and observer produces a frequency shift in light waves. The Doppler effect is used 
in police radar systems to measure the speeds of motor vehicles. Likewise, astron-
omers use the effect to determine the speeds of stars, galaxies, and other celestial 
objects relative to the Earth.

General Doppler-shift 
expression

Figure 16.25 (a) A source S mov-
ing with a speed vS toward a sta-
tionary observer A and away from 
a stationary observer B. Observer 
A hears an increased frequency, 
and observer B hears a decreased 
frequency. (b) The Doppler effect 
in water, observed in a ripple 
tank. Letters shown in the photo 
refer to Quick Quiz 16.9.
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    16.9 The Doppler Effect 441

Q uick Quiz 16.9  Consider detectors of water waves at three locations A, B, 
and C in Figure 16.25b. Which of the following statements is true? (a) The wave 
speed is highest at location A. (b) The wave speed is highest at location C. (c) 
The detected wavelength is largest at location B. (d) The detected wavelength is 
largest at location C. (e) The detected frequency is highest at location C. (f) The 
detected frequency is highest at location A.

Q uick Quiz 16.10  You stand on a platform at a train station and listen to a train 
approaching the station at a constant velocity. While the train approaches, but 
before it arrives, what do you hear? (a) the intensity and the frequency of the sound 
both increasing (b) the intensity and the frequency of the sound both decreasing 
(c) the intensity increasing and the frequency decreasing (d) the intensity decreasing 
and the frequency increasing (e) the intensity increasing and the frequency remain-
ing the same (f) the intensity decreasing and the frequency remaining the same

 Example 16.9    The Broken Clock Radio

Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz. One morning, it malfunctions and 
cannot be turned off. In frustration, you drop the clock radio from rest out of your fourth-story dorm window, 15.0 m from 
the ground. Assume the speed of sound is 343 m/s. As you listen to the falling clock radio, what frequency do you hear just 
before you hear it striking the ground?

S o L u T I o n

Conceptualize The speed of the clock radio increases as it falls. Therefore, it is a source of sound moving away from you with 
an increasing speed so the frequency you hear should be less than 600 Hz.

Categorize We categorize this problem as one in which we combine the particle under constant acceleration model for the falling 
radio with our understanding of the frequency shift of sound due to the Doppler effect.

Analyze Because the clock radio is modeled as a particle  (1)   vS 5 vyi 1 ayt 5 0 2 gt 5 2gt 
under constant acceleration due to gravity, use Equation 2.13  
to express the speed of the source of sound:

From Equation 2.16, find the time at which the clock  yf 5 yi 1 vyit 2 1
2gt 

2 5 0 1 0 2 1
2gt 

2   S   t 5 Î2 

2yf

g
  

radio strikes the ground:

Substitute into Equation (1): vS 5 s2g dÎ2 

2yf

g
5 2Ï22g yf

Use Equation 16.46 to determine the Doppler-shifted  f 9 5 3 v 1 0

v 2 s2Ï22gyf d
4 f 5 S v

v 1 Ï22gyf
D f  

frequency heard from the falling clock radio:

Substitute numerical values: f 9 5 3 343 mys

343 mys 1 Ï22s9.80 mys2ds215.0 md4s600 Hzd

5  571 Hz

Finalize The frequency is lower than the actual frequency of 600 Hz because the clock radio is moving away from you. If it 
were to fall from a higher floor so that it passes below y 5 215.0 m, the clock radio would continue to accelerate and the fre-
quency you hear would continue to drop.

 Example 16.10    Doppler Submarines

A submarine (sub A) travels through water at a speed of 8.00 m/s, emitting a sonar wave at a frequency of 1 400 Hz. The 
speed of sound in the water is 1 533 m/s. A second submarine (sub B) is located such that both submarines are traveling 
directly toward each other. The second submarine is moving at 9.00 m/s.

(A) What frequency is detected by an observer riding on sub B as the subs approach each other?

continued
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442 Chapter 16 Wave Motion

16.10 c o n t i n u e d

S o L u T I o n

Conceptualize Even though the problem involves subs moving in water, there is a Doppler effect just like there is when you are 
in a moving car and listening to a sound moving through the air from another car.

Categorize Because both subs are moving, we categorize this problem as one involving the Doppler effect for both a moving 
source and a moving observer.

Analyze Use Equation 16.46 to find the Doppler- 
 f 9 5 Sv 1 vO

v 2 vS
D f

 
shifted frequency heard by the observer in sub B,  
being careful with the signs assigned to the source  
and observer speeds:

 f 9 5 31 533 mys 1 s19.00 mysd
1 533 mys 2 s18.00 mysd4s1 400 Hzd 5  1 416 Hz

(B) The subs barely miss each other and pass. What frequency is detected by an observer riding on sub B as the subs recede 
from each other?

S o L u T I o n

Use Equation 16.46 to find the Doppler-shifted frequency   f 9 5 Sv 1 vO

v 2 vS
D f  

heard by the observer in sub B, again being careful with the  
signs assigned to the source and observer speeds:

 f 9 5 31 533 mys 1 s29.00 mysd
1 533 mys 2 s28.00 mysd

 4s1 400 Hzd 5  1 385 Hz

Notice that the frequency drops from 1 416 Hz to 1 385 Hz as the subs pass. This effect is similar to the drop in frequency you 
hear when a car passes by you while blowing its horn.

(C) While the subs are approaching each other, some of the sound from sub A reflects from sub B and returns to sub A. If this 
sound were to be detected by an observer on sub A, what is its frequency?

S o L u T I o n

The sound of apparent frequency 1 416 Hz found    f 0 5 Sv 1 vO

v 2 vS
D f 9 

in part (A) is reflected from a moving source (sub B)  
and then detected by a moving observer (sub A).  
Find the frequency detected by sub A:

5 31 533 mys 1 s18.00 mysd
1 533 mys 2 s19.00 mysd4s1 416 Hzd 5  1 432 Hz

Finalize This technique is used by police officers to measure the speed of a moving car. Microwaves are emitted from the 
police car and reflected by the moving car. By detecting the Doppler-shifted frequency of the reflected microwaves, the police 
officer can determine the speed of the moving car.

Shock Waves
Now consider what happens when the speed vS of a source exceeds the wave speed v. 
This situation is depicted graphically in Figure 16.26a. The circles represent spher-
ical wave fronts emitted by the source at various times during its motion. At t 5 0, 

Figure 16.26  (a) A represen-
tation of a shock wave produced 
when a source moves from S0 to 
the right with a speed vS that is 
greater than the wave speed v in 
the medium. (b) A stroboscopic 
photograph of a bullet moving at 
supersonic speed through the hot 
air above a candle.
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The envelope of the wave 
fronts forms a cone whose 
apex half-angle is given by
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vt
u

a

0
1

2

b

Notice the shock wave in 
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the source is at S0 and moving toward the right. At later times, the source is at S1, 
and then S2, and so on. At the time t, the wave front centered at S0 reaches a radius 
of vt. In this same time interval, the source travels a distance vSt. Notice in Fig-
ure 16.26a that a straight line can be drawn tangent to all the wave fronts generated 
at various times. Therefore, the envelope of these wave fronts is a cone whose apex 
half-angle u (the “Mach angle”) is given by

sin u 5
vt
vS t

5
v
vS

The inverse ratio vS /v is referred to as the Mach number, and the conical wave front 
produced when vS . v (supersonic speeds) is known as a shock wave. An interesting 
analogy to shock waves is the V-shaped wave fronts produced by a boat when the 
boat’s speed exceeds the speed of the surface-water waves (Fig. 16.27).

Jet airplanes traveling at supersonic speeds produce shock waves, which are 
responsible for the loud “sonic boom” one hears. The shock wave carries a great 
deal of energy concentrated on the surface of the cone, with correspondingly 
great pressure variations. Such shock waves are unpleasant to hear and can 
cause damage to buildings when aircraft f ly supersonically at low altitudes. In 
fact, an airplane f lying at supersonic speeds produces a double boom because 
two shock waves are formed, one from the nose of the plane and one from 
the tail. 

Q uick Quiz 16.11  An airplane flying with a constant velocity moves from 
a cold air mass into a warm air mass. Does the Mach number (a) increase, 
(b) decrease, or (c) stay the same?

Figure 16.27  The V-shaped bow 
wave of a boat is formed because 
the boat speed is greater than the 
speed of the water waves it gener-
ates. A bow wave is analogous to a 
shock wave formed by an airplane 
traveling faster than sound.
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Summary
 › Definitions

A one-dimensional sinusoidal wave is one for which the positions of the 
elements of the medium vary sinusoidally. A sinusoidal wave traveling to 
the right can be expressed with a wave function

 ysx, td 5 A sin 32p

l
sx 2 vtd4 (16.5)

where A is the amplitude, l is the wavelength, and v is the wave speed.

The angular wave number k and angular frequency v of a wave are 
defined as follows:

 k ;
2p

l
 (16.8)

 v ;
2p

T
5 2pf  (16.9)

where T is the period of the wave and f is its frequency.

A transverse wave is one in which the elements of the medium move in a 
direction perpendicular to the direction of propagation. 

A longitudinal wave is one in which the elements of 
the medium move in a direction parallel to the direc-
tion of propagation.

The intensity of a periodic sound wave, which is the 
power per unit area, is

 I ;
sPowerdavg

A
5

sDPmaxd
2

2rv
 (16.38, 16.39)

The sound level of a sound wave in decibels is

 b ; 10 log SI
I0
D (16.41)

The constant I0 is a reference intensity, usually taken 
to be at the  threshold of hearing (1.00 3 10212 W/m2),  
and I is the intensity of the sound wave in watts per 
square meter.

 Summary 443
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444 Chapter 16 Wave Motion

 › Concepts and Principles

Any one-dimensional wave traveling with a speed v in the x direction can be repre-
sented by a wave function of the form

 y (x, t) 5 f(x 6 vt) (16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direction and the 
negative sign applies to a wave traveling in the positive x direction. The shape of the 
wave at any instant in time (a snapshot of the wave) is obtained by holding t constant.

The power transmitted by a sinusoidal wave on a stretched 
string is

 P 5 1
2 mv2A2v (16.21)

The speed of a wave traveling on a taut 
string of mass per unit length m and 
tension T is

 v 5ÎT
m

  (16.18)

Wave functions are solutions to a differential equation called the 
linear wave equation:

 
−2y

−x2 5
1
v 2 

−2y

−t2  (16.27)

Sound waves are longitudinal and 
travel through a compressible 
medium with a speed that depends 
on the elastic and inertial proper-
ties of that medium. The speed of 
sound in a gas having a bulk modu-
lus B and density r is

 v 5ÎB
r

 (16.35)

For sinusoidal sound waves, the variation in the position of an element of the medium is

 s(x, t) 5 smax cos (kx 2 vt) (16.28)

and the variation in pressure from the equilibrium value is

 DP 5 DPmax sin (kx 2 vt) (16.29)

where DPmax is the pressure amplitude. The pressure wave is 908 out of phase with the 
displacement wave. The relationship between smax and DPmax is

 DPmax 5 rvvsmax (16.37)

The change in frequency heard by an observer whenever there is relative motion between a source of sound waves and the observer 
is called the Doppler effect. The observed frequency is

 f 9 5 Sv 1 vO

v 2 vS
D f  (16.46)

In this expression, the signs for the values substituted for vO and vS depend on the direction of the velocity. A positive value for the 
speed of the observer or source is substituted if the velocity of one is toward the other, whereas a negative value represents a velocity 
of one in a direction away from the other.

 › Analysis Model for Problem Solving

Traveling Wave.  The wave speed of a sinusoidal wave is

 v 5
l

T
5 lf  (16.6, 16.12)

A sinusoidal wave can be expressed as

 y 5 A sin skx 2 vtd (16.10)

y

 

 
x

A

l

vS

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You and your friends are working for the National Oceanic 
and Atmospheric Administration (NOAA) and are learning 
about tsunamis to prepare you to help at the Pacific Tsunami 
Warning Center in Hawaii. Your instructor tells you that a 

typical tsunami in the open ocean might have a speed of 
800  km/h, a wavelength of 200 km, and an amplitude of 
1.0 m. (a) If you were on a ship in the open ocean traveling 
to your position in Hawaii and a tsunami passed through the 
water around your ship, what effects would you experience? 
(b) If you were on the beach in Hawaii and saw the ocean 
water recede over a much larger distance than that due to 
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normal wave activity, representing the trough of a tsunami, 
how much time would you have to warn everyone to get off 
the beach? Note that the frequency of a water wave remains 
the same as it passes through different depths of water. The 
amplitude and speed of the wave do change, however. (c) 
Assume that the energy of the tsunami is conserved. That is, 
ignore any reflection of energy as the water wave transmits 
into the shallow water, where its speed changes. In that case, 
from Equation 16.21, let us express the power of the wave as

P , v2 A2v

Based on our assumption of no reflection of energy, what 
would the amplitude of the wave described above be when it 
is passing through a shallow region where the wave speed is 
75 km/h? (d) If half the energy of the wave is reflected as it 
enters the shallow water, what would be the amplitude of the 
wave in the shallow water described in part (c)?

2. An entrepreneur is designing a new outdoor concert venue. 
He wants to procure loudspeakers that will provide a sound 
level of 83 dB at a location 100 m from the speakers. (a) What 
sound power output is required for the speakers? Assume 
that the sound radiates as a spherical wave and that there are 
no reflections from the ground. (b) After having someone 
perform the calculation in part (a) for him, the entrepre-
neur goes to the electronics store and purchases a speaker 
that the salesman tells him is rated at 150 W, which he thinks 
should clearly do what he needs. When he tests the speaker 
at the venue and turns the sound up to the maximum that 

the speaker can handle, however, the sound level at 100 m is 
only 70.8 dB. The angry entrepreneur runs to his attorney, 
who hires your team as expert witnesses to see if litigation is 
appropriate against the salesman. What is the power output 
of the speaker, based on the sound level data? (c) After per-
forming some research on loudspeakers, argue that litiga-
tion should not be initiated against the salesman.

3. ACTIVITy  The epicenter of an earthquake can be located 
by looking at the difference in arrival times between P and 
S waves on a seismograph. A single seismograph station can 
determine how far away the earthquake occurs. With data 
from three seismograph stations, triangulation can be used 
to determine the exact location. For near earthquakes, seis-
mic waves travel through the crust of the Earth at typical 
speeds of 4.00 km/s for S waves and 8.00 km/s for P waves. 
The following table shows times of day for the first arrival 
of P and S waves at three different California seismograph 
stations. (a) Print out a map of California from the Internet 
and use the data below to determine what large California 
city represents the epicenter of the earthquake. (b) At what 
time did the earthquake occur?

Seismic Station
Arrival Time of P  

Wave (h:min:s)
Arrival Time of S  

Wave (h:min:s)

Sacramento 3:21:34.4 PM 3:22:04.8 PM
San Francisco 3:21:35.9 PM 3:22:07.8 PM
Los Angeles 3:21:52.1 PM 3:22:40.2 PM

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 16.1 Propagation of a Disturbance

1. A seismographic station receives S and P waves from an 
earthquake, separated in time by 17.3 s. Assume the waves 
have traveled over the same path at speeds of 4.50 km/s and 
7.80 km/s. Find the distance from the seismograph to the 
focus of the quake.

2. Two points A and B on the 
surface of the Earth are at 
the same longitude and 60.08 
apart in latitude as shown 
in Figure P16.2. Suppose an 
earthquake at point A creates 
a P wave that reaches point B 
by traveling straight through 
the body of the Earth at a 
constant speed of 7.80 km/s. 
The earthquake also radiates a Rayleigh wave that travels at 
4.50 km/s. In addition to P and S waves, Rayleigh waves are a 
third type of seismic wave that travels along the surface of the 
Earth rather than through the bulk of the Earth. (a) Which of 
these two seismic waves arrives at B first? (b) What is the time 
difference between the arrivals of these two waves at B?

3. You are working for a plumber who is laying very long sec-
tions of copper pipe for a large building project. He spends 
a lot of time measuring the lengths of the sections with a 

measuring tape. You suggest a faster way to measure the 
length. You know that the speed of a one-dimensional com-
pressional wave traveling along a copper pipe is 3.56 km/s. 
You suggest that a worker give a sharp hammer blow at one 
end of the pipe. Using an oscilloscope app on your smart-
phone, you will measure the time interval Dt between the 
arrival of the two sound waves due to the blow: one through 
the 20.08C air and the other through the pipe. (a) To mea-
sure the length, you must derive an equation that relates 
the length L of the pipe numerically to the time interval 
Dt. (b) You measure a time interval of Dt 5 127 ms between 
the arrivals of the pulses and, from this value, determine 
the length of the pipe. (c) Your smartphone app claims an 
accuracy of 1.0% in measuring time intervals. So you calcu-
late by how many centimeters your calculation of the length 
might be in error.

4. You are working on a senior project and are analyzing a 
human “wave” at a sports stadium such as that shown in 
Figure P16.4 (page 446). You are trying to determine the 
effect of the wave on concession sales because people are 
standing up and sitting down while they participate in 
the wave, instead of buying food or drinks. You have made 
observations at a local stadium and have taken data on 
one particularly stable wave. This wave took 47.4 s to travel 
around a specific stadium row consisting of a circular ring 
of 974 seats. You also find that a typical time interval for 
spectators to stand and sit back down is 0.95 s. In this wave, 
how many people in the specific row were out of their seats 
at any given instant?

V

CR

CR

A

B
Path of
Rayleigh wave

Path of
P wave

60.0�

Figure P16.2
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446 Chapter 16 Wave Motion

Section 16.2 Analysis Model: Traveling Wave

5. When a particular wire is vibrating with a frequency of 
4.00  Hz, a transverse wave of wavelength 60.0 cm is pro-
duced. Determine the speed of waves along the wire.

6. (a) Plot y versus t at x 5 0 for a sinusoidal wave of the form 
y 5 0.150 cos (15.7x 2 50.3t), where x and y are in meters 
and t is in seconds. (b) Determine the period of vibration. 
(c) State how your result compares with the value found in 
Example 16.2.

7. Consider the sinusoidal wave of Example 16.2 with the wave 
function

y 5 0.150 cos (15.7x 2 50.3t)

  where x and y are in meters and t is in seconds. At a certain 
instant, let point A be at the origin and point B be the clos-
est point to A along the x axis where the wave is 60.08 out of 
phase with A. What is the coordinate of B?

8. A sinusoidal wave traveling in the negative x direction 
(to the left) has an amplitude of 20.0 cm, a wavelength of 
35.0 cm, and a frequency of 12.0 Hz. The transverse position 
of an element of the medium at t 5 0, x 5 0 is y 5 23.00 cm,  
and the element has a positive velocity here. We wish to find 
an expression for the wave function describing this wave. 
(a) Sketch the wave at t 5 0. (b) Find the angular wave num-
ber k from the wavelength. (c) Find the period T from the 
frequency. Find (d) the angular frequency v and (e)  the 
wave speed v. (f) From the information about t 5 0, find 
the phase constant f. (g) Write an expression for the wave 
function y(x, t).

9. (a) Write the expression for y as a function of x and t in SI 
units for a sinusoidal wave traveling along a rope in the 
negative x direction with the following characteristics: A 5 
8.00 cm, l 5 80.0 cm, f 5 3.00 Hz, and y(0, t) 5 0 at t 5 0. 
(b) What If? Write the expression for y as a function of x 
and t for the wave in part (a) assuming y(x, 0) 5 0 at the 
point x 5 10.0 cm.

Section 16.3 The Speed of Waves on Strings

10. Review. The elastic limit of a steel wire is 2.70 3 108  Pa. 
What is the maximum speed at which transverse wave pulses 
can propagate along this wire without exceeding this stress? 
(The density of steel is 7.86 3 103 kg/m3.)

11. Transverse waves travel with a speed of 20.0 m/s on a string 
under a tension of 6.00 N. What tension is required for a 
wave speed of 30.0 m/s on the same string?

12. Why is the following situation impossible? An astronaut on the 
Moon is studying wave motion using the apparatus dis-
cussed in Example 16.3 and shown in Figure 16.12. He 
measures the time interval for pulses to travel along the 
horizontal wire. Assume the horizontal wire has a mass of 
4.00 g and a length of 1.60 m and assume a 3.00-kg object 
is suspended from its extension around the pulley. The 
astronaut finds that a pulse requires 26.1 ms to traverse the 
length of the wire.

13. Tension is maintained in a 
string as in Figure P16.13. The 
observed wave speed is v 5 
24.0  m/s when the suspended 
mass is m 5 3.00 kg. (a) What is 
the mass per unit length of the  
string? (b)  What is the wave 
speed  when the suspended mass 
is m 5 2.00 kg?

14. Transverse pulses travel with a speed of 200 m/s along a taut 
copper wire whose diameter is 1.50 mm. What is the tension 
in the wire? (The density of copper is 8.92 g/cm3.)

Section 16.4 Rate of Energy Transfer by Sinusoidal  
Waves on Strings

15. Transverse waves are being generated on a rope under con-
stant tension. By what factor is the required power increased 
or decreased if (a) the length of the rope is doubled and the 
angular frequency remains constant, (b) the amplitude is 
doubled and the angular frequency is halved, (c) both the 
wavelength and the amplitude are doubled, and (d) both 
the length of the rope and the wavelength are halved?

16. In a region far from the epicenter of an earthquake, a seis-
mic wave can be modeled as transporting energy in a sin-
gle direction without absorption, just as a string wave does. 
Suppose the seismic wave moves from granite into mudfill 
with similar density but with a much smaller bulk modulus. 
Assume the speed of the wave gradually drops by a factor 
of 25.0, with negligible reflection of the wave. (a) Explain 
whether the amplitude of the ground shaking will increase 
or decrease. (b) Does it change by a predictable factor? 
(This phenomenon led to the collapse of part of the Nim-
itz Freeway in Oakland, California, during the Loma Prieta 
earthquake of 1989.)

17. A long string carries a wave; a 6.00-m segment of the string con-
tains four complete wavelengths and has a mass of 180 g. The 
string vibrates sinusoidally with a frequency of 50.0 Hz and a 
peak-to-valley displacement of 15.0 cm. (The “peak-to- valley” 
distance is the vertical distance from the farthest positive posi-
tion to the farthest negative position.) (a) Write the function 
that describes this wave traveling in the positive x direction. 
(b) Determine the power being supplied to the string.

18. A two-dimensional water wave spreads in circular ripples. 
Show that the amplitude A at a distance r from the initial 
disturbance is proportional to 1yÏr. Suggestion: Consider 
the energy carried by one outward-moving ripple.

19. A horizontal string can transmit a maximum power P0 
(without breaking) if a wave with amplitude A and angu-
lar frequency v is traveling along it. To increase this max-
imum power, a student folds the string and uses this “dou-
ble string” as a medium. Assuming the tension in the two 
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Figure P16.4 Problems 4 and 44.
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Figure P16.13  
Problems 13 and 43.
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strands together is the same as the original tension in the 
single string and the angular frequency of the wave remains 
the same, determine the maximum power that can be trans-
mitted along the “double string.”

Section 16.5 The Linear Wave Equation

20. Show that the wave function y 5 ln [b(x 2 vt)] is a solution to 
Equation 16.27, where b is a constant.

21. Show that the wave function y 5 eb(x2vt) is a solution of the 
linear wave equation (Eq. 16.27), where b is a constant.

22. (a) Show that the function y(x, t) 5 x2 1 v2t2 is a solution to 
the wave equation. (b) Show that the function in part (a) 
can be written as f(x 1 vt) 1 g(x 2 vt) and determine the 
functional forms for f and g. (c) What If? Repeat parts (a) 
and (b) for the function y(x, t) 5 sin (x) cos (vt).

Note: In the rest of this chapter, for problems involving sound 
waves, pressure variations DP are measured relative to atmo-
spheric pressure, 1.013 3 105 Pa.

Section 16.6 Sound Waves

23. A sinusoidal sound wave moves through a medium and is 
described by the displacement wave function

s(x, t) 5 2.00 cos (15.7x 2 858t)

  where s is in micrometers, x is in meters, and t is in seconds. 
Find (a) the amplitude, (b) the wavelength, and (c)  the 
speed of this wave. (d) Determine the instantaneous dis-
placement from equilibrium of the elements of the medium 
at the position x 5 0.050 0 m at t 5 3.00 ms. (e) Determine 
the maximum speed of the element’s oscillatory motion.

Section 16.7 Speed of Sound Waves

Note: In the rest of this chapter, unless otherwise specified, the 
equilibrium density of air is r 5 1.20 kg/m3 and the speed of 
sound in air is v 5 343 m/s. Use Table 16.1 to find speeds of 
sound in other media.

24. Earthquakes at fault lines in the Earth’s crust create seis-
mic waves, which are longitudinal (P waves) or transverse  
(S waves). The P waves have a speed of about 7 km/s. Esti-
mate the average bulk modulus of the Earth’s crust given 
that the density of rock is about 2 500 kg/m3.

25. An experimenter wishes to generate in air a sound wave that 
has a displacement amplitude of 5.50 3 1026 m. The pres-
sure amplitude is to be limited to 0.840 Pa. What is the min-
imum wavelength the sound wave can have?

26. A sound wave propagates in air at 278C with frequency 
4.00 kHz. It passes through a region where the temperature 
gradually changes and then moves through air at 08C. Give 
numerical answers to the following questions to the extent pos-
sible and state your reasoning about what happens to the wave 
physically. (a) What happens to the speed of the wave? (b) What 
happens to its frequency? (c) What happens to its wavelength?

27. You are at Quincy Quarries Reservation with your grand-
father, performing the activity described in the opening 
storyline. The coordinates of your position when your 
grandfather claps his hands are N 42.244 348, W 71.033 788. 
Your smartphone stopwatch tells you that the time interval 

between the clap and the echo is 0.47 s. When you walk to 
the cliff, your coordinates are N 42.244 068, W 71.034 668. 
What speed of sound do you report to your grandfather? 
(Hint: Use an online resource to calculate the distance 
between the coordinates.)

28. A rescue plane flies horizontally at a constant speed searching 
for a disabled boat. When the plane is directly above the boat, 
the boat’s crew blows a loud horn. By the time the plane’s 
sound detector receives the horn’s sound, the plane  has 
traveled a distance equal to half its altitude above the ocean. 
Assuming it takes the sound 2.00 s to reach the plane, 
determine (a) the speed of the plane and (b) its altitude.

29. The speed of sound in air (in meters per second) depends 
on temperature according to the approximate expression

v 5 331.5 1 0.607TC

  where TC is the Celsius temperature. In dry air, the temper-
ature decreases about 18C for every 150-m rise in altitude. 
(a) Assume this change is constant up to an altitude of 9 000 
m. What time interval is required for the sound from an air-
plane flying at 9 000 m to reach the ground on a day when 
the ground temperature is 308C? (b) What If? Compare 
your answer with the time interval required if the air were 
uniformly at 308C. Which time interval is longer?

30. A sound wave moves down a cylinder as in Figure 16.17. 
Show that the pressure variation of the wave is described by 
DP 5 6 rvvÏs 2

max 2 s 2, where s 5 s(x, t) is given by Equa-
tion 16.28.

Section 16.8 Intensity of Sound Waves

31. The intensity of a sound wave at a fixed distance from a 
speaker vibrating at 1.00 kHz is 0.600 W/m2. (a) Determine 
the intensity that results if the frequency is increased to 
2.50 kHz while a constant displacement amplitude is main-
tained. (b) Calculate the intensity if the frequency is reduced 
to 0.500 kHz and the displacement amplitude is doubled.

32. The intensity of a sound wave at a fixed distance from a 
speaker vibrating at a frequency f is I. (a) Determine the 
intensity that results if the frequency is increased to f 9 while 
a constant displacement amplitude is maintained. (b) Cal-
culate the intensity if the frequency is reduced to f/2 and 
the displacement amplitude is doubled.

33. The power output of a certain public-address speaker is 
6.00  W. Suppose it broadcasts equally in all directions. 
(a) Within what distance from the speaker would the sound 
be painful to the ear? (b) At what distance from the speaker 
would the sound be barely audible?

34. A fireworks rocket explodes at a height of 100 m above the 
ground. An observer on the ground directly under the 
explosion experiences an average sound intensity of 7.00 3 
1022 W/m2 for 0.200 s. (a) What is the total amount of energy 
transferred away from the explosion by sound? (b) What is 
the sound level (in decibels) heard by the observer?

35. You are working at an open-air amphitheater, where rock 
concerts occur regularly. The venue has powerful loud-
speakers mounted on 10.6-m-tall columns at various loca-
tions surrounding the audience. The loudspeakers emit 
sound uniformly in all directions. There are ladder steps 
sticking out from the columns, to help workers service 
the loudspeakers. Many times, audience members break 
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448 Chapter 16 Wave Motion

through the protective fencing around the columns and 
climb upward on the columns to get a better view of the per-
formers. The upcoming concert is by a group that states that 
several very-high-volume pulses of sound occur in their con-
certs, and these sounds are part of their artistic expression. 
The amphitheater owners are worried about people climb-
ing the columns and being too close to the loudspeakers 
when these peak sounds are emitted. They do not want to 
be held responsible for injuries to audience members’ ears. 
Based on past performances of the group, you determine 
that the peak sound level is 150 dB measured 20.0 cm from 
the speakers on the columns. The owners ask you to deter-
mine the heights on the columns at which to mount impass-
able barricades to keep people from getting too close to the 
speakers and hearing sound above the threshold of pain.

36. Why is the following situation impossible? It is early on a 
Saturday morning, and much to your displeasure your next-
door neighbor starts mowing his lawn. As you try to get back 
to sleep, your next-door neighbor on the other side of your 
house also begins to mow the lawn with an identical mower 
the same distance away. This situation annoys you greatly 
because the total sound now has twice the loudness it had 
when only one neighbor was mowing.

37. Show that the difference between decibel levels b1 and b2 of 
a sound is related to the ratio of the distances r1 and r2 from 
the sound source by

b2 2 b1 5 20 log Sr1

r2
D

Section 16.9 The Doppler Effect

38. Submarine A travels horizontally at 11.0 m/s through 
ocean water. It emits a sonar signal of frequency f 5  
5.27 3 103 Hz in the forward direction. Submarine B is in 
front of submarine A and traveling at 3.00 m/s relative to the 
water in the same direction as submarine A. A crewman in 
submarine B uses his equipment to detect the sound waves 
(“pings”) from submarine A. We wish to determine what 
is heard by the crewman in submarine B. (a) An observer 
on which submarine detects a frequency f 9 as described by 
Equation 16.46? (b) In Equation 16.46, should the sign of 
vS be positive or negative? (c) In Equation 16.46, should the 
sign of vO be positive or negative? (d)  In Equation 16.46, 
what speed of sound should be used? (e) Find the frequency 
of the sound detected by the crewman on submarine B.

39. When high-energy charged 
particles move through a 
transparent medium with a 
speed greater than the speed 
of light in that medium, a 
shock wave, or bow wave, 
of light is produced. This 
phenomenon is called the 
Cerenkov effect. When a 
nuclear reactor is shielded 
by a large pool of water, 
Cerenkov radiation can be 
seen as a blue glow in the 
vicinity of the reactor core 
due to high-speed electrons 
moving through the water 
(Fig.  P16.39). In a particular 

case, the Cerenkov radiation produces a wave front with an 
apex half-angle of 53.08. Calculate the speed of the electrons 
in the water. The speed of light in water is 2.25 3 108 m/s.

40. Why is the following situation impossible? At the Summer Olym-
pics, an athlete runs at a constant speed down a straight 
track while a spectator near the edge of the track blows a 
note on a horn with a fixed frequency. When the athlete 
passes the horn, she hears the frequency of the horn fall by 
the musical interval called a minor third. That is, the fre-
quency she hears drops to five-sixths its original value.

41. Review. A block with a speaker bolted to it is connected 
to a spring having spring constant k 5 20.0 N/m and 
 oscillates as shown in Figure P16.41. The total mass of the 
block and speaker is 5.00 kg, and the amplitude of this 
unit’s motion is 0.500 m. The speaker emits sound waves of 
frequency 440 Hz. Determine (a) the highest and (b) the 
lowest frequencies heard by the person to the right of the 
speaker. (c) If the maximum sound level heard by the per-
son is 60.0 dB when the speaker is at its closest distance d 5 
1.00 m from him, what is the minimum sound level heard 
by the observer?

42. Review. A block with a speaker bolted to it is connected to 
a spring having spring constant k and oscillates as shown in 
Figure P16.41. The total mass of the block and speaker is m, 
and the amplitude of this unit’s motion is A. The speaker 
emits sound waves of frequency f. Determine (a) the highest 
and (b) the lowest frequencies heard by the person to the 
right of the speaker. (c) If the maximum sound level heard 
by the person is b when the speaker is at its closest distance 
d from him, what is the minimum sound level heard by the 
observer?

aDDitional ProBleMS

43. A sinusoidal wave in a rope is described by the wave function

y 5 0.20 sin (0.75px 1 18pt)

  where x and y are in meters and t is in seconds. The rope 
has a linear mass density of 0.250 kg/m. The tension in the 
rope is provided by an arrangement like the one illustrated 
in Figure P16.13. What is the mass of the suspended object?

44. “The wave” is a particular type of pulse that can prop-
agate through a large crowd gathered at a sports arena 
(Fig. P16.4). The elements of the medium are the spectators, 
with zero position corresponding to their being seated and 
maximum position corresponding to their standing and 
raising their arms. When a large fraction of the spectators 

Figure P16.39
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Figure P16.41 Problems 41 and 42.
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participates in the wave motion, a somewhat stable pulse 
shape can develop. The wave speed depends on people’s 
reaction time, which is typically on the order of 0.1 s. Esti-
mate the order of magnitude, in minutes, of the time inter-
val required for such a pulse to make one circuit around 
a large sports stadium. State the quantities you measure or 
estimate and their values.

45. Some studies suggest that the upper frequency limit of 
hearing is determined by the diameter of the eardrum. 
The diameter of the eardrum is approximately equal to 
half the wavelength of the sound wave at this upper limit. If  
the relationship holds exactly, what is the diameter of 
the eardrum of a person capable of hearing 20 000 Hz?  
(Assume a body temperature of 37.08C.)

46. An undersea earthquake or a landslide can produce an 
ocean wave of short duration carrying great energy, called 
a tsunami. When its wavelength is large compared to the 
ocean depth d, the speed of a water wave is given approx-
imately by v 5 Ïgd. Assume an earthquake occurs all 
along a tectonic plate boundary running north to south 
and produces a straight tsunami wave crest moving every-
where to the west. (a) What physical quantity can you con-
sider to be constant in the motion of any one wave crest? 
(b) Explain why the amplitude of the wave increases as the 
wave approaches shore. (c) If the wave has amplitude 1.80 m 
when its speed is 200 m/s, what will be its amplitude where 
the water is 9.00 m deep? (d) Explain why the amplitude at 
the shore should be expected to be still greater, but cannot 
be meaningfully predicted by your model.

47. A sinusoidal wave in a string is described by the wave 
function

y 5 0.150 sin (0.800x 2 50.0t)

  where x and y are in meters and t is in seconds. The mass 
per length of the string is 12.0 g/m. (a) Find the maxi-
mum transverse acceleration of an element of this string. 
(b) Determine the maximum transverse force on a 1.00-cm 
segment of the string. (c) State how the force found in part 
(b) compares with the tension in the string.

48. A rope of total mass m and length L is suspended verti-
cally. Analysis shows that for short transverse pulses, the 
waves above a short distance from the free end of the rope 
can be represented to a good approximation by the lin-
ear wave equation discussed in Section 16.5. Show that a 
transverse pulse travels the length of the rope in a time 
interval that is given approximately by Dt < 2 ÏLyg. Sug-
gestion: First find an expression for the wave speed at any 
point a distance x from the lower end by considering the 
rope’s tension as resulting from the weight of the segment 
below that point.

49. A wire of density r is tapered so that its cross-sectional area 
varies with x according to

A 5 1.00 3 1025 x 1 1.00 3 1026

  where A is in meters squared and x is in meters. The tension 
in the wire is T. (a) Derive a relationship for the speed of a 
wave as a function of position. (b) What If? Assume the wire 
is aluminum and is under a tension T 5 24.0 N. Determine 
the wave speed at the origin and at x 5 10.0 m.

50. Why is the following situation impossible? Tsunamis are ocean 
surface waves that have enormous wavelengths (100 to 

200 km), and the propagation speed for these waves is 
v < Ïgd avg, where davg is the average depth of the water. 
An earthquake on the ocean floor in the Gulf of Alaska 
produces a tsunami that reaches Hilo, Hawaii, 4 450  km 
away, in a time interval of 5.88 h. (This method was 
used in 1856 to estimate the average depth of the Pacific 
Ocean long before soundings were made to give a direct 
determination.)

51. A pulse traveling along a string of linear mass density m is 
described by the wave function

y 5 [A0e
2bx ] sin (kx 2 vt)

  where the factor in brackets is said to be the amplitude. 
(a) What is the power P(x) carried by this wave at a point x? 
(b) What is the power P(0) carried by this wave at the ori-
gin? (c) Compute the ratio P(x)/P(0).

52. A train whistle (f 5 400 Hz) sounds higher or lower in fre-
quency depending on whether it approaches or recedes. 
(a) Prove that the difference in frequency between the 
approaching and receding train whistle is 

Df 5
2uyv

1 2 u2yv2 f

  where u is the speed of the train and v is the speed of sound. 
(b) Calculate this difference for a train moving at a speed of 
130 km/h. Take the speed of sound in air to be 340 m/s.

53. Review. A 150-g glider moves at v1 5 2.30 m/s on an air 
track toward an originally stationary 200-g glider as shown 
in Figure P16.53. The gliders undergo a completely inelastic 
collision and latch together over a time interval of 7.00 ms. 
A student suggests roughly half the decrease in mechanical 
energy of the two-glider system is transferred to the environ-
ment by sound. Is this suggestion reasonable? To evaluate 
the idea, find the implied sound level at a position 0.800 m 
from the gliders. If the student’s idea is unreasonable, sug-
gest a better idea.

54. Consider the following wave function in SI units:

DP sr, td 5 S25.0
r D sin s1.36r 2 2 030td

  Explain how this wave function can apply to a wave radi-
ating from a small source, with r being the radial distance 
from the center of the source to any point outside the 
source. Give the most detailed description of the wave that 
you can. Include answers to such questions as the following 
and give representative values for any quantities that can be 
evaluated. (a) Does the wave move more toward the right 
or the left? (b) As it moves away from the source, what hap-
pens to its amplitude? (c) Its speed? (d) Its frequency? (e) Its 
wavelength? (f) Its power? (g) Its intensity?

v�0

200 g150 g

1v
Before the collision

Latches

Figure P16.53
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450 Chapter 16 Wave Motion

55. With particular experimental methods, it is possible to pro-
duce and observe in a long, thin rod both a transverse wave 
whose speed depends primarily on tension in the rod and 
a longitudinal wave whose speed is determined by Young’s 
modulus and the density of the material according to the 
expression v 5 ÏYyr. The transverse wave can be modeled 
as a wave in a stretched string. A particular metal rod is 
150  cm long and has a radius of 0.200 cm and a mass of 
50.9 g. Young’s modulus for the material is 6.80 3 1010 N/m2.  
What must the tension in the rod be if the ratio of the 
speed of longitudinal waves to the speed of transverse waves 
is 8.00?

56. A large set of unoccupied football bleachers has solid seats 
and risers. You stand on the field in front of the bleachers 
and sharply clap two wooden boards together once. The 
sound pulse you produce has no definite frequency and 
no wavelength. The sound you hear reflected from the 
bleachers has an identifiable frequency and may remind 
you of a short toot on a trumpet, buzzer, or kazoo. (a) 
Explain what accounts for this sound. Compute order-of-
magnitude estimates for (b) the frequency, (c) the wave-
length, and (d) the duration of the sound on the basis of 
data you specify.

challenge ProBleMS

57. A string on a musical instrument is held under tension T 
and extends from the point x 5 0 to the point x 5 L. The 
string is overwound with wire in such a way that its mass per 
unit length m(x) increases uniformly from m0 at x 5 0 to mL 
at x 5 L. (a) Find an expression for m(x) as a function of x 
over the range 0 # x # L. (b) Find an expression for the 
time interval required for a transverse pulse to travel the 
length of the string.

58. Assume an object of mass M is suspended from the bottom 
of the rope of mass m and length L in Problem 48. (a) Show 
that the time interval for a transverse pulse to travel the 
length of the rope is

Dt 5 2Î L
mg

sÏM 1 m 2 ÏM d

  (b) What If? Show that the expression in part (a) reduces 
to the result of Problem 48 when M 5 0. (c) Show that for 
m ,, M, the expression in part (a) reduces to

Dt 5ÎmL
Mg

59. Equation 16.40 states that at distance r away from a point 
source with power (Power)avg, the wave intensity is

I 5
sPowerdavg

4pr 2

  Study Figure 16.25 and prove that at distance r straight in 
front of a point source with power (Power)avg moving with 
constant speed vS the wave intensity is

I 5
sPowerdavg

4pr 2 Sv 2 vS

v D
60. In Section 16.7, we derived the speed of sound in a gas using 

the impulse–momentum theorem applied to the cylinder of 
gas in Figure 16.20. Let us find the speed of sound in a gas 
using a different approach based on the element of gas in 
Figure 16.18. Proceed as follows. (a) Draw a force diagram 
for this element showing the forces exerted on the left and 
right surfaces due to the pressure of the gas on either side 
of the element. (b) By applying Newton’s second law to the 
element, show that

2 

−sDPd
−x

A Dx 5 rA Dx 
−2s
−t2

  (c) By substituting DP 5 2(B −s/−x) (Eq. 16.30), derive the 
following wave equation for sound:

B
r

  
−2s
−x2 5

−2s
−t2

  (d) To a mathematical physicist, this equation demonstrates 
the existence of sound waves and determines their speed. 
As a physics student, you must take another step or two. 
Substitute into the wave equation the trial solution s(x, t) 5 
smax cos (kx 2 vt). Show that this function satisfies the wave 
equation, provided vyk 5 v 5 ÏByr.

T
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17Superposition and 
Standing Waves

17.1 Analysis Model:  
Waves in Interference

17.2 Standing Waves

17.3 Boundary Effects: 
Reflection and 
Transmission

17.4 Analysis Model:  
Waves Under 
Boundary Conditions

17.5 Resonance

17.6 Standing Waves  
in Air Columns

17.7 Beats: Interference 
in Time

17.8 Nonsinusoidal 
Waveforms

Storyline Your previous roommate moved out to live in an 
apartment. You are just getting to know your new roommate. One evening, your 
roommate shows you her guitar that she uses when she performs in a musical 
group. You have no idea how to play a guitar, but you do know about music from 
your choir experiences in high school. You absentmindedly start plucking the 
strings while your roommate starts looking through your physics textbook. You’ve 
seen guitar players pressing their fingers on the frets, as Jack White is doing 
above, so you do the same. During your explorations, you notice the following. 
You pluck an open string and then you place your finger lightly on the midpoint of 
the string. When you pluck the string now, the note is an octave above that of the 
open string. And there is something different about the nature of the sound, aside 
from it being an octave higher. You continue experimenting and find that you can 
generate higher notes that have a musical relationship to the open string by lightly 
touching at other points, such as one-third the length of the string and one-fourth 
the length. You ask your roommate about this phenomenon. She mentions some-
thing about “harmonics” and tells you to read Chapter 17 in your textbook.

ConneCtions This chapter continues our studies of waves begun in 
Chapter 16. We have seen that waves are very different from particles. A particle 
is of zero size, whereas a wave has a characteristic size, its wavelength. Another 
important difference between waves and particles is that we can explore the 
possibility of two or more waves combining at one point in the same medium. 
Particles can be combined to form extended objects, but the particles must be 
at different locations. In contrast, two waves can both be present at the same 
location. The ramifications of this possibility are explored in this chapter. When 

Guitarist Jack White takes 
advantage of standing waves 
on strings. He changes to 
higher notes on the guitar by 
pushing the strings against 
the frets on the fingerboard, 
shortening the lengths of 
the portions of the strings 
that vibrate. (Mat Hayward/
Shutterstock.com)
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452 Chapter 17 Superposition and Standing Waves

waves are combined in systems with boundary conditions, only certain allowed 
frequencies can exist and we say the frequencies are quantized. Quantization is a 
notion that is at the heart of quantum mechanics, a subject introduced formally in 
Chapter 40. In Chapters 40–44, we show that analysis of waves under boundary 
conditions explains many of the quantum phenomena studied there. In this chap-
ter, we use quantization to understand the behavior of the wide array of musical 
instruments that are based on strings and air columns.

   17.1    Analysis Model: Waves in Interference
Many interesting wave phenomena in nature cannot be described by a single travel-
ing wave. Instead, one must analyze these phenomena in terms of a combination of 
traveling waves. As noted in the introduction, waves have a remarkable difference 
from particles in that waves can be combined at the same location in space. To ana-
lyze such wave combinations, we make use of the superposition principle:

If two or more traveling waves are moving through a medium, the resultant value 
of the wave function at any point where the waves both exist is the algebraic sum 
of the values of the wave functions of the individual waves at that point.

Superposition principle 

Waves that obey this principle are called linear waves. (See Section 16.5.) In the case 
of mechanical waves, linear waves are generally characterized by having amplitudes 
much smaller than their wavelengths. Waves that violate the superposition princi-
ple are called nonlinear waves and are often characterized by large amplitudes. In 
this book, we deal only with linear waves.

One consequence of the superposition principle is that two traveling waves can 
pass through each other without affecting one another. For instance, when two peb-
bles are thrown into a pond and hit the surface at different locations, the expand-
ing circular surface waves from the two locations simply pass through each other 
with no permanent effect. The resulting complex pattern can be viewed as a combi-
nation of two independent sets of expanding circles.

Figure 17.1 is a pictorial representation of the superposition of two pulses moving 
on the same string. The wave function for the pulse moving to the right is y1, and 
the wave function for the pulse moving to the left is y2. The pulses have the same 
speed but different shapes, and the displacement of the elements of the medium 
is in the positive y direction for both pulses. When the waves overlap (Fig. 17.1b), 
the wave function for the resulting complex wave is given by y1 1 y2. When the 
crests of the pulses coincide (Fig. 17.1c), the resulting wave given by y1 1 y2 has a 
larger amplitude than that of the individual pulses. The two pulses finally separate 
and continue moving in their original directions (Fig. 17.1d). Notice that the pulse 
shapes remain unchanged after the interaction, as if the two pulses had never met!

The combination of separate waves in the same region of space to produce a 
resultant wave is called interference. When the displacements caused by the two 
pulses are in the same direction, as in Figure 17.1, we refer to their superposition as 
constructive interference.

Now consider two pulses traveling toward each other on a taut string where 
one pulse is inverted relative to the other as illustrated in Figure 17.2. When these 
pulses begin to overlap, the resultant pulse is given by y1 1 y2, but the values of 
the function y2 are negative. Therefore, at the instant shown in Figure 17.2c, the 
amplitude of the combined waves is less than that of the individual waves. Again, 
the two pulses pass through each other; because the displacements caused by the 
two pulses are in opposite directions, however, we refer to their superposition as 
destructive interference.

The superposition principle is the centerpiece of the analysis model called 
waves in interference. In many situations, both in acoustics and optics, waves 

Constructive interference 

Destructive interference 

Pitfall Prevention 17.1
Do Waves Actually Interfere? In 
popular usage, the term interfere 
implies that an agent affects a 
situation in some way so as to pre-
clude something from happening. 
For example, in American foot-
ball, pass interference means that 
a defending player has affected 
the receiver so that the receiver 
is unable to catch the ball. This 
usage is very different from its 
use in physics, where waves pass 
through each other and interfere, 
but do not affect each other in 
any way. In physics, interference 
is similar to the notion of combina-
tion as described in this chapter.
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    17.1 Analysis Model: Waves in Interference 453

combine according to this principle and exhibit interesting phenomena with prac-
tical applications.

Q uick Quiz 17.1  Two pulses move in opposite directions on a string and are 
identical in shape and size except that one has positive displacements of the 
elements of the string and the other has negative displacements. At the moment 
the two pulses completely overlap on the string, what happens? (a) The energy 
associated with the pulses has disappeared. (b) The string is not moving. (c) The 
string forms a straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves
Let us now apply the principle of superposition to two sinusoidal waves traveling 
in the same direction in a linear medium. Figure 17.3 shows a simple device that 
could create this situation for sound waves. Sound from a loudspeaker S is sent into 
a tube at point P, where there is a T-shaped junction. Half the sound energy travels 
in one direction, and half travels in the opposite direction. Therefore, the sound 
waves that reach the receiver R can travel along either of the two paths. The dis-
tance along any path from speaker to receiver is called the path length r. The lower 
path length r1 is fixed, but the upper path length r2 can be varied by sliding the 
U-shaped tube, which is similar to that on a slide trombone. This capability allows 
us to vary the phase difference between the waves arriving at Q. After the sound 
waves arrive at Q , they combine and travel together to the right from that point to 
the receiver R. 

b

c

d

a

y2 y 1

y 1 y2

y 1 y2

y2y 1

�

�

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the sum of the individual 
amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

Figure 17.1 Constructive 
interference. Two positive pulses 
travel on a stretched string in 
opposite directions and overlap.

y 1

y 2

y 2
y 1

y 1 y 2�

y 1 y 2�

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the difference between the 
individual amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

b

c

d

a

Figure 17.2 Destructive inter-
ference. Two pulses, one positive 
and one negative, travel on a 
stretched string in opposite 
directions and overlap.

A sound wave from the speaker 
(S) propagates into the tube and 
splits into two parts at point P.

Path length r1

Path length r2

R

S

P Q

The two waves, which combine 
at the opposite side, are 
detected at the receiver (R).

Figure 17.3  An acoustical system 
for demonstrating interference 
of sound waves. The upper path 
length r2 can be varied by sliding 
the upper section.
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454 Chapter 17 Superposition and Standing Waves

If two waves travel together in the same direction and have the same frequency, 
wavelength, and amplitude but differ in phase, we can express their individual wave 
functions as

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 2 vt 1 f)

where, as usual, k 5 2p/l, v 5 2pf, and f is the phase constant as discussed in 
Section 16.2. Hence, the resultant wave function y is

y 5 y1 1 y2 5 A [sin (kx 2 vt) 1 sin (kx 2 vt 1 f)]

To simplify this expression, we use the trigonometric identity

sin a 1 sin b 5 2 cos Sa 2 b
2 D sin Sa 1 b

2 D
Letting a 5 kx 2 vt and b 5 kx 2 vt 1 f, we find that the resultant wave function y 
reduces to

y 5 2A cos Sf

2D sin Skx 2 vt 1
f

2D
This result has several important features. The resultant wave function y also is sinu-
soidal and has the same frequency and wavelength as the individual waves because 
the sine function incorporates the same values of k and v that appear in the orig-
inal wave functions. The amplitude of the resultant wave is 2A cos (f/2), and its 
phase constant is f/2. Let’s investigate the results for different values of f. If the 
phase constant f of the original wave equals 0, then cos (f/2) 5 cos 0 5 1 and the 
amplitude of the resultant wave is 2A, twice the amplitude of either individual wave. 
This can occur in Figure 17.3 when the difference in the path lengths Dr 5 ur2 2 r1u 
is either zero or some integer multiple of the wavelength l (that is, Dr 5 nl, where 
n 5 0, 1, 2, 3, . . .). In this case, the crests of the two waves are at the same locations 
in space and the waves are said to be everywhere in phase and therefore interfere 
constructively. The individual waves y1 and y2 combine to form the red-brown curve 
y of amplitude 2A shown in Figure 17.4a. Because the individual waves are in phase, 
they are indistinguishable in Figure 17.4a, where they appear as a single blue curve. 
In general, constructive interference occurs when cos (f/2) 5 61. That is true, for 
example, when f 5 0, 2p, 4p, . . . rad, that is, when f is an even multiple of p.

When f is equal to p rad or to any odd multiple of p, then cos (f/2) 5 cos (p/2) 5 0  
and the crests of one wave occur at the same positions as the troughs of the second 

Resultant of two traveling  
sinusoidal waves

y

x

x

x

y
y1 y2 y

y y y1 y2

� 60°

y

f

� 180°f

� 0°f

The individual waves are in phase 
and therefore indistinguishable.

Constructive interference: the 
amplitudes add.

The individual waves are 180° out 
of phase.

Destructive interference: the 
waves cancel.

This intermediate result is neither 
constructive nor destructive.

b

c

a

Figure 17.4 The superposition of 
two identical waves y1 and y2 (blue 
and green, respectively) to yield a 
resultant wave (red-brown).
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wave, as shown by the blue and green curves in Figure 17.4b. This can be estab-
lished in Figure 17.3 when the path length r2 is adjusted so that the path difference 
Dr 5 l/2, 3l/2, . . . , nl/2 (for n odd). In this case, as a consequence of destruc-
tive interference, the resultant wave has zero amplitude everywhere as shown by the 
straight red-brown line in Figure 17.4b. Finally, when the phase constant has an 
arbitrary value other than 0 or an integer multiple of p rad (Fig. 17.4c), the resul-
tant wave has an amplitude whose value is somewhere between 0 and 2A.

In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the 
in-phase case, the amplitude of the resultant wave is not twice that of a single wave, 
but rather is the sum of the amplitudes of the two waves. (See the figure in the 
Analysis Model box below.) When the waves are p rad out of phase, they do not 
completely cancel as they do in Figure 17.4b. The result is a wave whose amplitude is 
the difference in the amplitudes of the individual waves.

analYSiS Model Waves in Interference

Imagine two waves traveling in the 
same location through a medium. 
The displacement of elements of the 
medium is affected by both waves. 
According to the principle of super-
position, the displacement of an 
element is the sum of the individual 
displacements that would be caused 
by each wave. When the waves are 
in phase, constructive interference 
occurs and the resultant displacement is larger than the individual 
displacements. Destructive interference occurs when the waves are 
out of phase. 

Examples: 

 ● a piano tuner listens to a piano string and a 
tuning fork vibrating together and notices 
beats (Section 17.7)

 ● light waves from two coherent sources 
combine to form an interference pattern 
on a screen (Chapter 36)

 ● a thin film of oil on top of water shows swirls 
of color (Chapter 36)

 ● x-rays passing through a crystalline 
solid combine to form a Laue pattern 
(Chapter 37)

y1 � y2

y1 � y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1

 Example 17.1    Two Speakers Driven by the Same Source

Two identical loudspeakers placed 3.00 m apart are driven by the same oscillator (Fig. 17.5). A listener is originally at point 
O, located 8.00 m from the center of the line connecting the two speakers. The listener then moves to point P, which is a 
perpendicular distance 0.350 m from O, and she experiences the first minimum in sound intensity. What is the frequency of 
the oscillator?

S o l U T I o N

Conceptualize In Figure 17.3, a sound wave from one 
speaker enters a tube and is then acoustically split into two 
different paths before recombining at the other end. In this 
example, a signal representing the sound is electrically split 
and sent to two different loudspeakers. After leaving the 
speakers, the sound waves recombine at the position of the 
listener. Despite the difference in how the splitting occurs, 
the path difference discussion related to Figure 17.3 can be 
applied here.

Categorize Because the sound waves from two separate 
sources combine, we apply the waves in interference analysis 
model.

Analyze Figure 17.5 shows the physical arrangement of the speakers, along with two shaded right triangles that can be drawn 
on the basis of the lengths described in the problem. The first minimum occurs when the two waves reaching the listener at 
point P are 1808 out of phase, in other words, when their path difference Dr equals l/2.

3.00 m

8.00 m 

r2

8.00 m 

r1 0.350 m 

1.85 m 

P
1.15 m 

O

Figure 17.5  (Example 17.1) Two identical loudspeakers emit 
sound waves to a listener at P.

continued
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456 Chapter 17 Superposition and Standing Waves

17.1 c o n t i n u e d

From the shaded triangles, find the path lengths from   r 1 5 Ïs8.00 md2 1 s1.15 md2 5 8.08 m 
the speakers to the listener:

 r 2 5 Ïs8.00 md2 1 s1.85 md2 5 8.21 m

Hence, the path difference is r2 2 r1 5 0.13 m. Because this path difference must equal l/2 for the first minimum, l 5 0.26 m.

To obtain the oscillator frequency, use Equation 16.12,  f 5
v
l

5
343 mys
0.26 m

5  1.3 kHz 
v 5 lf, where v is the speed of sound in air, 343 m/s:

Finalize This example enables us to understand why the 
speaker wires in a stereo system should be connected properly. 
When connected the wrong way—that is, when the positive 
(or red) wire is connected to the negative (or black) terminal 
on one of the speakers and the other is correctly wired—the 
speakers are said to be “out of phase,” with one speaker moving 
outward while the other moves inward. As a consequence, the 

sound wave coming from one speaker destructively interferes 
with the wave coming from the other at point O in Figure 17.5. 
A rarefaction region due to one speaker is superposed on a 
compression region from the other speaker. Although the two 
sounds probably do not completely cancel each other (because 
the left and right stereo signals are usually not identical), a 
substantial loss of sound quality occurs at point O.

W H A T  I F ? What if the speakers were connected out of phase? What happens at point P in Figure 17.5?

Answer In this situation, the path difference of l/2 combines with a phase difference of l/2 due to the incorrect wiring to 
give a full phase difference of l. As a result, the waves are in phase and there is a maximum intensity at point P.

   17.2    Standing Waves
The sound waves from the pair of loudspeakers in Example 17.1 leave the speak-
ers in the forward direction, and we considered interference at a point in front of 
the speakers. Suppose we turn each speaker by 908 so that they face each other as 
in Figure 17.6, and then have them emit sound of the same frequency and ampli-
tude. In this situation, two identical waves travel in opposite directions in the 
same medium. These waves combine in accordance with the waves in interference 
model.

We can analyze such a situation by considering wave functions for two transverse 
sinusoidal waves having the same amplitude, frequency, and wavelength but travel-
ing in opposite directions in the same medium:

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 1 vt)

where y1 represents a wave traveling in the positive x direction and y2 represents one 
traveling in the negative x direction. Adding these two functions according to the 
superposition principle gives the resultant wave function y:

y 5 y1 1 y2 5 A sin (kx 2 vt) 1 A sin (kx 1 vt)

When we use the trigonometric identity sin (a 6 b) 5 sin a cos b 6 cos a sin b, this 
expression reduces to

 y 5 (2A sin kx) cos vt (17.1)

Equation 17.1 represents the wave function of a standing wave. A standing wave 
such as the one on a string shown in Figure 17.7 is an oscillation pattern with a sta-
tionary outline that results from the superposition of two identical waves traveling in 
opposite directions.

Notice that Equation 17.1 does not contain a function of kx 2 vt. Therefore, it 
is not an expression for a traveling wave. When you observe a standing wave, there 
is no sense of motion in the direction of propagation of either original wave. If 
you were to observe the motion of the string in Figure 17.7, you would not see any 
motion to the left or right. You would only see up and down motion of the elements 
of the string. Comparing Equation 17.1 with Equation 15.6, we see that it describes 

vS

vS

Figure 17.6  Two identical loud-
speakers emit sound waves toward 
each other. When they overlap, 
identical waves traveling in oppo-
site directions will combine to 
form standing waves.
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a special kind of simple harmonic motion. Every element of the medium oscillates 
in simple harmonic motion with the same angular frequency v (according to the 
cos vt factor in the equation). The amplitude of the simple harmonic motion of a 
given element (given by the factor 2A sin kx, the coefficient of the cosine function) 
depends on the location x of the element in the medium, however.

If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse 
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then 
down. That is a standing wave, formed from the combination of waves moving away 
from your hand and reflected from the base unit toward your hand. Notice that 
there is no sense of traveling along the cord like there was for the pulse. You only 
see up-and-down motion of the elements of the cord. 

Equation 17.1 shows that the amplitude of the simple harmonic motion of an 
element of the medium has a minimum value of zero when x satisfies the condition 
sin kx 5 0, that is, when

kx 5 0, p, 2p, 3p, . . .

Because k 5 2p/l, these values for kx give

 x 5 0, 
l

2
, l, 

3l

2
, Á 5

nl

2
  n 5 0, 1, 2, Á  (17.2)

These points of zero amplitude are called nodes. See if you can shake the coiled 
telephone cord at a higher frequency to generate a wave with a node in the middle, 
as shown in Figure 17.7.

The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 2A, which we define as the amplitude of the standing 
wave. The positions in the medium at which this maximum displacement occurs 
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx 5 61, that is, when

kx 5
p

2
, 

3p

2
, 

5p

2
, Á

Therefore, the positions of the antinodes are given by odd values of n :

 x 5
l

4
, 

3l

4
, 

5l

4
, Á 5

nl

4
 n 5 1, 3, 5, Á  (17.3)

 Positions of nodes

 Positions of antinodes

Figure 17.7  Multiflash photo-
graph of a standing wave on a 
string. The limits of motion of 
the string are seen as light blue 
and orange sine waves, while two 
intermediate positions of the 
string are seen as darker blue. The 
time behavior of the vertical dis-
placement from equilibrium of an 
individual element of the string 
is given by cos vt. That is, each 
element vibrates at an angular 
frequency v.

Antinode Antinode

Node

2A sin kx

Node

The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. Each element 
vibrates within the confines of the envelope function 2A sin kx.
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Pitfall Prevention 17.2
Three Types of Amplitude We 
need to distinguish carefully here 
between the amplitude of the indi-
vidual waves, which is A, and the 
amplitude of the simple harmonic 
motion of the elements of the 
medium, which is 2A sin kx. A given 
element in a standing wave vibrates 
within the constraints of the envelope 
function 2A sin kx, where x is that 
element’s position in the medium. 
Such vibration is in contrast to 
traveling sinusoidal waves, in which 
elements at all positions oscillate 
with the same amplitude and the 
same frequency, and the amplitude 
A of the wave is the same as the 
amplitude A of the simple harmonic 
motion of the elements. Further-
more, we can identify the amplitude 
of the standing wave as 2A.
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458 Chapter 17 Superposition and Standing Waves

Two nodes and two antinodes are labeled in the standing wave in Figure 17.7. 
The light blue curve labeled 2A sin kx in Figure 17.7 represents one wavelength 
of the traveling waves that combine to form the standing wave. Figure 17.7 and 
Equations 17.2 and 17.3 provide the following important features of the locations of 
nodes and antinodes:

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

In the photograph in Figure 17.7, the frequency of the waves is so high that 
several oscillations of the elements of the string occur during the time interval dur-
ing which the camera shutter is open. Let’s slow things down a bit. Wave patterns 
of the elements of the medium produced at various times during half a cycle of 
oscillation for two transverse traveling waves moving in opposite directions are 
shown in Figures 17.8a–c. The blue and green curves are the wave patterns for the 
individual traveling waves, and the red-brown curves are the wave patterns for the 
resultant standing wave when they are combined. At t 5 0 (Fig. 17.8a), the two 
traveling waves are in phase, giving a wave pattern in which each element of the 
medium is at rest and experiencing its maximum displacement from equilibrium. 
One-quarter of a period later, at t 5 T/4 (Fig. 17.8b), the traveling waves have 
moved one-fourth of a wavelength (one to the right and the other to the left). At 
this time, the traveling waves are out of phase, and each element of the medium 
is passing through the equilibrium position in its simple harmonic motion. The 
result is zero displacement for elements at all values of x; that is, the wave pattern is 
a straight line. At t 5 T/2 (Fig. 17.8c), the traveling waves are again in phase, pro-
ducing a wave pattern that is inverted relative to the t 5 0 pattern. In the standing 
wave, the elements of the medium alternate in time between the extremes shown 
in Figures 17.8a and 17.8c.

Q uick Quiz 17.2  Consider the waves in Figure 17.8 to be waves on a stretched 
string. Define the velocity of elements of the string as positive if they are moving 
upward in the figure. (i) At the moment the string has the shape shown by the 
red-brown curve in Figure 17.8a, what is the instantaneous velocity of elements 
along the string? (a) zero for all elements (b) positive for all elements (c) neg-
ative for all elements (d) varies with the position of the element (ii) From the 
same choices, at the moment the string has the shape shown by the red-brown 
curve in Figure 17.8b, what is the instantaneous velocity of elements along 
the string?

 t = 0

y1

y2

y
N N N N N

AA

 t = T/4

y2

y1

y

t = T/2

y1

A A

y2

y
N N N N N

A A

A A

a b c

Figure 17.8 Standing-wave  
patterns produced at various 
times by two waves of equal 
amplitude traveling in opposite 
directions. For the resultant wave 
y, the nodes (N) are points of zero 
displacement and the antinodes 
(A) are points of maximum dis-
placement. Two wavelengths are 
shown for each traveling wave, so 
the standing wave patterns show 
twice as many antinodes as that in 
Figure 17.7.
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 Example 17.2    Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)
y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A) Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.

S o l U T I o N

Conceptualize The waves described by the given equations are identical except for their directions of travel, so they indeed 
combine to form a standing wave as discussed in this section. We can represent the waves graphically by the blue and green 
curves in Figure 17.8.

Categorize We will substitute values into equations developed in this section, so we categorize this example as a substitu-
tion problem.

From the equations for the waves, we see that A 5 4.0 cm,  y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 17.1 to  
write an expression for the standing wave:

Find the amplitude of the simple harmonic motion of  ymax 5 (8.0 cm) sin 3.0x ux 5 2.3 
the element at the position x 5 2.3 cm by evaluating  

  5 (8.0 cm) sin (6.9 rad) 5  4.6 cm 
the sine function at this position:

(B) Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S o l U T I o N

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 radycm S l 5

2p

3.0
 cm

Use Equation 17.2 to find the locations of the nodes: x 5 n 
l

2
5  nS p

3.0D cm n 5 0, 1, 2, 3, Á

Use Equation 17.3 to find the locations of the antinodes: x 5 n 
l

4
5  nS p

6.0D cm n 5 1, 3, 5, 7, Á

   17.3    Boundary Effects: Reflection and Transmission
So far in our discussion of waves, we have primarily considered waves traveling 
through a medium without interacting with any boundaries of the medium. The 
only exceptions have been references to reflections of waves, such as the echoes from 
the cliffs in the opening storyline for Chapter 16 and the reflection of waves on the 
coiled telephone cord from the base unit in Section 17.2. We now address the details 
of the interactions of waves with boundaries. For example, consider a pulse traveling 
on a string that is rigidly attached to a support at one end as in Figure 17.9. When 
the pulse reaches the support, the string ends. As a result, the pulse undergoes 
reflection; that is, the pulse moves back along the string in the opposite direction.

Notice that the reflected pulse is inverted. This inversion can be explained as 
follows. When the pulse reaches the fixed end of the string, the string produces 
an upward force on the support. By Newton’s third law, the support must exert an 
equal-magnitude and oppositely directed (downward) reaction force on the string. 
This downward force causes a downward-oriented reflected pulse.

Reflected
pulse

Incident
pulse

b

c

a

Figure 17.9 The reflection of a 
traveling pulse at the fixed end of 
a stretched string. The reflected 
pulse is inverted, but its shape is 
otherwise unchanged.
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460 Chapter 17 Superposition and Standing Waves

Now consider another case. This time, the pulse arrives at the end of a string 
that is free to move vertically as in Figure 17.10. The tension at the free end is 
maintained because the string is tied to a ring of negligible mass that is free to 
slide vertically on a smooth post without friction. Again, the pulse is reflected, 
but this time it is not inverted. When it reaches the post, the pulse exerts a force 
on the free end of the string, causing the ring to accelerate upward. The ring 
rises as high as the incoming pulse, and then the downward component of the 
tension force pulls the ring back down. This movement of the ring produces a 
reflected pulse that is upward-oriented and that has the same amplitude as the 
incoming pulse.

Finally, consider a situation in which the boundary is intermediate between 
these two extremes. In this case, the medium does not end, but rather it changes in 
some way and continues. When there is a change in the medium, part of the energy 
in the incident pulse is reflected and part undergoes transmission; that is, some 
of the energy passes through the boundary. For instance, suppose a light string is 
attached to a heavier string as in Figure 17.11. When a pulse traveling on the light 
string reaches the boundary between the two strings, part of the pulse is reflected 
and inverted and part is transmitted to the heavier string. The reflected pulse is 
inverted for the same reasons described earlier in the case of the string rigidly 
attached to a support.

The reflected pulse has a smaller amplitude than the incident pulse. In Sec-
tion 16.4, we showed that the energy carried by a wave is related to its amplitude. 
According to the principle of conservation of energy, when the pulse breaks up 
into a reflected pulse and a transmitted pulse at the boundary, the sum of the ener-
gies of these two pulses must equal the energy of the incident pulse. Because the 
reflected pulse contains only part of the energy of the incident pulse, its amplitude 
must be smaller.

When a pulse traveling on a heavy string strikes the boundary between the heavy 
string and a lighter one as in Figure 17.12, again part is reflected and part is trans-
mitted. In this case, the reflected pulse is not inverted.

According to Equation 16.18, the speed of a wave on a string increases as 
the mass per unit length of the string decreases. In other words, a wave travels 
more rapidly on a light string than on a heavy string if both are under the same 
tension. The following general rules apply to reflected waves: When a wave or 
pulse travels from medium A to medium B and vA . vB (that is, when B is denser 
than A), it is inverted upon reflection. When a wave or pulse travels from medium 
A to medium B and vA , vB (that is, when A is denser than B), it is not inverted 
upon reflection.

Incident
pulse

Reflected
pulse

b

c

a

Figure 17.10 The reflection of a 
traveling pulse at the free end of 
a stretched string. The reflected 
pulse is not inverted.

Incident
pulse

The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

Figure 17.11 (a) A pulse traveling to the right on a 
light string approaches the junction with a heavier 
string. (b) The situation after the pulse reaches the 
junction.

Figure 17.12 (a) A pulse traveling to the right on a 
heavy string approaches the junction with a lighter 
string. (b) The situation after the pulse reaches 
the junction.

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.

a

b

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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   17.4    Analysis Model: Waves Under  
Boundary Conditions
In Section 17.2, we studied standing waves in a medium with no boundaries. In Sec-
tion 17.3, we investigated the effect of a rigid boundary on waves in a medium: the 
waves reflect from the boundary. In this section, let us combine these ideas to see 
how the existence of boundaries affects the standing wave.

Consider a string of length L fixed at both ends as shown in Figure 17.13. We will 
use this system as a model for a guitar string or piano string. Waves can travel in 
both directions on the string due to reflections from the ends. Therefore, standing 
waves can be set up in the string by a continuous superposition of incident and 
reflected waves. Notice that there is a boundary condition for the waves on the string: 
because the ends of the string are fixed, they must necessarily have zero displace-
ment and are therefore nodes by definition. The condition that both ends of the 
string must be nodes fixes the wavelength of the standing wave on the string: at the 
right end of the string, where x 5 L, Equation 17.2 gives us 

 L 5
n ln

2
 (17.4)

where the subscript on l indicates that different values of n will result in different 
values of the wavelength. The wavelength, in turn, determines the frequency of the 
wave according to Equation 16.12. The boundary condition results in the string 
having a number of discrete natural patterns of oscillation, called normal modes, 
each of which has a characteristic frequency that is easily calculated. This situation 
in which only certain frequencies of oscillation are allowed is called quantization. 
Quantization is a common occurrence when waves are subject to boundary condi-
tions and is a central feature in our discussions of quantum physics in the extended 
version of this text. Notice in Figure 17.8 that there are no boundary conditions, so 
standing waves of any frequency can be established; there is no quantization with-
out boundary conditions. Because boundary conditions occur so often for waves, 
we identify an analysis model called waves under boundary conditions for the dis-
cussion that follows.

The normal modes of oscillation for the string in Figure 17.13 can be described 
by imposing the boundary conditions that the ends be nodes and that the nodes 
be separated by one-half of a wavelength with antinodes halfway between the 
nodes. The first normal mode that is consistent with these requirements, shown in 
Figure 17.14a, has nodes at its ends and one antinode in the middle. This normal 
mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or, from Equation 17.4, l1 5 2L. The section of a standing wave 
from one node to the next node is called a loop. In the first normal mode, the string 
is vibrating in one loop. In the second normal mode (see Fig. 17.14b), the string 
vibrates in two loops. When the left half of the string is moving upward, the right 

L

x = 0 x = L

Figure 17.13  A string of length L 
fixed at both ends.

n � 1

N
A

N

L � – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n � 2 L � 2l

f2

b

Second harmonic

n  � 3

N N N NA A A

L  � – 3
3
2
l

f3

c

Third harmonic

Figure 17.14 The normal modes of vibration of the string in Figure 17.13 form a harmonic series. 
The string vibrates between the extremes shown.
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462 Chapter 17 Superposition and Standing Waves

half is moving downward. In this case, from Equation 17.4 with n 5 2, the wave-
length l2 is equal to the length of the string: l2 5 L. The third normal mode (see 
Fig. 17.14c) corresponds to the case in which l3 5 2L/3, and the string vibrates in 
three loops. In general, the wavelengths of the various normal modes for a string of 
length L fixed at both ends are found by rearranging Equation 17.4:

 ln 5
2L
n
 n 5 1, 2, 3, Á  (17.5)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.

The natural frequencies associated with the modes of oscillation are obtained 
from Equation 16.12, f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 17.5, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, Á  (17.6)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.

Because v 5 ÏTym (see Eq. 16.18) for waves on a string, where T is the tension in 
the string and m is its linear mass density, we can also express the natural frequen-
cies of a taut string as

 fn 5
n

2L
 ÎT

m
 n 5 1, 2, 3, Á  (17.7)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÎT

m
 (17.8)

The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 17.6). Frequencies of normal modes that exhibit such 
an integer-multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of a 
fundamental. Therefore, we do not use the term harmonic in association with those 
types of systems.

Let us examine now how the various harmonics are actually excited in a string. 
To excite only a single harmonic, the string would have to be distorted into a shape 
that corresponds to that of the desired harmonic. After being released, the string 
would vibrate at the frequency of that harmonic. This maneuver is difficult to per-
form, however, and is not how a string of a musical instrument is excited. If the 
string is distorted into a general, nonsinusoidal shape and then released, the result-
ing vibration of the string includes a combination of its various harmonics. Such a 
distortion occurs in musical instruments when the string is plucked (as in a guitar), 
bowed (as in a cello), or struck (as in a piano). The particular mixture of harmon-
ics in the string can be changed by plucking the guitar string or bowing the cello 
string at different locations.

The frequency of a string that defines the musical note that it plays is that of the 
fundamental, even though other harmonics are present. The additional harmonics 
determine the quality, or the timbre, of the sound without altering its frequency, as 
discussed further in Section 17.8. The quality of the sound is part of what allows you 

Wavelengths of 
normal modes

Natural frequencies of 
normal modes as functions  

of wave speed and length  
of string

Natural frequencies of 
normal modes as functions  

of string tension and  
linear mass density

Fundamental frequency 
of a taut string
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to identify instruments playing the same note. For example, you can differentiate 
between a guitar, banjo, or a sitar playing the same note.

The string’s frequency can be varied by changing the string’s tension or its 
length. For example, the tension in guitar and violin strings is varied by a screw 
adjustment mechanism or by tuning pegs located on the neck of the instrument. 
As the tension is increased, the frequency of the normal modes increases in accor-
dance with Equation 17.7. Once the instrument is “tuned,” players vary the fre-
quency by moving their fingers along the neck, thereby changing the length L 
of the oscillating portion of the string. As the length is shortened, the frequency 
increases because, as Equation 17.7 specifies, the normal-mode frequencies are 
inversely proportional to string length.

In the opening storyline, when you pluck an open string on your roommate’s 
guitar, the fundamental mode is that shown in Figure 17.4a. Then, you place your 
finger lightly at the midpoint of the string. Because your finger is pressing only 
lightly on the string, the entire string can still vibrate when you pluck it. But your 
finger imposes a node at the center of the string. Therefore, the fundamental mode 
of vibration now looks like Figure 17.4b. This is the n 5 2 harmonic of the open 
string, so the frequency is twice as high: an octave.

Q uick Quiz 17.3  When a standing wave is set up on a string fixed at both 
ends, which of the following statements is true? (a) The number of nodes is 
equal to the number of antinodes. (b) The wavelength is equal to the length 
of the string divided by an integer. (c) The frequency is equal to the number 
of nodes times the fundamental frequency. (d) The shape of the string at any 
instant shows a symmetry about the midpoint of the string.

analYSiS Model Waves Under Boundary Conditions

Imagine a wave that is not free to 
travel throughout all space as in the 
traveling wave model. If the wave 
is subject to boundary conditions, 
such that certain requirements must 
be met at specific locations in space, 
the wave is limited to a set of normal 
modes with quantized wavelengths 
and quantized natural frequencies.

For waves on a string fixed at both ends, the natural frequencies are

 fn 5
n

2L ÎT
m

     n 5 1, 2, 3, . . . (17.7)

where T is the tension in the string and m is its linear mass density.

Examples: 

 ● waves traveling back and forth on 
a guitar string combine to form a 
standing wave 

 ● sound waves traveling back and forth 
in a clarinet combine to form standing 
waves (Section 17.6)

 ● a microscopic particle confined to a 
small region of space is modeled as a 
wave and exhibits quantized energies 
(Chapter 40)

 ● the Fermi energy of a metal is deter-
mined by modeling electrons as wave-
like particles in a box (Chapter 42)

n � 1

n � 2

n � 3

 Example 17.3    Give Me a C Note!

The middle C string on a piano has a fundamental frequency of 262 Hz, and the string for the first A above middle C has a 
fundamental frequency of 440 Hz.

(A) Calculate the frequencies of the next two harmonics of the C string.

S o l U T I o N

Conceptualize Remember that the harmonics of a vibrating string have frequencies that are related by integer multiples of 
the fundamental.

continued
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464 Chapter 17 Superposition and Standing Waves

17.3 c o n t i n u e d

Categorize This first part of the example is a simple substitution problem.

Knowing that the fundamental frequency is f1 5 262 Hz,  f2 5 2f1 5  524 Hz 
find the frequencies of the next harmonics by multiplying  

f3 5 3f1 5  786 Hz
 

by integers:

(B) If the A and C strings have the same linear mass density m and length L, determine the ratio of tensions in the two strings.

S o l U T I o N

Categorize This part of the example is more of an analysis problem than is part (A) and uses the waves under boundary 
conditions model.

Analyze Use Equation 17.8 to write expressions for the  f1A 5
1

2L
 ÎTA

m
    and    f1C 5

1
2L

 ÎTC

m
 

fundamental frequencies of the two strings:

Divide the first equation by the second and solve for the  
f 1A

f 1C

5 ÎTA

TC

   S   
TA

TC

5 S f1A

f 1C
D2

5 S440 Hz
262 HzD2

5  2.82 
ratio of tensions:

Finalize If the frequencies of piano strings were determined solely by tension, this result suggests that the ratio of tensions 
from the lowest string to the highest string on the piano would be enormous. Such large tensions would make it difficult to 
design a frame to support the strings. In reality, the frequencies of piano strings vary due to additional parameters, including 
the mass per unit length and the length of the string. The What If? below explores a variation in length.

W H A T  I F ?  If you look inside a real piano, you’ll see that the assumption made in part (B) is only partially true. The 
strings are not likely to have the same length. The string densities for the given notes might be equal, but suppose the length 
of the A string is only 64% of the length of the C string. What is the ratio of their tensions?

Answer Using Equation 17.8 again, we set up the ratio of frequencies:

f1A

f1C

5
L C

LA
ÎTA

TC

   S   
TA

TC

5 SLA

L C
D2S f1A

f1C
D2

TA

TC

5 s0.64d2S440 Hz
262 HzD2

5 1.16

Notice that this result represents only a 16% increase in tension, compared with the 182% increase in part (B).

 Example 17.4    Changing String Vibration with Water

One end of a horizontal string is attached to a vibrating blade, and the other end passes over a pulley as in Figure 17.15a. A 
sphere of mass 2.00 kg hangs on the end of the string. The string is vibrating in its second harmonic. A container of water 
is raised under the sphere so that the sphere is completely submerged. In this configuration, the string vibrates in its fifth 
harmonic as shown in Figure 17.15b. What is the radius of the sphere?

S o l U T I o N

Conceptualize Imagine what happens when the sphere is immersed in the water. The buoyant force acts upward on the sphere, 
reducing the tension in the string. The change in tension causes a change in the speed of waves on the string, which in turn causes 
a change in the wavelength. This altered wavelength results in the string vibrating in its fifth normal mode rather than the second.

Categorize The hanging sphere is modeled as a particle in equilibrium. One of the forces acting on it is the buoyant force from 
the water. We also apply the waves under boundary conditions model to the string.

ba

Figure 17.15  (Example 17.4) 
(a) When the sphere hangs in air, 
the string vibrates in its second 
harmonic. (b) When the sphere 
is immersed in water, the string 
vibrates in its fifth harmonic.
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17.4 c o n t i n u e d

Analyze Apply the particle in equilibrium model to the  o F 5 T1 2 mg 5 0 
sphere in Figure 17.15a, identifying T1 as the tension in 

 T1 5 mg
 

the string as the sphere hangs in air:

Apply the particle in equilibrium model to the sphere in  T2 1 B 2 mg 5 0 
Figure 17.15b, where T2 is the tension in the string as the 

 (1)   B 5 mg 2 T2

 
sphere is immersed in water:

The desired quantity, the radius of the sphere, will appear in the expression for the buoyant force B. Before proceeding in this 
direction, however, we must evaluate T2 from the information about the standing wave.

Write the equation for the frequency of a standing wave   
on a string (Eq. 17.7) twice, once before the sphere is  
immersed and once after. Notice that the frequency f is  
the same in both cases because it is determined by the  
vibrating blade. In addition, the linear mass density m  
and the length L of the vibrating portion of the string  
are the same in both cases. Divide the equations:

Solve for T2: T2 5 Sn 1

n 2
D2

T1 5 Sn 1

n 2
D2

mg

Substitute this result into Equation (1): (2)   B 5 mg 2 Sn 1

n 2
D2

mg 5 mg 31 2 Sn 1

n 2
D24

Using Equation 14.5, express the buoyant force in terms  B 5 rwater gVsphere 5 rwater g s4
3 pr 3d 

of the radius of the sphere:

Solve for the radius of the sphere and substitute from  r 5 S 3B
4prwaterg

D1y3

 5 5 3m
4prwater

  31 2 Sn 1

n 2
D2461y3

 
Equation (2):

Substitute numerical values: r 5 5 3s2.00 kgd
4p s1 000 kgym3d

 31 2 S2
5D2461y3

 

5  0.073 7 m 5  7.37 cm

Finalize Notice that only certain radii of the sphere will result in the string vibrating in a normal mode; the speed of waves 
on the string must be changed to a value such that the length of the string is an integer multiple of half wavelengths. This 
limitation is a feature of the quantization that was introduced earlier in this chapter: the sphere radii that cause the string to 
vibrate in a normal mode are quantized.

f 5
n 1

2L ÎT1

m

 f 5
n 2

2L ÎT2

m

   S    1 5
n 1

n 2
ÎT1

T2

   17.5    Resonance
We have seen that a system such as a taut string is capable of oscillating in one 
or more normal modes of oscillation. We find that if a periodic force is applied 
to such a system, the amplitude of the resulting motion of the string is greatest 
when the frequency of the applied force is equal to one of the natural frequen-
cies of the system. This phenomenon, known as resonance, was discussed in Sec-
tion 15.7 with regard to a simple harmonic oscillator. Although a block–spring 
system or a simple pendulum has only one natural frequency, standing-wave sys-
tems have a whole set of natural frequencies, such as that given by Equation 17.7 
for a string. Because an oscillating system exhibits a large amplitude when 
driven at any of its natural frequencies, these frequencies are often referred to as 
resonance frequencies.

Consider Figure 17.16, which shows a string being driven by a vibrating blade. 
When the frequency of the blade equals one of the natural frequencies of the string, 

Vibrating
blade 

When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Figure 17.16  Standing waves are 
set up in a string when one end is 
connected to a vibrating blade.
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466 Chapter 17 Superposition and Standing Waves

standing waves are produced and the string oscillates with a large amplitude. In 
this resonance case, the wave generated by the oscillating blade is in phase with the 
reflected wave and the string absorbs energy from the blade. If the string is driven 
at a frequency that is not one of its natural frequencies, the oscillations are of low 
amplitude and exhibit no stable pattern.

Resonance is very important in the excitation of musical instruments based on 
air columns. We shall discuss this application of resonance in Section 17.6.

   17.6    Standing Waves in Air Columns
The waves under boundary conditions model can also be applied to sound waves in 
a column of air such as that inside an organ pipe or a clarinet. Standing waves in 
this case are the result of interference between longitudinal sound waves traveling 
in opposite directions.

In a pipe closed at one end, the closed end is a displacement node because the 
rigid barrier at this end does not allow longitudinal motion of the air. Because 
the pressure wave is 908 out of phase with the displacement wave (see Section 16.6), 
the closed end of an air column corresponds to a pressure antinode (that is, a 
point of maximum pressure variation).

The open end of an air column is approximately a displacement antinode1 and 
a pressure node. We can understand why no pressure variation occurs at an open 
end by noting that the end of the air column is open to the atmosphere; therefore, 
the pressure at this end must remain constant at atmospheric pressure.

You may wonder how a sound wave can reflect from an open end because 
there may not appear to be a change in the medium at this point: the medium 
through which the sound wave moves is air, both inside and outside the pipe. 
Sound can be represented as a pressure wave, however, and a compression region 
of the sound wave is constrained by the sides of the pipe as long as the region 
is inside the pipe. As the compression region exits at the open end of the pipe, 
the constraint of the pipe is removed and the compressed air is free to expand 
into the atmosphere. Therefore, there is a change in the character of the medium 
between the inside of the pipe and the outside even though there is no change in 
the material of the medium. This change in character is sufficient to allow some 
reflection.

With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.

The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 17.17a. The diagrams in the left column show graphical represen-
tations of the displacement of elements of air from their equilibrium positions. The 
second column shows pictorial representations of the pressure in the air at various 
locations in the pipe, following the technique used in Figure 16.17. There is a lot of 
information in Figure 17.17. Study it carefully. 

Notice that both ends of the pipe in Figure 17.17a are displacement antinodes 
(approximately) or pressure nodes. In the first normal mode, the standing wave 
extends between two adjacent displacement antinodes or two adjacent pressure 
nodes, which is a distance of half a wavelength. Therefore, the wavelength is twice 
the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 17.17a 

1 Strictly speaking, the open end of an air column is not exactly a displacement antinode. A compression reaching 
an open end does not reflect until it passes beyond the end. For a tube of circular cross section, an end correction 
equal to approximately 0.6R , where R is the tube’s radius, must be added to the length of the air column. Hence, 
the effective length of the air column is longer than the true length L . We ignore this end correction in this 
discussion.

Pitfall Prevention 17.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse The 
standing longitudinal waves are 
represented graphically on the 
left in Figure 17.17a with what 
look like transverse sinusoidal 
functions. Keep in mind that the 
actual displacements of elements 
of air, represented by s(x, t) in 
Equation 16.28, are longitudinal. 
In a graphical representation, 
however, we must use perpendic-
ular axes, so the displacement is 
graphed on a vertical axis even 
though the actual direction of 
the displacement is horizontal! 
The pressure diagrams on the 
right in Figure 17.17a are pictorial 
representations and demonstrate 
the longitudinal nature of the 
sound waves.
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shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because the fundamental frequency is given by the same expression as that for a 
string (see Eq. 17.6), we can express the natural frequencies of oscillation as

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . .  (17.9)

Despite the similarity between Equations 17.6 and 17.9, you must remember that v 
in Equation 17.6 is the speed of waves on the string, whereas v in Equation 17.9 is 
the speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node or a pressure antinode (see Fig. 17.17b). In this case, the standing wave 
for the fundamental mode extends from an antinode to the adjacent node, which 
is one-fourth of a wavelength. Hence, the wavelength for the first normal mode 
is 4L, and the fundamental frequency is f1 5 v/4L. As Figure 17.17b shows, the 
higher-frequency waves that satisfy our conditions are those that have a node at the 
closed end and an antinode at the open end; hence, the higher harmonics do not 
include all integer multiples of the fundamental frequency, but rather have only 

  Natural frequencies of a pipe  
open at both ends

First harmonic: First harmonic:

Second harmonic:

Displacement wave : Displacement wave :Pressure wave : Pressure wave :

Third harmonic:

Third harmonic: Fifth harmonic:

1 � 2Ll f1 � —v
2L 1 � 4Ll f1 � —v
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v
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N
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N
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N
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f3 �      � —3f1
3v
4L3 � — L4

3l

f5 �      � —5f1
5v
4L5 � — L4

5lf3 �      � —3f1
3v
2L3 � — L2

3l

In a pipe open at both ends, the ends are displacement 
antinodes and pressure nodes. The harmonic series 
contains all integer multiples of the fundamental.

In a pipe closed at one end, the open end is a displacement 
antinode and a pressure node. The closed end is a 
displacement node and a pressure antinode. The harmonic 
series contains odd multiples of the fundamental.

a b

Figure 17.17 Standing longitudinal sound waves in air columns, showing the wave patterns for the 
three lowest frequencies. (a) In an open column, the standing waves are symmetric around the mid-
point of the column. On the left are graphical representations of the displacement of elements of the 
air. On the right are pictorial representations of the pressure at various points in the wave. (b) In a 
column closed at one end, the standing waves are not symmetric. Again, the left-hand diagrams show 
graphical representations of the displacement of elements of the air, while the right-hand diagrams 
are pictorial representation of the pressure.
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468 Chapter 17 Superposition and Standing Waves

the odd-multiple frequencies 3f1, 5f1, . . . .

In a pipe closed at one end, the natural frequencies of oscillation form a har-
monic series that includes only odd integral multiples of the fundamental 
frequency.

We express this result mathematically as

 fm 5 m 
v

4L
 m 5 1, 3, 5, . . . or fn 5 s2n 2 1d 

v
4L

    n 5 1, 2, 3, . . . (17.10)

It is interesting to investigate what happens to the frequencies of instruments 
based on air columns and strings during a concert as the temperature rises. The 
sound emitted by a flute, for example, becomes sharp (increases in frequency) as 
the flute warms up because the speed of sound increases in the increasingly warmer 
air inside the flute (consider Eq. 17.9). The sound produced by a violin becomes flat 
(decreases in frequency) as the strings thermally expand because the expansion 
causes their tension to decrease (see Eq. 17.7).

Musical instruments based on air columns are generally excited by resonance. 
The air column is presented with a sound wave that is rich in many frequencies. 
The air column then responds by resonance with a large-amplitude oscillation to 
the frequencies that match the quantized frequencies in its set of harmonics. In 
many woodwind instruments, the initial rich sound is provided by a vibrating reed. 
In brass instruments, this excitation is provided by the sound coming from the 
vibration of the player’s lips. In a flute, the initial excitation comes from blowing 
over an edge at the mouthpiece of the instrument in a manner similar to blowing 
across the opening of a bottle with a narrow neck. The sound of the air rushing 
across the bottle opening has many frequencies, including one that sets the air cav-
ity in the bottle into resonance.

Q uick Quiz 17.4  A pipe open at both ends resonates at a fundamental 
frequency fopen. When one end is covered and the pipe is again made to res-
onate, the fundamental frequency is fclosed. Which of the following expres-
sions describes how these two resonant frequencies compare? (a) fclosed 5 fopen 
(b) fclosed 5 12 fopen (c) fclosed 5 2fopen (d) fclosed 5 32 fopen

Q uick Quiz 17.5  Balboa Park in San Diego has an outdoor organ. When the 
air temperature increases, the fundamental frequency of one of the organ pipes  
(a) stays the same, (b) goes down, (c) goes up, or (d) is impossible to determine.

Natural frequencies of 
a pipe closed at one end  

and open at the other

 Example 17.5    Wind in a Culvert

A section of drainage culvert 1.23 m in length makes a howling noise when the wind blows across its open ends.

Determine the frequencies of the first three harmonics of the culvert if it is cylindrical in shape and open at both ends. 
Take v 5 343 m/s as the speed of sound in air.

S o l U T I o N

Conceptualize The sound of the wind blowing across the end of the pipe contains many frequencies, and the culvert responds 
to the sound by resonance, vibrating at the natural frequencies of the air column.

Categorize This example is a relatively simple substitution problem.

Find the frequency of the first harmonic of the culvert,  f1 5
v

2L
5

343 mys
2s1.23 md

5  139 Hz 
modeling it as an air column open at both ends:

Find the next harmonics by multiplying by integers: f2 5 2f1 5  279 Hz

f3 5 3f1 5  418 Hz

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    17.7 Beats: Interference in Time 469

 Example 17.6    Measuring the Frequency of a Tuning Fork

A simple apparatus for demonstrating resonance in an air col-
umn is depicted in Figure 17.18. A vertical pipe open at both ends 
is partially submerged in water, and a tuning fork vibrating at 
an unknown frequency is placed near the top of the pipe. The 
length L of the air column can be adjusted by moving the pipe 
vertically. The sound waves generated by the fork are reinforced 
when L corresponds to one of the resonance frequencies of the 
pipe. For a certain pipe, the smallest value of L for which a peak 
occurs in the sound intensity is 9.00 cm.

(A) What is the frequency of the tuning fork?

S o l U T I o N

Conceptualize Sound waves from the tuning fork enter the pipe at 
its upper end. Although the pipe is open at its lower end to allow 
the water to enter, the water’s surface acts like a barrier, as if the 
end of the part of the pipe that is above the water were closed. The 
waves reflect from the water surface and combine with those moving 
downward to form a standing wave.

Categorize Because of the reflection of the sound waves from the 
water surface, we can model the part of the pipe that is above the water as open at the upper end and closed at the lower end. 
Therefore, we can apply the waves under boundary conditions model to this situation.

Analyze
Use Equation 17.10 to find the fundamental frequency  f1 5

v
4L

5
343 mys

4s0.090 0  md
5  953 Hz 

for L 5 0.090 0 m:

Because the tuning fork causes the air column to resonate at this frequency, this frequency must also be that of the tuning fork.

(B) What are the values of L for the next two resonance conditions?

S o l U T I o N

Use Equation 16.12 to find the wavelength of the sound  l 5
v
f

5
343 mys
953 Hz

5 0.360 m 
wave from the tuning fork:

Notice from Figure 17.18b that the length of the air column L 5 3l/4 5  0.270 m 
above the water for the second resonance is 3l/4:

Notice from Figure 17.18b that the length of the air column L 5 5l/4 5  0.450 m 
above the water for the third resonance is 5l/4:

Finalize Consider how this problem differs from the preceding example. In the culvert, the length was fixed and the air col-
umn was presented with a mixture of many frequencies. The pipe in this example is presented with one single frequency from 
the tuning fork, and the length of the pipe above the water is varied until resonance is achieved.

f � ?
First

resonance

Second
resonance

(third
harmonic)

Third
resonance

(fifth
harmonic)

/4

3 /4

5 /4

l

l

l

L

Water

a b

Figure 17.18  (Example 17.6) (a) Apparatus for demon-
strating the resonance of sound waves in a pipe closed at 
one end. The length L of the air column is varied by moving 
the pipe vertically while it is partially submerged in water. 
(b) The first three normal modes of the system shown in (a).

   17.7    Beats: Interference in Time
The interference phenomena we have studied so far involve the superposition of 
two or more waves having the same frequency. Because the amplitude of the oscil-
lation of elements of the medium varies with the position in space of the element 
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in 
strings and pipes are common examples of spatial interference.

Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two 
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470 Chapter 17 Superposition and Standing Waves

waves are observed at a point in space, they are periodically in and out of phase. 
That is, there is a temporal (time) alternation between constructive and destructive 
interference. As a consequence, we refer to this phenomenon as interference in time 
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.

Definition of beating 

The number of amplitude maxima one hears per second, or the beat frequency, 
equals the difference in frequency between the two sources as we shall show below. 
The maximum beat frequency that the human ear can detect is about 20 beats/s. 
When the beat frequency exceeds this value, the beats blend indistinguishably with 
the sounds producing them.

Consider two sound waves of equal amplitude and slightly different frequencies 
f1 and f2 traveling through a medium. We use equations similar to Equation 16.13 to 
represent the wave functions for these two waves at a point that we identify as x 5 0.  
We also choose the phase angle in Equation 16.13 as f 5 p/2:

 y1 5 A sin Sp

2
2 v1tD 5 A cos s2pf1td

 y2 5 A sin Sp

2
2 v2tD 5 A cos s2pf 2td

Using the superposition principle, we find that the resultant wave function at this 
point is

y 5 y1 1 y2 5 A (cos 2pf1t 1 cos 2pf2t)

The trigonometric identity

cos a 1 cos b 5 2 cos Sa 2 b
2 D cos Sa 1 b

2 D
allows us to write the expression for y as

 y 5 32A cos 2pSf1 2 f2

2 Dt4 cos 2pSf1 1 f2

2 Dt (17.11)

Graphs of the individual waves and the resultant wave are shown in Figure 17.19. 
From the factors in Equation 17.11, we see that the resultant wave has an effective 
frequency equal to the average frequency ( f1 1 f2)/2. This wave is multiplied by an 
envelope wave given by the expression in the square brackets:

 yenvelope 5 2A cos 2pSf1 2 f2

2 Dt (17.12)

That is, the amplitude and therefore the intensity of the resultant sound vary 
in time. The dashed black line in Figure 17.19b is a graphical representation of 
the envelope wave in Equation 17.12 and is a sine wave varying with frequency  
( f1 2 f2)/2.

A maximum in the amplitude of the resultant sound wave is detected whenever

cos 2pSf 1 2 f2

2 Dt 5 61

Resultant of two waves of 
different frequencies but 

equal amplitude
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Hence, there are two maxima in each period of the envelope wave. Because the 
amplitude varies with frequency as ( f1 2 f2)/2, the number of beats per second, or 
the beat frequency fbeat, is twice this value. That is,

 fbeat 5 u f1 2 f 2u (17.13)

For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at 
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz 
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a 440-Hz 
sound wave go through an intensity maximum four times every second.

 Beat frequency

y

y

t

tb

a

Figure 17.19 Beats are formed 
by the combination of two waves 
of slightly different frequencies. 
(a) The individual waves, shown in 
blue and green. (b) The combined 
wave. The envelope wave (dashed 
line) represents the beating of the 
combined sounds.

 Example 17.7    The Mistuned Piano Strings

Two identical piano strings of length 0.750 m are each tuned exactly to 440 Hz. The tension in one of the strings is then 
increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings?

S o l U T I o N

Conceptualize As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when both 
strings are played, they will have different frequencies and beats will be heard.

Categorize We must combine our understanding of the waves under boundary conditions model for strings with our new 
knowledge of beats.

Analyze Set up a ratio of the fundamental frequencies  
f 2

f 1

5
sv2y2Ld

sv1y2Ld
5

v2

v1

 
of the two strings using Equation 17.6 with n 5 1:

Use Equation 16.18 to substitute for the wave speeds on  
f 2

f 1

5
ÏT2ym

ÏT1ym
5ÎT2

T1

 
the strings:

Incorporate that the tension in one string is 1.0% larger  
f 2

f 1

5Î1.010T1

T1

5 1.005 
than the other; that is, T2 5 1.010T1:

Solve for the frequency of the tightened string: f2 5 1.005f1 5 1.005(440 Hz) 5 442 Hz

Find the beat frequency using Equation 17.13: fbeat 5 442 Hz 2 440 Hz 5  2 Hz

Finalize Notice that a 1.0% mistuning in tension leads to an easily audible beat frequency of 2 Hz. A piano tuner can use 
beats to tune a stringed instrument by “beating” a note against a reference tone of known frequency. The tuner can then 
adjust the string tension until the frequency of the sound it emits equals the frequency of the reference tone. The tuner 
does so by tightening or loosening the string until the beats produced by it and the reference source become too infrequent 
to notice.
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472 Chapter 17 Superposition and Standing Waves

   17.8    Nonsinusoidal Waveforms
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.

Recall that when a system under boundary conditions vibrates, it does so with a 
combination of frequencies occurring simultaneously. When those frequencies are 
integer multiples of a fundamental frequency, such as from a string or an air col-
umn, the result is a musical sound. A listener can assign a pitch to the sound based 
on the fundamental frequency. Pitch is a psychological reaction to a sound that 
allows the listener to place the sound on a scale from low to high (bass to treble). 
Combinations of frequencies that are not integer multiples of a fundamental, such 
as from a drumhead, result in a noise rather than a musical sound. It is much harder 
for a listener to assign a pitch to a noise than to a musical sound.

The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.

The sound waveforms produced by the majority of musical instruments are 
nonsinusoidal. Characteristic waveforms produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 17.20. Each instrument 
has its own characteristic waveform. Notice, however, that despite the differences 
in the waveforms, each one is periodic. This point is important for our analysis 
of these waves. Notice that the frequencies at which the waveforms repeat are the 
same; the addition of higher harmonics does not affect the fundamental frequency 
of the sound.

The problem of analyzing nonsinusoidal waveforms appears at first sight to be 
a formidable task. If the waveform is periodic, however, it can be represented as 
closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
waveform is called a Fourier series. Let y(t) be any function that is periodic in time 
with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this function 
can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (17.14)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer mul-
tiples of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the 
amplitudes of the various harmonics. Figure 17.21 represents a harmonic analysis 
of the waveforms shown in Figure 17.20. Each bar in the graph represents one of 
the terms in the series in Equation 17.14 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), so that all coefficients except for A1 are 
zero in Equation 17.14, and the waveform is a pure sine wave. On the other hand, 
the flute and clarinet produce the first harmonic and many higher ones.

Fourier’s theorem 

Tuning fork

Flute

Clarinet

t

t

t

b

c

a

Figure 17.20  Sound waveforms 
produced by (a) a tuning fork, 
(b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1768–1830), a French physicist and mathematician.

Pitfall Prevention 17.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.
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Square wave

5f

f

3f

f

3f

b

c

a
Waves of frequency f and 
3f are added to give the 
blue curve.

One more odd harmonic 
of frequency 5f  is added 
to give the green curve.

The synthesis curve 
(red-brown) approaches 
closer to the square wave 
(purple curve) when odd 
frequencies up to 9f  are 
added.

Figure 17.22 Fourier synthesis of 
a square wave, represented by the 
sum of odd multiples of the first 
harmonic, which has frequency f.
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Figure 17.21  Harmonics of the waveforms shown in Figure 17.20. Notice the variations in intensity 
of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 17.20.

Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

We have discussed the analysis of a waveform using Fourier’s theorem. The anal-
ysis involves determining the coefficients of the harmonics in Equation 17.14 from 
a knowledge of the waveform. The reverse process, called Fourier synthesis, can also 
be performed. In this process, various harmonics are added together to form a 
resultant waveform. As an example of Fourier synthesis, consider the building of 
a square wave as shown in Figure 17.22. The symmetry of the square wave results 
in only odd multiples of the fundamental frequency combining in its synthesis. In 
Figure 17.22a, the blue curve shows the combination of f and 3f, shown as black 
curves. In Figure 17.22b, we have added 5f to the combination and obtained the 
green curve. Notice how the general shape of the square wave is approximated, 
even though the upper and lower portions are not flat as they should be.

Figure 17.22c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations in 
Figures 17.22a and 17.22b. To approximate the square wave as closely as possible, we 
must add all odd multiples of the fundamental frequency, up to infinite frequency.

Using modern technology, musical sounds can be generated electronically 
by mixing different amplitudes of any number of harmonics. These widely used 
electronic music synthesizers are capable of producing an infinite variety of 
musical tones.
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Summary
 › Concepts and Principles

The superposition principle specifies 
that when two or more waves move 
through a medium, the value of the 
resultant wave function equals the alge-
braic sum of the values of the individual 
wave functions.

Standing waves are formed from the combination of two sinusoidal waves having the same frequency, amplitude, and wavelength 
but traveling in opposite directions. The resultant standing wave is described by the wave function

 y 5 (2A sin kx) cos vt (17.1)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple harmonic motion of any element of the medium 
varies according to its position as 2A sin kx. The points of zero amplitude (called nodes) occur at x 5 nl/2 (n 5 0, 1, 2, 3, . . .). The 
maximum amplitude points (called antinodes) occur at x 5 nl/4 (n 5 1, 3, 5, . . .). Adjacent antinodes are separated by a distance 
l/2. Adjacent nodes also are separated by a distance l/2.

The phenomenon of beating is the periodic variation in intensity at a given point 
due to the superposition of two waves having slightly different frequencies. The beat 
frequency is

 f beat 5 u f1 2 f 2u (17.13)

where f1 and f2 are the frequencies of the individual waves.

 › Analysis Models for Problem Solving

Waves in Interference. When two travel-
ing waves having equal frequencies super-
impose, the resultant wave is described 
by the principle of superposition and has 
an amplitude that depends on the phase 
angle f between the two waves. Construc-
tive interference occurs when the two waves 
are in phase, corresponding to f 5 0, 2p, 
4p, . . . rad. Destructive interference occurs 
when the two waves are 1808 out of phase, 
corresponding to f 5 p, 3p, 5p, . . . rad.

y1 � y2

y1 � y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1

Waves Under Boundary Conditions. 
When a wave is subject to boundary 
conditions, only certain natural fre-
quencies are allowed; we say that the 
frequencies are quantized.

For waves on a string fixed at both 
ends, the natural frequencies are

 fn 5
n

2L ÎT
m

     n 5 1, 2, 3, . . . (17.7)

where T is the tension in the string and m is its linear mass density.
For sound waves with speed v in an air column of length L open at both ends, 

the natural frequencies are

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . . (17.9)

If an air column is open at one end and closed at the other, only odd harmon-
ics are present and the natural frequencies are

 fm 5 m 
v

4L
 m 5 1, 3, 5, . . . or fn 5 s2n 2 1d 

v
4L

    n 5 1, 2, 3, . . . (17.10)

n � 1

n � 2

n � 3

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. ACTIVITy  You and your friends decide to found a small 
start-up business in your garage. Your business will design 
and build acoustic guitars with steel strings. You perform 
research online and decide on the particular strings you 
will use. The table shows data from your research for the six 
strings that will be used on your guitars.

Open String Note
Fundamental  

Frequency (Hz)
String weight/unit 
length (1025 lb/in)

 e9 329.6 2.000
b 246.9 2.930
g 196.0 5.870
d 146.8 9.180
 A 110.0 14.70
E  82.41 32.20
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The system of naming notes used in the first column of the 
table is such that middle C (as played on a piano) is notated 
with lowercase c9. The notes in the octave above middle C 
use this lower case/primed notation. The C below middle C 
(and the notes in the octave starting with this C) is notated 
with a simple lower case c. The next C down (and the notes 
in the octave starting with this C) is notated with a capital 
letter C. Therefore, the E-note of the lowest string on the 
guitar is two octaves below the e9-note of the highest string.

You design your guitars so that the scale length of the 
string (the length of the vibrating portion of the string) is 
25.50 in for all six strings. (a) After selecting the strings that 
will be used, your team needs to choose the particular wood 
that will be used in the guitar, and then design the thick-
ness of the wood on the front face of the guitar. This choice 
and this design will depend on the total tension exerted by 
the strings on the front face. What is the total tension in all 
six strings? (b) Another part of your design relates to the 
wave speed in the strings. For your design, the wave speed in 
the e9-string should be about four times that in the E-string. 
Does the data above satisfy this design criterion? (c) Would 
any guitar designed like this one not satisfy the design crite-
ria in part (b)?

2. ACTIVITy  Set up four identical glass bottles filled with 
increasing levels of water from left to right. Have part of 
your group strike the bottles with a spoon from left to right 
and listen to how the frequencies change. Now have the 
other part blow into the top of each bottle from left to right 
and listen to how the frequencies change. Why do the fre-
quencies change in opposite directions for these two exper-
iments? What’s vibrating in each case?

3. ACTIVITy  Cost-free signal generator or function generator 
apps are available for download to your smartphone. Have two 
members of your group download an app that has the capa-
bility of performing a frequency sweep. Set one of the phones 
to play a continuous sine wave of frequency 4 000 Hz. Set the 
other to begin a downward sine wave sweep from 3 800 Hz to 
3 000 Hz. Start both phones playing at the same time. Have 
each member of the group listen carefully to the combined 
sound. While you will clearly hear the frequency of the second 
phone going down, some members of the group may also hear 
a sound going up in frequency. It will be different in nature; it 
will sound as if it is coming from inside your ear rather than 
from the smartphones. Rotate your head back and forth, 
which may help you hear it. What is causing this sound?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Note: Unless otherwise specified, assume the speed of sound 
in air is 343 m/s, its value at an air temperature of 20.08C. At 
any other Celsius temperature TC, the speed of sound in air is 
described by

v 5 331 Î1 1
TC

273

where v is in m/s and T is in 8C.

Section 17.1 Analysis Model: Waves in Interference

1. Two waves on one string are described by the wave functions

y1 5 3.0 cos (4.0x 2 1.6t)  y2 5 4.0 sin (5.0x 2 2.0t)

  where x and y are in centimeters and t is in seconds. Find the 
values of y1 1 y2 at the points (a) x 5 1.00, t 5 1.00; (b) x 5 
1.00, t 5 0.500; and (c) x 5 0.500, t 5 0. Note: Remember 
that the arguments of the trigonometric functions are in 
radians.

2. Two pulses of different amplitudes approach each other, 
each having a speed of v 5 1.00 m/s. Figure P17.2 shows the 

positions of the pulses at time t 5 0. (a) Sketch the resultant 
wave at t 5 2.00 s, 4.00 s, 5.00 s, and 6.00 s. (b) What If? If 
the pulse on the right is inverted so that it is upright, how 
would your sketches of the resultant wave change?

3. Two wave pulses A and B are moving in opposite directions, 
each with a speed v 5 2.00 cm/s. The amplitude of A is twice 
the amplitude of B. The pulses are shown in Figure P17.3 at 
t 5 0. Sketch the resultant wave at t 5 1.00 s, 1.50 s, 2.00 s, 
2.50 s, and 3.00 s.

4. Why is the following sit-
uation impossible? Two 
identical loudspeakers 
are driven by the same 
oscillator at frequency 
200 Hz. They are located 
on the ground a distance 
d 5 4.00 m from each 
other. Starting far from 
the speakers, a man walks 
straight toward the right-
hand speaker as shown in 
Figure P17.4. After pass-
ing through three minima in sound intensity, he walks to 
the next maximum and stops. Ignore any sound reflection 
from the ground.
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476 Chapter 17 Superposition and Standing Waves

5. Two pulses traveling on the same string are described by

y 1 5
5

s3x 2 4td2 1 2
        y 2 5

25
s3x 1 4t 2 6d2 1 2

  (a) In which direction does each pulse travel? (b) At what 
instant do the two pulses cancel for all x ? (c) At what point 
do the two pulses cancel at all times t ?

6. Two identical loudspeakers 10.0 m apart are driven by the 
same oscillator with a frequency of f 5 21.5 Hz (Fig. P17.6) 
in an area where the speed of sound is 344 m/s. (a) Show 
that a receiver at point A records a minimum in sound inten-
sity from the two speakers. (b) If the receiver is moved in the 
plane of the speakers, show that the path it should take so that 
the intensity remains at a minimum is along the hyperbola  
9x2 2 16y2 5 144 (shown in red-brown in Fig. P17.6). (c) Can 
the receiver remain at a minimum and move very far away 
from the two sources? If so, determine the limiting form of 
the path it must take. If not, explain how far it can go.

7. Two sinusoidal waves on a string are defined by the wave 
functions

y1 5 2.00 sin (20.0x 2 32.0t)  y2 5 2.00 sin (25.0x 2 40.0t)

  where x, y1, and y2 are in centimeters and t is in seconds. 
(a) What is the phase difference between these two waves at 
the point x 5 5.00 cm at t 5 2.00 s? (b) What is the positive 
x value closest to the origin for which the two phases differ 
by 6p at t 5 2.00 s? (At that location, the two waves add 
to zero.)

Section 17.2 Standing Waves

8. Verify by direct substitution that the wave function for a 
standing wave given in Equation 17.1,

y 5 (2A sin kx) cos vt

  is a solution of the general linear wave equation, Equa- 
tion 16.27:

−2y

−x2 5
1
v2  

−2y

−t2

9. Two waves simultaneously present on a long string have a 
phase difference f between them so that a standing wave 
formed from their combination is described by

ysx, t d 5 2A sin Skx 1
f

2D cos Svt 2
f

2D
  (a) Despite the presence of the phase angle f, is it still true 

that the nodes are one-half wavelength apart? Explain. 
(b)  Are the nodes different in any way from the way they 
would be if f were zero? Explain.

10. A standing wave is described by the wave function

y 5 6 sin Sp

2
 xD cos s100ptd

  where x and y are in meters and t is in seconds. (a) Prepare 
graphs showing y as a function of x for five instants: t 5 0, 
5 ms, 10 ms, 15 ms, and 20 ms. (b) From the graph, iden-
tify the wavelength of the wave and explain how to do so. 
(c) From the graph, identify the frequency of the wave and 
explain how to do so. (d) From the equation, directly iden-
tify the wavelength of the wave and explain how to do so. 
(e) From the equation, directly identify the frequency and 
explain how to do so.

Section 17.4 Analysis Model: Waves  
Under Boundary Conditions

11. A standing wave is established in a 120-cm-long string fixed 
at both ends. The string vibrates in four segments when 
driven at 120 Hz. (a) Determine the wavelength. (b) What is 
the fundamental frequency of the string?

12. A taut string has a length of 2.60 m and is fixed at both 
ends. (a) Find the wavelength of the fundamental mode of 
vibration of the string. (b) Can you find the frequency of 
this mode? Explain why or why not.

13. A string that is 30.0 cm long and has a mass per unit length 
of 9.00 3 1023 kg/m is stretched to a tension of 20.0 N. Find 
(a) the fundamental frequency and (b) the next three fre-
quencies of possible standing-wave patterns on the string.

14. In the arrangement shown in Figure P17.14, an object of 
mass m 5 5.00 kg hangs from a cord around a light pulley. 
The length of the cord between point P and the pulley is 
L 5 2.00 m. (a) When the vibrator is set to a frequency of 
150 Hz, a standing wave with six loops is formed. What must 
be the linear mass density of the cord? (b) How many loops 
(if any) will result if m is changed to 45.0 kg? (c) How many 
loops (if any) will result if m is changed to 10.0 kg?

15. Review. A sphere of mass M 5 
1.00 kg is supported by a string 
that passes over a pulley at the 
end of a horizontal rod of length 
L 5 0.300 m (Fig. P17.15). The 
string makes an angle u 5 35.08 
with the rod. The fundamental 
frequency of standing waves in 
the portion of the string above 
the rod is f 5 60.0 Hz. Find the 
mass of the portion of the string 
above the rod.
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Problems 15 and 16.
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16. Review. A sphere of mass M is supported by a string that 
passes over a pulley at the end of a horizontal rod of length 
L (Fig. P17.15). The string makes an angle u with the rod. 
The fundamental frequency of standing waves in the por-
tion of the string above the rod is f. Find the mass of the 
portion of the string above the rod.

17. A violin string has a length of 0.350 m and is tuned to concert 
G, with fG 5 392 Hz. (a) How far from the end of the string 
must the violinist place her finger to play concert A, with fA 5 
440 Hz? (b) If this position is to remain correct to one-half 
the width of a finger (that is, to within 0.600 cm), what is the 
maximum allowable percentage change in the string tension?

18. Review. A solid copper object hangs at the bottom of a steel 
wire of negligible mass. The top end of the wire is fixed. 
When the wire is struck, it emits sound with a fundamental 
frequency of 300 Hz. The copper object is then submerged 
in water so that half its volume is below the water line. Deter-
mine the new fundamental frequency.

Section 17.5 Resonance

19. The Bay of Fundy, Nova Scotia, has the highest tides in the 
world. Assume in midocean and at the mouth of the bay 
the Moon’s gravity gradient and the Earth’s rotation make 
the water surface oscillate with an amplitude of a few cen-
timeters and a period of 12 h 24 min. At the head of the 
bay, the amplitude is several meters. Assume the bay has a 
length of 210 km and a uniform depth of 36.1 m. The speed 
of long-wavelength water waves is given by v 5 Ïgd, where 
d is the water’s depth. Argue for or against the proposition 
that the tide is magnified by standing-wave resonance.

Section 17.6 Standing Waves in Air Columns

20. The windpipe of one typical whooping crane is 5.00 feet  
long. What is the fundamental resonant frequency of the 
bird’s trachea, modeled as a narrow pipe closed at one end? 
Assume a temperature of 378C.

21. The fundamental frequency of an open organ pipe corre-
sponds to middle C (261.6 Hz on the chromatic musical 
scale). The third resonance of a closed organ pipe has the 
same frequency. What is the length of (a) the open pipe and 
(b) the closed pipe?

22. Ever since seeing Figure 16.22 in the previous chapter, you 
have been fascinated with the hearing response in humans. 
You have set up an apparatus that allows you to determine 
your own threshold of hearing as a function of frequency. 
After performing the experiment and recording the results, 
you graph the results, which look like Figure P17.22. You are 

intrigued by the two dips in the curve at the right-hand side 
of the graph. You measure carefully and find that the mini-
mum values of these dips occur at 3 800 Hz and 11 500 Hz. 
Performing some online research, you discover that the 
outer canal of the human ear can be modeled as an air col-
umn open at the outer end and closed at the inner end by 
the eardrum. You use this information to determine the 
length of the outer canal in your ear.

23. An air column in a glass tube is open at one end and closed at 
the other by a movable piston. The air in the tube is warmed 
above room temperature, and a 384-Hz tuning fork is held at 
the open end. Resonance is heard when the piston is at a dis-
tance d1 5 22.8 cm from the open end and again when it is at 
a distance d2 5 68.3 cm from the open end. (a) What speed 
of sound is implied by these data? (b) How far from the open 
end will the piston be when the next resonance is heard?

24. A shower stall has dimensions 86.0 cm 3 86.0 cm 3 210 cm. 
Assume the stall acts as a pipe closed at both ends, with 
nodes at opposite sides. Assume singing voices range from 
130 Hz to 2 000 Hz and let the speed of sound in the hot air 
be 355 m/s. For someone singing in this shower, which fre-
quencies would sound the richest (because of resonance)?

25. A glass tube (open at both ends) of length L is positioned 
near an audio speaker of frequency f 5 680 Hz. For what 
values of L will the tube resonate with the speaker?

26. A tunnel under a river is 2.00 km long. (a) At what frequen-
cies can the air in the tunnel resonate? (b) Explain whether 
it would be good to make a rule against blowing your car 
horn when you are in the tunnel.

27. As shown in Figure P17.27, water 
is pumped into a tall, vertical cyl-
inder at a volume flow rate R 5 
1.00 L/min. The radius of the 
cylinder is r 5 5.00 cm, and at the 
open top of the cylinder a tun-
ing fork is vibrating with a fre-
quency f 5 512 Hz. As the water 
rises, what time interval elapses 
between successive resonances?

28. As shown in Figure P17.27, water 
is pumped into a tall, vertical 
cylinder at a volume flow rate 
R. The radius of the cylinder is 
r, and at the open top of the cyl-
inder a tuning fork is vibrating with a frequency f. As the 
water rises, what time interval elapses between successive 
resonances?

29. You are a flutist in a local orchestra. On a cold winter day, 
you are late to a performance. Arriving at the orchestra 
hall,  you know that you have missed the group tune-up 
before the performance, so you tune your instrument in the 
cold air outside the stage door. After tuning, you run inside 
the auditorium, where the temperature is 22.28C, take your 
seat, and begin playing the first song with the rest of the 
orchestra. You are quite embarrassed to notice that you are 
playing the song a half-step higher than your colleagues in 
the orchestra. Your excitement about physics overcomes your 
musical embarrassment as you realize that you can use this 
information to calculate the temperature outside. (Assume 
that the length of the instrument does not change with tem-
perature. A half-step represents a frequency ratio of 21/12.)
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Problems 27 and 28.
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478 Chapter 17 Superposition and Standing Waves

30. Why is the following situation impossible? A student is listening 
to the sounds from an air column that is 0.730 m long. He 
doesn’t know if the column is open at both ends or open at 
only one end. He hears resonance from the air column at 
frequencies 235 Hz and 587 Hz.

Section 17.7 Beats: Interference in Time

31. Review. A student holds a tuning fork oscillating at 256 Hz. 
He walks toward a wall at a constant speed of 1.33  m/s. 
(a) What beat frequency does he observe between the tun-
ing fork and its echo? (b) How fast must he walk away from 
the wall to observe a beat frequency of 5.00 Hz?

32. While attempting to tune the note C at 523 Hz, a piano 
tuner hears 2.00 beats/s between a reference oscillator 
and the string. (a) What are the possible frequencies of the 
string? (b) When she tightens the string slightly, she hears 
3.00 beats/s. What is the frequency of the string now? (c) By 
what percentage should the piano tuner now change the 
tension in the string to bring it into tune?

Section 17.8 Nonsinusoidal Waveforms

33. Suppose a flutist plays a 523-Hz C note with first harmonic 
displacement amplitude A1 5 100 nm. From Figure 17.21b 
read, by proportion, the displacement amplitudes of har-
monics 2 through 7. Take these as the values A2 through 
A7 in the Fourier analysis of the sound and assume B1 5 
B2  5 ??? 5 B7 5 0. Construct a graph of the waveform of 
the sound. Your waveform will not look exactly like the flute 
waveform in Figure 17.20b because you simplify by ignoring 
cosine terms; nevertheless, it produces the same sensation 
to human hearing.

additional ProbleMS

34. Two strings are vibrating at the same frequency of 150 Hz. 
After the tension in one of the strings is decreased, an 
observer hears four beats each second when the strings 
vibrate together. Find the new frequency in the adjusted 
string.

35. The ship in Figure P17.35 travels along a straight line paral-
lel to the shore and a distance d 5 600 m from it. The ship’s 
radio receives simultaneous signals of the same frequency 
from antennas A and B, separated by a distance L 5 800 m. 
The signals interfere constructively at point C, which is equi-
distant from A and B. The signal goes through the first min-
imum at point D, which is directly outward from the shore 
from point B. Determine the wavelength of the radio waves.

36. A 2.00-m-long wire having a mass of 0.100 kg is fixed at 
both ends. The tension in the wire is maintained at 20.0 N. 
(a)  What are the frequencies of the first three allowed 

modes of vibration? (b) If a node is observed at a point 
0.400  m from one end, in what mode and with what fre-
quency is it vibrating?

37. A string fixed at both ends and having a mass of 4.80 g, a 
length of 2.00 m, and a tension of 48.0 N vibrates in its sec-
ond (n 5 2) normal mode. (a) Is the wavelength in air of 
the sound emitted by this vibrating string larger or smaller 
than the wavelength of the wave on the string? (b) What 
is  the ratio of the wavelength in air of the sound emitted 
by this vibrating string and the wavelength of the wave on 
the string?

38. You are working as an assistant to a landscape architect, 
who is designing the landscaping around a new commercial 
building. The architect plans to have a large rectangular 
water basin as part of his design. When you see this design, 
you mention to the architect that the project is located in 
an area prone to earthquakes. You point out that an earth-
quake could create a seiche in the basin by resonance, 
causing the water in the basin to spill out and enter nearby 
underground electrical transformers. A seiche is a standing 
wave in a body of water, in which the water sloshes back 
and forth with antinodes at the ends of the basin. (You may 
have created a seiche in a bathtub as a child by sliding your 
body back and forth along the length of the tub, leaving 
water on the floor for your parents to wipe up.) The archi-
tect dismisses your comments as unrealistic. While visiting 
your cousin the previous week in a non-earthquake-prone 
area, you had seen a water basin similar to the one planned 
by the architect. You call your cousin and find out that the 
water basin in his town has the same depth of water as that 
planned by the architect. You ask your cousin to create a 
pulse in the water by dropping a pebble, and determine how 
long the pulse takes to cross the basin. Based on this time 
interval and the length of your cousin’s basin, you deter-
mine that a pulse will take 2.50 s to cross the basin planned 
by the architect. Show the architect that there will be several 
possible seiche resonances in the water basin for typical low 
frequencies of earthquakes in the range of 0–4 Hz.

39. Review. Consider the apparatus shown in Figure 17.15 
and described in Example 17.4. Suppose the number of 
antinodes in Figure 17.15b is an arbitrary value n. (a) Find 
an expression for the radius of the sphere in the water as a 
function of only n. (b) What is the minimum allowed value 
of n for a sphere of nonzero size? (c) What is the radius of 
the largest sphere that will produce a standing wave on the 
string? (d) What happens if a larger sphere is used?

40. Review. For the arrangement shown in Figure P17.40, the 
inclined plane and the small pulley are frictionless; the  
string supports the object of mass M at the bottom of 
the plane; and the entire string has mass m. The system is in 
equilibrium, and the vertical part of the string has a length h. 
We wish to study standing waves set up in the vertical section 
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of the string. (a) What analysis model describes the object of 
mass M? (b) What analysis model describes the waves on the 
vertical part of the string? (c) Find the tension in the string. 
(d) Model the shape of the string as one leg and the hypote-
nuse of a right triangle. Find the whole length of the string.  
(e) Find the mass per unit length of the string. (f) Find the 
speed of waves on the string. (g) Find the lowest frequency 
for a standing wave on the vertical section of the string. 
(h) Evaluate this result for M 5 1.50 kg, m 5 0.750 g, h 5 
0.500 m, and u 5 30.08. (i) Find the numerical value for the 
lowest frequency for a standing wave on the sloped section 
of the string.

41. Review. A loudspeaker at the front of a room and an iden-
tical loudspeaker at the rear of the room are being driven 
by the same oscillator at 456 Hz. A student walks at a uni-
form rate of 1.50 m/s along the length of the room. She 
hears a single tone repeatedly becoming louder and softer. 
(a)  Model these variations as beats between the Doppler-
shifted sounds the student receives. Calculate the number 
of beats the student hears each second. (b) Model the two 
speakers as producing a standing wave in the room and the 
student as walking between antinodes. Calculate the num-
ber of intensity maxima the student hears each second.

42. Two speakers are driven by the same oscillator of frequency 
f. They are located a distance d from each other on a ver-
tical pole. A man walks straight toward the lower speaker 
in a direction perpendicular to the pole as shown in Fig-
ure P17.42. (a) How many times will he hear a minimum in 
sound intensity? (b) How far is he from the pole at these 
moments? Let v represent the speed of sound and assume 
that the ground does not reflect sound. The man’s ears are 
at the same level as the lower speaker.

43. A standing wave is set up in a string of variable length and 
tension by a vibrator of variable frequency. Both ends of 
the string are fixed. When the vibrator has a frequency f, 
in a string of length L and under tension T, n antinodes 
are set up in the string. (a) If the length of the string is 
doubled, by what factor should the frequency be changed 
so that the same number of antinodes is produced? (b) If 
the frequency and length are held constant, what tension 
will produce n 1 1 antinodes? (c) If the frequency is tripled 
and the length of the string is halved, by what factor should 
the tension be changed so that twice as many antinodes are 
produced?

44. Review. The top end of a yo-yo string is held stationary. 
The yo-yo itself is much more massive than the string. 
It starts from rest and moves down with constant accel-
eration 0.800  m/s2 as it unwinds from the string. The 

rubbing of the string against the edge of the yo-yo excites 
transverse standing-wave vibrations in the string. Both 
ends of the string are nodes even as the length of the 
string increases. Consider the instant 1.20 s after the 
motion begins from rest. (a) Show that the rate of change 
with time of the wavelength of the fundamental mode of 
oscillation is 1.92 m/s. (b) What if? Is the rate of change 
of the wavelength of the second harmonic also 1.92 m/s 
at this moment? Explain your answer. (c) What if? The 
experiment is repeated after more mass has been added 
to the yo-yo body. The mass distribution is kept the same 
so that the yo-yo still moves with downward acceleration 
0.800 m/s2. At the 1.20-s point in this case, is the rate of 
change of the fundamental wavelength of the string vibra-
tion still equal to 1.92 m/s? Explain. (d) Is the rate of 
change of the second harmonic wavelength the same as in 
part (b)? Explain.

45. Review. Consider the copper object hanging from the steel 
wire in Problem 18. The top end of the wire is fixed. When 
the wire is struck, it emits sound with a fundamental fre-
quency of 300 Hz. The copper object is then submerged 
in water. If the object can be positioned with any desired 
fraction of its volume submerged, what is the lowest possible 
new fundamental frequency?

46. A string of linear density 1.60 g/m is stretched between 
clamps 48.0 cm apart. The string does not stretch appre-
ciably as the tension in it is steadily raised from 15.0 N 
at t 5 0 to 25.0 N at t 5 3.50 s. Therefore, the tension as 
a function of time is given by the expression T 5 15.0 1 
10.0t/3.50, where T is in newtons and t is in seconds. The 
string is vibrating in its fundamental mode throughout this 
process. Find the number of oscillations it completes during 
the 3.50-s interval.

47. Review. A 12.0-kg object hangs in equilibrium from a string 
with a total length of L 5 5.00 m and a linear mass density 
of m 5 0.001 00 kg/m. The string is wrapped around two 
light, frictionless pulleys that are separated by a distance of 
d 5 2.00 m (Fig. P17.47a). (a) Determine the tension in the 
string. (b) At what frequency must the string between the 
pulleys vibrate to form the standing-wave pattern shown in 
Figure P17.47b?

48. Review. An object of mass m hangs in equilibrium from a 
string with a total length L and a linear mass density m. The 
string is wrapped around two light, frictionless pulleys that 
are separated by a distance d (Fig. P17.47a). (a) Determine 
the tension in the string. (b) At what frequency must the 
string between the pulleys vibrate to form the standing-wave 
pattern shown in Figure P17.47b?
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480 Chapter 17 Superposition and Standing Waves

49. Two waves are described by the wave functions

y1(x, t) 5 5.00 sin (2.00x 2 10.0t)

y2(x, t) 5 10.0 cos (2.00x 2 10.0t)

  where x, y1, and y2 are in meters and t is in seconds. (a) Show 
that the wave resulting from their superposition can be 
expressed as a single sine function. (b) Determine the 
amplitude and phase angle for this sinusoidal wave.

challenge ProbleM

50. In Figures 17.22a and 17.22b, notice that the amplitude 
of the component wave for frequency f is large, that for 
3f is smaller, and that for 5f smaller still. How do we know 
exactly how much amplitude to assign to each frequency 
component to build a square wave? This problem helps us 
find the answer to that question. Let the square wave in 
Figure 17.22c have an amplitude A and let t 5 0 be at the 
extreme left of the figure. So, one period T of the square 
wave is described by

y std 5 5A 0 , t ,
T
2

2A
T
2

, t , T

  Express Equation 17.14 with angular frequencies:

y std 5 o
n

sAn sin nvt 1 Bn cos nvtd

  Now proceed as follows. (a) Multiply both sides of Equa-
tion  17.14 by sin mvt and integrate both sides over one 
period T. Show that the left-hand side of the resulting 
equation is equal to 0 if m is even and is equal to 4A/mv 
if m is odd. (b)  Using trigonometric identities, show that 
all terms on the right-hand side involving Bn are equal to 
zero. (c) Using trigonometric identities, show that all terms 
on the right-hand side involving An are equal to zero except 
for the one case of m 5 n. (d) Show that the entire right-
hand side of the equation reduces to 12AmT. (e) Show that the 
Fourier series expansion for a square wave is

y std 5 o
n

 
4A
np

 sin nvt
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p a r t  3

thermodynamics
A bubble in one of the many mud 
pots in Yellowstone National 
Park is caught just at the 
moment of popping. A mud pot 
is a pool of bubbling hot mud 
that demonstrates the existence 
of thermodynamic processes 
below the Earth’s surface.  
(Adambooth/Dreamstime.com)

We now direct our attention to the study of thermodynamics, 
which involves situations in which the temperature or state (solid, liq-
uid, gas) of a system changes due to energy transfers. In this part of the 
book, we will focus on the heat Q in Equation 8.2 and its effects on the 
thermal conditions of a system. We will also look at work W performed on 
deformable systems, such as an enclosed gas, as well as electromagnetic 
radiation TER across a system boundary. Each of these energy transfers 
can cause a change in the internal energy Eint of the system, which we can 
relate to temperature.

Historically, the development of thermodynamics paralleled the develop-
ment of the atomic theory of matter. By the 1820s, chemical experiments 
had provided solid evidence for the existence of atoms. At that time, sci-
entists recognized that a connection between thermodynamics and the 
structure of matter must exist. In 1827, botanist Robert Brown reported 
that grains of pollen suspended in a liquid move erratically from one place 
to another as if under constant agitation. In 1905, Albert Einstein used 
kinetic theory to explain the cause of this erratic motion, known today as 
Brownian motion. Einstein explained this phenomenon by assuming the 
grains are under constant bombardment by “invisible” molecules in the 
liquid, which themselves move erratically. The motion of the molecules 
is related to the temperature of the liquid. A connection was thus forged 
between the everyday world and the tiny, invisible building blocks that 
make up this world.

Thermodynamics also addresses more practical questions. Have you 
ever wondered how a refrigerator is able to cool its contents, or what types 
of transformations occur in a power plant or in the engine of your automo-
bile, or what happens to the kinetic energy of a moving object when the 
object comes to rest? The laws of thermodynamics can be used to provide 
explanations for these and other phenomena. ■
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18.1 Temperature and 
the Zeroth Law of 
Thermodynamics

18.2 Thermometers and the 
Celsius Temperature 
Scale

18.3 The Constant-Volume  
Gas Thermometer  
and the Absolute 
Temperature Scale

18.4 Thermal Expansion of 
Solids and Liquids

18.5 Macroscopic 
Description of an  
Ideal Gas

Storyline You have discovered that you are out of potato chips. 
While driving to the store, you look at the high-voltage electric power transmis-
sion lines crossing the road ahead of you. You have seen these lines almost every 
day, but there is something different about them today. The power lines between 
the towers on either side of the road seem to be sagging lower today than they 
have in the past. Then you notice that a brick sidewalk on the side of the road 
has buckled, as shown above. What’s causing these effects? Your hometown is 
experiencing severely high temperatures that have lasted for several days; it has 
been hotter than you can ever remember. Could this be related to these effects? 
Will the power lines rise back up when the weather cools? Will the sidewalk 
“unbuckle” when the temperature drops? What does the lizard checking out the 
situation from the curb think? Wait a minute! In all these questions, what exactly 
is temperature, what do hot and cool actually mean? This question haunts your 
visit to the store and you drive home without purchasing your potato chips.

ConneCtions Up to this point in the text, we have focused on mechanical 
situations, which generally involve macroscopic objects. For example, we 
looked at kinetic energies of cars, billiard balls, planets, and rolling wheels. We 
performed calculations using potential energies in systems of springs, a ball and 
the Earth, a planet and the Sun. In this chapter, we begin to investigate thermal 
phenomena. We introduced internal energy in Chapter 7, where we talked about 
something becoming warmer due to friction. That was our first hint of a ther-
mal process. The hallmark of thermal processes is that they involve energy on a 
microscopic scale. As we shall see in Chapter 20, we can relate the temperature 
of an object to the kinetic energy of the molecules of the object. We introduced 

A brick sidewalk exhibits 
buckling. In some cases, this 

is caused by a mechanical 
phenomenon: the growth 

of tree roots under the 
sidewalk. But we see no 
trees here that are close 

enough to the sidewalk 
to cause this effect. This 

buckling is caused by a 
thermal process, related to a 

high temperature.  
(John W. Jewett, Jr.)
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the energy transfer process of heat in Chapter 8 as a means of transferring 
energy into or out of a system; in Chapter 19, we will discuss this process in 
terms of microscopic collisions between molecules at the boundary of the sys-
tem. To establish the basis for these discussions in the next chapters, we will 
first embark in this chapter on a macroscopic understanding of the concept of 
temperature and its effects. The chapter concludes with a study of ideal gases on 
the macroscopic scale. In this study, we connect the quantity of pressure from 
Chapter 14 to that of temperature from this chapter. Once we understand thermal 
phenomena, we will see, for example, thermal effects on electrical resistance in 
Chapter 26, on magnetic properties of materials in Chapter 29, on the radiation 
from a hot surface in Chapter 39, and so on.

   18.1    Temperature and the Zeroth Law  
of Thermodynamics
We often associate the concept of temperature with how hot or cold an object feels 
when we touch it. In this way, our senses provide us with a qualitative indication of 
temperature. Our senses, however, are unreliable and often mislead us. For exam-
ple, if you stand in bare feet with one foot on carpet and the other on an adjacent 
tile floor, the tile feels colder than the carpet even though both are at the same tem-
perature. The two objects feel different because tile transfers energy by heat at a 
higher rate than carpet does. Your skin “measures” the rate of energy transfer by 
heat rather than the actual temperature. What we need is a reliable and reproduc-
ible method for measuring the relative hotness or coldness of objects rather than 
the rate of energy transfer. Scientists have developed a variety of thermometers for 
making such quantitative measurements.

Two objects at different initial temperatures eventually reach some intermediate 
temperature when placed in contact with each other. For example, when hot water 
and cold water are mixed in a bathtub, energy is transferred from the hot water to 
the cold water and the final temperature of the mixture is somewhere between the 
initial hot and cold temperatures.

The energy-transfer mechanisms from Chapter 8 that we will focus on in this 
current discussion are heat, Q in Eq. 8.2, and electromagnetic radiation, TER. For 
purposes of this discussion, let’s assume two objects are in thermal contact with 
each other if energy can be exchanged between them by these processes due to a 
temperature difference. Thermal equilibrium is a situation in which two objects 
would not exchange energy by heat or electromagnetic radiation if they were placed 
in thermal contact.

Let’s consider two objects A and B, which are not in thermal contact, and a third 
object C, which is our thermometer. We wish to determine whether A and B are in 
thermal equilibrium with each other. The thermometer (object C) is first placed 
in thermal contact with object A until thermal equilibrium is reached1 as shown in 
Figure 18.1a (page 484). From that moment on, the thermometer’s reading remains 
constant and we record this reading. The thermometer is then removed from object 
A and placed in thermal contact with object B as shown in Figure 18.1b. The read-
ing is again recorded after thermal equilibrium is reached. If the two readings are 
the same, we can conclude that object A and object B are in thermal equilibrium 
with each other. If they are placed in contact with each other as in Figure 18.1c, 
there will be no exchange of energy between them.

1 We assume a negligible amount of energy transfers between the thermometer and object A in the time interval dur-
ing which they are in thermal contact. Without this assumption, which is also made for the thermometer and object 
B, the measurement of the temperature of an object disturbs the system so that the measured temperature is differ-
ent from the initial temperature of the object. In practice, whenever you measure a temperature with a thermometer, 
you measure the disturbed system, not the original system.
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484 Chapter 18 Temperature

We can summarize these results in a statement known as the zeroth law of ther-
modynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C, 
then A and B are in thermal equilibrium with each other.

Zeroth law 
of thermodynamics

This statement can easily be proved experimentally and is very important because 
it enables us to define temperature. We can think of temperature as the property that 
determines whether or not energy will transfer between two objects when they 
are in thermal contact. Two objects in thermal equilibrium with each other are at 
the same temperature. Conversely, if two objects have different temperatures, they 
are not in thermal equilibrium and energy will transfer between them when they 
are placed in thermal contact. In Figure 18.1, it is only the temperatures of A and 
B that determine whether energy will transfer from one to the other when they 
are placed in thermal contact—not size, mass, material, density, or anything else. For 
now, temperature is only defined for us in terms of the zeroth law. We will relate 
temperature to molecular motion in Chapter 20.

Q uick Quiz 18.1  Two objects, with different sizes, masses, and tempera-
tures, are placed in thermal contact. In which direction does the energy travel? 
(a) Energy travels from the larger object to the smaller object. (b) Energy travels 
from the object with more mass to the one with less mass. (c) Energy travels 
from the object at higher temperature to the object at lower temperature.

   18.2    Thermometers and the Celsius  
Temperature Scale
In Figure 18.1, we used a thermometer to measure the temperatures of A and B. 
All thermometers are based on the principle that some physical property of a sys-
tem changes as the system’s temperature changes. Some physical properties that 
change with temperature are (1) the volume of a liquid, (2) the dimensions of 
a solid, (3)  the pressure of a gas at constant volume, (4) the volume of a gas at 
constant pressure, (5) the electric resistance of a conductor, and (6) the color of 
an object.

A common thermometer in everyday use consists of a mass of liquid—usually 
mercury or alcohol—that expands into a glass capillary tube when heated 
(Fig. 18.2). In this case, the physical property that changes is the volume of a liquid. 
Any temperature change in the range of the thermometer can be defined as being 
proportional to the change in length of the liquid column. The thermometer can 
be calibrated by placing it in thermal contact with a natural system that remains 

A

C C

A B

The temperatures of A and B are measured 
to be the same by placing them in thermal 
contact with a thermometer (object C).

No energy will be 
exchanged 
between A and B 
when they are 
placed in thermal 
contact with each 
other.

B

a b c

Figure 18.1  The zeroth law of 
thermodynamics. In general, 
objects A and B can be of different 
sizes, different masses, and dif-
ferent materials. The zeroth law 
allows us to identify something 
that is the same for both objects: 
temperature.
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at constant temperature. One such system is a mixture of water and ice in thermal 
equilibrium at atmospheric pressure. On the Celsius temperature scale, this mix-
ture is defined to have a temperature of zero degrees Celsius, which is written as 
08C; this temperature is called the ice point of water. Another commonly used system 
is a mixture of water and steam in thermal equilibrium at atmospheric pressure; its 
temperature is defined as 1008C, which is the steam point of water. Once the liquid 
levels in the thermometer have been established at these two points, the length of 
the liquid column between the two points is divided into 100 equal segments to 
create the Celsius scale. Therefore, each segment denotes a change in temperature 
of one Celsius degree.

Thermometers calibrated in this way present problems when extremely accurate 
readings are needed. For instance, the readings given by an alcohol thermometer 
calibrated at the ice and steam points of water might agree with those given by a 
mercury thermometer only at the calibration points. Because mercury and alcohol 
have different thermal expansion properties, when one thermometer reads a tem-
perature of, for example, 508C, the other may indicate a slightly different value. 
The discrepancies between thermometers are especially large when the tempera-
tures to be measured are far from the calibration points.2

An additional practical problem of any thermometer is the limited range of tem-
peratures over which it can be used. A mercury thermometer, for example, cannot 
be used below the freezing point of mercury, which is 2398C, and an alcohol ther-
mometer is not useful for measuring temperatures above 858C, the boiling point of 
alcohol. To surmount this problem, we need a universal thermometer whose read-
ings are independent of the substance used in it. The gas thermometer, discussed 
in the next section, approaches this requirement.

   18.3    The Constant-Volume Gas Thermometer  
and the Absolute Temperature Scale
One version of a gas thermometer is the constant-volume apparatus shown in Fig-
ure 18.3. The physical change exploited in this device is the variation of pressure of 
a fixed volume of gas with temperature. The flask is immersed in an ice-water bath, 
and mercury reservoir B is raised or lowered. This will cause mercury to transfer 

Figure 18.2  A mercury ther-
mometer before and after increas-
ing its temperature.

20�C

30�C

The level of the mercury in the thermometer rises 
as the mercury is heated by water in the test tube.
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A B

The volume of gas in the flask is 
kept constant by raising or 
lowering reservoir B to keep the 
mercury level in column A 
constant.

h

Scale

0

Mercury
reservoir

Flexible
hose

Bath or
environment
to be measured

P
Gas

Figure 18.3  A constant-volume 
gas thermometer measures the 
pressure of the gas contained in 
the flask immersed in the bath.

2 Two thermometers that use the same liquid may also give different readings, due in part to difficulties in construct-
ing uniform-bore glass capillary tubes.
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between reservoirs A and B through the flexible hose. Reservoir B is adjusted 
until the top of the mercury in column A is at the zero point on the scale. The 
height h, the difference between the mercury levels in reservoir B and column A, 
indicates the pressure in the flask at 08C by means of Equation 14.4, P 5 P0 1 rgh, 
where P0 is atmospheric pressure.

The flask is then immersed in water at the steam point. Reservoir B is read-
justed until the top of the mercury in column A is again at zero on the scale, 
which ensures that the gas’s volume is the same as it was when the flask was in 
the ice bath (hence the designation “constant-volume”). This adjustment of res-
ervoir B gives a value for the gas pressure at 1008C. These two pressure and tem-
perature values are then plotted as shown in Figure 18.4. The line connecting 
the two points serves as a calibration curve for unknown temperatures. (Other 
experiments show that a linear relationship between pressure and temperature is 
a very good assumption.) To measure the temperature of a substance, the gas flask 
of Figure 18.3 is placed in thermal contact with the substance and the height of 
reservoir B is adjusted until the top of the mercury column in A is at zero on the 
scale. The height of the mercury column in B indicates the pressure of the gas; 
knowing the pressure, the temperature of the substance is found using the graph 
in Figure 18.4.

Now suppose temperatures of different gases at different initial pressures are 
measured with gas thermometers. Experiments show that the thermometer read-
ings are nearly independent of the type of gas used as long as the gas pressure is low 
and the temperature is well above the point at which the gas liquefies (Fig. 18.5). 
The agreement among thermometers using various gases improves as the pressure 
is reduced.

If we extend the solid-color straight lines in Figure 18.5 toward negative tem-
peratures, we find a remarkable result: in every case, the pressure is zero when 
the temperature is 2273.158C! This finding suggests some special role that this 
particular temperature must play. It is used as the basis for the absolute tem-
perature scale, which sets 2273.158C as its zero point. This temperature is often 
referred to as absolute zero. It is indicated as a zero because at a lower tempera-
ture, the pressure of the gas would become negative, which is meaningless. There-
fore, absolute zero is a true, naturally defined zero of temperature. The size of 
one degree on the absolute temperature scale is chosen to be identical to the 
size of one degree on the Celsius scale. Therefore, the conversion between these 
temperatures is

 TC 5 T 2 273.15 (18.1)

where TC is the Celsius temperature and T is the absolute temperature.
Because the ice and steam points are experimentally difficult to duplicate and 

depend on atmospheric pressure, an absolute temperature scale based on two 
new fixed points was adopted in 1954 by the International Committee on Weights 
and Measures. The first point is absolute zero, which does not depend on atmo-
spheric pressure or on any particular material. The second reference tempera-
ture for this new scale was chosen as the triple point of water, which is the single 
combination of temperature and pressure at which liquid water, gaseous water, 
and ice (solid water) coexist in equilibrium. This triple point occurs at a temper-
ature of 0.018C and a pressure of 4.58 mm of mercury. The triple point of water 
is the same everywhere in the Universe. On the new scale, which uses the unit 
kelvin, the temperature of water at the triple point was set at 273.16 kelvins, abbre-
viated 273.16 K. This choice was made so that the old absolute temperature scale 
based on the ice and steam points would agree closely with the new scale based 
on the triple point. This new absolute temperature scale (also called the Kelvin 
scale) employs the SI unit of absolute temperature, the kelvin, which is defined 
to be 1/273.16 of the difference between absolute zero and the temperature of 
the triple point of water.

1000
T (�C)

P

The two dots represent known 
reference temperatures (the 
ice and steam points of water).

Figure 18.4  A typical graph 
of pressure versus temperature 
taken with a constant-volume gas 
thermometer.

Trial 2

Trial 3

Trial 1
P

200
T (�C)

1000�100�200

For all three trials, the pressure 
extrapolates to zero at the 
temperature �273.15�C.

Figure 18.5  Pressure versus 
temperature for experimental 
trials in which gases have different 
pressures in a constant-volume gas 
thermometer.

Pitfall Prevention 18.1
A Matter of Degree Notations for 
temperatures in the Kelvin scale 
do not use the degree sign. The  
unit for a Kelvin temperature 
is simply “kelvins” and not 
“degrees Kelvin.”
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Figure 18.6 gives the absolute temperature for various physical processes and struc-
tures. The temperature of absolute zero (0 K) cannot be achieved, although laboratory 
experiments have come very close, reaching temperatures of less than one nanokelvin.

the celsius, fahrenheit, and kelvin temperature Scales3

Equation 18.1 shows that the Celsius temperature TC is shifted from the absolute 
(Kelvin) temperature T by 273.158. Because the size of one degree is the same on 
the two scales, a temperature difference of 58C is equal to a temperature difference 
of 5 K. The two scales differ only in the choice of the zero point. Therefore, the 
ice-point temperature on the Kelvin scale, 273.15 K, corresponds to 0.008C, and 
the Kelvin-scale steam point, 373.15 K, is equivalent to 100.008C.

A common temperature scale in everyday use in the United States is the 
Fahrenheit scale. This scale sets the temperature of the ice point at 328F and the 
temperature of the steam point at 2128F. The relationship between the Celsius and 
Fahrenheit temperature scales is

 TF 5 9
5TC 1 328F (18.2)

We can use Equations 18.1 and 18.2 to find a relationship between changes in tem-
perature on the Celsius, Kelvin, and Fahrenheit scales:

 DTC 5 DT 5 5
9 DTF (18.3)

Of these three temperature scales, only the Kelvin scale is based on a true zero 
value of temperature. The Celsius and Fahrenheit scales are based on an arbitrary 
zero associated with one particular substance, water, on one particular planet, the 
Earth. Therefore, if you encounter an equation that calls for a temperature T or 
that involves a ratio of temperatures, you must convert all temperatures to kelvins. If 
the equation contains a change in temperature DT, using Celsius temperatures will 
give you the correct answer, in light of Equation 18.3, but it is always safest to convert 
temperatures to the Kelvin scale.

Q uick Quiz 18.2  Consider the following pairs of materials. Which pair rep-
resents two materials, one of which is twice as hot as the other? (a) boiling water 
at 1008C, a glass of water at 508C (b) boiling water at 1008C, frozen methane 
at 2508C (c) an ice cube at 2208C, flames from a circus fire-eater at 2338C  
(d) none of those pairs

Hydrogen bomb

109

108

107

106

105

104

103

102

10

1

Interior of the Sun 

Solar corona

Surface of the Sun
Copper melts

Water freezes
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Figure 18.6  Absolute temper-
atures at which various physical 
processes occur.

3 Named after Anders Celsius (1701–1744), Daniel Gabriel Fahrenheit (1686–1736), and William Thomson, Lord 
Kelvin (1824–1907), respectively.

 Example 18.1    Converting Temperatures

On a day when the temperature reaches 508F, what is the temperature in degrees Celsius and in kelvins?

S o L u T I o N

Conceptualize In the United States, a temperature of 508F is well understood. In many other parts of the world, however, this 
temperature might be meaningless because people are familiar with the Celsius temperature scale.

Categorize This example is a simple substitution problem.

Solve Equation 18.2 for the Celsius temperature and  TC 5 5
9sTF 2 32d 5 5

9s50 2 32d 5  108C 
substitute numerical values:

Use Equation 18.1 to find the Kelvin temperature: T 5 TC 1 273.15 5 108C 1 273.15 5  283 K

A convenient set of weather-related temperature equivalents to keep in mind is that 08C is (literally) freezing at 328F, 108C is 
cool at 508F, 208C is room temperature, 308C is warm at 868F, and 408C is a hot day at 1048F.
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488 Chapter 18 Temperature

   18.4    Thermal Expansion of Solids and Liquids
Our discussion of the liquid thermometer makes use of one of the best-known ther-
mal changes in a substance: as its temperature increases, its volume increases. This 
phenomenon, known as thermal expansion, plays an important role in numerous 
engineering applications. For example, thermal-expansion joints such as those 
shown in Figure 18.7 must be included in buildings, concrete highways, railroad 
tracks, brick walls, and bridges to compensate for dimensional changes that occur 
as the temperature changes.

Thermal expansion is responsible for the effects you saw in the opening story-
line. On a hot day the power lines expand. The distance between the ends of the 
lines is fixed at the positions of the poles. Therefore, when the power line length-
ens, it sags downward from its fixed ends. The brick sidewalk in the chapter open-
ing photograph was likely installed with no expansion joints. As the temperature 
rises, the expansion of the sections of sidewalk causes them to buckle upward.

Thermal expansion is a consequence of the change in the average separation 
between the atoms in an object. To understand this concept, let’s model the atoms 
as being connected by stiff springs as discussed in Section 15.3 and shown in Fig-
ure  15.11b. At ordinary temperatures, the atoms in a solid oscillate about their 
equilibrium positions with an amplitude of approximately 10211 m and a frequency 
of approximately 1013 Hz. The average spacing between the atoms is about 10210 m. 
As the temperature of the solid increases, the atoms oscillate with greater ampli-
tudes; as a result, the average separation between them increases.4 Consequently, 
the object expands.

If thermal expansion is sufficiently small relative to an object’s initial dimen-
sions, the change in any dimension is, to a good approximation, proportional to 
the first power of the temperature change. Suppose an object has an initial length 
Li along some direction at some temperature and the length changes by an amount 
DL for a change in temperature DT. Because it is convenient to consider the frac-
tional change in length per degree of temperature change, we define the average 
coefficient of linear expansion as

 a ;
DLyLi

DT
 (18.4)

Figure 18.7  Thermal-expansion 
joints in (a) bridges and (b) walls.

The long, vertical joint is filled with a soft material 
that allows the wall to expand and contract as the 
temperature of the bricks changes.
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Without these joints to separate sections of 
roadway on bridges, the surface would buckle 
due to thermal expansion on very hot days or 
crack due to contraction on very cold days.
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4 More precisely, thermal expansion arises from the asymmetrical nature of the potential energy curve for the atoms 
in a solid as shown in Figure 15.11a. If the oscillators were truly harmonic, the average atomic separations would not 
change regardless of the amplitude of vibration.
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Experiments show that a is constant for small changes in temperature. For pur-
poses of calculation, this equation is usually rewritten as

 DL 5 aLi DT (18.5)

or as

 Lf 2 Li 5 aLi(Tf 2 Ti  ) (18.6)

where Lf is the final length, Ti and Tf are the initial and final temperatures, respec-
tively, and the proportionality constant a is the average coefficient of linear expan-
sion for a given material and has units of (8C)21. Equation 18.5 can be used for both 
thermal expansion, when the temperature of the material increases, and thermal 
contraction, when its temperature decreases.

It may be helpful to think of thermal expansion as an effective magnification 
or as a photographic enlargement of an object. For example, as a metal washer is 
heated (Fig. 18.8), all dimensions, including the radius of the hole, increase accord-
ing to Equation 18.5. A cavity in a piece of material expands in the same way as if 
the cavity were filled with the material.

Table 18.1 lists the average coefficients of linear expansion for various materials. 
For these materials, a is positive, indicating an increase in length with increas-
ing temperature. That is not always the case, however. Some substances—calcite 
(CaCO3) is one example—expand along one dimension (positive a) and contract 
along another (negative a) as their temperatures are increased.

Because the linear dimensions of an object change with temperature, it follows 
that surface area and volume change as well. The change in volume is proportional to 
the initial volume Vi and to the change in temperature according to the relationship

 DV 5 bVi DT (18.7)

where b is the average coefficient of volume expansion. To find the relationship 
between b and a, assume the average coefficient of linear expansion of the solid is 
the same in all directions; that is, assume the material is isotropic. Consider a solid 
box of dimensions ,, w, and h. Its volume at some temperature Ti is Vi 5 ,wh. If the 
temperature changes to Ti 1 DT, its volume changes to Vi 1 DV, where each dimen-
sion changes according to Equation 18.5. Therefore,

Vi 1 DV 5 (, 1 D,)(w 1 Dw)(h 1 Dh)

5 (, 1 a, DT)(w 1 aw DT)(h 1 ah DT)

5 ,wh(1 1 a DT)3

5 Vi [1 1 3a DT 1 3(a DT)2 1 (a DT)3]

  Thermal expansion 
in one dimension

  Thermal expansion  
in three dimensions

Pitfall Prevention 18.2
Do Holes Become Larger or 
Smaller? When an object’s tem-
perature is raised, every linear 
dimension increases in size. That 
includes any holes in the material, 
which expand in the same way 
as if the hole were filled with the 
material as shown in Figure 18.8.

 table 18.1  Average Expansion Coefficients for Some Materials Near Room Temperature
 Average Linear  Average Volume
 Expansion  Expansion
Material Coefficient Material Coefficient
(Solids) (a)(8C)21 (Liquids and Gases) (b)(8C)21

Aluminum 24 3 1026 Acetone 1.5 3 1024

Brass and bronze 19 3 1026 Alcohol, ethyl 1.12 3 1024

Concrete 12 3 1026 Benzene 1.24 3 1024

Copper 17 3 1026 Gasoline 9.6 3 1024

Glass (ordinary) 9 3 1026 Glycerin 4.85 3 1024

Glass (Pyrex) 3.2 3 1026 Mercury 1.82 3 1024

Invar (Ni–Fe alloy) 0.9 3 1026 Turpentine 9.0 3 1024

Lead 29 3 1026 Aira at 08C 3.67 3 1023

Steel 11 3 1026 Heliuma 3.665 3 1023

aGases do not have a specific value for the volume expansion coefficient because the amount of expansion depends 
on the type of process through which the gas is taken. The values given here assume the gas undergoes an expansion 
at constant pressure.

Figure 18.8 Thermal expansion 
of a homogeneous metal washer. 
(The expansion is exaggerated in 
this figure.)

a

b

b � �b 

a � �a

Ti � �T

Ti

As the washer is heated, all 
dimensions increase, including 
the radius of the hole.
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the unusual behavior of Water
Liquids generally increase in volume with increasing temperature and have 
average coefficients of volume expansion about ten times greater than those of 
solids. Water follows this general behavior except near 08C, as you can see from 
its density-versus- temperature curve shown in Figure 18.9. As the temperature 
increases from 08C to 48C, water contracts and its density therefore increases. 
Above 48C, water expands normally with increasing temperature and so its 
density decreases. Therefore, the density of water reaches a maximum value of 
1.000 g/cm3 at 48C.

We can use this unusual thermal-expansion behavior of water to explain why a pond 
begins freezing at the surface rather than at the bottom. When the air temperature 
drops from, for example, 78C to 68C, the surface water also cools and consequently 
decreases in volume. The surface water is denser than the water below it, which has not 
cooled and decreased in volume. As a result, the surface water sinks, and warmer water 
from below moves to the surface. When the air temperature is between 48C and 08C, 
however, the surface water expands as it cools, becoming less dense than the water 
below it. The mixing process stops, and eventually the surface water freezes. As the 
water freezes, the ice remains on the surface because ice is less dense than water. The 
ice continues to build up at the surface, while water near the bottom remains at 48C. If 
that were not the case, fish and other forms of marine life would not survive.

Dividing both sides by Vi and isolating the term DV/Vi, we obtain the fractional 
change in volume:

DV
Vi

5 3a DT 1 3sa DTd2 1 sa DTd3

Because a DT ,, 1 for typical values of DT (, , 1008C), we can neglect the terms 
3(a DT)2 and (a DT)3. Upon making this approximation, we see that

DV
Vi

5 3a DT    S   DV 5 s3adVi DT

Comparing this expression to Equation 18.7 shows that

b 5 3a

In a similar way, you can show that the change in area of a rectangular plate is given 
by DA 5 2aAi DT (see Problem 37).

Q uick Quiz 18.3  If you are asked to make a very sensitive glass thermometer, 
which of the following working liquids would you choose? (a) mercury (b) alco-
hol (c) gasoline (d) glycerin

Q uick Quiz 18.4  Two spheres are made of the same metal and have  
the same radius, but one is hollow and the other is solid. The spheres are  
taken through the same temperature increase. Which sphere expands  
more? (a) The solid sphere expands more. (b) The hollow sphere expands  
more. (c) They expand by the same amount. (d) There is not enough 
information to say.

 Example 18.2    Expansion of a Railroad Track

A segment of steel railroad track has a length of 30.000 m when the temperature is 0.08C. What is its length when the tem-
perature is 40.08C?
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This blown-up portion of the 
graph shows that the maximum 
density of water occurs at 4�C.

Figure 18.9  The variation in the 
density of water at atmospheric 
pressure with temperature.
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 Example 18.3    The Thermal Electrical Short

A poorly designed electronic device has two bolts attached 
to different parts of the device that almost touch each 
other in its interior as in Figure 18.10. The steel and brass 
bolts are at different electric potentials, and if they touch, 
a short circuit will develop, damaging the device. (We will 
study electric potential in Chapter 24.) The initial gap 
between the ends of the bolts is d 5 5.0 mm at 278C. At 
what temperature will the bolts touch? Assume the dis-
tance between the walls of the device is not affected by 
the temperature change.

S o L u T I o N

Conceptualize Imagine the ends of both bolts expanding into the gap between them as the temperature rises.

Categorize We categorize this example as a thermal expansion problem in which the sum of the changes in length of the two 
bolts must equal the length d of the initial gap between the ends.

Analyze Set the sum of the length  DLbr 1 DLst 5 abrLi,br DT 1 astLi,st DT 5 d 
changes equal to the width of the gap:

Solve for DT :  DT 5
d

abrL i ,br 1 astL i ,st

Substitute numerical values: DT 5
5.0 3 1026 m

f19 3 1026 s8Cd21gs0.030 md 1 f11 3 1026 s8Cd21gs0.010 md
5 7.48C

Find the temperature at which the  T 5 278C 1 7.48C 5  348C 
bolts touch:

Finalize This temperature is possible if the air conditioning in the building housing the device fails for a long period on a 
very hot summer day.

0.010 m 0.030 m 

5.0 mm 

Steel Brass

Figure 18.10  (Example 18.3) Two bolts attached to different 
parts of an electrical device are almost touching when the temper-
ature is 278C. As the temperature increases, the ends of the bolts 
move toward each other.

S o L u T I o N

Conceptualize Because the rail is relatively long, we expect to obtain a measurable increase in length for a 408C temperature 
increase.

Categorize We will evaluate a length increase using the discussion of this section, so this example is a substitution problem.

Use Equation 18.5 and the value of the coefficient  DL 5 aLi DT 5 [11 3 1026 (8C)21](30.000 m)(40.08C) 5 0.013 m 
of linear expansion from Table 18.1:

Find the new length of the track: Lf 5 30.000 m 1 0.013 m 5  30.013 m

 The expansion of 1.3 cm is indeed measurable as predicted in the Conceptualize step. If the section of rail is butted right 
against another rail, this expansion cannot occur and a thermal stress is developed in the rail. The thermal stress could bend 
the rail. This stress can be avoided by leaving small expansion gaps between the rails.

W h A T  I f ? What if the temperature drops to 240.08C? What is the length of the unclamped segment?

Answer The expression for the change in length in Equation 18.5 is the same whether the temperature increases or decreases. 
Therefore, if there is an increase in length of 0.013 m when the temperature increases by 408C, there is a decrease in length of 
0.013 m when the temperature decreases by 408C. (We assume a is constant over the entire range of temperatures.) The new 
length at the colder temperature is 30.000 m 2 0.013 m 5 29.987 m.

18.2 c o n t i n u e d
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   18.5    Macroscopic Description of an Ideal Gas
The volume expansion equation DV 5 bVi DT (Eq. 18.7) is based on the assumption 
that the material has an initial volume Vi before the temperature change occurs. 
Such is the case for solids and liquids because a sample of solid or liquid has a fixed 
volume at a given temperature.

The case for gases is completely different. The interatomic forces within gases 
are very weak, and, in many cases, we can imagine these forces to be nonexistent 
and still make very good approximations. Therefore, there is no equilibrium separa-
tion for the atoms and no “standard” volume at a given temperature; the volume 
depends on the size of the container. As a result, we cannot express changes  
in volume DV in a process on a gas with Equation 18.7 because we have no defined 
volume Vi at the beginning of the process. Equations involving gases contain the 
volume V, rather than a change in the volume from an initial value, as a variable.

For a gas, it is useful to know how the quantities volume V, pressure P, and tem-
perature T are related for a sample of gas of mass m. In general, the equation that 
interrelates these quantities, called the equation of state, is very complicated. If the 
gas is maintained at a very low pressure (or low density), however, the equation 
of state is quite simple and can be determined from experimental results. Such a 
low-density gas is commonly referred to as an ideal gas.5 We can use a simplifica-
tion model called the ideal gas model to make predictions that are adequate to 
describe the behavior of real gases at low pressures.

It is convenient to express the amount of gas in a given volume in terms of the 
number of moles n. One mole of any substance is that amount of the substance that 
contains Avogadro’s number NA 5 6.022 3 1023 of constituent particles (atoms or 
molecules). The number of moles n of a substance is related to its mass m through 
the expression

 n 5
m
M

 (18.8)

where M is the molar mass of the substance. The molar mass of each chemical ele-
ment is the atomic mass (from the periodic table; see Appendix C) expressed in 
grams per mole. For example, the mass of one helium (He) atom is 4.00 u (atomic 
mass units), so the molar mass of He is 4.00 g/mol.

Now suppose an ideal gas is confined to a cylindrical container whose volume 
can be varied by means of a movable piston as in Figure 18.11. If we assume the cyl-
inder does not leak, the mass (or the number of moles) of the gas remains constant. 
For such a system, experiments measuring pressure, volume, and temperature pro-
vide the following information:

 ● When the gas is kept at a constant temperature, its pressure is inversely pro-
portional to the volume. (This behavior is described historically as Boyle’s law.)

 ● When the pressure of the gas is kept constant, the volume is directly proportional 
to the temperature. (This behavior is described historically as Charles’s law.)

 ● When the volume of the gas is kept constant, the pressure is directly propor-
tional to the temperature. (This behavior is described historically as Gay– 
Lussac’s law, and justifies the straight lines we drew through the data points 
in the graph in Figure 18.5.)

These observations are summarized by the equation of state for an ideal gas:

 PV  5 nRT (18.9)Equation of state for 
an ideal gas

5 To be more specific, the assumptions here are that the temperature of the gas must not be too low (the gas must not 
condense into a liquid) or too high and that the pressure must be low. The concept of an ideal gas implies that the 
gas molecules do not interact except upon collision and that the molecular volume is negligible compared with the 
volume of the container. In reality, an ideal gas does not exist. The concept of an ideal gas is nonetheless very useful 
because real gases at low pressures are well-modeled as ideal gases.

Figure 18.11 An ideal gas con-
fined to a cylinder whose volume 
can be varied by means of a mov-
able piston.

Gas
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In this expression, also known as the ideal gas law, n is the number of moles of gas 
in the sample and R is a constant. Experiments on numerous gases show that as the 
pressure approaches zero, the quantity PV/nT approaches the same value R for all 
gases. For this reason, R is called the universal gas constant. In SI units, in which 
pressure is expressed in pascals (1 Pa 5 1 N/m2) and volume in cubic meters, the 
product PV has units of newton  ?  meters, or joules, and R has the value

 R 5 8.314 J/mol ? K (18.10)

If the pressure is expressed in atmospheres and the volume in liters (1 L 5 
103 cm3 5 1023 m3), then R has the value

 R 5 0.082 06 L ? atm/mol ? K 

Using this value of R and Equation 18.9 shows that the volume occupied by 1 mol of 
any gas at atmospheric pressure and at 08C (273 K) is 22.4 L.

The ideal gas law states that if the volume and temperature of a fixed amount of gas 
do not change, the pressure also remains constant. Consider a bottle of champagne 
that is shaken and then spews liquid when opened as shown in Figure 18.12. A com-
mon misconception is that the pressure inside the bottle is increased when the bottle 
is shaken. On the contrary, because the temperature of the bottle and its contents 
remains constant as long as the bottle is sealed, so does the pressure, as can be shown 
by replacing the cork with a pressure gauge. The correct explanation is as follows. 
Carbon dioxide gas resides in the volume between the liquid surface and the cork. 
The pressure of the gas in this volume is set higher than atmospheric pressure in the 
bottling process. Shaking the bottle displaces some of the carbon dioxide gas into 
the liquid, where it forms bubbles, and these bubbles become attached to the inside 
of the bottle. (No new gas is generated by shaking.) When the bottle is opened, the 
pressure is reduced to atmospheric pressure, which causes the volume of the bubbles 
to increase suddenly. If the bubbles are attached to the bottle (beneath the liquid sur-
face), their rapid expansion expels liquid from the bottle. If the sides and bottom of 
the bottle are first tapped until no bubbles remain beneath the surface, however, the 
drop in pressure does not force liquid from the bottle when the champagne is opened.

The ideal gas law is often expressed in terms of the total number of molecules N. 
Because the number of moles n equals the ratio of the total number of molecules 
and Avogadro’s number NA, we can write Equation 18.9 as

  PV 5 nRT 5
N
NA

 RT  

 PV 5 NkBT (18.11)

where kB is Boltzmann’s constant, which has the value

 kB 5
R

NA

5 1.38 3 10223 JyK (18.12)

It is common to call quantities such as P, V, and T the thermodynamic variables of 
an ideal gas. If the equation of state is known, one of the variables can always be 
expressed as some function of the other two.

Q uick Quiz 18.5  A common material for cushioning objects in packages is 
made by trapping bubbles of air between sheets of plastic. Is this material more 
effective at keeping the contents of the package from moving around inside the 
package on (a) a hot day, (b) a cold day, or (c) either hot or cold days?

Q uick Quiz 18.6  On a winter day, you turn on your furnace and the temper-
ature of the air inside your home increases. Assume your home has the normal 
amount of leakage between inside air and outside air. Is the number of moles of 
air in your room at the higher temperature (a) larger than before, (b) smaller 
than before, or (c) the same as before?

  Boltzmann’s constant

Figure 18.12  A bottle of cham-
pagne is shaken and opened. 
Liquid spews out of the opening. 
A common misconception is that 
the pressure inside the bottle is 
increased by the shaking.
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Pitfall Prevention 18.3
So Many ks There are a variety of 
physical quantities for which the 
letter k is used. Two we have seen 
previously are the force constant 
for a spring (Chapter 15) and the 
wave number for a mechanical 
wave (Chapter 16). Boltzmann’s 
constant is another k, and we will 
see k used for thermal conductiv-
ity in Chapter 19 and for an elec-
trical constant in Chapter 22. To 
make some sense of this confusing 
state of affairs, we use a subscript 
B for Boltzmann’s constant to help 
us recognize it. In this book, you 
will see Boltzmann’s constant as 
kB, but you may see Boltzmann’s 
constant in other resources as 
simply k.
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 Example 18.4    Heating a Spray Can

A spray can containing a propellant gas at twice atmospheric pressure (202 kPa) and having a volume of 125.00 cm3 is at 
228C. It is then tossed into an open fire. (Warning: Do not do this experiment; it is very dangerous.) When the tempera-
ture of the gas in the can reaches 1958C, what is the pressure inside the can? Assume any change in the volume of the can 
is negligible.

S o L u T I o N

Conceptualize Intuitively, you should expect that the pressure of the gas in the container increases because of the increasing 
temperature.

Categorize We model the gas in the can as ideal and use the ideal gas law to calculate the new pressure.

Analyze Rearrange Equation 18.9: (1)   
PV
T

5 nR

No air escapes during the compression, so n, and therefore  (2)   
PiVi

Ti

5
Pf Vf

Tf

  
nR, remains constant. Hence, set the initial value of the left  
side of Equation (1) equal to the final value:

Because the initial and final volumes of the gas are  (3)   
Pi

Ti

5
Pf

Tf

 
assumed to be equal, cancel the volumes:

Solve for Pf : Pf 5 STf

Ti
DPi 5 S468 K

295 KDs202 kPad 5  320 kPa

Finalize The higher the temperature, the higher the pressure exerted by the trapped gas as expected. If the pressure 
increases sufficiently, the can may explode. Because of this possibility, you should never dispose of spray cans in a fire.

W h A T  I f ?  Suppose we include a volume change due to thermal expansion of the steel can as the temperature increases. 
Does that alter our answer for the final pressure significantly?

Answer Because the thermal expansion coefficient of steel is very small, we do not expect much of an effect on our 
final answer.

Find the change in the volume of the can using Equa- DV 5 bVi DT 5 3aVi DT 
tion 18.7 and the value for a for steel from Table 18.1: 

  5 3[11 3 1026 (8C)21](125.00 cm3)(1738C) 5 0.71 cm3

Start from Equation (2) again and find an equation for  Pf 5 STf

Ti
DSVi

Vf
DPi 

the final pressure:

This result differs from Equation (3) only in the factor  
Vi

Vf

5
125.00 cm3

s125.00 cm3 1 0.71 cm3d
5 0.994 5 99.4% 

Vi /Vf . Evaluate this factor:

Therefore, the final pressure will differ by only 0.6% from the value calculated without considering the thermal expansion of 
the can. Taking 99.4% of the previous final pressure, the final pressure including thermal expansion is 318 kPa.

Summary
 › Definitions

Two objects are in thermal equilib-
rium with each other if they do not 
exchange energy when in thermal 
contact.

Temperature is the property that determines whether an object is in thermal equilibrium 
with other objects. Two objects in thermal equilibrium with each other are at the same tem-
perature. The SI unit of absolute temperature is the kelvin, which is defined to be 1/273.16 
of the difference between absolute zero and the temperature of the triple point of water.
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 › Concepts and Principles

The zeroth law of thermodynam-
ics states that if objects A and B 
are separately in thermal equilib-
rium with a third object C, then 
objects A and B are in thermal 
equilibrium with each other.

When the temperature of an object is changed by an amount DT, its length changes by an 
amount DL that is proportional to DT and to its initial length Li:

 DL 5 aLi DT (18.5)

where the constant a is the average coefficient of linear expansion. The average coeffi-
cient of volume expansion b for a solid is approximately equal to 3a.

An ideal gas is one for which PV/nT is constant. An ideal gas is described by the equation of state,

 PV 5 nRT (18.9)

where n equals the number of moles of the gas, P is its pressure, V is its volume, R is the universal gas constant (8.314 J/mol ? K), and 
T is the absolute temperature of the gas. A real gas behaves approximately as an ideal gas if it has a low density.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Review. In the storyline opening Chapter 15, we discussed 
the change in timing for a grandfather clock due to a 
change in the value of the acceleration g due to gravity. 
Have your group think about a change in the timing of the 
pendulum clock due to a change in temperature. Suppose 
the pendulum is made of brass and has a period of 1.000 s 
when the temperature is 20.08C. During a warm summer 
week, the temperature remains in a very small range with an 
average of 30.08C. (a) Does the clock lose time or gain time 
during that week? (b) By how much is the clock in error by 
the end of the week?

2. Your expert witness team has been hired by the city council 
in a lawsuit filed by a truck driver. While driving down a city 
street on a hot day, the top of the truck driven by the driver 
struck a power line hanging across the street, causing dam-
age to his truck and injury to himself. The driver claims that 
the power line was sagging so much because of the temper-
ature. As a result, it was hanging below the height clearance 
limit of 14 feet, 0 inches posted on a sign on the street. You 
go to the site of the accident and take the following mea-
surements. The poles supporting the ends of the power line 
are 40.0 ft apart. Both ends of the line are supported at a 
height of 16.0 ft above the roadway surface. On the winter 
day you visit the site, the temperature is 225.08C and the 
copper power line shows essentially no sag. On the day of 
the accident, the temperature was 38.08C. Prepare an argu-
ment that the power line did not sag below the height clear-
ance, and that the truck driver must have loaded his truck 
to a point higher than the posted clearance. (Suggestion: the 
shape of the sagging power line will be a curve, but assume 
an unrealistic shape for the line that will allow a simple cal-
culation for the lowest possible point on the line.)

3. ACTIVITy  For this activity, you’ll need some containers, 
some straws, and some water. (a) Fill various containers 
to different levels with water and measure the depth h 
of the water in each cup carefully. Now immerse a straw 
vertically in each cup with the bottom of the straw resting 
on the bottom of the cup. Place your finger over the top 
end of the straw to seal it and lift the straw vertically out 
of the cup. Measure the length h9 of the column of water 
trapped in the straw. You may need to take a photo with 
your smartphone of the straw and a ruler and carefully 
analyze an enlargement of the photo to make this mea-
surement. Does the length of the column of water trapped 
in the straw agree with the depth of water in the cup? 
Should it agree? (b) In order for the column of water to 
be suspended in the straw, the pressure above the column 
(within the straw) must be less than atmospheric pres-
sure. For that to happen, the column of water must move 
downward a bit when the straw is raised from the water, so 
that the air above the column expands in volume and the 
pressure decreases. Therefore, the two measured lengths 
should not be the same. But is the difference detectable? 
Show that the length h9 of water suspended in the straw of 
length , should be related to the depth h of the water in 
the cup by

h9 5 1
2  1/ 1

P0

rg2 2 1
2Î/2 1 21P0

rg2(/ 2 2h) 1 1P0

rg2
2

where P0 is atmospheric pressure and r is the density of the 
water. (c) For a 30-cm straw, use the equation to determine 
the difference h 2 h9 for various levels of h from zero to  
30  cm in increments of 1 cm. (d) For what values of h is 
the percentage drop in the water column the greatest when 
the straw is drawn out of the cup? (e) For what value of h 
is the value of h 2 h9 a maximum?

 Think–Pair–Share 495
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 18.2 Thermometers and the Celsius Temperature Scale

1. You are working as a research assistant for a professor 
whose research area is thermodynamics. He points out 
to you that Daniel Fahrenheit used the best estimate of 
normal human body temperature as one of the points in 
defining the original Fahrenheit temperature scale. On 
the revised scale we now use, normal human body tem-
perature is 98.68F. Your professor proposes a new scale on 
which normal human body temperature would be exactly 
1008N, where the unit 8N is a degree on the New scale. The 
temperature of freezing water would be 08N, as on the 
Celsius scale. Your professor asks you to determine the fol-
lowing temperatures on his new scale: (a) absolute zero, 
(b)  the melting point of mercury (237.98F), (c) the boil-
ing point of water, and, for publicity at his expected future 
press conference, (d) the highest recorded air temperature 
on the Earth’s surface, 134.18F on July 10, 1913, in Death 
Valley, California.

Section 18.3 The Constant-Volume Gas Thermometer  
and the Absolute Temperature Scale

2. A nurse measures the temperature of a patient to be 41.58C. 
(a) What is this temperature on the Fahrenheit scale? (b) Do 
you think the patient is seriously ill? Explain.

3. Convert the following temperatures to their values on the 
Fahrenheit and Kelvin scales: (a) the sublimation point of 
dry ice, 278.58C; (b) human body temperature, 37.08C.

4. Liquid nitrogen has a boiling point of 2195.818C at atmo-
spheric pressure. Express this temperature (a) in degrees 
Fahrenheit and (b) in kelvins.

5. Death Valley holds the record for the highest recorded tem-
perature in the United States. On July 10, 1913, at a place 
called Furnace Creek Ranch, the temperature rose to 
1348F. The lowest U.S. temperature ever recorded occurred 
at Prospect Creek Camp in Alaska on January 23, 1971, 
when the temperature plummeted to 279.88F. (a) Convert 
these temperatures to the Celsius scale. (b) Convert the 
Celsius temperatures to Kelvin.

Section 18.4 Thermal Expansion of Solids and Liquids

Note: Table 18.1 is available for use in solving problems in 
this section.

6. Review. Inside the wall of a house, an L-shaped section 
of hot-water pipe consists of three parts: a straight, hori-
zontal piece h 5 28.0 cm long; an elbow; and a straight, 
vertical piece , 5 134 cm long (Fig. P18.6). A stud and a 
second-story floorboard hold the ends of this section of 
copper pipe stationary. Find the magnitude and direction 
of the displacement of the pipe elbow when the water flow 
is turned on, raising the temperature of the pipe from 
18.08C to 46.58C.

7. A copper telephone wire has essentially no sag between 
poles 35.0 m apart on a winter day when the temperature 
is 220.08C. How much longer is the wire on a summer day 
when the temperature is 35.08C?

8. A pair of eyeglass frames is made of epoxy plastic. At room 
temperature (20.08C), the frames have circular lens holes 
2.20 cm in radius. To what temperature must the frames 
be heated if lenses 2.21 cm in radius are to be inserted in 
them? The average coefficient of linear expansion for epoxy 
is 1.30 3 1024 (8C)21.

9. The Trans-Alaska pipeline is 1 300 km long, reaching from 
Prudhoe Bay to the port of Valdez. It experiences tempera-
tures from 2738C to 1358C. How much does the steel pipe-
line expand because of the difference in temperature? How 
can this expansion be compensated for?

10. A square hole 8.00 cm along each side is cut in a sheet of 
copper. (a) Calculate the change in the area of this hole 
resulting when the temperature of the sheet is increased 
by 50.0 K. (b) Does this change represent an increase or a 
decrease in the area enclosed by the hole?

11. You are watching a new 
bridge being built near 
your house. You notice 
during the construction 
that two concrete spans 
of the bridge of total 
length Li 5 250 m are 
placed end to end so that 
no room is allowed for 
expansion (Fig. P18.11a). 
In the opening story-
line for this chapter, we 
talked about buckling 
sidewalks. The same 
thing will happen with spans on bridges if allowance is not 
made for expansion (Fig. P18.11b). You want to warn the con-
struction crew about this dangerous situation, so you calcu-
late the height y to which the spans will rise when they buckle 
in response to a temperature increase of DT 5 20.08C.

12. You are watching a new bridge being built near your house. 
You notice during the construction that two concrete spans 
are placed end to end to form a span of length Li. However, 
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they are placed end to end so that no room is allowed for 
expansion (Fig. P18.11a). In the opening storyline for this 
chapter, we talked about buckling sidewalks. The same 
thing will happen with spans on bridges if allowance is not 
made for expansion (Fig. P18.11b). You want to warn the 
construction crew about this dangerous situation, so you 
calculate the height y to which the spans will rise when they 
buckle in response to a temperature increase of DT.

13. At 20.08C, an aluminum ring has an inner diameter of 
5.000 0 cm and a brass rod has a diameter of 5.050 0 cm. 
(a) If only the ring is warmed, what temperature must 
it reach so that it will just slip over the rod? (b) What If?  
If both the ring and the rod are warmed together, what tem-
perature must they both reach so that the ring barely slips 
over the rod? (c) Would this latter process work? Explain. 
Hint: Consult Table 19.2 in the next chapter.

14. Why is the following situation impossible? A thin brass ring has 
an inner diameter 10.00 cm at 20.08C. A solid aluminum cyl-
inder has diameter 10.02 cm at 20.08C. Assume the average 
coefficients of linear expansion of the two metals are con-
stant. Both metals are cooled together to a temperature at 
which the ring can be slipped over the end of the cylinder.

15. A volumetric flask made of Pyrex is calibrated at 20.08C. It 
is filled to the 100-mL mark with 35.08C acetone. After the 
flask is filled, the acetone cools and the flask warms so that 
the combination of acetone and flask reaches a uniform 
temperature of 32.08C. The combination is then cooled 
back to 20.08C. (a) What is the volume of the acetone when 
it cools to 20.08C? (b) At the temperature of 32.08C, does 
the level of acetone lie above or below the 100-mL mark on 
the flask? Explain.

16. Review. On a day that the temperature is 20.08C, a concrete 
walk is poured in such a way that the ends of the walk are 
unable to move. Take Young’s modulus for concrete to be 
7.00 3 109 N/m2 and the compressive strength to be 2.00 3 
109 N/m2. (a) What is the stress in the cement on a hot day 
of 50.08C? (b) Does the concrete fracture?

17. Review. The Golden Gate Bridge in San Francisco has 
a main span of length 1.28 km, one of the longest in the 
world. Imagine that a steel wire with this length and a cross-
sectional area of 4.00 3 1026 m2 is laid in a straight line on 
the bridge deck with its ends attached to the towers of the 
bridge. On a summer day the temperature of the wire is 
35.08C. (a) When winter arrives, the towers stay the same 
distance apart and the bridge deck keeps the same shape 
as its expansion joints open. When the temperature drops 
to 210.08C, what is the tension in the wire? Take Young’s 
modulus for steel to be 20.0 3 1010 N/m2. (b) Permanent 
deformation occurs if the stress in the steel exceeds its elas-
tic limit of 3.00 3 108 N/m2. At what temperature would the 
wire reach its elastic limit? (c) What If? Explain how your 
answers to parts (a) and (b) would change if the Golden 
Gate Bridge were twice as long.

Section 18.5 Macroscopic Description of an Ideal Gas

18. Your father and your younger brother are confronted with 
the same puzzle. Your father’s garden sprayer and your 
brother’s water cannon both have tanks with a capacity of 
5.00 L (Fig. P18.18). Your father puts a negligible amount 
of concentrated fertilizer into his tank. They both pour in 

4.00  L of water and seal up their tanks, so the tanks also 
contain air at atmospheric pressure. Next, each uses a hand-
operated pump to inject more air until the absolute pres-
sure in the tank reaches 2.40 atm. Now each uses his device 
to spray out water—not air—until the stream becomes fee-
ble, which it does when the pressure in the tank reaches 
1.20  atm. To accomplish spraying out all the water, each 
finds he must pump up the tank three times. Here is the 
puzzle: most of the water sprays out after the second pump-
ing. The first and the third pumping-up processes seem 
just as difficult as the second but result in a much smaller 
amount of water coming out. Account for this phenomenon.

19. An auditorium has dimensions 10.0 m 3 20.0 m 3 30.0 m. 
How many molecules of air fill the auditorium at 20.08C and 
a pressure of 101 kPa (1.00 atm)?

20. A container in the shape of a cube 10.0 cm on each edge 
contains air (with equivalent molar mass 28.9 g/mol) at 
atmospheric pressure and temperature 300 K. Find (a) the 
mass of the gas, (b) the gravitational force exerted on it, 
and (c) the force it exerts on each face of the cube. (d) Why 
does such a small sample exert such a great force?

21. (a) Find the number of moles in one cubic meter of an ideal 
gas at 20.08C and atmospheric pressure. (b) For air, Avoga-
dro’s number of molecules has mass 28.9 g. Calculate the 
mass of one cubic meter of air. (c) State how this result com-
pares with the tabulated density of air at 20.08C.

22. Use the definition of Avogadro’s number to find the mass of 
a helium atom.

23. In state-of-the-art vacuum systems, pressures as low as 
1.00 3 1029 Pa are being attained. Calculate the number of 
molecules in a 1.00-m3 vessel at this pressure and a temper-
ature of 27.08C.

24. You have scored a great internship with NASA, working on 
planning for an upcoming mission to Mars. The transfer 
orbit to Mars will last for several months and will require 
reclamation of the oxygen in the carbon dioxide exhaled 
by the crew. In one method of reclamation, 1.00 mol of 
carbon dioxide produces 1.00 mol of oxygen and 1.00 mol 
of methane as a byproduct. The methane is stored in a tank 
under pressure and is available to control the orientation 
of the spacecraft by controlled venting. A single astronaut 
exhales 1.09 kg of carbon dioxide each day. If the methane 
generated in the respiration recycling of three astronauts 
during one week of flight is stored in an originally empty 
150-L tank at 245.08C, what is the final pressure in the tank?
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498 Chapter 18 Temperature

25. Review. The mass of a hot-air balloon and its cargo (not 
including the air inside) is 200 kg. The air outside is at 
10.08C and 101 kPa. The volume of the balloon is 400 m3. 
To what temperature must the air in the balloon be warmed 
before the balloon will lift off? (Air density at 10.08C is 
1.244 kg/m3.)

26. A room of volume V contains air having equivalent molar 
mass M (in g/mol). If the temperature of the room is raised 
from T1 to T2, what mass of air will leave the room? Assume 
that the air pressure in the room is maintained at P0.

27. Estimate the mass of the air in your bedroom. State the 
quantities you take as data and the value you measure or 
estimate for each.

28. You are applying for a position with a sea rescue unit and 
are taking the qualifying exam. One question on the exam 
is about the use of a diving bell. The diving bell is in the 
shape of a cylinder with a vertical length of L 5 2.50 m. It 
is closed at the upper circular end and open at the lower 
circular end. The bell is lowered from air into seawater 
(r 5 1.025 g/cm3) and kept in its upright orientation as it is 
lowered. The air in the bell is initially at temperature Ti 5 
20.08C. The bell, with two humans inside, is lowered to a 
depth (measured to the bottom of the bell) of 27.0 fathoms, 
or h 5 49.4 m. At this depth the water temperature is Tf 5 
4.08C, and the bell is in thermal equilibrium with the water.  
The exam question asks you to compare two situations: 
(i) No additional gas is added to the interior of the bell as 
it is submerged. Therefore, water enters the open bottom 
of the bell and the volume of the enclosed air decreases. 
(ii)  The bell is fitted with pressurized air tanks, which 
deliver high-pressure air into the interior of the bell to keep 
the level of water at the bottom edge of the bell. This choice 
requires money and effort to attach the tanks. The exam 
question asks: Which scenario is better?

29. The pressure gauge on a cylinder of gas registers the gauge 
pressure, which is the difference between the interior pres-
sure and the exterior pressure P0. Let’s call the gauge pres-
sure Pg. When the cylinder is full, the mass of the gas in it is 
mi at a gauge pressure of Pgi. Assuming the temperature of 
the cylinder remains constant, show that the mass of the gas 
remaining in the cylinder when the pressure reading is Pgf is 
given by

mf 5 miSPg f 1 P0

Pg i 1 P0
D

additional ProblemS

30. A steel beam being used in the construction of a skyscraper 
has a length of 35.000 m when delivered on a cold day at 
a temperature of 15.0008F. What is the length of the beam 
when it is being installed later on a warm day when the tem-
perature is 90.0008F?

31. Two metal bars are made of invar and a third bar is made 
of aluminum. At 08C, each of the three bars is drilled with 
two holes 40.0 cm apart. Pins are put through the holes 
to assemble the bars into an equilateral triangle as in Fig-
ure P18.31. (a) First ignore the expansion of the invar. Find 
the angle between the invar bars as a function of Celsius 
temperature. (b) Is your answer accurate for negative as well 
as positive temperatures? (c) Is it accurate for 08C? (d) Solve 

the problem again, including 
the expansion of the invar. 
Aluminum melts at 6608C 
and invar at 1 4278C. Assume 
the tabulated expansion coef-
ficients are constant. What 
are (e) the greatest and (f) 
the smallest attainable angles 
between the invar bars?

32. Why is the following situation 
impossible? An apparatus is 
designed so that steam initially at T 5 1508C, P 5 1.00 atm,  
and V 5 0.500 m3 in a piston–cylinder apparatus under-
goes a process in which (1) the volume remains constant 
and the pressure drops to 0.870 atm, followed by (2) an 
expansion in which the pressure remains constant and 
the volume increases to 1.00 m3, followed by (3) a return 
to the initial conditions. It is important that the pressure 
of the gas never fall below 0.850 atm so that the piston 
will support a delicate and very expensive part of the 
apparatus. Without such support, the delicate apparatus 
can be severely damaged and rendered useless. When the 
design is turned into a working prototype, it operates 
perfectly.

33. A student measures the length of a brass rod with a steel 
tape at 20.08C. The reading is 95.00 cm. What will the tape 
indicate for the length of the rod when the rod and the tape 
are at (a) 215.08C and (b) 55.08C?

34. The density of gasoline is 730 kg/m3 at 08C. Its average coef-
ficient of volume expansion is 9.60 3 1024 (8C)21. Assume 
1.00 gal of gasoline occupies 0.003 80 m3. How many extra 
kilograms of gasoline would you receive if you bought 
10.0  gal of gasoline at 08C rather than at 20.08C from a 
pump that is not temperature compensated?

35. A liquid has a density r. (a) Show that the fractional change 
in density for a change in temperature DT is Dr/r 5 2b DT. 
(b) What does the negative sign signify? (c) Fresh water has 
a maximum density of 1.000 0 g/cm3 at 4.08C. At 10.08C, 
its density is 0.999 7 g/cm3. What is b for water over this 
temperature interval? (d) At 08C, the density of water is 
0.999 9 g/cm3. What is the value for b over the temperature 
range 08C to 4.008C?

36. (a) Take the definition of the coefficient of volume expan-
sion to be

b 5
1
V

  
dV
dT *

P5constant
5

1
V

  
−V
−T

  Use the equation of state for an ideal gas to show that the 
coefficient of volume expansion for an ideal gas at constant 
pressure is given by b 5 1/T, where T is the absolute temper-
ature. (b) What value does this expression predict for b at 
08C? State how this result compares with the experimental 
values for (c) helium and (d) air in Table 18.1. Note: These 
values are much larger than the coefficients of volume 
expansion for most liquids and solids.

37. The rectangular plate shown in Figure P18.37 has an area 
Ai equal to ,w. If the temperature increases by DT, each 
dimension increases according to Equation 18.5, where a is 
the average coefficient of linear expansion. (a)  Show that 
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the increase in area is DA 5 2aAi DT. (b) What approxima-
tion does this expression assume?

38. A bimetallic strip of length L is made 
of two ribbons of different metals 
bonded together. (a) First assume the 
strip is originally straight. As the strip 
is warmed, the metal with the greater 
average coefficient of expansion 
expands more than the other, forc-
ing the strip into an arc with the outer 
radius having a greater circumference 
(Fig.  P18.38). Derive an expression for 
the angle of bending u as a function 
of the initial length of the strips, their average coefficients  
of linear expansion, the change in temperature, and 
the separation of the centers of the strips (Dr 5 r2 2 r1). 
(b) Show that the angle of bending decreases to zero when 
DT decreases to zero and also when the two average coeffi-
cients of expansion become equal. (c) What If? What hap-
pens if the strip is cooled?

39. A copper rod and a steel rod are different in length by 
5.00 cm at 08C. The rods are warmed and cooled together. 
(a) Is it possible that the length difference remains constant 
at all temperatures? Explain. (b) If so, describe the lengths 
at 08C as precisely as you can. Can you tell which rod is 
longer? Can you tell the lengths of the rods?

40. A vertical cylinder of cross- 
sectional area A is fitted with a 
tight-fitting, frictionless piston of 
mass m (Fig. P18.40). The piston is 
not restricted in its motion in any 
way and is supported by the gas at 
pressure P below it. Atmospheric 
pressure is P0. We wish to find the 
height h in Figure P18.40. (a) What 
analysis model is appropriate to 
describe the piston? (b) Write an 
appropriate force equation for the 
piston from this analysis model in 
terms of P, P0, m, A, and g. (c) Sup-
pose n moles of an ideal gas are in 
the cylinder at a temperature of 
T. Substitute for P in your answer  
to part (b) to find the height h  
of the piston above the bottom of 
the cylinder.

41. Review. Consider an object with any one of the shapes dis-
played in Table 10.2. What is the percentage increase in the 
moment of inertia of the object when it is warmed from 08C 
to 1008C if it is composed of (a) copper or (b) aluminum? 
Assume the average linear expansion coefficients shown in 

Table 18.1 do not vary between 08C and 1008C. (c) Why are 
the answers for parts (a) and (b) the same for all the shapes?

42. Review. Following a collision in outer space, a copper disk 
at 8508C is rotating about its axis with an angular speed of 
25.0 rad/s. As the disk radiates infrared light, its tempera-
ture falls to 20.08C. No external torque acts on the disk. (a) 
Does the angular speed change as the disk cools? Explain 
how it changes or why it does not. (b) What is its angular 
speed at the lower temperature?

43. Starting with Equation 18.11, show that the total pressure P 
in a container filled with a mixture of several ideal gases is 
P 5 P1 1 P2 1 P3 1  ? ? ? , where P1, P2, ? ? ? are the pressures 
that each gas would exert if it alone filled the container. 
(These individual pressures are called the partial pressures of 
the respective gases.) This result is known as Dalton’s law of 
partial pressures.

challenge ProblemS

44. Review. A house roof is a perfectly flat plane that makes an 
angle u with the horizontal. When its temperature changes, 
between Tc before dawn each day and Th in the middle of 
each afternoon, the roof expands and contracts uniformly 
with a coefficient of thermal expansion a1. Resting on the 
roof is a flat, rectangular metal plate with expansion coef-
ficient a2, greater than a1. The length of the plate is L, 
measured along the slope of the roof. The component of 
the plate’s weight perpendicular to the roof is supported by 
a normal force uniformly distributed over the area of the 
plate. The coefficient of kinetic friction between the plate 
and the roof is mk. The plate is always at the same temper-
ature as the roof, so we assume its temperature is contin-
uously changing. Because of the difference in expansion 
coefficients, each bit of the plate is moving relative to the 
roof below it, except for points along a certain horizontal 
line running across the plate called the stationary line. If 
the temperature is rising, parts of the plate below the sta-
tionary line are moving down relative to the roof and feel 
a force of kinetic friction acting up the roof. Elements of 
area above the stationary line are sliding up the roof, and 
on them kinetic friction acts downward parallel to the roof. 
The stationary line occupies no area, so we assume no force 
of static friction acts on the plate while the temperature is 
changing. The plate as a whole is very nearly in equilibrium, 
so the net friction force on it must be equal to the compo-
nent of its weight acting down the incline. (a) Prove that the 
stationary line is at a distance of

L
2 S1 2

tan u
mk

D
  below the top edge of the plate. (b) Analyze the forces 

that act on the plate when the temperature is falling and 
prove that the stationary line is at that same distance above 
the bottom edge of the plate. (c) Show that the plate steps 
down the roof like an inchworm, moving each day by 
the distance

 
L
mk

sa2 2 a1dsTh 2 Tc d tan u

  (d) Evaluate the distance an aluminum plate moves each 
day if its length is 1.20 m, the temperature cycles between 
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500 Chapter 18 Temperature

4.008C and 36.08C, and if the roof has slope 18.58, coeffi-
cient of linear expansion 1.50 3 1025 (8C)21, and coeffi-
cient of friction 0.420 with the plate. (e) What If? What if 
the expansion coefficient of the plate is less than that of the 
roof? Will the plate creep up the roof?

45. A 1.00-km steel railroad rail is fastened securely at both 
ends when the temperature is 20.08C. As the temperature 
increases, the rail buckles, taking the shape of an arc of 
a vertical circle. Find the height h of the center of the rail 
when the temperature is 25.08C. (You will need to solve a 
transcendental equation.)

46. Helium gas is sold in steel tanks that will rupture if subjected 
to tensile stress greater than its yield strength of 5 3 108 N/m2.  
If the helium is used to inflate a balloon, could the bal-
loon lift the spherical tank the helium came in? Justify your 
answer. Suggestion: You may consider a spherical steel shell 
of radius r and thickness t having the density of iron and on 
the verge of breaking apart into two hemispheres because it 
contains helium at high pressure.
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19The First Law of 
Thermodynamics

19.1 Heat and Internal 
Energy

19.2 Specific Heat  
and Calorimetry

19.3 Latent Heat

19.4 Work in 
Thermodynamic 
Processes

19.5 The First Law of 
Thermodynamics

19.6 Energy Transfer 
Mechanisms in 
Thermal Processes

Storyline It’s a three-day weekend, and you decide to go RV 
camping with other members of the Physics Club at Whitney Portal, California, 
the gateway to Mount Whitney, the tallest peak in the contiguous United States. 
This community is at an altitude of 2 393 m above sea level, so it should be a good 
place to do some astronomy observations. As your Club advisor’s RV progresses 
toward Whitney Portal, gaining altitude with each minute, you notice a sign that 
says, “Caution: Bridge Freezes Before Road Surface.” You wonder why that would 
happen. As you reach your destination, you climb out of your car and marvel at 
how cold it is. But then you think, “Wait a minute! I’m closer to the Sun than I was 
at sea level. Why isn’t it warmer at the top of a mountain?” You set up camp and 
offer to make dinner for the group. You boil some eggs for three minutes, fry some 
hamburgers, and place a sheet of cookies in the oven. After the cookies are done, 
you put a homemade cake in the oven to bake. At the end of the meal, the results 
are mixed. The hamburgers are great, the eggs were not quite cooked enough, the 
cookies were too well done near the edges of the cookie sheet, and the cake fell. 
Why was your dinner so unsuccessful? You are unhappy with your cooking perfor-
mance and go to bed. The next morning, you arise for a brisk walk and notice that 
there is frost on the cars, mailboxes, and the like, but only on the top surfaces of 
those items, not the sides. Why is the frost only on the top surfaces? There have 
been so many mysteries associated with this mountain trip and it’s only the first 
morning! You hope there is cell phone service when you return to your RV from 
your walk so that you can spend some time investigating these mysteries online.

ConneCtions Equation 8.2, the conservation of energy equation, shows 
how the energy of a system can change due to mechanical transfers of energy, 

A cake is pulled from the 
oven and it has fallen. 
What causes a cake to fall 
and why is this question 
being asked in a chapter 
on thermodynamics? 
(bonchan/Shutterstock)
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502 Chapter 19 The First Law of Thermodynamics

like work, and thermal transfers, like heat. It also shows that the energy of a 
system is divided between mechanical types (kinetic and potential energy) and 
a thermal type (internal energy). But this is our modern-day understanding of 
energy. Until about 1850, the fields of thermodynamics and mechanics were con-
sidered to be two distinct branches of science. The principle of conservation of 
energy seemed to describe only certain kinds of mechanical systems. Mid-19th-
century experiments performed by Englishman James Joule and others, how-
ever, showed a strong connection between the transfer of energy by heat in ther-
mal processes and the transfer of energy by work in mechanical processes. This 
connection led to what we know as Equation 8.2. This current chapter focuses on 
a reduced form of Equation 8.2, known as the first law of thermodynamics. The 
first law of thermodynamics describes systems in which the only energy change 
is that of internal energy and the transfers of energy are by heat and work. A 
major difference in our discussion of work in this chapter from that in most of 
the chapters on mechanics is that we will consider work done on deformable 
systems. We will see energy transfers associated with temperature and internal 
energy in a number of cases in the future, including, among others, the warm-
ing of electrical resistors in Chapter 26, cooking a potato in a microwave oven in 
Chapter 33, and thermal radiation from a black body in Chapter 39.

   19.1    Heat and Internal Energy
In Chapter 7, we introduced internal energy Eint, which exhibits changes on the left 
side of Equation 8.2, and in Chapter 8, we introduced heat Q , which is a mechanism 
for energy transfer on the right hand side of the equation. These terms are often 
incorrectly used interchangeably in popular language. Therefore, let us define 
them carefully:

Internal energy is all the energy of a system that is associated with its micro-
scopic components—atoms and molecules—when viewed from a reference 
frame at rest with respect to the center of mass of the system.

The last part of this sentence ensures that any bulk kinetic energy of the system 
due to its motion through space is not included in internal energy. Internal energy 
includes kinetic energy of random translational, rotational, and vibrational motion 
of molecules; vibrational potential energy associated with forces between atoms in 
molecules; and electric potential energy associated with forces between molecules. 
In Chapter 7, we related internal energy to the temperature of an object, but this 
relationship is limited. We show in Section 19.3 that internal energy changes can 
also occur in the absence of temperature changes. In that discussion, we will inves-
tigate the internal energy of the system when there is a physical change, most often 
related to a phase change, such as melting or boiling. 

We assign energy associated with chemical changes, related to chemical reactions, 
to the potential energy term in Equation 8.2, not to internal energy. Therefore, we 
discuss the chemical potential energy in, for example, a human body (due to previous 
meals), the gas tank of a car (due to an earlier transfer of fuel), and a battery of an 
electric circuit (stored in the battery during its construction in the manufacturing 
process).

Compare this description of internal energy with the following for heat:

Heat is defined as a process of transferring energy across the boundary of a 
system because of a temperature difference between the system and its sur-
roundings. It is also the amount of energy Q transferred by this process.

PItfall PReVentIon 19.1
Internal Energy, Thermal Energy,  
and Bond Energy When reading 
other physics books, you may see 
terms such as thermal energy and 
bond energy. Thermal energy can 
be interpreted as that part of the 
internal energy associated with 
random motion of molecules and 
therefore related to temperature. 
Bond energy is the intermolecular 
potential energy. Therefore,

 Internal energy 5  
   thermal energy 1 bond energy

 Although this breakdown is pre-
sented here for clarification with 
regard to other books, we will not 
use these terms because there is 
no need for them.

PItfall PReVentIon 19.2
Heat, Temperature, and Internal 
Energy Are Different As you 
read the newspaper or explore 
online, be alert for incorrectly 
used phrases including the word 
heat and think about the proper 
word to be used in place of heat. 
Incorrect examples include “As 
the truck braked to a stop, a large 
amount of heat was generated by 
friction” and “The heat of a hot 
summer day . . . .”
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When you heat a substance, you are transferring energy into it by placing it in con-
tact with surroundings that have a higher temperature. Such is the case, for exam-
ple, when you place a pan of cold water on a stove burner. The burner is at a higher 
temperature than the water, and so the water gains energy by heat. For your cake in 
the oven in the opening storyline, energy transfers by heat from the hot air in the 
oven to the cake mixture.

Read this definition of heat (Q in Eq. 8.2) very carefully. In particular, notice 
what heat is not in the following common quotes. (1) Heat is not energy in a hot sub-
stance. For example, “The boiling water has a lot of heat” is incorrect; the boiling 
water has internal energy Eint. (2) Heat is not radiation. For example, “It was so hot 
during the bicycle race because the black roadway was radiating heat” is incorrect; 
energy is leaving the roadway by electromagnetic radiation, TER in Equation 8.2. 
(3) Heat is not warmth of an environment. For example, “The heat in the air was so 
oppressive” is incorrect; on a hot day, the air has a high temperature T.

As an analogy to the distinction between heat and internal energy, consider the 
distinction between work and mechanical energy discussed in Chapter 7. The work 
done on a system is a measure of the amount of energy transferred to the system 
from its surroundings, whereas the mechanical energy (kinetic energy plus poten-
tial energy) of a system is a consequence of the motion and configuration of the 
system. Therefore, when a person does work on a system, energy is transferred from 
the person to the system. It makes no sense to talk about the work of a system; one 
can refer only to the work done on or by a system when some process has occurred 
in which energy has been transferred to or from the system. Likewise, it makes no 
sense to talk about the heat of a system; one can refer to heat only when energy has 
been transferred to or from the system as a result of a temperature difference. Both 
heat and work are ways of transferring energy between a system and its surround-
ings, which is why they both appear on the right-hand side of Equation 8.2.

Units of Heat
Early studies of heat focused on the resultant increase in temperature of a sub-
stance, which was often water. Initial notions of heat were based on a fluid called 
caloric that flowed from one substance to another and caused changes in temper-
ature. From the name of this mythical fluid came an energy unit related to ther-
mal processes, the calorie (cal), which is defined as the amount of energy transfer 
necessary to raise the temperature of 1 g of water from 14.58C to 15.58C.1 (The 
“Calorie,” written with a capital “C” and used in describing the energy content of 
foods, is actually a kilocalorie.) The unit of energy in the U.S. customary system is 
the British thermal unit (Btu), which is defined as the amount of energy transfer 
required to raise the temperature of 1 lb of water from 638F to 648F.

Once the relationship between energy in thermal and mechanical processes 
became clear, there was no need for a separate unit related to thermal processes. We 
have already defined the joule as an energy unit based on mechanical processes. 
Scientists are increasingly turning away from the calorie and the Btu and are using 
the joule when describing thermal processes. In this textbook, heat, work, and 
internal energy are usually measured in joules.

the Mechanical equivalent of Heat
In Chapters 7 and 8, we found that whenever friction is present in a mechanical 
system, the mechanical energy in the system decreases; in other words, mechan-
ical energy is not conserved in the presence of nonconservative forces. Various 
experiments show that this mechanical energy does not simply disappear but is 
transformed into internal energy. You can perform such an experiment at home 

James Prescott Joule
British physicist (1818–1889)
Joule received some formal education in 
mathematics, philosophy, and chemistry 
from John Dalton but was in large part 
self-educated. Joule’s research led to 
the establishment of the principle of 
conservation of energy. His study of the 
quantitative relationship among electri-
cal, mechanical, and chemical effects 
of heat culminated in his announcement 
in 1843 of the amount of work required 
to produce a unit of energy, called the 
mechanical equivalent of heat.
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1 Originally, the calorie was defined as the energy transfer necessary to raise the temperature of 1 g of water by 18C. 
Careful measurements, however, showed that the amount of energy required to produce a 18C change depends some-
what on the initial temperature; hence, a more precise definition evolved.
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504 Chapter 19 The First Law of Thermodynamics

by hammering a nail into a scrap piece of wood. What happens to all the kinetic 
energy of the hammer once you have finished? For the nail and board as a noniso-
lated system, Equation 8.2 becomes DEint 5 W 1 TMW, where W is the work done by 
the hammer on the nail, TMW is the energy leaving the system by sound waves when 
the nail is struck, and DEint represents the warmer nail and wood. Notice that there 
is no transfer of energy by heat in this process. Although this connection between 
mechanical and internal energy was first suggested by Benjamin Thompson, it was 
James Prescott Joule who established the equivalence of the decrease in mechanical 
energy and the increase in internal energy.

A schematic diagram of Joule’s most famous experiment is shown in Figure 19.1.  
The system of interest is the Earth, the two blocks, and the water in a thermally 
insulated container. Work is done within the system on the water by a rotating pad-
dle wheel, which is driven by heavy blocks falling at a constant speed. The energy 
transformed in the bearings and the energy passing through the walls by heat are 
neglected. After the blocks and paddle stop moving, the decrease in gravitational 
potential energy during the fall of the blocks equals the internal work done by the 
paddle wheel on the water and, in turn, the increase in internal energy of the water. 
If the two blocks fall through a distance h, the decrease in potential energy of the 
system is 2mgh, where m is the mass of one block; this energy transforms to internal 
energy Eint of the water. By varying the conditions of the experiment, Joule found 
that the decrease in mechanical energy is proportional to the product of the mass 
of the water and the increase in water temperature. The proportionality constant 
was found to be approximately 4.18 J/g ? 8C. Hence, 4.18 J of mechanical energy 
raises the temperature of 1 g of water by 18C. More precise measurements taken 
later demonstrated the proportionality to be 4.186 J/g ? 8C when the temperature of 
the water was raised from 14.58C to 15.58C. We adopt this “15-degree calorie” value:

 1 cal 5 4.186 J (19.1)

This equality is known, for purely historical reasons, as the mechanical equivalent 
of heat. A more proper name would be the conversion factor between calories and joules, 
but the historical name is well entrenched in our language, despite the incorrect 
use of the word heat.

Thermal
insulator

The falling blocks rotate the 
paddles, causing the temperature 
of the water to increase.

m m

Figure 19.1  Joule’s experiment 
for determining the mechanical 
equivalent of heat.

 Example 19.1    Losing Weight the Hard Way

A student eats a dinner rated at 2 000 Calories. He wishes to do an equivalent amount of work in the gymnasium by lifting 
a 50.0-kg barbell. How many times must he raise the barbell to expend this much energy? Assume he raises the barbell 
2.00 m each time he lifts it and he transfers no energy when he lowers the barbell.

S o L u T I o n

Conceptualize Imagine the student raising the barbell. He is doing work on the system of the barbell and the Earth, so energy 
is leaving his body. The total amount of work that the student must do is 2 000 Calories.

Categorize We model the system of the barbell and the Earth as a nonisolated system for energy.

Analyze Reduce the conservation of energy equation,  (1)   DUtotal 5 Wtotal 
Equation 8.2, to the appropriate expression for the  
system of the barbell and the Earth:

Express the change in gravitational potential energy  DU 5 mgh 
of the system after the barbell is raised once:

Express the total amount of energy that must be  (2)   DUtotal 5 nmgh 
transferred into the system by work for lifting the  
barbell n times, assuming energy is not regained  
when the barbell is lowered:
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19.1 c o n t i n u e d

Substitute Equation (2) into Equation (1): nmgh 5 Wtotal

Solve for n: n 5
Wtotal

mgh

Substitute numerical values: n 5
s2 000 Cald

s50.0 kgds9.80 mys2ds2.00 md S1.00 3 103 cal
Calorie DS4.186 J

1 cal D 

5  8.54 3 103 times

Finalize If the student is in good shape and lifts the barbell once every 5 s, it will take him about 12 h to perform this feat. 
Clearly, it is much easier for this student to lose weight by dieting.

In reality, the human body is not 100% efficient. Therefore, not all the energy transformed within the body from the 
dinner transfers out of the body by work done on the barbell. Some of this energy is used to pump blood and perform other 
functions within the body. Therefore, the 2 000 Calories can be worked off in less time than 12 h when these other energy 
processes are included.

   19.2    Specific Heat and Calorimetry
When energy is added to a system and there is no change in the kinetic or potential 
energy of the system, the temperature of the system usually rises. (An exception 
to this statement is the case in which a system undergoes a change of state—also 
called a phase transition—as discussed in the next section.) If the system consists 
of a sample of a substance, we find that the quantity of energy required to raise 
the temperature of a given mass of the substance by some amount varies from one 
substance to another. For example, the quantity of energy required to raise the 
temperature of 1 kg of water by 18C is 4 186 J, but the quantity of energy required to  
raise the temperature of 1 kg of copper by 18C is only 387 J. In the discussion that 
follows, we shall use heat as our example of energy transfer, but keep in mind 
that the temperature of the system could be changed by means of any method of 
energy transfer.

The heat capacity C of a particular sample is defined as the amount of energy 
needed to raise the temperature of that sample by 18C. From this definition, we see 
that if energy Q produces a change DT in the temperature of a sample, then

 Q 5 C DT (19.2)

The specific heat c of a substance is the heat capacity per unit mass. Therefore, 
if energy Q transfers to a sample of a substance with mass m and the temperature of 
the sample changes by DT, the specific heat of the substance is

 c ;
Q

m DT
 (19.3)

Specific heat is essentially a measure of how thermally insensitive a substance is to 
the addition of energy. The greater a material’s specific heat, the more energy must 
be added to a given mass of the material to cause a particular temperature change. 
Table 19.1 (page 506) lists representative specific heats.

From this definition, we can relate the energy Q transferred between a sample of 
mass m of a material and its surroundings to a temperature change DT as

 Q 5 mc DT (19.4)

For example, the energy required to raise the temperature of 0.500 kg of water by 
3.008C is Q 5 (0.500 kg)(4 186 J/kg ? 8C)(3.008C) 5 6.28 3 103 J. Notice that when 
the temperature increases, Q and DT are taken to be positive and energy trans-
fers into the system. When the temperature decreases, Q and DT are negative and 
energy transfers out of the system.

 Specific heat

PItfall PReVentIon 19.3
An Unfortunate Choice  
of Terminology The name specific 
heat is an unfortunate holdover 
from the days when thermody-
namics and mechanics developed 
separately. A better name would 
be specific energy transfer, but the 
existing term is too entrenched to 
be replaced.

PItfall PReVentIon 19.4
Energy Can Be Transferred  
by Any Method The symbol Q 
represents the amount of energy 
transferred, but keep in mind that 
the energy transfer in Equation 19.4 
could be by any of the methods 
introduced in Chapter 8; it does 
not have to be heat. For example, 
repeatedly bending a wire coat 
hanger raises the temperature at 
the bending point by work.
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506 Chapter 19 The First Law of Thermodynamics

We can identify mc DT as the change in internal energy of the system if we ignore 
any thermal expansion or contraction of the system, and if there are no phase 
changes. (Thermal expansion or contraction would result in a very small amount 
of work being done on the system by the surrounding air.) Then, Equation 19.4 is a 
reduced form of Equation 8.2: DEint 5 Q. The internal energy of the system can be 
changed by transferring energy into the system by any mechanism. For example, if 
the system is a baked potato in a microwave oven, Equation 8.2 reduces to the fol-
lowing analog to Equation 19.4: DEint 5 TER 5 mc DT, where TER is the energy trans-
ferred to the potato from the microwave oven by electromagnetic radiation. If the 
system is the air in a bicycle pump, which becomes hot when the pump is operated, 
Equation 8.2 reduces to the following analog to Equation 19.4: DEint 5 W 5 mc DT, 
where W is the work done on the pump by the operator. By identifying mc DT as 
DEint, we have taken a step toward a better understanding of temperature: tempera-
ture is related to the energy of the molecules of a system. We will learn more details 
of this relationship in Chapter 20.

Specific heat varies with temperature. If, however, temperature intervals are 
not too great, the temperature variation can be ignored and c can be treated as a 
constant.2 For example, the specific heat of water varies by only about 1% from 08C 
to 1008C at atmospheric pressure. Unless stated otherwise, we shall neglect such 
variations.

Q UIck QUIz 19.1  Imagine you have 1 kg each of iron, glass, and water, and all 
three samples are at 108C. (a) Rank the samples from highest to lowest temper-
ature after 100 J of energy is added to each sample. (b) Rank the samples from 
greatest to least amount of energy transferred by heat if each sample increases 
in temperature by 208C.

Notice from Table 19.1 that water has the highest specific heat of common 
materials. This high specific heat is in part responsible for the moderate climates 
found near large bodies of water. As the temperature of a body of water decreases 
during the winter, energy is transferred from the cooling water to the air by heat, 
increasing the internal energy of the air. Because of the high specific heat of 
water, a relatively large amount of energy is transferred to the air for even mod-
est temperature changes of the water. The prevailing winds on the West Coast of 

 table 19.1  Specific Heats of Some Substances at 258C  
and Atmospheric Pressure
 Specific Heat  Specific Heat
Substance ( J/kg ? 8C) Substance ( J/kg ? 8C)

Elemental solids  Other solids
Aluminum 900 Brass 380
Beryllium 1 830 Glass 837
Cadmium 230 Ice (258C) 2 090
Copper 387 Marble 860
Germanium 322 Wood 1 700
Gold 129 Liquids
Iron 448 

Alcohol (ethyl) 2 400Lead 128 
Mercury 140Silicon 703 
Water (158C) 4 186Silver 234 
Gas

  Steam (1008C) 2 010

Note: To convert values to units of cal/g ? 8C, divide by 4 186.

2The definition given by Equation 19.4 assumes the specific heat does not vary with temperature over the interval  
DT 5 Tf 2 Ti. In general, if c varies with temperature over the interval, the correct expression for Q is Q 5 m #

Tf

Ti  
c sT d dT.
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the United States are toward the land (eastward). Hence, the energy liberated by 
the Pacific Ocean as it cools keeps coastal areas much warmer than they would 
otherwise be. As a result, West Coast states generally have more favorable winter 
weather than East Coast states, where the prevailing winds carry the energy away 
from land.

calorimetry
One technique for measuring specific heat involves heating a sample to some 
known temperature Tx, placing it in a vessel containing water of known mass and 
temperature Tw , Tx, and measuring the temperature of the water after equilibrium 
has been reached. This technique is called calorimetry, and devices in which this 
energy transfer occurs are called calorimeters. Figure 19.2 shows the hot sample in 
the cold water and the resulting energy transfer by heat from the high-temperature 
part of the system to the low-temperature part. If the system of the sample and the 
water is isolated, the principle of conservation of energy requires that the amount 
of energy Q hot that leaves the sample (of unknown specific heat) equal the amount 
of energy Q cold that enters the water.3 Conservation of energy allows us to write the 
mathematical representation of this energy statement as

 Q cold 5 2Q hot (19.5)

Suppose mx is the mass of a sample of some substance whose specific heat we 
wish to determine. Let’s call its specific heat cx and its initial temperature Tx as 
shown in Figure 19.2. Likewise, let mw, cw, and Tw represent corresponding values 
for the water. If Tf is the final temperature after the system comes to equilibrium, 
Equation 19.4 shows that the energy transfer for the water is mwcw(Tf 2 Tw), which is 
positive because Tf . Tw, and that the energy transfer for the sample of unknown 
specific heat is mxcx(Tf 2 Tx), which is negative. Substituting these expressions into 
Equation 19.5 gives

 mwcw(Tf 2 Tw) 5 2mxcx(Tf 2 Tx) (19.6)

This equation can be solved for the unknown specific heat cx.

Isolated system boundary

Hot sample

Qcold

mw
cw

Tw

mx
cx

Tx

Qhot

Cold water

Figure 19.2 In a calorimetry 
experiment, a hot sample whose 
specific heat is unknown is placed 
in cold water in a container that 
isolates the system from the 
environment.

3For precise measurements, the water container should be included in our calculations because it also exchanges 
energy with the sample. Doing so would require that we know the container’s mass and composition, however. If the 
mass of the water is much greater than that of the container, we can neglect the effects of the container.

PItfall PReVentIon 19.5
Remember the Negative Sign It is 
critical to include the negative sign 
in Equation 19.5. The negative 
sign in the equation is necessary 
for consistency with our sign con-
vention for energy transfer. The 
energy transfer Q hot has a negative 
value because energy is leaving 
the hot substance. The negative 
sign in the equation ensures that 
the right side is a positive number, 
consistent with the left side, which 
is positive because energy is enter-
ing the cold water.

 Example 19.2    Fun Time for a Cowboy

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy 
generated by the impact remains with the bullet. What is the temperature change of the bullet?

S o L u T I o n

Conceptualize Imagine similar experiences you may have had in which mechanical energy is transformed to internal energy 
when a moving object is stopped. For example, as mentioned in Section 19.1, a nail becomes warm after it is hit a few times 
with a hammer.

Categorize The bullet is modeled as an isolated system. No work is done on the system because the force from the wall moves 
through no displacement. This example is similar to the skateboarder pushing off a wall in Section 9.8. There, no work is done 
on the skateboarder by the wall, and potential energy stored in the body from previous meals is transformed to kinetic energy. 
Here, no work is done by the wall on the bullet, and kinetic energy of the bullet is transformed to internal energy of the silver 
comprising the bullet.

Analyze Reduce the conservation of energy equation,  (1)    DK 1 DEint 5 0 
Equation 8.2, to the appropriate expression for the  
system of the bullet:

continued
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508 Chapter 19 The First Law of Thermodynamics

19.2 c o n t i n u e d

The change in the bullet’s internal energy is related to  (2)    DEint 5 mc DT 
its change in temperature:

Substitute Equation (2) into Equation (1): s0 2 1
2mv2d 1 mc DT 5 0

Solve for DT, using 234 J/kg ? 8C as the specific heat of  (3)   DT 5

1
2mv2

mc
5

v2

2c
5

s200 mysd2

2s234 Jykg ? 8Cd
5  85.58C 

silver (see Table 19.1):

Finalize Notice that the result does not depend on the mass of the bullet. (In reality, the wall also becomes warmer, so our 
analysis is simplified.)

W H A T  I F ?  Suppose the cowboy runs out of silver bullets and fires a lead bullet at the same speed into the wall. Will the 
temperature change of the bullet be larger or smaller?

Answer Table 19.1 shows that the specific heat of lead is 128 J/kg ? 8C, which is smaller than that for silver. Therefore, a given 
amount of energy input or transformation raises lead to a higher temperature than silver and the final temperature of the 
lead bullet will be larger. In Equation (3), let’s substitute the new value for the specific heat:

DT 5
v2

2c
5

s200 mysd2

2s128 Jykg ? 8Cd
5 1568C

There is no requirement that the silver and lead bullets have the same mass to determine this change in temperature. The 
only requirement is that they have the same speed.

 Example 19.3    Cooling a Hot Ingot

A 0.050 0-kg ingot of metal is heated to 200.08C and then dropped into a calorimeter containing 0.400 kg of water initially 
at 20.08C. The final equilibrium temperature of the mixed system is 22.48C. Find the specific heat of the metal.

S o L u T I o n

Conceptualize Imagine the process occurring in the isolated system of Figure 19.2. Energy leaves the hot ingot and goes 
into the cold water, so the ingot cools off and the water warms up. Once both are at the same temperature, the energy 
transfer stops.

Categorize We use an equation developed in this section, so we categorize this example as a substitution problem.

Solve Equation 19.6 for cx: cx 5
mw cwsTf 2 Tw 

d

mxsTx 2 Tf 
d

Substitute numerical values: cx 5
s0.400 kgds4 186 Jykg ? 8Cds22.48C 2 20.08Cd

s0.050 0 kgds200.08C 2 22.48Cd

5  453 Jykg ? 8C

The ingot is most likely iron as you can see by comparing this result with the data given in Table 19.1. The temperature of the 
ingot is initially above the steam point. Therefore, some of the water may vaporize when the ingot is dropped into the water. 
We assume the system is sealed and this steam cannot escape. Because the final equilibrium temperature is lower than the 
steam point, any steam that does result recondenses back into water.

W H A T  I F ?  Suppose you are performing an experiment in the laboratory that uses this technique to determine the 
specific heat of a sample and you wish to decrease the overall uncertainty in your final result for cx. Of the data given in this 
example, changing which value would be most effective in decreasing the uncertainty?

Answer The largest experimental uncertainty is associated with the small difference in temperature of 2.48C for the water. 
For example, using the rules for propagation of uncertainty in Appendix Section B.8, an uncertainty of 0.18C in each of Tf and 
Tw leads to an 8% uncertainty in their difference. For this temperature difference to be larger experimentally, the most effec-
tive change is to decrease the amount of water.
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   19.3    Latent Heat
As we have seen in the preceding section, a substance can undergo a change in tem-
perature when energy is transferred between it and its surroundings. In some situ-
ations, however, the transfer of energy does not result in a change in temperature. 
That is the case whenever the physical characteristics of the substance change from 
one form to another; such a change is commonly referred to as a phase change. 
Two common phase changes are from solid to liquid (melting) and from liquid to 
gas (boiling); another is a change in the crystalline structure of a solid. All such 
phase changes involve a change in the system’s internal energy but no change in 
its temperature. The increase in internal energy in boiling, for example, is repre-
sented by the breaking of bonds between molecules in the liquid state; this bond 
breaking allows the molecules to move farther apart in the gaseous state, with a 
corresponding increase in intermolecular potential energy.

As you might expect, different substances respond differently to the addition or 
removal of energy as they change phase because their internal molecular arrange-
ments vary. Also, the amount of energy transferred during a phase change depends 
on the amount of substance involved. (It takes less energy to melt an ice cube than 
it does a frozen lake.) When discussing two phases of a material, we will use the 
term higher-phase material to mean the material existing at the higher temperature. 
So, for example, if we discuss water and ice, water is the higher-phase material, 
whereas steam is the higher-phase material in a discussion of steam and water. Con-
sider a system containing a substance in two phases in equilibrium such as water 
and ice. The initial amount of the higher-phase material, water, in the system is 
mi. Now imagine that energy Q enters the system. As a result, the final amount of 
water is mf due to the melting of some of the ice. Therefore, the amount of ice that 
melted, equal to the amount of new water, is Dm 5 mf 2 mi. We define the latent 
heat for this phase change as

 L ;
Q

Dm
 (19.7)

This parameter is called latent heat (literally, the “hidden” heat) because this 
added or removed energy does not result in a temperature change. The value of L 
for a substance depends on the nature of the phase change as well as on the prop-
erties of the substance. If the entire amount of the lower-phase material undergoes 
a phase change, the change in mass Dm of the higher-phase material is equal to the 
initial mass of the lower-phase material. For example, if an ice cube of mass m on a 
plate melts completely, the change in mass of the water is Dm 5 mf 2 0 5 m, which is 
the mass of new water and is also equal to the initial mass of the ice cube.

From the definition of latent heat, and again choosing heat as our energy trans-
fer mechanism, the energy required to change the phase of a pure substance is

 Q 5 L Dm (19.8)

where Dm is the change in mass of the higher-phase material.
Latent heat of fusion Lf is the term used when the phase change is from solid 

to liquid (to fuse means “to combine by melting”), and latent heat of vaporiza-
tion Lv is the term used when the phase change is from liquid to gas (the liquid 
“vaporizes”).4 When energy enters a system, causing melting or vaporization, the 
amount of the higher-phase material increases, so Dm is positive and Q is positive, 
consistent with our sign convention. When energy is extracted from a system, caus-
ing freezing or condensation, the amount of the higher-phase material decreases, 
so Dm is negative and Q is negative, again consistent with our sign convention. Keep 

  Energy transferred to  
a substance during  
a phase change

PItfall PReVentIon 19.6
Signs Are Critical Sign errors 
occur very often when students 
apply calorimetry equations. For 
phase changes, remember that 
Dm in Equation 19.8 is always the 
change in mass of the higher-phase 
material. In Equation 19.4, be 
sure your DT is always the final 
temperature minus the initial tem-
perature. In addition, you must 
always include the negative sign on 
the right side of Equation 19.5.

4 When a gas cools, it eventually condenses; that is, it returns to the liquid phase. The energy given up per unit mass 
is called the latent heat of condensation and is numerically equal to the latent heat of vaporization. Likewise, when a 
liquid cools, it eventually solidifies, and the latent heat of solidification is numerically equal to the latent heat of fusion.
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510 Chapter 19 The First Law of Thermodynamics

in mind that Dm in Equation 19.8 always refers to the higher-phase material. The 
latent heats of various substances vary considerably as data in Table 19.2 show.

To understand the role of latent heat in phase changes, consider the energy 
required to convert a system consisting of a 1.00-g cube of ice at 230.08C to steam 
at 120.08C. Figure 19.3 indicates the experimental results obtained when energy is 
gradually added to the ice. The results are presented as a graph of temperature of 
the system versus energy added to the system. Let’s examine each portion of the 
red-brown curve, which is divided into parts A through E.

Part A. On this portion of the curve, the temperature of the system changes from 
230.08C to 0.08C. Equation 19.4 indicates that the temperature varies linearly 
with the energy added, so the experimental result is a straight line on the graph. 
Because the specific heat of ice is 2 090 J/kg ? 8C, we can calculate the amount of 
energy added by using Equation 19.4:

 Q 5 micecice DT 5 (1.00 3 1023 kg)(2 090 J/kg ? 8C)(30.08C) 5 62.7 J 

Part B. When the temperature of the system reaches 0.08C, the ice–water mixture 
remains at this temperature—even though energy is being added—until all the ice 
melts. The energy required to melt 1.00 g of ice at 0.08C is, from Equation 19.8,

 Q 5 Lf Dmw 5 Lf  mice 5 (3.33 3 105 J/kg)(1.00 3 1023 kg) 5 333 J 

At this point, we have moved to the 396 J (5 62.7 J 1 333 J) mark on the energy axis 
in Figure 19.3.

 table 19.2  Latent Heats of Fusion and Vaporization

  Latent Heat
 Melting of Fusion Boiling Latent Heat
Substance Point (8C) ( J/kg) Point (8C) of Vaporization ( J/kg)

Heliuma 2272.2 5.23 3 103 2268.93 2.09 3 104

Oxygen 2218.79 1.38 3 104 2182.97 2.13 3 105

Nitrogen 2209.97 2.55 3 104 2195.81 2.01 3 105

Ethyl alcohol 2114 1.04 3 105 78 8.54 3 105

Water 0.00 3.33 3 105 100.00 2.26 3 106

Sulfur 119 3.81 3 104 444.60 3.26 3 105

Lead 327.3 2.45 3 104 1 750 8.70 3 105

Aluminum 660 3.97 3 105 2 450 1.14 3 107

Silver 960.80 8.82 3 104 2 193 2.33 3 106

Gold 1 063.00 6.44 3 104 2 660 1.58 3 106

Copper 1 083 1.34 3 105 1 187 5.06 3 106

aHelium does not solidify at atmospheric pressure. The melting point given here corresponds to a pressure of 2.5 MPa.
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Figure 19.3  A plot of tempera-
ture versus energy added when a 
system initially consisting of 1.00 g  
of ice at 230.08C is converted to 
steam at 120.08C.
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Part C. Between 0.08C and 100.08C, nothing surprising happens. No phase change 
occurs, and so all energy added to the system, which is now water, is used to increase 
its temperature. The amount of energy necessary to increase the temperature from 
0.08C to 100.08C is

 Q 5 mwcw DT 5 (1.00 3 1023 kg)(4.19 3 103 J/kg ? 8C)(100.08C) 5 419 J 

where mw is the mass of the water in the system, which is the same as the mass mice 
of the original ice.

Part D. At 100.08C, another phase change occurs as the system changes from 
water at 100.08C to steam at 100.08C. Similar to the ice–water mixture in part B, 
the water–steam mixture remains at a fixed temperature, this time 100.08C—even 
though energy is being added—until all the liquid has been converted to steam. 
The energy required to convert 1.00 g of water to steam at 100.08C is

 Q 5 Lv Dms 5 Lvmw 5 (2.26 3 106 J/kg)(1.00 3 1023 kg) 5 2.26 3 103 J 

Part E. On this portion of the curve, as in parts A and C, no phase change occurs; 
therefore, all energy added is used to increase the temperature of the system, which 
is now steam. The energy that must be added to raise the temperature of the steam 
from 100.08C to 120.08C is

 Q 5 mscs DT 5 (1.00 3 1023 kg)(2.01 3 103 J/kg ? 8C)(20.08C) 5 40.2 J 

The total amount of energy that must be added to the system to change 1 g of ice at 
230.08C to steam at 120.08C is the sum of the results from all five parts of the curve, 
which is 3.11 3 103 J. Conversely, to cool 1 g of steam at 120.08C to ice at 230.08C, 
we must remove 3.11 3 103 J of energy.

Notice in Figure 19.3 the relatively large amount of energy that is transferred 
into the water to vaporize it to steam. Imagine reversing this process, with a large 
amount of energy transferred out of steam to condense it into water. That is why a 
burn to your skin from steam at 1008C is much more damaging than exposure of 
your skin to water at 1008C. A very large amount of energy enters your skin from 
the steam, and the steam remains at 1008C for a long time while it condenses. Con-
versely, when your skin makes contact with water at 1008C, the water immediately 
begins to drop in temperature as energy transfers from the water to your skin.

Q UIck QUIz 19.2  Suppose the same process of adding energy to the ice cube 
is performed as discussed above with regard to Figure 19.3, but instead we 
graph the internal energy of the system as a function of energy input. What 
would this graph look like?

If liquid water is held perfectly still in a very clean container, it is possible for the 
water to drop below 08C without freezing into ice. This phenomenon, called super-
cooling, arises because the water requires a disturbance of some sort for the mole-
cules to move apart and start forming the large, open ice structure that makes the 
density of ice lower than that of water as discussed in Section 18.4. If supercooled 
water is disturbed, it suddenly freezes. The system drops into the lower-energy con-
figuration of bound molecules of the ice structure, and the energy released raises 
the temperature back to 08C.

Commercial hand warmers consist of liquid sodium acetate in a sealed plastic 
pouch. The solution in the pouch is in a stable supercooled state. When a disk 
in the pouch is clicked by your fingers, the liquid solidifies and the temperature 
increases, just like the supercooled water just mentioned. In this case, however, the 
freezing point of the liquid is higher than body temperature, so the pouch feels 
warm to the touch. To reuse the hand warmer, the pouch must be boiled until the 
solid liquefies. Then, as it cools, it passes below its freezing point into the super-
cooled state.
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512 Chapter 19 The First Law of Thermodynamics

It is also possible to create superheating. For example, clean water in a very clean 
cup placed in a microwave oven can sometimes rise in temperature beyond 1008C 
without boiling because the formation of a bubble of steam in the water requires 
scratches in the cup or some type of impurity in the water to serve as a nucleation 
site. When the cup is removed from the microwave oven, the superheated water can 
become explosive as bubbles form immediately and the hot water is forced upward 
out of the cup.

 Example 19.4    Cooling the Steam

What mass of steam initially at 1308C is needed to warm 200 g of water in a 100-g glass container from 20.08C to 50.08C?

S o L u T I o n

Conceptualize Imagine placing water and steam together in a closed insulated container. The steam cools and condenses into 
liquid water, and the system eventually reaches a uniform state of water with a final temperature of 50.08C in equilibrium with 
the glass at the same temperature.

Categorize Based on our conceptualization of this situation, we categorize this example as one involving calorimetry in 
which a phase change occurs. The calorimeter is an isolated system for energy: energy transfers between the components of the 
system but does not cross the boundary between the system and the environment.

Analyze Write Equation 19.5 to describe the  (1)   Q cold 5 2Q hot 
calorimetry process:

The steam undergoes three processes: first a decrease 
in temperature to 1008C, then condensation into  
liquid water, and finally a decrease in temperature of  
the water to 50.08C. Find the energy transfer in the  
first process using the unknown mass ms of the steam: Q 1 5 mscs DTs

Find the energy transfer in the second process: Q 2 5 Lv Dms 5 Lv(0 2 ms) 5 2msLv

Find the energy transfer in the third process: Q 3 5 mscw  DThot water

Add the energy transfers in these three stages: (2)   Q hot 5 Q 1 1 Q 2 1 Q 3 5 ms(cs DTs 2 Lv 1 cw DThot water)

The 20.08C water and the glass undergo only one  (3)   Q cold 5 mwcw  DTcold water 1 mgcg  DTglass 
process, an increase in temperature to 50.08C.  
Find the energy transfer in this process:

Substitute Equations (2) and (3) into Equation (1): mwcw DTcold water 1 mgcg DTglass 5 2ms(cs DTs 2 Lv 1 cw DThot water)

Solve for ms: ms 5 2
mwcw DTcold water 1 mgcg DTglass

cs DTs 2 Lv 1 cw DThot water

Substitute  ms 5 2
s0.200 kgds4 186 Jykg ? 8Cds50.08C 2 20.08Cd 1 s0.100 kgds837 Jykg ? 8Cds50.08C 2 20.08Cd
s2 010 Jykg ? 8Cds1008C 2 1308Cd 2 s2.26 3 106 Jykgd 1 s4 186 Jykg ? 8Cds50.08C 2 1008Cd

 
numerical  
values:            5 1.09 3 1022 kg 5  10.9 g

W H A T  I F ?  What if the final state of the system is water at 1008C? Would we need more steam or less steam? How would 
the analysis above change?

Answer More steam would be needed to raise the temperature of the water and glass to 1008C instead of 50.08C. There would 
be two major changes in the analysis. First, we would not have a term Q 3 for the steam because the water that condenses from 
the steam does not cool below 1008C. Second, in Q cold, the temperature change would be 80.08C instead of 30.08C. For prac-
tice, show that the result is a required mass of steam of 31.8 g.
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   19.4    Work in Thermodynamic Processes
In thermodynamics, we describe the state of a system using such variables as pres-
sure, volume, temperature, and internal energy. As a result, these quantities belong 
to a category called state variables. For any given configuration of the system, we 
can identify values of the state variables. (For mechanical systems, the state vari-
ables include kinetic energy K and potential energy U. For a single particle as a 
system, we could identify more state variables: its position x, its velocity v, and its 
acceleration a.) A state of a system can be specified only if the system is in thermal 
equilibrium internally. In the case of a gas in a container, internal thermal equilib-
rium requires that every part of the gas be at the same pressure and temperature.

A second category of variables in situations involving energy is transfer vari-
ables. These variables are those that appear on the right side of the conservation 
of energy equation, Equation 8.2. Such a variable has a nonzero value if a process 
occurs in which energy is transferred across the system’s boundary. The transfer 
variable is positive or negative, depending on whether energy is entering or leaving 
the system. Because a transfer of energy across the boundary represents a change 
in the system, transfer variables are not associated with a given state of the system, 
but rather with a change in the state of the system.

In the previous sections, we discussed heat as a transfer variable. In this section, 
we study another important transfer variable for thermodynamic systems, work. 
Work performed on particles and nondeformable objects was studied extensively 
in Chapter 7, and here we investigate the work done on a deformable system, a gas. 
Consider a gas contained in a cylinder fitted with a movable piston (Fig. 19.4a). At 
equilibrium, the gas occupies a volume V and exerts a uniform pressure P on the 
cylinder’s walls and on the piston. If the piston has a cross-sectional area A, the 
magnitude of the force exerted by the gas on the piston is F 5 PA. By Newton’s 
third law, the magnitude of the force exerted by the piston on the gas is also PA. 
Now let’s assume we push the piston inward and compress the gas quasi-statically, 
that is, slowly enough to allow the system to remain essentially in internal thermal 
equilibrium at all times. The point of application of the force on the gas is the 
bottom face of the piston. As the piston is pushed downward by an external force 
F
S

 5 2F j
⁄
 through a displacement of d rS 5 dy j

⁄
 (Fig. 19.4b), the work done on the 

gas is, according to our definition of work in Chapter 7,

 dW 5 F
S 

? d rS 5 2F j
⁄ 

? dy j
⁄

5 2F dy 5 2PA dy 

Because A  dy is the change in volume of the gas dV, we can express the work done 
on the gas as

 dW 5 2P dV (19.9)

If the gas is compressed, dV is negative and the work done on the gas is positive. 
If the gas expands, dV is positive and the work done on the gas is negative. If the 
volume remains constant, the work done on the gas is zero. The total work done on 
the gas as its volume changes from Vi to Vf is given by the integral of Equation 19.9:

 W 5  2#
Vf

Vi

 P dV  (19.10)

To evaluate this integral, you must know how the pressure varies with volume dur-
ing the process.

In general, the pressure is not constant during a process followed by a gas, but 
depends on the volume and temperature. If the pressure and volume are known 
at each step of the process, the state of the gas at each step can be plotted on an 
important graphical representation called a PV diagram as in Figure 19.5. This type 
of diagram allows us to visualize a process through which a gas is progressing. The 
curve on a PV diagram is called the path taken between the initial and final states.

 Work done on a gas

dy

P

A

V

a b

Figure 19.4  Work is done on 
a gas contained in a cylinder at 
a pressure P as the piston is  
pushed downward so that the 
gas is compressed.

Figure 19.5 A gas is compressed 
quasi-statically (slowly) from state 
i to state f. An outside agent must 
do positive work on the gas to 
compress it.

f
Pf

P

i

V
ViVf

Pi

The work done on a gas 
equals the negative of the area 
under the PV curve. The area 
is negative here because the 
volume is decreasing, resulting 
in positive work.
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514 Chapter 19 The First Law of Thermodynamics

Notice that the integral in Equation 19.10 is equal to the area under a curve on a 
PV diagram. Therefore, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an 
initial state to a final state is the negative of the area under the curve on a PV 
diagram, evaluated between the initial and final states.

For the process of compressing a gas in a cylinder, the work done depends on 
the particular path taken between the initial and final states as Figure 19.5 sug-
gests. To illustrate this important point, consider several different paths connecting 
i and f (Fig. 19.6). In the process depicted in Figure 19.6a, the volume of the gas is 
first reduced from Vi to Vf  at constant pressure Pi and the pressure of the gas then 
increases from Pi to Pf  by heating at constant volume Vf  . The work done on the gas 
along this path is 2Pi (Vf 2 Vi ). In Figure 19.6b, the pressure of the gas is increased 
from Pi to Pf  at constant volume Vi and then the volume of the gas is reduced from 
Vi to Vf  at constant pressure Pf  . The work done on the gas is 2Pf  (Vf 2 Vi ). This value 
is greater than that for the process described in Figure 19.6a because the piston 
is moved through the same displacement by a larger force. Finally, for the process 
described in Figure 19.6c, where both P and V change continuously, the work done 
on the gas has some value between the values obtained in the first two processes. 
To evaluate the work in this case, the function P(V) must be known so that we can 
evaluate the integral in Equation 19.10.

The energy transfer Q into or out of a system by heat also depends on the process. 
For example, in Chapter 20, we will show that a constant-volume process between 
two temperatures requires a different amount of heat than a constant-pressure pro-
cess between the same temperatures.

   19.5    The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DEint 5 Q 1 W (19.11)

Look back at Equation 8.2 to see that the first law of thermodynamics is contained 
within that more general equation.

First law of thermodynamics 
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A constant-pressure 
compression followed by a 
constant-volume process

A constant-volume process 
followed by a constant-
pressure compression

An arbitrary 
compression

a b c

Figure 19.6 The work done on 
a gas as it is taken from an initial 
state to a final state depends on 
the path between these states.

5 It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol E int for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.
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Let’s discuss each of the three terms in the first law for various processes through 
which a gas is taken. As a model, let’s consider the sample of gas contained in the 
piston–cylinder apparatus in Figure 19.7. This figure shows work being done on the 
gas and energy transferring in by heat, so the internal energy of the gas is rising. In 
the following discussion of various processes, refer back to this figure and mentally 
alter the directions of the transfer of energy to reflect what is happening in the 
process.

First, consider an isolated system, that is, one that does not interact with its 
surroundings, as we have seen before. In this case, no energy transfer by heat 
takes place and the work done on the system is zero; hence, the internal energy 
remains constant. That is, because Q 5 W 5 0, it follows that DE int 5 0; there-
fore, E int,i 5 E int,f. We conclude that the internal energy E int of an isolated system 
remains constant.

Next, consider the case of a system that can exchange energy with its surround-
ings and is taken through a cyclic process, that is, a process that starts and ends 
at the same state. On a PV diagram, a cyclic process appears as a closed curve, as 
shown in Figure 19.8. In this case, the change in the internal energy must again 
be zero because Eint is a state variable; therefore, the energy Q added to the system 
must equal the negative of the work W done on the system during the cycle. That is, 
in a cyclic process,

 DEint 5 0    and    Q 5 2W (cyclic process) 

It can be shown that in a cyclic process for a gas, the net work done on the system 
per cycle equals the area enclosed by the path representing the process on a PV 
diagram.

A process that occurs at constant temperature is called an isothermal process. 
This process can be established by immersing the cylinder in Figure  19.7 
in an ice–water bath or by putting the cylinder in contact with some other 
constant-temperature reservoir. A plot of P versus V at constant temperature for an 
ideal gas yields a hyperbolic curve called an isotherm, as shown in Figure 19.9. The 
ideal gas law (Eq. 18.9) with T constant indicates that the equation of this curve is 
PV 5 nRT 5 constant. We show in Chapter 20 that the internal energy of an ideal 
gas is a function of temperature only. Hence, because the temperature does not 
change in an isothermal process involving an ideal gas, we must have DEint 5 0. 
For an isothermal process, we conclude from the first law that the energy transfer 
Q must be equal to the negative of the work done on the gas; that is, Q 5 2W. Any 
energy that enters the system by heat is transferred out of the system by work.

Let’s calculate the work done on the gas in the isothermal expansion from state 
i to state f in Figure 19.9. The work done on the gas is given by Equation 19.10. 

Q

W

Q

�Eint

Figure 19.7 The first law of ther-
modynamics equates the change 
in internal energy E int in a system 
to the net energy transfer to the 
system by heat Q and work W. In 
the situation shown here, the inter-
nal energy of the gas increases.

Figure 19.8 A cyclic process on 
a gas forms a closed curve on a PV 
diagram.
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The curve is a 
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Figure 19.9  The PV diagram for 
an isothermal expansion of an 
ideal gas from an initial state to a 
final state.

PItfall PReVentIon 19.7
Dual Sign Conventions Some 
physics and engineering books 
present the first law as DEint 5 
Q 2 W, with a minus sign between 
the heat and work. The reason 
is that work is defined in these 
treatments as the work done by 
the gas rather than on the gas, 
as in our treatment. The equiva-
lent equation to Equation 19.10 
these treatments defines work as 
W 5 #

Vf

Vi
 P dV. Therefore, if positive 

work is done by the gas, energy is 
leaving the system, leading to the 
negative sign in the first law.
 In your studies in other chemistry 
or engineering courses, or in your 
reading of other physics books, be 
sure to note which sign convention 
is being used for the first law.

PItfall PReVentIon 19.8
The First Law With our approach 
to energy in this book, the first law 
of thermodynamics is a special case 
of Equation 8.2. Some physicists 
argue that the first law is the gen-
eral equation for energy conserva-
tion, equivalent to Equation 8.2. 
In this approach, the first law is 
applied to a closed system (so that 
there is no matter transfer), heat 
is interpreted so as to include elec-
tromagnetic radiation, and work is 
interpreted so as to include electri-
cal transmission (“electrical work”) 
and mechanical waves (“molecular 
work”). Keep that in mind if you 
run across the first law in your 
reading of other physics books.
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516 Chapter 19 The First Law of Thermodynamics

Because the gas is ideal and the process is quasi-static, the ideal gas law is valid for 
each point on the path. Therefore,

 W 5 2#
Vf

Vi

 P dV 5 2#
Vf

Vi

 
nRT

V
 dV  

Because T is constant in this case, it can be removed from the integral along with 
n and R:

 W 5 2nRT  #
Vf

Vi

 
dV
V

5 2nRT lnV*
Vf

Vi

  

To evaluate the integral, we used e(dx/x) 5 ln x. (See Appendix B.) Evaluating the 
result at the initial and final volumes gives

 W 5 nRT ln SVi

Vf
D (isothermal process) (19.12)

Numerically, this work W equals the negative of the shaded area under the PV curve 
shown in Figure 19.9. Because the gas expands, Vf . Vi and the value for the work 
done on the gas is negative as we expect. If the gas is compressed, then Vf , Vi and 
the work done on the gas is positive.

A process that occurs at constant pressure is called an isobaric process. In Fig-
ure 19.7, an isobaric process could be established by allowing the piston to move 
freely so that it is always in equilibrium between the net force from the gas pushing 
upward and the weight of the piston plus the force due to atmospheric pressure 
pushing downward. An isobaric process appears as a horizontal line on a PV dia-
gram as shown in Figure 19.10. Find the isobaric processes in Figure 19.6.

In such a process, the values of the heat and the work are both usually nonzero. 
The work done on the gas in an isobaric process is simply

 W 5 2P(Vf 2 Vi) (isobaric process) (19.13)

where P is the constant pressure of the gas during the process.
A process that takes place at constant volume is called an isovolumetric process. 

Another name for this type of process is isochoric. In Figure 19.7, clamping the pis-
ton at a fixed position would ensure an isovolumetric process. An isovolumetric 
process appears as a vertical line on a PV diagram as shown in Figure 19.11. Find 
the isovolumetric processes in Figure 19.6.

Because the volume of the gas does not change in such a process, the work given 
by Equation 19.10 is zero. Hence, from the first law we see that in an isovolumetric 
process, because W 5 0,

 DEint 5 Q (isovolumetric process) (19.14)

This expression specifies that if energy is added by heat to a system kept at constant 
volume, all the transferred energy remains in the system as an increase in its inter-
nal energy. For example, when a spray can is thrown in a fire, as in Example 18.4, 
energy enters the system (the gas in the can) by heat through the metal walls of 
the can. Consequently, the temperature, and therefore the pressure, in the can 
increases until the can possibly explodes.

An adiabatic process is one during which no energy enters or leaves the system 
by heat; that is, Q 5 0. An adiabatic process can be achieved either by thermally 
insulating the walls of the system or by performing the process rapidly so that there 
is negligible time for energy to transfer by heat. Applying the first law of thermody-
namics to an adiabatic process gives

 DEint 5 W  (adiabatic process) (19.15)

i

V = constant

V

P

Pi

Vi Vf

T2

T1

f

Figure 19.10 An isobaric process 
takes a gas between temperatures 
T1 and T2. 

i

P = constant

V

P

Pi

Pf

Vi

T2

T1

f

Figure 19.11 An isovolumetric 
process takes a gas between tem-
peratures T1 and T2.

PItfall PReVentIon 19.9
Q Þ 0 in an Isothermal Process  
Do not fall into the common trap 
of thinking there must be no 
transfer of energy by heat if the 
temperature does not change as is 
the case in an isothermal process. 
Because the cause of temperature 
change can be either heat or work, 
the temperature can remain con-
stant even if energy enters the gas 
by heat, which can only happen 
if the energy entering the gas by 
heat leaves by work.
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This result shows that if a gas is compressed adiabatically such that W is positive, 
then DEint is positive and the temperature of the gas increases. Conversely, the tem-
perature of a gas decreases when the gas expands adiabatically.

Adiabatic processes are very important in engineering practice. Some common 
examples are the expansion of hot gases in an internal combustion engine, the 
liquefaction of gases in a cooling system, and the compression stroke in a diesel 
engine. We will see PV diagrams for adiabatic processes and study them in more 
detail in Chapter 20.

Q UIck QUIz 19.3  In the last three columns of the following table, fill in the 
boxes with the correct signs (2, 1, or 0) for Q , W, and DEint. For each situation, 
the system to be considered is identified.

Situation System Q W DE int

(a) Rapidly pumping up Air in the pump
 a bicycle tire 
(b) Pan of room-temperature Water in the pan
 water sitting on a hot stove 
(c) Air quickly leaking out Air originally in the balloon
 of a balloon 

Q UIck QUIz 19.4  Characterize the paths in Figure 19.12 as isobaric, isovol-
umetric, isothermal, or adiabatic. For path B, Q 5 0. The blue curves are 
isotherms.

A

B
C

D

V

P

T1

T3

T2

T4

Figure 19.12  (Quick Quiz 19.4) 
Identify the nature of paths A, B, 
C, and D.

 Example 19.5    An Isothermal Expansion

A 1.0-mol sample of an ideal gas is kept at 0.08C during an expansion from 3.0 L to 10.0 L.

(A) How much work is done on the gas during the expansion?

S o L u T I o n

Conceptualize Run the process in your mind: the cylinder in Figure 19.7 is immersed in an ice-water bath, and the piston 
moves outward so that the volume of the gas increases. You can also use the graphical representation in Figure 19.9 to concep-
tualize the process.

Categorize We will evaluate parameters using equations developed in the preceding sections, so we categorize this example 
as a substitution problem. Because the temperature of the gas is fixed, the process is isothermal.

Substitute the given values into Equation 19.12: W 5 nRT ln SVi

Vf
D

5 s1.0 molds8.31 Jymol ? Kds273 Kd ln S 3.0 L
10.0 LD

5  22.7 3 103 J

(B) How much energy transfer by heat occurs between the gas and its surroundings in this process?

S o L u T I o n

Find the heat from the first law: DEint 5 Q 1 W

 0 5 Q 1 W

 Q 5 2W 5  2.7 3 103 J

continued
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19.5 c o n t i n u e d

(C) If the gas is returned to the original volume by means of an isobaric process, how much work is done on the gas?

S o L u T I o n

Use Equation 19.13. The pressure is  W 5 2P sVf 2 Vid 5 2
nRTi

Vi

sVf 2 Vid 
not given, so incorporate the ideal  
gas law:

 5 2
s1.0 molds8.31 Jymol ? Kds273 Kd

10.0 3 1023 m3 s3.0 3 1023 m3 2 10.0 3 1023 m3d

5  1.6 3 103 J

We used the initial temperature and volume to calculate the work done because the final temperature was unknown. The 
work done on the gas is positive because the gas is being compressed.

 Example 19.6    Boiling Water

Suppose 1.00 g of water vaporizes isobarically at atmospheric pressure (1.013 3 105 Pa). Its volume in the liquid state is 
Vi 5 Vliquid 5 1.00 cm3, and its volume in the vapor state is Vf 5 Vvapor 5 1 671 cm3. Find the work done in the expansion and 
the change in internal energy of the system. Ignore any mixing of the steam and the surrounding air; imagine that the 
steam simply pushes the surrounding air out of the way.

S o L u T I o n

Conceptualize Notice that the temperature of the system does not change. There is a phase change occurring as the water 
evaporates to steam.

Categorize Because the expansion takes place at constant pressure, we categorize the process as isobaric. We will use equa-
tions developed in the preceding sections, so we categorize this example as a substitution problem.

Use Equation 19.13 to find the work done on the  W 5 2P(Vf 2 Vi) 
system as the air is pushed out of the way: 

 5 2(1.013 3 105 Pa)(1 671 3 1026 m3 2 1.00 3 1026 m3)

5  2169 J

Use Equation 19.8 and the latent heat of vaporization  Q 5 Lv Dms 5 msLv 5 (1.00 3 1023 kg)(2.26 3 106 J/kg) 
for water to find the energy transferred into the system  

 5 2 260 J
 

by heat:

Use the first law to find the change in internal energy  DEint 5 Q 1 W 5 2 260 J 1 (2169 J) 5  2.09 kJ 
of the system:

The positive value for DEint indicates that the internal energy of the system increases. The largest fraction of the energy  
(2 090 J/ 2 260 J 5 93%) transferred to the liquid goes into increasing the internal energy of the system. The remaining 7% of 
the energy transferred leaves the system by work done by the steam on the surrounding atmosphere.

   19.6    Energy Transfer Mechanisms  
in Thermal Processes
In Chapter 8, we introduced a global approach to the energy analysis of physical 
processes through Equation 8.2, where the energy transfer on the right hand side 
of the equation can occur by several mechanisms. Earlier in this chapter, we dis-
cussed two of the terms on the right side of this equation, work W and heat Q. In 
this section, we explore more details about heat as a means of energy transfer and 
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two other energy transfer methods often related to temperature changes: convec-
tion (a form of matter transfer TMT) and electromagnetic radiation TER.

thermal conduction
The process of energy transfer by heat (Q in Eq. 8.2) can also be called conduction 
or thermal conduction. In this process, the transfer can be represented on an atomic 
scale as an exchange of kinetic energy between microscopic particles—molecules, 
atoms, and free electrons—in which less-energetic particles gain energy in collisions 
with more-energetic particles. For example, if you hold one end of a long metal bar 
and insert the other end into a flame, you will find that the temperature of the metal 
in your hand soon increases. The energy reaches your hand by means of conduction. 
Initially, before the rod is inserted into the flame, the microscopic particles in the 
metal are vibrating about their equilibrium positions. As the flame raises the tem-
perature of the rod, the particles near the flame begin to vibrate with greater and 
greater amplitudes. These particles, in turn, collide with their neighbors and trans-
fer some of their energy in the collisions. Slowly, the amplitudes of vibration of metal 
atoms and electrons farther and farther from the flame increase until eventually 
those in the metal near your hand are affected. This increased vibration is detected 
by an increase in the temperature of the metal and of your potentially burned hand.

The rate of thermal conduction through a material depends on the properties of 
the material. For example, it is possible to hold a piece of asbestos in a flame indef-
initely, which implies that very little energy is conducted through the asbestos. In 
general, metals are good thermal conductors and materials such as asbestos, cork, 
paper, and fiberglass are poor conductors. Gases also are poor conductors because 
the separation distance between the particles is so great. Metals are good thermal 
conductors because they contain large numbers of electrons that are relatively free 
to move through the metal and so can transport energy over large distances. There-
fore, in a good conductor such as copper, conduction takes place by means of both 
the vibration of atoms and the motion of free electrons. The presence of free elec-
trons in metals is also the reason that metals are good electrical conductors. We will 
study electrical conduction in metals in Chapter 26.

Conduction occurs only if there is a difference in temperature between two 
parts of the conducting medium. Consider a slab of material of thickness L and 
cross-sectional area A. One face of the slab is at a temperature Tc, and the other 
face is at a temperature Th . Tc (Fig. 19.13). Experimentally, it is found that energy 
Q transfers in a time interval Dt from the hotter face to the colder one. The energy 
Q that transfers is found to be proportional to the cross-sectional area, the temper-
ature difference DT 5 Th 2 Tc , and the time interval, and inversely proportional to 
the thickness:

 Q 5 kA 

DT
L

Dt (19.16)

where the proportionality constant k is the thermal conductivity of the material.
For a slab of infinitesimal thickness dx and temperature difference dT, we can 

write the law of thermal conduction as

 P 5 kA* dT
dx * (19.17)

where |dT/dx| is the temperature gradient (the rate at which temperature varies 
with position). Notice that P has units of watts when Q is in joules and Dt is in sec-
onds. That is not surprising because P is power, the rate of energy transfer by heat.

Substances that are good thermal conductors have large thermal conductiv-
ity values, whereas good thermal insulators have low thermal conductivity values. 
Table 19.3 lists thermal conductivities for various substances. Notice that metals are 
generally better thermal conductors than nonmetals.

The opposite faces are at different 
temperatures where Th � Tc .

Tc

Energy transfer
for Th � Tc 

Th
A

L

Figure 19.13  Energy transfer 
through a conducting slab with 
a cross-sectional area A and a 
thickness L.

 table 19.3  Thermal 
Conductivities

 Thermal
 Conductivity
Substance (W/m ? 8C)

Metals (at 258C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Nonmetals (approximate values)
Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 208C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8
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520 Chapter 19 The First Law of Thermodynamics

Suppose a long, uniform rod of length L is thermally insulated so that 
energy cannot escape by heat from its surface except at the ends as shown in 
Figure 19.14. One end is in thermal contact with an energy reservoir at temper-
ature Tc, and the other end is in thermal contact with a reservoir at temperature 
Th . Tc. When a steady state has been reached, the temperature at each point 
along the rod is constant in time. In this case, if we assume k is not a function 
of temperature, the temperature gradient is the same everywhere along the rod 
and is

 *dT
dx * 5

Th 2 Tc

L
 

Therefore, the rate of energy transfer by conduction through the rod is

 P 5 kASTh 2 Tc

L D (19.18)

For a compound slab containing several materials of thicknesses L1, L2, . . . and 
thermal conductivities k1, k2, . . . , the rate of energy transfer through the slab at 
steady state is

 P 5
AsTh 2 Tc 

d

o
i

sLiykid
 (19.19)

where Th and Tc are the temperatures of the outer surfaces (which are held con-
stant) and the summation is over all slabs. Example 19.7 shows how Equation 19.19 
results from a consideration of two thicknesses of materials.

Q UIck QUIz 19.5  You have two rods of the same length and diameter,  
but they are formed from different materials. The rods are used to  
connect two regions at different temperatures so that energy transfers  
through the rods by heat. They can be connected in series as in Figure 19.15a 
or in parallel as in Figure 19.15b. In which case is the rate of energy  
transfer by heat larger? (a) The rate is larger when the rods are in series.  
(b) The rate is larger when the rods are in parallel. (c) The rate is the same 
in both cases.

The opposite ends of the rod 
are in thermal contact with 
energy reservoirs at different 
temperatures.

Th

Insulation  

Tc

L

Energy
transfer

Th � Tc

Figure 19.14  Conduction of 
energy through a uniform, insu-
lated rod of length L.

a

b

Rod 1 Rod 2 
Th

Rod 1

Rod 2 
Th Tc

Tc

Figure 19.15  (Quick Quiz 19.5) 
In which case is the rate of energy 
transfer larger?

 Example 19.7    Energy Transfer Through Two Slabs

Two slabs of thickness L1 and L2 and thermal conductivities k1 and k2 are in thermal 
contact with each other as shown in Figure 19.16. The temperatures of their outer 
surfaces are Tc and Th, respectively, and Th . Tc. Determine the temperature at the 
interface and the rate of energy transfer by conduction through an area A of the 
slabs in the steady-state condition.

S o L u T I o n

Conceptualize Notice the phrase “in the steady-state condition.” We interpret this 
phrase to mean that energy transfers through the compound slab at the same rate 
at all points. Otherwise, energy would be building up or disappearing at some point. 
Furthermore, the temperature varies with position in the two slabs, most likely at dif-
ferent rates in each part of the compound slab. When the system is in steady state, the 
interface is at some fixed temperature T.

Categorize We categorize this example as a thermal conduction problem and impose 
the condition that the power is the same in both slabs of material.

L2 L1

Th k2 k1 Tc

T

Figure 19.16  (Example 19.7) Energy 
transfer by conduction through two 
slabs in thermal contact with each 
other. At steady state, the rate of energy 
transfer through slab 1 equals the rate 
of energy transfer through slab 2.
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19.7 c o n t i n u e d

Analyze Use Equation 19.18 to express the rate at which  (1)   P1 5 k1AST 2 Tc 

L 1 
D 

energy is transferred through an area A of slab 1:

Express the rate at which energy is transferred through  (2)   P2 5 k 2ASTh 2 T

L 2
D 

the same area of slab 2:

Set these two rates equal to represent the steady-state  k1AST 2 Tc

L 1
D 5 k 2ASTh 2 T

L 2
D 

situation:

Solve for T: (3)   T 5  
k1 L 2 Tc 1 k 2 L1 Th 

k1 L 2 1 k 2 L1 

Substitute Equation (3) into either Equation (1) or  (4)   P 5  
AsTh 2 Tcd

sL1yk 1d 1 sL 2yk 2d
 

Equation (2):

Finalize Extension of this procedure to several slabs of materials leads to Equation 19.19. Equation (4) is Equation 19.19 with 
i ranging from 1 to 2.

W H A T  I F ?  Suppose you are building an insulated container with two layers of insulation and the rate of energy transfer 
determined by Equation (4) turns out to be too high. You have enough room to increase the thickness of one of the two layers 
by 20%. How would you decide which layer to choose?

Answer To decrease the power as much as possible, you must increase the denominator in Equation (4) as much as possible. 
Whichever thickness you choose to increase, L1 or L2, you increase the corresponding term L/k in the denominator by 20%. 
For this percentage change to represent the largest absolute change, you want to take 20% of the larger term. Therefore, you 
should increase the thickness of the layer that has the larger value of L/k.

Home Insulation
In engineering practice, the term L/k for a particular substance is referred to as 
the R-value of the material. Therefore, Equation 19.19 reduces to

 P 5
AsTh 2 Tcd

o
i

R i

 (19.20)

where Ri 5 Li  /ki. The R-values for a few common building materials are given 
in Table 19.4. In the United States, the insulating properties of materials used  
in buildings are usually expressed in U.S. customary units, not SI units. Therefore, 

 table 19.4  R-Values for Some Common Building Materials

Material R-value (ft2 ? 8F ? h/Btu)

Hardwood siding (1 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4 in. thick) 4.00
Concrete block (filled cores) 1.93
Fiberglass insulation (3.5 in. thick) 10.90
Fiberglass insulation (6 in. thick) 18.80
Fiberglass board (1 in. thick) 4.35
Cellulose fiber (1 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Air space (3.5 in. thick) 1.01
Stagnant air layer 0.17
Drywall (0.5 in. thick) 0.45
Sheathing (0.5 in. thick) 1.32
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522 Chapter 19 The First Law of Thermodynamics

in Table 19.4, R-values are given as a combination of British thermal units, feet, 
hours, and degrees Fahrenheit.

At any vertical surface open to the air, a very thin stagnant layer of air adheres to 
the surface. One must consider this layer when determining the R-value for a wall. 
The thickness of this stagnant layer on an outside wall depends on the speed of the 
wind. Energy transfer through the walls of a house on a windy day is greater than 
that on a day when the air is calm. A representative R-value for this stagnant layer 
of air is given in Table 19.4.

 Example 19.8    The R-Value of a Typical Wall

Calculate the total R-value for a wall constructed as shown in Figure 19.17a. Start-
ing outside the house (toward the front in the figure) and moving inward, the wall 
consists of 4 in. of brick, 0.5 in. of sheathing, an air space 3.5 in. thick, and 0.5 in. 
of drywall.

S o L u T I o n

Conceptualize Use Figure 19.17 to help conceptualize the 
structure of the wall. Do not forget the stagnant air layers inside 
and outside the house.

Categorize We will use specific equations developed in this 
section on home insulation, so we categorize this example as a 
substitution problem.

Use Table 19.4 to find the R-value of each layer: R1 (outside stagnant air layer) 5 0.17 ft2 ? 8F ? h/Btu

 R2 (brick) 5 4.00 ft2 ? 8F ? h/Btu

 R3 (sheathing) 5 1.32 ft2 ? 8F ? h/Btu

 R4 (air space) 5 1.01 ft2 ? 8F ? h/Btu

 R5 (drywall) 5 0.45 ft2 ? 8F ? h/Btu

 R6 (inside stagnant air layer) 5 0.17 ft2 ? 8F ? h/Btu

Add the R-values to obtain the total R-value for  Rtotal 5 R1 1 R2 1 R3 1 R4 1 R5 1 R6 5  7.12 ft2 ? 8F ? h/Btu 
the wall:

W H A T  I F ?  Suppose you are not happy with this total R-value for the wall. You cannot change the overall structure, 
but you can fill the air space as in Figure 19.17b. To maximize the total R-value, what material should you choose to fill the 
air space?

Answer Looking at Table 19.4, we see that 3.5 in. of fiberglass insulation is more than ten times as effective as 3.5 in. of air. 
Therefore, we should fill the air space with fiberglass insulation. The result is that we add 10.90 ft2 ? 8F ? h/Btu of R-value, 
and we lose 1.01 ft2 ? 8F ? h/Btu due to the air space we have replaced. The new total R-value is equal to 7.12 ft2 ? 8F ? h/Btu 1 
9.89 ft2 ? 8F ? h/Btu 5 17.01 ft2 ? 8F ? h/Btu.

Drywall

Brick Sheathing

Air space
Insulation

a b

Figure 19.17  (Exam-
ple 19.8) An exterior 
house wall containing 
(a) an air space and 
(b) insulation.

convection
At one time or another, you may have warmed your hands on a cold day by holding 
them over a toaster while it is operating. In this situation, the air in the toaster is 
warmed and expands. As a result, the density of this air decreases and the air rises. 
This hot air warms your hands as it flows by. Energy transferred by the movement of 
a warm substance is said to have been transferred by convection, which is a form of 
matter transfer, TMT in Equation 8.2. When resulting from differences in density, as 
with air in the toaster, the process is referred to as natural convection. Airflow at an  
ocean coast (Section 19.2) is an example of natural convection, as is the mixing 
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that occurs as surface water in a lake cools and sinks (see Section 18.4). When the 
heated substance is forced to move by a fan or pump, as in some hot-air and hot-wa-
ter heating systems, the process is called forced convection.

If it were not for convection currents, it would be very difficult to boil water. As 
water is heated in a teakettle, the lower layers are warmed first. This water expands 
and rises to the top because its density is lowered. At the same time, the denser, 
cool water at the surface sinks to the bottom of the kettle and is heated.

Radiation
The third means of energy transfer we shall discuss is electromagnetic radia-
tion, TER in Equation 8.2. All objects radiate energy continuously in the form of 
electromagnetic waves (see Chapter 33) produced by thermal vibrations of the 
molecules. You are likely familiar with electromagnetic radiation in the form of 
the orange glow from an electric stove burner or an electric space heater. In the 
toaster mentioned in the section on convection, energy reaches the bread by elec-
tromagnetic radiation from the glowing coils, which you can see if you look down-
ward into the toaster.

The rate at which the surface of an object radiates energy is proportional to the 
fourth power of the absolute temperature of the surface. Known as Stefan’s law, 
this behavior is expressed in equation form as

 P 5 sAeT 4 (19.21)

where P is the power in watts of electromagnetic waves radiated from the surface 
of the object, s is a constant equal to 5.669 6 3 1028 W/m2 ? K4, A is the surface 
area of the object in square meters, e is the emissivity, and T is the surface temper-
ature in kelvins. The value of e can vary between zero and unity depending on the 
properties of the surface of the object. The emissivity is equal to the absorptivity, 
which is the fraction of the incoming radiation that the surface absorbs. A mirror 
has very low absorptivity because it reflects almost all incident light. Therefore, 
a mirror surface also has a very low emissivity. At the other extreme, a black sur-
face has high absorptivity and high emissivity. An ideal absorber is defined as 
an object that absorbs all the energy incident on it, and for such an object, e 5 1. 
An object for which e 5 1 is often referred to as a black body. We shall inves-
tigate experimental and theoretical approaches to radiation from a black body 
in Chapter 39.

Every second, approximately 1 370 J of electromagnetic radiation from the 
Sun passes perpendicularly through each 1 m2 at the top of the Earth’s atmo-
sphere. This radiation is primarily visible, infrared, and ultraviolet. We shall 
study these types of radiation in detail in Chapter 33. Enough energy arrives at 
the surface of the Earth each day to supply all our energy needs on this planet 
hundreds of times over, if only it could be captured and used efficiently. The 
growth in the number of solar energy–powered houses and solar energy “farms” 
in the world reflects the increasing efforts being made to use this abundant 
energy.

What happens to the atmospheric temperature at night is another example of 
the effects of energy transfer by radiation. If there is a cloud cover above the Earth, 
the water vapor in the clouds absorbs part of the infrared radiation emitted by the 
Earth and re-emits it back to the surface. Consequently, temperature levels at the  
surface remain moderate. In the absence of this cloud cover, there is less in the way 
to prevent this radiation from escaping into space; therefore, the temperature 
decreases more on a clear night than on a cloudy one.

As an object radiates energy at a rate given by Equation 19.21, it also absorbs 
electromagnetic radiation from the surroundings, which consist of other objects 
that radiate energy. If the latter process did not occur, an object would eventually 
radiate all its energy and its temperature would reach absolute zero. If an object is 

 Stefan’s law

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



524 Chapter 19 The First Law of Thermodynamics

at a temperature T and its surroundings are at an average temperature T0, the net 
rate of energy gained or lost by the object as a result of radiation is

 Pnet 5 sAe(T 4 2 T0
4) (19.22)

When an object is in equilibrium with its surroundings, it radiates and absorbs 
energy at the same rate and its temperature remains constant. When an object is 
hotter than its surroundings, it radiates more energy than it absorbs and its temper-
ature decreases.

Let’s revisit your trip to the mountain in the opening storyline. Your first expe-
rience was seeing a sign, “Caution: Bridge Freezes Before Road Surface.” A major 
contribution to this effect is that a roadway on the ground has energy transfer-
ring to it by heat Q from the warm ground underneath the roadway. A bridge has 
cold air underneath it, so it does not have this source of energy. Another factor 
is that the bridge roadway can radiate energy TER into the air from both upper 
and lower surfaces, losing internal energy Eint more rapidly than a roadway on the 
ground. Therefore, the bridge cools faster than the roadway, and water freezes on 
the bridge first. Your next thought was why mountain air is cold even though you 
are closer to the Sun. The change in distance to the Sun is miniscule compared to 
the distance to the Sun; that has no effect. Imagine air moving up to the mountain 
from sea level by convection TMT. Because air is a poor thermal conductor, as a 
parcel of air moves from high pressure surroundings at sea level to lower-pressure 
surroundings on the mountain, it undergoes an adiabatic expansion, Q 5 0. As 
mentioned in Section 19.5, an adiabatic expansion causes the temperature of the 
air to decrease: cold air at high altitudes.

Now, why was your meal on the mountain so unsuccessful? The eggs were 
undercooked. At lower atmospheric pressure on the mountain, the phase tran-
sition from water to steam takes place at a lower temperature. Therefore, you 
cooked your eggs at a temperature lower than 1008C, and they did not cook com-
pletely in the three-minute time interval. At higher altitudes, you need to boil 
food longer. The cookies near the edge of the baking sheet were too well done. 
The baking sheet is an object with a high temperature, so it radiates energy TER 
perpendicularly away from its surface. If the baking sheet has turned-up edges, 
this perpendicular direction from the edges is toward the cookies near the edge. 
Therefore, these cookies receive more energy by radiation than those near the 
center of the baking sheet, and they bake faster, even possibly burning while the 
ones near the center are perfect. Why did your cake fall? High-altitude baking is 
an art and requires careful adjustment of ingredients for successful cakes. One 
consideration in baking cakes is again the reduced boiling point of water. As a 
result, when the cake batter is placed in the oven, the water evaporates more rap-
idly than at sea level. As the too-dry batter rises, it cannot form “bubbles” of steam 
that build the regular cellular structure that supports the weight of the upper part 
of the cake.

After waking up the next morning and going for a walk, you noticed frost on 
cars and mailboxes, but only on the top surfaces. This effect is a demonstration 
of Equation 19.22. The side surfaces of cars and mailboxes are emitting energy 
TER horizontally. These surfaces are also absorbing radiation TER from other sur-
rounding objects: houses, trees, other cars, and so on. As a result, the tempera-
ture of the side surfaces is relatively high, and the frost melts. On the other hand, 
upward-facing surfaces on top of the cars and mailboxes are radiating energy TER 
upward, but above them is open sky. There are no objects radiating energy down-
ward into the top surfaces. As a result, the top surfaces are colder, and the frost 
doesn’t melt as soon as that on the sides.

Notice that all of these effects involve transfers of energy like those discussed in 
this chapter and especially in this section. The only effect that does not depend on 
altitude is that of the well-done cookies near the edge of the baking sheet. There 
are many such thermal effects all around you: look for others!
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the Dewar flask
The Dewar flask6 is a container designed to minimize energy transfers by con-
duction, convection, and radiation. Such a container is used to store cold or hot 
liquids for long periods of time. (An insulated bottle, such as a Thermos, is a 
common household equivalent of a Dewar flask.) The standard construction 
(Fig. 19.18) consists of a double-walled Pyrex glass vessel with silvered walls. The 
space between the walls is evacuated to minimize energy transfer by conduction 
and convection. The silvered surfaces minimize energy transfer by radiation 
because silver is a very good reflector and has very low emissivity. A further reduc-
tion in energy loss is obtained by reducing the size of the neck. Dewar flasks are 
commonly used to store liquid nitrogen (boiling point 77 K) and liquid oxygen 
(boiling point 90 K).

To confine liquid helium (boiling point 4.2 K), which has a very low heat of 
vaporization, it is often necessary to use a double Dewar system in which the Dewar 
flask containing the liquid is surrounded by a second Dewar flask. The space 
between the two flasks is filled with liquid nitrogen.

Newer designs of storage containers use “superinsulation” that consists of many 
layers of reflecting material separated by fiberglass. All this material is in a vacuum, 
and no liquid nitrogen is needed with this design.

6 Invented by Sir James Dewar (1842–1923).

Vacuum 
(white 
area)

Hot or 
cold 
liquid

Silvered surfaces

Figure 19.18 A cross-sectional 
view of a Dewar flask, which is used 
to store hot or cold substances.

Summary
 › Definitions

Internal energy is a system’s energy associ-
ated with its temperature and its physical state 
(solid, liquid, gas). Internal energy includes 
kinetic energy of random translation, rota-
tion, and vibration of molecules; vibrational 
potential energy within molecules; and poten-
tial energy between molecules.

Heat is the process of energy transfer 
across the boundary of a system resulting 
from a temperature difference between the 
system and its surroundings. The symbol Q 
represents the amount of energy transferred 
by this process.

A calorie is the amount of energy necessary to raise the temperature of 1 g of 
water from 14.58C to 15.58C.

The heat capacity C of any sample is the amount of energy needed to raise 
the temperature of the sample by 18C.

The specific heat c of a substance is the heat capacity per unit mass:

 c ;
Q

m DT
 (19.3)

The latent heat of a substance is defined as the ratio of the energy input to a 
substance to the change in mass of the higher-phase material:

 L ;
Q

Dm
 (19.7)

 › Concepts and Principles

The energy Q required to change the temperature of a mass m 
of a substance by an amount DT is

 Q 5 mc DT (19.4)

where c is the specific heat of the substance.
The energy required to change the phase of a pure sub-

stance is

 Q 5 L Dm (19.8)

where L is the latent heat of the substance, which depends on 
the nature of the phase change and the substance, and Dm is 
the change in mass of the higher-phase material.

The work done on a gas as its volume changes from some 
initial value Vi to some final value Vf is

 W 5 2#
Vf

Vi

P dV  (19.10)

where P is the pressure of the gas, which may vary during 
the process. To evaluate W, the process must be fully speci-
fied; that is, P and V must be known during each step. The 
work done depends on the path taken between the initial 
and final states.

continued
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526 Chapter 19 The First Law of Thermodynamics

The first law of thermodynamics is a specific reduction of the conservation of energy equation (Eq. 8.2) and states that when a 
system undergoes a change from one state to another, the change in its internal energy is

 DEint 5 Q 1 W (19.11)

where Q is the energy transferred into the system by heat and W is the work done on the system. Although Q  and W  both depend  
on the path taken from the initial state to the final state, the quantity DEint does not depend on the path.

In a cyclic process (one that originates 
and terminates at the same state), DEint 5 0 
and therefore Q 5 2W. That is, the energy 
transferred into the system by heat equals 
the negative of the work done on the sys-
tem during the process.

In an adiabatic process, no energy is 
transferred by heat between the system 
and its surroundings (Q 5 0). In this case, 
the first law gives DEint 5 W. 

An isothermal process is one that occurs at constant temperature. The work done 
on an ideal gas during an isothermal process is

 W 5 nRT ln SVi

Vf
D (19.12)

An isobaric process is one that occurs at constant  pressure. The work done on a 
gas in such a process is W 5 2P (Vf 2 Vi).

An isovolumetric process is one that occurs at constant volume. No work is 
done in such a process, so DEint 5 Q.

Conduction can be viewed as an exchange of kinetic energy between colliding molecules 
or electrons. The rate of energy transfer by conduction through a slab of area A is

 P 5 kA* dT
dx * (19.17)

where k is the thermal conductivity of the material from which the slab is made and  
|dT/dx| is the temperature gradient.

In convection, a warm substance 
transfers energy from one location 
to another.

All objects emit electromag-
netic radiation in the form of elec-
tromagnetic waves at the rate

 P 5 sAeT 4 (19.21)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your team has been hired by a major builder who is design-
ing simple homes for a new housing tract. He asks you to esti-
mate the amount of natural gas that will be required to heat 
each house during the winter months. Figure TP19.1 shows 
the house you are currently working on. The average ther-
mal conductivity of the walls (including the windows) and 
roof of the house depicted in the figure is 0.480 W/m ? 8C, 
and their average thickness is 21.0 cm. The heat of combus-
tion (that is, the energy provided per cubic meter) of natu-
ral gas is 3.89 3 107 J/m3. (a) How many cubic meters of gas 
must be burned each day to maintain an inside temperature 
of 25.08C in this house if the outside temperature is 0.08C? 

Disregard radiation and 
the energy transferred 
by heat through the 
ground. (b) How will 
the answer to part (a) 
be affected (increase or 
decrease the gas require-
ments?) by the inclusion 
of (i) thermal conduc-
tion through the floor; 
(ii) radiation incident on 
the roof, walls, and win-
dows during the daytime; 

(iii) operation of appliances, computers, entertainment sys-
tems; and (iv) leakage of air through cracks around doors 
and windows.

2. ACTIVITy  Consider a spherical object of radius r with no 
atmosphere at a distance d from the Sun. Assume its emissivity 
is e 5 1 for all kinds of electromagnetic waves and its temper-
ature is uniform over its surface. At Earth’s distance R from 
the Sun, the intensity of solar radiation is IS 5 1 370 W/m2.  
This intensity varies as 1/d 2 for distances other than R. A 
typical spherical object will absorb 70.0% of the solar radi-
ation over its circular cross section pr2. (The object will 
reflect about 30.0% of the incident radiation; the object 
appears circular when viewed from the Sun.) It will emit pri-
marily infrared radiation from its entire surface area 4pr2. 
(a) Show that the equilibrium surface temperature of an 
object at a distance d from the Sun is 

T 5 3(0.700)IS

4s
 1R

d2
2

4
1y4

5 (255 K)ÎR
d

(b) Use the equation in part (a) to determine a theoret-
ical surface temperature for the eight planets plus the 
dwarf planet Pluto, using the mean distance from the Sun 
given in Table 13.2. Also include the dwarf planet Ceres, 
at a distance of d 5 4.14 3 1011 m from the Sun, for a total 
of ten objects in our solar system. (c) Make a bar graph of 
the temperatures found in part (c). (d) Add to your bar 
graph the measured and estimated surface temperatures, 

5.00 m 

10.0 m 8.00 m 

37.0�

Figure TP19.1
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in kelvins, as provided by the Lunar and Planetary Insti-
tute, which are shown in the accompanying table. (e) Look 
first at our own planet, Earth. Is there a significance, in 
terms of life on this planet, to the fact that the theoretical 
temperature is below the freezing point of water, while the 
measured temperature is above it? (f) The actual temper-
ature of Earth is raised by the atmospheric absorption of 
infrared radiation emitted from the surface. This effect is 
sometimes called the greenhouse effect. Consider the objects 
with the thinnest atmospheres: Mercury, Ceres, and Pluto. 
What do you notice about the comparison of theoretical 
and measured temperatures for these planets? (g) Con-
sider the gas giants: Jupiter, Saturn, Uranus, and Neptune. 
These planets have no solid surface; the temperature data 
is provided for a point in the atmosphere where the pres-
sure is the same as that at sea level on Earth. What do you 
notice about the comparison of theoretical and measured 
temperatures for these planets? (h) The clearest discrep-
ancy between theoretical and measured temperatures in 
your graph is for Venus. Why is the measured temperature 

so much higher than the theoretical temperature? (i) What 
can you conclude about the atmosphere of Mars from 
your graph?

Object
Surface Temperature (K) 

(from the Lunar and Planetary Institute)

Mercury 440

Venus 741

Earth 288

Mars 244

Ceres 173

Jupiter 165

Saturn 134

Uranus  77

Neptune  70

Pluto  40

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SectIon 19.1 Heat and Internal Energy

1. A 55.0-kg woman eats a 540 Calorie (540 kcal) jelly dough-
nut for breakfast. (a) How many joules of energy are the 
equivalent of one jelly doughnut? (b) How many steps must 
the woman climb on a very tall stairway to change the grav-
itational potential energy of the woman–Earth system by a 
value equivalent to the food energy in one jelly doughnut? 
Assume the height of a single stair is 15.0 cm. (c) If the 
human body is only 25.0% efficient in converting chemi-
cal potential energy to mechanical energy, how many steps 
must the woman climb to work off her breakfast?

SectIon 19.2 Specific Heat and Calorimetry

2. The highest waterfall in the world is the Salto Angel in Ven-
ezuela. Its longest single falls has a height of 807 m. If water 
at the top of the falls is at 15.08C, what is the maximum tem-
perature of the water at the bottom of the falls? Assume all 
the kinetic energy of the water as it reaches the bottom goes 
into raising its temperature.

3. A combination of 0.250 kg of water at 20.08C, 0.400 kg  
of aluminum at 26.08C, and 0.100 kg of copper at 1008C is 
mixed in an insulated container and allowed to come to 
thermal equilibrium. Ignore any energy transfer to or from 
the container. What is the final temperature of the mixture?

4. The temperature of a silver bar rises by 10.08C when it 
absorbs 1.23 kJ of energy by heat. The mass of the bar is 
525 g. Determine the specific heat of silver from these data.

5. You are working in your kitchen preparing lunch for your 
family. You have decided to make egg salad sandwiches and 
are boiling six eggs, each of mass 55.5 g, in 0.750 L of water 
at 1008C. You wish to take all the eggs out of the boiling 
water and immediately place them in 23.08C water to cool 
them down to a comfortable temperature to hold them 

and peel them. You decide that you wish the mixture of the 
water and the eggs to reach an equilibrium temperature of 
40.08C. Explaining this to a family member, she challenges 
you to determine exactly how much water at 23.08C you need 
to achieve your desired equilibrium temperature. Take the 
average specific heat of an egg over the expected tempera-
ture range to be 3.27 3 103 J/kg ? 8C.

6. If water with a mass mh at temperature Th is poured into an 
aluminum cup of mass mAl containing mass mc of water at 
Tc, where Th . Tc, what is the equilibrium temperature of 
the system?

7. An aluminum calorimeter with a mass of 100 g contains 
250  g of water. The calorimeter and water are in thermal 
equilibrium at 10.08C. Two metallic blocks are placed into 
the water. One is a 50.0-g piece of copper at 80.08C. The 
other has a mass of 70.0 g and is originally at a temperature 
of 1008C. The entire system stabilizes at a final temperature 
of 20.08C. (a) Determine the specific heat of the unknown 
sample. (b) Using the data in Table 19.1, can you make a 
positive identification of the unknown material? Can you 
identify a possible material? (c) Explain your answers for 
part (b).

8. An electric drill with a steel drill bit of mass m 5 27.0 g and 
diameter 0.635 cm is used to drill into a cubical steel block 
of mass M 5 240 g. Assume steel has the same properties as 
iron. The cutting process can be modeled as happening at 
one point on the circumference of the bit. This point moves 
in a helix at constant tangential speed 40.0 m/s and exerts a 
force of constant magnitude 3.20 N on the block. As shown in 
Figure P19.8 (page 528), a groove in the bit carries the chips 
up to the top of the block, where they form a pile around the 
hole. The drill is turned on and drills into the block for a 
time interval of 15.0 s. Let’s assume this time interval is long 
enough for conduction within the steel to bring it all to a 
uniform temperature. Furthermore, assume the steel objects 
lose a negligible amount of energy by conduction, convec-
tion, and radiation into their environment. (a) Suppose the 

T
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528 Chapter 19 The First Law of Thermodynamics

drill bit cuts  three-quarters of the way through the block 
during 15.0  s. Find the temperature change of the whole 
quantity of steel. (b) What If? Now suppose the drill bit is 
dull and cuts only one-eighth of the way through the block 
in 15.0 s. Identify the temperature change of the whole quan-
tity of steel in this case. (c) What pieces of data, if any, are 
unnecessary for the solution? Explain.

9. A 3.00-g copper coin at 25.08C drops 50.0 m to the ground. 
(a) Assuming 60.0% of the change in gravitational potential 
energy of the coin–Earth system goes into increasing the 
internal energy of the coin, determine the coin’s final tem-
perature. (b) What If? Does the result depend on the mass 
of the coin? Explain.

SectIon 19.3 Latent Heat

10. How much energy is required to change a 40.0-g ice cube 
from ice at 210.08C to steam at 1108C?

11. A 75.0-kg cross-country skier 
glides over snow as in Fig-
ure P19.11. The coefficient 
of friction between skis and 
snow is 0.200. Assume all 
the snow beneath his skis 
is at 08C and that all the 
internal energy generated 
by friction is added to snow, 
which sticks to his skis until 
it melts. How far would he 
have to ski to melt 1.00 kg 
of snow?

12. A 3.00-g lead bullet at 
30.08C is fired at a speed of  
240 m/s into a large block of 
ice at 08C, in which it becomes embedded. What quantity of 
ice melts?

13. In an insulated vessel, 250 g of ice at 08C is added to 600 g 
of water at 18.08C. (a) What is the final temperature of the 
system? (b) How much ice remains when the system reaches 
equilibrium?

14. An automobile has a mass of 1 500 kg, and its aluminum 
brakes have an overall mass of 6.00 kg. (a) Assume all the 
mechanical energy that transforms into internal energy 
when the car stops is deposited in the brakes and no energy 
is transferred out of the brakes by heat. The brakes are orig-
inally at 20.08C. How many times can the car be stopped 

from 25.0 m/s before the brakes start to melt? (b) Identify 
some effects ignored in part (a) that are important in a 
more realistic assessment of the warming of the brakes.

SectIon 19.4 Work in Thermodynamic Processes

15. One mole of an ideal gas is warmed slowly so that it goes 
from the PV state (Pi , Vi ) to (3Pi , 3Vi ) in such a way that  
the pressure of the gas is directly proportional to the vol-
ume. (a) How much work is done on the gas in the process? 
(b) How is the temperature of the gas related to its volume 
during this process?

16. (a) Determine the work done on a gas that expands from i 
to f as indicated in Figure P19.16. (b) What If? How much 
work is done on the gas if it is compressed from f to i along 
the same path?

SectIon 19.5 The First Law of Thermodynamics

17. A thermodynamic system undergoes a process in which 
its internal energy decreases by 500 J. Over the same time 
interval, 220 J of work is done on the system. Find the energy 
transferred from it by heat.

18. Why is the following situation impossible? An ideal gas under-
goes a process with the following parameters: Q 5 10.0 J, 
W 5 12.0 J, and DT 5 22.008C.

19. A 2.00-mol sample of helium gas initially at 300 K, and 
0.400  atm is compressed isothermally to 1.20 atm. Noting 
that the helium behaves as an ideal gas, find (a) the final 
volume of the gas, (b) the work done on the gas, and (c) the 
energy transferred by heat.

20. (a) How much work is done on the steam when 1.00 mol  
of water at 1008C boils and becomes 1.00 mol of steam at 
1008C at 1.00 atm pressure? Assume the steam to behave as 
an ideal gas. (b) Determine the change in internal energy 
of the system of the water and steam as the water vaporizes.

21. A 1.00-kg block of aluminum is warmed at atmospheric pres-
sure so that its temperature increases from 22.08C to 40.08C. 
Find (a) the work done on the aluminum, (b) the energy 
added to it by heat, and (c) the change in its internal energy.

22. In Figure P19.22, the change in inter-
nal energy of a gas that is taken from 
A to C along the blue path is 1800 J. 
The work done on the gas along the 
red path ABC is 2500 J. (a) How much 
energy must be added to the system 
by heat as it goes from A through B to 
C? (b) If the pressure at point A is five 
times that of point C, what is the work 
done on the system in going from C  to D?  
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(c) What is the energy exchanged with the surroundings 
by heat as the gas goes from C to A along the green path? 
(d) If the change in internal energy in going from point D 
to point A is 1500 J, how much energy must be added to the 
system by heat as it goes from point C to point D?

SectIon 19.6 Energy Transfer Mechanisms  
in Thermal Processes

23. A student is trying to decide what to wear. His bedroom is 
at 20.08C. His skin temperature is 35.08C. The area of his 
exposed skin is 1.50 m2. People all over the world have skin 
that is dark in the infrared, with emissivity about 0.900. 
Find the net energy transfer from his body by radiation in 
10.0 min.

24. A concrete slab is 12.0 cm thick and has an area of 5.00 m2. 
Electric heating coils are installed under the slab to melt 
the ice on the surface in the winter months. What mini-
mum power must be supplied to the coils to maintain a 
temperature difference of 20.08C between the bottom of 
the slab and its surface? Assume all the energy transferred 
is through the slab.

25. Two lightbulbs have cylindrical filaments much greater in 
length than in diameter. The evacuated bulbs are identi-
cal except that one operates at a filament temperature of 
2 1008C and the other operates at 2 0008C. (a) Find the ratio 
of the power emitted by the hotter lightbulb to that emitted 
by the cooler lightbulb. (b) With the bulbs operating at the 
same respective temperatures, the cooler lightbulb is to be  
altered by making its filament thicker so that it emits 
the same power as the hotter one. By what factor should the 
radius of this filament be increased?

26. The human body must maintain its core temperature inside 
a rather narrow range around 378C. Metabolic processes, 
notably muscular exertion, convert potential energy into 
internal energy deep in the interior. From the interior, 
energy must flow out to the skin or lungs to be expelled 
to the environment. During moderate exercise, an 80-kg 
man can metabolize food energy at the rate 300 kcal/h, do 
60 kcal/h of mechanical work, and put out the remaining 
240 kcal/h of energy by heat. Most of the energy is carried 
from the body interior out to the skin by forced convection, 
whereby blood is warmed in the interior and then cooled at 
the skin, which is a few degrees cooler than the body core. 
Without blood flow, living tissue is a good thermal insulator, 
with thermal conductivity about 0.210 W/m · 8C. Show that 
blood flow is essential to cool the man’s body by calculating 
the rate of energy conduction in kcal/h through the tissue 
layer under his skin. Assume that its area is 1.40 m2, its thick-
ness is 2.50 cm, and it is maintained at 37.08C on one side 
and at 34.08C on the other side.

27. (a) Calculate the R-value of a thermal window made of two 
single panes of glass each 0.125 in. thick and separated by 
a 0.250-in. air space. (b) By what factor is the transfer of 
energy by heat through the window reduced by using the 
thermal window instead of the single-pane window? Include 
the contributions of inside and outside stagnant air layers.

28. For bacteriological testing of water supplies and in medi-
cal clinics, samples must routinely be incubated for 24 h at 
378C. Peace Corps volunteer and MIT engineer Amy Smith 
invented a low-cost, low-maintenance incubator. The incu-
bator consists of a foam-insulated box containing a waxy 

material that melts at 37.08C interspersed among tubes, 
dishes, or bottles containing the test samples and growth 
medium (bacteria food). Outside the box, the waxy material 
is first melted by a stove or solar energy collector. Then the 
waxy material is put into the box to keep the test samples 
warm as the material solidifies. The heat of fusion of the 
phase-change material is 205 kJ/kg. Model the insulation as 
a panel with surface area 0.490 m2, thickness 4.50 cm, and 
conductivity 0.012 0 W/m ? 8C. Assume the exterior temper-
ature is 23.08C for 12.0 h and 16.08C for 12.0 h. (a)  What 
mass of the waxy material is required to conduct the 
bacteriological test? (b) Explain why your calculation can 
be done without knowing the mass of the test samples or of 
the insulation.

aDDItIonal PRobleMS

29. Gas in a container is at a pressure of 1.50 atm and a vol-
ume of 4.00 m3. What is the work done on the gas (a) if it 
expands at constant pressure to twice its initial volume, and 
(b) if it is compressed at constant pressure to one-quarter its 
initial volume?

30. You are reading your textbook on Greek mythology. You 
find a story about Daedalus and Icarus. Daedalus built two 
sets of wings out of feathers and wax, one set for him and 
one for his son Icarus. The father and son planned to use 
the wings to escape from their imprisonment on the island 
of Crete. The father warned Icarus not to fly too high 
because the proximity to the Sun might melt the wax in his 
wings. Of course, Icarus was overtaken by the thrill of fly-
ing and flew too close to the Sun. His wings melted and he 
fell into the sea. While reading this information, you think 
about your physics class, where your instructor has just dis-
cussed the equilibrium temperature of an object with no 
atmosphere at a given distance from the Sun. You look in 
your notes and find the following equation for this equilib-
rium temperature:

T 5 (255 K)ÎR
r

  where R is the distance from the Sun to the Earth, r is the 
distance from the Sun to the object, and T is in kelvins. This 
raises a conundrum in your mind: If Icarus flew so close to 
the Sun that the wax in his wings melted, would there still 
be air at that location to allow him to fly to that location? 
Take the melting point of wax to be 658C.

31. You have a particular interest in automobile engines, so you 
have secured a co-op position at an automobile company 
while you attend school. Your supervisor is helping you to 
learn about the operation of an internal combustion engine. 
She gives you the following assignment, related to a simula-
tion of a new engine she is designing. A gas, beginning at 
PA 5 1.00 atm, VA 5 0.500 L, and TA 5 27.08C, is compressed 
from point A on the PV diagram in Figure P19.31 (page 530) 
to point B. This represents the compression stroke in a four-
cycle gasoline engine. At that point, 132 J of energy is deliv-
ered to the gas at constant volume, taking the gas to point 
C. This represents the transformation of potential energy 
in the gasoline to internal energy when the spark plug fires. 
Your supervisor tells you that the internal energy of a gas is 
proportional to temperature (as we shall find in Chapter 20),  
the internal energy of the gas at point A is 200 J, and she 
wants to know what the temperature of the gas is at point C.

T
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530 Chapter 19 The First Law of Thermodynamics

32. You are working in a condensed-matter laboratory for your 
senior project. Several of the ongoing projects use liquid 
helium, which is contained in a thermally insulated vessel 
that can hold up to a maximum of Vmax 5 240 L of the liq-
uid at Tc 5 4.20 K. Because some of the liquid helium has 
already been used, someone asks you to check to see if there 
is enough for the next day, on which four different experi-
mental groups will need liquid helium. You are not sure how 
to measure the amount of liquid remaining, so you insert an 
aluminum rod of length L 5 2.00 m and with a cross-sectional 
area A 5 2.50 cm2 into the vessel. By seeing how much of 
the lower end of the rod is frosted when you pull it out, you 
can estimate the depth of the liquid helium. After inserting 
the rod, however, one of the experimenters calls you over 
to perform a task and you forget about the rod, leaving it 
in the liquid helium until the next morning. How much 
liquid helium is available for the next day’s experiments? 
(Aluminum has thermal conductivity of 3 100 W/m ? K  
at 4.20 K; ignore its temperature variation. The density of 
liquid helium is 125 kg/m3.) Assume that gaseous helium 
can escape from the top of the vessel.

33. A flow calorimeter is an apparatus used to measure the spe-
cific heat of a liquid. The technique of flow calorimetry 
involves measuring the temperature difference between the 
input and output points of a flowing stream of the liquid 
while energy is added by heat at a known rate. A liquid of 
density 900 kg/m3 flows through the calorimeter with vol-
ume flow rate of 2.00 L/min. At steady state, a temperature 
difference 3.508C is established between the input and out-
put points when energy is supplied at the rate of 200 W. 
What is the specific heat of the liquid?

34. A flow calorimeter is an apparatus used to measure the spe-
cific heat of a liquid. The technique of flow calorimetry 
involves measuring the temperature difference between 
the input and output points of a flowing stream of the 
liquid while energy is added by heat at a known rate. A 
liquid of density r f lows through the calorimeter with vol-
ume flow rate R . At steady state, a temperature difference 
DT is established between the input and output points 
when energy is supplied at the rate P. What is the specific 
heat of the liquid?

35. Review. Following a collision between a large spacecraft 
and an asteroid, a copper disk of radius 28.0 m and thick-
ness 1.20 m at a temperature of 8508C is floating in space, 
rotating about its symmetry axis with an angular speed of 
25.0  rad/s. As the disk radiates infrared light, its temper-
ature falls to 20.08C. No external torque acts on the disk. 

(a) Find the change in kinetic energy of the disk. (b) Find 
the change in internal energy of the disk. (c) Find the 
amount of energy it radiates.

36. Review. Two speeding lead bullets, one of mass 12.0 g mov-
ing to the right at 300 m/s and one of mass 8.00 g moving 
to the left at 400 m/s, collide head-on, and all the material 
sticks together. Both bullets are originally at temperature 
30.08C. Assume the change in kinetic energy of the system 
appears entirely as increased internal energy. We would like 
to determine the temperature and phase of the bullets after 
the collision. (a)  What two analysis models are appropri-
ate for the system of two bullets for the time interval from 
before to after the collision? (b) From one of these models, 
what is the speed of the combined bullets after the colli-
sion? (c) How much of the initial kinetic energy has trans-
formed to internal energy in the system after the collision? 
(d)  Does all the lead melt due to the collision? (e) What 
is the temperature of the combined bullets after the colli-
sion? (f) What is the phase of the combined bullets after 
the collision?

37. An ice-cube tray is filled with 75.0 g of water. After the 
filled tray reaches an equilibrium temperature of 20.08C, 
it is placed in a freezer set at 28.008C to make ice cubes. 
(a) Describe the processes that occur as energy is being 
removed from the water to make ice. (b) Calculate the 
energy that must be removed from the water to make ice 
cubes at 28.008C.

38. The rate at which a resting person converts food energy 
is called one’s basal metabolic rate (BMR). Assume that the 
resulting internal energy leaves a person’s body by radia-
tion and convection of dry air. When you jog, most of the 
food energy you burn above your BMR becomes internal 
energy that would raise your body temperature if it were 
not eliminated. Assume that evaporation of perspiration 
is the mechanism for eliminating this energy. Suppose a 
person is jogging for “maximum fat burning,” converting 
food energy at the rate 400 kcal/h above his BMR, and 
putting out energy by work at the rate 60.0 W. Assume that 
the heat of evaporation of water at body temperature is 
equal to its heat of vaporization at 1008C. (a) Determine 
the hourly rate at which water must evaporate from his 
skin. (b) When you metabolize fat, the hydrogen atoms 
in the fat molecule are transferred to oxygen to form 
water. Assume that metabolism of 1.00 g of fat generates 
9.00 kcal of energy and produces 1.00 g of water. What 
fraction of the water the jogger needs is provided by fat 
metabolism?

39. An iron plate is held against an iron wheel so that a kinetic 
friction force of 50.0 N acts between the two pieces of metal. 
The relative speed at which the two surfaces slide over each 
other is 40.0 m/s. (a) Calculate the rate at which mechanical 
energy is converted to internal energy. (b) The plate and the 
wheel each have a mass of 5.00 kg, and each receives 50.0% 
of the internal energy. If the system is run as described for 
10.0 s and each object is then allowed to reach a uniform 
internal temperature, what is the resultant temperature 
increase? 

40. One mole of an ideal gas is contained in a cylinder with a 
movable piston. The initial pressure, volume, and temper-
ature are Pi , Vi , and Ti , respectively. Find the work done on 
the gas in the following processes. In operational terms, 
describe how to carry out each process and show each 
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process on a PV diagram. (a) an isobaric compression in 
which the final volume is one-half the initial volume (b) an 
isothermal compression in which the final pressure is four 
times the initial pressure (c) an isovolumetric process in 
which the final pressure is three times the initial pressure

41. During periods of high activity, the Sun has more sunspots 
than usual. Sunspots are cooler than the rest of the lumi-
nous layer of the Sun’s atmosphere (the photosphere). Par-
adoxically, the total power output of the active Sun is not 
lower than average but is the same or slightly higher than 
average. Work out the details of the following crude model 
of this phenomenon. Consider a patch of the photosphere 
with an area of 5.10 3 1014 m2. Its emissivity is 0.965. (a) Find 
the power it radiates if its temperature is uniformly 5 800 K, 
corresponding to the quiet Sun. (b) To represent a sunspot, 
assume 10.0% of the patch area is at 4 800 K and the other 
90.0% is at 5 890 K. Find the power output of the patch. 
(c)  State how the answer to part (b) compares with the 
answer to part (a). (d) Find the average temperature of the 
patch. Note that this cooler temperature results in a higher 
power output.

42. Why is the following situation impossible? A group of campers 
arises at 8:30 a.m. and uses a solar cooker, which consists 
of a curved, reflecting surface that concentrates sunlight 
onto the object to be warmed (Fig. P19.42). During the day, 
the maximum solar intensity reaching the Earth’s surface 
at the cooker’s location is I 5 600 W/m2. The cooker faces 
the Sun and has a face diameter of d 5 0.600 m. Assume 
a fraction f of 40.0% of the incident energy is transferred 
to 1.50 L of water in an open container, initially at 20.08C. 
The water comes to a boil, and the campers enjoy hot coffee 
for breakfast before hiking ten miles and returning by noon 
for lunch.

43. A cooking vessel on a slow burner contains 10.0 kg of water 
and an unknown mass of ice in equilibrium at 08C at time 
t  5 0. The temperature of the mixture is measured at 
various times, and the result is plotted in Figure P19.43. 

During the first 50.0 min, the mixture remains at 08C. From 
50.0 min to 60.0 min, the temperature increases to 2.008C. 
Ignoring the heat capacity of the vessel, determine the ini-
tial mass of the ice.

44. A student measures the following data in a calorimetry 
experiment designed to determine the specific heat of 
aluminum:

Initial temperature of water 
 and calorimeter: 70.08C

Mass of water:  0.400 kg

Mass of calorimeter:  0.040 kg

Specific heat of calorimeter:  0.63 kJ/kg ? 8C

Initial temperature of aluminum: 27.08C

Mass of aluminum:  0.200 kg

Final temperature of mixture: 66.38C

  (a) Use these data to determine the specific heat of alumi-
num. (b) Explain whether your result is within 15% of the 
value listed in Table 19.1.

cHallenge PRobleMS

45. (a) The inside of a hollow cylinder is maintained at a tem-
perature Ta, and the outside is at a lower temperature, Tb 
(Fig. P19.45). The wall of the cylinder has a thermal conduc-
tivity k. Ignoring end effects, show that the rate of energy 
conduction from the inner surface to the outer surface in 
the radial direction is

dQ

dt
5 2pLk 3Ta 2 Tb

lnsbyad 4
  Suggestions: The temperature gradient is dT/dr. A radial 

energy current passes through a concentric cylinder of area 
2prL. (b) The passenger section of a jet airliner is in the 
shape of a cylindrical tube with a length of 35.0 m and an 
inner radius of 2.50 m. Its walls are lined with an insulat-
ing material 6.00 cm in thickness and having a thermal 
conductivity of 4.00 3 1025 cal/s ? cm ? 8C. A heater must 
maintain the interior temperature at 25.08C while the out-
side temperature is 235.08C. What power must be supplied 
to the heater?

46. A spherical shell has inner radius 3.00 cm and outer radius 
7.00 cm. It is made of material with thermal conductivity 
k 5 0.800 W/m ? 8C. The interior is maintained at tempera-
ture 58C and the exterior at 408C. After an interval of time, 
the shell reaches a steady state with the temperature at each 
point within it remaining constant in time. (a) Explain why 

d
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532 Chapter 19 The First Law of Thermodynamics

the rate of energy transfer P must be the same through 
each spherical surface, of radius r, within the shell and 
must satisfy

dT
dr

5
P

4pkr 2

  (b) Next, prove that

#
40

5
 dT 5

P
4pk

 #
0.07

0.03
r 22 dr

  where T is in degrees Celsius and r is in meters. (c) Find the 
rate of energy transfer through the shell. (d) Prove that

#
T

5
 dT 5 1.84 #

r

0.03
 r22 dr

  where T is in degrees Celsius and r is in meters. (e) Find 
the temperature within the shell as a function of radius. 
(f) Find the temperature at r 5 5.00 cm, halfway through 
the shell.

47. A pond of water at 08C is covered with a layer of ice 4.00 cm 
thick. If the air temperature stays constant at 210.08C, what 
time interval is required for the ice thickness to increase to 
8.00 cm? Suggestion: Use Equation 19.18 in the form

dQ

dt
5 kA 

DT
x

  and note that the incremental energy dQ extracted from the 
water through the thickness x of ice is the amount required 
to freeze a thickness dx of ice. That is, dQ 5 Lf rA dx, where r 
is the density of the ice, A is the area, and Lf is the latent heat 
of fusion.
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Storyline You are still on the Physics Club camping trip to Whitney  
Portal described at the beginning of Chapter 19. The evening plan is to build a 
campfire and huddle around it revisiting Physics Department stories. You are in 
charge of gathering the wood and setting up the fire. In order to locate the fire 
in the best place possible, you need to know the wind direction. As someone 
taught you years ago, you put your index finger in your mouth and then hold it 
vertically, knowing that the coldest side of your finger will be the direction from 
which the wind is coming. Your physics course kicks in again and you say, “Wait 
a minute! Why is that side of the finger cold in the wind?” While thinking about 
an answer, you reach down and grab a piece of wood. You scrape your finger 
painfully on it and go into the RV to receive medical treatment from your Club 
advisor. He puts some alcohol on the wound. Even though you know the alcohol 
is at the same temperature as the rest of the interior of the RV, the alcohol feels 
cold on your finger. Could the cold feeling of the alcohol be related to the cold 
feeling of your finger in the wind?   

ConneCtions In Chapter 18, we discussed the properties of an ideal gas 
by using such macroscopic variables as pressure, volume, and temperature. Such 
large-scale properties can be related to a description of the gas on a microscopic 

A wet finger is held upward 
to test the direction of the 
wind. Why is the finger 
cold on the side from which 
the wind is blowing?  
(Joel Calheiros/Shutterstock)
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534 Chapter 20 The Kinetic Theory of Gases

scale, where matter is treated as a collection of a huge number of molecules 
rather than as a single macroscopic sample. Applying Newton’s laws of motion in 
a statistical manner to a collection of particles provides a reasonable description 
of thermodynamic processes. To keep the mathematics relatively simple, we 
shall consider primarily the behavior of gases because in gases the interactions 
between molecules are much weaker than they are in liquids or solids. We shall 
begin by relating pressure and temperature directly to the details of molecular 
motion in a sample of gas. Based on these results, we will make predictions 
of molar specific heats of gases. Some of these predictions will be correct and 
some will not. We will extend our model to explain those values that are not 
predicted correctly by the simpler model. Finally, we discuss the distribution of 
molecular speeds in a gas, and apply the results to a liquid. We shall find the con-
cepts discussed in this chapter useful in the future when we analyze a situation 
on a microscopic scale, such as, for example, the analysis of the electrical charac-
teristics of an electron gas in a conducting wire.

  20.1    Molecular Model of an Ideal Gas
In Section 1.2, we introduced a number of types of models, one of which is the struc-
tural model. A structural model is a theoretical construct designed to represent a sys-
tem that cannot be observed directly because it is too large or too small. For exam-
ple, here on Earth we can only observe the solar system from the inside; we cannot 
travel outside the solar system and look back to see how it works. This restricted 
vantage point has led to the geocentric and heliocentric models of the solar system 
discussed in Section 13.4. An example of a system too small to observe directly is 
the hydrogen atom. Various structural models of this system have been developed, 
including the Bohr model (Section 41.3) and the quantum model (Section 41.4). Once 
a structural model is developed, its assumptions are used to make various predic-
tions for experimental observations of the behavior of the system. For example, 
the geocentric model of the solar system makes predictions of how the movement 
of Mars should appear from the Earth. It turns out that those predictions do not 
match the actual observations. When this mismatch occurs with a structural model, 
the model must be modified or replaced with another model.

In this chapter, we will consider a structural model for an ideal gas, with the 
goal of relating macroscopic measurements of the gas (pressure, volume, tempera-
ture, etc.) to the behavior of its microscopic components—molecules. The structural 
model that we will develop is called kinetic theory. This model treats an ideal gas as 
a collection of molecules with the following assumptions:

1. Physical components: 
  The gas consists of a number of identical molecules within a cubic con-

tainer of side length d (Fig. 20.1). The number of molecules in the gas is 
large, and the average separation between them is large compared with 
their dimensions. Therefore, the molecules occupy a negligible volume in 
the container. This assumption is consistent with the ideal gas model, in 
which we imagine the molecules to be point-like.

 2. Behavior of the components: 
  (a)  The molecules obey Newton’s laws of motion, but as a whole their 

motion is isotropic: any molecule can move in any direction with  
any speed. 

  (b)  The molecules interact only by short-range forces during elastic colli-
sions. This assumption is consistent with the ideal gas model, in which 
the molecules exert no long-range forces on one another. 

  (c)  The molecules make elastic collisions with the walls of the container.

d

d d
z x

y

m 0

vxi

vi
S

One molecule of the gas 
moves with velocity v on 
its way toward a collision 
with the wall.

S

Figure 20.1  A cubical box with 
sides of length d containing an 
ideal gas.
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   20.1 Molecular Model of an Ideal Gas 535

Although we often picture an ideal gas as consisting of single atoms modeled as 
particles, the behavior of molecular gases approximates that of ideal gases rather 
well at low pressures. Usually, the internal structure of the molecule has no effect 
on the motions considered here.

For our first application of kinetic theory, let us relate the macroscope vari-
able of pressure P to microscopic quantities. This will be a relatively long pro-
cess, but each step will be based on a simple mathematical calculation, or on a 
principle or analysis model that we have studied in a previous chapter. Consider 
a collection of N molecules of an ideal gas in a container of volume V. As indi-
cated in assumption 1, the container is a cube with edges of length d. We shall 
first focus our attention on one of these molecules of mass m0 and assume it is 
moving so that its component of velocity in the x direction is vxi as in Figure 20.1. 
(The subscript i here refers to the ith molecule in the collection, not to an initial 
value. We will combine the effects of all the molecules shortly.) Figure 20.2 shows 
the molecule making  a collision with the wall of the container. As the molecule 
collides elastically with the wall (assumption 2(c) above), its velocity component 
perpendicular to the wall is reversed because the mass of the wall is far greater 
than the mass of the molecule. The molecule is modeled as a nonisolated system 
for which the impulse from the wall causes a change in the molecule’s momen-
tum. Because the momentum component pxi of the molecule is m0vxi before the 
collision and 2m0vxi after the collision, the change in the x component of the 
momentum of the molecule is

 Dpxi 5 2m0vxi 2 (m0vxi) 5 22m0vxi (20.1)

From the nonisolated system model for momentum, we can apply the impulse-
momentum theorem (Eqs. 9.11 and 9.13) to the molecule to give

  F
i,on molecule Dtcollision 5 Dpxi 5 22m0vxi

 (20.2)

where  F
i,on molecule

 is the x component of the average force1 the wall exerts on the 
molecule during the collision and Dtcollision is the duration of the collision. For the 
molecule to make another collision with the same wall after this first collision, it 
must travel a distance of 2d in the x direction (across the cube and back). There-
fore, from the particle under constant velocity model, the time interval between 
two collisions with the same wall is

 Dt 5
2d
vxi

 (20.3)

The force that causes the change in momentum of the molecule in the collision 
with the wall occurs only during the collision. We can, however, find the long-term 
average force for many back-and-forth trips across the cube by averaging the force 
in Equation 20.2 over the time interval for the molecule to move across the cube 
and back once, Equation 20.3. The average change in momentum per trip for the 
time interval for many trips is the same as that for the short duration of the colli-
sion. Therefore, we can rewrite Equation 20.2 as

  F
i Dt 5 22m0vxi

 (20.4)

where  F
i
 is the average force component over the time interval Dt for the molecule 

to move across the cube and back. Because exactly one collision occurs with the 
given wall for each such time interval, this result is also the long-term average force 
on the molecule over long time intervals containing any number of multiples of Dt.

Figure 20.2 A molecule makes 
an elastic collision with the wall 
of the container. In this construc-
tion, we assume the molecule 
moves in the xy plane.

vyi

vxi

vyi

–vxi

vi
S

vi
S

The molecule’s x 
component of 
momentum is 
reversed, whereas 
its y component 
remains 
unchanged.

1For this discussion, we use a bar over a variable to represent the average value of the variable, such as F  for the 
average force, rather than the subscript “avg” that we have used before. This notation is to save confusion because we 
already have a number of subscripts on variables.
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536 Chapter 20 The Kinetic Theory of Gases

Equations 20.3 and 20.4 enable us to express the x component of the long-term 
average force exerted by the wall on the molecule as

  F
i 5 2

2m0vxi

Dt
5 2

2m0vxi
2

2d
5 2

m0vxi
2

d
 (20.5)

Now, by Newton’s third law, the x component of the long-term average force exerted 
by the molecule on the wall is equal in magnitude and opposite in direction:

  F
i,on wall 5 2 F

i 5 2S2
m0vxi

2

d D 5
m0vxi

2

d
 (20.6)

The total average force F  exerted by the gas on the wall is found by adding the 
average forces exerted by all the individual molecules striking the wall. Adding 
terms such as those in Equation 20.6 for all molecules gives

  F 5 o
N

i51

m0vxi
2

d
5

m0

d
 o

N

i51

vxi
2 (20.7)

where we have factored out the length of the box and the mass m0 because assump-
tion 1 tells us that all the molecules are the same. We now impose an additional fea-
ture from assumption 1, that the number of molecules is large. For a small number 
of molecules, the actual force on the wall would vary with time. It would be nonzero 
during the short interval of a collision of a molecule with the wall and zero when 
no molecule happens to be hitting the wall. For a very large number of molecules 
such as Avogadro’s number, however, these variations in force are smoothed out so 
that the average force given above is the same over any time interval. Therefore, the 
constant force F on the wall due to the molecular collisions is

 F 5
m0

d
 o

N

i51

vxi
2 (20.8)

To proceed further, let’s consider part of the right-hand side of Equation 20.8: 
how do we express the average value of the square of the x component of the veloc-
ity for N molecules? The traditional average of a set of values is the sum of the val-
ues over the number of values:

 vx
2 5

o
N

i51

vxi
2

N
   S   o

N

i51

vxi
2 5 Nvx

2 (20.9)

Using Equation 20.9 to substitute for the sum in Equation 20.8 gives

 F 5
m0

d
 Nvx

2 (20.10)

Now let’s focus again on one molecule with velocity components vxi, vyi, and vzi. 
The Pythagorean theorem relates the square of the speed of the molecule to the 
squares of the velocity components:

 vi
2 5 vxi

2 1 vyi
2 1 vzi

2 (20.11)

Hence, the average value of v2 for all the molecules in the container is related to 
the average values of vx

2, vy
2, and vz

2 according to the expression

 v 
2 5 vx

2 1 vy
2 1 vz

2 (20.12)

Because the motion is isotropic (assumption 2(a) above), the average values vx
2, vy

2, 
and vz

2 are equal to one another. Using this fact and Equation 20.12, we find that

 v 
2 5 3vx 

2 (20.13)
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   20.1 Molecular Model of an Ideal Gas 537

Therefore, from Equation 20.10, the total force exerted on the wall is

 F 5 1
3N  

m0v
2

d
 (20.14)

Using this expression, we can find the total pressure exerted on the wall:

P 5
F
A

5
F
d 

2 5 1
3N  

m0v 

2

d 

3 5 1
3SN

VDm0v 

2

 P 5 2
3SN

VDs 
1
2m0v

2
 d (20.15)

where we have recognized the volume V of the cube as d3.
We have finished the long process initiated at the beginning of this section. 

The reward for our patience and diligence is something profound: Equation 20.15  
indicates that the pressure of a gas is proportional to (1) the number of mol-
ecules per unit volume and (2) the average translational kinetic energy of the 
molecules, 1

2m0v 

2. In analyzing this structural model of an ideal gas, we obtain 
an important result that relates the macroscopic quantity of pressure to a micro-
scopic quantity, the average value of the square of the molecular speed. There-
fore, a key link between the molecular world and the large-scale world has been 
established.

Notice that Equation 20.15 verifies some features of pressure with which you are 
probably familiar. One way to increase the pressure inside a container is to increase 
the number of molecules per unit volume N/V in the container. That is what you 
do when you add air to a tire. We will return to discuss the second set of paren-
theses in Equation 20.15 very shortly, after we discuss the macroscopic quantity of 
temperature.

We can gain some insight into the meaning of temperature by first writing Equa-
tion 20.15 in the form

 PV 5 2
3N s 

1
2m0v 

2
 d (20.16)

Let’s now compare this expression with the equation of state for an ideal gas 
(Eq. 18.11):

 PV 5 NkBT (20.17)

Equating the right sides of Equations 20.16 and 20.17 and solving for T gives

 T 5
2

3kB

 s 
1
2m0v 

2
 d (20.18)

This result tells us that temperature is a direct measure of average molecular kinetic energy. 
In Chapter 18, we could only define temperature macroscopically, in terms of the 
transfer of energy between two objects. In Equation 20.18, we have a deeper def-
inition of temperature in terms of the microscopic motion of the molecules of a 
substance.

By rearranging Equation 20.18, we can relate the translational molecular kinetic 
energy to the temperature:

 1
2m0v 

2 5 3
2kBT  (20.19)

Now look back at Equation 20.15. The quantity in the second set of parentheses in 
that equation is the same as the left-hand side of Equation 20.19. Therefore, we see 
that the pressure in Equation 20.15 depends on the temperature of the gas. With 
regard to the discussion of the air pressure in an automobile tire, the pressure can 
be raised by increasing the temperature of that air, which is why the pressure inside 
a tire increases as the tire warms up during long road trips. The continuous flexing 
of the tire as it moves along the road surface results in work done on the rubber 

  Relationship between  
pressure and molecular  
kinetic energy

  Relationship between  
temperature and molecular 
kinetic energy

  Average kinetic energy  
per molecule
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538 Chapter 20 The Kinetic Theory of Gases

as parts of the tire distort, causing an increase in internal energy of the rubber. 
The increased temperature of the rubber results in the transfer of energy by heat 
into the air inside the tire. This transfer increases the air’s temperature, and this 
increase in temperature in turn produces an increase in pressure.

Equation 20.19 shows us that the average translational kinetic energy per  
molecule is 32kBT . Because vx

2 5 1
3v 

2 (Eq. 20.13), it follows that

 1
2m0vx

2 5 1
2kBT  (20.20)

In a similar manner, for the y and z directions,

 1
2m0vy

2 5 1
2kBT  and 1

2m0vz
2 5 1

2kBT  

Therefore, each translational degree of freedom contributes an equal amount 
of energy, 1

2kBT , to the gas. (In general, a “degree of freedom” refers to an inde-
pendent means by which a molecule can possess energy.) A generalization of this 
result, known as the theorem of equipartition of energy, is as follows:

Each degree of freedom contributes 1
2kBT  to the energy of a system, where 

possible degrees of freedom are those associated with translation, rotation, 
and vibration of molecules.

Theorem of equipartition 
of energy

The total translational kinetic energy of N molecules of gas is simply N times the 
average energy per molecule, which is given by Equation 20.19:

 Ktot trans 5 N s 
1
2m0v 

2
 d 5 3

2Nk BT 5 3
2nRT  (20.21)

where we have used kB 5 R/NA for Boltzmann’s constant and N 5 nNA for the num-
ber of molecules of gas. If the gas molecules possess only translational kinetic 
energy, Equation 20.21 represents the internal energy of the gas. This result implies that 
the internal energy of an ideal gas depends only on the temperature. We will follow 
up on this point in Section 20.2.

The square root of v 

2 is called the root-mean-square (rms) speed of the mole-
cules. From Equation 20.19, we find that the rms speed is

 vrms 5 Ïv 

2 5Î3kBT

m0

5Î3RT
M

 (20.22)

where M is the molar mass in kilograms per mole and is equal to m0NA. This expres-
sion shows that, at a given temperature, lighter molecules move faster, on the aver-
age, than do heavier molecules. For example, at a given temperature, hydrogen 
molecules, whose molar mass is 2.02 3 1023 kg/mol, have an average speed approxi-
mately four times that of oxygen molecules, whose molar mass is 32.0 3 1023 kg/mol.  
Table 20.1 lists the rms speeds for various molecules at 208C.

Q uiCk Quiz 20.1  Two containers hold an ideal gas at the same temperature 
and pressure. Both containers hold the same type of gas, but container B has 
twice the volume of container A. (i) What is the average translational kinetic 
energy per molecule in container B? (a) twice that of container A (b) the same  
as that of container A (c) half that of container A (d) impossible to determine  
(ii) From the same choices, describe the internal energy of the gas in container B.

Total translational kinetic 
 energy of N molecules

Root-mean-square speed 

 Molar Mass vrms  Molar Mass vrms

Gas (g/mol) at 208C (m/s) Gas (g/mol) at 208C (m/s)

H2 2.02 1902 NO 30.0 494
He 4.00 1352 O2 32.0 478
H2O 18.0 637 CO2 44.0 408
Ne 20.2 602 SO2 64.1 338
N2 or CO 28.0 511

 Table 20.1  Some Root-Mean-Square (rms) Speeds

PiTfall PrevenTion 20.1
The Square Root of the Square?  
Taking the square root of v2 in 
Equation 20.22 does not “undo” 
the square because we have taken 
an average between squaring and 
taking the square root. Although 
the square root of sv d2 is v 5 vavg 
because the squaring is done after 
the averaging, the square root of 
v 

2 is not vavg, but rather vrms.
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   20.2 Molar Specific Heat of an Ideal Gas 539

  20.2    Molar Specific Heat of an Ideal Gas
Let’s use the results of Section 20.1 to investigate a macroscopic quantity associated 
with a gas: its specific heat. Consider an ideal gas undergoing several processes 
such that the change in temperature is DT 5 Tf 2 Ti for all processes. The temper-
ature change can be achieved by taking a variety of paths from one isotherm to 
another as shown in Figure 20.3. Because DT is the same for all paths, the change 
in internal energy DE int is the same for all paths. The work W done on the gas (the 
negative of the area under the curves), however, is different for each path, as we 
found in Section 19.4. Therefore, from the first law of thermodynamics, we can 
argue that the heat Q 5 DE int 2 W associated with a given change in temperature 
does not have a unique value: the heat Q for a process taking place between two 
temperatures depends on the process. Therefore, in Q 5 mcDT, the specific heat c 
does not have a unique value for a gas!

We can address this difficulty by defining specific heats for two special processes 
that we have studied: isovolumetric (i S f in Figure 20.4 on page 540) and isobaric 
(i S f 9 in Figure 20.4). Because the number of moles n is a convenient measure of 
the amount of gas, we define the molar specific heats associated with these pro-
cesses as follows:

 Q 5 nCV DT (constant volume) (20.23)

 Q 5 nCP DT (constant pressure) (20.24)

where CV is the molar specific heat at constant volume and CP is the molar specific 
heat at constant pressure. At constant volume, no work is done on the gas; the 

 Example 20.1    A Tank of Helium

A tank used for filling helium balloons has a volume of 0.300 m3 and contains 2.00 mol of helium gas at 20.08C. Assume 
the helium behaves like an ideal gas.

(A) What is the total translational kinetic energy of the gas molecules?

S O L U T I O N

Conceptualize Imagine a microscopic model of a gas in which you can watch the molecules move about the container more 
rapidly as the temperature increases. Because the gas is monatomic, the only type of motion the particles of the gas can 
exhibit is translation, and the total translational kinetic energy of the molecules is the internal energy of the gas.

Categorize We evaluate parameters with equations developed in the preceding discussion, so this example is a substitution 
problem.

Use Equation 20.21 with n 5 2.00 mol and T 5 293 K: E  int 5 K  tot trans 5 3
2nRT 5 3

2  
s2.00 molds8.31 Jymol ? Kds293 Kd

   5   7.30 3 103 J

(B) What is the average kinetic energy per molecule?

S O L U T I O N

Use Equation 20.19: Kavg 5 1
2m 0v  

2 5 3
2kBT 5 3

2  
s1.38 3 10223 JyKds293 Kd

   5   6.07 3 10221 J

W H A T  I F ? What if the temperature is raised from 20.08C to 40.08C? Because 40.0 is twice as large as 20.0, is the total 
translational energy of the molecules of the gas twice as large at the higher temperature?

Answer The expression for the total translational energy depends on the temperature, and the value for the temperature 
must be expressed in kelvins, not in degrees Celsius. Therefore, the ratio of 40.0 to 20.0 is not the appropriate ratio. Convert-
ing the Celsius temperatures to kelvins, 20.08C is 293 K and 40.08C is 313 K. Therefore, the total translational energy increases 
by a factor of only 313 K/293 K 5 1.07.

P

V

Isotherms

i

f

f �

T � �T
f �

T

Figure 20.3  An ideal gas is taken 
from one isotherm at temperature 
T to another at temperature  
T 1 DT along three different paths.
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only  energy change in the system is the change of internal energy. When energy 
is added to a gas by heat at constant pressure, however, not only does the internal 
energy of the gas increase, but (negative) work is done on the gas: the volume of 
the gas must increase to keep the pressure constant. Therefore, the heat Q in Equa-
tion 20.24 must account for both the increase in internal energy and the transfer 
of energy out of the system by work. For this reason, Q in Equation 20.24 is greater 
than that in Equation 20.23 for given values of n and DT. Therefore, CP is greater 
than CV .

Because no work is done on the gas in the constant-volume process in Fig-
ure 20.4, the first law of thermodynamics gives us

 Q 5 DE int (20.25)

Substituting the expression for Q given by Equation 20.23 into Equation 20.25, we 
obtain

 DE int 5 nCV DT  (20.26)

where DT is the temperature difference between the two isotherms. This equation 
applies to all ideal gases, those gases having more than one atom per molecule as 
well as monatomic ideal gases. It also applies to all processes taking place between 
the same temperatures. All five processes in Figures 20.3 and 20.4 have the same 
change in internal energy because they all take place through the same tempera-
ture difference DT. This statement might seem surprising, because Equation 20.26  
contains a molar specific heat for a specific process at constant volume. It is true, 
however, due to the fact that internal energy is a state variable, and its change 
depends only on the  temperature change, so it is independent of the particular 
process. Equation 20.26 gives us the change in internal energy for all processes, 
and allows us to evaluate this change using the constant-volume specific heat.

In the limit of infinitesimal changes, we can use Equation 20.26 to express the 
molar specific heat at constant volume as

 CV 5
1
n

 
dEint

dT
 (20.27)

Let’s now consider the simplest case of an ideal monatomic gas, that is, a gas 
containing one atom per molecule such as helium, neon, or argon. When energy 
is added to a monatomic gas in a container of fixed volume, all the added energy 
goes into increasing the translational kinetic energy of the atoms. There is no other 
way to store the energy in a monatomic gas. Therefore, from Equation 20.21, we see 
that the internal energy Eint of N molecules (or n mol) of an ideal monatomic gas is

 Eint 5 Ktot trans 5 3
2NkBT 5 3

2nRT  (20.28)

For a monatomic ideal gas, E int is a function of T only and the functional relation-
ship is given by Equation 20.28. In general, the internal energy of any ideal gas is a 
function of T only and the exact relationship depends on the type of gas.

Substituting the internal energy from Equation 20.28 into Equation 20.27 gives

 CV 5 3
2R 5 12.5 Jymol ? K (20.29)

This expression predicts a value of CV 5 3
2R  for all monatomic gases. This predic-

tion is in excellent agreement with measured values of molar specific heats for such 
gases as helium, neon, argon, and xenon over a wide range of temperatures (see 
the CV column in Table 20.2). Small variations in Table 20.2 from the predicted 
values are because real gases are not ideal gases. In real gases, weak intermolecular 
interactions occur, which are not addressed in our ideal gas model.

Now suppose the gas is taken along the constant-pressure path i S f 9 shown in 
Figure 20.4. Along this path, the temperature again increases by DT. The energy 
that must be transferred by heat to the gas in this process is Q 5 nCP DT. Because 
the volume changes in this process, the work done on the gas is W 5 2P DV, where 

Internal energy of an ideal  
 monatomic gas

P

V
T

i

f

f �
Isotherms

T � �T

For the constant-volume 
path, all the energy input 
goes into increasing the 
internal energy of the gas 
because no work is done.

Along the constant-pressure 
path, part of the energy 
transferred in by heat is 
transferred out by work.

Figure 20.4 Energy is trans-
ferred by heat to an ideal gas in 
two ways.
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   20.2 Molar Specific Heat of an Ideal Gas 541

P is the constant pressure at which the process occurs. Applying the first law of 
thermodynamics to this process, we have

 DE int 5 Q 1 W 5 nCP DT 1 (2P DV) (20.30)

As discussed above, the change in internal energy for the process i S f 9 in  
Figure 20.4 is equal to that for process i S f because DT is the same for both pro-
cesses. In addition, because PV 5 nRT, note that for a constant-pressure process, 
P DV 5 nR DT. Substituting this value for P DV into Equation 20.30 with DEint 5 
nCV DT (Eq. 20.26) gives

 nCV DT 5 nCP DT 2 nR DT 

 CP 2 CV 5 R (20.31)

This expression applies to any ideal gas. It predicts that the molar specific heat 
of an ideal gas at constant pressure is greater than the molar specific heat at con-
stant volume by an amount R, the universal gas constant (which has the value  
8.31 J/mol ? K). This expression is applicable to real gases as the data in the CP 2 CV 
column in Table 20.2 show.

Because CV 5 3
2R  for a monatomic ideal gas, Equation 20.31 predicts a value 

CP 5 5
2R 5 20.8 Jymol ? K for the molar specific heat of a monatomic gas at con-

stant pressure. The ratio of these molar specific heats is a dimensionless quantity g 
(Greek letter gamma):

 g 5
CP

CV

5
5Ry2
3Ry2

5
5
3

5 1.67 (20.32)

Theoretical values of CV , CP, and g are in excellent agreement with experimental 
values obtained for monatomic gases, but they are in serious disagreement with the 
values for the more complex gases (see Table 20.2). That is not surprising; the value 
CV 5 3

2R  was derived for a monatomic ideal gas, and we expect some additional con-
tribution to the molar specific heat from the internal structure of the more com-
plex molecules. In Section 20.3, we describe the effect of molecular structure on 
the molar specific heat of a gas. The internal energy—and hence the molar specific 

  Ratio of molar specific 
heats for a monatomic 
ideal gas

Molar Specific Heat ( J/mol ? K)a

Gas CP CV CP  2 CV g 5 CP /CV

Monatomic gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

 Table 20.2  Molar Specific Heats of Various Gases
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542 Chapter 20 The Kinetic Theory of Gases

heat—of a complex gas must include contributions from the rotational and the 
vibrational motions of the molecule.

In the case of solids and liquids heated at constant pressure, very little work is 
done during such a process because the thermal expansion is small. Consequently, 
CP and CV are approximately equal for solids and liquids.

Q uiCk Quiz 20.2  (i) How does the internal energy of an ideal gas change as it 
follows path i S f in Figure 20.4? (a) E int increases. (b) E int decreases. (c) E int stays 
the same. (d) There is not enough information to determine how E int changes.  
(ii) From the same choices, how does the internal energy of an ideal gas change 
as it follows path f S f 9 along the isotherm labeled T 1 DT in Figure 20.4?

 Example 20.2    Heating a Cylinder of Helium

A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.

(A)  If the gas is heated at constant volume, how much energy must be transferred by heat to the gas for its temperature to 
increase to 500 K?

S O L U T I O N

Conceptualize Run the process in your mind with the help of the piston–cylinder arrangement in Figure 19.7. Imagine that 
the piston is clamped in position to maintain the constant volume of the gas.

Categorize We evaluate parameters with equations developed in the preceding discussion, so this example is a 
substitution problem.

Use Equation 20.23 to find the energy transfer: Q1 5 nCV  DT

Substitute the given values: Q1 5 (3.00 mol)(12.5 J/mol ? K)(500 K 2 300 K)
   5   7.50 3 103 J

(B)  How much energy must be transferred by heat to the gas at constant pressure to raise the temperature to 500 K?

S O L U T I O N

Use Equation 20.24 to find the energy transfer: Q2 5 nCP  DT

Substitute the given values: Q2 5 (3.00 mol)(20.8 J/mol ? K)(500 K 2 300 K)
   5   12.5 3 103 J

This value is larger than Q1 because of the transfer of energy out of the gas by work to raise the piston in the constant pressure 
process.

  20.3    The Equipartition of Energy
In Section 20.1, we found that the temperature of a gas is a measure of the average 
translational kinetic energy of the gas molecules. This kinetic energy is associated 
with the motion of the center of mass of each molecule. It does not include the 
energy associated with the internal motion of the molecule, namely, vibrations and 
rotations about the center of mass. In this section, we introduce the contributions 
from rotation and vibration of the molecule to the specific heats of the gas.

Predictions based on our model for molar specific heat agree quite well with  
the behavior of monatomic gases, but not with the behavior of complex gases 
(see Table 20.2). The value predicted by the model for the quantity CP 2 CV 5 R,  
however, is the same for all gases. This similarity is not surprising because this  
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difference is the result of the work done on the gas, which is independent of its 
molecular structure.

To clarify the variations in CV and CP in gases more complex than monatomic 
gases, let’s explore further the origin of molar specific heat. So far, we have 
assumed the sole contribution to the internal energy of a gas is the translational 
kinetic energy of the molecules. The internal energy of a gas, however, includes 
contributions from the translational, vibrational, and rotational motion of the mol-
ecules. The rotational and vibrational motions of molecules can be activated by 
collisions and therefore are “coupled” to the translational motion of the molecules. 
The branch of physics known as statistical mechanics has shown that, for a large num-
ber of particles obeying the laws of Newtonian mechanics, the available energy is, 
on average, shared equally by each independent degree of freedom. Recall from 
Section 20.1 that the equipartition theorem states that, at equilibrium, each degree 
of freedom contributes 12kBT  of energy per molecule.

Let’s consider a diatomic gas whose molecules have the shape of a dumbbell 
(Fig. 20.5). In this model, the center of mass of the molecule can translate in the 
x, y, and z directions. The gray arrow in Figure 20.5a shows a translation in the 
x direction. In addition, the molecule can rotate about three mutually perpen-
dicular axes (Fig. 20.5b). The rotation about the y axis can be neglected because 
the molecule’s moment of inertia Iy and its rotational energy 1

2Iyv
2 about this axis 

are negligible compared with those associated with the x and z axes. (If the two 
atoms are modeled as particles, then Iy is identically zero.) Therefore, there are five 
degrees of freedom for translation and rotation: three associated with the transla-
tional motion (x, y, and z) and two associated with the rotational motion (x and z). 
Because each degree of freedom contributes, on average, 12kBT  of energy per mole-
cule, the internal energy for a system of N molecules, ignoring vibration for now, is

 Eint 5 3N s 

1
2kBT d 1 2N s 

1
2kBT d 5 5

2Nk BT 5 5
2n  RT  (20.33)

We can use this result and Equation 20.27 to find the molar specific heat at con-
stant volume:

 CV 5
1
n

  
dEint

dT
5

1
n

  
d

dT
 s 

5
2nRTd 5 5

2R  5 20.8 J/mol ? K (20.34)

From Equations 20.31 and 20.32, we find that

 CP 5 CV 1 R 5 7
2R  5 29.1 J/mol ? K 

 g 5
CP

CV

5

7
2R
5
2R

5
7
5

5 1.40 

These results agree quite well with most of the data for diatomic molecules given in 
Table 20.2. That is rather surprising, however, because we have not yet accounted 
for the possible vibrations of the molecule.

In the model for vibration, the two atoms are joined by an imaginary spring (see 
Fig. 20.5c). The vibrational motion adds two more degrees of freedom, which cor-
respond to the kinetic energy and the potential energy associated with vibrations 
along the length of the molecule. Hence, a model that includes all three types of 
motion predicts a total internal energy of

 Eint 5 3N s 

1
2kBT d 1 2N s 

1
2kBT d 1 2N s 

1
2kBT d 5 7

2NkBT 5 7
2nRT  

and a molar specific heat at constant volume of

 CV 5
1
n

  
dEint

dT
5

1
n

  
d

dT
 (  

7
2nRT d 5 7

2R  5 29.1 J/mol ? K (20.35)

This value is inconsistent with experimental data for molecules such as H2 and N2 
(see Table 20.2) and suggests a breakdown of our model based on classical physics.
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z

Translational motion of 
the center of mass

Rotational motion about 
the various axes

Vibrational motion along 
the molecular axis
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b

c

Figure 20.5  Possible motions of 
a diatomic molecule.
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It might seem that our model is a failure for predicting molar specific heats for 
diatomic gases. We can claim some success for our model, however, if measure-
ments of molar specific heat are made over a wide temperature range rather than 
at the single temperature that gives us the values in Table 20.2. Figure 20.6 shows 
the molar specific heat of hydrogen as a function of temperature. The remarkable 
feature about the three plateaus in the graph’s curve is that they are at the val-
ues of the molar specific heat predicted by Equations 20.29, 20.34, and 20.35! For 
low temperatures, the diatomic hydrogen gas behaves like a monatomic gas. As the 
temperature rises to room temperature, its molar specific heat rises to a value for 
a diatomic gas, consistent with the inclusion of rotation but not vibration. For high 
temperatures, the molar specific heat is consistent with a model including all types 
of motion.

Before addressing the reason for this mysterious behavior, let’s make some 
brief remarks about polyatomic gases. For nonlinear molecules with more than 
two atoms, three axes of rotation are available. The vibrations are more complex 
than for diatomic molecules. Therefore, the number of degrees of freedom is even 
larger. The result is an even higher predicted molar specific heat, which is in qual-
itative agreement with experiment. The molar specific heats for the polyatomic 
gases in Table 20.2 are higher than those for diatomic gases. The more degrees of 
freedom available to a molecule, the more “ways” there are to store energy, result-
ing in a higher molar specific heat.

a Hint of energy Quantization
Our model for molar specific heats has been based so far on purely classical 
notions. It predicts a value of the specific heat for a diatomic gas that, according 
to Figure 20.6, only agrees with experimental measurements made at high tem-
peratures. To explain why this value is only true at high temperatures and why the 
plateaus in Figure 20.6 exist, we must go beyond classical physics and introduce 
some quantum physics into the model. In Chapter 17, we discussed quantization of 
frequency for vibrating strings and air columns; only certain frequencies of stand-
ing waves can exist. That is a natural result whenever waves are subject to bound-
ary conditions.

Quantum physics (Chapters 39 through 42) shows that atoms and molecules 
have a wavelike nature and can be analyzed with the waves under boundary con-
ditions analysis model. Consequently, these waves have quantized frequencies. 
Furthermore, in quantum physics, the energy of a system is proportional to the 
frequency of the wave representing the system. Hence, the energies of atoms and 
molecules are quantized: only certain energies are allowed.
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Figure 20.6  The molar specific 
heat of hydrogen as a function of 
temperature.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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For a molecule, quantum physics tells us that the rotational and vibrational ener-
gies are quantized. Figure 20.7 shows an energy-level diagram for the rotational 
and vibrational quantum states of a diatomic molecule. The lowest allowed state is 
called the ground state. The three longer black lines represent allowed vibrational 
energies. These states are widely spaced in energy. Associated with each allowed 
vibrational energy is a set of more narrowly spaced rotational energies, represented 
by the shorter black lines.

If a molecule is in the ground state for rotation or vibration, then rotation or 
vibration does not contribute to the molar specific heat. These types of motion only 
contribute when there is a transition to an excited state. Section 20.1 tells us that 
molecular energies are proportional to temperature. Therefore, we can add labels 
on the right of Figure 20.7 that correspond roughly to temperatures at which the 
energy levels will be excited.

At low temperatures, the energy a molecule gains in collisions with its neigh-
bors is generally not large enough to raise it to the first excited state of either 
rotation or vibration. Therefore, even though rotation and vibration are 
allowed according to classical physics, they do not occur in reality at low tem-
peratures. All molecules are in the ground state for rotation and vibration. The 
only contribution to the molecules’ average energy is from translation, and 
the specific heat is that predicted by Equation 20.29. The temperature TA in  
Figure 20.7 might be 50 K for hydrogen: only the ground states for vibration or 
rotation  are occupied; we are on the lowest plateau in Figure 20.6.

As the temperature is raised, the average energy of the molecules increases. In some 
collisions, a molecule may have enough energy transferred to it from another molecule 
to excite the first rotational state. As the temperature is raised further, more molecules 
can be excited to this state. The result is that rotation begins to contribute to the inter-
nal energy, and the molar specific heat rises. For hydrogen, the temperature TB in Fig-
ure 20.7 might be 500 K: excited rotational levels are occupied, but for vibration, only 
the ground state is occupied; we are on the second plateau in Figure 20.6. The molar 
specific heat is now equal to the value predicted by Equation 20.34.

There is no contribution at room temperature from vibration because the mole-
cules are still in the ground vibrational state. The temperature must be raised even 
further to excite the first vibrational state. For hydrogen, the temperature TC in  
Figure 20.7 might be 5 000 K: excited rotational and vibrational levels are occu-
pied; we are on the highest plateau in Figure 20.6 and the molar specific heat has 
the value predicted by Equation 20.35.

The predictions of this model are supportive of the theorem of equipartition of 
energy. In addition, the inclusion in the model of energy quantization from quan-
tum physics allows a full understanding of Figure 20.6.

Q uiCk Quiz 20.3  The molar specific heat of a diatomic gas is measured at 
constant volume and found to be 29.1 J/mol ? K. What are the types of energy 
that are contributing to the molar specific heat? (a) translation only (b) trans-
lation and rotation only (c) translation and vibration only (d) translation, rota-
tion, and vibration

Q uiCk Quiz 20.4  The molar specific heat of a gas is measured at constant 
volume and found to be 11R/2. Is the gas most likely to be (a) monatomic, 
(b) diatomic, or (c) polyatomic?

   20.4    Adiabatic Processes for an Ideal Gas
Our study of molar specific heats allows us to complete our discussion of adiabatic 
processes begun in Section 19.5. As noted there, an adiabatic process is one in 
which no energy is transferred by heat between a system and its surroundings.  

Rotational
states

Rotational
states

Vibrational
states

E
N

E
R

G
Y

The rotational states lie closer 
together in energy than do the
vibrational states.

TC

TB

TA

Figure 20.7  An energy-level dia-
gram for vibrational and rotational 
states of a diatomic molecule. 
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546 Chapter 20 The Kinetic Theory of Gases

For example, if a gas is compressed (or expanded) rapidly, very little energy is trans-
ferred out of (or into) the system by heat, so the process is nearly adiabatic. Another 
example of an adiabatic process is the slow expansion of a gas that is thermally 
insulated from its surroundings. All three variables in the ideal gas law—P, V, and 
T—change during an adiabatic process.

Let’s imagine an adiabatic gas process involving an infinitesimal change in 
 volume dV and an accompanying infinitesimal change in temperature dT. The  
work done on the gas is 2P dV. Because the internal energy of an ideal gas depends 
only on temperature, the change in the internal energy in an adiabatic process 
is the same as that for an isovolumetric process between the same temperatures,  
dEint 5 nCV dT (Eq. 20.26). Hence, the first law of thermodynamics, DEint 5 Q 1 W, 
with Q 5 0, becomes the infinitesimal form

 dEint 5 nCV dT 5 2P dV (20.36)

Taking the total differential of the equation of state of an ideal gas, PV 5 nRT, gives

 P dV 1 V dP 5 nR dT (20.37)

Eliminating dT between Equations 20.36 and 20.37, we find that

 P dV 1 V dP 5 2
R
CV

 P dV  

Substituting R 5 CP 2 CV and dividing by PV gives

 
dV
V

1
dP
P

5 2SCP 2 CV

CV
DdV

V
5 s1 2 gd 

dV
V

 

 
dP
P

1 g 
dV
V

5 0 

Integrating this expression, we have

 ln P 1 g ln V 5 constant 

which is equivalent to

 PV  g 5 constant  (20.38)

The PV diagram for an adiabatic expansion is shown in Figure 20.8. Because  
g . 1, the PV curve is steeper than it would be for an isothermal expansion, for 
which PV 5 constant. By the definition of an adiabatic process, no energy is trans-
ferred by heat into or out of the system. Hence, from the first law, we see that DEint 
is negative (work is done by the gas, so its internal energy decreases) and so DT also 
is negative. Therefore, the temperature of the gas decreases (Tf , Ti  ) during an 
adiabatic expansion. Conversely, the temperature increases if the gas is compressed 
adiabatically. Applying Equation 20.38 to the initial and final states, we see that

 PiVi
g 5 PfVf

g (20.39)

Using the ideal gas law, we can express Equation 20.38 as

 TV  g21 5 constant  (20.40)

Relationship between P and V  
for an adiabatic process  

involving an ideal gas

Relationship between T and V 
for an adiabatic process 

involving an ideal gas

 Example 20.3   A Diesel Engine Cylinder

Air at 20.08C in the cylinder of a diesel engine is compressed from an initial pressure of 1.00 atm and volume of 800.0 cm3 
to a volume of 60.0 cm3. Assume air behaves as an ideal gas with g 5 1.40 and the compression is adiabatic. Find the final 
pressure and temperature of the air.

Ti
Tf

Isotherms

P

V

Pi

Pf

Vi Vf

i

f

The temperature of a 
gas decreases in an 
adiabatic expansion.

Figure 20.8  The PV diagram 
for an adiabatic expansion of an 
ideal gas. 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    20.5 Distribution of Molecular Speeds 547

   20.5    Distribution of Molecular Speeds
Thus far, we have considered only average values of the energies of all the molecules 
in a gas and have not addressed the distribution of energies among individual mol-
ecules. The motion of the molecules is extremely chaotic. Any individual molecule 
collides with others at an enormous rate, typically a billion times per second. Each 
collision results in a change in the speed and direction of motion of each of the 
participant molecules. Equation 20.22 shows that rms molecular speeds increase 
with increasing temperature. At a given time, what is the relative number of mole-
cules that possess some characteristic such as energy within a certain range?

We shall address this question by considering the number density nV(E). This 
quantity, called a distribution function, is defined so that nV(E) dE is the number of 
molecules per unit volume with energy between E and E 1 dE. In general, the num-
ber density is found from statistical mechanics to be

 nV 
sEd 5 n0e

2EykBT (20.41)

where n0 is defined such that n0 dE is the number of molecules per unit volume 
having energy between E 5 0 and E 5 dE. This equation, known as the Boltzmann  
distribution law, is important in describing the statistical mechanics of a large 
number of molecules. It states that the probability of finding the molecules in a 
particular energy state varies exponentially as the negative of the energy divided by 
kBT. All the molecules would fall into the ground state if the thermal agitation at a 
temperature T did not excite the molecules to higher energy levels.

 Boltzmann distribution law

20.3 c o n t i n u e d

S O L U T I O N

Conceptualize Imagine what happens if a gas is compressed into a smaller volume. Our discussion above and Figure 20.8 tell 
us that the pressure and temperature both increase.

Categorize We categorize this example as a problem involving an adiabatic process.

Analyze Use Equation 20.39 to find the final pressure: Pf 5 Pi SVi

Vf
Dg

5 s1.00 atmdS800.0 cm3

60.0 cm3 D1.40

    5   37.6 atm

Use the ideal gas law to find the final temperature: 
PiVi

Ti

5
PfVf

Tf

   Tf 5
Pf Vf

PiVi

Ti 5
s37.6 atmds60.0 cm3d

s1.00 atmds800.0 cm3d
s293 Kd 

    5 826 K 5   5538C

Finalize The temperature of the gas increases by a factor of 826 K/293 K 5 2.82. The high compression in a diesel engine 
raises the temperature of the gas enough to cause the combustion of fuel without the use of spark plugs.

PiTfall PrevenTion 20.2
The Distribution Function  
The distribution function nV(E) 
is defined in terms of the number 
of molecules with energy in the 
range E to E 1 dE rather than in 
terms of the number of molecules 
with a specific energy E. Because 
the number of molecules is finite 
and the number of possible val-
ues of the energy is infinite, the 
number of molecules with an exact 
energy E may be zero.

 Example 20.4   Thermal Excitation of Atomic Energy Levels

As discussed in Section 20.3, atoms can occupy only certain discrete energy levels. Consider a gas at a temperature of 2 500 K  
whose atoms can occupy only two energy levels separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal 
to 1.60 3 10219 J. Determine the ratio of the number of atoms in the higher energy level to the number in the lower 
energy level.

continued
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548 Chapter 20 The Kinetic Theory of Gases

Now that we have discussed the distribution of energies among molecules in a 
gas, let’s think about the distribution of molecular speeds. In 1860, James Clerk 
Maxwell (1831–1879) derived an expression that describes the distribution of 
molecular speeds in a very definite manner. His work and subsequent developments 
by other scientists were highly controversial because direct detection of molecules 
could not be achieved experimentally at that time. About 60 years later, however, 
experiments were devised that confirmed Maxwell’s predictions.

Let’s consider a container of gas whose molecules have some distribution of speeds. 
Suppose we want to determine how many gas molecules have a speed in the range from, 
for example, 400 to 401 m/s. Intuitively, we expect the speed distribution to depend on 
temperature. Furthermore, we expect the distribution to peak in the vicinity of vrms. 
That is, few molecules are expected to have speeds much less than or much greater 
than vrms because these extreme speeds result only from an unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is 
shown in Figure 20.10. The quantity Nv, called the Maxwell–Boltzmann speed dis-
tribution function, is defined as follows. If N is the total number of molecules, the 
number of molecules with speeds between v and v 1 dv is dN 5 Nv dv, where the 
quantity Nv is dependent on temperature. This number is also equal to the area of 
the shaded rectangle in Figure 20.10. Furthermore, the fraction of molecules with 
speeds between v and v 1 dv is (Nv dv)/N. This fraction is also equal to the proba-
bility that a molecule has a speed in the range v to v 1 dv.

The quantity Nv that describes the distribution of speeds of N gas molecules is

 Nv 5 4pN S m0 

2pkBTD3y2

v2e2m0v
2y2kBT (20.42)

where m0 is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the 
absolute temperature.2 Observe the appearance of the Boltzmann factor e 2 EykBT 
with E 5 1

2m0v
2.

20.4 c o n t i n u e d

S O L U T I O N

Conceptualize In your mental representation of this example, remember that only two possible 
states are allowed for the system of the atom. Figure 20.9 helps you visualize the two states on an 
energy-level diagram. In this case, the atom has two possible energies, E1 and E2, where E1 , E2.

Categorize We categorize this example as one in which we focus on particles in a two-state 
quantized system. We will apply the Boltzmann distribution law to this system.

Analyze Set up the ratio of the number density of (1)   
nV 

sE2d

nV 
sE1d

5
n0e

2E2ykBT

n0e
2E1ykBT

5 e2sE2 2 E1dykBT  
atoms in the higher energy level to the number density 
in the lower energy level and use Equation 20.41  
to express each number:

Evaluate kBT in the exponent: kBT 5 s1.38 3 10223 JyKds2 500 KdS 1 eV
1.60 3 10219 JD 5 0.216 eV

Substitute this value into Equation (1): 
nV 

sE2d

nV 
sE1d

5 e21.50 eVy0.216 eV 5 e26.96 5  9.52 3 1024

Finalize This result indicates that at T 5 2 500 K, only a small fraction of the atoms are in the higher energy level. In fact, for 
every atom in the higher energy level, there are about 1 000 atoms in the lower level. The number of atoms in the higher level 
increases at even higher temperatures, but the distribution law specifies that at equilibrium there are always more atoms in 
the lower level than in the higher level.

E1

E2

1.50 eV

E
N

E
R

G
Y

Figure 20.9  (Example 20.4) 
Energy-level diagram for a 
gas whose atoms can occupy 
two energy states.

ludwig boltzmann
Austrian physicist (1844–1906)
Boltzmann made many important contri-
butions to the development of the kinetic 
theory of gases, electromagnetism, and 
thermodynamics. His pioneering work 
in the field of kinetic theory led to the 
branch of physics known as statistical 
mechanics.
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2 For the derivation of this expression, see an advanced textbook on thermodynamics.
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    20.5 Distribution of Molecular Speeds 549

As indicated in Figure 20.10, the average speed is somewhat lower than the 
rms speed. The most probable speed vmp is the speed at which the distribution curve 
reaches a peak. Using Equation 20.42, we find that

 vrms 5 Ïv 

2 5Î3kBT

m0

5 1.73ÎkBT

m0

 (20.43)

 vavg 5Î8kBT

pm0

5 1.60ÎkBT

m0

 (20.44)

 vmp 5Î2kBT

m0

5 1.41ÎkBT

m0

 (20.45)

Equation 20.43 has previously appeared as Equation 20.22. The details of the deri-
vations of these equations from Equation 20.42 are left for the end-of-chapter prob-
lems (see Problems 24 and 41). From these equations, we see that

 vrms . vavg . vmp 

Figure 20.11 represents speed distribution curves for nitrogen, N2, at two tem-
peratures. Notice that the peak in the curve shifts to the right as T increases, indi-
cating that the average speed increases with increasing temperature, as do the 
rms speed and the most probable speed, as expected from Equations 20.43–20.45. 
Because the lowest speed possible is zero and the upper classical limit of the speed 
is infinity, the curves are asymmetrical. (In Chapter 38, we show that the actual 
upper limit is the speed of light.)

Equation 20.42 shows that the distribution of molecular speeds in a gas depends 
on temperature as well as on the mass m0 of the molecule. At a given temperature, 
the fraction of molecules with speeds exceeding a fixed value increases as the mass 
decreases. Hence, lighter molecules such as H2 and He escape into space more 
readily from the Earth’s atmosphere than do heavier molecules such as N2 and O2. 
(See the discussion of escape speed in Chapter 13. Gas molecules escape even more 
readily from the Moon’s surface than from the Earth’s because the escape speed on 
the Moon is lower than that on the Earth, leaving essentially no atmosphere.)

The speed distribution curves for molecules in a liquid are similar to those 
shown in Figure 20.11. We can understand the phenomenon of evaporation of a 
liquid from this distribution in speeds, given that some molecules in the liquid 

vmp

vrms

Nv

v

v avg

Nv

dv

The number of molecules 
having speeds ranging from v 
to v � dv equals the area of 
the tan rectangle, Nv dv.

Figure 20.10 The speed distri-
bution of gas molecules at some 
temperature. The function Nv 
approaches zero as v approaches 
infinity.

Figure 20.11 The speed distri-
bution function for 105 nitrogen 
molecules at 300 K and 900 K.
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The total area under either curve is 
equal to N, the total number of 
molecules. In this case, N � 105.

Note that vrms � vavg � vmp.
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550 Chapter 20 The Kinetic Theory of Gases

are more energetic than others. Some of the faster-moving molecules in the liquid 
penetrate the surface and even leave the liquid at temperatures well below the boil-
ing point. The molecules that escape the liquid by evaporation are those that have 
sufficient energy to overcome the attractive forces of the molecules in the liquid 
phase. Consequently, the molecules left behind in the liquid phase have a lower 
average kinetic energy; as a result, the temperature of the liquid decreases. Hence, 
evaporation is a cooling process.

That evaporation is a cooling process explains the effects you noticed in the 
opening storyline. When the wind blows on one side of your upturned finger, the 
evaporation process is accelerated. Molecules of water vapor are blown away from 
the surface of your finger, reducing the water vapor pressure at the surface and 
making it easier for more molecules to leave the surface of the water. As a result, 
the cooling process is augmented, and that side of your finger feels cool. The oppo-
site side of your finger is shielded from the wind, so that the evaporation is not 
as rapid. When your Club advisor put alcohol on your wound, it felt cold. Alcohol 
evaporates at a higher rate than water, so the evaporative cooling process makes 
your skin feel colder than the surrounding skin that is dry.

 Example 20.5    Molecular Speeds in a Hydrogen Gas

A 0.500-mol sample of hydrogen gas is at 300 K.

(A)  Find the average speed, the rms speed, and the most probable speed of the H2 molecules.

S O L U T I O N

Conceptualize Imagine the huge number of particles in a macroscopic sample of gas, all moving in random directions with 
different speeds.

Categorize We are dealing with a very large number of particles, so we can use the Maxwell–Boltzmann speed distribution function.

Analyze Use Equation 20.44 to find the average speed: vavg 5 1.60ÎkBT

m0

5 1.60 Îs1.38 3 10223 JyKds300 Kd
2s1.67 3 10227 kgd

 

   5   1.78 3 103 m/s

Use Equation 20.43 to find the rms speed: vrms 5 1.73ÎkBT

m0

5 1.73Îs1.38 3 10223 JyKds300 Kd
2s1.67 3 10227 kgd

   5   1.93 3 103 m/s 

Use Equation 20.45 to find the most probable speed: vmp 5 1.41ÎkBT

m0

5 1.41Îs1.38 3 10223 JyKds300 Kd
2s1.67 3 10227 kgd

   5   1.57 3 103 m/s 

(B)  Find the number of molecules with speeds between 400 m/s and 401 m/s.

S O L U T I O N

Use Equation 20.42 to evaluate the number of molecules  (1)   Nv dv 5 4pN S m0

2pkBTD3y2

v2e2m0v
2y2kBT dv 

in a narrow speed range between v and v 1 dv:

Evaluate the constant in front of v2: 4pN S m0

2pkBTD3y2

5 4pnNAS m0

2pkBTD3y2

 

  5 4p s0.500 molds6.02 3 1023 mol21d3 2s1.67 3 10227 kgd
2p s1.38 3 10223 JyKds300 Kd4

3y2

   5 1.74 3 1014 s3/m3
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20.5 c o n t i n u e d

Evaluate the exponent of e that appears in Equation (1): 2 

m0v 
2

2kBT
5 2 

2s1.67 3 10227 kgds400 mysd2

2s1.38 3 10223 JyKds300 Kd
5 20.064 5

Evaluate Nv dv using these values in Equation (1)  Nv dv 5 s1.74 3 1014 s3ym3ds400 mysd2e20.064 5s1 mysd
and evaluating v and dv:

 5   2.61 3 1019 molecules 

Finalize In this evaluation, we could calculate the result without integration because dv 5 1 m/s is much smaller than  
v 5 400 m/s. Had we sought the number of particles between, say, 400 m/s and 500 m/s, we would need to integrate Equation 
(1) between these speed limits.

Summary
 › Concepts and Principles

The pressure of N molecules of an ideal gas contained in a volume V is

 P 5 2
3SN

VDs 
1
2m0v

2
 d (20.15)

 The average translational kinetic energy per molecule of a gas, 12m0v  

2, 
is related to the temperature T of the gas through the expression

 1
2m0v  

2 5 3
2kBT  (20.19)

where kB is Boltzmann’s constant. Each translational degree of freedom 
(x, y, or z) has 12kBT of energy associated with it.

The change in internal energy for n mol of any ideal 
gas that undergoes a change in temperature DT is

 DEint 5 nCV DT  (20.26)

where CV is the molar specific heat at constant 
volume.
 The internal energy of N molecules (or n mol) of 
an ideal monatomic gas is

 Eint 5 3
2NkBT 5 3

2nRT  (20.28)

The molar specific heat of an ideal monatomic gas at con-
stant volume is CV 5 3

2R; the molar specific heat at constant 
pressure is CP 5 5

2R. The ratio of specific heats is given by  
g 5 CP  

yCV 5 5
3.

If an ideal gas undergoes an adiabatic expansion or compres-
sion, the first law of thermodynamics, together with the equa-
tion of state, shows that

 PV  
g 5 constant (20.38)

The Boltzmann distribution law describes the distribution of 
particles among available energy states. The relative number 
of particles having energy between E and E 1 dE is nV(E) dE, 
where

 nV 
sE d 5 n0e

2EykBT  (20.41)

The Maxwell–Boltzmann speed distribution function 
describes the distribution of speeds of molecules in a gas:

 Nv 5 4pN S m0

2pkBTD3y2

v  

2e2m0v  

2y2k BT  (20.42)

Equation 20.42 enables us to calculate the root-mean-square 
speed, the average speed, and the most probable speed of 
molecules in a gas:

 vrms 5 Ï v  

2 5Î3kBT

m0

5 1.73ÎkBT

m0

  (20.43)

 vavg 5Î8kBT

pm0

5 1.60ÎkBT

m0

  (20.44)

 vmp 5Î2kBT

m0

5 1.41ÎkBT

m0

  (20.45)

Think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your group has been hired to do some consulting for a 
new baseball stadium that is being built in your city. It is 
going to be a totally enclosed stadium, and the architect 
is concerned about temperature regulation in the interior 
of the stadium. An eccentric architect on the development 
team has asked you to consider the following: every time a  

baseball is hit or thrown, it eventually comes to rest because 
it is caught, it hits the fence, it lands in the stands, or it 
rolls on the ground to a stop. Whatever stops the ball, its 
initial kinetic energy is eventually transformed to internal 
energy in the interior of the stadium. The fear has been 
raised by this oddball character that an exciting game with 
lots of stopped baseballs will warm up the interior of the 
stadium too much for the air conditioning system to handle 
it. Perform a calculation to show the architect that even an  
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552 Chapter 20 The Kinetic Theory of Gases

exciting game will not challenge the air conditioning system 
for this reason.

2. ACTIvITy  Consider the ten objects in our solar system listed 
below. Using the surface temperatures listed for these objects, 
determine the average speed of helium atoms located in the 
atmospheres of these objects. Using data in Table 13.2 and 
Equation 13.22, determine the escape speed for each of the 
objects. Finally, take the ratio of the escape speed to the aver-
age speed for helium atoms for each object. (a) What is a 
typical value for this ratio for an object with little to no atmo-
sphere? (b) What is a typical value for this ratio for an object to 
have a robust atmosphere, but with little to no helium present? 
(c) What is a typical value for this ratio for an object to have a 
robust atmosphere with a significant amount of helium?

Object

Surface Temperature (K) 
(from the Lunar and  
Planetary Institute) Atmosphere

Mercury 440 Little to none
Venus 741 Robust, little He
Earth 288 Robust, little He
Mars 244 Robust, little He
Ceres 173 Little to none
Jupiter 165 Robust, much He
Saturn 134 Robust, much He
Uranus  77 Robust, much He
Neptune  70 Robust, much He
Pluto  40 Little to none

3. ACTIvITy  You are working as a teaching assistant to a phys-
ics professor. He has provided you with the following data 
on exam scores for two different sections of his physics class:

Section 1 Exam Scores Section 2 Exam Scores

65 99
65 95
65 90
65 85
65 77
65 75
65 75
65 73
65 70
65 67
64 66
64 65
64 63
64 58
64 52
64 49
64 48
64 35
64 28
64 20

(a) Calculate the average score for each section and the  
rms average score for each section. (b) How the do the aver-
age scores for the two sections compare? (c) Compare the 
average and rms average scores for Section 1. Why do you 
think these two quantities have this relationship? (d) Com-
pare the average and rms average scores for Section 2. (e) Will 
the rms average of a set of numbers always be larger than the 
straight average? Why or why not?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCTion 20.1  Molecular Model of an Ideal Gas

Problem 20 in Chapter 18 can be assigned with this section.

1. A spherical balloon of volume 4.00 3 103 cm3 contains 
helium at a pressure of 1.20 3 105 Pa. How many moles of 
helium are in the balloon if the average kinetic energy of 
the helium atoms is 3.60 3 10222 J?

2. A spherical balloon of volume V contains helium at a pres-
sure P. How many moles of helium are in the balloon if the 
average kinetic energy of the helium atoms is Kavg?

3. A 2.00-mol sample of oxygen gas is confined to a 5.00-L vessel 
at a pressure of 8.00 atm. Find the average translational kinetic 
energy of the oxygen molecules under these conditions.

4. Oxygen, modeled as an ideal gas, is in a container and has a 
temperature of 77.08C. What is the rms-average magnitude 
of the momentum of the gas molecules in the container?

5. A 5.00-L vessel contains nitrogen gas at 27.0°C and 3.00 atm. 
Find (a) the total translational kinetic energy of the gas 
molecules and (b) the average kinetic energy per molecule.

6. Calculate the mass of an atom of (a) helium, (b) iron, and 
(c) lead. Give your answers in kilograms. The atomic masses 
of these atoms are 4.00 u, 55.9 u, and 207 u, respectively.

7. In a period of 1.00 s, 5.00 3 1023 nitrogen molecules strike 
a wall with an area of 8.00 cm2. Assume the molecules move 
with a speed of 300 m/s and strike the wall head-on in elas-
tic collisions. What is the pressure exerted on the wall? Note: 
The mass of one N2 molecule is 4.65 3 10226 kg.

8.  A 7.00-L vessel contains 3.50 moles of gas at a pressure of 
1.60 3 106 Pa. Find (a) the temperature of the gas and (b) 
the average kinetic energy of the gas molecules in the vessel. 
(c) What additional information would you need if you were 
asked to find the average speed of the gas molecules?

SeCTion 20.2  Molar Specific Heat of an Ideal Gas

Note: You may use data in Table 20.2 about particular gases. 
Here we define a “monatomic ideal gas” to have molar  
specific heats CV 5 3

2R and CP 5 5
2R, and a “diatomic ideal gas” 

to have CV 5 5
2R and CP 5 7

2R.

9. Calculate the change in internal energy of 3.00 mol of 
helium gas when its temperature is increased by 2.00 K.

T

V

T
V
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10. Your sister, who is a realtor, is quite interested in your studies 
in physics. Part of her job in selling properties involves being 
aware of the details of heating systems for the houses. She 
comes to you one day and says that a client told her the follow-
ing: “If you measure the internal energy in the air in a house 
and then turn up the thermostat to a higher temperature, the 
internal energy of the air in the house is exactly the same as it 
was at the lower temperature.” She finds this hard to believe, 
since you have added energy to the air by running the furnace. 
Help her to figure out if this statement is true or not.

11. In a constant-volume process, 209 J of energy is transferred 
by heat to 1.00 mol of an ideal monatomic gas initially at 
300 K. Find (a) the work done on the gas, (b) the increase 
in internal energy of the gas, and (c) its final temperature.

12. A vertical cylinder with a heavy piston contains air at 300 K. 
The initial pressure is 2.00 3 105 Pa, and the initial volume 
is 0.350 m3. Take the molar mass of air as 28.9 g/mol and 
assume CV 5 5

2R. (a) Find the specific heat of air at constant 
volume in units of J/kg ? 8C. (b) Calculate the mass of the air 
in the cylinder. (c) Suppose the piston is held fixed. Find the 
energy input required to raise the temperature of the air to 
700 K. (d) What If? Assume again the conditions of the initial 
state and assume the heavy piston is free to move. Find the 
energy input required to raise the temperature to 700 K.

13. A 1.00-L insulated bottle is full of tea at 90.08C. You pour 
out one cup of tea and immediately screw the stopper back 
on the bottle. Make an order-of-magnitude estimate of the 
change in temperature of the tea remaining in the bottle 
that results from the admission of air at room temperature. 
State the quantities you take as data and the values you mea-
sure or estimate for them.

SeCTion 20.3  The Equipartition of Energy

14. A certain molecule has f degrees of freedom. Show that an 
ideal gas consisting of such molecules has the following 
properties: (a) its total internal energy is fnRT/2, (b) its 
molar specific heat at constant volume is fR/2, (c) its molar 
specific heat at constant pressure is (f 1 2)R/2, and (d) its 
specific heat ratio is g 5 CP/CV 5 (f 1 2)/f.

15. You are working for an automobile tire company. Your super-
visor is studying the effects of molecules striking the inner 
surface of the tire due to their thermal motion. He gives you 
the following data from a recent experiment. The air in a tire 
on a parked car was measured to have a gauge pressure of  
Pi 5 1.65 atm on a day when the temperature was T 5 6.5°C. 
The car was then driven for a while and then measurements 
were taken again. The gauge pressure in the tire was then  
Pf 5 1.95 atm and the interior volume of the tire had increased 
by 5.00%. (a) Your supervisor asks you to determine by what 
factor the rms speed of the air molecules had increased from 
the first measurement to the second. (b) He also hints at a 
proposal he is going to make to replace air in tires with argon. 
Will this change the factor by which the average speed of the 
molecules changes in the conditions described?

16. Why is the following situation impossible? A team of researchers 
discovers a new gas, which has a value of g 5 CP/CV of 1.75.

17. You and your younger brother are designing an air rifle 
that will shoot a lead pellet with mass m 5 1.10 g and cross-
sectional area A 5 0.030 0 cm2. The rifle works by allowing 
high-pressure air to expand, propelling the pellet down the 
rifle barrel. Because this process happens very quickly, no 
appreciable thermal conduction occurs and the expansion 

is essentially adiabatic. Your design is such that, once the 
pressure begins pushing on the pellet, it moves a distance of 
L 5 50.0 cm before leaving the open end of the rifle at your 
desired speed of v 5 120 m/s.

   Your design also includes a chamber of volume V 5 12.0 cm3  
in which the high-pressure air is stored until it is released. 
Your brother reminds you that you need to purchase a 
pump to pressurize the chamber. To determine what kind 
of pump to buy, you need to find what the pressure of the 
air must be in the chamber to achieve your desired muzzle 
speed. Ignore the effects of the air in front of the bullet and 
friction with the inside walls of the barrel.

SeCTion 20.4 Adiabatic Processes for an Ideal Gas

18. During the compression stroke of a certain gasoline engine, 
the pressure increases from 1.00 atm to 20.0 atm. If the pro-
cess is adiabatic and the air–fuel mixture behaves as a diatomic 
ideal gas, (a) by what factor does the volume change and (b) by 
what factor does the temperature change? Assuming the com-
pression starts with 0.016 0 mol of gas at 27.08C, find the values 
of (c) Q, (d) DEint, and (e) W  that characterize the process.

19. Air in a thundercloud expands as it rises. If its initial temper-
ature is 300 K and no energy is lost by thermal conduction  
on expansion, what is its temperature when the initial vol-
ume has doubled?

20. Why is the following situation impossible? A new diesel engine 
that increases fuel economy over previous models is designed. 
Automobiles fitted with this design become incredible best 
sellers. Two design features are responsible for the increased 
fuel economy: (1) the engine is made entirely of aluminum to 
reduce the weight of the automobile, and (2) the exhaust of the 
engine is used to prewarm the air to 508C before it enters the 
cylinder to increase the final temperature of the compressed 
gas. The engine has a compression ratio—that is, the ratio of 
the initial volume of the air to its final volume after compres-
sion—of 14.5. The compression process is adiabatic, and the 
air behaves as a diatomic ideal gas with g 5 1.40.

21. Air (a diatomic ideal gas) at 27.08C and atmospheric pressure 
is drawn into a bicycle pump that has a cylinder with an inner 
diameter of 2.50 cm and length 50.0 cm. The downstroke adi-
abatically compresses the air, which reaches a gauge pressure 
of 8.00 3 105 Pa before entering the tire. We wish to investi-
gate the temperature increase of the pump. (a) What is the 
initial volume of the air in the pump? (b) What is the number 
of moles of air in the pump? (c) What is the absolute pressure 
of the compressed air? (d)  What is the volume of the com-
pressed air? (e) What is the temperature of the compressed 
air? (f) What is the increase in internal energy of the gas dur-
ing the compression? What If? The pump is made of steel that 
is 2.00 mm thick. Assume 4.00 cm of the cylinder’s length is 
allowed to come to thermal equilibrium with the air. (g) What 
is the volume of steel in this 4.00-cm length? (h) What is the 
mass of steel in this 4.00-cm length? (i) Assume the pump is 
compressed once. After the adiabatic expansion, conduction 
results in the energy increase in part (f) being shared between 
the gas and the 4.00-cm length of steel. What will be the 
increase in temperature of the steel after one compression?

SeCTion 20.5  Distribution of Molecular Speeds

22. Two gases in a mixture diffuse through a filter at rates pro-
portional to their rms speeds. (a) Find the ratio of speeds 
for the two isotopes of chlorine, 35Cl and 37Cl, as they diffuse 
through the air. (b) Which isotope moves faster?

V

V

T

 Problems 553

CR

CR

CR

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



554 Chapter 20 The Kinetic Theory of Gases

23. Review. At what temperature would the average speed of 
helium atoms equal (a) the escape speed from the Earth, 1.12 
3 104 m/s, and (b) the escape speed from the Moon, 2.37 3 
103 m/s? Note: The mass of a helium atom is 6.64 3 10227 kg.

24. From the Maxwell–Boltzmann speed distribution, show that 
the most probable speed of a gas molecule is given by Equa-
tion 20.45. Note: The most probable speed corresponds to 
the point at which the slope of the speed distribution curve 
dNv /dv is zero.

25. Assume the Earth’s atmosphere has a uniform temperature 
of 20.08C and uniform composition, with an effective molar 
mass of 28.9 g/mol. (a) Show that the number density of 
molecules depends on height y above sea level according to

nV  
syd 5 n0e

2m0gyykBT

where n0 is the number density at sea level (where y 5 0). This 
result is called the law of atmospheres. (b) Commercial jetliners 
typically cruise at an altitude of 11.0 km. Find the ratio of the 
atmospheric density there to the density at sea level.

26. The law of atmospheres states that the number density of 
molecules in the atmosphere depends on height y above sea 
level according to

nV  
syd 5 n0e

2m0gyykBT

where n0 is the number density at sea level (where y 5 0). 
The average height of a molecule in the Earth’s atmosphere 
is given by

yavg 5
#

`

0
 ynV  

syd dy

#
`

0
 nV  

syd dy
5

#
`

0
 ye2m0 g yyk BT dy

#
`

0
 e2m0 g yykBT dy

(a) Prove that this average height is equal to kBT/m0g. (b) 
Evaluate the average height, assuming the temperature 
is 10.08C and the molecular mass is 28.9 u, both uniform 
throughout the atmosphere.

addiTional ProblemS

27. Eight molecules have speeds of 3.00 km/s, 4.00 km/s, 
5.80 km/s, 2.50 km/s, 3.60 km/s, 1.90 km/s, 3.80 km/s, and 
6.60 km/s. Find (a) the average speed of the molecules and 
(b) the rms speed of the molecules.

28. In a sample of a solid metal, each atom is free to vibrate 
about some equilibrium position. The atom’s energy con-
sists of kinetic energy for motion in the x, y, and z directions 
plus elastic potential energy associated with the Hooke’s law 
forces exerted by neighboring atoms on it in the x, y, and 
z directions. According to the theorem of equipartition of 
energy, assume the average energy of each atom is 1

2kBT  for 
each degree of freedom. (a) Prove that the molar specific 
heat of the solid is 3R. The Dulong–Petit law states that this 
result generally describes pure solids at sufficiently high 
temperatures. (You may ignore the difference between the 
specific heat at constant pressure and the specific heat at 
constant volume.) (b) Evaluate the specific heat c of iron. 
Explain how it compares with the value listed in Table 19.1. 
(c) Repeat the evaluation and comparison for gold.

29. The dimensions of a classroom are 4.20 m 3 3.00 m 3 2.50 m.  
(a) Find the number of molecules of air in the classroom 
at atmospheric pressure and 20.08C. (b) Find the mass of 

this air, assuming the air consists of diatomic molecules 
with molar mass 28.9 g/mol. (c) Find the average kinetic 
energy of the molecules. (d) Find the rms molecular speed. 
(e) What If? Assume the molar specific heat of the air is 
independent of temperature. Find the change in internal 
energy of the air in the room as the temperature is raised to 
25.08C. (f) Explain how you could convince a fellow student 
that your answer to part (e) is correct, even though it sounds 
surprising.

30. The compressibility k of a substance is defined as the frac-
tional change in volume of that substance for a given change 
in pressure:

k 5 2
1
V

  
dV
dP

(a) Explain why the negative sign in this expression ensures k 
is always positive. (b) Show that if an ideal gas is compressed 
isothermally, its compressibility is given by k1 5 1/P.  
(c) What If? Show that if an ideal gas is compressed adiabat-
ically, its compressibility is given by k2 5 1/(gP). Determine 
values for (d) k1 and (e) k2 for a monatomic ideal gas at a 
pressure of 2.00 atm.

31. The Earth’s atmosphere consists primarily of oxygen (21%) 
and nitrogen (78%). The rms speed of oxygen molecules 
(O2) in the atmosphere at a certain location is 535  m/s. 
(a) What is the temperature of the atmosphere at this loca-
tion? (b) Would the rms speed of nitrogen molecules (N2) 
at this location be higher, equal to, or lower than 535 m/s? 
Explain. (c) Determine the rms speed of N2 at his location.

32. Review. As a sound wave passes through a gas, the compres-
sions are either so rapid or so far apart that thermal conduc-
tion is prevented by a negligible time interval or by effective 
thickness of insulation. The compressions and rarefactions 
are adiabatic. (a) Show that the speed of sound in an ideal 
gas is

v 5ÎgRT

M

where M is the molar mass. The speed of sound in a gas is 
given by Equation 16.35; use that equation and the defini-
tion of the bulk modulus from Section 12.4. (b) Compute the 
theoretical speed of sound in air at 20.08C and state how it 
compares with the value in Table 16.1. Take M 5 28.9 g/mol.  
(c) Show that the speed of sound in an ideal gas is

v 5ÎgkBT

m0

where m0 is the mass of one molecule. (d) State how the 
result in part (c) compares with the most probable, average, 
and rms molecular speeds.

33. Examine the data for polyatomic gases in Table 20.2 and 
give a reason why sulfur dioxide has a higher specific heat at 
constant volume than the other polyatomic gases at 300 K.

34. In a cylinder, a sample of an ideal gas with number of moles 
n undergoes an adiabatic process. (a) Starting with the 
expression W 5 2# P dV  and using the condition PVg 5 con-
stant, show that the work done on the gas is

W 5 S 1
g 2 1DsPfVf 2 PiVi  

d

(b) Starting with the first law of thermodynamics, show that 
the work done on the gas is equal to nCV(Tf 2 Ti). (c) Are 
these two results consistent with each other? Explain.
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35. As a 1.00-mol sample of a monatomic ideal gas expands 
adiabatically, the work done on it is 22.50 3 103 J. The 
initial temperature and pressure of the gas are 500 K and 
3.60  atm. Calculate (a) the final temperature and (b) the 
final pressure.

36. A sample consists of an amount n in moles of a monatomic 
ideal gas. The gas expands adiabatically, with work W done 
on it. (Work W is a negative number.) The initial tempera-
ture and pressure of the gas are Ti and Pi. Calculate (a) the 
final temperature and (b) the final pressure.

37. The latent heat of vaporization for water at room temper-
ature is 2 430 J/g. Consider one particular molecule at the 
surface of a glass of liquid water, moving upward with suffi-
ciently high speed that it will be the next molecule to join 
the vapor. (a) Find its translational kinetic energy. (b) Find 
its speed. Now consider a thin gas made only of molecules 
like that one. (c) What is its temperature? (d) Why are you 
not burned by water evaporating from a vessel at room 
temperature?

38. A vessel contains 1.00 3 104 oxygen molecules at 500 K.  
(a) Make an accurate graph of the Maxwell speed distribu-
tion function versus speed with points at speed intervals of  
100 m/s. (b) Determine the most probable speed from this 
graph. (c) Calculate the average and rms speeds for the  
molecules and label these points on your graph. (d) From 
the graph, estimate the fraction of molecules with speeds in 
the range 300 m/s to 600 m/s.

39. For a Maxwellian gas, use a computer or programma-
ble calculator to find the numerical value of the ratio  
Nv(v)/Nv(vmp) for the following values of v: (a) v 5 
(vmp/50.0), (b) (vmp/10.0), (c) (vmp/2.00), (d) vmp, (e) 2.00vmp, 
(f)  10.0vmp, and (g) 50.0vmp. Give your results to three  
significant figures.

40. A triatomic molecule can have a linear configuration, as 
does CO2 (Fig. P20.40a), or it can be nonlinear, like H2O 
(Fig. P20.40b). Suppose the temperature of a gas of tri-
atomic molecules is sufficiently low that vibrational motion 
is negligible. What is the molar specific heat at constant vol-
ume, expressed as a multiple of the universal gas constant, 
(a) if the molecules are linear and (b) if the molecules are 
nonlinear? At high temperatures, a triatomic molecule has 
two modes of vibration, and each contributes 1

2R to the 
molar specific heat for its kinetic energy and another 12R for 
its potential energy. Identify the high-temperature molar 
specific heat at constant volume for a triatomic ideal gas of 
(c) linear molecules and (d) nonlinear molecules. (e) 
Explain how specific heat data can be used to determine 
whether a triatomic molecule is linear or nonlinear. Are the 
data in Table 20.2 sufficient to make this determination?

41. Using the Maxwell–Boltzmann speed distribution function, 
verify Equations 20.43 and 20.44 for (a) the rms speed and 
(b) the average speed of the molecules of a gas at a tempera-
ture T. The average value of vn is

vn 5
1
N

 #
`

0
vnNv dv

Use the table of integrals B.6 in Appendix B.

42. On the PV diagram for an ideal gas, one isothermal curve 
and one adiabatic curve pass through each point as shown 
in Figure P20.42. Prove that the slope of the adiabatic curve 
is steeper than the slope of the isotherm at that point by the 
factor g.

43. Using multiple laser beams, physicists have been able to cool 
and trap sodium atoms in a small region. In one experiment, 
the temperature of the atoms was reduced to 0.240 mK.  
(a) Determine the rms speed of the sodium atoms at this 
temperature. The atoms can be trapped for about 1.00 s. 
The trap has a linear dimension of roughly 1.00 cm. (b) 
Over what approximate time interval would an atom wander 
out of the trap region if there were no trapping action?

44. Consider the particles in a gas centrifuge, a device used to 
separate particles of different mass by whirling them in a 
circular path of radius r at angular speed v. The force act-
ing on a gas molecule toward the center of the centrifuge is 
m0v2r. (a) Discuss how a gas centrifuge can be used to sepa-
rate particles of different mass. (b) Suppose the centrifuge 
contains a gas of particles of identical mass. Show that the 
density of the particles as a function of r is

n srd 5 n0e 

m0r   

2v2y2k BT

CHallenge Problem

 45. Equations 20.43 and 20.44 show that vrms . vavg for a collec-
tion of gas particles, which turns out to be true whenever 
the particles have a distribution of speeds. Let us explore 
this inequality for a two-particle gas. Let the speed of one 
particle be v1 5 avavg and the other particle have speed v2 5 
(2 2 a)vavg. (a) Show that the average of these two speeds is 
vavg. (b) Show that

v2
rms 5 v2

avg (2 2 2a 1 a2)

(c) Argue that the equation in part (b) proves that, in gen-
eral, vrms . vavg. (d) Under what special condition will vrms 5 
vavg for the two-particle gas?
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H H
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Figure P20.40

V

Adiabatic
process

P

Isothermal
process

Figure P20.42
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556

Storyline You are still on your Physics Club camping trip. Uh-oh. 
The electric refrigerator in your Club advisor’s RV has suddenly stopped work-
ing. You help your advisor take the refrigerator out from its mounting and inspect 
the workings. He looks around a bit, tries a few things, and then says that he 
suspects the compressor has gone bad. You ask him what the compressor does 
and he says that it compresses the gaseous refrigerant to a high temperature 
and pressure. This starts you thinking. If you are trying to keep food cold in a 
refrigerator, why would you want to make the refrigerant hot? Your advisor goes 
on to explain that air conditioners work the same way. Then he says that he 
thinks the refrigerator cannot be repaired and they should go to the camping 
supply store and buy an inexpensive propane-powered refrigerator to use for the 
rest of your trip. You say, “What!? You can cool food by burning propane? How 
can that possibly work?” You spend the next couple of hours online investigat-
ing refrigeration cycles.

ConneCtions Although the first law of thermodynamics, which we stud-
ied in Chapter 19, is very important, it makes no distinction between processes 
that occur spontaneously and those that do not. Only certain types of energy 
transformation and transfer processes actually take place in nature. The second 
law of thermodynamics, the major topic in this chapter, establishes which 
processes do and do not occur. In general, for example, it is common to see 
processes in which mechanical energy is transformed into internal energy. As a 
book sliding across a surface comes to rest, its kinetic energy has transformed 
to internal energy, which spreads out in the book and the surface. One would 
never expect this internal energy to somehow gather itself back into the book, 

Heat Engines, Entropy, and the 
Second Law of Thermodynamics21
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A refrigerator in a 
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does a refrigerator work? 
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    21.1 Heat Engines and the Second Law of Thermodynamics  557

Lord Kelvin
British physicist and mathematician 
(1824–1907)
Born William Thomson in Belfast, Kelvin 
was the first to propose the use of an 
absolute scale of temperature. The 
Kelvin temperature scale is named in his 
honor. Kelvin’s work in thermodynamics 
led to the idea that energy cannot pass 
spontaneously from a colder object to a 
hotter object.
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Figure 21.1  A steam-driven 
locomotive obtains its energy 
by burning wood or coal. The 
generated energy vaporizes water 
into steam, which powers the 
locomotive. Modern locomotives 
use diesel fuel instead of wood or 
coal. Whether old-fashioned or 
modern, such locomotives can be 
modeled as heat engines, which 
extract energy from a burning 
fuel and convert a fraction of it to 
mechanical energy.

An
dy

 M
oo

re
/P

ho
to

lib
ra

ry
/J

up
ite

r I
m

ag
es

1Although a process occurring in the time-reversed sense has never been observed, it is possible for it to occur. As we 
shall see later in this chapter, however, the probability of such a process occurring is infinitesimally small. From this 
viewpoint, processes occur with a vastly greater probability in one direction than in the opposite direction.
2We use heat as our model for energy transfer into a heat engine. Other methods of energy transfer are possible in 
the model of a heat engine, however. For example, the Earth’s atmosphere can be modeled as a heat engine in which 
the input energy transfer is by means of electromagnetic radiation from the Sun. The output of the atmospheric heat 
engine causes the wind structure in the atmosphere.

so that the book begins to move again. Books at rest and in static equilibrium 
always remain at rest. It is also common to see energy transfer by heat from a 
hot object to a cold object with which it is in contact. One would never expect 
to add ice to room-temperature water and see the water become warmer and 
the ice colder. Energy always transfers from the warm water to the cold ice. 
The expected processes described here are irreversible; that is, they are pro-
cesses that occur naturally in one direction only. No irreversible process has 
ever been observed to run backward. If it were to do so, it would violate the 
second law of thermodynamics.1 The second law of thermodynamics is at work 
in all natural processes that we will study in future chapters. In this chapter, 
we study this law and a closely related quantity, entropy. We begin our quest 
to understand both the second law and entropy by investigating the thermody-
namics of heat engines.

   21.1    Heat Engines and the Second Law  
of Thermodynamics
A heat engine is a device that takes in energy by heat2 and, operating in a cyclic 
process, expels a fraction of that energy by means of work. For instance, in a typi-
cal process by which a power plant produces electricity, a fuel such as natural gas is 
burned and the high-temperature gases produced are used to convert liquid water 
to steam. This steam is directed at the blades of a turbine. The steam does work on 
the blades of the turbine, setting it into rotation. The mechanical energy associated 
with this rotation is used to drive an electric generator. Another device that can be 
modeled as a heat engine is the internal combustion engine in an automobile. This 
device uses energy from a burning fuel to perform work on pistons that results in 
the motion of the automobile.

Let us consider the fundamental operation of a heat engine in more detail. A 
heat engine carries some working substance through a cyclic process during which 
(1) the working substance absorbs energy by heat from a high-temperature energy 
reservoir, (2) work is done by the engine, and (3) energy is expelled by heat to 
a lower-temperature reservoir. As an example, consider the operation of a steam 
engine (Fig. 21.1), which uses water as the working substance. The water in a boiler 
absorbs energy from burning fuel and evaporates to steam, which then does work 
by expanding against a piston. After the steam cools and condenses, the liquid 
water produced returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 21.2 (page 558).  
The engine absorbs a quantity of energy | Q  h  | from the hot reservoir. For the 
mathematical discussion of heat engines, we use absolute values to make all 
energy transfers by heat positive, and the direction of transfer is indicated with an 
explicit positive or negative sign. The engine does work Weng (so that negative work  
W 5 2Weng is done on the engine) and then gives up a quantity of energy | Q  c  | to the 
cold reservoir. Because the working substance in the engine goes through a cycle, its 
initial and final internal energies are equal: DEint 5 0. Hence, from the first law of 
thermodynamics, for each cycle of the engine, DEint 5 Q 1 W 5 Q  net 2 Weng 5 0, and  
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the net work Weng done by a heat engine is equal to the net energy Q  net transferred 
to it. As you can see from Figure 21.2, Q  net 5 |Q  h | 2 | Q  c |; therefore,

 Weng 5 | Q h | 2 | Q c | (21.1)

The thermal efficiency e of a heat engine is defined as the ratio of the net work 
done by the engine during one cycle to the energy input at the higher temperature 
during the cycle:

 e ;
Weng

uQ hu
5

uQ hu 2 uQ cu

uQ hu
5 1 2

uQ cu

uQ hu
 (21.2)

You can think of the efficiency as the ratio of what you gain (work) to what you 
give (energy transfer at the higher temperature). In practice, all heat engines 
expel only a fraction of the input energy Q h by mechanical work; consequently, 
their efficiency is always less than 100%. For example, a good automobile engine 
has an efficiency of about 20%, and diesel engines have efficiencies ranging from 
35% to 40%.

Equation 21.2 shows that a heat engine has 100% efficiency (e 5 1) only if 
|Q c| 5 0, that is, if no energy is expelled to the cold reservoir. In other words, 
a heat engine with perfect efficiency would have to expel all the input energy 
by work. Figure 21.3 is a schematic diagram of the “perfect” heat engine. The 
efficiencies of real engines are well below 100%, which is related to one form of 
the second law of thermodynamics. The Kelvin–Planck form of the second law 
of thermodynamics states the impossibility of an engine with 100% efficiency:

It is impossible to construct a heat engine that, operating in a cycle, produces 
no effect other than the input of energy by heat from a reservoir and the perfor-
mance of an equal amount of work.

This statement of the second law means that during the operation of a heat engine, 
Weng can never be equal to |Q h | or, alternatively, that some energy |Q c | must be 
rejected to the environment. 

Thermal efficiency of 
 a heat engine

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

Energy �Qh� 
enters the 
engine. 

Energy �Q c� 
leaves the 
engine. 

The engine does 
work Weng.

Figure 21.2 Schematic represen-
tation of a heat engine.

Q h

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

An impossible heat engine

Figure 21.3  Schematic diagram of 
a heat engine that takes in energy 
from a hot reservoir and does an 
equivalent amount of work. It is 
impossible to construct such a per-
fect engine.

Q UiCK QUiz 21.1  The energy input to an engine is 4.00 times greater than the 
work it performs. (i) What is its thermal efficiency? (a) 4.00 (b) 1.00 (c) 0.250 
(d) impossible to determine (ii) What fraction of the energy input is expelled to 
the cold reservoir? (a) 0.250 (b) 0.750 (c) 1.00 (d) impossible to determine

PitfaLL Prevention 21.1
The First and Second Laws Notice 
the distinction between the first 
and second laws of thermodynam-
ics. If a gas undergoes a one-time 
isothermal process, then DE int 5 Q 1 
W 5 0 and W 5 2Q. Therefore, 
the first law allows all energy input 
by heat to be expelled by work. In 
a heat engine, however, in which a 
substance undergoes a cyclic pro-
cess, only a portion of the energy 
input by heat can be expelled by 
work according to the second law.
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   21.2    Heat Pumps and Refrigerators
In a heat engine, the direction of energy transfer is from the hot reservoir to the 
cold reservoir, which is the natural direction. The role of the heat engine is to pro-
cess the energy from the hot reservoir so as to expel part of it by useful work. What 
if we wanted to transfer energy from the cold reservoir to the hot reservoir? Because 
that is not the natural direction of energy transfer, we must put some energy into 
a device to perform this task. Devices that transfer energy from a cold reservoir to 
a warm reservoir are called heat pumps and refrigerators. For example, homes in 
summer are cooled using heat pumps called air conditioners. The air conditioner 
transfers energy from the cool room in the home to the warm air outside.

In a refrigerator or a heat pump, the engine takes in energy |Q c | from a cold 
reservoir and expels energy |Q h | to a hot reservoir (Fig. 21.4), which can be accom-
plished only if work is done on the engine. From the first law, we know that the 
energy given up to the hot reservoir must equal the sum of the work done and 
the energy taken in from the cold reservoir. Therefore, the refrigerator or heat 
pump transfers energy from a colder body (for example, the contents of a kitchen 
refrigerator or the winter air outside a building) to a hotter body (the air in the 
kitchen or a room in the building). In practice, it is desirable to carry out this pro-
cess with a minimum of work. If the process could be accomplished without doing 

Q h

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

W

Energy �Q h� 
is expelled 
to the hot 
reservoir.

Energy �Q c� 
is drawn 
from the 
cold 
reservoir.

Work W is done on 
the heat pump.

Figure 21.4 Schematic representa-
tion of a heat pump.

 Example 21.1    The Efficiency of an Engine

An engine transfers 2.00 3 103 J of energy from a hot reservoir during a cycle and transfers 1.50 3 103 J as exhaust to a 
cold reservoir.

(A)  Find the efficiency of the engine.

S O L U T I O N

S O L U T I O N

Conceptualize  Review Figure 21.2; think about energy going into the engine from the hot reservoir and splitting, with part 
coming out by work and part by heat into the cold reservoir.

Categorize  This example involves evaluation of quantities from the equations introduced in this section, so we categorize it 
as a substitution problem.

Find the efficiency of the engine from Equation 21.2: e 5 1 2
uQ c 

u

uQ h 
u

5 1 2
1.50 3 103 J

2.00 3 103 J
5 0.250, or 25.0%

(B)  How much work does this engine do in one cycle?

Find the work done by the engine by taking the difference 
between the input and output energies:

Weng 5 |Q h| 2 |Q c | 5 2.00 3 103 J 2 1.50 3 103 J

5   5.0 3 102 J

W H A T  I F ?  Suppose you were asked for the power output of this engine. Do you have sufficient information to answer 
this question?

Answer  No, you do not have enough information. The power of an engine is the rate at which work is done by the engine. You 
know how much work is done per cycle, but you have no information about the time interval associated with one cycle. If you 
were told that the engine operates at 2 000 rpm (revolutions per minute), however, you could relate this rate to the period of 
rotation T of the mechanism of the engine. Assuming there is one thermodynamic cycle per revolution, the power is

P 5
Weng

T
5

5.0 3 102 J

_ 1
2 000 min+

S1 min
60 s D 5 1.7 3 104 W
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any work, the refrigerator or heat pump would be “perfect” (Fig. 21.5). Again, 
the existence of such a device is impossible and is related to another form of the 
second law of thermodynamics. The Clausius statement3 of the second law of 
thermodynamics states:

It is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continuously by heat from one object to another object at a higher tem-
perature without the input of energy by work.

In simpler terms, energy does not transfer spontaneously by heat from a cold object 
to a hot object. Work input is required to run a refrigerator.

The Clausius and Kelvin–Planck statements of the second law of thermodynam-
ics appear at first sight to be unrelated, but in fact they are equivalent in all respects. 
Although we do not prove so here, if either statement is false, so is the other.4

In practice, a heat pump includes a circulating fluid that passes through two sets 
of metal coils that can exchange energy with the surroundings. The fluid is cold 
and at low pressure when it is in the coils located in a cool environment, where it 
absorbs energy by heat. The resulting warm fluid is then compressed and enters 
the other coils as a hot, high-pressure fluid. There it releases its stored energy to 
the warm surroundings. In an air conditioner, energy is absorbed into the fluid in 
coils located in a building’s interior; after the fluid is compressed, energy leaves the 
fluid through coils located outdoors. In a refrigerator, the external coils are behind 
the unit (Fig. 21.6) or underneath the unit. The internal coils are in the walls of the 
refrigerator and absorb energy from the food.

In the preceding paragraph, we see why we want the refrigerant to be hot, a 
question we asked in the opening storyline with regard to the refrigerator in your 
RV. But what about the propane refrigerator? This type of refrigerator also takes a 
substance through a cycle. In this case, the substance is ammonia, which combines 
at various parts of the cycle with water and hydrogen. The propane burner warms 
up the ammonia–water combination, which then travels to external coils to release 
energy into the air. The ammonia is separated from the water and then combines 
with hydrogen. It then evaporates. As we discussed in Chapter 20, evaporation is a 
cooling process. The cool ammonia is passed through the cooling coils, where it 
absorbs energy from the interior of the refrigerator, is mixed with water again, and 
then proceeds back to the beginning of the cycle.

The effectiveness of a heat pump is described in terms of a number called the 
coefficient of performance (COP). The COP is similar to the thermal efficiency 
for a heat engine in that it is a ratio of what you gain (energy transferred to or from 
a reservoir) to what you give (work input). For a heat pump operating in the cool-
ing mode, “what you gain” is energy removed from the cold reservoir. The most 
effective refrigerator or air conditioner is one that removes the greatest amount of 
energy from the cold reservoir in exchange for the least amount of work. There-
fore, for these devices operating in the cooling mode, we define the COP in terms 
of |Q c  |:

 COP scooling moded 5
energy transferred at low temperature

work done on heat pump
5

uQ c 
u

W
 (21.3)

A good refrigerator should have a high COP, typically 5 or 6.
In addition to cooling applications, heat pumps are becoming increasingly pop-

ular for heating purposes. In the heating mode, energy is absorbed from the cool 
air outside a building and warm air is released inside the building. The COP of a 

3First expressed by Rudolf Clausius (1822–1888), a German physicist and mathematician.
4See an advanced textbook on thermodynamics for this proof.

Q h � Q c

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

An impossible heat pump

Figure 21.5  Schematic diagram 
of an impossible heat pump or 
refrigerator, that is, one that takes 
in energy from a cold reservoir 
and expels an equivalent amount 
of energy to a hot reservoir with-
out the input of energy by work.

The coils on the back of
a refrigerator transfer 
energy by heat to the air.

Figure 21.6  The back of a 
household refrigerator. The air 
surrounding the coils is the hot 
reservoir.
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heat pump is defined as the ratio of the energy transferred to the hot reservoir to 
the work required to transfer that energy:

 COP sheating moded 5
energy transferred at high temperature

work done on heat pump
5

uQ hu
W

 (21.4)

If the outside temperature is 25°F (24°C) or higher, a typical value of the COP 
for a heat pump is about 4. That is, the amount of energy transferred to the build-
ing is about four times greater than the work done by the motor in the heat pump. 
As the outside temperature decreases, however, it becomes more difficult for the 
heat pump to extract sufficient energy from the air and so the COP decreases. 
Therefore, the use of heat pumps that extract energy from the air, although satisfac-
tory in moderate climates, is not appropriate in areas where winter temperatures 
are very low. It is possible to use heat pumps in colder areas by burying the external 
coils deep in the ground. In that case, the energy is extracted from the ground, 
which tends to be warmer than the air in the winter.

Q UiCK QUiz 21.2  The energy entering an electric heater by electrical trans-
mission can be converted to internal energy with an efficiency of 100%. By 
what factor does the cost of heating your home change when you replace your 
electric heating system with an electric heat pump that has a COP of 4.00? 
Assume the motor running the heat pump is 100% efficient. (a) 4.00 (b) 2.00 
(c) 0.500 (d) 0.250

 Example 21.2  Freezing Water

A certain refrigerator has a COP of 5.00. When the refrigerator is running, its power input is 500 W. A sample of water of 
mass 500 g and temperature 20.0°C is placed in the freezer compartment. How long does it take to freeze the water to ice 
at 0°C? Assume all other parts of the refrigerator stay at the same temperature and there is no leakage of energy from the 
exterior, so the operation of the refrigerator results only in energy being extracted from the water.

S O L U T I O N

Conceptualize  Energy leaves the water, reducing its temperature and then freezing it into ice. The time interval required for 
this entire process is related to the rate at which energy is withdrawn from the water, which, in turn, is related to the power 
input of the refrigerator.

Categorize We categorize this example as one that combines our understanding of temperature changes and phase changes 
from Chapter 19 and our understanding of heat pumps from this chapter.

Dt 5
umsc DT 2 Lfdu

P sCOPd
Recognize that the amount of water that 
freezes is Dm 5 2m because all the water 
freezes:

Analyze Use the power rating of the refrigera-
tor to find the time interval Dt required for the 
freezing process to occur:

P 5
W
Dt

   S   Dt 5
W
P

Use Equation 21.3 to relate the work W done 
on the heat pump to the energy |Q c| extracted 
from the water:

Dt 5
uQ c u

P sCOPd

Use Equations 19.4 and 19.8 to substitute the 
amount of energy |Q c| that must be extracted 
from the water of mass m:

Dt 5
umc DT 1 Lf Dmu

P sCOPd

continued
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   21.3    Reversible and Irreversible Processes
In the next section, we will discuss a theoretical heat engine that is the most effi-
cient possible. To understand its nature, we must first examine the meaning of 
reversible and irreversible processes. In a reversible process, the system undergo-
ing the process can be returned to its initial conditions along the same path on a 
PV diagram, and every point along this path is an equilibrium state. A process that 
does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. Let’s examine a unique 
process called the adiabatic free expansion of a gas, and show that it can-
not be reversible. Consider a gas in a thermally insulated container as shown 
in Figure 21.7. A membrane separates the gas from a vacuum. When the mem-
brane is punctured, the gas expands freely into the vacuum. As a result of the 
puncture, the system has changed because it occupies a greater volume after  
the expansion. Because the gas does not exert a force through a displacement, it 
does no work on the surroundings as it expands: W 5 0. In addition, no energy 
is transferred to or from the gas by heat because the container is insulated from 
its surroundings: Q 5 0. Therefore, from the first law of thermodynamics, the 
internal energy Eint of the gas does not change and, as a result, its temperature is 
the same after the expansion. In this process, the system has changed, but the sur-
roundings have not.

For this process to be reversible, we must return the gas to its original volume 
and temperature without changing the surroundings. Imagine trying to reverse 
the process by compressing the gas to its original volume. To do so, we use an 
engine to force the piston shown in Figure 21.7 inward. During this process, the 
surroundings change because work is being done by an outside agent on the sys-
tem. In addition, the system changes because the compression increases the tem-
perature of the gas. The temperature of the gas can be lowered by allowing it to 
come into contact with an external energy reservoir. Although this step returns 
the gas to its original conditions, the surroundings are again affected because 
energy is being added to the surroundings from the gas. If this energy could  
be used to drive the engine that compressed the gas, the net energy transfer to the 
surroundings would be zero. In this way, the system and its surroundings could 
be returned to their initial conditions and we could identify the process as revers-
ible. The  Kelvin–Planck statement of the second law, however, specifies that the 
energy removed from the gas to return the temperature to its original value can-
not be completely converted to mechanical energy by the process of work done by 
the engine in compressing the gas. Therefore, we must conclude that the process  
is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying on 
the portion of the definition of a reversible process that refers to equilibrium states. 
For example, during the sudden expansion, significant variations in pressure occur 

Vacuum

Gas at Ti

Insulating
wall

Membrane

Figure 21.7  Adiabatic free 
expansion of a gas.

Dt 5
us0.500 kgdfs4 186 Jykg ? 8Cds220.08Cd 2 3.33 3 105 Jykggu

s500 Wds5.00d

5 83.3 s

Substitute numerical values:

Finalize  In reality, the time interval for the water to freeze in a refrigerator is much longer than 83.3 s, which suggests that the 
assumptions of our model are not valid. Only a small part of the energy extracted from the refrigerator interior in a given time 
interval comes from the water. Energy must also be extracted from the container in which the water is placed, and energy that 
continuously leaks into the interior from the exterior must be extracted.

21.2 c o n t i n u e d

PitfaLL Prevention 21.2
All Real Processes Are Irreversible  
The reversible process is an ideal-
ization; all real processes on the 
Earth are irreversible.
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throughout the gas. Therefore, there is no single, well-defined value of the pressure 
for the entire system at any time between the initial and final states. In fact, the pro-
cess cannot even be represented as a path on a PV diagram. The PV diagram for an 
adiabatic free expansion would show the initial and final conditions as points, but 
these points would not be connected by a path. Therefore, because the intermediate 
conditions between the initial and final states are not equilibrium states, the process 
is irreversible.

Although all real processes are irreversible, some are almost reversible. If a real 
process occurs very slowly such that the system is always very nearly in an equilib-
rium state, the process can be approximated as being reversible.

A general characteristic of a reversible process is that no nonconservative effects 
(such as turbulence or friction) that transform mechanical energy to internal 
energy can be present. Such effects can be impossible to eliminate completely. 
Hence, it is not surprising that real processes in nature are irreversible.

   21.4    The Carnot Engine
In 1824, a French engineer named Sadi Carnot described a theoretical engine, now 
called a Carnot engine, that is of great importance from both practical and theo-
retical viewpoints. He showed that a heat engine operating in an ideal, reversible 
cycle—called a Carnot cycle—between two energy reservoirs is the most efficient 
engine possible. Such an ideal engine establishes an upper limit on the efficien-
cies of all other engines. That is, the net work done by a working substance taken 
through the Carnot cycle is the greatest amount of work possible for a given amount 
of energy supplied to the substance at the higher temperature. Carnot’s theorem 
can be stated as follows:

No real heat engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

In this section, we will show that the efficiency of a Carnot engine depends 
only on the temperatures of the reservoirs. In turn, that efficiency represents the 
maximum possible efficiency for real engines. Let us confirm that the Carnot 
engine is the most efficient. We imagine a hypothetical engine with an efficiency 
greater than that of the Carnot engine. Consider Figure 21.8, which shows the 
hypothetical engine with e . eC on the left connected between hot and cold res-
ervoirs. In addition, let us attach a Carnot engine between the same reservoirs.  
Because the Carnot cycle is reversible, the Carnot engine can be run in reverse as 
a Carnot heat pump as shown on the right in Figure 21.8. We match the output 
work of the engine to the input work of the heat pump, W 5 WC, so there is no 
exchange of energy by work between the surroundings and the engine–heat pump 
combination.

Because of the proposed relation between the efficiencies of the heat engine 
and heat pump when both are operated as engines, we must have

e . e C   S   
uW u
uQ hu

.
uWCu

uQ hCu

The numerators of these two fractions cancel because the works have been matched 
in the configuration in Figure 21.8. Therefore, this expression becomes

 uQ hCu . uQ hu (21.5)

From Equation 21.1, the equality of the works gives us

uW u 5 uWCu   S   uQ hu 2 uQ cu 5 uQ hCu 2 uQ c Cu

Sadi Carnot
French engineer (1796–1832)
Carnot was the first to show the quan-
titative relationship between work and 
heat. In 1824, he published his only work, 
Reflections on the Motive Power of Heat, 
which reviewed the industrial, political, 
and economic importance of the steam 
engine. In it, he defined work as “weight 
lifted through a height.”
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Figure 21.8 Two engines operate 
between two energy reservoirs: a 
Carnot engine operating as a heat 
pump and another engine with 
an efficiency that is proposed to 
be higher than that of the Carnot 
engine. The work output and 
input are matched.
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564 Chapter 21 Heat Engines, Entropy, and the Second Law of Thermodynamics

which can be rewritten to put the energies exchanged with the cold reservoir on 
the left and those with the hot reservoir on the right:

 uQ hCu 2 uQ hu 5 uQ c Cu 2 uQ cu (21.6)

Note that, in light of Equation 21.5, the left side of Equation 21.6 is positive, so the 
right side must be positive also. We see that the net energy exchange with the hot 
reservoir is equal to the net energy exchange with the cold reservoir. As a result, 
for the combination of the heat engine and the heat pump, energy is transferring 
from the cold reservoir to the hot reservoir by heat with no input of energy by 
work from the surroundings.

This result is in violation of the Clausius statement of the second law. Therefore, 
our original assumption that e . eC must be incorrect, and we must conclude that 
the Carnot engine represents the highest possible efficiency for an engine. The key 
feature of the Carnot engine that makes it the most efficient is its reversibility; it can 
be run in reverse as a heat pump. All real engines are less efficient than the Carnot 
engine because they do not operate through a reversible cycle. The efficiency of a 
real engine is further reduced by such practical difficulties as friction and energy 
losses by conduction.

Let’s now look at the details of the Carnot cycle for an engine operating between 
temperatures Tc and Th. Assume the working substance is an ideal gas contained in a 
cylinder fitted with a movable piston at one end. The cylinder’s walls and the piston 
are thermally nonconducting. Four stages of the Carnot cycle are shown in Figure 21.9, 

a

c

bd

CycleQ � 0 Q � 0

Energy reservoir at Th

Q h

Energy reservoir at Tc

Q c

A S B
The gas undergoes an 
isothermal expansion.

C S D
The gas undergoes 

an isothermal 
compression.

B S C
The gas undergoes 

an adiabatic 
expansion.

D S A
The gas undergoes 

an adiabatic 
compression.

Thermal insulationThermal insulation

Figure 21.9 A pictorial repre-
sentation of the Carnot cycle. 
The letters A, B, C, and D refer 
to the states of the gas shown in 
Figure 21.10. The arrows on the 
piston indicate the direction of its 
motion during each process. Com-
pare to the graphical representa-
tion in Figure 21.10.

PitfaLL Prevention 21.3
Don’t Shop for a Carnot Engine  
The Carnot engine is an ideal-
ization; do not expect a Carnot 
engine to be developed for com-
mercial use. We explore the 
Carnot engine only for theoretical 
considerations.
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and the PV diagram for the cycle is shown in Figure 21.10. The Carnot cycle consists of 
two adiabatic processes and two isothermal processes, all reversible:

1. Process A S B (Fig. 21.9a) is an isothermal expansion at temperature Th. 
The gas is placed in thermal contact with an energy reservoir at tempera-
ture Th. During the expansion, the gas absorbs energy |Q h| from the res-
ervoir through the base of the cylinder and does work WAB in raising the 
piston.

2. In process B S C (Fig. 21.9b), the base of the cylinder is replaced by a ther-
mally nonconducting wall and the gas expands adiabatically; that is, no 
energy enters or leaves the system by heat. During the expansion, the tem-
perature of the gas decreases from Th to Tc and the gas does work WBC in 
raising the piston.

3. In process C S D (Fig. 21.9c), the gas is placed in thermal contact with an 
energy reservoir at temperature Tc and is compressed isothermally at tem-
perature Tc. During this time, the gas expels energy |Q c| to the reservoir 
and the work done by the piston on the gas is WCD.

4. In the final process D S A (Fig. 21.9d), the base of the cylinder is replaced 
by a nonconducting wall and the gas is compressed adiabatically. The tem-
perature of the gas increases to Th, and the work done by the piston on the 
gas is WDA.

The thermal efficiency of the engine is given by Equation 21.2:

 e 5 1 2
uQ c 

u

uQ h 
u
 

In Example 21.3, we show that for a Carnot cycle,

 
uQ c 

u

uQ h 
u

5
Tc

Th

 (21.7)

Hence, the thermal efficiency of a Carnot engine is

 eC 5 1 2
Tc

Th

 (21.8)

This result indicates that all Carnot engines operating between the same two tem-
peratures have the same efficiency.5

Equation 21.8 can be applied to any working substance operating in a Carnot 
cycle between two energy reservoirs. According to this equation, the efficiency 
is zero if Tc 5 Th , as one would expect. The efficiency increases as Tc is lowered 
and Th is raised. The efficiency can be unity (100%), however, only if Tc 5 0 K. 
A reservoir at absolute zero is not available; therefore, the maximum efficiency 
is always less than 100%. In most practical cases, Tc is near room temperature, 
which is about 300 K. Therefore, one usually strives to increase the efficiency by 
raising Th. 

Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most 
effective heat pump possible, and it determines the maximum COP for a given 

 Efficiency of a Carnot engine

5For the processes in the Carnot cycle to be reversible, they must be carried out infinitesimally slowly. Therefore, 
although the Carnot engine is the most efficient engine possible, it has zero power output because it takes an infinite 
time interval to complete one cycle! For a real engine, the short time interval for each cycle results in the working 
substance reaching a high temperature lower than that of the hot reservoir and a low temperature higher than that of 
the cold reservoir. An engine undergoing a Carnot cycle between this narrower temperature range was analyzed by 
F. L. Curzon and B. Ahlborn (“Efficiency of a Carnot engine at maximum power output,” Am. J. Phys. 43(1), 22, 1975), 
who found that the efficiency at maximum power output depends only on the reservoir temperatures Tc and Th and is 
given by e C-A 5 1 2 (Tc /Th)1/2. The Curzon–Ahlborn efficiency eC-A provides a closer approximation to the efficiencies 
of real engines than does the Carnot efficiency.

Figure 21.10 PV diagram for the 
Carnot cycle represented pictorially 
in Figure 21.9. This is a graphical 
representation of the cycle. The 
net work done Weng equals the net 
energy transferred into the Carnot 
engine in one cycle, |Q h| 2 |Q c|.

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

The work done 
during the cycle 
equals the area 
enclosed by the path 
on the PV diagram.
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combination of hot and cold reservoir temperatures. Using Equations 21.1 and 
21.4, we see that the maximum COP for a heat pump in its heating mode is

COPC sheating moded 5
uQ hu
W

 

5
uQ hu

uQ hu 2 uQ c u
5

1

1 2
uQ c u

uQh u

5
1

1 2
Tc

Th

5
Th

Th 2 Tc

The Carnot COP for a heat pump in the cooling mode is

 COPC scooling moded 5
Tc

Th 2 Tc

 

As the difference between the temperatures of the two reservoirs approaches zero 
in this expression, the theoretical COP approaches infinity. In practice, the low 
temperature of the cooling coils and the high temperature at the compressor limit 
the COP to values below 10.

Q UiCK QUiz 21.3  Three engines operate between reservoirs separated in tem-
perature by 300 K. The reservoir temperatures are as follows: Engine A: Th 5 
1 000 K, Tc 5 700 K; Engine B: Th 5 800 K, Tc 5 500 K; Engine C: Th 5 600 K,  
Tc 5 300 K. Rank the engines in order of theoretically possible efficiency from 
highest to lowest.

 Example 21.3  Efficiency of the Carnot Engine

Show that the ratio of energy transfers by heat in a Carnot engine is equal to the ratio of reservoir temperatures, as given 
by Equation 21.7.

S O L U T I O N

Conceptualize  Make use of Figures 21.9 and 21.10 to help you visualize the processes in the Carnot cycle.

Categorize  Because of our understanding of the Carnot cycle, we can categorize the processes in the cycle as isothermal 
and adiabatic.

Finalize  This last equation is Equation 21.7, the one we set out to prove.

Analyze  For the isothermal expansion (process A S B in 
Fig. 21.9), find the energy transfer by heat from the hot reser-
voir using Equation 19.12 and the first law of thermodynamics:

uQ hu 5 uDE int 2 WABu 5 u0 2 WABu 5 nRTh ln 
VB

VA

In a similar manner, find the energy transfer to the cold 
reservoir during the isothermal compression C S D :

uQ c 
u 5 uDE int 2 WCD 

u 5 u0 2 WCDu 5 nRTc ln 
VC

VD

Divide the second expression by the first: (1)    
uQ c 

u

uQ h 
u

5
Tc

Th

  
ln sVC yVDd

ln sVB yVAd

Apply Equation 20.40 to the adiabatic processes B S C 
and D S A:

ThVB
g21 5 TcVC

g21

ThVA
g21 5 TcVD

g21

Divide the first equation by the second: SVB

VA
Dg21

5 SVC

VD
Dg21

(2)    
VB

VA

5
VC

VD

Substitute Equation (2) into Equation (1):
uQ c  

u

uQ h  
u

5
Tc

Th

 
ln sVC yVDd

ln sVB yVAd
5

Tc

Th

 
ln sVC yVDd

ln sVC yVDd
5

Tc

Th
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 Example 21.4    The Steam Engine

A steam engine has a boiler that operates at 500 K. The energy from the burning fuel changes water to steam, and this 
steam then drives a piston. The cold reservoir’s temperature is that of the outside air, approximately 300 K. What is the 
maximum thermal efficiency of this steam engine?

S O L U T I O N

Conceptualize  In a steam engine, the gas pushing on the piston in Figure 21.9 is steam. A real steam engine does not operate 
in a Carnot cycle, but, to find the maximum possible efficiency, imagine a Carnot steam engine.

Categorize  We calculate an efficiency using Equation 21.8, so we categorize this example as a substitution problem.

Substitute the reservoir temperatures into Equation 21.8: e C 5 1 2
Tc

Th

5 1 2
300 K
500 K

5 0.400   or  40.0%

This result is the highest theoretical efficiency of the engine. In practice, the efficiency is considerably lower.

W H A T  I F ?  Suppose we wished to increase the theoretical efficiency of this engine. This increase can be achieved by 
raising Th by DT or by decreasing Tc by the same DT. Which would be more effective?

Answer  A given DT would have a larger fractional effect on a smaller temperature, so you would expect a larger change in 
efficiency if you alter Tc by DT. Let’s test that numerically. Raising Th by 50 K, corresponding to Th 5 550 K, would give a maxi-
mum efficiency of

eC 5 1 2
Tc

Th

5 1 2
300 K
550 K

5 0.455

Decreasing Tc by 50 K, corresponding to Tc 5 250 K, would give a maximum efficiency of

eC 5 1 2
Tc

Th

5 1 2
250 K
500 K

5 0.500

Although changing Tc is mathematically more effective, often changing Th is practically more feasible.

   21.5    Gasoline and Diesel Engines
In a gasoline engine, four strokes occur in each cycle; in addition, two events have a 
significant effect on the state of the gas in the cylinder. These strokes and events 
are illustrated with a pictorial representation in Figure 21.11 (page 568). In this dis-
cussion, let’s consider the interior of the cylinder above the piston to be the system 
that is taken through repeated cycles in the engine’s operation. For a given cycle, 
the piston moves up and down twice, which represents a four-stroke cycle consisting 
of two upstrokes and two downstrokes. The processes in the cycle can be approxi-
mated by the Otto cycle shown in the PV diagram in Figure 21.12 (page 568), which 
is a graphical representation of the cycle. In the following discussion, note that the 
letter designations next to the piston in Figure 21.11 correspond to the states on the 
PV diagram in Figure 21.12.

1. During the intake stroke (O S A in Figures 21.11a and 21.12), the piston moves 
downward and a gaseous mixture of air and fuel is drawn into the cylinder 
at atmospheric pressure. That is the energy input part of the cycle: energy 
enters the system (the interior of the cylinder) by matter transfer as potential 
energy stored in the fuel. In this process, the volume increases from V2 to V1. 
This apparent backward numbering is based on the compression stroke (see 
2 below), in which the air–fuel mixture is compressed from V1 to V2.

2. During the compression stroke (A S B  in Figures 21.11b and 21.12), the pis-
ton moves upward, the air–fuel mixture is compressed adiabatically from 
volume V1 to volume V2, and the temperature increases from TA to TB . The 
work done on the gas is positive, and its value is equal to the negative of the 
area under the curve AB in Figure 21.12.
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568 Chapter 21 Heat Engines, Entropy, and the Second Law of Thermodynamics

Figure 21.11 The processes occurring during one cycle of a conventional gasoline engine. The broken 
lines show the extreme positions of the top of the piston and, therefore, represent the largest and small-
est volumes of the gas in the cylinder. Parts a, b, d, and f represent strokes in the cycle, justifying the 
name of the device as a four-stroke engine. In a stroke, the piston moves up or down between its extreme 
positions. The red arrows show the direction of travel of the piston, and the letters next to the piston 
correspond to the states on the PV diagram in Figure 21.12. Parts c and e in the figure represent events, 
during which the piston does not move. In part c, the spark plug fires and the pressure and temperature 
of the gas shoot upward. In part e, the exhaust valve opens and the pressure and temperature of the 
gas plummet. The events in this figure correspond to the constant-volume processes in Figure 21.12. By 
comparing that figure with this one, convince yourself that the volumes at O, B, and C are all the same, 
as indicated by their positions on the upper broken line. Similarly, the volumes at A and D are the same.

The intake valve 
opens, and the air–
fuel mixture enters 
as the piston moves 
down.

The piston moves 
up and compresses 
the mixture.

The piston moves 
up and pushes the 
remaining gas out.

The spark plug 
fires and ignites 
the mixture.

The hot gas 
pushes the piston 
downward.

Intake
stroke
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stroke

Spark Power
stroke

Release Exhaust
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and
fuel

Exhaust

Spark plug

Piston

O

A

O

A

B

A

B C C

D

a b c d e f

The exhaust valve 
opens, and the 
residual gas escapes.

D A

3. Combustion occurs when the spark plug fires (B S C in Figures 21.11c and 
21.12). This is the combustion event in the cycle; it occurs in a very short time 
interval while the piston is at its highest position. The combustion represents 
a rapid energy transformation from potential energy stored in chemical 
bonds in the fuel to internal energy associated with molecular motion, which 
is related to temperature. During this time interval, the mixture’s pressure 
and temperature increase rapidly, with the temperature rising from TB to TC . 
The volume, however, remains approximately constant because of the short 
time interval. As a result, approximately no work is done on or by the gas. 
We can model this process in the PV diagram (Fig.  21.12) as that process in 
which the energy |Q h| enters the system. (In reality, however, this process is a 
transformation of energy already in the cylinder from process O S A.)

4. In the power stroke (C S D in Figures 21.11d and 21.12), the gas expands 
adiabatically from V2 to V1. This expansion causes the temperature to drop 
from TC to TD . Work is done by the gas in pushing the piston downward, 
and the value of this work is equal to the area under the curve CD.

5. The release event in the cycle occurs when an exhaust valve is opened (D S A  
in Figures 21.11e and 21.12). The pressure suddenly drops for a short time 
interval. During this time interval, the piston is almost stationary and the 
volume is approximately constant. Energy is expelled from the interior of 
the cylinder and continues to be expelled during the next process.

6. In the final process, the exhaust stroke (A S O in Figures 21.11f and 21.12), 
the piston moves upward while the exhaust valve remains open. Residual 
gases are exhausted at atmospheric pressure, and the volume decreases 
from V1 to V2. The cycle then repeats.

Figure 21.12 PV diagram for the 
Otto cycle, which approximately 
represents the processes occur-
ring in an internal combustion 
engine.
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If the air–fuel mixture is assumed to be an ideal gas, the efficiency of the Otto 
cycle is

 e 5 1 2
1

sV1yV2d
g21 sOtto cycled (21.9)

where V1/V2 is the compression ratio and g is the ratio of the molar specific heats 
CP/CV for the air–fuel mixture. Equation 21.9, which is derived in Example 21.5, 
shows that the efficiency increases as the compression ratio increases. For a typi-
cal compression ratio of 8 and with g 5 1.4, Equation 21.9 predicts a theoretical 
efficiency of 56% for an engine operating in the idealized Otto cycle. This value 
is much greater than that achieved in real engines (15% to 20%) because of such 
effects as friction, energy transfer by conduction through the cylinder walls, and 
incomplete combustion of the air–fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle, but they do not employ 
a spark plug. The compression ratio for a diesel engine is much greater than that 
for a gasoline engine. Air in the cylinder is compressed to a very small volume, and, 
as a consequence, the cylinder temperature at the end of the compression stroke is 
very high. At this point, fuel is injected into the cylinder. The temperature is high 
enough for the air–fuel mixture to ignite without the assistance of a spark plug. 
Diesel engines are more efficient than gasoline engines because of their greater 
compression ratios and resulting higher combustion temperatures.

 Example 21.5    Efficiency of the Otto Cycle

Show that the thermal efficiency of an engine operating in an idealized Otto cycle (see Figs. 21.11 and 21.12) is given by 
Equation 21.9. Treat the working substance as an ideal gas.

S O L U T I O N

Conceptualize  Study Figures 21.11 and 21.12 to make sure you understand the working of the Otto cycle.

Categorize  As seen in Figure 21.12, we categorize the processes in the Otto cycle as isovolumetric and adiabatic.

Analyze  Model the energy input and output as occurring 
by heat in processes B S C and D S A. (In reality, most of 
the energy enters and leaves by matter transfer as the air–
fuel mixture enters and leaves the cylinder.) Use Equation 
20.23 to find the energy transfers by heat for these pro-
cesses, which take place at constant volume:

B S C  |Q h | 5 nCV (TC 2 TB)

D S A  |Q c | 5 nCV (TD 2 TA)

Substitute these expressions into Equation 21.2: (1)   e 5 1 2
uQ cu

uQ hu
5 1 2

TD 2 TA

TC 2 TB

Apply Equation 20.40 to the adiabatic processes A S B 
and C S D:

A S B TAVA
g21 5 TBVB

g21

C S D TCVC
g21 5 TDVD

g21

Solve these equations for the temperatures TA and TD,  
noting that VA 5 VD 5 V1 and VB 5 VC 5 V2:

(2)   TA 5 TBSVB

VA
Dg21

5 TBSV2

V1
Dg21

(3)   TD 5 TCSVC

VD
Dg21

5 TCSV2

V1
Dg21

Subtract Equation (2) from Equation (3) and rearrange: (4)   
TD 2 TA

TC 2 TB

5 SV2

V1
Dg21

Substitute Equation (4) into Equation (1): e 5 1 2
1

sV1yV2d
g21

Finalize  This final expression is Equation 21.9.
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   21.6    Entropy
The zeroth law of thermodynamics involves the concept of temperature, and 
the first law involves the concept of internal energy. Temperature and internal 
energy are both state variables; that is, the value of each depends only on the 
thermodynamic state of a system, not on the process that brought it to that state. 
Another state variable—this one related to the second law of thermodynamics—
is entropy. 

Entropy was originally formulated as a useful concept in thermodynamics. Its 
importance grew, however, as the field of statistical mechanics developed. In sta-
tistical mechanics, the behavior of a substance is described in terms of the sta-
tistical behavior of its atoms and molecules, as we did with our study of kinetic 
theory in Chapter 20. The analytical techniques of statistical mechanics provide 
an alternative means of interpreting entropy and a more global significance to 
the concept. 

We will develop our understanding of entropy by first considering some non-
thermodynamic systems, such as a pair of dice and poker hands. We will then 
expand on these ideas and use them to understand the concept of entropy as 
applied to thermodynamic systems.

We begin this process by distinguishing between microstates and macrostates of a 
system. A microstate is a particular configuration of the individual constituents of 
the system. A macrostate is a description of the system’s conditions from a macro-
scopic point of view. 

For any given macrostate of the system, a number of microstates are possible. 
For example, the macrostate of a 4 when a pair of six-sided dice are rolled can be 
formed from the possible microstates 1–3, 2–2, and 3–1. The macrostate of 2 has 
only one microstate, 1–1. It is assumed all microstates are equally probable. We 
can compare the two macrostates just mentioned in three ways. (1) Uncertainty: If 
we know that a macrostate of 4 exists, there is some uncertainty as to the micro-
state that exists, because there are multiple microstates that will result in a 4. In 
comparison, there is lower uncertainty (in fact, zero uncertainty) for a macrostate 
of 2 because only one microstate is possible. (2) Choice: There are more choices of 
microstates for a 4 than for a 2. (3) Probability: The macrostate of 4 has a higher 
probability than a macrostate of 2 because there are more ways (microstates) of 
achieving a 4. The notions of uncertainty, choice, and probability are central to the 
concept of entropy, as we discuss below.

Let’s look at another example related to a five-card poker hand. There is only one 
microstate associated with the macrostate of a “royal flush” of five spades, laid out 
in order from ten to ace (Fig. 21.13a). Figure 21.13b shows another poker hand. The 
macrostate here is “worthless hand.” The particular hand (the microstate) in Fig-
ure 21.13b and the hand in Figure 21.13a are equally probable. There are, however, 

Figure 21.13  (a) A royal flush 
has low probability of occurring. 
(b) A worthless poker hand, one 
of many. a

©
 C

en
ga

ge

b

©
 C

en
ga

ge

PitfaLL Prevention 21.4
Entropy Is Abstract Entropy is 
one of the most abstract notions 
in physics, so follow the discus-
sion in this and the subsequent 
sections very carefully. Do not 
confuse energy with entropy. Even 
though the names sound similar, 
they are very different concepts. 
On the other hand, energy and 
entropy are intimately related, as 
we shall see in this discussion.
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many other hands similar in value to that in Figure 21.13b; that is, there are many 
microstates that also qualify as worthless hands. If you, as a poker player, are told 
your opponent holds a macrostate of a royal flush in spades, there is zero uncertainty 
as to what five cards are in the hand, only one choice of what those cards are, and 
low probability that the hand actually occurred. In contrast, if you are told that your 
opponent has the macrostate of “worthless hand,” there is high uncertainty as to what 
the five cards are, many choices of what they could be, and a high probability that a 
worthless hand occurred. Another variable in poker, of course, is the value of the 
hand, related to the probability: the higher the probability, the lower the value. The 
important point to take away from this discussion is that uncertainty, choice, and 
probability are related in these situations: if one is high, the others are high, and 
vice versa.6

For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, and probability in the system. Consider Configuration 1 (a 
macrostate) in which all the oxygen molecules in the air in your room are located 
in the west half of the room and the nitrogen molecules in the east half. Compare 
that macrostate to the more common Configuration 2, in which the oxygen and 
nitrogen molecules are distributed uniformly throughout the room. Configuration 
2 has the higher uncertainty as to where the molecules are located because they 
could be anywhere, not just in one-half of the room according to the type of mole-
cule. Configuration 2 also represents more choices as to where to locate molecules. 
It also has a much higher probability of occurring; have you ever noticed your half 
of the room suddenly being empty of oxygen? Therefore, Configuration 2 repre-
sents a higher entropy.

For systems of dice and poker hands, the comparisons between probabilities for 
various macrostates involve relatively small numbers. For example, a macrostate of 
a 4 on a pair of dice is only three times as probable as a macrostate of 2. When we 
are talking about a macroscopic thermodynamic system containing on the order 
of Avogadro’s number of molecules, however, the ratios of probabilities can be 
astronomical.

Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown 
in Figure 21.14a as a result of random motion is 1

2. If there are two molecules as 
shown in Figure 21.14b, the probability of both being in the left part is _12+2, or 1 
in 4. If there are three molecules (Fig. 21.14c), the probability of them all being 
in the left portion at the same moment is _12+3, or 1 in 8. For 100 independently 
moving molecules, the probability that the 50 oxygen molecules will be found in 
the left part at any moment is _12+50. Likewise, the probability that the remaining 

6Another way of describing macrostates is by means of “missing information.” For high-probability macrostates with 
many microstates, there is a large amount of missing information, meaning we have very little information about 
what microstate actually exists.

PitfaLL Prevention 21.5 
Entropy Is for Thermodynamic 
Systems We are not applying the 
word entropy to describe systems 
of dice or cards. We are only dis-
cussing dice and cards to set up 
the notions of microstates, mac-
rostates, uncertainty, choice, and 
probability. Entropy can only be 
used to describe thermodynamic 
systems that contain many par-
ticles, allowing the system to store 
energy as internal energy.

PitfaLL Prevention 21.6 
Entropy and Disorder Some text-
book treatments of entropy relate 
entropy to the disorder of a system. 
This approach has some merit. 
For example, the poker hand in 
Figure 21.13b is more disordered 
than the one in Figure 21.13a. 
The approach is not entirely suc-
cessful, however. For example, 
consider two samples of the 
same solid material at the same 
temperature. One sample has 
volume V and the other volume 
2V. The larger sample has higher 
entropy than the smaller one sim-
ply because there are more mol-
ecules in it. But there is no sense 
in which it is more disordered 
than the smaller sample. We will 
not use the disorder approach 
in this text, but watch for it in 
other sources.

b

c

a
Figure 21.14 Possible distribu-
tions of identical molecules in a 
container. The colors used here 
exist only to allow us to distin-
guish among the molecules.  
(a) One molecule in a container 
has a 1-in-2 chance of being on 
the left side. (b) Two molecules 
have a 1-in-4 chance of being on 
the left side at the same time.  
(c) Three molecules have a 1-in-8 
chance of being on the left side  
at the same time.
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 Conceptual Example 21.6  Let’s Play Marbles!

Suppose you have a bag of 100 marbles of which 50 are red and 50 are green. You are allowed to draw four marbles from 
the bag according to the following rules. Draw one marble, record its color, and return it to the bag. Shake the bag and 
then draw another marble. Continue this process until you have drawn and returned four marbles. What are the possible 
macrostates for this set of events? What is the most likely macrostate? What is the least likely macrostate?

S O L U T I O N

Because each marble is returned to the bag 
before the next one is drawn and the bag is then 
shaken,  the probability of drawing a red marble 
is always the same as the probability of drawing a 
green one. All the possible microstates and macro-
states are shown in Table 21.1. As this table indi-
cates, there is only one way to draw a macrostate 
of four red marbles, so there is only one microstate 
for that macrostate. There are, however, four pos-
sible microstates that correspond to the macro-
state of one green marble and three red marbles, 
six microstates that correspond to two green mar-
bles and two red marbles, four microstates that correspond to three green marbles and one red marble, and one microstate that 
corresponds to four green marbles. The most likely macrostate—two red marbles and two green marbles—corresponds to the 
largest number of choices of microstates, and, therefore, the most uncertainty as to what the exact microstate is. The least likely 
macrostates—four red marbles or four green marbles—correspond to only one choice of microstate and, therefore, zero uncer-
tainty. There is no uncertainty for the least likely states: we know the colors of all four marbles.

 tabLe 21.1  Possible Results of Drawing Four Marbles from a Bag

Macrostate Possible Microstates
Total Number 
of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, 6

RGGR, GRGR, GGRR
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

   21.7    Entropy in Thermodynamic Systems
We have investigated the notions of uncertainty, number of choices, and probability 
for some non-thermodynamic systems such as dice and cards, as well as for a small 
system of 100 oxygen and nitrogen molecules. We have argued that the concept of 
entropy can be related to these notions for macroscopic thermodynamic systems. 
In our discussion of entropy, there are two things we have not done yet: (1) indicate 
how to evaluate entropy numerically, and (2) discuss entropy for a macroscopic 
system with a huge number of particles. Both of these were performed through sta-
tistical means by Boltzmann in the 1870s and the numerical evaluation of entropy 
appears in its currently accepted form as

 S 5 kB ln W (21.10)

where kB is Boltzmann’s constant. Boltzmann intended W, standing for Wahrschein-
lichkeit, the German word for probability, to be proportional to the probability  

50 nitrogen molecules will be found in the right part at any moment is _12+50. 
Therefore, the probability of finding this oxygen–nitrogen separation as a result
of random motion is the product _12+50_12+50 5 _12+100, which corresponds to about 1 
in 1030. When this calculation is extrapolated from 100 molecules to the number 
in 1 mol of gas (6.02 3 1023), the separated arrangement is found to be extremely 
improbable!

Q UiCK QUiz 21.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are  
associated with this macrostate?
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that a given macrostate exists. It is equivalent to let W be the number of micro-
states associated with the macrostate, so we can interpret W as representing 
the number of “ways” of achieving the macrostate. Therefore, macrostates with 
larger numbers of microstates have higher probability and, equivalently, higher 
entropy. Notice that the units of entropy are those of Boltzmann’s constant, J/K.

In the kinetic theory of gases, gas molecules are represented as particles mov-
ing randomly. Suppose the gas is confined to a volume V. For a uniform distribu-
tion of gas in the volume, there are a large number of equivalent microstates, 
and the entropy of the gas can be related to the number of microstates cor-
responding to a given macrostate. Let us count the number of microstates by 
considering the variety of molecular locations available to the molecules. Let us 
assume each molecule occupies some microscopic volume Vm . The total number 
of possible locations of a single molecule in a macroscopic volume V is the ratio 
w = V/Vm , which is a huge number. We use lowercase w here to represent the 
number of ways a single molecule can be placed in the volume or the number of 
microstates for a single molecule, which is equivalent to the number of available 
locations. We assume the probabilities of a molecule occupying any of these loca-
tions are equal. As more molecules are added to the system, the number of pos-
sible ways the molecules can be positioned in the volume multiplies, as we saw 
in Figure 21.14. For example, if you consider two molecules, for every possible 
placement of the first, all possible placements of the second are available. There-
fore, there are w ways of locating the first molecule, and for each way, there are 
w ways of locating the second molecule. The total number of ways of locating 
the two molecules is W 5 w 3 w 5 w 2 5 (V/Vm)2. (Uppercase W represents the 
number of ways of putting multiple molecules into the volume and is not to be 
confused with work.)

Now consider placing N molecules of gas in the volume V. Neglecting the very 
small probability of having two molecules occupy the same location, each molecule 
may go into any of the V/Vm locations, and so the number of ways of locating N mol-
ecules in the volume becomes W 5 w N 5 (V/Vm)N. Therefore, the spatial part of the 
entropy of the gas, from Equation 21.10, is

 S 5 kB ln W 5 kB ln SV
Vm
DN

5 NkB ln SV
Vm
D 5 nR ln SV

Vm
D (21.11)

We will use this expression in the next section as we investigate changes in entropy 
for processes occurring in thermodynamic systems.

Notice that we have indicated Equation 21.11 as representing only the spatial por-
tion of the entropy of the gas. There is also a temperature-dependent portion of 
the entropy that the discussion above does not address. For example, imagine an 
isovolumetric process in which the temperature of the gas increases. Equation 21.11 
above shows no change in the spatial portion of the entropy for this situation. There 
is a change in entropy, however, associated with the increase in temperature. We 
can understand this by appealing again to a bit of quantum physics. Recall from 
Section 20.3 that the energies of the gas molecules are quantized. When the tem-
perature of a gas changes, the distribution of energies of the gas molecules changes 
according to the Boltzmann distribution law, discussed in Section 20.5. Therefore, 
as the temperature of the gas increases, there is more uncertainty about the partic-
ular microstate that exists as gas molecules distribute themselves into higher avail-
able quantum states. 

Thermodynamic systems are constantly in flux, changing continuously from one 
microstate to another. If the system is in equilibrium, a given macrostate exists, 
described by variables such as P, V, T, and Eint and the system fluctuates from one 
microstate associated with that macrostate to another. This change is unobserv-
able because we are only able to detect the macrostate. Equilibrium states have 
tremendously higher probability than nonequilibrium states, so it is highly unlikely 
that an equilibrium state will spontaneously change to a nonequilibrium state. For 
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example, we do not observe a spontaneous split into the oxygen–nitrogen separa-
tion discussed in Section 21.6.

What happens, however, if the system begins in a low-probability macrostate? 
What if the room begins with an oxygen–nitrogen separation? In this case, the sys-
tem will progress from this low-probability macrostate to the much-higher proba-
bility state: the gases will disperse and mix throughout the room. Because entropy 
is related to probability, a spontaneous increase in entropy, such as in the latter situ-
ation, is natural. If the oxygen and nitrogen molecules were initially spread evenly 
throughout the room, the entropy of the mixture would decrease if the spontane-
ous splitting of molecules occurred.

One way of conceptualizing a change in entropy is to relate it to energy spreading. 
A natural tendency is for energy to undergo spatial spreading in time, representing 
an increase in entropy. If a basketball is dropped onto a floor, it bounces several 
times and eventually comes to rest. The initial gravitational potential energy in the 
basketball–Earth system has been transformed to internal energy in the ball and 
the floor. That energy is spreading outward by heat into the air and into regions of 
the floor farther from the drop point. In addition, some of the energy has spread 
throughout the room by sound. It would be unnatural for energy in the room and 
floor to reverse this motion and concentrate into the stationary ball so that it spon-
taneously begins to bounce again.

In the adiabatic free expansion discussed in Section 21.3, the spreading of 
energy accompanies the spreading of the molecules as the gas rushes into the evac-
uated half of the container. If a warm object is placed in thermal contact with a 
cool object, energy transfers from the warm object to the cool one by heat, repre-
senting a spread of internal energy until it is distributed more evenly between the 
two objects.

Now consider a mathematical representation of this spreading of energy or, 
equivalently, the change in entropy. The original formulation of entropy in ther-
modynamics involves the transfer of energy by heat during a reversible process. 
Consider any infinitesimal process in which a system changes from one equilibrium 
state to another. If dQ r is the amount of energy transferred by heat when the system 
follows a reversible path between the states, the change in entropy dS can be shown 
to be equal to this amount of energy divided by the absolute temperature of the 
system:

 dS 5
dQ r

T
 (21.12)

We have assumed the temperature is constant because the process is infinitesimal. 
Because entropy is a state variable, the change in entropy during a process depends 
only on the endpoints and therefore is independent of the actual path followed. Con-
sequently, the entropy change for an irreversible process can be determined by cal-
culating the entropy change for a reversible process that connects the same initial and 
final states.

Equation 21.10 defines entropy statistically. Evaluating W, however, is extremely 
difficult for a macroscopic system with a huge number of particles, on the order of 
Avogadro’s number. On the other hand, Equation 21.12 defines changes in entropy 
in terms of macroscopic quantities, Q  r and T. Therefore, this equation is more prac-
tical than Equation 21.10.

The subscript r on the quantity dQ r is a reminder that the transferred energy is 
to be measured along a reversible path even though the system may actually have 
followed some irreversible path. When energy is absorbed by the system, dQ r is posi-
tive and the entropy of the system increases. When energy is expelled by the system, 
dQ r is negative and the entropy of the system decreases. Notice that Equation 21.12 
does not define entropy but rather the change in entropy. Hence, the meaningful 
quantity in describing a process is the change in entropy.

Change in entropy for an 
 infinitesimal process
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To calculate the change in entropy for a finite process, first recognize that T 
is generally not constant during the process. Therefore, we must integrate 
Equa tion 21.12:

 DS 5 #
f

i
 dS 5 #

f

i

dQ r

T
 (21.13)

As with an infinitesimal process, the change in entropy DS of a system going 
from one state to another has the same value for all paths connecting the two states. 
That is, the finite change in entropy DS of a system depends only on the properties 
of the initial and final equilibrium states. Therefore, we are free to choose any 
convenient reversible path over which to evaluate the entropy in place of the actual 
path as long as the initial and final states are the same for both paths. This point is 
explored further on in this section.

From Equation 21.10, we see that a change in entropy is represented in the 
Boltzmann formulation as

 DS 5 kB lnSWf

Wi
D (21.14)

where Wi and Wf represent the initial and final numbers of microstates, respec-
tively, for the initial and final configurations of the system. If Wf . Wi , the final 
state is more probable than the initial state (there are more choices of microstates), 
and the entropy increases. As mentioned above, however, evaluating W is extremely 
difficult for macroscopic systems.

Q UiCK QUiz 21.5  An ideal gas is taken from an initial temperature Ti to a 
higher final temperature Tf along two different reversible paths as shown in 
Figure 21.15. Path A is at constant pressure, and path B is at constant volume. 
What is the relation between the entropy changes of the gas for these paths? 
(a) DSA . DSB  (b) DSA 5 DSB (c) DSA , DSB

Q UiCK QUiz 21.6 True or False: The entropy change in an adiabatic process 
must be zero because Q 5 0.

   Change in entropy for a 
finite process

Figure 21.15 (Quick Quiz 21.5) 
An ideal gas is taken from tem-
perature Ti to Tf via two different 
paths.

P

V

A

B

Ti

Isotherms

Tf

 Example 21.7    Change in Entropy: Melting

A solid that has a latent heat of fusion Lf melts at a temperature Tm . Calculate the change in entropy of this substance when 
a mass m of the substance melts.

S O L U T I O N

Conceptualize  We can choose any convenient reversible path to follow that connects the initial and final states. It is not neces-
sary to identify the process or the path because, whatever it is, the effect is the same: energy enters the substance by heat and 
the substance melts. The mass m of the substance that melts is equal to Dm, the change in mass of the higher-phase (liquid) 
substance.

Categorize  Because the melting takes place at a fixed temperature, we categorize the process as isothermal.

Analyze  Use Equation 19.8 in Equation 21.13, noting   
that the temperature remains fixed:

DS 5 #dQ r

T
5

1
Tm

 # dQ r 5
Q r

Tm

5
Lf Dm

Tm

 5 
Lf m

Tm

Finalize  Notice that Dm is positive so that DS is positive, representing that energy is added to the substance.

entropy Change in a Carnot Cycle
Now that we have some understanding of entropy, let’s consider the changes in 
entropy that occur in a Carnot heat engine that operates between the temperatures 
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Vacuum

Gas at Ti in
volume Vi

Insulating
wall

Membrane

When the membrane 
is ruptured, the gas 
will expand freely and 
irreversibly into the 
full volume.

Figure 21.16  Adiabatic free 
expansion of a gas. The container 
is thermally insulated from its sur-
roundings; therefore, Q 5 0.

Tc and Th. In one cycle, the engine takes in energy |Q h | from the hot reservoir and 
expels energy |Q c | to the cold reservoir. These energy transfers occur only dur-
ing the reversible, isothermal portions of the Carnot cycle; therefore, the constant 
temperature can be brought out in front of the integral sign in Equation 21.13. 
The integral then simply has the value of the total amount of energy transferred by 
heat. During the two  adiabatic processes, for which Q 5 0, the entropy changes are 
zero because these processes are reversible. Therefore, the total change in entropy 
for one cycle is

 DS 5
uQ hu
Th

2
uQ cu

Tc

 (21.15)

where the minus sign represents that energy is leaving the engine at temperature 
Tc . In Example 21.3, we showed that for a Carnot engine,

 
uQ c 

u

uQ hu
5

Tc

Th

 

Using this result in Equation 21.15, we find that the total change in entropy for a 
Carnot engine operating in a cycle is zero:

 DS 5 0 

Now consider a system taken through an arbitrary (non-Carnot) reversible cycle. 
Because entropy is a state variable—and hence depends only on the properties of 
a given equilibrium state—we conclude that DS 5 0 for any reversible cycle. In gen-
eral, we can write this condition as

 $ 
dQ r

T
5 0 sreversible cycled (21.16)

where the symbol r indicates that the integration is over a closed path.

entropy Change in a free expansion
Let’s again consider the adiabatic free expansion of a gas occupying an initial vol-
ume Vi (Fig. 21.16). In this situation, a membrane separating the gas from an evacu-
ated region is broken and the gas expands to a volume Vf . This process is irreversible; 
the gas would not spontaneously crowd into half the volume after filling the entire 
volume. What is the change in entropy of the gas during this process? The process 
is neither reversible nor quasi-static. As argued in Section 21.3, the initial and final 
temperatures of the gas are the same.

To apply Equation 21.13, we cannot take Q 5 0, the value for the irreversible 
process, but must instead find Q r ; that is, we must find an equivalent reversible 
path that shares the same initial and final states. A simple choice is an isothermal, 
reversible expansion in which the gas pushes slowly against a piston while energy 
enters the gas by heat from a reservoir to hold the temperature constant. Because T 
is constant in this process, Equation 21.13 gives

 DS 5 #
f

i
 
dQ r

T
5

1
T

 #
f

i
 dQ r 

For an isothermal process, the first law of thermodynamics specifies that #
f

i  dQ r is 
equal to the negative of the work done on the gas during the expansion from Vi 
to Vf , which is given by Equation 19.12. Using this result, we find that the entropy 
change for the gas is

 DS 5 nR lnSVf

Vi
D (21.17)

Because Vf . Vi , we conclude that DS is positive. This positive result indicates that 
the entropy of the gas increases as a result of the irreversible, adiabatic expansion.
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It is easy to see that the energy has spread after the expansion. Instead of being 
concentrated in a relatively small space, the molecules and the energy associated 
with them are scattered over a larger region. In addition, there are more choices of 
the locations of the molecules, higher uncertainty as to their locations, and a higher 
probability for the molecules to be spread throughout the volume. The probability 
is indeed low for the molecules, in the absence of the membrane, to concentrate 
spontaneously in the lower half of the container.

entropy Change in thermal Conduction
Let us now consider a system consisting of a hot reservoir and a cold reservoir that 
are in thermal contact with each other and isolated from the rest of the Universe. 
A process occurs during which energy Q is transferred by heat from the hot res-
ervoir at temperature Th to the cold reservoir at temperature Tc . The process as 
described is irreversible (energy would not spontaneously flow from cold to hot), so 
we must find an equivalent reversible process. The overall process is a combination 
of two processes: energy leaving the hot reservoir and energy entering the cold res-
ervoir. We will calculate the entropy change for the reservoir in each process and 
add to obtain the overall entropy change.

Consider first the process of energy entering the cold reservoir. Although the 
reservoir has absorbed some energy, the temperature of the reservoir has not 
changed. The energy that has entered the reservoir is the same as that which would 
enter by means of a reversible, isothermal process. The same is true for energy leav-
ing the hot reservoir.

Because the cold reservoir absorbs energy Q , its entropy increases by Q /Tc . At 
the same time, the hot reservoir loses energy Q , so its entropy change is 2Q /Th. 
Therefore, the change in entropy of the system is 

 DS 5
Q

Tc

1
2Q

Th

5 Q S 1
Tc

2
1
Th
D . 0 (21.18)

This increase is consistent with our interpretation of entropy changes as rep-
resenting the spreading of energy. In the initial configuration, the hot reservoir 
has excess internal energy relative to the cold reservoir. The process that occurs 
spreads the energy into a more equitable distribution between the two reservoirs.

 Example 21.8    Adiabatic Free Expansion: Revisited

Let’s verify that the macroscopic and microscopic approaches to the calculation of entropy lead to the same conclusion for 
the adiabatic free expansion of an ideal gas. Suppose the ideal gas in Figure 21.16 expands to four times its initial volume. 
As we have seen for this process, the initial and final temperatures are the same.

(A)  Using a macroscopic approach, calculate the entropy change for the gas.

S O L U T I O N

Conceptualize  Look back at Figure 21.16, which is a diagram of the system before the adiabatic free expansion. Imagine 
breaking the membrane so that the gas moves into the evacuated area. The expansion is irreversible.

Categorize  We can replace the irreversible process with a reversible isothermal process between the same initial and final 
states. This approach is macroscopic, so we use a thermodynamic variable, in particular, the volume V.

Analyze  Use Equation 21.17 to evaluate the entropy change: DS 5 nR ln SVf

Vi
D 5 nR ln S4Vi

Vi
D 5 nR ln 4

(B)  Using statistical considerations, calculate the change in entropy for the gas and show that it agrees with the answer you 
obtained in part (A).

continued
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21.8 c o n t i n u e d

S O L U T I O N

Categorize This approach is microscopic, so we use variables related to the individual molecules.

Analyze As in the discussion leading to Equation 21.11, 
the number of microstates available to a single molecule 
in the initial volume Vi is wi 5 Vi /Vm , where Vi is the initial 
volume of the gas and Vm is the microscopic volume occu-
pied by the molecule. Use this number to find the number 
of available microstates for N molecules:

Wi 5 wi
N 5 S Vi

Vm
DN

Find the number of available microstates for N molecules 
in the final volume Vf 5 4Vi :

Wf 5 S Vf

Vm
DN

5 S4Vi

Vm
DN

Use Equation 21.14 to find the entropy change: DS 5 k B ln SWf

Wi
D 

 5 k B ln S4Vi

Vi
DN

5 k B ln s4N d 5 Nk B ln 4 5 nR ln 4

Finalize The answer is the same as that for part (A), which 
dealt with macroscopic parameters.

W H A T  I F ?  In part (A), we used Equation 21.17, which was 
based on a reversible isothermal process connecting the initial 
and final states. Would you arrive at the same result if you chose 
a different reversible process?

Answer  You must arrive at the same result because entropy 
is a state variable. For example, consider the two-step process 
in Figure 21.17: a reversible adiabatic expansion from Vi to 4Vi 
(A  S B) during which the temperature drops from T1 to T2 
and a reversible isovolumetric process (B S C) that takes the 
gas back to the initial temperature T1. During the reversible 
adiabatic process, DS 5 0 because Q r 5 0.

For the reversible isovolumetric process (B S C), use 
Equation 21.13:

DS 5 #
f

i
 
dQ r

T
5 #

T1

T2

 
nCV dT

T
5 nCV ln ST1

T2
D

Find the ratio of temperature T1 to T2 from Equation 
20.40 for the adiabatic process:

T1

T2

5 S4Vi

Vi
Dg21

5 s4dg21

Substitute to find DS: DS 5 nCV  ln s4dg21 5 nCV 
sg 2 1d ln 4

5 nCV SCP

CV

2 1D ln 4 5 nsCP 2 CV  
d ln 4 5 nR ln 4

We do indeed obtain the exact same result for the entropy change.

  21.8   Entropy and the Second Law
If we consider a system and its surroundings to include the entire Universe, the 
Universe is always moving toward a higher-probability macrostate, corresponding 
to the continuous spreading of energy. An alternative way of stating this behavior is 
yet another wording of the second law of thermodynamics:

The entropy of the Universe increases in all real processes.
Entropy statement of

the second law of 
thermodynamics

V

P

Vi 4Vi

B

C

A

T1
T2

Figure 21.17  (Example 
21.8) A gas expands to  
four times its initial volume 
and back to the initial 
temperature by means of a 
two-step process.
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This statement can be shown to be equivalent to the Kelvin-Planck and Clausius 
statements.

Let us show this equivalence first for the Clausius statement. Looking at 
Figure  21.5, we see that, if the heat pump operates in the manner shown in the 
figure, energy is spontaneously flowing from the cold reservoir to the hot reser-
voir without an input of energy by work. As a result, the energy in the system is not 
spreading evenly between the two reservoirs, but is concentrating in the hot reser-
voir. Consequently, if the Clausius statement of the second law is not true, then the 
entropy statement is also not true, demonstrating their equivalence.

For the equivalence of the Kelvin–Planck statement, consider Figure 21.18, which 
shows the impossible engine of Figure 21.3 connected to a heat pump operating 
between the same reservoirs. The output work of the engine is used to drive the 
heat pump. The net effect of this combination is that energy leaves the cold reser-
voir and is delivered to the hot reservoir without the input of work. (The work done 
by the engine on the heat pump is internal to the system of both devices.) This is 
forbidden by the Clausius statement of the second law, which we have shown to be 
equivalent to the entropy statement. Therefore, the Kelvin–Planck statement of the 
second law is also equivalent to the entropy statement.

When dealing with a system that is not isolated from its surroundings, remember 
that the increase in entropy described in the second law is that of the system and its 
surroundings. When a system and its surroundings interact in an irreversible pro-
cess, the increase in entropy of one is greater than the decrease in entropy of the 
other. Hence, the change in entropy of the Universe must be greater than zero for 
an irreversible process and equal to zero for a reversible process. 

We can check this statement of the second law for the calculations of entropy 
change that we made in Section 21.7. Consider first the entropy change in a free 
expansion, described by Equation 21.17. Because the free expansion takes place 
in an insulated container, no energy is transferred by heat from the surroundings. 
Therefore, Equation 21.17 represents the entropy change of the entire Universe. 
Because Vf  . Vi , the entropy change of the Universe is positive, consistent with the 
second law.

Now consider the entropy change in thermal conduction, described by Equa-
tion 21.18. Let each reservoir be half the Universe. (The larger the reservoir, the 
better is the assumption that its temperature remains constant!) Then the entropy 
change of the Universe is represented by Equation 21.18. Because Th . Tc , this 
entropy change is positive, again consistent with the second law. The positive entropy 
change is also consistent with the notion of energy spreading. The warm portion 
of the Universe has excess internal energy relative to the cool portion. Thermal 
conduction represents a spreading of the energy more equitably throughout the 
Universe.

Finally, let us look at the entropy change in a Carnot cycle, given by Equa-
tion 21.15. The entropy change of the engine itself is zero. The entropy change of 
the reservoirs is

 DS 5
uQ cu

Tc

2
uQ hu
Th

 

In light of Equation 21.7, this entropy change is also zero. Therefore, the entropy 
change of the Universe is only that associated with the work done by the engine. 
A portion of that work will be used to change the mechanical energy of a system 
external to the engine: speed up the shaft of a machine, raise a weight, and so on. 
There is no change in internal energy of the external system due to this portion 
of the work, or, equivalently, no energy spreading, so the entropy change is again 
zero. The other portion of the work will be used to overcome various friction forces 
or other nonconservative forces in the external system. This process will cause an 
increase in internal energy of that system. That same increase in internal energy 
could have happened via a reversible thermodynamic process in which energy Q r is 

Hot reservoir
at Th

Q c

Heat
pump

Qh

Cold reservoir
at Tc

Heat
engine

Weng

Q c �Weng

Figure 21.18 The impossible 
engine of Figure 21.3 transfers 
energy by work to a heat pump 
operating between two energy res-
ervoirs. This situation is forbidden 
by the Clausius statement of the 
second law of thermodynamics.
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The second law of thermodynamics states that when real (irre-
versible) processes occur, there is a spatial spreading of energy. 
This spreading of energy is related to a thermodynamic state 
variable called entropy S. Therefore, yet another way the second 
law can be stated is as follows:
●  The entropy of the Universe increases in all real processes.

transferred by heat, so the entropy change associated with that part of the work is 
positive. As a result, the overall entropy change of the Universe for the operation of 
the Carnot engine is positive, again consistent with the second law.

Ultimately, because real processes are irreversible, the entropy of the Universe 
should increase steadily and eventually reach a maximum value. At this value, 
assuming that the second law of thermodynamics, as formulated here on Earth, 
applies to the entire expanding Universe, the Universe will be in a state of uniform 
temperature and density. The total energy of the Universe will have spread more 
evenly throughout the Universe. All physical, chemical, and biological processes 
will have ceased at this time. This gloomy state of affairs is sometimes referred to as 
the heat death of the Universe.

Summary
 › Definitions

The thermal efficiency e of a heat engine is

 e ;
Weng

uQ hu
5

uQ hu 2 uQ cu

uQ hu
5 1 2

uQ cu

uQ hu
 (21.2)

The microstate of a system is the description of 
its individual components. The macrostate is a 
description of the system from a macroscopic 
point of view. A given macrostate can have many 
microstates.

In a reversible process, the system can be returned 
to its initial conditions along the same path on a PV 
diagram, and every point along this path is an equi-
librium state. A process that does not satisfy these 
requirements is irreversible.

 › Concepts and Principles

A heat engine is a device that takes in energy by heat and, 
operating in a cyclic process, expels a fraction of that 
energy by means of work. The net work done by a heat 
engine in carrying a working substance through a cyclic 
process (DE int 5 0) is

 Weng 5 |Q h | 2 |Q c | (21.1)

where |Q h | is the energy taken in from a hot reservoir and |Q c | 
is the energy expelled to a cold reservoir.

The thermal efficiency of a heat engine operating in the Car-
not cycle is

 e C 5 1 2
Tc

Th

 (21.8)

Two ways the second law of thermodynamics can be stated 
are as follows:
●  It is impossible to construct a heat engine that, operating in 

a cycle, produces no effect other than the input of energy 
by heat from a reservoir and the performance of an equal 
amount of work (the Kelvin–Planck statement).

●  It is impossible to construct a cyclical machine whose sole 
effect is to transfer energy continuously by heat from one 
object to another object at a higher temperature without the 
input of energy by work (the Clausius statement).

Carnot’s theorem states that no real heat engine operating 
(irreversibly) between the temperatures Tc and Th can be 
more efficient than an engine operating reversibly in a Car-
not cycle between the same two temperatures.

The macroscopic state of a system that has a large num-
ber of microstates has three qualities that are all related:  
(1) uncertainty: because of the large number of microstates, 
there is a large uncertainty as to which one actually exists; 
(2) choice: again because of the large number of microstates, 
there is a large number of choices from which to select as to 
which one exists; (3) probability: a macrostate with a large 
number of microstates is more likely to exist than one with 
a small number of microstates. For a thermodynamic sys-
tem, all three of these can be related to the state variable 
of entropy.

From a microscopic viewpoint, the entropy of a given macrostate is 
defined as

 S ; k B ln W (21.10)

where kB is Boltzmann’s constant and W is the number of microstates of 
the system corresponding to the macrostate.
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The change in entropy dS of a system during a process 
between two infinitesimally separated equilibrium states is

 dS 5
dQ r

T
 (21.12)

where dQ r is the energy transfer by heat for the system 
for a reversible process that connects the initial and 
final states.

The change in entropy of a system during an arbitrary finite pro-
cess between an initial state and a final state is

 DS 5 #
f

i
 
dQ r

T
 (21.13)

The value of DS for the system is the same for all paths connect-
ing the initial and final states. The change in entropy for a sys-
tem undergoing any reversible, cyclic process is zero.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. An engine operates in a Carnot cycle as follows. At point A in 
the cycle, 2.34 mol of a monatomic ideal gas has a pressure 
of 1 400 kPa, a volume of 10.0 L, and a temperature of 720 K. 
The gas expands isothermally to point B and then expands 
adiabatically to point C, where its volume is 24.0 L. An iso-
thermal compression brings it to point D, where its volume 
is 15.0 L. An adiabatic process returns the gas to point A. 
(a) Fill in the following table with the pressures, volumes, 
and temperatures at each of the four points in the cycle:

Point in Cycle P(kPa) V(L) T(K)

A
B
C
D

(b) Fill in the following table with the energy transfer by heat, 
work done on the gas, and the change in internal energy of 
the gas for each of the four processes in the cycle:

Process in Cycle Q(kJ) W(kJ) DEint (kJ)

A S B

B S C

C S D

D S A

(c) Find the efficiency of the engine from the data in the 
table in part (b). (d) Find the efficiency of the engine from 
the data in the table in part (a).

2. ACTIvITy  If two six-sided dice are rolled, possible results of 
adding up the number of dots on the upper faces range from 
2 to 12. The probabilities of these results vary due to the num-
ber of ways a particular result can be achieved. For example, 
there is only one way that a 2 can be achieved: 1–1. But there 
are six ways to achieve a result of 7: 1–6, 2–5, 3–4, 4–3, 5–2, 
and 6–1. Therefore, a result of 7 is six times more probable 
than a 2. The bar graph in Figure TP21.2 shows the theoretical 
probability of all possible results for two dice. Experimentally, 
if the two dice were thrown 100 times and a histogram of the 
possible results were drawn, it would have a shape very similar 
to this probability graph. (a) What if we throw three dice? What 
will the histogram look like? Do this in your group. Throw 
three dice 100 times and make a histogram of the results. 
How does the shape of the resulting histogram differ from 
the probability curve shown in Figure TP21.2 for two dice? 
Make a theoretical probability graph for three dice like that 

in Figure TP21.2 and compare to your histogram. (b) What if 
you rolled Avogadro’s number of dice? (Don’t try this!) What 
would the histogram look like? (Make a prediction based on 
how the graph for three dice varies from that for two dice.) (c) 
Suppose you laboriously set up Avogadro’s number of dice on 
a table, with all dice having a 1 on their upper face. Then you 
shook the table for a few seconds. When you added up all the 
numbers on the upper faces, what is the most likely result? (d) 
Now imagine shaking the table again. How likely is it that the 
dice could all return to having a 1 on their upper faces? (e) 
What does all this have to do with entropy?

3. ACTIvITy  Let’s consider the various liquids in the table 
below at their boiling points. The table provides the latent 
heat of vaporization of each liquid in kJ/mol (note the units), 
and the boiling point in °C. For each of the liquids, evaluate 
the entropy change of the liquid per mole when it vaporizes 
at the boiling point. What do you notice about the results?

Lv (kJ/mol) Boiling Point (°C)

Polar compounds

HF 25.2 19.7

HCl 16.2 284.8

HI 19.8 235.6

H20 40.7 100

Nonpolar compounds

C3H8 19.0 242.1

C4H10 22.4 20.50

Elements

Hg 54.7 357

Pb 178 1 749

Cl2 20.4 234.0

Br2 30.0 58.8

2
0

2

4

6

3 4 5 6 7
Result of throwing two dice

Probability
relative to

that of
throwing a 2

8 9 10 11 12

1
2

3
4

5
6

5
4

3
2

1

Figure TP21.2
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtion 21.1  Heat Engines and the Second Law  
of Thermodynamics

1. A particular heat engine has a mechanical power output  
of 5.00 kW and an efficiency of 25.0%. The engine expels 
8.00 3 103 J of exhaust energy in each cycle. Find (a) the 
energy taken in during each cycle and (b) the time interval 
for each cycle.

2. The work done by an engine equals one-fourth the energy it 
absorbs from a reservoir. (a) What is its thermal efficiency? 
(b) What fraction of the energy absorbed is expelled to the 
cold reservoir?

3. Suppose a heat engine is connected to two energy reservoirs, 
one a pool of molten aluminum (660°C) and the other a 
block of solid mercury (238.9°C). The engine runs by freez-
ing 1.00 g of aluminum and melting 15.0 g of mercury during 
each cycle. The heat of fusion of aluminum is 3.97 3 105 J/kg; 
the heat of fusion of mercury is 1.18 3 104 J/kg. What is the 
efficiency of this engine?

SeCtion 21.2  Heat Pumps and Refrigerators

4. During each cycle, a refrigerator ejects 625 kJ of energy to 
a high-temperature reservoir and takes in 550 kJ of energy 
from a low-temperature reservoir. Determine (a) the work 
done on the refrigerant in each cycle and (b) the coefficient 
of performance of the refrigerator.

5. A freezer has a coefficient of performance of 6.30. It 
is advertised as using electricity at a rate of 457 kWh/yr. 
(a)  On average, how much energy does it use in a single 
day? (b) On average, how much energy does it remove from 
the refrigerator in a single day? (c) What maximum mass 
of water at 20.0°C could the freezer freeze in a single day? 
Note: One kilowatt-hour (kWh) is an amount of energy 
equal to running a 1-kW appliance for one hour.

6. A heat pump has a coefficient of performance equal to 
4.20 and requires a power of 1.75 kW to operate. (a) How  
much energy does the heat pump add to a home in one 
hour? (b) If the heat pump is reversed so that it acts as an air 
conditioner in the summer, what would be its coefficient of 
performance?

SeCtion 21.4  The Carnot Engine

7. One of the most efficient heat engines ever built is a coal-
fired steam turbine in the Ohio River valley, operating 
between 1 870°C and 430°C. (a) What is its maximum theo-
retical efficiency? (b) The actual efficiency of the engine 
is 42.0%. How much mechanical power does the engine 
deliver if it absorbs 1.40 3 105 J of energy each second from 
its hot reservoir?

8. Why is the following situation impossible? An inventor comes to 
a patent office with the claim that her heat engine, which 
employs water as a working substance, has a thermodynamic 
efficiency of 0.110. Although this efficiency is low compared 
with typical automobile engines, she explains that her 

engine operates between an energy reservoir at room tem-
perature and a water–ice mixture at atmospheric pressure 
and therefore requires no fuel other than that to make the 
ice. The patent is approved, and working prototypes of the 
engine prove the inventor’s efficiency claim.

9. If a 35.0%-efficient Carnot heat engine (Fig. 21.2) is run in 
reverse so as to form a refrigerator (Fig. 21.4), what would be 
this refrigerator’s coefficient of performance?

10. An ideal refrigerator or ideal heat pump is equivalent to a 
Carnot engine running in reverse. That is, energy |Q c| is 
taken in from a cold reservoir and energy |Q h | is rejected 
to a hot reservoir. (a) Show that the work that must be sup-
plied to run the refrigerator or heat pump is

W 5
Th 2 Tc

Tc

uQ cu

  (b) Show that the coefficient of performance (COP) of the 
ideal refrigerator is

COP 5
Tc

Th 2 Tc

11. A heat engine is being designed to have a Carnot efficiency 
of 65.0% when operating between two energy reservoirs. (a) 
If the temperature of the cold reservoir is 20.0°C, what must 
be the temperature of the hot reservoir? (b) Can the actual 
efficiency of the engine be equal to 65.0%? Explain.

12. A power plant operates at a 32.0% efficiency during the 
summer when the seawater used for cooling is at 20.0°C. 
The plant uses 350°C steam to drive turbines. If the plant’s 
efficiency changes in the same proportion as the ideal effi-
ciency, what would be the plant’s efficiency in the winter, 
when the seawater is at 10.0°C?

13. You are working on a summer job at a company that designs 
non-traditional energy systems. The company is working 
on a proposed electric power plant that would make use of 
the temperature gradient in the ocean. The system includes 
a heat engine that would operate between 20.0°C (surface-
water temperature) and 5.00°C (water temperature at a 
depth of about 1 km). (a) Your supervisor asks you to deter-
mine the maximum efficiency of such a system. (b) In addi-
tion, if the electric power output of the plant is 75.0 MW and 
it operates at the maximum theoretically possible efficiency, 
you must determine the rate at which energy is taken in from 
the warm reservoir. (c) From this information, if an electric 
bill for a typical home shows a use of 950 kWh per month, 
your supervisor wants to know how many homes can be pro-
vided with power from this energy system operating at its 
maximum efficiency. (d) As energy is drawn from the warm 
surface water to operate the engine, it is replaced by energy 
absorbed from sunlight on the surface. If the average inten-
sity absorbed from sunlight is 650 W/m2 for 12 daylight hours 
on a clear day, you need to find the area of the ocean surface 
that is necessary for sunlight to replace the energy absorbed 
into the engine. (e) From this information, you need to deter-
mine if there is enough ocean surface on the Earth to use 
such engines to supply the electrical needs for all the homes 
associated with the Earth’s population. Assume the energy 
use for a home in part (c) is an average over the entire planet. 
(f) In view of your results in this problem, your supervisor 

T

V

T

CR

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



  Problems 583

has asked for your conclusion as to whether such a system is 
worthwhile to pursue. Note that the “fuel” (sunlight) is free.

14. A Carnot heat engine operates between temperatures Th 
and Tc . (a) If Th 5 500 K and Tc 5 350 K, what is the effi-
ciency of the engine? (b) What is the change in its efficiency 
for each degree of increase in Th above 500 K? (c) What is 
the change in its efficiency for each degree of change in Tc? 
(d) Does the answer to part (c) depend on Tc? Explain.

15. An electric generating station is designed to have an electric 
output power of 1.40 MW using a turbine with two-thirds the 
efficiency of a Carnot engine. The exhaust energy is trans-
ferred by heat into a cooling tower at 110°C. (a) Find the rate 
at which the station exhausts energy by heat as a function 
of the fuel combustion temperature Th. (b) If the firebox is 
modified to run hotter by using more advanced combustion 
technology, how does the amount of energy exhaust change? 
(c) Find the exhaust power for Th 5 800°C. (d) Find the value 
of Th for which the exhaust power would be only half as large 
as in part (c). (e) Find the value of Th for which the exhaust 
power would be one-fourth as large as in part (c).

16. Suppose you build a two-engine device with the exhaust energy 
output from one heat engine supplying the input energy for a 
second heat engine. We say that the two engines are running in 
series. Let e1 and e2 represent the efficiencies of the two engines. 
(a) The overall efficiency of the two-engine device is defined 
as the total work output divided by the energy put into the first 
engine by heat. Show that the overall efficiency e is given by

e 5 e1 1 e2 2 e1e2

  What If? For parts (b) through (e) that follow, assume the 
two engines are Carnot engines. Engine 1 operates between 
temperatures Th and Ti . The gas in engine 2 varies in tem-
perature between Ti and Tc . In terms of the temperatures, (b) 
what is the efficiency of the combination engine? (c) Does 
an improvement in net efficiency result from the use of two 
engines instead of one? (d) What value of the intermediate 
temperature Ti results in equal work being done by each of 
the two engines in series? (e) What value of Ti results in each 
of the two engines in series having the same efficiency?

17. A heat pump used for heating shown in Figure P21.17 is 
essentially an air conditioner installed backward. It extracts 
energy from colder air outside and deposits it in a warmer 
room. Suppose the ratio of the actual energy entering the 
room to the work done by the device’s motor is 10.0% of the 
theoretical maximum ratio. Determine the energy entering 
the room per joule of work done by the motor given that the 
inside temperature is 20.0°C and the outside temperature 
is 25.00°C.

Outside
Tc

Q c Q h

Inside
Th

Heat
pump

Figure P21.17

SeCtion 21.5  Gasoline and Diesel Engines

Note: For problems in this section, assume the gas in the 
engine is diatomic with g 5 1.40.

18. A gasoline engine has a compression ratio of 6.00.  
(a) What is the efficiency of the engine if it operates in an 
idealized Otto cycle? (b) What If? If the actual efficiency 
is 15.0%, what fraction of the fuel is wasted as a result of 
friction and energy transfers by heat that could be avoided 
in a reversible engine? Assume complete combustion of the 
air–fuel mixture.

19. An idealized diesel engine operates in a cycle known as the 
air-standard diesel cycle shown in Figure P21.19. Fuel is sprayed 
into the cylinder at the point of maximum compression, B. 
Combustion occurs during the expansion B S C, which is 
modeled as an isobaric process. Show that the efficiency of 
an engine operating in this idealized diesel cycle is

e 5 1 2
1
g

 STD 2 TA

TC 2 TB
D

Adiabatic
processes

A

B C

D

P

V

Qh

Qc

V2 � VB V1 � VAVC

Q

Figure P21.19

SeCtion 21.6 Entropy

20. (a) Prepare a table like Table 21.1 for the following occur-
rence. You toss four coins into the air simultaneously and 
then record the results of your tosses in terms of the num-
bers of heads (H) and tails (T) that result. For example, 
HHTH and HTHH are two possible ways in which three 
heads and one tail can be achieved. (b) On the basis of your 
table, what is the most probable result recorded for a toss?

21. Prepare a table like Table 21.1 by using the same procedure 
(a) for the case in which you draw three marbles from your 
bag rather than four and (b) for the case in which you draw 
five marbles rather than four.

SeCtion 21.7  Entropy in Thermodynamic Systems

22. A Styrofoam cup holding 125 g of hot water at 100°C cools 
to room temperature, 20.0°C. What is the change in entropy 
of the room? Neglect the specific heat of the cup and any 
change in temperature of the room.

23. A 1 500-kg car is moving at 20.0 m/s. The driver brakes to 
a stop. The brakes cool off to the temperature of the sur-
rounding air, which is nearly constant at 20.0°C. What is the 
total entropy change?

24. A 2.00-L container has a center partition that divides it into 
two equal parts as shown in Figure P21.24. The left side  
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584 Chapter 21 Heat Engines, Entropy, and the Second Law of Thermodynamics

contains 0.044 0 mol of H2 gas, and the right side contains 
0.044 0 mol of O2 gas. Both gases are at room temperature 
and at atmospheric pressure. The partition is removed, and 
the gases are allowed to mix. What is the entropy increase 
of the system?

25. Calculate the change in entropy of 250 g of water warmed 
slowly from 20.0°C to 80.0°C. 

26. What change in entropy occurs when a 27.9-g ice cube at 
212°C is transformed into steam at 115°C?

SeCtion 21.8 Entropy and the Second Law

27. When an aluminum bar is connected between a hot res-
ervoir at 725 K and a cold reservoir at 310 K, 2.50 kJ 
of energy is transferred by heat from the hot reservoir 
to the cold reservoir. In this irreversible process, cal-
culate the change in entropy of (a) the hot reservoir,  
(b) the cold reservoir, and (c) the Universe, neglecting any 
change in entropy of the aluminum rod.

28. When a metal bar is connected between a hot reservoir at 
Th and a cold reservoir at Tc , the energy transferred by heat 
from the hot reservoir to the cold reservoir is Q. In this irre-
versible process, find expressions for the change in entropy 
of (a) the hot reservoir, (b) the cold reservoir, and (c) the 
Universe, neglecting any change in entropy of the metal rod.

29. How fast are you personally making the entropy of the Uni-
verse increase right now? Compute an order-of-magnitude 
estimate, stating what quantities you take as data and the 
values you measure or estimate for them.

additionaL ProbLemS

30. Every second at Niagara Falls, some 5.00 3 103 m3 of water 
falls a distance of 50.0 m. What is the increase in entropy of 
the Universe per second due to the falling water? Assume 
the mass of the surroundings is so great that its temperature 
and that of the water stay nearly constant at 20.0°C. Also 
assume a negligible amount of water evaporates.

31. The energy absorbed by an engine is three times greater 
than the work it performs. (a) What is its thermal efficiency? 
(b) What fraction of the energy absorbed is expelled to the 
cold reservoir?

32. In 1993, the U.S. government instituted a requirement that 
all room air conditioners sold in the United States must 
have an energy efficiency ratio (EER) of 10 or higher. The 
EER is defined as the ratio of the cooling capacity of the air 
conditioner, measured in British thermal units per hour, or 
Btu/h, to its electrical power requirement in watts. (a) Con-
vert the EER of 10.0 to dimensionless form, using the con-
version 1 Btu 5 1 055 J. (b) What is the appropriate name 
for this dimensionless quantity? (c) In the 1970s, it was com-
mon to find room air conditioners with EERs of 5 or lower. 
State how the operating costs compare for 10 000-Btu/h air 
conditioners with EERs of 5.00 and 10.0. Assume each air 

conditioner operates for 1 500 h during the summer in a city 
where electricity costs 17.0¢ per kWh.

33. In 1816, Robert Stirling, a Scottish clergyman, patented the 
Stirling engine, which has found a wide variety of applications 
ever since, including current use in solar energy collectors to 
transform sunlight into electricity. Fuel is burned externally 
to warm one of the engine’s two cylinders. A fixed quantity of 
inert gas moves cyclically between the cylinders, expanding 
in the hot one and contracting in the cold one. Figure P21.33 
represents a model for its thermodynamic cycle. Consider n 
moles of an ideal mon atomic gas being taken once through 
the cycle, consisting of two isothermal processes at tempera-
tures 3Ti and Ti and two constant- volume processes. Let us 
find the efficiency of this engine. (a) Find the energy trans-
ferred by heat into the gas during the isovolumetric process 
AB. (b) Find the energy transferred by heat into the gas 
during the isothermal process BC. (c) Find the energy trans-
ferred by heat into the gas during the isovolumetric process 
CD. (d) Find the energy transferred by heat into the gas 
during the isothermal process DA. (e) Identify which of the 
results from parts (a) through (d) are positive and evaluate 
the energy input to the engine by heat. (f) From the first law 
of thermodynamics, find the work done by the engine. (g) 
From the results of parts (e) and (f), evaluate the efficiency 
of the engine. A Stirling engine is easier to manufacture 
than an internal combustion engine or a turbine. It can run 
on burning garbage. It can run on the energy transferred by 
sunlight and produce no material exhaust. Stirling engines 
are not currently used in automobiles due to long startup 
times and poor acceleration response.

Isothermal
processes

P

V
Vi 2Vi

Ti

3Ti

A

B

C

D

Figure P21.33

34. Suppose an ideal (Carnot) heat pump could be constructed 
for use as an air conditioner. (a) Obtain an expression for 
the coefficient of performance (COP) for such an air con-
ditioner in terms of Th and Tc . (b) Would such an air con-
ditioner operate on a smaller energy input if the difference 
in the operating temperatures were greater or smaller? (c) 
Compute the COP for such an air conditioner if the indoor 
temperature is 20.0°C and the outdoor temperature is 
40.0°C.

35. Review. This problem complements Problem 44 in Chapter 
10. In the operation of a single-cylinder internal combustion 
piston engine, one charge of fuel explodes to drive the piston 
outward in the power stroke. Part of its energy output is stored 
in a turning flywheel. This energy is then used to push the 
piston inward to compress the next charge of fuel and air. 
In this compression process, assume an original volume of  
0.120 L of a diatomic ideal gas at atmospheric pressure 

0.044 0 mol
O2

0.044 0 mol
H2

Figure P21.24
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is compressed adiabatically to one-eighth of its original 
volume. (a) Find the work input required to compress 
the gas. (b) Assume the flywheel is a solid disk of mass  
5.10 kg and radius 8.50 cm, turning freely without friction 
between the power stroke and the compression stroke. How 
fast must the flywheel turn immediately after the power 
stroke? This situation represents the minimum angular 
speed at which the engine can operate without stalling. 
(c) When the engine’s operation is well above the point of 
stalling, assume the flywheel puts 5.00% of its maximum 
energy into compressing the next charge of fuel and air. 
Find its maximum angular speed in this case.

36. A firebox is at 750 K, and the ambient temperature is 300 K. 
The efficiency of a Carnot engine doing 150 J of work as 
it transports energy between these constant- temperature 
baths is 60.0%. The Carnot engine must take in energy 
150 J/0.600 5 250 J from the hot reservoir and must put out 
100 J of energy by heat into the environment. To follow Car-
not’s reasoning, suppose some other heat engine  S could 
have an efficiency of 70.0%. (a) Find the energy input and 
exhaust energy output of engine S as it does 150 J of work. 
(b) Let engine S operate as in part (a) and run the Carnot 
engine in reverse between the same reservoirs. The output 
work of engine S is the input work for the Carnot refrigera-
tor. Find the total energy transferred to or from the firebox 
and the total energy transferred to or from the environ-
ment as both engines operate together. (c) Explain how the 
results of parts (a) and (b) show that the Clausius statement 
of the second law of thermodynamics is violated. (d) Find 
the energy input and work output of engine S as it puts out 
exhaust energy of 100 J. Let engine S operate as in part (c) 
and contribute 150 J of its work output to running the Carnot 
engine in reverse. Find (e) the total energy the firebox puts 
out as both engines operate together, (f) the total work out-
put, and (g) the total energy transferred to the environment.  
(h) Explain how the results show that the Kelvin–Planck state-
ment of the second law is violated. Therefore, our assump-
tion about the efficiency of engine S must be false. (i) Let  
the engines operate together through one cycle as in part 
(d). Find the change in entropy of the Universe. (j) Explain 
how the result of part (i) shows that the entropy statement of 
the second law is violated.

37. A 1.00-mol sample of an ideal monatomic gas is taken 
through the cycle shown in Figure P21.37. The process  
A S B is a reversible isothermal expansion. Calculate (a) the 
net work done by the gas, (b) the energy added to the gas 
by heat, (c) the energy exhausted from the gas by heat, and 
(d) the efficiency of the cycle. (e) Explain how the efficiency 
compares with that of a Carnot engine operating between the 
same temperature extremes.

38. A system consisting of n moles of an ideal gas with molar 
specific heat at constant pressure CP undergoes two revers-
ible processes. It starts with pressure Pi and volume Vi , 
expands isothermally, and then contracts adiabatically 
to reach a final state with pressure Pi and volume 3Vi . (a) 
Find its change in entropy in the isothermal process. (The 
entropy does not change in the adiabatic process.) (b) What 
If? Explain why the answer to part (a) must be the same as 
the answer to Problem 46. (You do not need to solve Prob-
lem 46 to answer this question.)

39. A heat engine operates between two reservoirs at T2 5  
600  K and T1 5 350 K. It takes in 1.00 3 103 J of energy 
from the higher-temperature reservoir and performs 250 J 
of work. Find (a) the entropy change of the Universe DSU for 
this process and (b) the work W that could have been done 
by an ideal Carnot engine operating between these two res-
ervoirs. (c) Show that the difference between the amounts 
of work done in parts (a) and (b) is T1 DSU .

40. You are working as an assistant to a physics professor. She 
has seen some presentations you have made to your classes 
and is aware of your expertise in preparing presentation 
slides. Her laptop has crashed and she cannot access the pre-
sentation slides she needs for her lecture coming up in one 
hour. Her lecture is on entropy in engine cycles. She asks 
you to quickly generate two slides on your laptop, both show-
ing TS diagrams, (a) one for the Carnot cycle and (b) one 
for the Otto cycle. As she leaves, you think, “Uh-oh. What’s a 
TS diagram?” Quick, you have no time to waste! Get to work!

41. You are working as an expert witness for an environmen-
tal agency. A utility in a neighboring town has proposed a 
new power plant that produces 1.00 GW of electrical power 
from turbines. The utility claims that the plant will take in 
steam at 500 K and reject water at 300 K into a flowing cold-
water river. The flow rate of the river is 6.00 × 104 kg/s. The 
agency supervisor is concerned about the effect of dumping 
warm water on the fish in the river. (a) The utility claims 
that the power plant operates with Carnot efficiency. With 
that assumption, you need to determine for a trial presen-
tation by how much the temperature of the water down-
stream from the power plant will rise due to the rejected 
energy from the power plant. (b) If you abandon the util-
ity’s claim that the power plant operates at Carnot efficiency 
and assume a more realistic efficiency, you need to testify 
whether the increase in water temperature will be higher 
or lower than that found in part (a). (c) Finally, determine 
the increase in water temperature in the stream if the actual 
efficiency of the power plant were estimated by you and the 
agency physicist to be 15.0%. 

42. You are working as an expert witness for an environmental 
agency. A utility in a neighboring town has proposed a new 
power plant that produces electrical power P from turbines. 
The utility claims that the plant will take in steam at tem-
perature Th and reject water at temperature Tc into a flow-
ing cold-water river. The flow rate of the river is ∆m/∆t. The 
agency supervisor is concerned about the effect of dumping 
warm water on the fish in the river. (a) The utility claims that 
the power plant operates with Carnot efficiency. With that 
assumption, you need to determine for a trial presentation 
by how much the temperature of the water downstream from 
the power plant will rise due to the rejected energy from the 
power plant. (b) If you abandon the utility’s claim that the 
power plant operates at Carnot efficiency and assume a more 
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586 Chapter 21 Heat Engines, Entropy, and the Second Law of Thermodynamics

realistic efficiency e, you need to determine the increase in 
water temperature in the stream. (c) Finally, you need to tes-
tify whether the increase in water temperature in part (b) 
will be higher or lower than that found in part (a). 

43. An athlete whose mass is 70.0 kg drinks 16.0 ounces (454 g) 
of refrigerated water. The water is at a temperature of 35.0°F. 
(a) Ignoring the temperature change of the body that results 
from the water intake (so that the body is regarded as a reser-
voir always at 98.6°F), find the entropy increase of the entire 
system. (b) What If? Assume the entire body is cooled by the 
drink and the average specific heat of a person is equal to the 
specific heat of liquid water. Ignoring any other energy trans-
fers by heat and any metabolic energy release, find the ath-
lete’s temperature after she drinks the cold water given an ini-
tial body temperature of 98.6°F. (c) Under these assumptions, 
what is the entropy increase of the entire system? (d) State how 
this result compares with the one you obtained in part (a).

44. Why is the following situation impossible? Two samples of 
water are mixed at constant pressure inside an insulated 
container: 1.00 kg of water at 10.0°C and 1.00 kg of water 
at 30.0°C. Because the container is insulated, there is no 
exchange of energy by heat between the water and the envi-
ronment. Furthermore, the amount of energy that leaves 
the warm water by heat is equal to the amount that enters 
the cool water by heat. Therefore, the entropy change of the 
Universe is zero for this process.

45. A sample of an ideal gas expands isothermally, doubling in 
volume. (a) Show that the work done on the gas in expand-
ing is W 5 2nRT ln 2. (b) Because the internal energy 
E int of an ideal gas depends solely on its temperature, the 
change in internal energy is zero during the expansion. It 
follows from the first law that the energy input to the gas by 
heat during the expansion is equal to the energy output by 
work. Does this process have 100% efficiency in converting 
energy input by heat into work output? (c) Does this conver-
sion violate the second law? Explain.

46. A sample consisting of n moles of an ideal gas undergoes a 
reversible isobaric expansion from volume Vi to volume 3Vi . 
Find the change in entropy of the gas by calculating #

f

i  dQyT, 
where dQ 5 nCP dT.

ChaLLenge ProbLem

 47. The compression ratio of an Otto cycle as shown in 
Figure 21.12 is VA/VB 5 8.00. At the beginning A of the com-
pression process, 500 cm3 of gas is at 100 kPa and 20.0°C. At 
the beginning of the adiabatic expansion, the temperature 
is TC 5 750°C. Model the working fluid as an ideal gas with 
g 5 1.40. (a) Fill in this table to follow the states of the gas:

T (K) P (kPa) V (cm3)

A 293 100 500
B
C 1 023
D

  (b) Fill in this table to follow the processes:

Q W DE int

A S B

B S C

C S D

D S A

ABCDA

  (c) Identify the energy input |Q h |, (d) the energy exhaust 
|Q c |, and (e) the net output work Weng. (f) Calculate the 
thermal efficiency. (g) Find the number of crankshaft rev-
olutions per minute required for a one-cylinder engine to 
have an output power of 1.00 kW 5 1.34 hp. Note: The ther-
modynamic cycle involves four piston strokes.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



587

We now study the branch of physics concerned with electric  
and magnetic phenomena. In this part of the book, we will focus on 
the term TET, representing energy transfer by electrical transmission in 
Equation 8.2. In the final chapter in this part, we will introduce the phys-
ics behind the term TER for electromagnetic radiation. The laws of elec-
tricity and magnetism play a central role in the operation of such devices 
as smartphones, televisions, electric motors, computers, high-energy 
accelerators, and other electronic devices. More fundamentally, the inter-
atomic and intermolecular forces responsible for the formation of solids 
and liquids are electric in origin. In turn, electric forces are the basis for 
the science of chemistry, and are responsible for the development of 
biological organisms. Therefore, gravity plays a role in nature by allow-
ing planets to exist, but life on that planet is due to electricity!

Not until the early part of the nineteenth century did scientists estab-
lish that electricity and magnetism are related phenomena. In 1819, Hans 
Oersted discovered that a compass needle is deflected when placed 
near a circuit carrying an electric current. In 1831, Michael Faraday and, 
almost simultaneously, Joseph Henry showed that when a wire is moved 
near a magnet (or, equivalently, when a magnet is moved near a wire), an 
electric current is established in the wire. In 1873, James Clerk Maxwell 
used these observations and other experimental facts as a basis for  
formulating the laws of electromagnetism as we know them today.  
(Electromagnetism is a name given to the combined study of electricity 
and magnetism.)

Maxwell’s contributions to the field of electromagnetism were espe-
cially significant because the laws he formulated are basic to all forms of 
electromagnetic phenomena. His work is as important as Newton’s work 
on the laws of motion and the theory of gravitation. ■

Electricity and  
Magnetism

A Transrapid maglev train pulls 
into a station in Shanghai, 
China. The word maglev is an 
abbreviated form of magnetic 
levitation. This train makes no 
physical contact with its rails; 
its weight is totally supported 
by electromagnetic forces. In 
this part of the book, we will 
study these forces. (Lee Prince/
Shutterstock)

P a r t  4
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Storyline  Taking advantage of a weekend visit to your family 
home, you have washed and dried your clothing and are removing the clothing 
from the dryer. You notice that your socks seem to be stuck to your shirts. Even 
shaking the shirt will not remove the socks. When you pull the socks off the 
shirt, they peel off with a crackling sound. As you carry your dry clothes into your 
bedroom, you wonder why those effects occurred. You are still wondering while 
you comb your hair in the bathroom. You turn on the faucet and unintentionally 
hold the comb you just used next to the stream of water. The stream of water 
bends to the side, toward the comb! You move the comb to different positions 
and notice that the stream of water deviates to the side by different amounts. 
Your father wanders by while you are doing this and says, "That's exactly the 
technique we use in designing our high-speed manufacturing printers. Go look at 
the cans of food in the kitchen. How do you think the expiration dates are printed 
on the cans? Even more fascinating, how do we print code numbers on eggs?" 
You never quite understood what your father does for a living, but are now quite 
intrigued. You know that he designs some kind of industrial printers. You ask him 
what he means about your bathroom experiment. He tells you to do some online 
research on continuous inkjet printing.

ConneCtions In our earlier chapters on mechanics, we identified several 
types of forces: normal forces perpendicular to surfaces, friction forces parallel to 
surfaces, tension forces along strings, gravitational forces on planets, etc. Among 
these, the gravitational force, which we studied in detail in Chapter 13, is unique, 
as it is a fundamental force in nature. It turns out that the other forces in this list 
are all due to a second type of fundamental force, the electromagnetic force. In 
this chapter, we will begin our study of one manifestation of this force, the electric 

Electric Fields

22.1 Properties of Electric 
Charges

22.2 Charging Objects by 
Induction

22.3 Coulomb’s Law

22.4 Analysis Model: 
Particle in a Field 
(Electric)

22.5 Electric Field Lines

22.6 Motion of a Charged 
Particle in a Uniform 
Electric Field

22

An egg has code numbers printed on it. How do you print on an egg? (Starstuff/Shutterstock)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    22.1 Properties of Electric Charges 589

force. Our understanding of the gravitational force developed according to a con-
ceptual structure that we built: we learned that the force exists between objects 
with mass. We then developed a mathematical law, Newton's law of universal 
gravitation, to describe the magnitude of the force. We then introduced the notion 
of a gravitational field. From there we discussed gravitational potential energy in 
a system of two or more massive objects. We will follow a similar conceptual 
development in our study of the electric force. We will learn that the force exists 
between objects with electric charge. We will develop a mathematical law,  
Coulomb's law, to describe the magnitude of the force. We will introduce the 
notion of an electric field, and we will discuss electric potential energy in a sys-
tem of two or more charged objects. As we continue to study the electric force 
in the next few chapters, we will find that we have much more control over this 
force than we do over gravity. Sources of gravity are restricted to one shape: the 
spherical shape of planets and stars (with the exception of small asteroids and 
moons that might deviate slightly from spheres). On the other hand, we can for-
mulate various shapes for electrical situations: spheres, plates, wires, and the like! 
Objects moving in gravitational fields are huge and massive; we can't control their 
motion. Objects moving in electric fields can be as small as electrons; we can 
easily change their motion! We have no control over gravity; it's always there. But 
we can turn electricity on and off! We can't adjust the strength of the gravitational 
field of the Earth. But we can easily turn a dial to change the strength of an electric 
field! Gravity is everywhere, inside and outside of everything. But some materials 
conduct electricity and others don't! And we can create electric field-free regions 
of space quite easily! This type of control that we have over electricity makes 
it the basis of our technological society. Phenomena associated with electrical 
charges will appear repeatedly in most of the remaining chapters in this book.

   22.1    Properties of Electric Charges
A number of simple experiments demonstrate the existence of the electric force. For 
example, after rubbing a balloon on your hair on a dry day, you will find that the bal-
loon attracts bits of paper. The attractive force is often strong enough to suspend the 
paper from the balloon. Figure 22.1a shows another effect of the electric force. The 
woman's body becomes charged, and, in this case, there is a repulsive force between 
all the hairs on her head. Figure 22.1b shows another attractive situation. A cat has 
rubbed its body against styrofoam peanuts while playing in a packing box. Upon exit-
ing the box, the styrofoam peanuts are stuck to its body. 

Figure 22.1 (a) This young woman is enjoying the effects of electrically charging her body. Each indi-
vidual hair on her head becomes charged and exerts a repulsive force on the other hairs, resulting in the 
“stand-up” hairdo seen here. (b) An attractive electric force is demonstrated by a cat who got into a box of 
styrofoam peanuts. 
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590 Chapter 22 Electric Fields

When materials behave in this way, they are said to be electrified or to have 
become electrically charged. The electric force is the force acting between electri-
cally charged objects. You can easily electrify your body by vigorously rubbing your 
shoes on a wool rug. Evidence of the electric charge on your body can be detected 
by lightly touching (and startling) a friend. Under the right conditions, you will see 
a spark when you touch, and both of you will feel a slight tingle. (Experiments such 
as these work best on a dry day because an excessive amount of moisture in the air 
can cause any charge you build up to “leak” from your body to the Earth.)

In a series of simple experiments, it was found that there are two kinds of electric 
charges, which were given the names positive and negative by Benjamin Franklin 
(1706–1790). Electrons are identified as having negative charge, and protons are pos-
itively charged. To verify that there are two types of charge, suppose a hard rubber 
rod that has been rubbed on fur is suspended by a string as shown in Figure 22.2. 
When a glass rod that has been rubbed on silk is brought near the rubber rod, the 
two rods exhibit an attractive force on each other (Fig. 22.2a). On the other hand, if 
two charged rubber rods (or two charged glass rods) are brought near each other 
as shown in Figure 22.2b, the two rods exhibit a repulsive force on each other. This 
observation shows that the rubber and glass have two different types of charge on 
them. On the basis of these observations, we conclude that charges of the same sign 
repel one another and charges with opposite signs attract one another.

Using the convention suggested by Franklin, the electric charge on the glass 
rod is called positive and that on the rubber rod is called negative. Therefore, any 
charged object attracted to a charged rubber rod (or repelled by a charged glass 
rod) must have a positive charge, and any charged object repelled by a charged rub-
ber rod (or attracted to a charged glass rod) must have a negative charge.

Another important aspect of electricity that arises from experimental observations 
is that electric charge is always conserved in an isolated system. That is, when one 
object is rubbed against another, charge is not created in the process. The electrified 
state is due to a transfer of charge from one object to the other. One object gains some 
amount of negative charge while the other gains an equal amount of positive charge. 
For example, when a glass rod is rubbed on silk as in Figure 22.3, the silk obtains a 
negative charge equal in magnitude to the positive charge on the glass rod. We now 
know from our understanding of atomic structure that electrons are transferred in 
the rubbing process from the glass to the silk. Similarly, when rubber is rubbed on 
fur, electrons are transferred from the fur to the rubber, giving the rubber a net neg-
ative charge and the fur a net positive charge. This process works because neutral, 
uncharged matter contains as many positive charges (protons within atomic nuclei) 

Electric charge is conserved 

a b

Rubber
Rubber

Rubber
–– – ––

– –– – –
––

+ + + +
+ +

Glass+

–– – ––

A negatively charged rubber 
rod suspended by a string is 
attracted to a positively 
charged glass rod.
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Figure 22.2  The electric force 
between (a) oppositely charged 
objects and (b) like-charged 
objects.
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Figure 22.3  When a glass rod  
is rubbed with silk, electrons  
are transferred from the glass  
to the silk.
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   22.2 Charging Objects by Induction 591

as negative charges (electrons). Conservation of electric charge for an isolated system 
is like conservation of energy, momentum, and angular momentum, but we don’t 
identify an analysis model for this conservation principle because it is not used often 
enough in the mathematical solution to problems.

In 1909, Robert Millikan (1868–1953) discovered that electric charge always 
occurs as integral multiples of a fundamental amount of charge e. (We will provide 
a numerical value for e in Section 22.3.) In modern terms, the electric charge q is 
said to be quantized, where q is the standard symbol used for charge as a variable. 
That is, electric charge exists as discrete “packets,” and we can write q 5 6Ne, where 
N is some integer. Other experiments in the same period showed that the electron 
has a charge 2e and the proton has a charge of equal magnitude but opposite sign 
1e. Some particles, such as the neutron, have no charge.

Q uick Quiz 22.1  Three objects are brought close to each other, two at a time. 
When objects A and B are brought together, they repel. When objects B and C 
are brought together, they also repel. Which of the following are true? (a) Objects 
A and C possess charges of the same sign. (b) Objects A and C possess charges 
of opposite sign. (c) All three objects possess charges of the same sign. (d) One 
object is neutral. (e) Additional experiments must be performed to determine 
the signs of the charges.

  22.2    Charging Objects by Induction
It is convenient to classify materials in terms of the ability of electrons to move 
through the material:

Electrical conductors are materials in which some of the electrons are free elec-
trons1 that are not bound to atoms and can move relatively freely through the 
material; electrical insulators are materials in which all electrons are bound to 
atoms and cannot move freely through the material.

Materials such as glass, rubber, and dry wood fall into the category of electrical insu-
lators. When such materials are charged by rubbing, only the area rubbed becomes 
charged and the charged particles are unable to move to other regions of the material.

In contrast, materials such as copper, aluminum, and silver are good electrical 
conductors. When such materials are charged in some small region, the charge 
readily distributes itself over the entire surface of the material.

Semiconductors are a third class of materials, and their electrical properties are 
somewhere between those of insulators and those of conductors. Silicon and germa-
nium are well-known examples of semiconductors commonly used in the fabrication of 
a variety of electronic chips used in computers, cellular telephones, and home theater 
systems. The electrical properties of semiconductors can be changed over many orders 
of magnitude by the addition of controlled amounts of certain atoms to the materials.

To understand how to charge a conductor by a process known as induction, con-
sider a neutral (uncharged) conducting sphere insulated from the ground as shown 
in Figure 22.4a (page 592). Electrons move freely within the conductor. These elec-
trons originally belonged to the metal atoms before the atoms were combined into 
a macroscopic sample. Therefore, there is a lattice of atoms locked in place in the 
conductor, each missing an electron. The atoms are now called ions because they are 
charged, positively in this case due to the missing electron. We assume each atom 
releases one electron, so there are an equal number of free electrons and ions in the 
sphere if the charge on the sphere is exactly zero. When a negatively charged rubber 

1A metal atom contains one or more outer electrons, which are weakly bound to the nucleus. When many atoms 
combine to form a metal, the free electrons are these outer electrons, which are not bound to any one atom. These 
electrons move about the metal in a manner similar to that of gas molecules moving in a container.
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592 Chapter 22 Electric Fields

rod is brought near the sphere, electrons in the region nearest the rod experience a 
repulsive force and migrate to the opposite side of the sphere. This migration leaves 
the side of the sphere near the rod with an effective positive charge because of the 
diminished number of electrons as in Figure 22.4b. (The left side of the sphere in 
Figure 22.4b is positively charged as if positive charges moved into this region, but 
remember that only electrons are free to move.) This process occurs even though the 
rod never actually touches the sphere. If the same experiment is performed with a 
conducting wire connected from the sphere to the Earth (Fig. 22.4c), some of the elec-
trons in the conductor are so strongly repelled by the presence of the negative charge 
in the rod that they move out of the sphere through the wire and into the Earth. The 
symbol  at the end of the wire in Figure 22.4c indicates that the wire is connected 
to ground, which means a reservoir, such as the Earth, that can accept or provide elec-
trons freely with negligible effect on its electrical characteristics. If the wire to ground 
is then removed (Fig. 22.4d), the conducting sphere contains an excess of induced 
positive charge because it has fewer electrons than it needs to cancel out the positive 
charge of the ions. When the rubber rod is removed from the vicinity of the sphere  
(Fig. 22.4e), this induced positive charge remains on the ungrounded sphere. Notice 
that the rubber rod loses none of its negative charge during this process.

Charging an object by induction requires no contact with the object inducing 
the charge. That is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most neutral 
molecules, the center of positive charge coincides with the center of negative charge. In 
the presence of a charged object, however, these centers inside each molecule in an 
insulator may shift slightly, resulting in more positive charge on one side of the mole-
cule than on the other. This realignment of charge within individual molecules pro-
duces a layer of charge on the surface of the insulator as shown in Figure 22.5. The 
proximity of the positive charges on the surface of the object and the negative charges 
on the surface of the insulator results in an attractive force between the object and the 
insulator. Your knowledge of induction in insulators should help you explain why the 
styrofoam peanuts stick to the cat in Figure 22.1b.

Q uick Quiz 22.2  Three objects are brought close to one another, two at a 
time. When objects A and B are brought together, they attract. When objects B 
and C are brought together, they repel. Which of the following are necessarily 
true? (a) Objects A and C possess charges of the same sign. (b) Objects A and 
C possess charges of opposite sign. (c) All three objects possess charges of the 
same sign. (d) One object is neutral. (e) Additional experiments must be per-
formed to determine information about the charges on the objects.

Figure 22.5   A charged balloon 
is brought near an insulating wall. 
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Figure 22.4  Charging a metallic 
object by induction. (a) A neutral 
metallic sphere. (b) A charged rub-
ber rod is placed near the sphere. 
(c) The sphere is grounded. (d) The 
ground connection is removed. 
(e) The rod is removed.
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   22.3 Coulomb’s Law 593

  22.3    Coulomb’s Law
Charles Coulomb measured the magnitudes of the electric forces between charged 
objects using the torsion balance, which he invented (Fig. 22.6). The operat-
ing principle of the torsion balance is the same as that of the apparatus used by  
Cavendish to measure the density of the Earth (see Section 13.1), with the electri-
cally neutral spheres replaced by charged ones. The electric force between charged 
spheres A and B in Figure 22.6 causes the spheres to either attract or repel each 
other, and the resulting motion causes the suspended fiber to twist. Because the 
restoring torque of the twisted fiber is proportional to the angle through which 
the fiber rotates, a measurement of this angle provides a quantitative measure of 
the electric force of attraction or repulsion. Once the spheres are charged by rub-
bing, the electric force between them is very large compared with the gravitational 
attraction, and so the gravitational force can be neglected.

From Coulomb’s experiments, we can generalize the properties of the electric 
force (sometimes called the electrostatic force) between two stationary charged par-
ticles. We use the term point charge to refer to a charged particle of zero size. 
The electrical behavior of electrons and protons is very well described by modeling 
them as point charges. From experimental observations, we find that the magni-
tude of the electric force (sometimes called the Coulomb force) between two point 
charges is given by Coulomb’s law.

 Fe 5 ke

uq1uuq2u

r2  (22.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb 
was able to show that the value of the exponent of r was 2 to within an uncertainty 
of a few percent. Modern experiments have shown that the exponent is 2 to within 
an uncertainty of a few parts in 1016. Experiments also show that the electric force, 
like the gravitational force, is conservative.

The value of the Coulomb constant depends on the choice of units. The SI unit 
of charge is the coulomb (C). The Coulomb constant ke in SI units has the value

 ke 5 8.987 6 3 109 N ? m2/C2 (22.2)

This constant is also written in the form

 ke 5
1

4pe0

 (22.3)

where the constant e0 (Greek letter epsilon) is known as the permittivity of free 
space and has the value

 e0 5 8.854 2 3 10212 C2/N ? m2 (22.4)

The smallest unit of free charge e known in nature,2 the charge on an electron 
(2e) or a proton (1e), has a magnitude

 e 5 1.602 18 3 10219 C (22.5)

Therefore, 1 C of charge is approximately equal to the charge of 6.24 3 1018 
electrons or protons. This number is very small when compared with the number 
of free electrons in 1 cm3 of copper, which is on the order of 1023. Nevertheless, 1 C  
is a substantial amount of charge. In typical experiments in which a rubber or glass 

 Coulomb’s law

 Coulomb constant

2No unit of charge smaller than e has been detected on a free particle; current theories, however, propose the exis-
tence of particles called quarks having charges 2e/3 and 2e/3. Although there is considerable experimental evidence 
for such particles inside nuclear matter, free quarks have never been detected. We discuss other properties of quarks 
in Chapter 44.

Fiber

B

A

Suspension
head

Figure 22.6  Coulomb’s balance, 
used to establish the inverse-
square law for the electric force.

charles coulomb
French physicist (1736–1806)
Coulomb’s major contributions to science 
were in the areas of electrostatics and 
magnetism. During his lifetime, he also 
investigated the strengths of materials, 
thereby contributing to the field of 
structural mechanics. In ergonomics, his 
research provided an understanding of 
the ways in which people and animals 
can best do work.
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rod is charged by friction, a net charge on the order of 1026 C is obtained. In other 
words, only a very small fraction of the total available charge is transferred between 
the rod and the rubbing material.

The charges and masses of the electron, proton, and neutron are given in 
Table 22.1. Notice that the electron and proton are identical in the magnitude of 
their charge but vastly different in mass. On the other hand, the proton and neutron 
are similar in mass but vastly different in charge. Chapter 44 will help us understand 
these interesting properties.

 Table 22.1  Charge and Mass of the Electron, Proton, and Neutron

Particle Charge (C) Mass (kg)

Electron (e) 21.602 176 5 3 10219 9.109 4 3 10231

Proton (p) 11.602 176 5 3 10219 1.672 62 3 10227

Neutron (n) 0 1.674 93 3 10227

 Example 22.1     The Hydrogen Atom

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately  
5.3 3 10211 m. Find the magnitudes of the electric force and the gravitational force between the two particles.

S O L U T I O N

Conceptualize  Think about the two particles separated by the very small distance given in the problem statement. Because 
the particles have both electric charge and mass, there will be both an electric force and a gravitational force between them.

Categorize  The electric and gravitational forces will be evaluated from universal force laws, so we categorize this example as 
a substitution problem.

Use Coulomb’s law to find the magnitude of the 
electric force:

Fe 5 ke 
ue uu2e u

r 2 5 s8.988 3 109 N ? m2yC2d 
s1.60 3 10219 Cd2

s5.3 3 10211 md2

5 8.2 3 1028 N

Use Newton’s law of universal gravitation  
and Table 22.1 (for the particle masses) to find 
the magnitude of the gravitational force:

Fg 5 G 
memp

r 2  

 5 s6.674 3 10211 N ? m2ykg 2d 
s9.11 3 10231 kgds1.67 3 10227 kgd

s5.3 3 10211 md2

5 3.6 3 10247 N

The ratio Fe /Fg < 2 3 1039. Therefore, the gravitational force between charged atomic particles is negligible when compared 
with the electric force. Notice the similar mathematical forms of Newton’s law of universal gravitation and Coulomb’s law 
of electric forces. Other than the magnitude of the forces between elementary particles, what is a fundamental difference 
between the two forces?

When dealing with Coulomb’s law, remember that force is a vector quantity and 
must be treated accordingly. Coulomb’s law expressed in vector form for the elec-
tric force exerted by a charge q1 on a second charge q2, written F

S
12, is

 F
S

12 5 ke 
q1q2

r 2  r⁄12 (22.6)

where  r⁄12 is a unit vector directed from q1 toward q2 as shown in Figure 22.7a. 
Because the electric force obeys Newton’s third law, the electric force exerted by 
q2 on q1 is equal in magnitude to the force exerted by q1 on q2 and in the opposite 

Vector form of Coulomb’s law 
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direction; that is, F
S

21 5 2F
S

12. Finally, Equation 22.6 shows that if q1 and q2 have 
the same sign as in Figure 22.7a, the product q1q2 is positive and the electric force 
on one particle is directed away from the other particle. If q1 and q2 are of opposite 
sign as shown in Figure 22.7b, the product q1q2 is negative and the electric force on 
one particle is directed toward the other particle. These signs describe the relative 
direction of the force but not the absolute direction. A negative product indicates 
an attractive force, and a positive product indicates a repulsive force. The absolute 
direction of the force on a charge depends on the location of the other charge. For 
example, if an x axis lies along the two charges in Figure 22.7a, the product q1q2 is 
positive, but F

S
12 points in the positive x direction and F

S
21 points in the negative x 

direction.
When more than two charges are present, the force between any pair of them is 

given by Equation 22.6. The resultant force on any one of them is given by a superpo-
sition principle and equals the vector sum of the forces exerted by the other individ-
ual charges. For example, if four charges are present, the resultant force exerted by 
particles 2, 3, and 4 on particle 1 is

o F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 22.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23F

S
BA  (b) F

S
AB 5 2F

S
BA  (c) 3F

S
AB 5 2F

S
BA  (d) F

S
AB 5 3F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3F
S

AB 5 F
S

BA

Figure 22.7 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in 
magnitude and opposite in  
direction to the force F

S
12, exerted 

by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
S

�

�

q1

q2

When the charges are of opposite 
signs, the force is attractive.

F12
S

F21
S

�

�

 Example 22.2     Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 22.8, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

S O L U T I O N

Conceptualize  Think about the net force on q3. Because charge q3 is near two other 
charges, it will experience two electric forces. These forces are exerted in different 
directions as shown in Figure 22.8. Based on the forces shown in the figure, estimate 
the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this example 
as a vector addition problem.

Analyze  The individual forces exerted by q1 and q2 on q3 have a direction determined by the pairs of charges; the forces are 
either attractive or repulsive. The vector forces on q3 are shown in Figure 22.8. The force F

S
23 exerted by q2 on q3 is attractive 

because q2 and q3 have opposite signs. In the coordinate system shown in Figure 22.8, the attractive force F
S

23 is to the left (in the neg-
ative x direction). continued

�

�

�

F13
S

F23
S

q3

q1

q2

a

a

y

x

2a

Figure 22.8  (Example 22.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.
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22.2 c o n t i n u e d

 The force F
S

13 exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13 makes an angle 
of 45.08 with the x axis. The magnitudes of the forces  F

S
13 and F

S
23 are determined using the absolute magnitudes of the 

charges in Equation 22.1.

Finalize  The net force on q3 is upward and toward the left in Figure 22.8. If q3 moves in response to the net force, the dis-
tances between q3 and the other charges change, so the net force changes. Therefore, if q3 is free to move, it can be modeled 
as a particle under a net force as long as it is recognized that the force exerted on q3 is not constant. As a reminder, we display 
most numerical values to three significant figures, which leads to operations such as 7.94 N 1 (28.99 N) 5 21.04 N above. If 
you carry all intermediate results to more significant figures, you will see that this operation is correct.

W H A T  I F ? What if the signs of all three charges were changed to the opposite signs? How would that affect the 

result for F
S

3?

Answer  The charge q3 would still be attracted toward q2 and repelled from q1 with forces of the same magnitude. There-
fore, the final result for F

S
3 would be the same.

Use Equation 22.1 to find the magni-
tude of F

S
23:

F23 5 ke 
uq2uuq3u

a 2   

 5 s8.988 3 109 N ? m2yC2d 
s2.00 3 1026 Cds5.00 3 1026 Cd

s0.100 md2 5 8.99 N

Find the magnitude of the force F
S

13: F13 5 ke 
uq1uuq3u

sÏ2 ad2
 

 5 s8.988 3 109 N ? m2yC2d 
s5.00 3 1026 Cds5.00 3 1026 Cd

2s0.100 md2 5 11.2 N

Find the x and y components of the force F
S

13: F13x 5 (11.2 N) cos 45.08 5 7.94 N
F13y 5 (11.2 N) sin 45.08 5 7.94 N

Find the components of the resultant force acting on q3: F3x 5 F13x 1 F23x 5 7.94 N 1 (28.99 N) 5 21.04 N
F3y 5 F13y 1 F23y 5 7.94 N 1 0 5 7.94 N

Express the resultant force acting on q3 in unit-vector form: F
S

3 5 s21.04i
⁄

1 7.94j
⁄
d N

 Example 22.3     Where Is the Net Force Zero?

Three point charges lie along the x axis as shown in Figure 22.9. The positive charge 
q1 5 15.0 mC is at x 5 2.00 m, the positive charge q2 5 6.00 mC is at the origin, and the 
net force acting on q3 is zero. What is the x coordinate of q3?

S O L U T I O N

Conceptualize  Because q3 is near two other charges, it experiences two electric forces. 
Unlike the preceding example, however, the forces lie along the same line in this prob-
lem as indicated in Figure 22.9. Because q3 is negative and q1 and q2 are positive, the 
forces F

S
13 and F

S
23 are both attractive. Because q2 is the smaller charge, the position of q3 

at which the force is zero should be closer to q2 than to q1.

Categorize  Because the net force on q3 is zero, we model the point charge as a particle in 
equilibrium.

2.00 m

x

q1

x

y

q3q2

2.00 � x 

�� �

F13
S

F23
S

Figure 22.9  (Example 22.3) Three 
point charges are placed along the  
x axis. If the resultant force acting 
on q3 is zero, the force F

S
13 exerted 

by q1 on q3 must be equal in magni-
tude and opposite in direction to the 
force F

S
23 exerted by q2 on q3.

Analyze  Write an expression for the net force on charge 
q3 when it is in equilibrium:

o F
S

3 5 F
S

23 1 F
S

13 5 2ke 
uq 2uuq 3u

x2  i
⁄

1 ke 
uq1uuq3u

s2.00 2 xd2 i
⁄

5 0

Move the second term to the right side of the equation and 
set the coefficients of the unit vector i

⁄
 equal:

ke 
uq 2uuq3u

x 2 5 ke 
uq1uuq3u

s2.00 2 xd2
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22.3 c o n t i n u e d

Eliminate ke and uq3u and rearrange the equation: (2.00 2 x)2uq2u 5 x 2uq1u

Solve for x : (1) x 5
2.00 Ïuq2u

Ïuq2u 6 Ïuq 1u

Substitute numerical values, choosing the plus sign: x 5
2.00 Ï6.00 3 1026 C

Ï6.00 3 1026 C 1 Ï15.0 3 1026 C
 5 0.775 m

Finalize  Notice that the movable charge is indeed closer to q2 as we predicted in the Conceptualize step. Notice that the result 
in Equation (1) is independent of both the magnitude and the sign of charge q3. If q3 increases, both forces in Figure 22.9 
increase in magnitude but still cancel. If q3 changes sign, both forces reverse direction but still cancel. The second solution to 
the equation (if we choose the negative sign) is x 5 23.44 m. That is another location where the magnitudes of the forces on  
q3 are equal, but both forces are in the same direction, so they do not cancel.

W H A T  I F ? Suppose q3 is constrained to move only along the x axis. From its initial position at x 5 0.775 m, it is pulled a 
small distance along the x axis. When released, does it return to equilibrium, or is it pulled farther from equilibrium? That is, 
is the equilibrium stable or unstable?

Answer  If q3 is moved to the right, F
S

13 becomes larger and F
S

23 becomes smaller. The result is a net force to the right, in  
the same direction as the displacement. Therefore, the charge q3 would continue to move to the right and the equilibrium is 
unstable. (See Section 7.9 for a review of stable and unstable equilibria.)
 If q3 is constrained to stay at a fixed x coordinate but allowed to move up and down in Figure 22.9, the equilibrium is stable. 
In this case, if the charge is pulled upward (or downward) and released, it moves back toward the equilibrium position and 
oscillates about this point. Is the oscillation simple harmonic?

Take the square root of both sides of the equation: (2.00 2 x)Ïuq2u 5 6x Ïuq 1u

 Example 22.4     Find the Charge on the Spheres

Two identical small charged spheres, each having a mass of 
3.00 3 1022 kg, hang in equilibrium as shown in Figure 22.10a. 
The length L of each string is 0.150 m, and the angle u is 5.008. 
Find the magnitude of the charge on each sphere.

S O L U T I O N

Conceptualize  Figure 22.10a helps us conceptualize this exam-
ple. The two spheres exert repulsive forces on each other. If they 
are held close to each other and released, they move outward 
from the center and settle into the configuration in Figure 22.10a 
after the oscillations have vanished due to air resistance.

Categorize  The key phrase “in equilibrium” helps us model each 
sphere as a particle in equilibrium. This example is similar to the 
particle in equilibrium problems in Chapter 5 with the added fea-
ture that one of the forces on a sphere is an electric force.

Analyze  The force diagram for the left-hand sphere is shown in Figure 22.10b. The sphere is in equilibrium under the appli-
cation of the force T

S
 from the string, the electric force F

S
e from the other sphere, and the gravitational force m gS.

mg

T cos 

T sin u 

u

�
Fe
S

T
S

a b

u

u

LL

q
a

q��

u
u

Figure 22.10 (Example 22.4) (a) Two identical spheres, 
each carrying the same charge q, suspended in equilibrium. 
(b) Diagram of the forces acting on the sphere on the left 
part of (a).

From the particle in equilibrium model, set the net force on 
the left-hand sphere equal to zero for each component:

(1)   o Fx 5 T sin u 2 Fe 5 0   S   T sin u 5 Fe

(2)   o Fy 5 T cos u 2 mg 5 0   S   T cos u 5 mg

Divide Equation (1) by Equation (2) to find Fe : (3)   tan u 5
Fe

mg
   S   Fe 5 mg tan u

continued
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598 Chapter 22 Electric Fields

Finalize  If the sign of the charges were not given in Figure 22.10, we could not determine them. In fact, the sign of the charge 
is not important. The situation is the same whether both spheres are positively charged or negatively charged.

W H A T  I F ?  Suppose your roommate proposes solving this problem without the assumption that the charges are of 
equal magnitude. She claims the symmetry of the problem is destroyed if the charges are not equal, so the strings would make 
two different angles with the vertical and the problem would be much more complicated. How would you respond?

Answer  The symmetry is not destroyed and the angles are not different. Newton’s third law requires the magnitudes of the 
electric forces on the two spheres to be the same, regardless of the equality or nonequality of the charges. The solution to the 
example remains the same with one change: the value of uq u in the solution is replaced by Ïuq1q2u in the new situation, where 
q1 and q2 are the values of the charges on the two spheres. The symmetry of the problem would be destroyed if the masses of 
the spheres were not the same. In this case, the strings would make different angles with the vertical and the problem would 
be more complicated.

Use the geometry of the right triangle in Figure 22.10a to 
find a relationship between a, L, and u:

(4)   sin u 5
a
L

   S   a 5 L sin u

Solve Coulomb’s law (Eq. 22.1) for the charge uq u on each 
sphere and substitute from Equations (3) and (4):

uqu 5 ÎFer
2

ke

5 ÎFe s2ad2

ke

5 Îmg tan us2L sin ud2

ke

Substitute numerical values: uqu 5Îs3.00 3 1022 kgds9.80 mys2d tan s5.008df2s0.150 md sin s5.008dg2

8.988 3 109 N ? m2yC2

5 4.42 3 1028 C

22.4 c o n t i n u e d

  22.4    Analysis Model: Particle in a Field (Electric)
In Section 5.1, we discussed the differences between contact forces and field forces. 
Two field forces—the gravitational force in Chapter 13 and the electric force here—
have been introduced into our discussions so far. As pointed out earlier, field forces 
can act through space, producing an effect even when no physical contact occurs 
between interacting objects. Such an interaction can be modeled as a two-step pro-
cess: a source particle establishes a field, and then a second particle interacts with 
the field and experiences a force. The gravitational field gS at a point in space due to 
a source particle was defined in Section 13.3 to be equal to the gravitational force 
F
S

g acting on a test particle of mass m0 divided by that mass: gS ; F
S

g ym0 . Then the 
force exerted by the field on any particle of mass m is F

S
 5 m gS (Eq. 5.5). 

The concept of a field was developed by Michael Faraday (1791–1867) in the context 
of electric forces and is of such practical value that we shall devote much attention to 
it in the next several chapters. Figure 22.11 shows the two-step process for the electric 
force mentioned in the previous paragraph. An electric field is said to exist in the 
region of space around a charged object, the source charge. Figure 22.11a shows the 
source charge and the resulting electric field at one point P in the space external to 
the source charge. The presence of the electric field can be detected by placing a test 
charge in the field and noting the electric force on it, as is done in Figure 22.11b. We 
define the electric field due to the source charge at the location of the test charge 
to be the electric force on the test charge per unit charge, or, to be more specific,  
the electric field vector E

S
 at a point in space is defined as the electric force F

S
e act-

ing on a positive test charge q0 placed at that point divided by the test charge:3

 E
S

;
F
S

e

q0

 (22.7)Definition of electric field 

3When using Equation 22.7, we must assume the test charge q0 is small enough that it does not disturb the charge distri-
bution responsible for the electric field. If the test charge is too large, the charge on the source might be redistributed 
and the electric field it sets up is different from the field it sets up in the absence of the test charge.

q

P
Test charge

Source charge
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� �

� �
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� �

�

�
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q
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Source charge

� �

� �

� �

� �
�

�

�

�

�

� E
S

 

a

b

Figure 22.11  An electric force 
between two particles is a two-step 
process: (a) A source charge q cre-
ates an electric field at a point P in 
space. (b) When another charge 
q0 is placed at P, it feels the effect 
of that electric field as an electric 
force.
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The vector E
S

 has the SI units of newtons per coulomb (N/C). The direction of E
S

 
as shown in Figure 22.11a is the direction of the force a positive test charge expe-
riences when placed in the field as shown in Figure 22.11b. Note that E

S
 is the field 

produced by the source charge alone; the presence of the test charge is not nec-
essary for the field to exist. The test charge serves only as a detector of the electric 
field: an electric field exists at a point if a test charge at that point experiences an 
electric force. 

Now, imagine that we have established an electric field with a source charge and 
have evaluated its value at each point in space by using Equation 22.7. If an arbitrary 
charge q is placed in this electric field E

S
, it experiences an electric force given by

 F
S

e 5 q E
S

 (22.8)

This equation is the mathematical representation of the electric version of the 
particle in a field analysis model. Notice the similarity between Equation 22.8 and 
the corresponding equation from the gravitational version of the particle in a field 
model, F

S
g 5 m gS (Section 5.5). If q is positive, the force is in the same direction as 

the field. If q is negative, the force and the field are in opposite directions. Once 
the magnitude and direction of the electric field are known at some point, the 
electric force exerted on any charged particle placed at that point can be calculated 
from Equation 22.8.

To determine the vector form of an electric field, a test charge q0 is placed at 
point P, a distance r from a source charge q, as in Figure 22.12a. We imagine using 
the test charge to determine the direction of the electric force and therefore that 
of the electric field. According to Coulomb’s law, the force exerted by q on the test 
charge is

F
S

e 5 ke 
qq0

r 2  r⁄

where  r⁄ is a unit vector directed from q toward q0. This force in Figure 22.12a is 
directed away from the source charge q. Because the electric field at P, the position  
of the test charge, is defined by Equation 22.7, E

S
5 F

S
e yq0, the electric field at P  

created by q is

 E
S

5 ke 
q

r 2 r⁄ (22.9)

  Electric force on a charge 
in an electric field

PiTfall PrevenTion 22.1
Particles Only Equation 22.8 is 
valid only for a particle of charge q, 
that is, an object of zero size. For 
a charged object of finite size in an 
electric field, the field may vary 
in magnitude and direction over 
the size of the object, so the cor-
responding force equation may be 
more complicated.
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If q is negative, 
the force on 
the test charge 
q0 is directed 
toward q. 

For a negative 
source charge, 
the electric 
field at P points 
radially inward 
toward q.

�

�

�

�

If q is positive, 
the force on 
the test charge 
q0 is directed 
away from q. 

For a positive 
source charge, 
the electric 
field at P points 
radially outward 
from q. 

a

b

c

d

Figure 22.12 (a), (c) When a test 
charge q0 is placed near a source 
charge q, the test charge experi-
ences a force. (b), (d) At a point 
P near a source charge q, there 
exists an electric field.
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600 Chapter 22 Electric Fields

In this section, we have discussed the similarities between the electric field and 
the gravitational field introduced in Section 13.3. It is important to notice a sub-
tle difference between the notations used for these two fields. The gravitational 
field, expressed in Equation 13.7 in terms of a source mass, is generally set up by 
an object whose mass is huge compared to that of an object placed in the field. 
Therefore, in Equation 13.8, we use the symbol ME for the source, whereas in 
Equation 5.5, we use a separate symbol m for the mass of the object placed in the 
field. In an electric field, however, the charge of the source of the field is often 
similar in magnitude to the charge placed in the field. Therefore, we tend to use 
the same symbol q for both. In Figure 22.11 and Equation 22.9, q represents the 
source charge that sets up the electric field. In Equation 22.8, however, q rep-
resents the charge placed in the electric field. Whenever there is a possibility of 
confusion, we use subscripts to differentiate the charges, such as q1 and q2. If the 
source charge q is positive, Figure 22.12b shows the situation with the test charge 
removed: the source charge sets up an electric field at P, directed away from q.  
If q is negative as in Figure 22.12c, the force on the test charge is toward the  
source charge, so the electric field at P is directed toward the source charge as in 
Figure 22.12d.

To calculate the electric field at a point P due to a small number of point charges, 
we first calculate the electric field vectors at P individually using Equation 22.9 and 
then add them vectorially. In other words, at any point P, the total electric field due 
to a group of source charges equals the vector sum of the electric fields of all the 
charges. This superposition principle applied to fields follows directly from the vec-
tor addition of electric forces. Therefore, the electric field at point P due to a group 
of source charges can be expressed as the vector sum

 E
S

5 ke o
i

 
qi

ri  

2 r⁄ i (22.10)

where ri is the distance from the ith source charge qi to the point P and r⁄i is a unit 
vector directed from qi toward P.

In Example 22.6, we explore the electric field due to two charges using the super-
position principle. Part (B) of the example focuses on an electric dipole, which is 
defined as a positive charge q and a negative charge 2q separated by a distance 2a. 
The electric dipole is a good model of many molecules, such as hydrochloric acid 
(HCl). Neutral atoms and molecules behave as dipoles when placed in an external 
electric field. Furthermore, many molecules, such as HCl, are permanent dipoles. 
The effect of such dipoles on the behavior of materials subjected to electric fields is 
discussed in Chapter 25.

It is the electric force that is responsible for all three phenomena mentioned 
in the introductory storyline. As your clothing items rub together in the rotat-
ing dryer, electric charge is transferred from one item to another, and the items 
stick together when you take them out of the dryer. When you comb your hair, 
the rubbing of the comb against the hair causes the comb to become charged. 
When the charged comb is placed near a stream of water, there is an attractive 
force between the comb and ions in the water. In inkjet printing, whether in 
an industrial center or in your home printer, ink drops are given a charge and 
then projected downward toward the surface to be printed. When the ink drops  
are moving toward a location that is to be printed, they pass freely through 
a field-free region. When the ink drops are moving toward a location that is  
not to be printed, an electric field is turned on, and the electric force on the  
ink drops diverts them into a trough where they do not contribute to the 
printed image.

Electric field due to a finite  
number of point charges
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analysis Model Particle in a Field (Electric)

 Example 22.5     A Suspended Water Droplet

A water droplet of mass 3.00 3 10212 kg is located in the air near the ground during a stormy day. An atmospheric electric 
field of magnitude 6.00 3 103 N/C points vertically downward in the vicinity of the water droplet. The droplet remains sus-
pended at rest in the air.  What is the electric charge on the droplet?

S O L U T I O N

Conceptualize Imagine the water droplet hovering at rest in the air. This situation is not what is normally observed, so some-
thing must be holding the water droplet up.

Categorize The droplet can be modeled as a particle and is described by two analysis models associated with fields: the particle 
in a field (gravitational) and the particle in a field (electric). Furthermore, because the droplet is subject to forces but remains at 
rest, it is also described by the particle in equilibrium model.

Analyze

Solve for the charge on the water droplet: q 5 2 

mg

E

Using the two particle in a field models mentioned in the Categorize 
step, substitute for the forces in Equation (1), recognizing that the 
vertical component of the electric field is negative: 

q s2E d 2 mg 5 0

Write Newton’s second law from the particle in equilibrium model  
in the vertical direction:

(1)   oFy 5 0   S   Fe 2 Fg 5 0

Substitute numerical values: q 5 2 

s3.00 3  10212 kgds9.80 mys2d
6.00 3  103 NyC

5  24.90 3  10215 C

Finalize Noting the smallest unit of free charge in Equation 22.5, the charge on the water droplet is a large number of these 
units. Notice that the electric force is upward to balance the downward gravitational force. The problem statement claims that 
the electric field is in the downward direction. Therefore, the charge found above is negative so that the electric force is in the 
direction opposite to the electric field.

Q uick Quiz 22.4  A test charge of 13 mC is at a point P where an external  
electric field is directed to the right and has a magnitude of 4 3 106 N/C. If the 
test charge is replaced with another test charge of 23 mC, what happens to the 
external electric field at P ? (a) It is unaffected. (b) It reverses direction. (c) It 
changes in a way that cannot be determined.

Imagine an object with charge 
that we call a source charge. The 
source charge establishes an 
electric field E

S
 throughout 

space. Now imagine a particle 
with charge q is placed in that 
field. The particle interacts with the electric field  
so that the particle experiences an electric force 
given by

 F
S

e 5 qE
S

 (22.8)

Examples:

 ● an electron moves between the deflection plates of a cathode ray 
oscilloscope and is deflected from its original path

 ● charged ions experience an electric force from the electric field  
in a velocity selector before entering a mass spectrometer  
(Chapter 28)

 ● an electron moves around the nucleus in the electric field estab-
lished by the proton in a hydrogen atom as modeled by the Bohr 
theory (Chapter 41)

 ● a hole in a semiconducting material moves in response to the electric 
field established by applying a voltage to the material (Chapter 42)

qE
S

 

Fe � qE
S S
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602 Chapter 22 Electric Fields

(B) Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

S O L U T I O N

Conceptualize  Figure 22.14 shows the situation in this special case. Notice the symmetry in the situation and that the charge 
distribution is now an electric dipole.

Categorize  Because Figure 22.14 is a special case of the general case shown in Figure 22.13, we can categorize this example as 
one in which we can take the result of part (A) and substitute the appropriate values of the variables.

 Example 22.6     Electric Field Due to Two Charges

Charges q1 and q2 are located on the x axis, at distances a and b, respectively, from the origin as 
shown in Figure 22.13.

(A) Find the components of the net electric field at the point P, which is at position (0, y).

S O L U T I O N

Conceptualize  Compare this example with Exam ple 
22.2. There, we add vector forces to find the net force 
on a charged particle. Here, we add electric field vec-
tors to find the net electric field at a point in space. If 
a charged particle were placed at P, we could use the 
particle in a field model to find the electric force on 
the particle.

Categorize  We have two source charges and wish to find the resultant electric field, so we categorize this example as one in 
which we can use the superposition principle represented by Equation 22.10.

f

f u

u

� �

E
S

 

E1
S

E2
S

P

y

x
ba q

r2
r1

2q1

Figure 22.13  (Example 22.6) The total 
electric field E

S
 at P equals the vector sum 

E
S

1 1 E
S

2, where E
S

1 is the field due to the 
positive charge q1 and E

S
2 is the field due 

to the negative charge q2.

Analyze  Find the magnitude of the electric field at  
P due to charge q1:

E 1 5 ke 
uq1u

r1
2 5 ke 

uq1u

a 2 1 y 2 

Find the magnitude of the electric field at P due to 
charge q2:

 E 2 5 ke 
uq2u

r2
2 5 ke 

uq2u

b 2 1 y 2

Write the electric field vectors for each charge in 
unit-vector form:

 E
S

1 5 ke 
uq1 u

a 2 1 y 2  cos f i
⁄

1 ke 
uq 1u

a 2 1 y 2  sin f j
⁄

 E
S

2 5 ke 
uq 2u

b 2 1 y 2  cos u i
⁄

2 ke 
uq 2u

b 2 1 y 2  sin u j
⁄

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5  ke 
uq1u

a 2 1 y 2  cos f 1 ke 
uq 2u

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5  ke 
uq1u

a 2 1 y 2  sin f 2 ke 
uq2u

b 2 1 y 2  sin u

Analyze  Based on the symmetry in Figure 
22.14, evaluate Equations (1) and (2) from part 
(A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 E y 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 22.14, evaluate 
cos u:

(4)    cos u 5
a
r

5
a

sa 2 1 y 2d1y2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 3 a
sa 2 1 y 2d1y24 5   ke 

2aq

sa 2 1 y 2d3y2
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22.6 c o n t i n u e d

(c) Find the electric field due to the electric dipole when point P is a distance y .. a from  
the origin.

S O L U T I O N

In the solution to part (B), because y .. a,  (5)   E <   ke 
2aq

y 3  
neglect a 2 compared with y 2 and write the  
expression for E in this case:

Finalize  From Equation (5), we see that at points far from a 
dipole but along the perpendicular bisector of the line joining 
the two charges, the magnitude of the electric field created by the 
dipole varies as 1/r3, whereas the more slowly varying field of a 
point charge varies as 1/r2 (see Eq. 22.9). That is because at dis-
tant points, the fields of the two charges of equal magnitude and 
opposite sign almost cancel each other. The 1/r3 variation in E for 
the dipole also is obtained for a distant point along the x axis and 
for any general distant point. In  both parts (A) and (B), if a new 
charge q1 is placed at point P, Equation 22.8 can be used to find 
the electric force on the charge: F

S
 5 q1E

S
 5 q1Ex i

⁄
 1 q1Ey j

⁄
.

Figure 22.14  (Example 
22.6) When the charges in 
Figure 22.13 are of equal mag-
nitude and equidistant from 
the origin, the situation  
becomes symmetric as shown 
here.

P

y

r

a
q

a
–q

x

u

u

u u

� �

E
S

 

E2
S

E1
S

  22.5    Electric Field Lines
We have defined the electric field in the mathematical representation with Equa-
tion 22.7. Let’s now explore a means of visualizing the electric field in a pictorial 
representation. A convenient way of visualizing electric field patterns is to draw 
lines, called electric field lines and first introduced by Faraday, that are related to 
the electric field in a region of space in the following manner:

 ● The electric field vector E
S

 is tangent to the electric field line at each point. 
The line has a direction, indicated by an arrowhead, that is the same as 
that of the electric field vector. The direction of the line is that of the  
force on a positive charge placed in the field according to the particle in  
a field model.

 ● The number of lines per unit area through a surface perpendicular to the 
lines is proportional to the magnitude of the electric field in that region. 
Therefore, the field lines are close together where the electric field is strong 
and far apart where the field is weak.

These properties are illustrated in Figure 22.15. The density of field lines 
through surface A is greater than the density of lines through surface B. Therefore, 
the magnitude of the electric field is larger on surface A than on surface B. Fur-
thermore, because the lines at different locations point in different directions, the 
field is nonuniform.

Is this relationship between strength of the electric field and the density of 
field lines consistent with Equation 22.9, the expression we obtained for E using  
Coulomb’s law? To answer this question, consider an imaginary spherical surface of 
radius r concentric with a point charge. From symmetry, we see that the magnitude 
of the electric field is the same everywhere on the surface of the sphere. The num-
ber of lines N that emerge from the charge is equal to the number that penetrate 
the spherical surface. Hence, the number of lines per unit area on the sphere is 
N/4pr 2 (where the surface area of the sphere is 4pr 2). Because E is proportional to 
the number of lines per unit area, we see that E varies as 1/r 2; this finding is consis-
tent with Equation 22.9.

B
A

The magnitude of the 
field is greater on surface 
A than on surface B.

Figure 22.15  Electric field lines 
penetrating two surfaces. 

PiTfall PrevenTion 22.2
Electric Field Lines Are Not Paths  
of Particles! Electric field lines 
represent the field at various loca-
tions. Except in very special cases, 
they do not represent the path of 
a charged particle moving in an 
electric field.
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604 Chapter 22 Electric Fields

Representative electric field lines for the field due to a single positive point 
charge are shown in Figure 22.16a. This two-dimensional drawing shows only the 
field lines that lie in the plane containing the point charge. The lines are actu-
ally directed radially outward from the charge in all directions; therefore, instead 
of the flat “wheel” of lines shown, you should picture an entire spherical distri-
bution of lines. Because a positive charge placed in this field would be repelled  
by the positive source charge, the lines are directed radially away from the source  
charge. The electric field lines representing the field due to a single negative point 
charge are directed toward the charge (Fig. 22.16b). In either case, the lines are 
along the radial direction and extend all the way to infinity. Notice that the lines 
become closer together as they approach the charge, indicating that the strength 
of the field increases as we move toward the source charge.

The rules for drawing electric field lines are as follows:

 ● The lines must begin on a positive charge and terminate on a negative 
charge. In the case of an excess of one type of charge, some lines will begin 
or end infinitely far away.

 ● The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

 ● No two field lines can cross.

We choose the number of field lines starting from any object with a positive 
charge q

1
 to be Cq

1
 and the number of lines ending on any object with a nega-

tive charge q
2

 to be C uq
2

u, where C is an arbitrary proportionality constant. Once  
C is chosen, the number of lines is fixed. For example, in a two-charge system, if 
object 1 has charge Q 1 and object 2 has charge Q 2, the ratio of number of lines in 
contact with the charges is N2/N1 5 uQ 2/Q 1u. The electric field lines for two point 
charges of equal magnitude but opposite signs (an electric dipole) are shown in 
Figure 22.17. Because the charges are of equal magnitude, the number of lines that 
begin at the positive charge must equal the number that terminate at the negative 
charge. At points very near the charges, the lines are nearly radial, as for a single 
isolated charge. The high density of lines between the charges indicates a region of 
strong electric field.

Figure 22.18 shows the electric field lines in the vicinity of two equal positive 
point charges. Again, the lines are nearly radial at points close to either charge, 
and the same number of lines emerges from each charge because the charges are 
equal in magnitude. Because there are no negative charges available, the electric 
field lines end infinitely far away. At great distances from the charges, the field is 
approximately equal to that of a single point charge of magnitude 2q.

q –q

a b

For a positive point charge, 
the field lines are directed 
radially outward.

For a negative point charge, 
the field lines are directed 
radially inward. 

� �

Figure 22.16  The electric field 
lines for a point charge. Notice 
that the figures show only those 
field lines that lie in the plane of 
the page.

PiTfall PrevenTion 22.3
Electric Field Lines Are Not Real  
Electric field lines are not 
material objects. They are used 
only as a pictorial representation 
to provide a qualitative descrip-
tion of the electric field. Only 
a finite number of lines from 
each charge can be drawn, which 
makes it appear as if the field 
were quantized and exists only in 
certain parts of space. The field, 
in fact, is continuous, existing 
at every point. You should avoid 
obtaining the wrong impression 
from a two-dimensional drawing 
of field lines used to describe a 
three-dimensional situation.

The number of field lines leaving 
the positive charge equals the 
number terminating at the 
negative charge.

� �

Figure 22.17  The electric field 
lines for two point charges of 
equal magnitude and opposite 
sign (an electric dipole).
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Finally, in Figure 22.19, we sketch the electric field lines associated with a pos-
itive charge 12q and a negative charge 2q. In this case, the number of lines leav-
ing 12q is twice the number terminating at 2q. Hence, only half the lines that 
leave the positive charge reach the negative charge. The remaining half termi-
nate on a negative charge we assume to be at infinity. At distances much greater 
than the charge separation, the electric field lines are equivalent to those of a 
single charge 1q.

Q uick Quiz 22.5  Rank the magnitudes of the electric field at points A, B, and 
C shown in Figure 22.18 (greatest magnitude first).

  22.6    Motion of a Charged Particle  
in a Uniform Electric Field
When a particle of charge q and mass m is placed in an electric field E

S
, the electric 

force exerted on the charge is qE
S

 according to Equation 22.8 in the particle in a 
field model. If that is the only force exerted on the particle, it must be the net force, 
and it causes the particle to accelerate according to the particle under a net force 
model. Therefore,

o F
S

5 qE
S

5 m aS

and the acceleration of the particle is

 aS 5
qE

S

m
 (22.11)

If E
S

 is uniform (that is, constant in magnitude and direction), and the particle is 
free to move, the electric force on the particle is constant and we can apply the par-
ticle under constant acceleration model to the motion of the particle. Therefore, 
the particle in this situation is described by three analysis models: particle in a field, 
particle under a net force, and particle under constant acceleration! If the particle 
has a positive charge, its acceleration is in the direction of the electric field. If the 
particle has a negative charge, its acceleration is in the direction opposite the elec-
tric field.

C

A

B

� �

Figure 22.18  The electric field 
lines for two positive point charges. 
(The locations A, B, and C are dis-
cussed in Quick Quiz 22.5.)

Figure 22.19 The electric field 
lines for a point charge 12q and a 
second point charge 2q.

�2q �q

Two field lines leave �2q for every 
one that terminates on �q.

� �

PiTfall PrevenTion 22.4
Just Another Force Electric forces 
and fields may seem abstract to 
you. Once F

S
e is evaluated, how-

ever, it causes a particle to move 
according to our well-established 
models of forces and motion from 
Chapters 2 through 6. Keeping 
this link with the past in mind 
should help you solve problems in 
this chapter.
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606 Chapter 22 Electric Fields

 Example 22.7     An Accelerating Positive Charge: Two Models

A uniform electric field E
S

 is directed along the x axis between parallel plates of charge separated 
by a distance d as shown in Figure 22.20. A positive point charge q of mass m is released from rest 
at a point Ⓐ next to the positive plate and accelerates to a point Ⓑ next to the negative plate.

(A) Find the speed of the particle at Ⓑ by modeling it as a particle under constant acceleration.

S O L U T I O N

Conceptualize  When the positive charge is placed at Ⓐ, it experi-
ences an electric force toward the right in Figure 22.20 due to the 
electric field directed toward the right. As a result, it will acceler-
ate to the right and arrive at Ⓑ with some speed.

Categorize  Because the electric field is uniform, a constant elec-
tric force acts on the charge. Therefore, as suggested in the dis-
cussion preceding the example and in the problem statement, the 
point charge can be modeled as a charged particle under constant acceleration.

Analyze  Use Equation 2.17 to express the velocity of the  vf
2 5 vi

2 1 2a(xf 2 xi) 5 0 1 2a(d 2 0) 5 2ad 
particle as a function of position:

Solve for vf and substitute for the magnitude of the  vf 5 Ï2ad 5Î2SqE

m Dd 5 Î2qEd

macceleration from Equation 22.11:

(B) Find the speed of the particle at Ⓑ by modeling it as a nonisolated system in terms of energy.

S O L U T I O N

Categorize  The problem statement tells us that the charge is a nonisolated system for energy. The electric force, like any force, 
can do work on a system. Energy is transferred to the system of the charge by work done by the electric force exerted on the 
charge. The initial configuration of the system is when the particle is at rest at Ⓐ, and the final configuration is when it is 
moving with some speed at Ⓑ.

Analyze  Write the appropriate reduction of the  W 5 DK 
conservation of energy equation, Equation 8.2, for  
the system of the charged particle:

Replace the work and kinetic energies with values  Fe Dx 5 K
Ⓑ

2 K
Ⓐ

5 1
2mvf

2 2 0   S   vf 5Î2Fe Dx

mappropriate for this situation:

Substitute for the magnitudes of the electric force  vf 5Î2sqEdsdd
m

5 Î2qEd

m
 

Fe from the particle in a field model and the  
displacement Dx:

Finalize  The answer to part (B) is the same as that for part (A), as we expect. This problem can be solved with different 
approaches. We saw the same possibilities with mechanical problems.

�

d

q

�

� �
v � 0S vS

E
S

 
�

�

�

�

�

�

�

�

�

�

Figure 22.20  (Example 22.7) A 
positive point charge q in a uni-
form electric field E

S
 undergoes 

constant acceleration in the direc-
tion of the field.

 Example 22.8     An Accelerated Electron

An electron enters the region of a uniform electric field as shown in Figure 22.21, with vi 5 3.00 3 106 m/s and  
E 5 200 N/C. The horizontal length of the plates is , 5 0.100 m.

(A) Find the acceleration of the electron while it is in the electric field.
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22.8 c o n t i n u e d

S O L U T I O N

Conceptualize  This example differs from the preceding one because 
the velocity of the charged particle is initially perpendicular to the elec-
tric field lines. (In Example 22.7, the velocity of the charged particle is 
always parallel to the electric field lines.) As a result, the electron in this 
example follows a curved path as shown in Figure 22.21. The motion of 
the electron is the same as that of a massive particle projected horizon-
tally in a gravitational field near the surface of the Earth.

Categorize  The electron is a particle in a field (electric). Because the 
electric field is uniform, a constant electric force is exerted on the 
electron. To find the acceleration of the electron, we can model it as a  
particle under a net force.

Analyze  From the particle in a field model, we know that the direc-
tion of the electric force on the electron is downward in Figure 22.21, 
opposite the direction of the electric field lines. From the particle 
under a net force model, therefore, the acceleration of the electron  
is downward.

(0, 0)

�

(x, y)

vi î
�

�
vS

x

y

The electron undergoes a downward 
acceleration (opposite E), and its motion 
is parabolic while it is between the plates.

S

E
S

 

� � � � � � � � � � � �

� � � � � � � � � � � �

Figure 22.21 (Example 22.8) An electron is projected 
horizontally into a uniform electric field produced by 
two charged plates.

The particle under a net force model was used to develop 
Equation 22.11 in the case in which the electric force on a 
particle is the only force. Use this equation to evaluate the 
y component of the acceleration of the electron:

ay 5 2 

eE
me

 

(B) Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

S O L U T I O N

Categorize  Because the electric force acts only in the vertical direction in Figure 22.21, the motion of the particle in the hor-
izontal direction can be analyzed by modeling it as a particle under constant velocity.

Analyze  Solve Equation 2.7 for the time at which  xf 5 xi 1 vx t   S   t 5
xf 2 xi

vx

 
the electron arrives at the right edges of the plates:

Substitute numerical values: t 5
/ 2 0

vx

5
0.100 m

3.00 3 106 mys
5  3.33 3 1028 s

(C) Assuming the vertical position of the electron as it enters the field is yi 5 0, what is its vertical position when it leaves the field?

S O L U T I O N

Categorize  Because the electric force is constant in Figure 22.21, the motion of the particle in the vertical direction can be 
analyzed by modeling it as a particle under constant acceleration.

Analyze  Use Equation 2.16 to describe the position of  yf 5 yi 1 vyi t 1 1
2ayt

2 
the particle at any time t :

Substitute numerical values: yf 5 0 1 0 1 1
2 s23.51 3 1013 mys2ds3.33 3 1028 sd2 

 5 20.019 5 m 5   21.95 cm

Finalize  If the electron enters just below the negative plate in Figure 22.21 and the separation between the plates is less than 
the value just calculated, the electron will strike the positive plate.
 Notice that we have used four analysis models to describe the electron in the various parts of this problem. We have 
neglected the gravitational force acting on the electron, which represents a good approximation when dealing with atomic 
particles. For an electric field of 200 N/C, the ratio of the magnitude of the electric force eE to the magnitude of the gravita-
tional force mg is on the order of 1012 for an electron and on the order of 109 for a proton.

Substitute numerical values: ay 5 2
s1.60 3 10219 Cds200 NyCd

9.11 3 10231 kg
5  23.51 3 1013 m/s2
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summary
 › Definitions

The electric field E
S

 at some point in space is defined as the electric force F
S

e that acts on a small positive test charge placed at that 
point divided by the magnitude q0 of the test charge:

 E
S

 ;
F
S

e

q 0

 (22.7)

 › Concepts and Principles

Electric charges have the following important properties:

 ● Charges of opposite sign attract one another, and 
charges of the same sign repel one another.

 ● The total charge in an isolated system is conserved.
 ● Charge is quantized.

Conductors are materials in which electrons move freely. 
Insulators are materials in which electrons do not move freely.

Coulomb’s law states that the electric force exerted by a 
point charge q1 on a second point charge q2 is

 F
S

12 5 ke 
q1q2

r 2  r⁄12 (22.6)

where r is the distance between the two charges and r⁄12 is a 
unit vector directed from q1 toward q2. The constant ke, which 
is called the Coulomb constant, has the value ke 5 8.988 3 
109 N ? m2/C2.

At a distance r from a point charge q, the electric field due 
to the charge is

 E
S

5 ke 
q

r 2 r⁄ (22.9)

where r⁄ is a unit vector directed from the charge toward the 
point in question. The electric field is directed radially out-
ward from a positive charge and radially inward toward a 
negative charge.

The electric field due to a group of point charges can be 
obtained by using the superposition principle. That is, the 
total electric field at some point equals the vector sum of  
the electric fields of all the charges:

 E
S

5 ke o
i

 
qi

ri  

2 r⁄ i (22.10)

 › Analysis Models for Problem Solving

Particle in a Field (Electric) A source particle with some electric charge establishes an electric field E
S

 through-
out space. When a particle with charge q is placed in that field, it experiences an electric force given by

 F
S

e 5 qE
S

 (22.8)

qE
S

 

Fe � qE
S S

Think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You and your fellow students form an intern group at a nan-
otechnology company. The company is having trouble man-
ufacturing nanoparticles of uniform mass and your group 
has been asked to devise a system that will determine the 
mass of a charged nanoparticle by having it pass through a 
uniform electric field between parallel plates in a manner 
identical to that of the electron in Figure 22.21. The entire 

system is located in an evacuated glass chamber so that air 
resistance is not a factor. The mass can be determined by 
the amount of deflection of the nanoparticle as it passes 
through the field after having been projected into the field 
just under the left edge of the top plate with an initial veloc-
ity in a direction parallel to the plates. Your group works 
well together and designs a pair of parallel plates of length 
, 5 1.00 m, with the negative plate situated a distance d 5 
8.00 mm vertically above the positive plate, with a uniform 
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electric field of magnitude E 5 2.00 3 104 N/C between 
them directed perpendicular to the plates. You arrange to 
have nanoparticles with mass m 5 6.50 3 10213 g, carrying 
a charge of 2e, to be projected into the field at a speed of  
v 5 30.0 m/s. Your deadline is approaching as you finish the 
construction of the device and you don’t have time to test 
it before you are called in to demonstrate the device to the 
research group leaders. When you demonstrate the device, 
why is your group embarrassed?

2. ACTIvITy  Figure TP22.2 shows the triboelectric series. It is 
used with regard to the rubbing experiments described in 
Section 22.1. If a material from high on the list is rubbed 
against a material from a lower portion, each material will 
become electrically charged according to the signs at the 
top and bottom of the list. The farther apart two materials 
are on the list, the greater will be the amount of electric 
charge when the materials are rubbed together. As an exam-
ple, consider the glass rod rubbed with silk in Figure 22.3. 
Based on the triboelectric series shown, do we expect the 
silk to become negatively charged and the glass to become 
positively charged? Although both are on the positive side 
of the series, the glass is much higher, so it takes on a posi-
tive charge and the silk becomes negatively charged.

For the objects rubbed together below, identify the sign 
of the charge on the rod, pipe, fork, or balloon after it is 
rubbed with the other material:

(a)  A glass rod is rubbed with a wool cloth. 
(b)  A glass rod is rubbed with cat fur. 
(c)  A PVC pipe is rubbed with a paper towel.
(d)  A Sterling silver fork is rubbed with a nylon cloth. 
(e)  A silicone rubber rod is rubbed with a cotton cloth. 
(f)  A hard rubber rod is rubbed with a paper towel. 
(g)  A copper pipe is rubbed with cat fur. 
(h)  An aluminum rod is rubbed with a polyester shirt. 
(i)  A lead pipe is rubbed with a paper towel. 
(j)  A rubber balloon is rubbed on your hair. 

(k)  From the ten choices in Parts (a)–(j), which do you 
think represents the greatest transfer of charge?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

secTion 22.1  Properties of Electric Charges

1. Find to three significant digits the charge and the mass of the 
following particles. Suggestion: Begin by looking up the mass of 
a neutral atom on the periodic table of the elements in Appen-
dix C. (a) an ionized hydrogen atom, represented as H1 (b) a 
singly ionized sodium atom, Na1 (c) a chloride ion Cl2 (d) a 
doubly ionized calcium atom, Ca11 5 Ca21 (e) the center of 
an ammonia molecule, modeled as an N32 ion (f) quadruply 
ionized nitrogen atoms, N41, found in plasma in a hot star  
(g) the nucleus of a nitrogen atom (h) the molecular ion H2O

2

secTion 22.3 Coulomb’s Law

2. (a) Find the magnitude of the electric force between a Na1 
ion and a Cl2 ion separated by 0.50 nm. (b) Would the 
answer change if the sodium ion were replaced by Li1 and 
the chloride ion by Br2? Explain.

3. In a thundercloud, there may be electric charges of 140.0 C  
near the top of the cloud and 240.0 C near the bottom of 

the cloud. These charges are separated by 2.00 km. What is 
the electric force on the top charge?

4. Nobel laureate Richard Feynman (1918–1988) once said that 
if two persons stood at arm’s length from each other and 
each person had 1% more electrons than protons, the force 
of repulsion between them would be enough to lift a “weight” 
equal to that of the entire Earth. Carry out an order-of- 
magnitude calculation to substantiate this assertion.

5. A 7.50-nC point charge is located 1.80 m from a  
4.20-nC point charge. (a) Find the magnitude of the electric 
force that one particle exerts on the other. (b) Is the force 
attractive or repulsive?

6. This afternoon, you have a physics symposium class, and you 
are the presenter. You will be presenting a topic to physics 
majors and faculty. You have been so busy that you have not 
had time to prepare and you don’t even have an idea for a 
topic. You are frantically reading your physics textbook look-
ing for an idea. In your reading, you have learned that the 
Earth carries a charge on its surface of about 105 C, which 
results in electric fields in the atmosphere. This gets you very 
excited about a new theory. Suppose the Moon also carries a 

CR
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Positive
Air
Skin (dry)
Leather
Rabbit fur
Glass
Human hair
Mica
Nylon
Wool
Cat fur
Lead
Silk
Aluminum
Paper
Cotton
Steel
Wood
Lucite
Amber
Rubber balloon
Hard rubber
Nickel
Copper
Silver
Gold, platinum
Polyester
Polystyrene
Acrylic
Plastic food wrap
Polyurethane
Polyethylene
Polypropylene
PVC
Teflon
Silicone Rubber

Negative

Figure TP22.2
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610 Chapter 22 Electric Fields

charge on the order of 105 C, with the opposite sign! Maybe 
the orbit of the Moon around the Earth is due to electri-
cal attraction between the Moon and the Earth! There’s an 
idea for your symposium presentation! You quickly jot down 
a few notes and run off to your symposium. While you are 
speaking, you notice one of the professors doing some cal-
culations on a scrap of paper. Uh-oh! He has just raised his 
hand with a question. Why are you embarrassed?

7. Two small beads having positive charges q1 5 3q and  
q2 5 q are fixed at the opposite ends of a horizontal insulating 
rod of length d 5 1.50 m. The bead with charge q1 is at the 
origin. As shown in Figure P22.7, a third small, charged bead 
is free to slide on the rod. (a) At what position x is the third 
bead in equilibrium? (b) Can the equilibrium be stable?

d

��

q1 q2

x

x

Figure P22.7 Problems 7 and 8.

8.  Two small beads having charges q1 and q2 of the same sign 
are fixed at the opposite ends of a horizontal insulating 
rod of length d. The bead with charge q1 is at the origin. As 
shown in Figure P22.8, a third small, charged bead is free to 
slide on the rod. (a) At what position x is the third bead in 
equilibrium? (b) Can the equilibrium be stable?

9. Review. In the Bohr theory of the hydrogen atom, an elec-
tron moves in a circular orbit about a proton, where the 
radius of the orbit is 5.29 3 10211 m. (a) Find the magni-
tude of the electric force exerted on each particle. (b) If this 
force causes the centripetal acceleration of the electron, 
what is the speed of the electron?

10. Three point charges lie along a straight line as shown in 
Figure P22.10, where q1 5 6.00 mC, q2 5 1.50 mC, and q3 5 
22.00 mC. The separation distances are d1 5 3.00 cm and 
d2 5 2.00 cm. Calculate the magnitude and direction of the 
net electric force on (a) q1, (b) q2, and (c) q3.

�� �

q1

d1

q2

d2

q3

Figure P22.10

11. A point charge 12Q is at 
the origin and a point 
charge 2Q is located along 
the x axis at x 5 d as in Fig-
ure P22.11. Find a symbolic 
expression for the net force 
on a third point charge 1Q 
located along the y axis at  
y 5 d.

12. Particle A of charge 3.00 3 
1024 C is at the origin, parti-
cle B of charge 26.00 3 1024 C is at (4.00 m, 0), and particle 
C of charge 1.00 3 1024 C is at (0, 3.00 m). We wish to find 

the net electric force on C. (a) What is the x component of 
the electric force exerted by A on C? (b) What is the y com-
ponent of the force exerted by A on C? (c) Find the mag-
nitude of the force exerted by B on C. (d) Calculate the x 
component of the force exerted by B on C. (e) Calculate the 
y component of the force exerted by B on C. (f) Sum the two 
x components from parts (a) and (d) to obtain the resultant 
x component of the electric force acting on C. (g) Similarly, 
find the y component of the resultant force vector acting on 
C. (h)  Find the magnitude and direction of the resultant 
electric force acting on C.

13. Review. Two identical particles, 
each having charge 1q, are fixed 
in space and separated by a dis-
tance d. A third particle with 
charge 2Q  is free to move and 
lies initially at rest on the perpen-
dicular bisector of the two fixed 
charges a distance x from the 
midpoint between those charges  
(Fig. P22.13). (a) Show that if x 
is small compared with d, the 
motion of 2Q is simple harmonic 
along the perpendicular bisector. 
(b) Determine the period of that 
motion. (c) How fast will the charge 2Q be moving when it 
is at the midpoint between the two fixed charges if initially 
it is released at a distance a ,, d from the midpoint?

14. Why is the following situation impossible? Two identical dust par-
ticles of mass 1.00 mg are floating in empty space, far from 
any external sources of large gravitational or electric fields, 
and at rest with respect to each other. Both particles carry 
electric charges that are identical in magnitude and sign. 
The gravitational and electric forces between the particles 
happen to have the same magnitude, so each particle expe-
riences zero net force and the distance between the parti-
cles remains constant.

secTion 22.4 Analysis Model: Particle in a Field (Electric)

15. What are the magnitude and direction of the electric field 
that will balance the weight of (a) an electron and (b) a pro-
ton? (You may use the data in Table 22.1.)

16. Consider n equal positively charged particles each of magni-
tude Q /n placed symmetrically around a circle of radius a. 
Calculate the magnitude of the electric field at a point a dis-
tance x from the center of the circle and on the line pass-
ing through the center and perpendicular to the plane of  
the circle.

17. Two equal positively charged 
particles are at opposite cor-
ners of a trapezoid as shown 
in Figure P22.17. Find sym-
bolic expressions for the 
total electric field at (a) the 
point P and (b) the point P 9.

18. Two charged particles are located on the x axis. The first 
is a charge 1Q at x 5 2a. The second is an unknown 
charge located at x 5 13a. The net electric field these 
charges produce at the origin has a magnitude of  
2keQ /a2. Explain how many values are possible for the 
unknown charge and find the possible values.

V

�2Q

�Q

�Q

x

y

d

d

�

� �

Figure P22.11

�q

�q

�Q
x

y

x

�

�

�

d
2

d
2

Figure P22.13

�Q

�Q2d

45.0�45.0�

�

�

d P

P �

Figure P22.17
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19. Three point charges are located on a circular arc as shown 
in Figure P22.19. (a) What is the total electric field at P, the 
center of the arc? (b) Find the electric force that would be 
exerted on a 25.00-nC point charge placed at P.

�

�

�

�3.00 nC

4.00 cm

4.00 cm

�3.00 nC

30.0�

30.0�

�2.00 nC
P

Figure P22.19

20. Two 2.00-mC point charges are located on the x axis. 
One is at x 5 1.00 m, and the other is at x 5 21.00 m.  
(a) Determine the electric field on the y axis at y 5 0.500 m. 
(b) Calculate the electric force on a 23.00-mC charge placed 
on the y axis at y 5 0.500 m. 

21. Three point charges are arranged as shown in Fig-
ure P22.21. (a) Find the vector electric field that the  
6.00-nC and 23.00-nC charges together create at the origin. 
(b) Find the vector force on the 5.00-nC charge.

Figure P22.21

0.100 m
x

–3.00 nC

5.00 nC 0.300 m 6.00 nC

y

��

�

22. Consider the electric dipole shown in Figure P22.22.  
Show that the electric field at a distant point on the  
1x axis is Ex < 4keqa/x 3.

2a

x
–q q

y

��

Figure P22.22

secTion 22.5  Electric Field Lines

23. Three equal positive charges q 
are at the corners of an equilat-
eral triangle of side a as shown in 
Fig ure  P22.23. Assume the three 
charges together create an electric 
field. (a) Sketch the field lines in the 
plane of the charges. (b)  Find the 
location of one point (other than `) 
where the electric field is zero. What 

are (c) the magnitude and (d) the direction of the electric 
field at P due to the two charges at the base?

secTion 22.6  Motion of a Charged Particle  
in a Uniform Electric Field

24. A proton accelerates from rest in a uniform electric field of 
640 N/C. At one later moment, its speed is 1.20 Mm/s (non-
relativistic because v is much less than the speed of light). 
(a) Find the acceleration of the proton. (b) Over what time 
interval does the proton reach this speed? (c) How far does 
it move in this time interval? (d) What is its kinetic energy at 
the end of this interval?

25. A proton moves at 4.50 3 105 m/s in the horizontal direc-
tion. It enters a uniform vertical electric field with a magni-
tude of 9.60 3 103 N/C. Ignoring any gravitational effects, 
find (a) the time interval required for the proton to travel 
5.00 cm horizontally, (b) its vertical displacement during 
the time interval in which it travels 5.00 cm horizontally, 
and (c) the horizontal and vertical components of its veloc-
ity after it has traveled 5.00 cm horizontally.

26. Protons are projected with an initial speed vi 5 
9.55  km/s from a field-free region through a plane 
and into a region where a uniform electric field  
E
S

5 2720j
⁄
 NyC is present above the plane as shown 

in Figure P22.26. The initial velocity vector of the  
protons makes an angle u with the plane. The protons 
are to hit a target that lies at a horizontal distance of  
R 5 1.27 mm from the point where the protons cross 
the plane and enter the electric field. We wish to find 
the angle u at which the protons must pass through the  
plane to strike the target. (a) What analysis model describes 
the horizontal motion of the protons above the plane? (b) 
What analysis model describes the vertical motion of the 
protons above the plane? (c) Argue that Equation 4.20 
would be applicable to the protons in this situation. (d) Use 
Equation 4.20 to write an expression for R in terms of vi , 
E, the charge and mass of the proton, and the angle u. (e) 
Find the two possible values of the angle u. (f) Find the time 
interval during which the proton is above the plane in Fig-
ure P22.26 for each of the two possible values of u.

R
Target�

Proton
beam

u
vi
S

ˆE � �720 j  N/C
S

E � 0 below the plane
S

Figure P22.26

27. You are still fascinated by the process of inkjet printing, 
as described in the opening storyline for this chapter. You 
convince your father to take you to his manufacturing  
facility to see the machines that print expiration dates on 
eggs. You strike up a conversation with the technician oper-
ating the machine. He tells you that the ink drops are cre-
ated using a piezoelectric crystal, acoustic waves, and the 

T

T
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Figure P22.23
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612 Chapter 22 Electric Fields

Plateau–Rayleigh instability, which creates uniform drops 
of mass m 5 1.25 3 1028 g. While you don’t understand 
the fancy words, you do recognize mass! The technician 
also tells you that the drops are charged to a controllable 
value of q and then projected vertically downward between 
parallel deflecting plates at a constant terminal speed of  
18.5 m/s. The plates are , 5 2.25 cm long and have a 
uniform electric field of magnitude E 5 6.35 3 104 N/C 
between them. Noting your interest in the process, the tech-
nician asks you, “If the position on the egg at which the drop 
is to be deposited requires that its deflection at the bottom 
end of the plates be 0.17 mm, what is the required charge on 
the drop?” You quickly get to work to find the answer.

28. You are working on a research project in which you must 
control the direction of travel of electrons using deflec-
tion plates. You have devised the apparatus shown in Fig-
ure P22.28. The plates are of length , 5 0.500 m and are 
separated by a distance d 5 3.00 cm. Electrons are fired at  
vi 5 5.00 3 106 m/s into a uniform electric field from the 
left edge of the lower, positive plate, aimed directly at the 
right edge of the upper, negative plate. Therefore, if there is 
no electric field between the plates, the electrons will follow 
the broken line in the figure. With an electric field existing 
between the plates, the electrons will follow a curved path, 
bending downward. You need to determine (a) the range of 
angles over which the electron can leave the apparatus and 
(b) the electric field required to give the maximum possible 
deviation angle.

�

vi î

�

x d

y

E
S

 

� � � � � � � � � � � �

� � � � � � � � � � � �

Figure P22.28

addiTional ProbleMs

29. Consider an infinite number of identical particles, each 
with charge q, placed along the x axis at distances a, 2a, 3a, 
4a, . . . from the origin. What is the electric field at the ori-
gin due to this distribution? Suggestion: Use

1 1
1
22 1

1
32 1

1
42 1 . . . 5

p2

6

30. A particle with charge 23.00 nC is at the origin, and 
a particle with negative charge of magnitude Q is at  
x 5 50.0 cm. A third particle with a positive charge is in 
equilibrium at x 5 20.9 cm. What is Q?

31. A small block of mass m and charge Q is placed on an insu-
lated, frictionless, inclined plane of angle u as in Figure 
P22.31. An electric field is applied parallel to the incline. (a) 
Find an expression for the magnitude of the electric field 
that enables the block to remain at rest. (b) If m 5 5.40 g,  

Q 5 27.00 mC, and u 5 25.08, 
determine the magnitude 
and the direction of the elec-
tric field that enables the 
block to remain at rest on the 
incline.

32. A small sphere of charge 
q1  5 0.800 mC hangs from 
the end of a spring as in Fig-
ure P22.32a. When another small sphere of charge q2  5 
20.600  mC is held beneath the first sphere as in Figure 
P22.32b, the spring stretches by d 5 3.50 cm from its orig-
inal length and reaches a new equilibrium position with a 
separation between the charges of r 5 5.00 cm. What is the 
force constant of the spring?

d

r

k k

�

�

�

a b

q1
q1

q2

Figure P22.32

33. A charged cork ball of mass 
1.00  g is suspended on a light 
string in the presence of a uni-
form electric field as shown 
in Figure P22.33. When E

S
5

s3.00 i
⁄

1 5.00 j
⁄
d 3 105 NyC, the 

ball is in equilibrium at u 5 
37.08. Find (a) the charge on 
the ball and (b) the tension in 
the string.

34. A charged cork ball of mass m 
is suspended on a light string 
in the presence of a uniform 
electric field as shown in Figure P22.33. When E

S
5 A i

⁄
1 B j

⁄
, 

where A and B are positive quantities, the ball is in equilib-
rium at the angle u. Find (a) the charge on the ball and (b) 
the tension in the string.

35. Three charged particles are aligned along the x axis as 
shown in Figure P22.35. Find the electric field at (a) the posi-
tion (2.00 m, 0) and (b) the position (0, 2.00 m).

0.800 m

y

3.00 nC5.00 nC

0.500 m

�4.00 nC
x���

Figure P22.35
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Figure P22.33  
Problems 33 and 34
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36. Two point charges qA 5 212.0 mC and qB 5 45.0 mC and a 
third particle with unknown charge qC are located on the x 
axis. The particle qA is at the origin, and qB is at x 5 15.0 cm. 
The third particle is to be placed so that each particle is in 
equilibrium under the action of the electric forces exerted 
by the other two particles. (a) Is this situation possible? If so, 
is it possible in more than one way? Explain. Find (b) the 
required location and (c) the magnitude and the sign of the 
charge of the third particle.

37. Two small spheres hang in equilibrium at the bot-
tom ends of threads, 40.0 cm long, that have their top 
ends tied to the same fixed point. One sphere has mass  
2.40 g and charge 1300 nC. The other sphere has the same 
mass and charge 1200 nC. Find the distance between the 
centers of the spheres.

38. Four identical charged particles (q 5 110.0 mC) are located 
on the corners of a rectangle as shown in Figure P22.38. 
The dimensions of the rectangle are L 5 60.0 cm and W 5 
15.0 cm. Calculate (a) the magnitude and (b) the direction 
of the total electric force exerted on the charge at the lower 
left corner by the other three charges.

�

�

�

�
q q

qq

y

x
L

W

Figure P22.38

39. Review. Two identical blocks resting on a frictionless, 
horizontal surface are connected by a light spring hav-
ing a spring constant k 5 100 N/m and an unstretched 
length Li  5 0.400 m as shown in Figure P22.39a.  
A charge Q is slowly placed on each block, causing the 
spring to stretch to an equilibrium length L 5 0.500 m as 
shown in Figure P22.39b. Determine the value of Q , model-
ing the blocks as charged particles.

k QQ

k

a

b

Li

L

Figure P22.39 Problems 39 and 40

40. Review. Two identical blocks resting on a frictionless, hor-
izontal surface are connected by a light spring having a 
spring constant k and an unstretched length Li as shown in 
Figure P22.39a. A charge Q is slowly placed on each block, 
causing the spring to stretch to an equilibrium length L as 
shown in Figure P22.39b. Determine the value of Q , mod-
eling the blocks as charged particles.

41. Three identical point charges, each of mass m 5  
0.100 kg, hang from three strings as shown in Figure P22.41. 
If the lengths of the left and right strings are each L 5 30.0 
cm and the angle u is 45.08, determine the value of q.

L L

�q �q

mmm

�q

θ θ

� ��

Figure P22.41

42. Why is the following situation impossible? An electron enters a 
region of uniform electric field between two parallel plates. 
The plates are used in a cathode-ray tube to adjust the posi-
tion of an electron beam on a distant fluorescent screen. 
The magnitude of the electric field between the plates is  
200 N/C. The plates are 0.200 m in length and are separated 
by 1.50 cm. The electron enters the region at a speed of  
3.00 3 106 m/s, traveling parallel to the plane of the plates 
in the direction of their length. It leaves the plates heading 
toward its correct location on the fluorescent screen.

43. Two hard rubber spheres, each of mass m 5 15.0 g, are 
rubbed with fur on a dry day and are then suspended with 
two insulating strings of length L 5 5.00 cm whose sup-
port points are a distance d 5 3.00 cm from each other as 
shown in Figure P22.43. During the rubbing process, one 
sphere receives exactly twice the charge of the other. They  
are observed to hang at equilibrium, each at an angle of  
u 5 10.08 with the vertical. Find the amount of charge on 
each sphere.

L

d

u u

m m

Figure P22.43

44. Two identical beads each have a mass m and charge q. When 
placed in a hemispherical bowl of radius R with frictionless, 
nonconducting walls, the beads move, and at equilibrium, 
they are a distance d apart (Fig. P22.44). (a) Determine the 
charge q on each bead. (b) Determine the charge required 
for d to become equal to 2R.

d

R R

��
mm

Figure P22.44
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614 Chapter 22 Electric Fields

45. Two small spheres of mass m are suspended from strings of 
length , that are connected at a common point. One sphere 
has charge Q and the other charge 2Q. The strings make 
angles u1 and u2 with the vertical. (a) Explain how u1 and u2 
are related. (b) Assume u1 and u2 are small. Show that the 
distance r between the spheres is approximately

r < S4keQ
2/

mg D1y3

46. You are working as an expert witness for an inventor. The 
inventor devised a system that allows an 85.0-kg human to 
hover above the ground at the surface of the Earth due to 
the repulsive force between a charge q applied to his body 
and the normal electric charge on the Earth. The normal 
charge on the Earth is such that the electric field is uni-
form near the Earth’s surface, directed downward toward 
the surface, and is of magnitude 130 N/C at the location of 
the engineer’s experiments. Everything went well until the 
engineer tried a new experiment. He attempted to transfer 
the same amount of charge q to each of two experimental 
subjects standing next to each other, so they could hover 
and work close together on a task. The charged, hovering 
experimental subjects repelled each other and were injured 
as they flew away in opposite directions. Both experimental 
subjects are now suing the inventor for their injuries. The 
inventor is claiming that it is not his fault if the subjects find 
each other repulsive. To find out whether the inventor has 
a good defense, determine the initial acceleration of each 
subject if they are working 1.00 m apart.

47. Review. A 1.00-g cork ball with charge 2.00 mC is suspended 
vertically on a 0.500-m-long light string in the presence of 
a uniform, downward-directed electric field of magnitude 
E 5 1.00 3 105 N/C. If the ball is displaced slightly from 
the vertical, it oscillates like a simple pendulum. (a) Deter-
mine the period of this oscillation. (b) Should the effect 
of gravitation be included in the calculation for part (a)? 
Explain.

challenge ProbleMs

 48. Eight charged particles, each of magnitude q, are located on 
the corners of a cube of edge s as shown in Figure P22.48. 
(a) Determine the x, y, and z components of the total force 
exerted by the other charges on the charge located at point 
A. What are (b) the magnitude and (c) the direction of this 
total force?

Point
A

x

y

z

q

q q

q

q
q

q

q

s
s

s

Figure P22.48

 49. Two particles, each with charge 52.0 nC, are located on the 
y axis at y 5 25.0 cm and y 5 225.0 cm. (a) Find the vector 
electric field at a point on the x axis as a function of x. (b) 
Find the field at x 5 36.0 cm. (c) At what location is the field 
1.00i

⁄
 kNyC? You may need a computer to solve this equa-

tion. (d) At what location is the field 16.0i
⁄
 kNyC?

 50. Review. An electric dipole in a uniform horizontal electric 
field is displaced slightly from its equilibrium position as 
shown in Figure P22.50, where u is small. The separation of 
the charges is 2a, and each of the two particles has mass m. 
(a) Assuming the dipole is released from this position, 
show that its angular orientation exhibits simple harmonic 
motion with a frequency

f 5
1

2p Î qE

ma

  What If? (b) Suppose the masses of the two charged particles 
in the dipole are not the same even though each particle con-
tinues to have charge q. Let the masses of the particles be m1 
and m2. Show that the frequency of the oscillation in this case is

f 5
1

2p ÎqE sm1 1 m2d

2am1m2

q

�q

2a
u E

S
 

�

�

Figure P22.50
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23.1 Electric Field of a 
Continuous Charge 
Distribution

23.2 Electric Flux

23.3 Gauss’s Law

23.4 Application of Gauss’s 
Law to Various Charge 
Distributions

Lightning is a dramatic 
example of electricity 
in nature. If you are in a 
lightning storm, should you 
walk through the circular 
metal gate? (Courtesy of 
straysparks.com)

Storyline It’s spring break! You have arranged to travel to Florida  
with some fellow students for a spring break getaway. As your plane lands, 
you notice some storm clouds in the distance and then see some lightning. 
Because lightning is relatively rare in southern California, you are fascinated 
to see the bright flashes, and maybe a little worried. After settling into your 
accommodations, you are walking around a large park when the lightning storm 
approaches your location. You want to run back to the park entrance to avoid 
the lightning, but you must pass through a circular “moongate” as shown in 
the photograph. You have read that the ground obtains a large charge during a 
lightning storm and you are concerned that the metal moongate will also have 
a charge, because it is connected to the ground. If the moongate has a charge 
on it, that charge will create an electric field. Could that be dangerous? What 
would be the safest thing for you to do? Should you run through the moongate 
or try to avoid it?

ConneCtions In Chapter 22, we showed how to evaluate the electric 
field due to a point charge or to a collection of a relatively small number of point 
charges. In this chapter, we imagine a continuous charge distribution: a number 
of charges so large that the distribution can be considered to be continuous, 
such as the distribution of charges on the moongate in the opening photograph. 
We discover in this chapter two ways to evaluate the electric field due to a 
continuous distribution of charge. One way is to use the superposition principle 

Continuous Charge Distributions 
and Gauss’s Law

23

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



616 Chapter 23 Continuous Charge Distributions and Gauss’s Law

from Equation 22.10. The sum in that equation will become an integral over the 
distribution. The second means of finding the electric field for certain types of 
continuous distributions of charge is to use Gauss’s law. Gauss’s law is based on 
the inverse square behavior of the electric force between point charges. Although 
Gauss’s law is a direct consequence of Coulomb’s law, it is more convenient for 
calculating the electric fields of highly symmetric charge distributions and makes 
it possible to deal with complicated problems using qualitative reasoning. This 
new tool will be added to our kit of techniques to be used in evaluating electric 
fields and can be used in future chapters whenever we encounter the electric 
field due to a continuous, symmetric charge distribution.

   23.1    Electric Field of a Continuous Charge Distribution
In Chapter 22, we investigated the electric fields due to point charges and the 
effects of external electric fields on point charges. Equation 22.10 is useful for cal-
culating the electric field due to a small number of charges. In many cases, we have 
a continuous distribution of charge rather than a collection of discrete charges. The 
charge in these situations can be described as continuously distributed along some 
line, over some surface, or throughout some volume.

To set up the process for evaluating the electric field created by a continuous 
charge distribution, let’s use the following procedure. First, divide the charge dis-
tribution into small elements, each of which contains a small charge Dq as shown 
in Figure 23.1. Next, use Equation 22.9 to calculate the electric field due to one of 
these elements at a point P. Finally, evaluate the total electric field at P due to the 
charge distribution by summing the contributions of all the charge elements (that 
is, by applying the superposition principle).

The electric field at P due to one charge element carrying charge Dq is

DE
S

5 ke 
Dq

r 2  r⁄

where r is the distance from the charge element to point P and r⁄ is a unit vector 
directed from the element toward P. The total electric field at P due to all elements 
in the charge distribution is approximately

E
S

< ke o
i

  
Dqi

r i
2  r⁄i

where the index i refers to the ith element in the distribution. Because the number 
of elements is very large and the charge distribution is modeled as continuous, the 
total field at P in the limit Dqi S 0 is

 E
S

5 ke lim
Dqi

S 0
 o

i

 
Dqi

ri
2  r⁄i 5 ke#dq

r 
2  r ⁄ (23.1)

where the integration is over the entire charge distribution. The integration in 
Equation 23.1 is a vector operation and must be treated appropriately.

Let’s illustrate this type of calculation with several examples in which the charge 
is distributed on a line, on a surface, or throughout a volume. When performing 
such calculations, it is convenient to use the concept of a charge density along with 
the following notations:

 ● If a charge Q is uniformly distributed throughout a volume V, the volume 
charge density r is defined by

r ;
Q

V

where r has units of coulombs per cubic meter (C/m3).

r1r2 r3

ˆ

P

r1

r̂2

r̂3

�q1

�E1

�E3
�E2

S

S S

�q2

�q3

Figure 23.1 The electric field at 
P due to a continuous charge dis-
tribution is the vector sum of the 
fields DE

S
i due to all the elements 

Dqi of the charge distribution. 
Three sample elements are shown.

Electric field due to  
a continuous charge 

distribution

Volume charge density  
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    23.1 Electric Field of a Continuous Charge Distribution 617

 ● If a charge Q is uniformly distributed on a surface of area A, the surface 
charge density s (Greek letter sigma) is defined by

s ;
Q

A

where s has units of coulombs per square meter (C/m2).

 ● If a charge Q is uniformly distributed along a line of length /, the linear 
charge density l is defined by

l ;
Q

/

where l has units of coulombs per meter (C/m).

 ● If the charge is nonuniformly distributed over a volume, surface, or line, the 
amounts of charge dq in a small volume, surface, or length element are

dq 5 r dV   dq 5 s dA  dq 5 l d/

 Surface charge density

 Linear charge density

ProblEm-Solving StratEgy Calculating the Electric Field

The following procedure is recommended for solving problems that involve the determi-
nation of an electric field due to individual charges or a charge distribution.

1. Conceptualize. Establish a mental representation of the problem: think carefully about 
the individual charges or the charge distribution and imagine what type of electric field it 
would create. Appeal to any symmetry in the arrangement of charges to help you visualize 
the electric field.

2. Categorize. Are you analyzing a group of individual charges or a continuous charge 
distribution? The answer to this question tells you how to proceed in the Analyze step.

3. analyze.

(a) If you are analyzing a group of individual charges, use the superposition prin-
ciple: when several point charges are present, the resultant field at a point in space 
is the vector sum of the individual fields due to the individual charges (Eq. 22.10). 
Be very careful in the manipulation of vector quantities. It may be useful to review 
the material on vector addition in Chapter 3. Example 22.6 in the previous chapter 
demonstrated this procedure.

(b) If you are analyzing a continuous charge distribution, the superposition prin-
ciple is applied by replacing the vector sums for evaluating the total electric field 
from individual charges by vector integrals. The charge distribution is divided 
into infinitesimal pieces, and the vector sum is carried out by integrating over the 
entire charge distribution (Eq. 23.1). Examples 23.1 through 23.3 demonstrate such 
procedures.

Consider symmetry when dealing with either a distribution of point charges or a 
continuous charge distribution. Take advantage of any symmetry in the system you 
observed in the Conceptualize step to simplify your calculations. The cancellation 
of field components perpendicular to the axis in Example 23.2 is an example of the 
application of symmetry.

4. Finalize. Check to see if your electric field expression is consistent with the men-
tal representation and if it reflects any symmetry that you noted previously. Imagine 
varying parameters such as the distance of the observation point from the charges or 
the radius of any circular objects to see if the mathematical result changes in a rea-
sonable way.
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618 Chapter 23 Continuous Charge Distributions and Gauss’s Law

 Example 23.1   the Electric Field Due to a Charged rod

A rod of length / has a uniform positive charge per unit length l 
and a total charge Q. Calculate the electric field at a point P that 
is located along the long axis of the rod and a distance a from one 
end (Fig. 23.2).

S o L u t I o n

Conceptualize The field d E
S

 at P due to each segment of charge on 
the rod is in the negative x direction because every segment carries a 
positive charge. Figure 23.2 shows the appropriate geometry. In our 
result, we expect the electric field to become smaller as the distance a 
becomes larger because point P  is farther from the charge distribution.

Categorize Because the rod is continuous, we are evaluating the field due to a continuous charge distribution rather than a 
group of individual charges. Because every segment of the rod produces an electric field in the negative x direction, the vector 
sum of their contributions is easy to determine.

analyze Let’s assume the rod is lying along the x axis, dx is the length of one small segment, and dq is the charge on that seg-
ment. Because the rod has a charge per unit length l, the charge dq on the small segment is dq 5 l dx.

Find the magnitude of the electric field at P due to one  dE 5 ke 
dq

x2 5 ke 
l dx
x2  

segment of the rod having a charge dq:

Find the total field at P using1 Equation 23.1: E 5 #
/1a

a
 ke l 

dx
x2

Noting that ke and l 5 Q// are constants and can be E 5 ke l #
/1a

a
 
dx
x2 5 ke l32 1

x4
/1a

a

 
removed from the integral, evaluate the integral:

 (1)   E 5 ke 
Q

/ S1
a

2
1

/ 1 aD 5
keQ

as/ 1 ad

Finalize We see that our prediction is correct; if a becomes larger, the denominator of the fraction grows larger, and E 
becomes smaller. On the other hand, if a → 0, which corresponds to sliding the bar to the left until its left end is at the origin, 
then E → .̀ That represents the condition in which the observation point P is at zero distance from the charge at the end of 
the rod, so the field becomes infinite. We explore large values of a below.

W H A t  I F ? Suppose point P is very far away from the rod. What is the nature of the electric field at such a point?

answer If P is far from the rod (a .. /), then / in the denominator of Equation (1) can be neglected and E < keQ/a2. That 
is exactly the form you would expect for a point charge. Therefore, at large values of a//, the charge distribution appears to be 
a point charge of magnitude Q; the point P is so far away from the rod we cannot distinguish that it has a size. The use of the 
limiting technique (a// S `) is often a good method for checking a mathematical expression.

x

y

�
a

P
x

dx

E
S

 

Figure 23.2 (Example 23.1) The electric field at P due 
to a uniformly charged rod lying along the x axis. We 
choose the location of point P to be the origin.

1To carry out integrations such as this one, first express the charge element dq in terms of the other variables in the 
integral. (In this example, there is one variable, x, so we made the change dq 5 l dx.) The integral must be over sca-
lar quantities; therefore, express the electric field in terms of components, if necessary. (In this example, the field 
has only an x component, so this detail is of no concern.) Then, reduce your expression to an integral over a single 
variable (or to multiple integrals, each over a single variable). In examples that have spherical or cylindrical symme-
try, the single variable is a radial coordinate.

 Example 23.2    the Electric Field of a Uniform ring of Charge

A ring of radius a carries a uniformly distributed positive total charge Q. Calculate the electric field due to the ring at a 
point P lying a distance x from its center along the central axis perpendicular to the plane of the ring (Fig. 23.3a).

S o L u t I o n

Conceptualize Figure 23.3a shows the electric field contribution d E
S

 at P due to a single segment of charge at the top of the 
ring. This field vector can be resolved into components dEx parallel to the axis of the ring and dE� perpendicular to the axis. 
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    23.1 Electric Field of a Continuous Charge Distribution 619

Figure 23.3b shows the electric field contri-
butions from two segments on opposite sides 
of the ring. Because of the symmetry of the 
situation, the perpendicular components dE� 
of the field cancel. That is true for all pairs of 
segments around the ring, so we can ignore 
the perpendicular component of the field 
and focus solely on the parallel components 
dEx, which simply add.

Categorize Because the ring is continuous, 
we are evaluating the field due to a continu-
ous charge distribution rather than a group 
of individual charges.

analyze Evaluate the parallel component of an electric  (1) dEx 5 ke 
dq

r 2  cos u 5 ke 
dq

a 2 1 x2 cos u 
field contribution from a segment of charge dq on the ring:

From the geometry in Figure 23.3a, evaluate cos u: (2) cos u 5
x
r

5
x

sa 2 1 x2d1y2

Substitute Equation (2) into Equation (1): dEx 5 ke 
dq

a 2 1 x2  3 x
sa 2 1 x2d1y24 5

ke x

sa 2 1 x2d3y2
 dq

All segments of the ring make the same contribution to  Ex 5 # 
ke x

sa 2 1 x2d3y2
 dq 5

ke x

sa 2 1 x2d3y2
 # dq 

the field at P because they are all equidistant from this  
point. Integrate over the circumference of the ring to  
obtain the total field at P: (3) E 5

ke x

sa 2 1 x2d3y2
 Q

Finalize The electric field at P is of this magnitude and directed along the x axis, away from the ring. This result shows that 
the field is zero at x 5 0. Is that consistent with the symmetry in the problem? Furthermore, notice that Equation (3) reduces 
to keQ/x2 if x .. a, so the ring acts like a point charge for locations far away from the ring. From a faraway point, we cannot 
distinguish the ring shape of the charge.

Figure 23.3 (Example 23.2) A uniformly charged ring of radius a. (a) The field at 
P on the x axis due to an element of charge dq. (b) The perpendicular component of 
the field at P due to segment 1 is canceled by the perpendicular component due to 
segment 2.

a b

u P dEx

dE›

dE›

dE›

r

dq

a

x
x

x
x u

1

2
dE
S

dE2

dE1

S

S

W H A t  I F ?  Suppose a negative charge is placed at the 
center of the ring in Figure 23.3 and displaced slightly by a 
distance x ,, a along the x axis. When the charge is 
released, what type of motion does it exhibit?

answer In the expression for the field due to a ring of 
charge, let x ,, a, which results in

Ex 5
keQ

a3  x

Therefore, from Equation 22.8, the force on a charge 2q 
placed near the center of the ring is

Fx 5 2 

ke qQ

a3  x

Because this force has the form of Hooke’s law (Eq. 15.1), the 
motion of the negative charge is described with the  particle 
in simple harmonic motion model!

Example 23.2 relates to our opening storyline. We wanted to know if the region 
inside the circular moongate would be safe if the metal of the moongate were 
charged. Equation (3) in Example 23.2 shows that the electric field is zero at the 
exact center of one ring of the moongate. The opening photograph shows two rings 
in the moongate, so you may experience zero field at the center of one but will 
experience a nonzero field from the other! You will also experience a radial field at 
points other than the exact center of the moongate, but these fields will be small in 
magnitude. As you approach the moongate, you will experience a maximum value 
of the electric field on the axis of the ring at a point a distance a/21/2 from the cen-
ter of the ring, as shown in Problem 40. Therefore, to get to the zero field inside the 
ring, you have to pass through a maximum value. Maybe the best choice is to take a 
little extra time and run around the moongate!

23.2 c o n t i n u e d
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620 Chapter 23 Continuous Charge Distributions and Gauss’s Law

   23.2    Electric Flux
The concept of electric field lines was described qualitatively in Chapter 22. We 
now treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction as 
shown in Figure 23.5. The field lines penetrate a rectangular surface of area A, 

 Example 23.3    the Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density s. Calculate the electric field 
at a point P that lies along the central perpendicular axis of the disk and a distance x 
from the center of the disk (Fig. 23.4).

S o L u t I o n

Conceptualize If the disk is considered to be a set of con-
centric rings, we can use our result from Example 23.2— 
which gives the field created by a single ring of radius a—
and sum the contributions of all rings making up the 
disk. By symmetry, the field at an axial point must be 
along the central axis.

Categorize Because the disk is continuous, we are evaluating the field due to a continuous charge distribution rather than a 
group of individual charges.

analyze Find the amount of charge dq on the surface area  dq 5 s dA 5 s s2pr drd 5 2psr dr  
of a ring of radius r and width dr as shown in Figure 23.4:

Use this result in Equation (3) in Example 23.2 (with a dEx 5
ke x

sr 2 1 x2d3y2
s2psr drd 

replaced by r and Q replaced by dq) to find the field  
due to the ring:

To obtain the total field at P, integrate this expression   Ex 5 ke x ps#
R

0
 

2r dr
sr 2 1 x2d3y2

 
over the limits r 5 0 to r 5 R, noting that x is a  
constant in this situation: 
  5 ke x ps#

R

0
sr 2 1 x2d23y2d sr 2d

  5 ke x ps 3sr 2 1 x2d21y2

21y2 4R

0

5 2pke s
 31 2

x
sR 2 1 x2d1y24

Finalize This result is valid for all values of x . 0. For large values of x, the result above can be evaluated by a series expansion 
and shown to be equivalent to the electric field of a point charge Q. We can calculate the field close to the disk along the axis 
by assuming x ,, R; in this case, the expression in brackets reduces to unity to give us the near-field approximation

E 5 2pke s 5
s

2e0

where e0 is the permittivity of free space. 

W H A t  I F ? What if we let the radius of the disk grow so that the disk becomes an infinite plane of charge? 

answer The result of letting R S ` in the final result of the example is that the magnitude of the electric field becomes

E 5 2pke s 5
s

2e0

This is the same expression that we obtained for x ,, R . If R S ,̀ everywhere is near-field—the result is independent of the 
position at which you measure the electric field. Therefore, the electric field due to an infinite plane of charge is uniform 
throughout space. 

An infinite plane of charge is impossible in practice. If two planes of charge are placed close to each other, however, with 
one plane positively charged, and the other negatively, the electric field between the plates is very close to uniform at points 
far from the edges. Such a configuration will be investigated in Chapter 25.

P
x

r

R

dq

dr

xFigure 23.4 (Example 23.3) 
A uniformly charged disk of 
radius R. The electric field at an 
axial point P is directed along 
the central axis, perpendicular 
to the plane of the disk.
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Area � A

E
S

 

Figure 23.5 Field lines repre-
senting a uniform electric field 
penetrating a plane of area A 
perpendicular to the field. 

whose plane is oriented perpendicular to the field. Recall from Section 22.5 that 
the number of lines per unit area (in other words, the line density) is proportional to 
the magnitude of the electric field. Therefore, the total number of lines penetrat-
ing the surface is proportional to the product EA. This product of the magnitude 
of the electric field E and surface area A perpendicular to the field is called the 
electric flux FE (uppercase Greek letter phi):

 FE 5 EA (23.2)

From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). 

If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 23.2. Consider Figure 23.6, 
where the surface of area A is at an angle u to a plane of area A� that is perpendicu-
lar to the uniform electric field. Notice that the number of lines that cross this area 
A is equal to the number of lines that cross the area A�. The area A is the product 
of the length and the width of the surface: A 5 /w. At the left edge of the figure, we 
see that the widths of the surfaces are related by w� 5 w cos u. The area A� is given 
by A� 5 /w� 5 /w cos u and we see that the two areas are related by A� 5 A cos u. 
Because the flux through A equals the flux through A�, the flux through A is

 FE 5 EA� 5 EA cos u (23.3)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 23.6); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).

In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface as shown in Figure 23.6. In this case, the product  
E cos u in Equation 23.3 is the component of the electric field perpendicular to the 
surface. The flux through the surface can then be written FE  5 (E cos u)A 5 EnA, 
where we use En as the component of the electric field normal to the surface.

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 23.3 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector DA

S
i whose magnitude represents the area of the ith element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 23.7. The electric field E

S
i at the location of this element makes an 

angle ui with the vector DA
S

i. The electric flux FE,i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? DA
S

i

where we have used the definition of the scalar product of two vectors 
(A

S 
? B

S
; AB cos u; see Section 7.3). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < o E
S

i ? DA
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ;    # 
surface

E
S 

? d A
S

 (23.4)

Equation 23.4 is a surface integral, which means it must be evaluated over the surface in 
question. In general, the value of FE depends both on the field pattern and on the surface.

 Definition of electric flux

A

w
w┴

A┴

Normal

u

u

E
S

The number of field lines that 
go through the area A┴ is the 
same as the number that go 
through area A.

,

Figure 23.6 Field lines represent-
ing a uniform electric field pene-
trating an area A whose normal is 
at an angle u to the field.

The electric field makes an angle
ui with the vector �Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

�Ai  
S

Figure 23.7  A small element of 
surface area DAi in an electric field.
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622 Chapter 23 Continuous Charge Distributions and Gauss’s Law

We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-
tion 23.4 is part of a closed surface, the direction of the area vector is chosen so 
that the vector points outward from the surface. If the area element is not part of a 
closed surface, the direction of the area vector is chosen so that the angle between 
the area vector and the electric field vector is less than or equal to 90°.

Consider the closed surface in Figure 23.8. The vectors DA
S

i point in different 
directions for the various surface elements, but for each element they are normal to 
the surface and point outward. At the element labeled ➀, the field lines are crossing 
the surface from the inside to the outside and u , 908; hence, the flux FE,1 5 E

S 
? DA

S
1 

through this element is positive. For element ➁, the field lines graze the surface (per-
pendicular to DA

S
2); therefore, u 5 908 and the flux is zero. For elements such as ➂, 

where the field lines are crossing the surface from outside to inside, 1808 . u . 908 
and the flux is negative because cos u is negative. The net flux through the surface is 
proportional to the net number of lines leaving the surface, where the net number 
means the number of lines leaving the surface minus the number of lines entering the surface. If 
more lines are leaving than entering, the net flux is positive. If more lines are enter-
ing than leaving, the net flux is negative. Using the symbol r to represent an integral 
over a closed surface, we can write the net flux FE through a closed surface as

 FE 5 $ E
S 

? dA
S

5 $ En dA (23.5)

where En represents the component of the electric field normal to the surface.

Q uIck QuIz 23.1  Suppose a point charge is located at the center of a spher-
ical surface. The electric field at the surface of the sphere and the total flux 
through the sphere are determined. Now the radius of the sphere is halved. 
What happens to the flux through the sphere and the magnitude of the electric 
field at the surface of the sphere? (a) The flux and field both increase. (b) The 
flux and field both decrease. (c) The flux increases, and the field decreases. 
(d) The flux decreases, and the field increases. (e) The flux remains the same, 
and the field increases. (f) The flux decreases, and the field remains the same.

En

En

u

u

E
S

E
S

E
S

�A3
S

�A2
S

�A1
S

The electric
flux through
this area
element is
negative.  

The electric
flux through
this area
element is
zero. 

The electric
flux through
this area
element is
positive.  

��

�

�

�

�

Figure 23.8 A closed surface in an electric field. The area vectors are, by convention, normal to the 
surface and point outward. 
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    23.3 Gauss’s Law 623

 Example 23.4    Flux through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in 
empty space. A cube of edge length / is placed in the field, oriented as 
shown in Figure 23.9. Find the net electric flux through the surface of 
the cube.

S o L u t I o n

Conceptualize  Examine Figure 23.9 carefully. Notice that the electric field 
lines pass through two faces perpendicularly and are parallel to four other 
faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize this 
example as a substitution problem.

The flux through four of the faces (➂, ➃, and the unnumbered faces) 
is zero because E

S
 is parallel to the four faces and therefore perpendicular 

to d A
S

 on these faces.

Write the integrals for the net flux through faces ➀  FE 5 #
1
E
S 

? d A
S

1 #
2
E
S 

? d A
S

 
and ➁:

For face ➀, E
S

 is constant and directed inward but d A
S

1  #
1
E
S

? d A
S

5 #
1
 E scos 1808d dA 5 2E #

1
 dA 5 2EA 5 2E /2 

is directed outward (u 5 1808). Find the flux through  
this face:

For face ➁, E
S

 is constant and outward and in the same  #
2
 E
S 

? dA
S

5 #
2
 E scos 08d dA 5 E #

2
 dA 5 1EA 5 E /2 

direction as d A
S

2 (u 5 08). Find the flux through this face:

Find the net flux by adding the flux over all six faces: FE 5 2E/2 1 E/2 1 0 1 0 1 0 1 0 5 0

In the next section, we generate a fundamental principle that explains this zero value.

y

z �

�

�

x

d

d

d

d

A3
S

A1
S

A4
S

A2
S

E
S

 

�

�

�

�

Figure 23.9  (Example 23.4) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side ➃ is the bottom of 
the cube, and side ➀ is opposite side ➁.

   23.3    gauss’s law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Consider a positive point charge q located at the center of a sphere of radius r 
as shown in Figure 23.10. From Equation 22.9, we know that the magnitude of the 
electric field everywhere on the surface of the sphere is E 5 keq/r2. The field lines 
are directed radially outward and hence are perpendicular to the surface at every 
point on the surface. That is, at each surface point, E

S
 is parallel to the  vector DA

S
i 

representing a local element of area DAi surrounding the surface point. Therefore,

 E
S 

? DA
S

i 5 E DAi 

and, from Equation 23.5, we find that the net flux through the gaussian surface is

 FE 5 $ E
S 

? d A
S

5 $ E dA 5 E $ dA 

where we have moved E outside of the integral because, by symmetry, E is constant 
over the surface. The value of E is given by E 5 keq/r2. Furthermore, because the sur-
face is spherical, rdA 5 A 5 4pr2. Hence, the net flux through the gaussian surface is

 FE 5 ke 
q

r 2 s4pr 2d 5 4pkeq 

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

�A i
S

r

q
�

Figure 23.10 A spherical gaussian 
surface of radius r surrounding a 
positive point charge q. 
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624 Chapter 23 Continuous Charge Distributions and Gauss’s Law

Recalling from Equation 22.3 that ke 5 1/4pe0, we can write this equation in the form

 FE 5
q
e0

 (23.6)

Equation 23.6 shows that the net flux through the spherical surface is proportional to 
the charge inside the surface. The flux is independent of the radius r because the area 
of the spherical surface is proportional to r2, whereas the electric field is proportional to 
1/r2. Therefore, in the product of area and electric field, the dependence on r cancels.

Now consider several closed surfaces surrounding a charge q as shown in Fig-
ure 23.11. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation 23.6, 
the flux that passes through S1 has the value q/e0. As discussed in the preceding 
section, flux is proportional to the number of electric field lines passing through a 
surface. In Figure 23.11, every field line that passes through S1 also passes through 
the nonspherical surfaces S2 and S3. Therefore,

the net flux through any closed surface surrounding a point charge q is given 
by q/e0 and is independent of the shape of that surface.

Now consider a point charge located outside a closed surface of arbitrary shape as 
shown in Figure 23.12. As can be seen from this construction, any electric field line 
entering the surface leaves the surface at another point. The number of electric 
field lines entering the surface equals the number leaving the surface. Therefore, 
the net electric flux through a closed surface that surrounds no charge is zero. 
Applying this result to Example 23.4, we see that the net flux through the cube is 
zero because there is no charge inside the cube.

Let’s extend these arguments to two generalized cases: (1) that of many point 
charges and (2) that of a continuous distribution of charge. We once again use the 
superposition principle, which states that the electric field due to many charges is 
the vector sum of the electric fields produced by the individual charges. Therefore, 
the flux through any closed surface can be expressed as

 $ E
S 

? d A
S

5 $ sE
S

1 1 E
S

2 1 Á d ? d A
S

 

where E
S

 is the total electric field at any point on the surface produced by the vector 
addition of the electric fields at that point due to the individual charges. Consider 
the system of charges shown in Figure 23.13. The surface S surrounds only one 

karl Friedrich Gauss
German mathematician and 
astronomer (1777–1855)
Gauss received a doctoral degree in math-
ematics from the University of Helmstedt 
in 1799. In addition to his work in elec-
tromagnetism, he made contributions to 
mathematics and science in number the-
ory, statistics, non-Euclidean geometry, 
and cometary orbital mechanics. He was 
a founder of the German Magnetic Union, 
which studies the Earth’s magnetic field 
on a continual basis.

The net electric flux is the 
same through all surfaces.  

�

S 3

S 2

S 1

Figure 23.11  Closed surfaces 
of various shapes surrounding 
a positive charge.

The number 
of field lines 
entering the 
surface equals 
the number 
leaving the 
surface.  q

�

Figure 23.12  A point charge located outside a closed 
surface. 

Charge q4 does not contribute to 
the flux through any surface 
because it is outside all surfaces.  

S

S �

S�

q1

� q4

� q2

q3

�

�

Figure 23.13 The net electric flux 
through any closed surface depends 
only on the charge inside that surface. 
The net flux through surface S is 
q1/e0, the net flux through surface 
S9 is (q2 1 q3)/e0, and the net flux 
through surface S0 is zero. 
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    23.4 Application of Gauss’s Law to Various Charge Distributions  625

charge, q1; hence, the net flux through S is q1/e0. The flux through S due to charges 
q2, q3, and q4 outside it is zero because each electric field line from these charges 
that enters S at one point leaves it at another. The surface S9 surrounds charges q2 
and q3; hence, the net flux through it is (q2 1 q3)/e0. Finally, the net flux through 
surface S0 is zero because there is no charge inside this surface. That is, all the 
electric field lines that enter S0 at one point leave at another. Charge q4 does not 
contribute to the net flux through any of the surfaces.

The mathematical form of Gauss’s law is a generalization of what we have just 
described and states that the net flux through any closed surface is

 FE 5 $ E
S 

? d A
S

5
qin

e0

 (23.7)

where E
S

 represents the electric field at any point on the surface and qin represents 
the net charge inside the surface.

When using Equation 23.7, you should note that although the charge qin is the 
net charge inside the gaussian surface, E

S
 represents the total electric field, which 

includes contributions from charges both inside and outside the surface.
In principle, Gauss’s law can be solved for E

S
 to determine the electric field due 

to a system of charges or a continuous distribution of charge. In practice, however, 
this type of solution is applicable only in a limited number of highly symmetric 
situations. In the next section, we use Gauss’s law to evaluate the electric field for 
charge distributions that have spherical, cylindrical, or planar symmetry. If one 
chooses the gaussian surface surrounding the charge distribution carefully, the 
integral in Equation 23.7 can be simplified and the electric field determined.

Q uIck QuIz 23.2  If the net flux through a gaussian surface is zero, the follow-
ing four statements could be true. Which of the statements must be true? (a) There 
are no charges inside the surface. (b) The net charge inside the surface is zero.  
(c) The electric field is zero everywhere on the surface. (d) The number of elec-
tric field lines entering the surface equals the number leaving the surface.

PItFall PreventIon 23.1
Zero Flux is not Zero Field In 
two situations, there is zero flux 
through a closed surface: either 
(1) there are no charged parti-
cles enclosed by the surface or 
(2) there are charged particles 
enclosed, but the net charge 
inside the surface is zero. For 
either situation, it is incorrect to 
conclude that the electric field 
on the surface is zero. Gauss’s law 
states that the electric flux is pro-
portional to the enclosed charge, 
not the electric field.

   23.4    application of gauss’s law to various  
Charge Distributions
As mentioned earlier, Gauss’s law is useful for determining electric fields when 
the charge distribution is highly symmetric. The following examples demonstrate 
ways of choosing the gaussian surface over which the surface integral given by 

 Conceptual Example 23.5     Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface if 
(A) the charge is tripled, (B) the radius of the sphere is doubled, (C) the surface is changed to a cube, and (D) the charge is 
moved to another location inside the surface.

S o L u t I o n

(a) The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(b) The flux does not change because all electric field lines from the charge pass through the sphere, regardless of its radius.

(C) The flux does not change when the shape of the gaussian surface changes because all electric field lines from the charge 
pass through the surface, regardless of its shape.

(D) The flux does not change when the charge is moved to another location inside that surface because Gauss’s law refers to 
the total charge enclosed, regardless of where the charge is located inside the surface.
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626 Chapter 23 Continuous Charge Distributions and Gauss’s Law

Equation 23.7 can be simplified and the electric field determined. In choosing the 
surface, always take advantage of the symmetry of the charge distribution so that E 
can be removed from the integral. The goal in this type of calculation is to deter-
mine a surface for which each portion of the surface satisfies one or more of the 
following conditions:

1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

2. The dot product in Equation 23.7 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

3. The dot product in Equation 23.7 is zero because E
S

 and d A
S

 are 
perpendicular.

4. The electric field is zero over the portion of the surface.

Different portions of the gaussian surface can satisfy different conditions as long 
as every portion satisfies at least one condition. All four conditions are used in exam-
ples throughout the remainder of this chapter and the next, and will be identified 
by number. If the charge distribution does not have sufficient symmetry such that a 
gaussian surface that satisfies these conditions can be found, Gauss’s law is still true, 
but is not useful for determining the electric field for that charge distribution.

 Example 23.6    a Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform vol-
ume charge density r and carries a total positive charge 
Q (Fig. 23.14).

(a)  Calculate the magnitude of the electric field at a 
point outside the sphere.

S o L u t I o n

Conceptualize The electric field due to point charges 
was discussed in Section 22.4. Now we are considering 
the electric field due to a distribution of charge. We 
found the field for various distributions of charge in 
Section 23.1 by integrating over the distribution. This 
example demonstrates a difference from our discussions 
in Section 23.1. In this section, we find the electric field 
using Gauss’s law.

Categorize Because the charge is distributed uniformly 
throughout the sphere, the charge distribution has spheri-
cal symmetry and we can apply Gauss’s law to find the elec-
tric field.

analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the sphere, as 
shown in Figure 23.14a. For this choice, condition (2) is satisfied everywhere on the surface and E

S 
? dA

S
5 E dA.

Replace E
S 

? d A
S

 in Gauss’s law with E dA: FE 5 $ E
S 

? d A
S

5 $ E dA 5
Q

e0

By symmetry, E has the same value everywhere on the  $ E dA 5 E $ dA 5 E s4pr 2d 5
Q

e0

 
surface, which satisfies condition (1), so we can remove  
E from the integral:

Solve for E: (1) E 5
Q

4pe0r
2 5 ke 

Q

r 2    sfor r .  ad

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 23.14  (Example 23.6) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

PItFall PreventIon 23.2
gaussian Surfaces are not real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.
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    23.4 Application of Gauss’s Law to Various Charge Distributions  627

Finalize This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged sphere in 
the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(b)  Find the magnitude of the electric field at a point inside the sphere.

S o L u t I o n

analyze In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating sphere 
(Fig. 23.14b). Let V9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that the charge qin 
within the gaussian surface of volume V9 is less than Q.

Calculate qin by using qin5 rV9: q in 5 rV 9 5 r s4
3 pr 3d

Notice that conditions (1) and (2) are satisfied everywhere  $ E dA 5 E $ dA 5 E s4pr 2d 5
q in

e0

 
on the gaussian surface in Figure 23.14b. Apply  
Gauss’s law in the region r , a:

Solve for E and substitute for qin: E 5
q in

4pe0r
2 5

r s4
3 pr 3d

4pe0r
2 5

r

3e0

 r

Substitute r 5 Q y4
3pa3 and e0 5 1/4pke: (2) E 5

Q y4
3 pa 3

3s1y4pked
 r 5 ke 

Q

a 3 r sfor r ,  ad

Finalize  This result for E differs from the one obtained in part (A). It shows that E S 0 as 
r S 0. Therefore, the result eliminates the problem that would exist at r 5 0 if E varied as 
1/r2 inside the sphere as it does outside the sphere. That is, if E ~ 1/r2 for r , a, the field 
would be infinite at r 5 0, which is physically impossible.

W H A t  I F ? Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from both 
directions?

answer Equation (1) shows that the electric field approaches a value from the outside 
given by

E 5 lim
r S a

 1ke 

Q

r 
22 5 ke 

Q

a 
2

From the inside, Equation (2) gives

E 5 lim
r S a  1ke 

Q

a3 r2 5 ke 

Q

a3 a 5 ke 

Q

a2

Therefore, the value of the field is the same as the surface is approached from both direc-
tions. A plot of E versus r is shown in Figure 23.15. Notice that the magnitude of the field 
is continuous.

a

E

a r

E 
keQ
r2

E �

�

keQ
a3 r

Figure 23.15  (Example 23.6)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere 
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

 Example 23.7    a Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per unit length l 
(Fig. 23.16a, page 628).

S o L u t I o n

Conceptualize The line of charge is infinitely long. Therefore, the field is the same at all points equidistant from the line, 
regardless of the vertical position of the point in Figure 23.16a. We expect the field to become weaker as we move farther away 
radially from the line of charge.

continued

23.6 c o n t i n u e d
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628 Chapter 23 Continuous Charge Distributions and Gauss’s Law

Categorize Because the charge is distributed uniformly 
along the line, the charge distribution has cylindrical 
symmetry and we can apply Gauss’s law to find the electric 
field.

analyze The symmetry of the charge distribution 
requires that E

S
 be perpendicular to the line charge and  

directed outward as shown in Figure 23.16b. To reflect the 
symmetry of the charge distribution, let’s choose a cylindri-
cal gaussian surface of radius r and length / that is coaxial 
with the line charge. For the curved part of this surface, E

S
 is 

constant in magnitude and perpendicular to the surface at 
each point, satisfying conditions (1) and (2). Furthermore, 
the flux through the ends of the gaussian cylinder is zero 
because E

S
 is parallel to these surfaces. That is the first appli-

cation we have seen of condition (3).
We must take the surface integral in Gauss’s law over the 

entire gaussian surface. Because E
S 

? d A
S

 is zero for the flat 
ends of the cylinder, however, we restrict our attention to 
only the curved surface of the cylinder.

Apply Gauss’s law and conditions (1) and (2) for the  FE 5 $ E
S 

? d A
S

5 E $ dA 5 EA 5
q in

e0

5
l/
e0

 
curved surface, noting that the total charge inside  
our gaussian surface is l/:

Substitute the area A 5 2pr/ of the curved surface: E s2pr /d 5
l/
e0

Solve for the magnitude of the electric field: E 5
l

2pe0r
5 2ke 

l

r
 (23.8)

Finalize This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, whereas the 
field external to a spherically symmetric charge distribution varies as 1/r2. Equation 23.8 can also be derived by direct integra-
tion over the charge distribution. (See Problem 8.)

W H A t  I F ? What if the line segment in this example were not infinitely long?

answer If the line charge in this example were of finite length, the electric field would not be given by Equation 23.8. A 
finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of the electric field 
is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line would be different from that 
far from the ends. Therefore, condition (1) would not be satisfied in this situation. Furthermore, E

S
 is not perpendicular to 

the cylindrical surface at all points: the field vectors near the ends would have a component parallel to the line. Therefore, 
condition (2) would not be satisfied. For points close to a finite line charge and far from the ends, Equation 23.8 gives a good 
approximation of the value of the field.

It is left for you to show (see Problem 31) that the electric field inside a uniformly charged rod of finite radius and infinite 
length is proportional to r.

23.7 c o n t i n u e d
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Figure 23.16  (Example 23.7) (a) An infinite line of charge sur-
rounded by a cylindrical gaussian surface concentric with the line. 
(b) An end view shows that the electric field at the cylindrical sur-
face is constant in magnitude and perpendicular to the surface.

 Example 23.8    a Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform surface charge density s.

S o L u t I o n

Conceptualize  Notice that the plane of charge is infinitely large. Therefore, the electric field should be the same at all points 
equidistant from the plane. How would you expect the electric field to depend on the distance from the plane?
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Categorize  Because the charge is distributed uniformly on the plane, the charge distri-
bution is symmetric; hence, we can use Gauss’s law to find the electric field.

analyze  By symmetry, E
S

 must be perpendicular to the plane at all points. The direc-
tion of E

S
 is away from positive charges, indicating that the direction of E

S
 on one side 

of the plane must be opposite its direction on the other side as shown in Figure 23.17. 
A gaussian surface that reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and are equidistant from the 
plane. Because E

S
 is parallel to the curved  surface of the cylinder—and therefore per-

pendicular to d A
S

 at all points on this surface— condition (3) is satisfied and there is 
no contribution to the surface integral from this surface. For the flat ends of the cyl-
inder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder 
is EA; hence, the total flux through the entire gaussian surface is just that through the 
ends, FE 5 2EA.

Write Gauss’s law for this surface, noting that  FE 5 2EA 5
q in

e0

5
sA
e0

 
the enclosed charge is qin 5 sA:

Solve for E: E 5
s

2e0

 (23.9)

Finalize Because the distance from each flat end of the cylinder 
to the plane does not appear in Equation 23.9, we conclude that 
E 5 s/2e0 at any distance from the plane. That is, the field is uni-
form everywhere. Notice that this is the same result as that obtained 
in Example 23.3, where we let the radius of a disk of charge become 
infinite. Figure 23.18 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

W H A t  I F ? Suppose two infinite planes of charge are parallel 
to each other, one positively charged and the other negatively 
charged. The surface charge densities of both planes are of the 
same magnitude. What does the electric field look like in this 
situation?

answer We first addressed this configuration in the What If? 
section of Example 23.3. The electric fields due to the two planes 
add in the region between the planes, resulting in a uniform field 
of magnitude s/e0, and cancel elsewhere to give a field of zero. 
Figure 23.19 shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric fields with 
finite-sized planes placed close to each other.

23.8 c o n t i n u e d
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Figure 23.17  (Example 23.8) A 
cylindrical gaussian surface pene-
trating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.
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Figure 23.18  (Exam-
ple 23.8) The electric 
field lines due to an 
infinite plane of posi-
tive charge.
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Figure 23.19 (Example 
23.8) The electric field lines 
between two infinite planes 
of charge, one positive and 
one negative. In practice, the 
field lines near the edges of 
finite-sized sheets of charge 
will curve outward.

 Conceptual Example 23.9    Don’t Use gauss’s law Here!

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle 
with a point charge at each corner.

S o L u t I o n

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law practical. 
We cannot find a closed surface surrounding any of these distributions for which all portions of the surface satisfy one or 
more of conditions (1) through (4) listed at the beginning of this section.
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630 Chapter 23 Continuous Charge Distributions and Gauss’s Law

Summary
 › Definitions

Electric flux is proportional to the number of electric field lines that penetrate a surface. If the electric field is uniform and makes 
an angle u with the normal to a surface of area A, the electric flux through the surface is

 FE 5 EA cos u (23.3)

In general, the electric flux through a surface is

 FE ; #
surface

E
S

? dA
S

 (23.4)

 › Concepts and Principles

Gauss’s law says that the net electric flux FE through 
any closed gaussian surface is equal to the net charge qin 
inside the surface divided by e0:

FE 5 $ E
S 

? d A
S

5
q in

e0

 (23.7)

Using Gauss’s law, you can calculate the electric field due 
to various symmetric charge distributions.

The electric field at some point due to a continuous charge distri-
bution is

E
S

5 ke #dq

r 
2  r⁄ (23.1)

where dq is the charge on one element of the charge distribution 
and r is the distance from the element to the point in question.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. An early (incorrect) model of the hydrogen atom, sug-
gested by J. J. Thomson, proposed that a positive cloud of 
charge 1e was uniformly distributed throughout the vol-
ume of a sphere of radius a, with the electron (a particle 
of zero size and charge 2e) at the center. Imagine the elec-
tron is displaced a small distance r from the center of the 
cloud of positive charge. Part (b) of Example 23.6 gives the 
magnitude of the electric field of the cloud at a distance 
r from the center. (a) Discuss in your group a method to 
show mathematically that the displaced electron would 
exhibit simple harmonic motion through the center of the 
cloud if released and carry out your method. (b) Find an 
expression for the frequency f of simple harmonic oscilla-
tions that an electron of mass me would make. (c) Calculate 
a numerical value for a that would result in a frequency of 
2.47 3 1015 Hz, the frequency of the light radiated in the 
most intense line in the hydrogen spectrum. (d) Is this 
value consistent with estimated size of a hydrogen atom?

2. aCtivity  Suppose you are in orbit around the Earth on the 
International Space Station. You have finished reading the 
books you brought and are looking for something to help you 
pass the time. You attach a tube to the water supply in your 
cabin and mount the open end of the tube in a fixed position 
in the air in the middle of your cabin. In the open end of the 
tube, you mount a small, spherical sponge that will cause the 

water coming out of the end of the tube to spread out with 
spherical symmetry in all directions. You turn the water on at 
a low volume flow rate IV (see Section 14.7), so that the water 
exits the sponge at the open end and joins the water that has 
already left the end of the tube. Because you are in free-fall, 
you are in a reference frame in which there is no effective 
gravity, so the water collects at the end of the tube in an 
expanding sphere centered on the end of the tube. All of the 
water in the sphere is moving radially outward. The veloc-
ity of the water has a value at every point within the sphere, 
so the velocity can be represented as a vector field. (a) Show 
that the magnitude of the water velocity field falls off as 1/r 2. 
(b) Imagine a nonspherical closed surface in the water and 
surrounding the end of the tube. Draw a diagram showing 
a two-dimensional version of the tube delivering the water, 
the outer surface of the sphere, the spherical surface in part 
(a), the nonspherical closed surface suggested here, and 
vectors vS and dA

S
 at some point on the nonspherical surface, 

where  is the velocity vector field, and dA
S

 is a small area ele-
ment on the nonspherical closed surface. (c) Show that

IV 5 $ vS ? dA
S

  where IV is the flow rate of water coming from the end of the 
tube. (d) Discuss the similarities between this equation and 
Gauss’s law. What is the analog to the electric field? What is 
the analog to the enclosed charge?
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SectIon 23.1 Electric Field of a Continuous Charge Distribution

1. A negatively charged rod of finite length carries charge with 
a uniform charge per unit length. Sketch the electric field 
lines in a plane containing the rod.

2. A positively charged disk has a uniform charge per unit area 
s as described in Example 23.3. Sketch the electric field 
lines in a plane perpendicular to the plane of the disk pass-
ing through its center.

3. A uniformly charged ring of radius 10.0 cm has a total 
charge of 75.0 mC. Find the electric field on the axis of the 
ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm 
from the center of the ring.

4. The electric field along the axis of a uniformly charged disk 
of radius R and total charge Q was calculated in Example 
23.3. Show that the electric field at distances x that are large 
compared with R approaches that of a particle with charge 
Q 5 spR 2. Suggestion: First show that x/(x 2 1 R 2)1/2 5 (1 1 
R 2/x 2)21/2 and use the binomial expansion (1 1 d)n < 1 1 
nd, when d ,, 1.

5. Example 23.3 derives the exact expression for the electric 
field at a point on the axis of a uniformly charged disk. Con-
sider a disk of radius R 5 3.00 cm having a uniformly dis-
tributed charge of 15.20 mC. (a) Using the result of Exam-
ple 23.3, compute the electric field at a point on the axis 
and 3.00 mm from the center. (b) What If? Explain how the 
answer to part (a) compares with the field computed from 
the near-field approximation E 5 s/2e0. (We derived this 
expression in Example 23.3.) (c) Using the result of Exam-
ple 23.3, compute the electric field at a point on the axis 
and 30.0 cm from the center of the disk. (d)  What If? 
Explain how the answer to part (c) compares with the elec-
tric field obtained by treating the disk as a 15.20-mC 
charged particle at a distance of 30.0 cm.

6. A uniformly charged rod of 
length L and total charge Q  
lies along the x axis as 
shown in Figure P23.6.  
(a) Find the components 
of the electric field at the 
point P on the y axis a dis-
tance d from the origin. 
(b) What are the approx-
imate values of the field 
components when d .. L? 
Explain why you would expect these results.

7. A continuous line of charge lies along the x axis, extending 
from x 5 1x0 to positive infinity. The line carries positive 
charge with a uniform linear charge density l0. What are (a) 
the magnitude and (b) the direction of the electric field at 
the origin?

8. A thin rod of length / and uniform charge per unit length 
l lies along the x axis as shown in Figure P23.8. (a) Show 
that the electric field at P, a distance d from the rod along its 
perpendicular bisector, has no x component and is given by 

E 5 2kel sin u0/d. (b) What If? Using your result to part (a), 
show that the field of a rod of infinite length is E 5 2kel/d.

d

y

x

P

O
�

u0

Figure P23.8

9. (a) Consider a uniformly charged, thin-walled, right circular 
cylindrical shell having total charge Q , radius R, and length /.  
Determine the electric field at a point a distance d from the 
right side of the cylinder as shown in Figure P23.9. Suggestion: 
Use the result of Example 23.2 and treat the cylinder as a col-
lection of ring charges. (b) What If? Consider now a solid cyl-
inder with the same dimensions and carrying the same charge, 
uniformly distributed through its volume. Use the result of 
Example 23.3 to find the field it creates at the same point.

R
d

Q

,

Figure P23.9

SectIon 23.2 Electric Flux

10. A vertical electric field of magnitude 2.00 3 104 N/C exists 
above the Earth’s surface on a day when a thunderstorm 
is brewing. A car with a rectangular size of 6.00 m by 3.00 m is 
traveling along a dry gravel roadway sloping downward at 10.08. 
Determine the electric flux through the bottom of the car.

11. A flat surface of area 3.20 m2 is rotated in a uniform elec-
tric field of magnitude E 5 6.20 3 105 N/C. Determine the 
electric flux through this area (a) when the electric field is 
perpendicular to the surface and (b) when the electric field 
is parallel to the surface.

12. A nonuniform electric field is given by the expression

E
S

5 ay i
⁄

1 bz j
⁄

1 cx k
⁄

  where a, b, and c are constants. Determine the electric flux 
through a rectangular surface in the xy plane, extending 
from x 5 0 to x 5 w and from y 5 0 to y 5 h.

SectIon 23.3 gauss’s law

13. An uncharged, nonconducting, hollow sphere of radius 
10.0 cm surrounds a 10.0-mC charge located at the origin 
of a Cartesian coordinate system. A drill with a radius of 
1.00 mm is aligned along the z axis, and a hole is drilled in 
the sphere. Calculate the electric flux through the hole.

T

P

x

y

d

LO

Figure P23.6

V

V
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632 Chapter 23 Continuous Charge Distributions and Gauss’s Law

14. Find the net electric flux through the spherical closed sur-
face shown in Figure P23.14. The two charges on the right 
are inside the spherical surface.

�2.00 nC
�1.00 nC

�3.00 nC

Figure P23.14

15. Four closed surfaces, S1 through S4, together with the 
charges 22Q , Q , and 2Q are sketched in Figure P23.15. 
(The colored lines are the intersections of the surfaces with 
the page.) Find the electric flux through each surface.

S1

S3

S2

S4
�2Q

�Q

�Q

Figure P23.15

16. A charge of 170 mC is at the center of a cube of edge 80.0 cm. 
No other charges are nearby. (a) Find the flux through each 
face of the cube. (b) Find the flux through the whole surface 
of the cube. (c) What If? Would your answers to either part 
(a) or part (b) change if the charge were not at the center? 
Explain.

17. (a) Find the net electric flux through the cube shown in Fig-
ure P23.17.(b) Can you use Gauss’s law to find the electric 
field on the surface of this cube? Explain.

�8.00 nC
�3.00 nC

Figure P23.17

18. A particle with charge of 12.0 mC is placed at the center of 
a spherical shell of radius 22.0 cm. What is the total electric 
flux through (a) the surface of the shell and (b) any hemi-
spherical surface of the shell? (c) Do the results depend on 
the radius? Explain.

19. A particle with charge Q 5 5.00 mC is located at the center 
of a cube of edge L 5 0.100 m. In addition, six other iden-
tical charged particles having q 5 21.00 mC are positioned 

V

symmetrically around Q as shown in Figure P23.19. Deter-
mine the electric flux through one face of the cube.

L

L

q

q

q

q

Qq

q

L

Figure P23.19  
Problems 19 and 20.

20. A particle with charge Q is located at the center of a cube of 
edge L. In addition, six other identical charged particles q are 
positioned symmetrically around Q as shown in Figure P23.19. 
For each of these particles, q is a negative number. Determine 
the electric flux through one face of the cube.

21. (a) A particle with charge q is located a distance d from an 
infinite plane. Determine the electric flux through the plane 
due to the charged particle. (b) What If? A particle with 
charge q is located a very small distance from the center of a 
very large square on the line perpendicular to the square and 
going through its center. Determine the approximate electric 
flux through the square due to the charged particle. (c) How 
do the answers to parts (a) and (b) compare? Explain.

22. Find the net electric flux through (a) the closed spherical 
surface in a uniform electric field shown in Figure P23.22a 
and (b) the closed cylindrical surface shown in Figure 
P23.22b. (c) What can you conclude about the charges, if 
any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P23.22

23. Figure P23.23 represe-
nts the top view of a 
cubic gaussian surface 
in a uniform electric 
field E

S
 oriented paral-

lel to the top and bot-
tom faces of the cube. 
The field makes an 
angle u with side ➀, 
and the area of each 
face is A. In symbolic 
form, find the electric 
flux through (a) face ➀,  

u E
S 

�

�

�

�

Figure P23.23

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Problems 633

(b) face ➁, (c) face ➂, (d) face ➃, and (e) the top and 
bottom faces of the cube. (f) What is the net electric flux 
through the cube? (g) How much charge is enclosed within 
the gaussian surface?

SectIon 23.4 application of gauss’s law 
to various Charge Distributions

24. Determine the magnitude of the electric field at the surface 
of a lead-208 nucleus, which contains 82 protons and 126 
neutrons. Assume the lead nucleus has a volume 208 times 
that of one proton and consider a proton to be a sphere of 
radius 1.20 3 10215 m.

25. In nuclear fission, a nucleus of uranium-238, which contains 
92 protons, can divide into two smaller spheres, each hav-
ing 46 protons and a radius of 5.90 3 10215 m. What is the 
magnitude of the repulsive electric force pushing the two 
spheres apart?

26. Suppose you fill two rubber balloons with air, suspend both 
of them from the same point, and let them hang down on 
strings of equal length. You then rub each with wool or 
on your hair so that the balloons hang apart with a notice-
able separation between them. Make order-of-magnitude 
estimates of (a) the force on each, (b) the charge on each, 
(c)  the field each creates at the center of the other, and 
(d) the total flux of electric field created by each balloon. In 
your solution, state the quantities you take as data and the 
values you measure or estimate for them.

27. A large, flat, horizontal sheet of charge has a charge per 
unit area of 9.00 mC/m2. Find the electric field just above 
the middle of the sheet.

28. A nonconducting wall carries charge with a uniform den-
sity of 8.60 mC/cm2. (a) What is the electric field 7.00  cm 
in front of the wall if 7.00 cm is small compared with the 
dimensions of the wall? (b) Does your result change as the 
distance from the wall varies? Explain.

29. A uniformly charged, straight filament 7.00 m in length has 
a total positive charge of 2.00 mC. An uncharged cardboard 
cylinder 2.00 cm in length and 10.0 cm in radius surrounds 
the filament at its center, with the filament as the axis of 
the cylinder. Using reasonable approximations, find (a) the 
electric field at the surface of the cylinder and (b) the total 
electric flux through the cylinder.

30. You are working on a laboratory device that includes a 
small sphere with a large electric charge Q. Because of this 
charged sphere, there is a strong electric field surround-
ing your device. Other researchers in your laboratory are 
complaining that your electric field is affecting their equip-
ment. You think about how you can obtain the large elec-
tric field that you need close to the sphere but prohibit the 
field from reaching your colleagues. You decide to surround 
your device with a spherical transparent plastic shell. The 
nonconducting shell is given a uniform charge distribu-
tion. (a) The shell is placed so that the small sphere is at the 
exact center of the shell. Determine the charge that must 
be placed on the shell to completely eliminate the electric 
field outside of the shell. (b) What if the shell moves? Does 
the small sphere have to be at the center of the shell for this 
scheme to work?

31. Consider a long, cylindrical charge distribution of radius R 
with a uniform charge density r. Find the electric field at 
distance r from the axis, where r , R.

32. Assume the magnitude of the electric field on each face of 
the cube of edge L 5 1.00 m in Figure P23.32 is uniform and 
the directions of the fields on each face are as indicated. Find 
(a) the net electric flux through the cube and (b) the net 
charge inside the cube. (c) Could the net charge be a single 
point charge?

L

20.0 N/C

20.0 N/C

25.0 N/C

20.0 N/C 35.0 N/C

15.0 N/C

Figure P23.32

33. A solid sphere of radius 40.0 cm has a total positive charge 
of 26.0 mC uniformly distributed throughout its volume. 
Calculate the magnitude of the electric field (a) 0 cm, 
(b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center 
of the sphere.

34. A cylindrical shell of radius 7.00 cm and length 2.40 m 
has its charge uniformly distributed on its curved surface. 
The magnitude of the electric field at a point 19.0 cm radi-
ally outward from its axis (measured from the midpoint of 
the shell) is 36.0 kN/C. Find (a) the net charge on the 
shell and (b) the electric field at a point 4.00 cm from 
the axis, measured radially outward from the midpoint  
of the shell.

35. You are working for 
the summer at a research 
labo ratory. Your research 
director has devised 
a scheme for holding 
small charged particles 
at fixed positions. The 
scheme is shown in Fig-
ure P23.35. A large insu-
lating sphere of radius a  
carries a total positive 
charge Q with a uniform 
volume charge density. A 
very thin tunnel is drilled 
through a diameter of 
the sphere and two small spheres with charge q are placed in the 
tunnel. These spheres are represented by the blue dots in the fig-
ure. They find equilibrium positions at a distance of r on either 
side of the center of the sphere. Your research director has had 
great success with this scheme. (a) Determine the specific value 
of r at which equilibrium exists. (b) Your research director asks  

T

V

T

Cr

S

V

V

Cr

a

q

Q

rr

Figure P23.35
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634 Chapter 23 Continuous Charge Distributions and Gauss’s Law

you to see if he can extend the system as follows. Determine if 
it is possible to add transparent plastic tubes as extensions of 
the tunnel and have the small spheres be in equilibrium at a 
position for which r  .  a.

36. You are working for the summer at a research laboratory. 
Your research director has devised a scheme for holding 
small charged particles at fixed positions. The scheme is 
shown in Figure P23.36. An insulating cylinder of radius a 
and length L .. a is positively charged and carries a uni-
form volume charge density r. A very thin tunnel is drilled 
through a diameter of the cylinder and two small spheres 
with charge q are placed in the tunnel. These spheres are 
represented by the blue dots in the figure. They find equi-
librium positions at a distance of r on opposite sides of the 
axis of the cylinder. Your research director has had great 
success with this scheme. (a) Determine the specific value of 
r at which equilibrium exists. (b) Your research director asks 
you see if he can extend the system as follows. Determine if 
it is possible to add transparent plastic tubes as extensions of 
the tunnel and have the small spheres be in equilibrium at a 
position for which r  . a.

q

a
r

r

�

Figure P23.36

addItIonal ProblemS

37. Find the electric flux through the plane surface shown in 
Figure P23.37 if u 5 60.08, E 5 350 N/C, and d 5 5.00 cm. 
The electric field is uniform over the entire area of the 
surface.

d

d

E
S

 
u

Figure P23.37

38. Three solid plastic cylinders all have radius 2.50 cm and 
length 6.00 cm. Find the charge of each cylinder given the 
following additional information about each one. Cylinder 
(a) carries charge with uniform density 15.0 nC/m2 every-
where on its surface. Cylinder (b) carries charge with uni-
form density 15.0 nC/m2 on its curved lateral surface only. 
Cylinder (c) carries charge with uniform density 500 nC/m3 
throughout the plastic.

39. A line of charge starts at x 5 1x0 and extends to positive 
infinity. The linear charge density is l 5 l0x 0/x, where l0 is 
a constant. Determine the electric field at the origin.

Cr

40. Show that the maximum magnitude E max of the electric field 
along the axis of a uniformly charged ring occurs at x  5 
a/Ï2 (see Fig. 23.3) and has the value Q ys6Ï3pe0a

2d.

41. A line of positive charge is 
formed into a semicircle 
of radius R 5 60.0 cm as 
shown in Figure P23.41. The 
charge per unit length along 
the semicircle is given by the 
expression l 5 l 0 cos u. The 
total charge on the semicir-
cle is 12.0 mC. Calculate the 
total force on a charge of 
3.00 mC placed at the center 
of curvature P.

42. A very large conducting plate lying in the xy plane carries a 
charge per unit area of s. A second such plate located above 
the first plate at z 5 z 0 and oriented parallel to the xy plane 
carries a charge per unit area of 22s. Find the electric field 
for (a) z , 0, (b) 0 , z , z 0, and (c) z . z 0.

43. A sphere of radius R 5 1.00 m sur-
rounds a particle with charge Q 5 
50.0 mC located at its center as 
shown in Figure P23.43. Find the 
electric flux through a circular cap 
of half-angle u 5 45.08.

44. A sphere of radius R surrounds a 
particle with charge Q located at its 
center as shown in Figure P23.43. 
Find the electric flux through a 
circular cap of half-angle u.

challenGe ProblemS

45. A slab of insulating material has a 
nonuniform positive charge density 
r  5 Cx 2, where x is measured from 
the center of the slab as shown in Fig-
ure P23.45 and C is a constant. The 
slab is infinite in the y and z direc-
tions. Derive expressions for the elec-
tric field in (a) the exterior regions 
(ux u  . d/2) and (b) the interior 
region of the slab (2d/2 , x , d/2).

46. A sphere of radius 2a is made of 
a nonconducting material that 
has a uniform volume charge 
density r. Assume the material 
does not affect the electric field. 
A spherical cavity of radius a is 
now removed from the sphere 
as shown in Figure P23.46. Show 
that the electric field within 
the cavity is uniform and is 
given by Ex 5 0 and Ey 5 ra/3e0.

47. An infinitely long insulating cylinder of radius R has 
a volume charge density that varies with the radius as

r 5 r0Sa 2
r
bD

y

R

P
x

u

Figure P23.41

Q

R
u

Figure P23.43  
Problems 43 and 44.

x

y

O

d

Figure P23.45  
Problems 45 and 49.

y

x
2a

a

Figure P23.46
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 Problems 635

  where r0, a, and b are positive constants and r is the dis-
tance from the axis of the cylinder. Use Gauss’s law to deter-
mine the magnitude of the electric field at radial distances 
(a) r , R and (b) r . R.

48. A particle with charge Q is located 
on the axis of a circle of radius R at a 
distance b from the plane of the circle  
(Fig. P23.48). Show that if one-fourth of 
the electric flux from the charge passes 
through the circle, then R 5 Ï3b.

49. Review. A slab of insulating material 
(infinite in the y and z directions) 
has a thickness d and a uniform pos-
itive charge density r. An edge view 
of the slab is shown in Figure P23.45. 
(a) Show that the magnitude of the electric field a dis-
tance x from its center and inside the slab is E 5 rx/e0.  
(b) What If? Suppose an electron of charge 2e and mass 
me can move freely within the slab. It is released from 
rest at a distance x from the center. Show that the elec-
tron exhibits simple harmonic motion with a frequency

f 5
1

2p Î re

me e0

 

50. Identical thin rods of length 2a carry equal charges 1Q 
uniformly distributed along their lengths. The rods lie 
along the x axis with their centers separated by a dis-
tance b . 2a (Fig. P23.50). Show that the magnitude 
of the force exerted by the left rod on the right one is

F 5 SkeQ
2

4a 2 D ln S b 2

b 2 2 4a 2D
b

y

a�a b � a b � a
x

Figure P23.50

51. A solid insulating sphere of radius R has a nonuniform 
charge density that varies with r according to the expression 
r 5 Ar2, where A is a constant and r , R is measured from 
the center of the sphere. (a) Show that the magnitude of the 
electric field outside (r . R) the sphere is E 5 AR5/5e0r

2. (b) 
Show that the magnitude of the electric field inside (r , R) 
the sphere is E 5 Ar3/5e0. Note: The volume element dV for a 
spherical shell of radius r and thickness dr is equal to 4pr2dr.

R

Q

b

�

Figure P23.48
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Storyline You are still in Florida during your spring break. You 
have visited some open areas and have observed several lightning flashes, as 
described in the storyline in the previous chapter. You captured a couple of 
flashes on your smartphone video and are watching them with fascination. That 
night, in your hotel room, you do online research on your smartphone and find 
that when lightning occurs, there is a potential difference of hundreds of thou-
sands of volts between a cloud and the ground. You are not familiar with the 
phrase potential difference and wonder what that means. You have heard about 
volts because you know your electrical devices at home are rated at 120 volts and 
your electric clothes dryer is rated at 240 volts. Your smartphone charger plug will 
operate at either 120 volts or 240 volts. But what exactly is a volt?

ConneCtionS In Chapter 22, we linked our new study of electromagnetism 
to our earlier studies of force. In this chapter, we make a link between electro-
magnetism and our earlier investigations into energy. The concept of potential 
energy was introduced in Chapter 7 in connection with such conservative forces 
as the gravitational force and the elastic force exerted by a spring. By using the 
law of conservation of energy, we could solve various problems in mechanics 
that were not solvable with an approach using forces. Because the electrostatic 
force is conservative, electrostatic phenomena can be conveniently described 
in terms of an electric potential energy, which is of great value in the study of 
electricity. This idea enables us to define a related quantity known as electric 
potential. Because the electric potential at any point in an electric field is a scalar 
quantity, we can use it to describe electrostatic phenomena more simply than if 

24.1 Electric Potential and 
Potential Difference

24.2 Potential Difference in 
a Uniform Electric Field

24.3 Electric Potential and 
Potential Energy Due to 
Point Charges

24.4 Obtaining the Value of 
the Electric Field from 
the Electric Potential

24.5 Electric Potential Due 
to Continuous Charge 
Distributions

24.6 Conductors in 
Electrostatic 
Equilibrium

24 Electric Potential

Processes occurring during thunderstorms cause large differences in electric potential between 
a thundercloud and the ground. The result of this potential difference is an electrical discharge 
that we call lightning, such as this display. Notice at the left that a downward channel of lightning 
(a stepped leader) is about to make contact with a channel coming up from the ground (a return 
stroke). (Costazzurra/Shutterstock)
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    24.1 Electric Potential and Potential Difference 637

we were to rely only on vector quantities such as the electric field and electric 
forces. The concept of electric potential is of great practical value in the operation 
of electric circuits and devices that we will study in later chapters.

   24.1    Electric Potential and Potential Difference
When a charge q is placed in an electric field E

S
 created by some source charge 

distribution, the particle in a field model tells us that there is an electric force qE
S

 
acting on the charge. This force is conservative because the force between charges 
described by Coulomb’s law is conservative. Let us identify the charge and the field 
as a system. If the charge is free to move, it will do so in response to the electric 
force. Therefore, the electric field will be doing work on the charge. This work 
is internal to the system. This situation is similar to that in a gravitational system: 
When an object is released near the surface of the Earth, the gravitational force 
does work on the object. This work is internal to the object–Earth system as dis-
cussed in Section 7.8.

When analyzing electric and magnetic fields, it is common practice to use the 
notation d s S to represent an infinitesimal displacement vector that is oriented tan-
gent to a path through space. This path may be straight or curved, and an integral 
performed along this path is called either a path integral or a line integral (the two 
terms are synonymous).

For an infinitesimal displacement d s S of a point charge q immersed in an elec-
tric field, the work done within the charge–field system by the electric field on the 
charge is Wint 5 F

S
e ? d s S 5 qE

S
? d s S Recall from Equation 7.26 that internal work 

done in a gravitational system is equal to the negative of the change in the gravita-
tional potential energy of the system: Wint 5 2DUg. Because internal work is done 
when a charge is moved in an electric field, we can identify an electric potential 
energy UE for the charge–field system, where Wint 5 2DUE. From Equation 7.26, we 
see that, as the charge q is displaced, the electric potential energy of the charge–
field system is changed by an amount dUE 5 2Wint 5 2qE

S
? d s S. For a finite dis-

placement of the charge from some point Ⓐ in space to some other point Ⓑ, the 
change in electric potential energy of the system is

 DUE 5 2q #
Ⓑ

Ⓐ

E
S

? d s S (24.1)

The integration is performed along the path that q follows as it moves from Ⓐ to Ⓑ. 
Because the force qE

S
 is conservative, this line integral does not depend on the path 

taken from Ⓐ to Ⓑ.
For a given position of the charge in the field, the charge–field system has a 

potential energy UE relative to the configuration of the system that is defined as 
UE 5 0. Dividing the potential energy by the charge gives a physical quantity that 
depends only on the source charge distribution and has a value at every point 
in an electric field. This quantity is called the electric potential (or simply the 
potential) V:

 V 5
UE

q
 (24.2)

Because potential energy is a scalar quantity, electric potential also is a scalar 
quantity.

The potential difference DV 5 V
Ⓑ

 2 V
Ⓐ

 between two points Ⓐ and Ⓑ in an elec-
tric field is defined as the change in electric potential energy of the system when a 
charge q is moved between the points (Eq. 24.1) divided by the charge:

  DV ;
DUE

q
5 2#

Ⓑ

Ⓐ

E
S

? d s S (24.3)

  Change in electric potential 
energy of a system

  Potential difference between 
two points

PitFall Prevention 24.1
Potential and Potential Energy  
The potential is characteristic of 
the field only, independent of a 
charged particle that may be 
placed in the field. Potential 
energy is characteristic of the charge-
field system due to an interaction 
between the field and a charged 
particle placed in the field.
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638 Chapter 24 Electric Potential

In this definition, the infinitesimal displacement d s S is interpreted as the displace-
ment between two points in space rather than the displacement of a point charge 
as in Equation 24.1.

Just as with potential energy, only differences in electric potential are meaningful. 
We often take the value of the electric potential to be zero at some convenient point 
in an electric field.

Potential difference should not be confused with difference in potential energy. 
The potential difference between Ⓐ and Ⓑ exists solely because of a source charge 
and depends on the source charge distribution (consider points Ⓐ and Ⓑ in the 
discussion above without the presence of the charge q).  For a potential energy to 
exist, we must have a system of two or more charges. The potential energy belongs 
to the system and changes only if a charge is moved relative to the rest of the sys-
tem. This situation is similar to that for the electric field. An electric field exists 
solely because of a source charge. An electric force requires two charges: the source 
charge to set up the field and another charge placed within that field.

Let’s now consider the situation in which an external agent moves the charge in 
the field. If the agent moves the charge from Ⓐ to Ⓑ without changing the kinetic 
energy of the charge, the agent performs work that changes the potential energy of 
the system: W 5 DUE. From Equation 24.3, the work done by an external agent in 
moving a charge q through an electric field at constant velocity is

 W 5 q DV (24.4)

Because electric potential is a measure of potential energy per unit charge, the 
SI unit of both electric potential and potential difference is joules per coulomb, 
which is defined as a volt (V):

 1 V ; 1 J/C 

That is, as we can see from Equation 24.4, 1 J of work must be done to move a 1-C 
charge through a potential difference of 1 V.

Equation 24.3 shows that potential difference also has units of electric field times 
distance. It follows that the SI unit of electric field (N/C) can also be expressed in 
volts per meter:

 1 N/C 5 1 V/m 

Therefore, we can state a new interpretation of the electric field:

The electric field is a measure of the rate of change of the electric potential with 
respect to position.

A unit of energy commonly used in atomic and nuclear physics is the electron 
volt (eV), which is defined as the energy a charge–field system gains or loses when a 
charge of magnitude e (that is, an electron or a proton) is moved through a poten-
tial difference of 1 V. We can find the relation between electron volts and joules by  
imagining that 1 eV of work is done in Equation 24.4 and using Equation 22.5 for e:

 1 eV 5 (1.602 18 3 10219 C)(1 V) 5 1.602 18 3 10219 J (24.5)

For instance, an electron in the beam of a typical dental x-ray machine may have 
a speed of 1.4 3 108 m/s. This speed corresponds to a kinetic energy 1.1 3 10214 J 
(using relativistic calculations as discussed in Chapter 38), which is equivalent to 
6.7 3 104 eV. Such an electron has to be accelerated from rest through a potential 
difference of 67 kV to reach this speed.

Q uick Quiz 24.1 In Figure 24.1, two points Ⓐ and Ⓑ are located within a 
region in which there is an electric field. (i) How would you describe the poten-
tial difference DV 5 V

Ⓑ
 2 V

Ⓐ
? (a) It is positive. (b) It is negative. (c) It is zero. 

(ii) A negative charge is placed at Ⓐ and then moved to Ⓑ. How would you 
describe the change in potential energy of the charge–field system for this pro-
cess? Choose from the same possibilities.

�
�

E
S

 

Figure 24.1  (Quick Quiz 24.1) 
Two points in an electric field.

PitFall Prevention 24.2
Voltage A variety of phrases are 
used to describe the potential 
difference between two points, 
the most common being voltage, 
arising from the unit for potential. 
A voltage applied to a device, such 
as a television, or across a device 
is the same as the potential dif-
ference across the device. Despite 
popular language, voltage is not 
something that moves through 
a device.

PitFall Prevention 24.3
The Electron Volt The electron 
volt is a unit of energy, NOT of 
potential. The energy of any 
system may be expressed in eV, 
but this unit is most convenient 
for describing the emission and 
absorption of visible light from 
atoms. Energies of nuclear pro-
cesses are often expressed in MeV.
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    24.2 Potential Difference in a Uniform Electric Field 639

The definition of the volt above answers in some ways our question in the open-
ing storyline. But you may still not be completely comfortable with the concept of 
electric potential. One reason for this discomfort is that, despite the many simi-
larities between the gravitational force and the electric force, we do not define a 
gravitational potential: Vgrav 5 Ug /m, with a unit of J/kg. We do not do that because 
there is no benefit to it. Defining a gravitational potential does not allow us to 
solve any more gravitational problems. One major difference between gravity and 
electricity makes the definition of electric potential very beneficial: we can change 
the shape of electric situations and even build electric circuits with different kinds 
of circuit elements. Nothing like that is possible for gravity. We will find ourselves 
using electric potential continuously in our discussions of electric circuits.

   24.2    Potential Difference in a Uniform Electric Field
Equations 24.1 and 24.3 hold in all electric fields, whether uniform or varying, but 
they can be simplified for the special case of a uniform field. First, consider a uni-
form electric field directed along the negative y axis as shown in Figure 24.2a. Let’s 
calculate the potential difference between two points Ⓐ and Ⓑ separated by a dis-
tance d, where the displacement sS points from Ⓐ toward Ⓑ and is parallel to the 
field lines. Equation 24.3 gives

 V
Ⓑ

2 V
Ⓐ

5 DV 5 2#
Ⓑ

Ⓐ

E
S

? d s S 5 2#
Ⓑ

Ⓐ

E ds(cos 08) 5 2#
Ⓑ

Ⓐ

E ds 

Because E is constant, it can be removed from the integral sign, which gives

 DV 5 2E #
Ⓑ

Ⓐ

ds 

 DV 5 2Ed (24.6)

The negative sign indicates that the electric potential at point Ⓑ is lower than 
at point Ⓐ; that is, V

Ⓑ
 , V

Ⓐ
. Electric field lines always point in the direction of 

decreasing electric potential as shown in Figure 24.2a.
Now suppose a charge q moves from Ⓐ to Ⓑ. We can calculate the change in the 

potential energy of the charge–field system from Equations 24.3 and 24.6:

 DUE 5 q DV 5 2qEd (24.7)

This result shows that if q is positive, then DUE is negative. Therefore, in a system 
consisting of a positive charge and an electric field, the electric potential energy 

  Potential difference between 
two points in a uniform elec-
tric field

When a positive charge moves 
from point � to point �, the 
electric potential energy of the 
charge–field system decreases.

When an object with mass moves 
from point � to point �, the 
gravitational potential energy of 
the object–field system decreases.

E
S

 

�

d

q

�

�

a

gS 

d

m
�

�

b

Figure 24.2 (a) When the elec-
tric field E

S
 is directed downward, 

point Ⓑ is at a lower electric 
potential than point Ⓐ. (b) A 
gravitational analog to the situa-
tion in (a).

PitFall Prevention 24.4
The Sign of DV The negative sign 
in Equation 24.6 is due to the 
fact that we started at point Ⓐ 
and moved to a new point in the 
same direction as the electric field 
lines. If we started from Ⓑ and 
moved to Ⓐ, the potential differ-
ence would be 1Ed. In a uniform 
electric field, the magnitude of 
the potential difference is Ed and 
the sign can be determined by the 
direction of travel.
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640 Chapter 24 Electric Potential

of the system decreases when the charge moves in the direction of the field. If a 
positive charge is released from rest in this electric field, it experiences an electric 
force qE

S
 in the direction of E

S
 (downward in Fig. 24.2a). Therefore, it accelerates 

downward, gaining kinetic energy. As the charged particle gains kinetic energy, the 
electric potential energy of the charge–field system decreases by an equal amount. 
This equivalence should not be surprising; it is simply conservation of mechanical 
energy in an isolated system as introduced in Chapter 8.

Figure 24.2b shows an analogous situation with a gravitational field. When a 
particle with mass m is released in a gravitational field, it accelerates downward, 
gaining kinetic energy. At the same time, the gravitational potential energy of the 
object–field system decreases.

The comparison between a system of a positive charge residing in an electrical 
field and an object with mass residing in a gravitational field in Figure 24.2 is use-
ful for conceptualizing electrical behavior. The electrical situation, however, has 
one feature that the gravitational situation does not: the charge can be negative. If 
q is negative, then DUE in Equation 24.7 is positive and the situation is reversed. A 
system consisting of a negative charge and an electric field gains electric potential 
energy when the charge moves in the direction of the field. If a negative charge is 
released from rest in an electric field, it accelerates in a direction opposite the direc-
tion of the field. For the negative charge to move in the direction of the field, an 
external agent must apply a force and do positive work on the charge.

Now consider the more general case of a charged particle that moves between Ⓐ 
and Ⓑ in a uniform electric field such that the vector s S is not parallel to the field 
lines as shown in Figure 24.3. In this case, Equation 24.3 gives

 DV 5 2#
Ⓑ

Ⓐ

E
S

? d s S 5 2E
S

? #
Ⓑ

Ⓐ

d s S 5 2E
S

? sS (24.8)

where again E
S

 was removed from the integral because it is constant. The change in 
potential energy of the charge–field system is

 DUE 5 qDV 5 2qE
S

? sS (24.9)

Finally, we conclude from Equation 24.8 that all points in a plane perpendicular 
to a uniform electric field are at the same electric potential. We can see that in Fig-
ure 24.3, where the potential difference V

Ⓑ
 2 V

Ⓐ
 is equal to the potential difference 

V
Ⓒ

 2 V
Ⓐ

. (Prove this fact to yourself by working out two dot products for E
S

? sS: one 
for s S

ⒶSⒷ
, where the angle u between E

S
 and s S is arbitrary as shown in Figure 24.3, 

and one for s S
ⒶSⒸ

, where u 5 0.) Therefore, V
Ⓑ

 5 V
Ⓒ

. The name equipotential sur-
face is given to any surface consisting of a continuous distribution of points having 
the same electric potential.

The equipotential surfaces associated with a uniform electric field consist of a 
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Q uick Quiz 24.2 The labeled points in Figure 24.4 are on a series of equipo-
tential surfaces associated with an electric field. Rank (from greatest to least) 
the work done by the electric field on a positively charged particle that moves 
from Ⓐ to Ⓑ, from Ⓑ to Ⓒ, from Ⓒ to Ⓓ, and from Ⓓ to Ⓔ.

Change in potential between 
two points in a uniform 

electric field

Figure 24.3  A uniform electric 
field directed along the positive x 
axis. Three points in the electric 
field are labeled.

d�

�

�
u

E
S

 

sS 

Point � is at a lower electric 
potential than point �.

Points � and � are at the 
same  electric potential.

9 V 

8 V 

7 V 

6 V 

�

�

�

�

�

Figure 24.4  (Quick Quiz 24.2) 
Four equipotential surfaces.

 Example 24.1   The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference DV between its terminals and establishes that potential difference between 
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 24.5. The 
separation between the plates is d 5 0.30 cm, and we assume the electric field between the plates to be uniform. (This 
assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider locations 
near the plate edges.) Find the magnitude of the electric field between the plates.
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    24.2 Potential Difference in a Uniform Electric Field 641

S O L U T I O N

Conceptualize In Example 23.8, we illustrated the uniform electric field between parallel plates. The new feature to this 
problem is that the electric field is related to the new concept of electric potential.

Categorize The electric field is evaluated from a relationship between field and potential given in this section, so we catego-
rize this example as a substitution problem.

Use Equation 24.6 to evaluate the magnitude of the  E 5
uVB 2 VAu

d
5

12 V
0.30 3 1022 m

5  4.0 3 103 Vym 
electric field between the plates:

The configuration of plates in Figure 24.5 is called a parallel-plate capacitor and is examined in greater detail in Chapter 25.

24.1 c o n t i n u e d

� �

V = 12 V

A
B

d

� Figure 24.5  (Example 24.1) A 
12-V battery connected to two 
parallel plates. The electric field 
between the plates has a magni-
tude given by the potential dif-
ference DV divided by the plate 
separation d.

 Example 24.2    Motion of a Proton in a Uniform Electric Field

A proton is released from rest at point Ⓐ in a uniform electric field that has a mag-
nitude of 8.0 3 104 V/m (Fig. 24.6). The proton undergoes a displacement of magni-
tude d 5 0.50 m to point Ⓑ in the direction of E

S
. Find the speed of the proton after 

completing the displacement.

S O L U T I O N

Conceptualize Visualize the proton in Figure 24.6 moving downward through the 
potential difference. The situation is analogous to an object falling through a gravita-
tional field. Also compare this example to Example 22.7 where a positive charge was 
moving in a uniform electric field. In that example, we applied the particle under con-
stant acceleration and nonisolated system models. Now that we have investigated electric 
potential energy, what model can we use here?

Categorize The system of the proton and the two plates in Figure 24.6 does not interact 
with the environment, so we model it as an isolated system for energy.

Analyze
Write the appropriate reduction of Equation 8.2,  DK 1 DUE 5 0 
the conservation of energy equation, for the isolated  
system of the charge and the electric field:

Substitute the changes in energy for both terms: s1
2mv2 2 0d 1 e DV 5 0

Solve for the final speed of the proton and substitute for  v 5Î22e DV 
m

 5Î22e s2Edd
m

5Î2e Ed
m

 
DV from Equation 24.6:

Substitute numerical values: v 5Î2s1.6 3 10219 Cds8.0 3 104 Vds0.50 md
1.67 3 10227 kg

 5   2.8 3 106 m/s

Finalize Because DV is negative for the field, DUE is also negative for the proton–field system. The negative value of DUE 
means the potential energy of the system decreases as the proton moves in the direction of the electric field. As the proton 
accelerates in the direction of the field, it gains kinetic energy while the electric potential energy of the system decreases at 
the same time.

d

�

�

E
S

 

v�
S

v�� 0S

�

�

�  �  �  �  �  �  �

�  �  �  �  �  �  �

Figure 24.6  (Example 24.2) A pro-
ton accelerates from Ⓐ to Ⓑ in the 
direction of the electric field.

continued
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642 Chapter 24 Electric Potential

   24.3    Electric Potential and Potential Energy 
Due to Point Charges
As discussed in Section 22.4, an isolated positive point charge q produces an elec-
tric field directed radially outward from the charge. To find the electric potential 
at a point located a distance r from the charge, let’s begin with the general expres-
sion for potential difference, Equation 24.3,

 V
Ⓑ

2 V
Ⓐ

5 2#
Ⓑ

Ⓐ

E
S

? d s S 

where Ⓐ and Ⓑ are the two arbitrary points shown in Figure 24.7. At any point in 
space, the electric field due to the point charge is E

S
5 (keqyr 

2)r⁄ (Eq. 22.9), where r⁄ 
is a unit vector directed radially outward from the charge. Therefore, the quantity 
E
S

? d s S can be expressed as

E
S 

? d sS 5 ke 
q

r 2 r⁄ ? d sS

Because the magnitude of r⁄ is 1, the dot product r⁄ ? d s S 5 ds cos u, where u is the 
angle between r⁄ and d s S. Furthermore, ds cos u is the projection of d s S onto r⁄; there-
fore, ds cos u 5 dr. That is, any displacement d s S along the path from point Ⓐ to 
point Ⓑ produces a change dr in the magnitude of rS, the position vector of the 
point relative to the charge creating the field. Making these substitutions, we find 
that E

S
? d s S 5 (keqyr 

2)dr ; hence, the expression for the potential difference becomes

 V
Ⓑ

2 V
Ⓐ

5 2keq #
r

Ⓑ

r
Ⓐ

 
dr
r 

2 5 ke 
q
r
 *

r
Ⓑ

r
Ⓐ

 

 V
Ⓑ

2 V
Ⓐ

5 keq 3 1
r

Ⓑ

2
1
r

Ⓐ
4 (24.10)

Equation 24.10 shows us that the integral of E
S

? d s S is independent of the path 
between points Ⓐ and Ⓑ. Multiplying by a charge q0 that moves between points Ⓐ 
and Ⓑ, we see that the integral of q0E

S
? d s S is also independent of path. This latter inte-

gral, which is the work done by the electric force on the charge q0, shows that the 
electric force is conservative (see Section 7.7). We define a field that is related to a 
conservative force as a conservative field. Therefore, Equation 24.10 tells us that the 
electric field of a fixed point charge q is conservative. Furthermore, Equation 24.10 
expresses the important result that the potential difference between any two points 
Ⓐ and Ⓑ in a field created by a point charge depends only on the radial coordi-
nates r

Ⓐ
 and r

Ⓑ
. It is customary to choose the reference of electric potential for a 

point charge to be V
Ⓐ

 5 0 at r
Ⓐ

 5 .̀ With this reference choice, the electric poten-
tial due to a point charge at any distance r  from the charge is

 V 5 ke 
q
r
 (24.11)

We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 

Figure 24.6 is oriented so that the proton moves downward. The proton’s motion is analogous to that of an object falling in 
a gravitational field. Although the gravitational field is always downward at the surface of the Earth, an electric field can be 
in any direction, depending on the orientation of the plates creating the field. Therefore, Figure 24.6 could be rotated 908 or 
1808 and the proton could move horizontally or upward in the electric field!

24.2 c o n t i n u e d

The two dashed circles represent 
intersections of spherical equi- 
potential surfaces with the page.

dr d

q

�

�

�

�

u

rS 

rS 
rS

sS

�

r̂

Figure 24.7 The potential differ-
ence between points Ⓐ and Ⓑ due 
to a point charge q depends only on 
the initial and final radial coordi-
nates r

Ⓐ
 and r

Ⓑ
.

PitFall Prevention 24.5
Similar Equation Warning Do not 
confuse Equation 24.11 for the 
electric potential of a point charge 
with Equation 22.9 for the electric 
field of a point charge. Potential 
is proportional to 1/r, whereas 
the magnitude of the field is pro-
portional to 1/r2. The effect of a 
charge on the space surrounding 
it can be described in two ways. 
The charge sets up a vector elec-
tric field E

S
, which is related to 

the force experienced by a charge 
placed in the field. It also sets up a 
scalar potential V, which is related 
to the potential energy of the two-
charge system when a charge is 
placed in the field.
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    24.3 Electric Potential and Potential Energy Due to Point Charges 643

point P due to several point charges is the sum of the potentials due to the individ-
ual charges. For a group of point charges, we can write the total electric potential 
at P as

 V 5 ke o
i

 
qi

ri

 (24.12)

Figure 24.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 24.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy UE when the particles are separated by a distance r12 as in Figure 24.8b. 
From Equation 8.2, we have W 5 DUE. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DUE 5 W 5 q2DV    S   UE 2 0 5 q 2Ske 

q 1

r12

2 0D 

 UE 5 ke 
q1q2

r12

 (24.13)

If the charges are of the same sign, then UE is positive. Positive work must be 
done by an external agent on the system to bring the two charges near each other 
(because charges of the same sign repel). If the charges are of opposite sign, as in 
Figure 24.8b, then UE is negative. Negative work is done by an external agent against 
the attractive force between the charges of opposite sign as they are brought near 
each other; a force must be applied opposite the displacement to prevent q2 from 
accelerating toward q1.

If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating UE for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 24.9 is

 UE 5 keSq1q2

r12

1
q1q3

r13

1
q2q3

r23
D (24.14)

Physically, this result can be interpreted as follows. Begin with all three charges 
infinitely far apart. Now bring charge q1 to its position in Figure 24.9. No work is 
required for an external agent to do this because V 5 0 due to other charges and 
there are no other charges in the vicinity. Now, the work that the agent must do  

  Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 24.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.

Figure 24.8 (a) Charge q1  estab-
lishes an electric potential V1 at 
point P. (b) Charge q2 is brought 
from infinity to point P.

q 1r12

V1 � ke
q 1
r12

P

�

q2

q 1r12

�

�

The potential energy of 
the pair of charges is
given by keq1q2/r12.

A potential keq1/r12 
exists at point P due to 
charge q1.

a b

q 2

q1

q3

r13

r12

r23

�

�

�

The potential energy of this 
system of charges is given by 
Equation 24.14.

Figure 24.9  Three point charges 
are fixed at the positions shown.
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644 Chapter 24 Electric Potential

to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first term 
in Equation 24.14. The last two terms represent the work required to bring q3 from 
infinity to its position near q1 and q2. (The result is independent of the order in 
which the charges are transported.)

Q uick Quiz 24.3 In Figure 24.8b, take q2 to be a negative source charge and 
q1 to be a second charge whose sign can be changed. (i) If q1 is initially positive 
and is changed to a charge of the same magnitude but negative, what happens 
to the potential at the position of q1 due to q2? (a) It increases. (b) It decreases. 
(c) It remains the same. (ii) When q1 is changed from positive to negative, what 
happens to the potential energy of the two-charge system? Choose from the 
same possibilities.

 Example 24.3    The Electric Potential Due to Two Point Charges

As shown in Figure 24.10a, a charge q1 5 2.00 mC is located 
at the origin and a charge q2 5 26.00 mC is located at (0, 
3.00) m.

(A) Find the total electric potential due to these charges 
at the point P, whose coordinates are (4.00, 0) m.

S O L U T I O N

Conceptualize Recognize first that the 2.00-mC and 26.00-mC 
charges are source charges and set up an electric field as well 
as a potential at all points in space, including point P.

Categorize The potential is evaluated using an equation 
developed in this chapter, so we categorize this example as a 
substitution problem.

Use Equation 24.12 for the system of two  VP 5 ke Sq1

r1

1
q2

r2
D 

source charges:

Substitute numerical values: VP 5 s8.988 3 109 N ? m2yC2dS2.00 3 1026 C
4.00 m

1
26.00 3 1026 C

5.00 m D
 5   26.29 3 103 V

(B) Find the change in potential energy of the system of two charges plus a third charge q3 5 3.00 mC as the latter charge 
moves from infinity to point P (Fig. 24.10b).

S O L U T I O N

Assign Ui 5 0 for the system to the initial configuration  Uf 5 q3VP 
in which the charge q3 is at infinity. Use Equation 24.2  
to evaluate the potential energy for the configuration  
in which the charge is at P:

Substitute numerical values to evaluate DUE: DUE 5 Uf  2 Ui 5 q3VP 2 0 5 (3.00 3 1026 C)(26.29 3 103 V)

 5   21.89 3 1022 J

Therefore, because the potential energy of the system has decreased, an external agent has to do positive work to remove the 
charge q3 from point P back to infinity.

W H A T  I F ?  You are working through this example with a classmate and she says, “Wait a minute! In part (B), we ignored 
the potential energy associated with the pair of charges q1 and q2!” How would you respond?

 4.00 m  4.00 m

x

y

x

�6.00 mC

y

2.00 mC 3.00 mCP

3.00 m

�6.00 mC

2.00 mC

3.00 m

a b

�

�

� �

�

Figure 24.10  (Example 24.3) (a) The electric potential at P due 
to the two charges q1 and q2 is the algebraic sum of the potentials 
due to the individual charges. (b) A third charge q3 5 3.00 mC is 
brought from infinity to point P.
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   24.4    Obtaining the Value of the Electric Field  
from the Electric Potential
The electric field E

S
 and the electric potential V are related as shown in Equa-

tion 24.3, which tells us how to find DV if the electric field E
S

 is known. What if the 
situation is reversed? How do we calculate the value of the electric field if the elec-
tric potential is known in a certain region?

From Equation 24.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2E
S

? d s S (24.15)

If the electric field has only one component Ex, then E
S

? d s S 5 Exdx. Therefore, 
Equation 24.15 becomes dV 5 2Ex dx, or

 Ex 5 2 
dV
dx

  (24.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 24.16 is the mathematical statement of the 
electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 24.1.

Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential 
at several positions in the field and making a graph of the results. According to 
Equation 24.16, the slope of a graph of V versus x at a given point provides the mag-
nitude of the electric field at that point.

Imagine starting at a point and then moving through a displacement d s S along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 24.15, we see that dV 5 2E

S
? d s S 5 

0; therefore, because the dot product is zero, E
S

 must be perpendicular to the dis-
placement along the equipotential surface. This result shows that the equipotential 
surfaces must always be perpendicular to the electric field lines passing through 
them.

As mentioned at the end of Section 24.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the field 
lines. Figure 24.11a (page 646) shows some representative equipotential surfaces 
for this situation.

If the charge distribution creating an electric field has spherical symmetry such 
that the volume charge density depends only on the radial distance r, the electric 
field is radial. In this case, E

S
? d s S 5 Er dr , and we can express dV as dV 5 2Er dr. 

Therefore,

 Er 5 2 
dV
dr

  (24.17)

For example, the electric potential of a point charge is V 5 keq/r. Because V is 
a function of r only, the potential function has spherical symmetry. Applying 
Equation 24.17, we find that the magnitude of the electric field due to the point 

Answer Given the statement of the problem, it is not necessary to include this potential energy because part (B) asks for the 
change in potential energy of the system as q3 is brought in from infinity. Because the configuration of charges q1 and q2 does 
not change in the process, there is no DUE associated with these charges. Had part (B) asked to find the change in potential 
energy when all three charges start out infinitely far apart and are then brought to the positions in Figure 24.10b, however, you 
would have to calculate the change using Equation 24.14.

24.3 c o n t i n u e d
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646 Chapter 24 Electric Potential

charge is Er 5 keq/r2, a familiar result. Notice that the potential changes only in 
the radial direction, not in any direction perpendicular to r. Therefore, V (like 
Er ) is a function only of r, which is again consistent with the idea that equipo-
tential surfaces are perpendicular to field lines. In this case, the equipotential 
surfaces are a family of spheres concentric with the spherically symmetric charge 
distribution (Fig. 24.11b). The equipotential surfaces for an electric dipole are 
sketched in Figure 24.11c.

In general, the electric potential is a function of all three spatial coordinates. If 
V(r) is given in terms of the Cartesian coordinates, the electric field components Ex, 
Ey, and Ez can readily be found from V(x, y, z) as the partial derivatives2

 Ex 5 2
−V
−x
  Ey 5 2

−V
−y
  Ez 5 2

−V
−z

  (24.18)

Q uick Quiz 24.4 In a certain region of space, the electric potential is zero 
everywhere along the x axis. (i) From this information, you can conclude that 
the x component of the electric field in this region is (a) zero, (b) in the positive 
x direction, or (c) in the negative x direction. (ii) Suppose the electric potential 
is 12 V everywhere along the x axis. From the same choices, what can you con-
clude about the x component of the electric field now?

   24.5   Electric Potential Due to Continuous  
Charge Distributions
In Section 24.3, we found how to determine the electric potential due to a small 
number of charges. What if we wish to find the potential due to a continuous dis-
tribution of charge? The electric potential in this situation can be calculated using 
two different methods. The first method is as follows. If the charge distribution is 
known, we consider the potential due to a small charge element dq, treating this 
element as a point charge (Fig. 24.12). From Equation 24.11, the electric potential 

2In vector notation, E
S

 is often written in Cartesian coordinate systems as

E
S

5 2=V 5 21i
⁄

 

−

−x
1 j

⁄
 

−

−y
1 k 

⁄ −

−z2V

where = is called the gradient operator.

Finding the electric field  
from the potential

q

�

A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c

E
S

 

Figure 24.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with 
the page) and electric field lines. In all cases, the equipotential surfaces are perpendicular to the elec-
tric field lines at every point.

Figure 24.12  The electric poten-
tial at point P due to a continuous 
charge distribution can be calcu-
lated by dividing the charge dis-
tribution into elements of charge 
dq and summing the electric 
potential contributions over all 
elements. Three sample elements 
of charge are shown.

P

dq1

r1

r2

r3

dq2

dq3
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dV at some point P due to the charge element dq is

 dV 5 ke 
dq
r

 (24.19)

where r is the distance from the charge element to point P. To obtain the total 
potential at point P, we integrate Equation 24.19 to include contributions from all 
elements of the charge distribution. Because each element is, in general, a different 
distance from point P and ke is constant, we can express V as

 V 5 ke # 
dq
r

 (24.20)

In effect, we have replaced the sum in Equation 24.12 with an integral. In this 
expression for V, the electric potential is taken to be zero when point P is infinitely 
far from the charge distribution.

The second method for calculating the electric potential is used if the electric 
field is already known from other considerations such as Gauss’s law. If the charge 
distribution has sufficient symmetry, we first evaluate E

S
 using Gauss’s law and then 

substitute the value obtained into Equation 24.3 to determine the potential differ-
ence DV between any two points. We then choose the electric potential V to be zero 
at some convenient point.

  Electric potential due 
to a continuous charge 
distribution

PrOBlEM-SOlVing STrATEgy Calculating Electric Potential

The following procedure is recommended for solving problems that involve the determi-
nation of an electric potential due to a charge distribution.

1. Conceptualize. Think carefully about the individual charges or the charge distribution 
you have in the problem and imagine what type of potential would be created. Appeal to 
any symmetry in the arrangement of charges to help you visualize the potential.

2. Categorize. Are you analyzing a group of individual charges or a continuous charge 
distribution? The answer to this question will tell you how to proceed in the Analyze step.

3. Analyze. When working problems involving electric potential, remember that it is a 
scalar quantity, so there are no vector components to consider. Therefore, when using the 
superposition principle to evaluate the electric potential at a point, simply take the alge-
braic sum of the potentials due to each charge. You must keep track of signs, however.

As with potential energy in mechanics, only changes in electric potential are signifi-
cant; hence, the point where the potential is set at zero is arbitrary. When dealing with 
point charges or a finite-sized charge distribution, we usually define V 5 0 to be at a 
point infinitely far from the charges. If the charge distribution itself extends to infinity, 
however, some other nearby point must be selected as the reference point.

(a) If you are analyzing a group of individual charges: Use the superposition principle, 
which states that when several point charges are present, the resultant potential at a 
point P in space is the algebraic sum of the individual potentials at P due to the individ-
ual charges (Eq. 24.12). Example 24.4 demonstrates this procedure.

(b) If you are analyzing a continuous charge distribution: Replace the sums for evaluating 
the total potential at some point P from individual charges by integrals (Eq. 24.20). The 
total potential at P is obtained by integrating over the entire charge distribution. For 
many problems, it is possible in performing the integration to express dq and r in terms 
of a single variable. To simplify the integration, give careful consideration to the geome-
try involved in the problem. Examples 24.5 through 24.7 demonstrate such a procedure.

To obtain the potential from the electric field: Another method used to obtain the potential is to 
start with the definition of the potential difference given by Equation 24.3. If E

S
 is known or 

can be obtained easily (such as from Gauss’s law), the line integral of E
S

? d s S can be evaluated.

4. Finalize. Check to see if your expression for the potential is consistent with your mental 
representation and reflects any symmetry you noted previously. Imagine varying param-
eters such as the distance of the observation point from the charges or the radius of any 
circular objects to see if the mathematical result changes in a reasonable way.
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648 Chapter 24 Electric Potential

 Example 24.4    The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign sep-
arated by a distance 2a as shown in Figure 24.13. The dipole is along the x axis and is 
centered at the origin.

(A) Calculate the electric potential at point P on the y axis.

S O L U T I O N

Conceptualize Compare this situation to that in part (B) of Example 22.6. It is the same 
situation, but here we are seeking the electric potential rather than the electric field.

Categorize We categorize the problem as one in which we have a small number of particles 
rather than a continuous distribution of charge. The electric potential can be evaluated by 
summing the potentials due to the individual charges.

Analyze Use Equation 24.12 to find the electric potential  VP 5 ke o
i

 
qi

ri

5 ke S q

Ïa 2 1 y 2
1

2q

Ïa 2 1 y 2D 5 0  
at P due to the two charges:

(B) Calculate the electric potential at point R on the positive x axis.

S O L U T I O N

Use Equation 24.12 to find the electric potential at R due VR 5 ke o
i

 
qi

ri

5 ke S 2q

x 2 a
1

q

x 1 aD 5 2
2ke qa

x2 2 a 2  
to the two charges:

(C) Calculate V and Ex at a point on the x axis far from the dipole.

S O L U T I O N

For point R far from the dipole such that x .. a, neglect  VR 5 lim
x..a 12 

2keqa

x2 2 a22 <  2
2keqa

x2  (x..a) 
a2 in the denominator of the answer to part (B) and  
write V in this limit:

Use Equation 24.16 and this result to calculate the x  E x 5 2
dV
dx

5 2
d
dx S2 

2keqa

x2 D 
component of the electric field at a point on the x axis  
far from the dipole:

 5 2ke qa 
d
dx S 1

x2D 5 2
4ke qa

x3  sx..ad

Finalize The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the negative 
charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice that we have 
a 1/r3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric field on the y axis in 
Example 22.6.

W H A T  I F ?  Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer No. That there is no change in the potential along the y axis tells us only that the y component of the electric field is 
zero. Look back at Figure 22.13 in Example 22.6. We showed there that the electric field of a dipole on the y axis has only an x 
component. We could not find the x component in the current example because we have only a single value of the potential: 
VP 5 0. We do not have an expression for the potential near the y axis as a function of x.

aa
q

R

P

x

x

y

�q
� �

y

Figure 24.13 (Example 24.4) 
An electric dipole located on the 
x axis.
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 Example 24.5    Electric Potential Due to a Uniformly Charged ring

(A) Find an expression for the electric potential at a point P located on the perpen-
dicular central axis of a uniformly charged ring of radius a and total charge Q.

S O L U T I O N

Conceptualize Study Figure 24.14, in which the ring is oriented so that its plane is 
perpendicular to the x axis and its center is at the origin. Notice that the symmetry of 
the situation means that all the charges on the ring are the same distance from point P. 
Compare this example to Example 23.2. Notice that no vector considerations are neces-
sary here because electric potential is a scalar.

Categorize Because the ring consists of a continuous distribution of charge rather 
than a set of discrete charges, we must use the integration technique represented by 
Equation 24.20 in this example.

Analyze We take point P to be at a distance x from the center of the ring as shown in 
Figure 24.14.

Use Equation 24.20 to express V in terms of the geometry: V 5 ke # 
dq

r
5 ke # 

dq

Ïa 2 1 x2

Noting that a and x do not vary for an integration over  V 5
ke

Ïa 2 1 x2
 # dq 5

keQ

Ïa 2 1 x2
 (24.21) 

the ring, bring Ïa 2 1 x2 in front of the integral sign  
and integrate over the ring:

(B) Find an expression for the magnitude of the electric field at point P.

S O L U T I O N

From symmetry, notice that along the x axis E
S

 can have  Ex 5 2
dV
dx

5 2k e Q 
d

dx
 sa 2 1 x2d21y2  

only an x component. Therefore, apply Equation 24.16  
to Equation 24.21:  5 2ke Q s21

2dsa 2 1 x2d23y2s2xd

 Ex 5 
k e x

sa 2 1 x2 d3y2
 Q  (24.22)

Finalize The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid only for 
points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained by direct inte-
gration (see Example 23.2). For practice, use the result of part (B) in Equation 24.3 to verify that the potential is given by the 
expression in part (A).

 Example 24.6    Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface 
charge density s.

(A) Find the electric potential at a point P along the per-
pendicular central axis of the disk.

S O L U T I O N

Conceptualize If we consider the disk to be a set of con-
centric rings, we can use our result from Example 24.5—
which gives the potential due to a ring of radius a—and 
sum the contributions of all rings making up the disk. Figure 24.15 shows one such ring. Because point P is on the central axis 
of the disk, symmetry again tells us that all points in a given ring are the same distance from P.

a2�x2

dq

a

P
xx

Figure 24.14  (Example 24.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

continued

dr
dA � 2pr dr 

x
P

r
R

r 2�x2

x

Figure 24.15  (Example 24.6) 
A uniformly charged disk of 
radius R lies in a plane perpen-
dicular to the x axis. The calcu-
lation of the electric potential 
at any point P on the x axis is 
simplified by dividing the disk 
into many rings of radius r and 
width dr, with area 2pr dr.
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650 Chapter 24 Electric Potential

Categorize Because the disk is continuous, we evaluate the potential due to a continuous charge distribution rather than a 
group of individual charges.

Analyze Find the amount of charge dq on a ring of radius r  dq 5 s dA 5 s(2pr dr) 5 2psr dr  
and width dr as shown in Figure 24.15:

Use this result in Equation 24.21 in Example 24.5 (with a  dV 5
ke dq

Ïr 2 1 x2
5

ke (2psr dr)

Ïr 2 1 x2
 

replaced by the variable r and Q replaced by the differential  
dq) to find the potential due to the ring:

To obtain the total potential at P, integrate this expression  V 5 pkes #
R

0

  
2r dr

Ïr 2 1 x2
5 pkes #

R

0

 sr 2 1 x2d21y2 d(r2) 
over the limits r 5 0 to r 5 R, noting that x is a constant:

This integral is of the common form #un du, where  V 5 2pkes[sR 2 1 x2d1y2 2 x]  (24.23) 
n 5 21

2 and u 5 r2 1 x2, and has the value un11/(n 1 1).  
Use this result to evaluate the integral:

(B) Find the x component of the electric field at a point P along the perpendicular central axis of the disk.

S O L U T I O N

As in Example 24.5, use Equation 24.16 to find the electric Ex 5 2
dV
dx

5 2pkes31 2
x

sR 2 1 x 
2d1y24  (24.24) 

field at any axial point:

Finalize Compare Equation 24.24 with the result of Example 23.3. They are the same. The calculation of V and E
S

 for an 
arbitrary point off the x axis is more difficult to perform because of the absence of symmetry and we do not treat that situation 
in this book.

24.6 c o n t i n u e d

 Example 24.7    Electric Potential Due to a Finite line of Charge

A rod of length / located along the x axis has a total charge 
Q and a uniform linear charge density l. Find the electric 
potential at a point P located on the y axis a distance a from 
the origin (Fig. 24.16).

S O L U T I O N

Conceptualize The potential at P due to every segment of 
charge on the rod is positive because every segment carries 
a positive charge. Notice that we have no symmetry to appeal 
to here, but the simple geometry should make the problem 
solvable.

Categorize Because the rod is continuous, we evaluate the 
potential due to a continuous charge distribution rather than a group of individual charges.

Analyze In Figure 24.16, the rod lies along the x axis, dx is the length of one small segment, and dq is the charge on that seg-
ment. Because the rod has a charge per unit length l, the charge dq on the small segment is dq 5 l dx.

Find the potential at P due to one segment of the rod  dV 5 ke 
dq

r
5 ke 

ldx

Ïa 2 1 x2
 

at an arbitrary position x:

Find the total potential at P by integrating this  V 5 #
/

0

 ke 
ldx

Ïa 2 1 x2
 

expression over the limits x 5 0 to x 5 /:

Figure 24.16  (Example 24.7) 
A uniform line charge of length 
/ located along the x axis. To 
calculate the electric potential 
at P, the line charge is divided 
into segments each of length 
dx  and each carrying a charge 
dq 5 l dx.

dx

�

x
x

O

dq

ra

P

y
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    24.6 Conductors in Electrostatic Equilibrium 651

   24.6    Conductors in Electrostatic Equilibrium
As we learned in Section 22.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
 conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

1. The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

2. If the conductor is isolated and carries a charge, the charge resides on its 
surface.

3. The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/e0, where s is the 
surface charge density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.17). The electric field inside the conductor must 

be zero, assuming electrostatic equilibrium exists. If the field were not zero, 
free electrons in the conductor would experience an electric force ( F

S
5 qE

S
) 

and would accelerate due to this force. This motion of electrons, however, would 
mean that the conductor is not in electrostatic equilibrium. Therefore, the 
existence of electrostatic equilibrium is consistent only with a zero field in the 
conductor.

Let’s investigate how this zero field is accomplished. Before the external field 
is applied, free electrons are uniformly distributed throughout the conductor. 
When the external field is applied, the free electrons accelerate to the left in Fig-
ure 24.17, causing a plane of negative charge to accumulate on the left surface. 
The movement of electrons to the left results in a plane of positive charge on the 
right surface. These planes of charge create an additional electric field inside 
the conductor that opposes the external field. As the electrons move, the surface 
charge densities on the left and right surfaces increase until the magnitude of 

  Properties of a conductor in 
electrostatic equilibrium

Noting that ke and l 5 Q// are constants and can be  V 5 ke  
l #

/

0
 

dx

Ïa2 1 x 
2

5 ke 

Q

/
 ln (x 1 Ïa2 1 x 

2)*
/

0
 

removed from the integral, evaluate the integral with  
the help of Appendix B:

Evaluate the result between the limits: V 5 ke 

Q

/
 [ln(/ 1 Ïa2 1 /2) 2 ln a] 5   ke 

Q

/
 ln1/ 1 Ïa2 1 /2

a 2 (24.25)

Finalize If / ,, a, the potential at P should approach that of a point charge because the rod is very short compared to the 
distance from the rod to P. By using a series expansion for the natural logarithm from Appendix B.5, it is easy to show that 
Equation 24.25 becomes V 5 keQ/a.

24.7 c o n t i n u e d

E
S

E
S

��
��
��
��
��
��
��
��

Figure 24.17  A conducting slab 
in an external electric field E

S
. 

The charges induced on the two 
surfaces of the slab produce an 
electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.

 W H A T  I F ?   What if you were asked to find the electric 
field at point P  ? Would that be a simple calculation?

Answer Calculating the electric field by means of Equation 
23.1 would be a little messy. There is no symmetry to appeal 
to, and the integration over the line of charge would rep-
resent a vector addition of electric fields at point P. Using 
Equation 24.18, you could find Ey by replacing a with y in 
Equation 24.25 and performing the differentiation with 

respect to y. Because the charged rod in Figure 24.16 lies 
entirely to the right of x 5 0, the electric field at point P 
would have an x component to the left if the rod is charged 
positively. You cannot use Equation 24.18 to find the x com-
ponent of the field, however, because the potential due to 
the rod was evaluated at a specific value of x (x 5 0) rather 
than a general value of x. You would have to find the poten-
tial as a function of both x and y to be able to find the x and y 
components of the electric field using Equation 24.18.
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652 Chapter 24 Electric Potential

the internal field equals that of the external field, resulting in a net field of zero 
inside the conductor. The time it takes a good conductor to reach equilibrium is 
on the order of 10216 s, which for most purposes can be considered instantaneous.

Gauss’s law can be used to verify the second property of a conductor in elec-
trostatic equilibrium. Figure 24.18 shows an arbitrarily shaped conductor. A 
gaussian surface is drawn inside the conductor and can be very close to the con-
ductor’s surface. As we have just shown, the electric field everywhere inside the 
conductor is zero when it is in electrostatic equilibrium. Therefore, the electric 
field must be zero at every point on the gaussian surface, in accordance with 
condition (4) in Section 23.4, and the net flux through this gaussian surface is 
zero. From this result and Gauss’s law, we conclude that the net charge inside the 
gaussian surface is zero. Because there can be no net charge inside the gaussian 
surface (which is arbitrarily close to the conductor’s surface), any net charge on 
the conductor must reside on its surface. Gauss’s law does not indicate how this 
excess charge is distributed on the conductor’s surface, only that it resides exclu-
sively on the surface.

To verify the third property, let’s begin with the perpendicularity of the field to 
the surface. If the field vector E

S
 had a component parallel to the conductor’s sur-

face, free electrons would experience an electric force and move along the surface; 
in such a case, the conductor would not be in equilibrium. Therefore, the field vec-
tor must be perpendicular to the surface.

To determine the magnitude of the electric field, we use Gauss’s law and draw 
a gaussian surface in the shape of a small cylinder whose end faces are parallel 
to the conductor’s surface (Fig. 24.19). Part of the cylinder is just outside the con-
ductor, and part is inside. The field is perpendicular to the conductor’s surface 
from the condition of electrostatic equilibrium. Therefore, condition (3) in Sec-
tion 23.4 is satisfied for the curved part of the cylindrical gaussian surface: there 
is no flux through this part of the gaussian surface because E

S
 is parallel to the 

surface. There is no flux through the flat face of the cylinder inside the conduc-
tor because here E

S
5 0, which satisfies condition (4). Hence, the net flux through 

the gaussian surface is equal to that through only the flat face outside the con-
ductor, where the field is perpendicular to the gaussian surface. Using conditions 
(1) and (2) for this face, the flux is EA, where E is the electric field just outside 
the conductor and A is the area of the cylinder’s face. Applying Gauss’s law to this 
surface gives

 FE 5 $E dA 5 EA 5
qin

e0

5
sA
e0

 

where we have used qin 5 sA. Solving for E gives for the electric field immediately 
outside a charged conductor:

 E 5
s

e0

 (24.26)

Let’s now verify property 4 listed at the beginning of this section for a charged 
conductor in electrostatic equilibrium. Consider two points Ⓐ and Ⓑ on the sur-
face of a charged conductor as shown in Figure 24.20. Along a surface path con-
necting these points, E

S
 is always perpendicular to the displacement d s S; therefore, 

E
S

? d s S 5 0. Using this result and Equation 24.3, we conclude that the potential 
difference between Ⓐ and Ⓑ is necessarily zero:

 V
Ⓑ

2 V
Ⓐ

5 2 #
Ⓑ

Ⓐ

E
S

? d s S 5 0 

This result applies to any two points on the surface. Therefore, V is constant 

Gaussian
surface

Figure 24.18  A conductor of arbi-
trary shape. The broken line rep-
resents a gaussian surface that can be 
just inside the conductor’s surface.

The flux through the
gaussian surface is EA.  

�
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A

Figure 24.19 A gaussian surface in 
the shape of a small cylinder is used 
to calculate the electric field imme-
diately outside a charged conductor. 

PitFall Prevention 24.6
Potential May not Be Zero  
The electric potential inside the 
conductor is not necessarily zero 
in Figure 24.20, even though the 
electric field is zero. Equation 
24.15 shows that a zero value of 
the field results in no change in 
the potential from one point to 
another inside the conductor. 
Therefore, the potential every-
where inside the conductor, 
including the surface, has the 
same value, which may or may not 
be zero, depending on where the 
zero of potential is defined.
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    24.6 Conductors in Electrostatic Equilibrium 653

everywhere on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equipo-
tential surface: every point on the surface of a charged conductor in equilibrium 
is at the same electric potential. Furthermore, because the electric field is zero 
inside the conductor, the electric potential is constant everywhere inside the 
conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 24.21a. As determined in part (A) of Example 23.6, the electric 
field outside the sphere is keQ/r2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ/r. At the 
surface of the conducting sphere in Figure 24.21a, the potential must be keQ/R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ/R. Figure 24.21b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.

When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 24.21a. If the conductor is nonspherical as in Fig-
ure 24.20, however, we find that the surface charge density is high where the radius 
of curvature is small and low where the radius of curvature is large. Let us show 
theoretically why this is true. Consider the two spheres in Figure 24.22, connected 
by a wire. If we imagine the spheres to be very far apart, one sphere will not affect 
the charge distribution of the other, and we can express the potential at the surface 
of each sphere using Equation 24.11:

V 5 ke 

q1

r1

5 ke 

q2

r2

where we have set the potentials equal because the connecting wire assures that the 
whole system is a single conductor. Now set up the ratio of the electric fields at the 
surfaces of the two spheres:

E1

E2

5

ke 

q1

r 
2

1

ke 

q2

r 
2

2

5

1
r1

V

1
r2

V
5

r2

r1

Notice from the spacing of the 
positive signs that the surface 
charge density is nonuniform.
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� Figure 24.20  An arbitrarily shaped conductor carrying a positive 

charge. When the conductor is in electrostatic equilibrium, all the 
charge resides at the surface, E

S
5 0 inside the conductor, and the 

direction of E
S

 immediately outside the conductor is perpendicular 
to the surface. The electric potential is constant inside the conduc-
tor and is equal to the potential at the surface. 

b

c

a R

V

keQ
R

keQ
r

r

E
keQ

r 2

r
R
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�

Figure 24.21  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

r1

q1

r2
q2

Figure 24.22 Two charged 
spherical conductors connected 
by a conducting wire. The spheres 
are at the same electric potential V.
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The ratio of the magnitudes of the electric field is equal to the inverse ratio of the 
radii of the spheres. Therefore, the field is strong when the radius is small, and the 
field is weaker when the radius is larger. The electric field reaches very high values 
at sharp points. In turn, Equation 24.26 tells us that the surface charge density is 
high when the radius is small.

a cavity Within a conductor
Suppose a conductor of arbitrary shape contains a cavity as shown in Figure 24.23. 
Let’s assume no charges are inside the cavity. In this case, the electric field inside 
the cavity must be zero regardless of the charge distribution on the outside surface 
of the conductor. Furthermore, the field in the cavity is zero even if an electric field 
exists outside the conductor.

To prove this point, remember that every point on the conductor is at the same 
electric potential; therefore, any two points Ⓐ and Ⓑ on the cavity’s surface must 
be at the same potential. Now imagine a field E

S
 exists in the cavity and evaluate the 

potential difference V
Ⓑ

 2 V
Ⓐ

 defined by Equation 24.3:

 V
Ⓑ

2 V
Ⓐ

5 2#
Ⓑ

Ⓐ

E
S

? d s S 

Because V
Ⓑ

 2 V
Ⓐ

 5 0, the integral of E
S

? d s S must be zero for all paths between any 
two points Ⓐ and Ⓑ on the conductor. The only way that can be true for all paths 
is if E

S
 is zero everywhere in the cavity. Therefore, a cavity surrounded by conducting 

walls is a field-free region as long as no charges are inside the cavity.
This phenomenon is used in a Faraday cage, which is a conducting material, 

either solid or mesh, surrounding an interior space. A Faraday cage is used to pro-
tect sensitive electronic equipment, and it protects you if you are inside a car during 
a lightning storm. The metal body of the car acts as a Faraday cage; any charge on 
the car due to the strong electric fields in the car are on the outer surface of the 
car, and the electric field inside the car must be zero. Faraday cages often have a 
negative effect, such as the loss of cellphone service inside a metal elevator car.

Q uick Quiz 24.5 Your younger brother likes to rub his feet on the carpet and 
then touch you to give you a shock. While you are trying to escape the shock 
treatment, you discover a hollow metal cylinder in your basement, large enough 
to climb inside. In which of the following cases will you not be shocked? (a) 
You climb inside the cylinder, making contact with the inner surface, and your 
charged brother touches the outer metal surface. (b) Your charged brother is 
inside touching the inner metal surface and you are outside, touching the outer 
metal surface. (c) Both of you are outside the cylinder, touching its outer metal 
surface but not touching each other directly.

 Example 24.8    A Sphere inside a Spherical Shell

A solid insulating sphere of radius a carries a net positive 
charge Q uniformly distributed throughout its volume. A con-
ducting spherical shell of inner radius b and outer radius c is 
concentric with the solid sphere and carries a net charge 22Q. 
Using Gauss’s law, find the electric field in the regions labeled 
➀, ➁, ➂, and ➃ in Figure 24.24 and the charge distribution on 
the shell when the entire system is in electrostatic equilibrium.

S O L U T I O N

Conceptualize  Notice how this problem differs from Example 23.6 in the previous chapter. The charged sphere in Fig-
ure 23.14 appears in Figure 24.24, but it is now surrounded by a shell carrying a charge 22Q. Think about how the presence of 
the shell will affect the electric field of the sphere.

r
a

b

c

Q

�2Q

�

�

� �

Figure 24.24 (Example 
24.8) An insulating sphere 
of radius a and carrying a 
charge Q surrounded by a 
conducting spherical shell 
carrying a charge 22Q.

�

�

The electric field in the cavity is 
zero regardless of the charge on 
the conductor.

Figure 24.23  A conductor in 
electrostatic equilibrium containing 
a cavity.
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Categorize The charge is distributed uniformly throughout the sphere, and we know that the charge on the conducting shell 
distributes itself uniformly on the surfaces. Therefore, the system has spherical symmetry and we can apply Gauss’s law to find 
the electric field in the various regions.

Analyze In region ➁—between the surface of the solid sphere and the inner surface of the shell—we construct a spherical 
gaussian surface of radius r, where a , r , b, noting that the charge inside this surface is 1Q (the charge on the solid sphere). 
Because of the spherical symmetry, the electric field lines must be directed radially outward and be constant in magnitude on 
the gaussian surface.

The charge on the conducting shell creates zero electric  E2 5 ke 
Q

r 2 sfor a , r , bd  
field in the region r , b, so the shell has no effect on the  
field in region ➁ due to the sphere. Therefore, write an  
expression for the field in region ➁ as that due to the  
sphere from part (A) of Example 23.6:

Because the conducting shell creates zero field inside  E1 5 ke 
Q

a 3  r  sfor r , ad  
itself, it also has no effect on the field inside the sphere.  
Therefore, write an expression for the field in region ➀  
as that due to the sphere from part (B) of Example 23.6:

In region ➃, where r . c, construct a spherical gaussian  E4 5 2ke 
Q

r 2 sfor r . cd  
surface; this surface surrounds a total charge qin 5 Q 1  
(22Q) 5 2Q. Therefore, model the charge distribution  
as a sphere with charge 2Q and write an expression for  
the field in region ➃ from part (A) of Example 23.6:

In region ➂, we need property 1 from this section:  E 3 5 0 sfor b , r , cd  
the electric field must be zero because the spherical  
shell is a conductor in equilibrium:

Construct a gaussian surface of radius r in region ➂,  q in 5 qsphere 1 q inner 
where b , r , c, and note that q in must be zero because   
E 3 5 0. Find the amount of charge q inner on the inner  q inner 5 q in 2 qsphere 5 0 2 Q 5 2Q  
surface of the shell:

Finalize The charge on the inner surface of the spherical shell must be 2Q to cancel the charge 1Q on the solid sphere and 
give zero electric field in the material of the shell. Because the net charge on the shell is 22Q , its outer surface must carry a 
charge 2Q.

 W H A T  I F ?   How would the results of this problem differ if the sphere were conducting instead of insulating?

Answer The only change would be in region ➀, where r , a. Because there can be no charge inside a conductor in electro-
static equilibrium, qin 5 0 for a gaussian surface of radius r , a; therefore, on the basis of Gauss’s law and symmetry, E1 5 0.  
In regions ➁, ➂, and ➃, there would be no way to determine from observations of the electric field whether the sphere is 
conducting or insulating.

24.8 c o n t i n u e d

Summary
 › Definitions

The potential difference DV between points Ⓐ and Ⓑ in an electric field E
S

 is defined as

 DV ;
DUE

q
5 2#

Ⓑ

Ⓐ

E
S

? d s 
S (24.3)

where DUE is given by Equation 24.1 on page 637. The electric potential V 5 UE/q is a scalar 
quantity and has the units of joules per coulomb, where 1 J/C ; 1 V.

An equipotential surface is 
one on which all points are 
at the same electric potential. 
Equipotential surfaces are 
perpendicular to electric field 
lines.

continued
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656 Chapter 24 Electric Potential

If we define V 5 0 at r 5 ,̀ the electric potential due to a point charge at 
any distance r from the charge is

 V 5 ke 
q

r
 (24.11)

The electric potential associated with a group of point charges is obtained 
by summing the potentials due to the individual charges.

If the electric potential is known as a function of coor-
dinates x, y, and z, we can obtain the components of the 
electric field by taking the negative derivative of the elec-
tric potential with respect to the coordinates. For exam-
ple, the x component of the electric field is

E x 5 2
dV
dx

 (24.16)

The potential difference between two points sepa-
rated by a distance d in a uniform electric field E

S
 is

DV 5 2Ed (24.6)

if the direction of travel between the points is in the 
same direction as the electric field.

The electric potential energy associated with a pair of point 
charges separated by a distance r12 is

UE 5 ke 
q 1q 2

r 12

 (24.13)

We obtain the potential energy of a distribution of point charges by 
summing terms like Equation 24.13 over all pairs of particles.

The electric potential due to a continuous charge distribution is

 V 5 ke # 
dq

r
 (24.20)

Every point on the surface of a charged conductor in electrostatic equilibrium is at the same electric potential. The potential is 
constant everywhere inside the conductor and equal to its value at the surface.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

 1. Robert Millikan performed a brilliant set of experiments 
from 1909 to 1913 in which he measured e, the magnitude 
of the elementary charge on an electron, and demonstrated 
the quantized nature of this charge. Because the charge 
of an electron is negative, we express its charge as 2e. His 
apparatus, diagrammed in Figure TP24.1, contains two par-
allel metallic plates separated by a distance d. Oil droplets 
are sprayed from an atomizer above the upper plate. Some 
of these oil droplets pass through a small hole in the upper 
plate. Millikan used x-rays to ionize the air in the chamber 
so that freed electrons would adhere to the oil drops, giv-
ing them a negative charge 2q. A horizontally directed light 
beam is used to illuminate the oil droplets, which are viewed 
through a telescope whose long axis is also horizontal but 
perpendicular to the light beam. Also visible through the 

vS

Telescope with
scale in eyepiece

Oil droplets

Pinhole

d
q

� �

Figure TP24.1

When a positive charge q is moved 
between points Ⓐ and Ⓑ in an 
electric field E

S
, the change in the 

potential energy of the charge–
field system is

DUE 5 2q #
Ⓑ

Ⓐ

E
S

? d s S (24.1)

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor, whether the conductor is 
solid or hollow.

2. If the conductor is isolated and carries a charge, the charge resides on its surface.

3. The electric field at a point just outside a charged conductor is perpendicular to the 
surface of the conductor and has a magnitude s/e0, where s is the surface charge 
density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at locations 
where the radius of curvature of the surface is smallest.

 › Concepts and Principles

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



  Think–Pair–Share 657

telescope is a calibrated scale that shows the vertical posi-
tion of the oil drop at any time. Discuss this experiment 
in your group and perform the following tasks. (a) If a 
downward electric field is established between the plates, a 
given oil drop can be suspended at rest between the upward 
electric force and the downward gravitational force on the 
drop. Show that the required potential difference between 
the plates to keep an oil drop suspended at rest is given by

DVrest 5
4proilgd

3q
  r 

3

  where roil is the density of the oil, g is the acceleration due to 
gravity, and r is the radius of the oil drop. (b) To determine q 
from the equation in part (a), we need to know all the other 
quantities, which we do, except for r. The radius of the oil 
drops is too small to measure directly. Therefore, Millikan 
performed a second measurement. With the electric field 
removed, the oil drops drift downward at terminal speed 
because of the resistive force on them, given by Equation 6.2. 
For a sphere moving slowly through a viscous fluid, Equation 
6.2 can be modified to become what is known as Stokes’s law:

R
S

5 26phr  v S

  where h is the viscosity of the fluid, given in units of N ? s/m2. 
In addition, the oil drops experience an upward buoyant 
force due to the surrounding air, given by Equation 14.5:

B 5 rair 
gVdisp

  where Vdisp is the volume of air displaced by an oil drop or, 
equivalently, the volume of the oil drop. The falling oil drop 
is acted on by gravity, the resistive force of the air, and the 
buoyant force. Show from the particle in equilibrium model 
applied to the oil drop that the radius of the drop is 

r 5 3Î hvT

2g(roil 2 rair)

  (c) Combine the first and last equations to find an expres-
sion for the charge q on an oil drop in terms of quantities, all 
of which can be measured by the two experiments described.

 2. ACTiViTy  An electric field in a region of space is parallel to 
the x axis. The electric potential varies with position as shown 
in Figure TP24.2. Discuss in your group how the electric field 
would vary with position x and then graph the x component 
of the electric field versus position in this region of space.
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Figure TP24.2

 3. ACTiViTy  Robert Millikan performed a brilliant set of 
experiments from 1909 to 1913 in which he measured 
e, the magnitude of the elementary charge on an elec-
tron, and demonstrated the quantized nature of this 
charge. Because the charge of an electron is negative, 
we express its charge as 2e. His apparatus, diagrammed 
in Figure TP24.1, contains two parallel metallic plates 
separated by a distance d. Oil droplets are sprayed from 
an atomizer above the upper plate. Some of these oil 
droplets pass through a small hole in the upper plate. 
Millikan used x-rays to ionize the air in the chamber so 
that freed electrons would adhere to the oil drops, giv-
ing them a negative charge 2q. A horizontally directed 
light beam is used to illuminate the oil droplets, which 
are viewed through a telescope whose long axis is also 
horizontal but perpendicular to the light beam. Also 
visible through the telescope is a calibrated scale that 
shows the vertical position of the oil drop at any time.

In his experiment, two types of measurements were 
made. First, the oil drops were allowed to fall freely while 
the time interval for them to fall through a distance of 
∆y 5 1.00 mm against a calibrated scale was measured. 
From these data, the terminal velocity vT of a drop can be 
measured. Knowing the terminal velocity allows us to find 
the radius r of the oil drop from the following equation:

r 5 3Î hvT

2g roil

  where h is the viscosity of air, h 5 1.81 3 1025 N ? s/m2, g is 
the acceleration due to gravity, and roil is the density of the 
oil used in the experiment, roil 5 824 kg/m3.

In another experiment, a voltage is applied between 
the plates separated by d 5 1.00 mm in Figure TP24.1 and 
adjusted to a value DVrest at which the same drop from the 
first experiment is suspended at rest. This measurement 
allows a calculation of the magnitude q of the charge on the 
oil drop:

q 5
4proilgd

3DVrest

 r  
3

  Below are ten sets of data for different drops measured in this 
experiment. (a) Find the charge on each drop. Make a histo-
gram of the values of the ten charges found and determine 
the value e of the elementary charge from these data. (b) The 
manufacturer of the atomizer claims that it should provide oil 
drops with a relatively consistent radius, ranging between 0.1 
and 1 mm. Are the ten drops below consistent with this claim?

Drop Dt to fall 1.00 mm (s) DVrest (V)

 1 40.0  8.95
 2 31.8  9.44
 3 22.7 12.55
 4 40.3 26.65
 5 64.1 13.32
 6 38.3 14.25
 7 31.6  7.65
 8 49.2 19.62
 9 112  5.70
10 27.3 23.7
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658 Chapter 24 Electric Potential

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 24.1  Electric Potential and Potential Difference

1. How much work is done (by a battery, generator, or some 
other source of potential difference) in moving Avogadro’s 
number of electrons from an initial point where the electric 
potential is 9.00 V to a point where the electric potential is 
25.00 V? (The potential in each case is measured relative to 
a common reference point.)

2. (a) Find the electric potential difference DVe required to 
stop an electron (called a “stopping potential”) moving 
with an initial speed of 2.85 3 107 m/s. (b) Would a proton 
traveling at the same speed require a greater or lesser mag-
nitude of electric potential difference? Explain. (c) Find 
a symbolic expression for the ratio of the proton stopping 
potential and the electron stopping potential, DVp /DVe.

Section 24.2  Potential Difference in a Uniform Electric Field

3. Oppositely charged parallel plates are separated by 
5.33 mm. A potential difference of 600 V exists between 
the plates. (a) What is the magnitude of the electric field 
between the plates? (b) What is the magnitude of the force 
on an electron between the plates? (c) How much work must 
be done on the electron to move it to the negative plate if it 
is initially positioned 2.90 mm from the positive plate?

4. Starting with the definition of work, prove that at every 
point on an equipotential surface, the surface must be per-
pendicular to the electric field there.

5. An insulating rod having linear charge 
density l 5 40.0 mC/m and linear mass 
density m 5 0.100 kg/m is released from 
rest in a uniform electric field E 5 
100 V/m directed perpendicular to the 
rod (Fig. P24.5). (a) Determine the speed 
of the rod after it has traveled 2.00  m. 
(b) What If? How does your answer to 
part (a) change if the electric field is not 
perpendicular to the rod? Explain.

6. Review. A block having mass m and charge 1Q is connected 
to an insulating spring having a force constant k. The block 
lies on a frictionless, insulating, horizontal track, and the 
system is immersed in a uniform electric field of magni-
tude E directed as shown in Figure P24.6. The block is 
released from rest when the spring is unstretched (at x 5 0).  
We wish to show that the ensuing motion of the block is 
simple harmonic. (a)  Consider the system of the block, 
the spring, and the electric field. Is this system isolated 

or nonisolated? (b) What kinds of potential energy exist 
within this system? (c) Call the initial configuration of the 
system that existing just as the block is released from rest. 
The final configuration is when the block momentarily 
comes to rest again. What is the value of x when the block 
comes to rest momentarily? (d) At some value of x  we will 
call x 5 x 0, the block has zero net force on it. What analy-
sis model describes the particle in this situation? (e) What 
is the value of x 0? (f) Define a new coordinate system x 9 
such that x 9 5 x 2 x0. Show that x 9 satisfies a differential 
equation for simple harmonic motion. (g) Find the period 
of the simple harmonic motion. (h) How does the period 
depend on the electric field magnitude?

Section 24.3  Electric Potential and Potential Energy  
Due to Point Charges

Note: Unless stated otherwise, assume the reference level of 
potential is V 5 0 at r 5 .̀

7. Three positive charges are located at 
the corners of an equilateral triangle 
as in Figure P24.7. Find an expression 
for the electric potential at the center 
of the triangle.

8. Two point charges Q 1 5 15.00 nC 
and Q 2 5 23.00 nC are separated 
by 35.0 cm. (a) What is the electric 
potential at a point midway between 
the charges? (b) What is the potential 
energy of the pair of charges? What is the significance of 
the algebraic sign of your answer?

9. You are working on a laboratory device that includes a 
small sphere with a large electric charge Q. Because of this 
charged sphere, there is a strong electric field surrounding 
your device. Other researchers in your laboratory are com-
plaining that your electric field is affecting their equipment. 
You think about how you can obtain the large electric field 
that you need close to the sphere but prohibit the field from 
reaching your colleagues. You decide to surround your 
device with a spherical transparent plastic shell of radius R. 
The plastic has a very thin coating of conducting material 
on the outside that only minimally reduces the transparency 
of the material. The shell is placed so that the small sphere 
is at the exact center of the shell. Determine to what electric 
potential the outer shell must be raised to completely elimi-
nate the electric field outside of the shell.

10. Your roommate is having trouble understanding why solids 
form. He asks, “Why would atoms bond into solids rather 
than just floating freely with respect to each other?” To help 
him understand at least one type of bonding in solids, you 
decide to embark on an energy explanation. You show him a 
drawing of a primitive cell of a sodium chloride crystal, NaCl, 
or simple table salt. The drawing is shown in Figure P24.10, 
where the orange spheres are Na1 ions and the blue spheres 
are Cl2 ions. Each ion has a charge of magnitude equal to 
the elementary charge e. The ions lie on the corners of a 
cube of side d. You explain to your roommate that the electri-
cal potential energy is defined as zero when all eight charges 
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are infinitely far apart from each other. Then you bring them 
together to form the crystal structure shown. (a) Evaluate the 
electric potential energy of the crystal as shown and (b) show 
that it is energetically favorable for such crystals to form.

11. Four point charges each having charge Q are located at the 
corners of a square having sides of length a. Find expres-
sions for (a) the total electric potential at the center of the 
square due to the four charges and (b) the work required 
to bring a fifth charge q from infinity to the center of the 
square.

12. The two charges in Figure P24.12 are separated by a dis-
tance d 5 2.00 cm, and Q 5 15.00 nC. Find (a) the electric 
potential at A, (b)  the electric potential at B, and (c) the 
electric potential difference between B and A.

Q

d

d
2Q

� �

A B

Figure P24.12

13. Show that the amount of work required to assemble four 
identical charged particles of magnitude Q at the corners of 
a square of side s is 5.41keQ

2/s.

14. Two charged particles of equal magni-
tude are located along the y axis equal 
distances above and below the x axis 
as shown in Figure P24.14. (a)  Plot a 
graph of the electric potential at points  
along the x axis over the interval  
23a , x  , 3a. You should plot the 
potential in units of keQ/a. (b) Let the 
charge of the particle located at y 5 2a 
be negative. Plot the potential along the 
y axis over the interval 24a , y , 4a.

15. Three particles with equal positive 
charges q are at the corners of an equilateral triangle of side 
a as shown in Figure P24.15. (a) At what point, if any, in the 
plane of the particles is the electric potential zero? (b) What 
is the electric potential at the position of one of the particles 
due to the other two particles in the triangle?

�

� �
q qa

aa

q

Figure P24.15

16. Review. A light, unstressed spring has length d. Two identical 
particles, each with charge q, are connected to the opposite 
ends of the spring. The particles are held stationary a dis-
tance d apart and then released at the same moment. The 
system then oscillates on a frictionless, horizontal table. The 
spring has a bit of internal kinetic friction, so the oscillation is 
damped. The particles eventually stop vibrating when the dis-
tance between them is 3d. Assume the system of the spring and 
two charged particles is isolated. Find the increase in internal 
energy that appears in the spring during the oscillations.

17. Review. Two insulating spheres have radii 0.300 cm and 
0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly dis-
tributed charges 22.00 mC and 3.00 mC. They are released 
from rest when their centers are separated by 1.00 m. (a) 
How fast will each be moving when they collide? (b) What 
If? If the spheres were conductors, would the speeds be 
greater or less than those calculated in part (a)? Explain.

18. Review. Two insulating spheres have radii r1 and r2, masses 
m1 and m2, and uniformly distributed charges 2q1 and q2. 
They are released from rest when their centers are sep-
arated by a distance d. (a) How fast is each moving when 
they collide? (b) What If? If the spheres were conductors, 
would their speeds be greater or less than those calculated 
in part (a)? Explain.

19. How much work is required to assemble eight identical 
charged particles, each of magnitude q, at the corners of a 
cube of side s?

20. Four identical particles, each having charge q and mass m, 
are released from rest at the vertices of a square of side L. 
How fast is each particle moving when their distance from 
the center of the square doubles?

Section 24.4  Obtaining the Value of the Electric Field  
from the Electric Potential

21. It is shown in Example 24.7 that the potential at a point P 
a distance a above one end of a uniformly charged rod of 
length / lying along the x axis is

V 5 ke 

Q

/
 ln 1/ 1 Ïa2 1 /2

a 2
  Use this result to derive an expression for the y component 

of the electric field at P.

22. Figure P24.22 represents 
a graph of the electric 
potential in a region of 
space versus position x, 
where the electric field 
is parallel to the x  axis. 
Draw a graph of the x  com-
ponent of the electric field 
versus x in this region.
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660 Chapter 24 Electric Potential

23. Figure P24.23 shows several equipotential lines, each labeled 
by its potential in volts. The distance between the lines of the 
square grid represents 1.00 cm. (a) Is the magnitude of the 
field larger at A or at B ? Explain how you can tell. (b) Explain 
what you can determine about E

S
 at B. (c) Represent what the 

electric field looks like by drawing at least eight field lines.

B

0
2

4
6

Numerical values are in volts.

8

A

Figure P24.23

24. An electric field in a region of space is parallel to the x axis. 
The electric potential varies with position as shown in Fig-
ure P24.24. Graph the x  component of the electric field ver-
sus position in this region of space.
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Figure P24.24

Section 24.5  Electric Potential Due to Continuous 
Charge Distributions

25. A rod of length L (Fig. P24.25) lies along the x axis with its 
left end at the origin. It has a nonuniform charge density 
l 5 ax, where a is a positive constant. (a) What are the units 
of a? (b) Calculate the electric potential at A.

b

By

x
L

d

A

Figure P24.25 Problems 25 and 26.

26. For the arrangement described in Problem 25, calculate the 
electric potential at point B, which lies on the perpendicu-
lar bisector of the rod a distance b above the x axis.

27. A wire having a uniform linear charge density l is bent into 
the shape shown in Figure P24.27. Find the electric poten-
tial at point O.

2R 2R
O

R

Figure P24.27

28. You are a coach for the Physics Olympics team participating 
in a competition overseas. You are given the following sam-
ple problem to present to your team of students, which you 
need to solve very quickly: A person is standing on the mid-
line of a soccer field. At one end of the field, as shown in Fig-
ure P24.28, is a letter D, consisting of a semicircular metallic 
ring of radius R and a long straight metal rod of length 2R, 
the diameter of the ring. The plane of the ring is perpendic-
ular to the ground and perpendicular to the midline of the 
field shown by the broken line in Figure P24.28. Because of 
an approaching lightning storm, the semicircular ring and 
the rod become charged. The ring and the rod each attain 
a charge Q. What is the electric potential at point P, which is 
at a position x along the midline of the field, measured from 
the center of the rod, due to the letter D? Think quickly and 
use all resources available to you, which include your physics 
textbook: you are in competition!

x

R

P

Figure P24.28

Section 24.6 Conductors in Electrostatic Equilibrium

29. The electric field magnitude on the surface of an irregu-
larly shaped conductor varies from 56.0 kN/C to 28.0 kN/C. 
Can you evaluate the electric potential on the conductor? If 
so, find its value. If not, explain why not.

30. Why is the following situ-
ation impossible? A solid 
copper sphere of radius 
15.0 cm is in electrostatic 
equilibrium and carries 
a charge of 40.0  nC. 
Figure P24.30 shows the 
magnitude of the elec-
tric field as a function 
of radial position r mea-
sured from the center of 
the sphere.

31. A solid metallic sphere of radius a carries total charge Q. 
No other charges are nearby. The electric field just outside 
its surface is keQ/a2 radially outward. At this close point, the 
uniformly charged surface of the sphere looks exactly like a 
uniform flat sheet of charge. Is the electric field here given 
by s/e0 or by s/2e0?

32. A positively charged particle is at a distance R/2 from the 
center of an uncharged thin, conducting, spherical shell 
of radius R. Sketch the electric field lines set up by this 
arrangement both inside and outside the shell.

33. A very large, thin, flat plate of aluminum of area A has a 
total charge Q uniformly distributed over its surfaces. V

Cr
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Assuming the same charge is spread uniformly over the 
upper surface of an otherwise identical glass plate, compare 
the electric fields just above the center of the upper surface 
of each plate.

34. A solid conducting sphere of radius 2.00 cm has a charge 
of 8.00 mC. A conducting spherical shell of inner radius 
4.00 cm and outer radius 5.00 cm is concentric with the 
solid sphere and has a charge of 24.00 mC. Find the electric 
field at (a) r 5 1.00 cm, (b) r 5 3.00 cm, (c) r 5 4.50 cm, and  
(d) r 5 7.00 cm from the center of this charge configuration.

35. A spherical conductor has a radius of 14.0 cm and a charge of 
26.0 mC. Calculate the electric field and the electric poten-
tial at (a) r 5 10.0 cm, (b) r 5 20.0 cm, and (c) r 5 14.0 cm  
from the center.

36. A long, straight wire is surrounded by a hollow metal 
cylinder whose axis coincides with that of the wire. The 
wire has a charge per unit length of l, and the cylinder 
has a net charge per unit length of 2l. From this infor-
mation, use Gauss’s law to find (a) the charge per unit 
length on the inner surface of the cylinder, (b) the charge 
per unit length on the outer surface of the cylinder, and 
(c) the electric field outside the cylinder a distance r from 
the axis.

additional ProblemS

37. Why is the following situation impossible? In the Bohr model of 
the hydrogen atom, an electron moves in a circular orbit 
about a proton. The model states that the electron can exist 
only in certain allowed orbits around the proton: those 
whose radius r satisfies r 5 n2(0.052 9 nm), where n 5 1, 2, 
3, . . . . For one of the possible allowed states of the atom, the 
electric potential energy of the system is 213.6 eV.

38. On a dry winter day, you scuff your leather-soled shoes 
across a carpet and get a shock when you extend the tip of 
one finger toward a metal doorknob. In a dark room, you 
see a spark perhaps 5 mm long. Make order-of-magnitude 
estimates of (a) your electric potential and (b) the charge 
on your body before you touch the doorknob. Explain your 
reasoning.

39. (a) Use the exact result from Example 24.4 to find the elec-
tric potential created by the dipole described in the exam-
ple at the point (3a, 0). (b) Explain how this answer com-
pares with the result of the approximate expression that is 
valid when x is much greater than a.

40. Why is the following situation 
impossible? You set up an 
apparatus in your labora-
tory as follows. The x axis 
is the symmetry axis of a 
stationary, uniformly 
charged ring of radius R 5 
0.500 m and charge Q 5 
50.0 mC (Fig. P24.40). You 
place a particle with 
charge Q  5 50.0 mC and 
mass m 5 0.100  kg at the 
center of the ring and arrange for it to be constrained to 
move only along the x axis. When it is displaced slightly, the 
particle is repelled by the ring and accelerates along the x 
axis. The particle moves faster than you expected and 
strikes the opposite wall of your laboratory at 40.0 m/s.

41. The thin, uniformly charged rod 
shown in Figure P24.41 has a linear 
charge density l. Find an expression 
for the electric potential at P.

42. A Geiger–Mueller tube is a radiation 
detector that consists of a closed, hol-
low, metal cylinder (the cathode) of 
inner radius ra and a coaxial cylindri-
cal wire (the anode) of radius rb (Fig. 
P24.42a). The charge per unit length 
on the anode is l, and the charge per 
unit length on the cathode is 2l. A 
gas fills the space between the electrodes. When the tube is 
in use (for example, in measuring radioactivity from fruit in 
Fig. P24.42b) and a high-energy elementary particle passes 
through this space, it can ionize an atom of the gas. The 
strong electric field makes the resulting ion and electron 
accelerate in opposite directions. They strike other mole-
cules of the gas to ionize them, producing an avalanche of 
electrical discharge. The pulse of electric current between 
the wire and the cylinder is counted by an external circuit. 
(a) Show that the magnitude of the electric potential differ-
ence between the wire and the cylinder is

DV 5 2ke lln Sra

rb
D

  (b) Show that the magnitude of the electric field in the 
space between cathode and anode is

E 5
DV

ln sra yrbd
S1

rD
  where r is the distance from the axis of the anode to the 

point where the field is to be calculated.

Figure P24.42
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43. Review. Two parallel plates having charges of equal 
magnitude but opposite sign are separated by 12.0 cm.  
Each plate has a surface charge density of 36.0 nC/m2.  
A proton is released from rest at the positive plate. Deter-
mine (a)  the magnitude of the electric field between the 
plates from the charge density, (b) the potential differ-
ence between the plates, (c) the kinetic energy of the 
proton when it reaches the negative plate, (d) the speed 
of the proton just before it strikes the negative plate,  
(e) the acceleration of the proton, and (f) the force on the 
proton. (g) From the force, find the magnitude of the elec-
tric field. (h) How does your value of the electric field com-
pare with that found in part (a)?

44. When an uncharged conducting sphere of radius a is placed 
at the origin of an xyz coordinate system that lies in an 
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662 Chapter 24 Electric Potential

initially uniform electric field E
S

5 E0k
⁄
, the resulting elec-

tric potential is V(x, y, z) 5 V0 for points inside the sphere 
and

V sx, y, zd 5 V0 2 E 0 z 1
E 0a3z

sx2 1 y 2 1 z 2d3y2

  for points outside the sphere, where V0 is the (constant) elec-
tric potential on the conductor. Use this equation to deter-
mine the x, y, and z components of the resulting electric 
field (a) inside the sphere and (b) outside the sphere.

45. A solid, insulating sphere 
of radius a has a uniform 
charge density through-
out its volume and a total 
charge Q. Concentric 
with this sphere is an 
uncharged, conducting, 
hollow sphere whose 
inner and outer radii are 
b and c as shown in Fig-
ure P24.45. We wish to 
understand completely 
the charges and electric fields at all locations. (a) Find the 
charge contained within a sphere of radius r , a. (b) From 
this value, find the magnitude of the electric field for r , 
a. (c) What charge is contained within a sphere of radius 
r when a , r , b? (d) From this value, find the magnitude 
of the electric field for r when a , r , b. (e) Now consider r 
when b , r , c. What is the magnitude of the electric field 
for this range of values of r ? (f) From this value, what must 
be the charge on the inner surface of the hollow sphere? 
(g) From part (f), what must be the charge on the outer sur-
face of the hollow sphere? (h) Consider the three spherical 
surfaces of radii a, b, and c. Which of these surfaces has the 
largest magnitude of surface charge density?

46. A hollow, metallic, spherical shell has exterior radius 0.750 m,  
carries no net charge, and is supported on an insulating 
stand. The electric field everywhere just outside its surface 
is 890 N/C radially toward the center of the sphere. Explain 
what you can conclude about (a) the amount of charge on 
the exterior surface of the sphere and the distribution of 
this charge, (b) the amount of charge on the interior sur-
face of the sphere and its distribution, and (c) the amount 
of charge inside the shell and its distribution.

47. For the configuration shown in Figure P24.45, suppose a 5 
5.00 cm, b 5 20.0 cm, and c 5 25.0 cm. Furthermore, sup-
pose the electric field at a point 10.0 cm from the center is 
measured to be 3.60 3 103 N/C radially inward and the elec-
tric field at a point 50.0 cm from the center is of magnitude 
200  N/C and points radially outward. From this informa-
tion, find (a)  the charge on the insulating sphere, (b)  the 
net charge on the hollow conducting sphere, (c) the charge 
on the inner surface of the hollow conducting sphere, and 
(d)  the charge on the outer surface of the hollow conduct-
ing sphere.

challenge ProblemS

48. An electric dipole is located along 
the y axis as shown in Figure 
P24.48. The magnitude of its elec-
tric dipole moment is defined as 
p 5 2aq. (a) At a point P, which is 
far from the dipole (r .. a), show 
that the electric potential is

V 5
ke p cos u

r 2

  (b) Calculate the radial compo-
nent Er and the perpendicular 
component E

u
 of the associated 

electric field. Note that E
u
 5 

2(1/r)(−V/−u). Do these results seem reasonable for (c) u 5 
908 and 08? (d) For r 5 0? (e) For the dipole arrangement 
shown in Figure P24.48, express V in terms of Cartesian 
coordinates using r 5 (x2 1 y2)1/2 and

cos u 5
y

sx2 1 y 2d1y2

  (f) Using these results and again taking r .. a, calculate 
the field components Ex and Ey.

49. A disk of radius R (Fig. P24.49) 
has a nonuniform surface 
charge density s 5 Cr, where C 
is a constant and r is measured 
from the center of the disk to 
a point on the surface of the 
disk. Find (by direct integra-
tion) the electric potential at P.

50. A particle with charge q is 
located at x 5 2R, and a particle with charge 22q is located 
at the origin. Prove that the equipotential surface that has 
zero potential is a sphere centered at (24R/3, 0, 0) and hav-
ing a radius r 5 2

3R .

51. (a) A uniformly charged cylindrical shell with no end caps 
has total charge Q , radius R , and length h. Determine the 
electric potential at a point a distance d from the right end 
of the cylinder as shown in Figure P24.51. Suggestion: Use 
the result of Example 24.5 by treating the cylinder as a col-
lection of ring charges. (b) What If? Use the result of Exam-
ple 24.6 to solve the same problem for a solid cylinder.

d

R

h

Figure P24.51
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c

Figure P24.45  
Problems 45 and 47.
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Capacitance and  
Dielectrics 25

Storyline Your spring break trip to Florida with your fellow 
students continues. You have been there several days and all of you have noticed 
that there is a lot of lightning in Florida! One of your friends suggests calling your 
electrical engineer uncle and asking him about all the lightning. You call your 
uncle and mention your observation about the amount of lightning in Florida. 
He agrees with you and mentions that he did atmospheric modeling when he 
was younger. He says to you, “Did you know that lightning can be analyzed by 
modeling the entire atmosphere of the Earth as a giant capacitor with a capac-
itance of about 1 farad? That’s a huge capacitance! For example, a defibrillator 
used in an emergency situation to send a powerful jolt into a patient might have 
a maximum capacitance of only a couple hundred microfarads!” After an embar-
rassing moment of silence, you make what you think is an appropriate response 
and excuse yourself. Ignoring the questioning looks of your friends, you run into 
another room, snatch your smartphone from your pocket, and, before you forget 
the words, start doing online research for the words capacitor, capacitance,  
defibrillator, and farad.

ConneCtions In the introduction to the previous chapter, we mentioned 
electric circuits. Electric circuits consist of various circuit elements that are con-
nected by wires. In this chapter, we introduce the first of three simple circuit 
elements that we will discuss. Electric circuits are the basis for the vast major-
ity of the devices used in our society. Here we shall discuss capacitors, devices 
that store electric charge. This discussion is followed by the study of resistors 
in Chapter 26 and inductors in Chapter 31. In later chapters, we will study more 
sophisticated circuit elements such as transformers and transistors. Capacitors 

25.1 Definition of 
Capacitance

25.2 Calculating 
Capacitance

25.3 Combinations of 
Capacitors

25.4 Energy Stored in a 
Charged Capacitor

25.5 Capacitors with 
Dielectrics

25.6 Electric Dipole in an 
Electric Field

25.7 An Atomic Description 
of Dielectrics

When a patient receives a 
shock from a defibrillator, the 
energy delivered to the patient 
is initially stored in a capacitor.  
We will study capacitors and 
capacitance in this chapter. 
(Andrew Olney/Getty Images)
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664 Chapter 25 Capacitance and Dielectrics

are commonly used in a variety of electric circuits. For instance, they are  
used to tune the frequency of radio receivers, as filters in power supplies, 
as energy storage devices for cardiac defibrillators, and as accelerometers in 
smartphones. We will be combining capacitors with other circuit elements  
in future chapters.

   25.1    Definition of Capacitance
Any combination of two separated conductors can act as an electrical circuit ele-
ment and is called a capacitor. The conductors are called plates. If the conductors 
carry charges of equal magnitude and opposite sign as shown in Figure 25.1, a 
potential difference DV exists between them.

It seems reasonable that increasing the amount of charge on the conductors 
would increase the potential difference between them, but what is the exact rela-
tionship between charge and potential difference for a capacitor? Experiments 
show that the quantity of charge Q on a capacitor1 is linearly proportional to the 
potential difference between the conductors; that is, Q ~ DV. The proportionality 
constant depends on the shape and separation of the conductors.2 Because of this 
proportionality, the ratio of charge to potential difference is a constant defined as 
follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of 
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

 C ;
Q

DV
 (25.1)

By definition capacitance is always a positive quantity. Furthermore, the charge Q 
and the potential difference DV are always expressed in Equation 25.1 as positive 
quantities.

From Equation 25.1, we see that capacitance has SI units of coulombs per volt. 
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

 1 F 5 1 CyV 

The farad is a very large unit of capacitance. In practice, typical devices have capac-
itances ranging from microfarads (1026 F) to picofarads (10212 F). We shall use the 
symbol mF to represent microfarads. In practice, to avoid the use of Greek letters, 

Definition of capacitance 

PitFall Prevention 25.1
Capacitance Is a Capacity To 
understand capacitance, think of 
similar notions that use a similar 
word. The capacity of a milk carton 
is the volume of milk it can store. 
The heat capacity of an object is 
the amount of energy an object 
can store per unit of temperature 
difference. The capacitance of a 
capacitor is the amount of charge 
the capacitor can store per unit of 
potential difference.

PitFall Prevention 25.2
Potential Difference Is DV, Not V  
We use the symbol DV for the 
potential difference across a cir-
cuit element or a device because 
this notation is consistent with our 
definition of potential difference 
and with the meaning of the delta 
sign. It is a common but confus-
ing practice to use the symbol V 
without the delta sign for both a 
potential and a potential differ-
ence! Keep that in mind if you 
consult other texts.

When the capacitor is charged, the 
conductors carry charges of equal 
magnitude and opposite sign.

�Q �Q

Figure 25.1  A capacitor consists 
of two conductors. If the capacitor  
is charged as shown here, a poten-
tial difference DV exists between 
the conductors.

1Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conduc-
tor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on 

either conductor as “the charge on the capacitor.” 

2The proportionality between Q and DV can be proven from Coulomb’s law or by experiment.
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    25.2 Calculating Capacitance 665

physical capacitors are often labeled “mF” for microfarads and “mmF” for micromi-
crofarads or, equivalently, “pF” for picofarads.

Let’s consider a capacitor formed from a pair of parallel plates as shown in 
Figure 25.2. Each plate is connected to one terminal of a battery, which acts as a 
source of potential difference. If the capacitor is initially uncharged, the battery 
establishes an electric field in the connecting wires when the connections are 
made. Let’s focus on the plate connected to the negative terminal of the battery. 
The electric field in the wire applies a force on electrons in the wire immediately 
outside this plate; this force causes the electrons to move onto the plate. The 
movement continues until the plate, the wire, and the terminal are all at the same 
electric potential. Once this equilibrium situation is attained, a potential differ-
ence no longer exists between the terminal and the plate; as a result, no electric 
field is present in the wire and the electrons stop moving. The plate now carries 
a negative charge. A similar process occurs at the other capacitor plate, where 
electrons move from the plate to the wire, leaving the plate positively charged. In 
this final configuration, the potential difference across the capacitor plates is the 
same as that between the terminals of the battery.

Now suppose we disconnect the battery from the plates. The plates are not con-
nected with a wire to anything now, so the plates remain charged. The capacitor 
has stored the charge. It has also stored energy, associated with the separation of 
charges. We will explore these ideas and the uses of capacitors after performing a 
bit more mathematical analysis.

Q uick Quiz 25.1  A capacitor stores charge Q at a potential difference DV. 
What happens if the voltage applied to the capacitor by a battery is doubled to 
2 DV ? (a) The capacitance falls to half its initial value, and the charge remains 
the same. (b) The capacitance and the charge both fall to half their initial 
values. (c) The capacitance and the charge both double. (d) The capacitance 
remains the same, and the charge doubles.

   25.2    Calculating Capacitance
We can derive an expression for the capacitance of a pair of conductors in the fol-
lowing manner. First we calculate the potential difference between the conductors, 
assuming that they have a charge Q , using the techniques described in Chapter 24. 
We then use Equation 25.1 to evaluate the capacitance. The calculation is relatively 
easy if the geometry of the capacitor is simple. Let’s look at some examples.

Although the most common situation is that of two conductors, a single con-
ductor also has a capacitance. For example, imagine a single spherical, charged 
conductor. The electric field lines around this conductor are exactly the same as 
if there were a conducting, spherical shell of infinite radius, concentric with the 
sphere and carrying a charge of the same magnitude but opposite sign. Therefore, 
we can identify the imaginary shell as the second conductor of a two-conductor 
capacitor. The electric potential of the sphere of radius a is simply keQ /a (see Sec-
tion 24.6), and setting V 5 0 for the infinitely large shell gives

 C 5
Q

DV
5

Q

keQ ya
5

a
ke

5 4��0a (25.2)

This expression shows that the capacitance of an isolated, charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and 
its potential, as is the case with all capacitors. Equation 25.1 is the general defi-
nition of the capacitance of an arbitrary capacitor in terms of electrical param-
eters, but the capacitance of a given capacitor will depend only on the geometry 
of the plates.

  Capacitance of an isolated 
charged sphere

d

2Q
1Q

Area 5 A 

1 2

When the capacitor is connected 
to the terminals of a battery, 
electrons transfer between the 
plates and the wires so that the 
plates become charged.

Figure 25.2  A parallel-plate 
capacitor consists of two parallel 
conducting plates, each of area A, 
separated by a distance d.

PitFall Prevention 25.3
Too Many Cs Do not confuse an 
italic C for capacitance with a non-
italic C for the unit coulomb.
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666 Chapter 25 Capacitance and Dielectrics

Let’s now imagine two parallel, metallic plates of equal area A, separated by a 
distance d as shown in Figure 25.2. One plate carries a charge 1Q , and the other 
carries a charge 2Q . The surface charge density on each plate is s 5 Q /A. If  
the plates are very close together (in comparison with their length and width), we 
can assume the electric field is uniform between the plates and zero elsewhere. 
According to the What If? feature of Example 23.8, the value of the electric field 
between the plates is

 E 5
�

�0

5
Q

�0A
 

Because the field between the plates is uniform, the magnitude of the potential 
difference between the plates equals Ed (see Eq. 24.6); therefore,

 DV 5 Ed 5
Qd

�0A
 

Substituting this result into Equation 25.1, we find that the capacitance is

 C 5
Q

DV
5

Q

Qdy�0A
 

 C 5
�0A

d
 (25.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.

Let’s consider how the geometry of these conductors influences the capacity 
of the pair of plates to store charge. As a capacitor is being charged by a battery, 
electrons flow into the negative plate and out of the positive plate. If the capac-
itor plates are large, the accumulated charges are able to distribute themselves 
over a substantial area and the amount of charge that can be stored on a plate 
for a given potential difference increases as the plate area is increased. There-
fore, it is reasonable that the capacitance is proportional to the plate area A as 
in Equation 25.3.

Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric 
field between the plates has the same value but extends over a shorter distance. 
Therefore, the magnitude of the potential difference between the plates DV 5 Ed 
(Eq. 24.6) is smaller. The difference between this new capacitor voltage and the 
terminal voltage of the battery appears as a potential difference across the wires 
connecting the battery to the capacitor, resulting in an electric field in the wires 
that drives more charge onto the plates and increases the potential difference 
between the plates. When the potential difference between the plates again 
matches that of the battery, the flow of charge stops. Therefore, moving the plates 
closer together causes the charge on the capacitor to increase. If d is increased, 
the charge decreases. As a result, the inverse relationship between C and d in 
Equation 25.3 is reasonable.

Q uick Quiz 25.2  Many computer keyboard buttons are constructed of capac-
itors as shown in Figure 25.3. When a key is pushed down, the soft insulator 
between the movable plate and the fixed plate is compressed. When the key is 
pressed, what happens to the capacitance? (a) It increases. (b) It decreases. (c) It 
changes in a way you cannot determine because the electric circuit connected 
to the keyboard button may cause a change in DV.

Capacitance of parallel plates 

Key
B

Movable plate

Insulator
Fixed plate

Figure 25.3  (Quick Quiz 25.2) 
One type of computer keyboard 
button.
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    25.2 Calculating Capacitance 667

 Example 25.1     The Cylindrical Capacitor

A solid cylindrical conductor of radius a is coaxial with a 
cylindrical shell of negligible thickness and radius b  . a 
(Fig. 25.4a). Find the capacitance of this cylindrical capac-
itor if its length is , .. b.

S O L U T I O N

Conceptualize  Recall that any pair of conductors qualifies 
as a capacitor, so the system described in this example there-
fore qualifies. Figure 25.4b helps visualize the electric field 
between the conductors if the capacitor carries a charge Q. 
We expect the capacitance to depend only on geometric fac-
tors, which, in this case, are a, b, and ,.

Categorize  Because of the cylindrical symmetry of the sys-
tem, we can use results from previous studies of cylindrical 
systems to find the capacitance.

Analyze  Assuming the capacitor carries a charge Q and , 
is much greater than a and b, we can neglect end effects. In 
this case, the electric field is perpendicular to the long axis of  
the cylinders and is confined to the region between them 
(Fig. 25.4b).

Write an expression for the potential difference between Vb 2 Va 5 2 #
b

a
E
S  

? d sS 
the two charged cylinders from Equation 24.3:

Notice from Figure 25.4b that E
S

 is parallel to d sS along  Vb 2 Va 5 2 #
b

a
 Er dr 5 22ke � #

b

a
 
dr
r

5 22ke � ln Sb
aD 

a radial line and apply Equation 23.8 for the electric field  
outside a cylindrically symmetric charge distribution:

Substitute the absolute value of DV into Equation 25.1  C 5
Q

DV
5

Q

s2ke Q y/d ln sbyad
5

/
2ke ln sbyad

  (25.4) 
and use l 5 Q /,:

Finalize  The capacitance depends on the radii a and b and is proportional to the length of the cylinders. Equation 25.4 shows 
that the capacitance per unit length of a combination of concentric cylindrical conductors is

C
/

5
1

2ke ln sbyad
    (25.5)

An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric cylindrical conductors 
separated by an insulator. You probably have a coaxial cable attached to your television set if you are a subscriber to cable tele-
vision. The coaxial cable is especially useful for shielding electrical signals from any possible external influences.

W H A T  I F ? Suppose b 5 2.00a for the cylindrical capacitor. You would like to increase the capacitance, and you can do 
so by choosing to increase either , by 10% or a by 10%. Which choice is more effective at increasing the capacitance?

Answer  According to Equation 25.4, C is proportional to ,, so increasing , by 10% results in a 10% increase in C. For the 
result of the change in a, let’s use Equation 25.4 to set up a ratio of the capacitance C9 for the enlarged cylinder radius a9 to 
the original capacitance:

C 9

C
5

/y2ke ln sbya9d

/y2ke ln sbyad
5

ln sbyad
ln sbya9d

We now substitute b 5 2.00a and a9 5 1.10a, representing a 10% increase in a:

C 9

C
5

ln s2.00ayad
ln s2.00ay1.10ad

5
ln 2.00
ln 1.82

5 1.16

which corresponds to a 16% increase in capacitance. Therefore, it is more effective to increase a than to increase ,.
Note two more extensions of this problem. First, it is advantageous to increase a only for a range of relationships between a and 

b. If b . 2.85a, increasing , by 10% is more effective than increasing a (see Problem 44). Second, if b decreases, the capacitance 
increases. Increasing a or decreasing b has the effect of bringing the plates closer together, which increases the capacitance.

b
a

� �Q
a

Q

b

r

a b

Figure 25.4  (Example 25.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view of 
the capacitor if it is charged. The electric field lines are radial. 
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668 Chapter 25 Capacitance and Dielectrics

 Example 25.2     The Spherical Capacitor

A spherical capacitor consists of a spherical conducting 
shell of radius b concentric with a smaller conducting 
sphere of radius a (Fig. 25.5). Find the capacitance of this 
device.

S O L U T I O N

Conceptualize  As with Example 25.1, this system involves a 
pair of conductors and qualifies as a capacitor. We expect the 
capacitance to depend on the spherical radii a and b.

Categorize  Because of the spherical symmetry of the system, we can use results from previous studies of spherical systems to 
find the capacitance.

Analyze  Imagine the capacitor carries a charge Q with the inner sphere positive, as shown in Figure 25.5. As shown in Chap-
ter 23, the direction of the electric field outside a spherically symmetric charge distribution is radial and its magnitude is 
given by the expression E 5 keQ /r 2. In this case, this result applies to the field between the spheres (a , r , b).

Write an expression for the potential difference between Vb 2 Va 5 2 #
b

a
E
S   

? d sS  
the two charged conductors from Equation 24.3:

Notice that E
S

 is parallel to d sS along a radial line and apply  Vb 2 Va 5 2 #
b

a
 Er dr 5 2ke Q #

b

a
 
dr
r 2 5 ke Q 31

r 4
b

a

 
the result of Example 23.6 for the electric field outside a  
spherically symmetric charge distribution:
  (1)   Vb 2 Va 5 ke QS1

b
2

1
aD 5 ke Q 

a 2 b
ab

Substitute the absolute value of DV into Equation 25.1: C 5
Q

DV
5

Q

uVb 2 Vau
5

ab
ke sb 2 ad

 (25.6)

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation (1)  
is negative because Q is positive and b . a. Therefore, in Equation 25.6, when we take the absolute value, we change a 2 b  
to b 2 a. The result is a positive number.

W H A T  I F ?  If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 25.6, we let b S `:

C 5 lim
b S `

  ab
ke sb 2 ad

5
ab

ke sbd
5

a
ke

5 4��0a

Notice that this expression is the same as Equation 25.2, the capacitance of an isolated spherical conductor.

a

b

2Q

1Q

Figure 25.5  (Example 25.2) A 
spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The diagram 
shows the capacitor carrying 
a charge Q. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

   25.3    Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.

In studying electric circuits, we use a simplified pictorial representation called 
a circuit diagram. Such a diagram uses circuit symbols to represent various cir-
cuit elements. The circuit symbols are connected by straight lines that represent 
the wires between the circuit elements. The circuit symbols for capacitors, bat-
teries, and switches as well as the color codes used for them in this text are given 
in Figure 25.6. The symbol for the capacitor reflects the geometry of the most 
common model for a capacitor, a pair of parallel plates. The positive terminal of 
the battery is at the higher potential and is represented in the circuit symbol by 
the longer line.

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

2

1

Figure 25.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch represents an electrical 
connection between the red 
circles, while the open switch  
represents no connection.
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Parallel combination
Two capacitors connected as shown in Figure 25.7a are known as a parallel com-
bination of capacitors. Figure 25.7b shows a circuit diagram for this combination 
of capacitors. The left plates of the capacitors are connected to the positive termi-
nal of the battery by a conducting wire and are therefore both at the same electric 
potential as the positive terminal. Likewise, the right plates are connected to the 
negative terminal and so are both at the same potential as the negative termi-
nal. Therefore, the individual potential differences across capacitors connected 
in parallel are the same and are equal to the potential difference applied across 
the combination. That is,

 DV1 5 DV2 5 DV  (25.7)

where DV is the battery terminal voltage.
After the battery is attached to the circuit, the capacitors quickly reach their 

maximum charge. Let’s call the maximum charges on the two capacitors Q 1 and 
Q 2, where Q 1 5 C 1DV1 and Q 2 5 C 2DV2. The total charge Q tot stored by the combina-
tion of two capacitors is the sum of the charges on the individual capacitors:

 Q tot 5 Q 1 1 Q 2 5 C 1DV1 1 C 2DV 2 (25.8)

Suppose you wish to replace these two capacitors by one equivalent capacitor hav-
ing a capacitance Ceq as in Figure 25.7c. The effect this equivalent capacitor has 
on the circuit must be exactly the same as the effect of the combination of the two 
individual capacitors. That is, the equivalent capacitor must store charge Q tot when 
connected to the battery. Figure 25.7c shows that the voltage across the equivalent 
capacitor is DV because the equivalent capacitor is connected directly across the 
battery terminals. Therefore, for the equivalent capacitor,

 Q tot 5 C eq DV  

Substituting this result into Equation 25.8 gives

 C eq DV 5 C 1 DV1 1 C 2 DV2 

  C eq 5 C 1 1 C 2 sparallel combinationd 

where we have canceled the voltages because they are all the same (Eq. 25.7). If this 

C2

C1

V

Q2

C2

Q1

C1

VVD D

V1D

D

1 21 2

1Q 1 2Q 1

V2D

1Q 2 2Q 2

1 2

1 2

1 2
Ceq C1 C25 1

A pictorial 
representation of two 
capacitors connected in 
parallel to a battery

A circuit diagram 
showing the two 
capacitors connected 
in parallel to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in parallel

a b c

Figure 25.7 Two capacitors 
connected in parallel. All three 
diagrams are equivalent.
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treatment is extended to three or more capacitors connected in parallel, the equiv-
alent capacitance is found to be

 C eq 5 C 1 1 C 2 1 C 3 1 Á   sparallel combinationd (25.9)

Therefore, the equivalent capacitance of a parallel combination of capacitors is 
(1)  the algebraic sum of the individual capacitances and (2) greater than any of 
the individual capacitances. Statement (2) makes sense in light of Equation 25.3 
because we are essentially combining the areas of all the capacitor plates when they 
are connected with conducting wire, and capacitance of parallel plates is propor-
tional to area.

Series combination
Two capacitors connected as shown in Figure 25.8a and the equivalent circuit dia-
gram in Figure 25.8b are known as a series combination of capacitors. The left 
plate of capacitor 1 and the right plate of capacitor 2 are connected to the termi-
nals of a battery. The other two plates are connected to each other and to nothing 
else; hence, they form an isolated system that is initially uncharged and must con-
tinue to have zero net charge. To analyze this combination, let’s first consider the 
uncharged capacitors and then follow what happens immediately after a battery is 
connected to the circuit. When the battery is connected, electrons are transferred 
out of the left plate of C 1 and into the right plate of C 2. As this negative charge 
accumulates on the right plate of C 2, an equivalent amount of negative charge is 
forced off the left plate of C 2, and this left plate therefore has an excess positive 
charge. The negative charge leaving the left plate of C 2 causes negative charges 
to accumulate on the right plate of C 1. As a result, both right plates end up with a 
charge 2Q  and both left plates end up with a charge 1Q . Therefore, the charges 
on capacitors connected in series are the same:

 Q 1 5 Q 2 5 Q  (25.10)

where Q  is the charge that moved between a wire and the connected outside plate 
of one of the capacitors.

Figure 25.8a shows the individual voltages DV 1 and DV 2 across the capacitors. 
These voltages add to give the total voltage DVtot across the combination:

 DVtot 5 DV1 1 DV2 5
Q 1

C 1

1
Q 2

C 2

 (25.11)

Equivalent capacitance for  
capacitors in parallel

1 2

C2

DV

C1
DV1 DV2

DV

C1 C2

DV1 DV2
1Q 2Q 1Q 2Q

1 2
DV

C2Ceq     C1     
11 1

5 1

1 2

A pictorial 
representation of two 
capacitors connected in 
series to a battery

A circuit diagram 
showing the two 
capacitors connected 
in series to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in series

a b c

Figure 25.8 Two capacitors 
connected in series. All three 
diagrams are equivalent.
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    25.3 Combinations of Capacitors 671

In general, the total potential difference across any number of capacitors connected 
in series is the sum of the potential differences across the individual capacitors.

Suppose the equivalent single capacitor in Figure 25.8c has the same effect on 
the circuit as the series combination when it is connected to the battery. After it is 
fully charged, the equivalent capacitor must have a charge of 2Q  on its right plate 
and a charge of 1Q  on its left plate. Applying the definition of capacitance to the 
circuit in Figure 25.8c gives

 DVtot 5
Q

C eq

 

Substituting this result into Equation 25.11, we have

 
Q

C eq

5
Q 1

C 1

1
Q 2

C 2

 

Canceling the charges because they are all the same (Eq. 25.10) gives

 
1

C eq

5
1

C 1

1
1

C 2

 sseries combinationd 

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq

5
1

C 1

1
1

C 2

1
1

C 3

1 Á  sseries combinationd (25.12)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 25.3  Two capacitors are identical. They can be connected in 
series or in parallel. If you want the smallest equivalent capacitance for the com-
bination, how should you connect them? (a) in series (b) in parallel (c) either 
way because both combinations have the same capacitance

    Equivalent capacitance for 
capacitors in series

 Example 25.3     Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 25.9a. All 
capacitances are in microfarads.

S O L U T I O N

Conceptualize  Study Figure 25.9a carefully and make sure 
you understand how the capacitors are connected. Verify 
that there are only series and parallel connections between 
capacitors.

Categorize  Figure 25.9a shows that the circuit contains 
both series and parallel connections, so we use the rules for 
series and parallel combinations discussed in this section.

Analyze  Using Equations 25.9 and 25.12, we reduce the combination step by step as indicated in the figure. As you follow 
along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a single capaci-
tor having the equivalent capacitance.

The 1.0-mF and 3.0-mF capacitors (upper red-brown circle in Fig. 25.9a)  Ceq 5 C 1 1 C 2 5 4.0 mF 
are in parallel. Find the equivalent capacitance from Equation 25.9: continued

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 25.9  (Example 25.3) To find the equivalent capacitance of 
the capacitors in (a), we reduce the various combinations in steps 
as indicated in (b), (c), and (d), using the series and parallel rules 
described in the text. All capacitances are in microfarads.
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672 Chapter 25 Capacitance and Dielectrics

25.3 c o n t i n u e d

The 2.0-mF and 6.0-mF capacitors (lower red-brown  Ceq 5 C 1 1 C 2 5 8.0 mF 
circle in Fig. 25.9a) are also in parallel:

The circuit now looks like Figure 25.9b. The two 4.0-mF   
1

C eq

5
1

C 1

1
1

C 2

5
1

4.0 �F
1

1
4.0 �F

5
1

2.0 �F
 

capacitors (upper green circle in Fig. 25.9b) are in series.  
Find the equivalent capacitance from Equation 25.12:    C eq 5 2.0 �F

The two 8.0-mF capacitors (lower green circle in Fig. 25.9b)  
1

C eq

5
1

C 1

1
1

C 2

5
1

8.0 �F
1

1
8.0 �F

5
1

4.0 �F
 

are also in series. Find the equivalent capacitance from  
Equation 25.12:   C eq 5 4.0 �F

The circuit now looks like Figure 25.9c. The 2.0-mF and  Ceq 5 C 1 1 C 2 5  6.0 mF 
4.0-mF capacitors are in parallel:

Finalize  This final value is that of the single equivalent capacitor shown in Figure 25.9d. For further practice in treating cir-
cuits with combinations of capacitors, imagine a battery is connected between points a and b in Figure 25.9a so that a potential 
difference DV is established across the combination. Can you find the voltage across and the charge on each capacitor?

   25.4    Energy Stored in a Charged Capacitor
Because positive and negative charges are separated in the system of two conduc-
tors in a charged capacitor, electric potential energy is stored in the system. Many 
of those who work with electronic equipment have at some time verified that a 
capacitor can store energy. If the plates of a charged capacitor are connected by a 
conductor such as a wire, charge moves between each plate and its connecting wire 
until the capacitor is uncharged. The discharge can often be observed as a visible 
spark. If you accidentally touch the opposite plates of a charged capacitor, your fin-
gers act as a pathway for discharge and the result is an electric shock. The degree of 
shock you receive depends on the capacitance and the voltage applied to the capac-
itor. Such a shock could be dangerous if high voltages are present as in the power 
supply of a home theater system, for example. Because the charges can be stored 
in a capacitor even when the system is turned off, unplugging the system does not 
make it safe to open the case and touch the components inside.

Figure 25.10a shows a battery connected to a single parallel-plate capacitor with 
a switch in the circuit. Let us identify the circuit as a system. When the switch is 
closed (Fig. 25.10b), the battery establishes an electric field in the wires and charges 
flow between the wires and the capacitor. As that occurs, there is a transformation 
of energy within the system. Before the switch is closed, energy is stored as chemi-
cal potential energy in the battery. This energy is transformed during the chemical 
reaction that occurs within the battery when it is operating in an electric circuit. 
When the switch is closed, some of the chemical potential energy in the battery is 
transformed to electric potential energy associated with the separation of positive 
and negative charges on the plates.

To calculate the energy stored in the capacitor, we shall assume a charging pro-
cess that is different from the actual process described in Section 25.1 but that gives 
the same final result. This assumption is justified because the energy in the final 
configuration does not depend on the actual charge-transfer process.3 Imagine 
the plates are disconnected from the battery and you transfer the charge mechan-
ically through the space between the plates as follows. You grab a small amount of  

3This discussion is similar to that of state variables in thermodynamics. The change in a state variable such as tem-
perature is independent of the path followed between the initial and final states. The potential energy of a capacitor 
(or any system) is also a state variable, so its change does not depend on the process followed to charge the capacitor.
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positive charge on one plate and apply a force that causes this positive charge to 
move over to the other plate. Therefore, you do work on the charge as it is trans-
ferred from one plate to the other. At first, no work is required to transfer a small 
amount of charge dq from one plate to the other,4 but once this charge has been 
transferred, a small potential difference exists between the plates. Therefore, work 
must be done to move additional charge through this potential difference. As more 
and more charge is transferred from one plate to the other, the potential difference 
increases in proportion and more work is required. The overall process is described 
by the nonisolated system model for energy. Equation 8.2 reduces to W 5 DUE ; the 
work done on the system by the external agent appears as an increase in electric 
potential energy in the system.

Suppose q is the charge on the capacitor at some instant during the charging 
process. At the same instant, the potential difference across the capacitor is DV 5 
q/C. This relationship is graphed in Figure 25.11. From Section 24.1, we know that 
the work necessary to transfer an increment of charge dq from the plate carrying 
charge 2q to the plate carrying charge q (which is at the higher electric potential) is

 dW 5 DV dq 5
q

C
 dq 

The work required to transfer the charge dq is the area of the tan rectangle in  
Figure 25.11. Because 1 V 5 1 J/C, the unit for the area is the joule. The total work 
required to charge the capacitor from q 5 0 to some final charge q 5 Q  is

 W 5  #
Q

0
 
q

C
 dq 5

1
C

 #
Q

0
q dq 5

Q 2

2C
 

The work done in charging the capacitor appears as electric potential energy UE 
stored in the capacitor. Using Equation 25.1, we can express the potential energy 
stored in a charged capacitor as

 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C sDV d2 (25.13)   Energy stored in a charged 

capacitor

DV DV

+
+
+
+
+
+

–
–
–
–
–
–

Electric
field in
wire

Electric field 
between plates

Chemical potential
energy in the
battery is reduced.

Electrons move 
from the wire to 
the plate.

Electrons move 
from the plate 
to the wire, 
leaving the 
plate positively 
charged.

Separation 
of charges 
represents 
potential 
energy.

1 21 2

E$

a b

Electric
field in
wire

With the switch 
open, the capacitor 
remains uncharged.

Figure 25.10 (a) A circuit con-
sisting of a capacitor, a battery, 
and a switch. (b) When the switch 
is closed, the battery establishes 
an electric field in the wire and 
the capacitor becomes charged.

4We shall use lowercase q for the time-varying charge on the capacitor while it is charging to distinguish it from 
uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q
Q

D

The work required to move charge 
dq through the potential 
difference DV across the capacitor 
plates is given approximately by 
the area of the shaded rectangle.

Figure 25.11  A plot of potential 
difference versus charge for a 
capacitor is a straight line having 
slope 1/C.
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674 Chapter 25 Capacitance and Dielectrics

Because the curve in Figure 25.11 is a straight line, the total area under the curve is 
that of a triangle of base Q and height DV.

Equation 25.13 applies to any capacitor, regardless of its geometry. For a given 
capacitance, the stored energy increases as the charge and the potential difference 
increase. In practice, there is a limit to the maximum energy (or charge) that can 
be stored because, at a sufficiently large value of DV, discharge ultimately occurs 
between the plates. For this reason, capacitors are usually labeled with a maximum 
operating voltage.

We can consider the energy in a capacitor to be stored in the electric field cre-
ated between the plates as the capacitor is charged. This description is reason-
able because the electric field is proportional to the charge on the capacitor. For 
a  parallel-plate capacitor, the potential difference is related to the electric field 
through the relationship DV 5 Ed. Furthermore, its capacitance is C 5 e0A/d  
(Eq. 25.3). Substituting these expressions into Equation 25.13 gives

 UE 5 1
2 S �0 A

d D sEdd2 5 1
2 s�0AddE 2  (25.14)

Because the volume occupied by the electric field is Ad, the energy per unit volume  
uE 5 UE/Ad, known as the energy density, is

 uE 5 1
2 �0 E 2 (25.15)

Although Equation 25.15 was derived for a parallel-plate capacitor, the expression 
is generally valid regardless of the source of the electric field. That is, the energy 
density in any electric field is proportional to the square of the magnitude of the 
electric field at a given point.

Q uick Quiz 25.4  You have three capacitors and a battery. In which of the 
following combinations of the three capacitors is the maximum possible energy 
stored when the combination is attached to the battery? (a) series (b) parallel (c) 
no difference because both combinations store the same amount of energy

 Energy density in 
an electric field

PitFall Prevention 25.4
Not a New Kind of Energy  
The energy given by Equation 
25.14 is not a new kind of energy. 
The equation describes familiar 
electric potential energy associ-
ated with a system of separated 
source charges. Equation 25.14 
provides a new interpretation, or a 
new way of modeling the energy. 
Furthermore, Equation 25.15 cor-
rectly describes the energy density 
associated with any electric field, 
regardless of the source.

 Example 25.4     Rewiring Two Charged Capacitors

Two capacitors C 1 and C 2 (where C1 . C 2) are charged to the 
same initial potential difference DVi . The charged capacitors 
are removed from the battery, and their plates are connected 
with opposite polarity as in Figure 25.12a. The switches S1 and 
S2 are then closed as in Figure 25.12b.

(A) Find the final potential difference DVf  between a and b after 
the switches are closed.

S O L U T I O N

Conceptualize  Figure 25.12 helps us understand the initial and 
final configurations of the system. When the switches are closed, 
the charge on the system will redistribute between the capacitors 
until both capacitors have the same final potential difference. 
Because C 1 . C 2, more charge exists on C 1 than on C 2, so the 
final configuration will have positive charge on the left plates as 
shown in Figure 25.12b.

Categorize  In Figure 25.12b, it might appear as if the capacitors are connected in parallel, but there is no battery in this 
circuit to apply a voltage across the combination. Therefore, we cannot categorize this problem as one in which capacitors are 
connected in parallel. We can categorize it as a problem involving an isolated system for electric charge. The left-hand plates of 
the capacitors form an isolated system because they are not connected to the right-hand plates by conductors.

1 2

Q1i
1

ba

2

C1

Q 2i
2 1

C2

S1 S2

1

ba

2

S1 S2

Q1f
C1

Q 2f C2

a b

Figure 25.12  (Example 25.4) (a) Two capacitors are 
charged to the same initial potential difference and con-
nected together with plates of opposite sign to be in contact 
when the switches are closed. (b) When the switches are 
closed, the charges redistribute.
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25.4 c o n t i n u e d

Analyze  Write an expression for the total charge on  (1)   Q i 5 Q 1i 1 Q 2i 5 C 1 DVi 2 C 2 DVi 5 (C 1 2 C 2)DVi 
the left-hand plates of the system before the switches  
are closed, noting that a negative sign for Q 2i is necessary  
because the charge on the left plate of capacitor C 2  
is negative:

After the switches are closed, the charges on the  (2)   Q f 5 Q 1f 1 Q 2f 5 C 1 DVf 1 C 2 DVf 5 (C 1 1 C 2)DVf 
individual capacitors change to new values Q 1f   and  
Q 2f   such that the potential difference is again the  
same across both capacitors, with a value of DVf .  
Write an expression for the total charge on the  
left-hand plates of the system after the switches  
are closed:

Because the system is isolated, the initial and final   Q f 5 Q i   S   sC 1 1 C 2d DVf 5 sC 1 2 C 2d DVi 
charges on the system must be the same. Use this  
condition and Equations (1) and (2) to solve for DVf :
   (3)   DVf 5 SC 1 2 C 2

C 1 1 C 2
D DVi

(B) Find the total energy stored in the capacitors before and after the switches are closed and determine the ratio of the 
final energy to the initial energy.

S O L U T I O N

Use Equation 25.13 to find an expression for the  (4)   Ui 5 1
2C 1sDVi 

d2 1 1
2C 2sDVi 

d2 5 1
2 sC 1 1 C 2dsDVi 

d2  
total energy stored in the capacitors before the  
switches are closed:

Write an expression for the total energy stored in   Uf 5 1
2C 1sDVf d

2 1 1
2C 2sDVf d

2 5 1
2  
sC 1 1 C 2dsDVf 

d2 
the capacitors after the switches are closed:

Use the results of part (A) to rewrite this expression  (5)   Uf 5 1
2  

sC 1 1 C 2d3SC 1 2 C 2

C 1 1 C 2
D DVi42

5 1
2 

sC 1 2 C 2d
2sDVi 

d2

C 1 1 C 2

 
in terms of DVi :

Divide Equation (5) by Equation (4) to obtain the   
Uf

Ui

5

1
2 sC 1 2 C 2d

2sDVi  
d2ysC 1 1 C 2d

1
2 sC 1 1 C 2dsDVi 

d2
 

ratio of the energies stored in the system:

   (6)   
Uf

Ui

5 SC 1 2 C 2

C 1 1 C 2
D2

Finalize  The ratio of energies is less than unity, indicating that the final energy is less than the initial energy. At first, you 
might think the law of energy conservation has been violated, but that is not the case. The “missing” energy is transferred out 
of the system by the mechanism of electromagnetic waves (TER in Eq. 8.2), as we shall see in Chapter 33. Therefore, this system 
is isolated for electric charge, but nonisolated for energy.

W H A T  I F ?  What if the two capacitors have the same capacitance? What would you expect to happen when the switches 
are closed?

Answer  Because both capacitors have the same initial potential difference applied to them, the charges on the identi-
cal capacitors have the same magnitude. When the capacitors with opposite polarities are connected together, the equal- 
magnitude charges should cancel each other, leaving the capacitors uncharged.

Let’s test our results to see if that is the case mathematically. In Equation (1), because the capacitances are equal, the initial 
charge Q i on the system of left-hand plates is zero. Equation (3) shows that DVf 5 0, which is consistent with uncharged capac-
itors. Finally, Equation (5) shows that Uf 5 0, which is also consistent with uncharged capacitors.
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One device in which capacitors have an important role is the portable defibrillator 
discussed in the opening storyline. When cardiac fibrillation (random contractions) 
occurs, the heart produces a rapid, irregular pattern of beats. A fast discharge of 
energy through the heart can return the organ to its normal beat pattern. Emer-
gency medical teams use portable defibrillators that contain batteries capable of 
charging a capacitor to a high voltage. (The circuitry actually permits the capacitor 
to be charged to a much higher voltage than that of the battery.) Up to 360 J is stored 
in the electric field of a large capacitor in a defibrillator when it is fully charged. The 
stored energy is released through the heart by conducting electrodes, called paddles, 
which are placed on both sides of the victim’s chest. The defibrillator can deliver 
the energy to a patient in about 2 ms (roughly equivalent to 3 000 times the power 
delivered to a 60-W lightbulb!). The paramedics must wait between applications of 
the energy because of the time interval necessary for the capacitors to become fully 
charged. In this application and others (e.g., camera flash units and lasers used for 
fusion experiments), capacitors serve as energy reservoirs that can be slowly charged 
and then quickly discharged to provide large amounts of energy in a short pulse.

In the opening storyline, your uncle also mentioned modeling the atmosphere 
of the Earth as a huge capacitor. The surface of the Earth is one plate, negatively 
charged, and the other plate is a spherical shell representing the average position 
of positive charges located in the air. Because there are freely moving charged par-
ticles in the air between the plates of this capacitor, there is an electrical leakage 
between the plates, tending to continuously reduce the charge on the capacitor. But 
the process of lightning delivers negative charge to the ground and recharges the 
capacitor. An equilibrium situation is reached in which the rate of leakage through 
the air is balanced by the rate of lightning strikes over the surface of the globe.

   25.5    Capacitors with Dielectrics
A dielectric is a nonconducting material such as rubber, glass, or waxed paper. We 
can perform the following experiment to illustrate the effect of a dielectric in a 
capacitor. Consider a parallel-plate capacitor that without a dielectric has a charge 
Q 0 and a capacitance C 0, where, for this discussion, we will use the subscript 0 
to represent parameters related to a capacitor with nothing but air between the 
plates. The potential difference across the capacitor is DV0 5 Q 0/C 0. Figure 25.13a 
illustrates this situation. The potential difference is measured by a device called 
a voltmeter. Notice that no battery is shown in the figure; the battery was used to 
charge the capacitor and was then removed. Also, we must assume no charge can 
flow through an ideal voltmeter. Hence, there is no path by which charge can 
flow and alter the charge on the capacitor. If a dielectric is now inserted between  
the plates as in Figure 25.13b, we find that the voltmeter indicates that the voltage 
between the plates decreases to a value DV. The voltages with and without the 
dielectric are related by a factor k as follows:

 DV 5
DV0

�
 

Because DV , DV0, we see that k . 1. The dimensionless factor k is called the dielec-
tric constant of the material. The dielectric constant varies from one material to 
another. In this section, we analyze the change in capacitance due to a dielectric in 
terms of electrical parameters such as electric charge, electric field, and potential 
difference; Section 25.7 describes the microscopic origin of these changes.

Because the charge Q 0 on the capacitor in Figure 25.13 does not change, the 
capacitance must change to the value

 C 5
Q 0

DV
5

Q 0

DV0y�
5 � 

Q 0

DV0

 

 C 5 �C 0 (25.16)
 Capacitance of a capacitor 

filled with a material of  
dielectric constant k

PitFall Prevention 25.5
Is the Capacitor Connected  
to a Battery? For problems in 
which a capacitor is modified 
(by insertion of a dielectric, for 
example), you must note whether 
modifications to the capacitor are 
being made while the capacitor is 
connected to a battery or after it 
is disconnected. If the capacitor 
remains connected to the battery, 
the voltage across the capacitor 
necessarily remains the same.  
If you disconnect the capacitor 
from the battery before making 
any modifications to the capac-
itor, the capacitor is an isolated 
system for electric charge and its 
charge remains the same.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    25.5 Capacitors with Dielectrics 677

That is, the capacitance increases by the factor k when the dielectric completely fills 
the region between the plates. Because C0 5 e0A/d (Eq. 25.3) for a parallel-plate 
capacitor, we can express the capacitance of a parallel-plate capacitor filled with a 
dielectric as

 C 5 � 
�0A

d
 (25.17)

In Figure 25.13a, the plates were charged with a battery to voltage DV0. Then the 
battery was removed and replaced with a voltmeter. Suppose the battery remains 
connected to the plates as we insert the dielectric. In this case, the voltage between 
the plates is fixed by the battery and cannot change. What we find is that charges 
flow between the battery and the plates in order to hold the voltage constant. We 
find that the charge on the capacitor changes to Q 5 kQ0 after the dielectric is 
inserted. Evaluating the capacitance in this situation gives the same result as in 
Equation 25.16.

From Equation 25.17, it would appear that the capacitance could be made very 
large by inserting a dielectric between the plates and decreasing d. In practice, the 
lowest value of d is limited by the electric discharge that could occur through the 
dielectric medium separating the plates. For any given separation d, the maximum 
voltage that can be applied to a capacitor without causing a discharge depends on 
the dielectric strength (maximum electric field) of the dielectric. If the magnitude 
of the electric field in the dielectric exceeds the dielectric strength, the insulating 
properties break down and the dielectric begins to conduct.

Physical capacitors have a specification called by a variety of names, including 
working voltage, breakdown voltage, and rated voltage. This parameter represents the 
largest voltage that can be applied to the capacitor without exceeding the dielectric 
strength of the dielectric material in the capacitor. Consequently, when selecting 
a capacitor for a given application, you must consider its capacitance as well as the 
expected voltage across the capacitor in the circuit, making sure the expected volt-
age is smaller than the rated voltage of the capacitor.

Insulating materials have values of k greater than unity and dielectric strengths 
greater than that of air as Table 25.1 indicates. Therefore, a dielectric provides the 
following advantages:

 ● An increase in capacitance
 ● An increase in maximum operating voltage
 ● Possible mechanical support between the plates, which allows the plates to be 

close together without touching, thereby decreasing d and increasing C

C0 Q 0

2
1

C Q 0

Dielectric

VV0

2
1

D D

The potential 
difference across the 
charged capacitor is 
initially DV0.

After the dielectric is inserted between 
the plates, the charge remains the same, 
but the potential difference decreases 
and the capacitance increases.

a b

Figure 25.13 A charged capaci-
tor (a) before and (b) after  
insertion of a dielectric with  
k = 2.00 between the plates.

 table 25.1  Approximate 
Dielectric Constants and 
Dielectric Strengths of Various 
Materials at Room Temperature

Material
Dielectric 

Constant k

Dielectric 
Strengtha 
(106 V/m)

Air (dry) 1.000 59  3
Bakelite 4.9 24
Fused quartz 3.78  8
Mylar 3.2  7
Neoprene 

rubber
6.7 12

Nylon 3.4 14
Paper 3.7 16
Paraffin-

impregnated 
paper

3.5 11

Polyethylene 2.30 18
Polystyrene 2.56 24
Polyvinyl 

chloride
3.4 40

Porcelain 6 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontium 

titanate
233  8

Teflon 2.1 60
Vacuum 1.000 00 —
aThe dielectric strength equals the 
maximum electric field that can exist in 
a dielectric without electrical breakdown. 
These values depend strongly on the 
presence of impurities and flaws in the 
materials.
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678 Chapter 25 Capacitance and Dielectrics

 Example 25.5     Energy Stored Before and After

A parallel-plate capacitor is charged with a battery to a charge Q 0. The battery is then removed, and a slab of material that 
has a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. Find the 
energy stored in the system before and after the dielectric is inserted.

S O L U T I O N

Conceptualize  Think about what happens when the dielectric is inserted between the plates. Because the battery has been 
removed, the charge on the capacitor must remain the same. We know from our earlier discussion, however, that the capaci-
tance must change. Therefore, we expect a change in the energy of the system.

Categorize  Because we expect the energy of the system to change, we model it as a nonisolated system for energy involving a 
capacitor and a dielectric. 

Analyze  From Equation 25.13, find the energy stored in  U0 5
Q 0

2

2C 0

 
the absence of the dielectric:

Find the energy stored in the capacitor after the dielectric  UE 5
Q 0

2

2C
 

is inserted between the plates:

Use Equation 25.16 to replace the capacitance C : UE 5
Q 0

2

2�C 0

5
U0

�

Finalize  Because k . 1, the final energy is less than the initial energy. We can account for the decrease in energy of the sys-
tem by performing an experiment and noting that the dielectric, when inserted, is pulled into the device. To keep the dielec-
tric from accelerating, an external agent must do negative work on the dielectric. Equation 8.2 becomes DUE 5 W, where both 
sides of the equation are negative.

Capacitor
plates

Stud 
finder

Wallboard

Stud

a b

The materials between the 
plates of the capacitor are 
the wallboard and air.

When the capacitor moves across 
a stud in the wall, the materials 
between the plates are the 
wallboard and the wood stud. 
The change in the dielectric 
constant causes a signal light to 
illuminate.

Figure 25.14  (Quick Quiz 25.5)  
A stud finder.

Q uick Quiz 25.5  If you have ever tried to hang a picture or a mirror, you 
know it can be difficult to locate a wooden stud in which to anchor your nail or 
screw. A carpenter’s stud finder is a capacitor with its plates arranged side by 
side instead of facing each other as shown in Figure 25.14. When the device is 
moved over a stud, does the capacitance (a) increase or (b) decrease?

   25.6    Electric Dipole in an Electric Field
We have discussed the effect on the capacitance of placing a dielectric between the 
plates of a capacitor. In Section 25.7, we shall describe the microscopic origin of 
this effect. Before we can do so, however, let’s expand the discussion of the electric 
dipole introduced in Section 22.4 (see Example 22.6). The electric dipole consists 
of two charges of equal magnitude and opposite sign separated by a distance 2a as 
shown in Figure 25.15. The electric dipole moment of this configuration is defined 
as the vector pS directed from 2q toward 1q along the line joining the charges and 
having magnitude

 p ; 2aq (25.18)

Now suppose an electric dipole is placed in a uniform electric field E
S

 and makes 
an angle u with the field as shown in Figure 25.16. We identify E

S
 as the field external 

to the dipole, established by some other charge distribution, to distinguish it from 
the field due to the dipole, which we discussed in Section 22.4.

Each of the charges is modeled as a particle in an electric field. The electric 
forces acting on the two charges are equal in magnitude (F 5 qE) and opposite 
in direction as shown in Figure 25.16. Therefore, the net force on the dipole is 
zero. The two forces produce a net torque on the dipole, however; the dipole is 
therefore described by the rigid object under a net torque model. As a result, the 
dipole rotates in the direction that brings the dipole moment vector into greater  
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    25.6 Electric Dipole in an Electric Field 679

alignment with the field. The torque due to the force on the positive charge about 
an axis through O in Figure 25.16 has magnitude Fa sin u, where a sin u is the 
moment arm of F about O. This force tends to produce a clockwise rotation. The 
torque about O on the negative charge is also of magnitude Fa sin u; here again, 
the force tends to produce a clockwise rotation. Therefore, the magnitude of the 
net torque about O is

 t 5 2Fa sin u 

Because F 5 qE and p 5 2aq, we can express t as

 t 5 2aqE sin u 5 pE sin u (25.19)

Based on this expression, it is convenient to express the torque in vector form as the 
cross product of the vectors pS and E

S
:

 t
S

5 pS 3 E
S

 (25.20)

We can also model the system of the dipole and the external electric field as an 
isolated system for energy. Let’s determine the potential energy of the system as a 
function of the dipole’s orientation with respect to the field. To do so, recognize 
that work must be done by an external agent to rotate the dipole through an angle 
so as to cause the dipole moment vector to become less aligned with the field. The 
work done is then stored as electric potential energy in the system. Notice that this 
potential energy is associated with a rotational configuration of the system. Previ-
ously, we have seen potential energies associated with translational configurations: 
an object with mass was moved in a gravitational field, a charge was moved in an 
electric field, or a spring was extended. The work dW required to rotate the dipole 
through an angle du is dW 5 t du (see Eq. 10.25). Because t 5 pE sin u and the work 
results in an increase in the electric potential energy UE, we find that for a rotation 
from ui to uf , the change in potential energy of the system is

  Uf 2 Ui 5 #
�f

�i

� d� 5 #
�f

�i

pE sin � d� 5 pE #
�

f

�
i

sin � d� 

     5 pE f2cos �g �f

�i
5 pE scos �i 2 cos �f d 

The term that contains cos ui is a constant that depends on the initial orientation of 
the dipole. It is convenient to choose a reference angle of ui 5 908 so that cos ui 5 
cos 908 5 0. Furthermore, let’s choose Ui 5 0 at ui 5 908 as our reference value of 
potential energy. Hence, we can express a general value of UE 5 Uf   as

 UE 5 2pE cos � (25.21)

We can write this expression for the potential energy of a dipole in an electric field 
as the dot product of the vectors pS and E

S
:

 UE 5 2pS ? E
S

 (25.22)

To develop a conceptual understanding of Equation 25.21, compare it with the 
expression for the potential energy of the system of an object in the Earth’s grav-
itational field, Ug 5 mgy (Eq. 7.19). First, both expressions contain a parameter of 
the entity placed in the field: mass for the object, dipole moment for the dipole. 
Second, both expressions contain the field, g for the object, E for the dipole. 
Finally, both expressions contain a configuration description: translational posi-
tion y for the object, rotational position u for the dipole. In both cases, once the 
configuration is changed, the system tends to return to the original configura-
tion when the object is released: the object of mass m falls toward the ground, and 
the dipole begins to rotate back toward the configuration in which it is aligned 
with the field.

 Torque on an electric dipole
in an external electric field

  Potential energy of the
system of an electric dipole  
in an external electric field

1q

2q

2a

p$ 1

2

The electric dipole moment p 
is directed from 2q toward 1q.

$

Figure 25.15  An electric dipole 
consists of two charges of equal 
magnitude and opposite sign sep-
arated by a distance of 2a.

1q

2q

O

2

1

�

E 2F

F

p$

$

$$

The dipole moment p is at an 
angle � to the field, causing the 
dipole to experience a torque.

$

Figure 25.16  An electric dipole 
in a uniform external electric 
field.
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680 Chapter 25 Capacitance and Dielectrics

Molecules are said to be polarized when a separation exists between the average 
position of the negative charges and the average position of the positive charges 
in the molecule. In some molecules such as water, this condition is always present; 
such molecules are called polar molecules. Molecules that do not possess a perma-
nent polarization are called nonpolar molecules.

We can understand the permanent polarization of water by inspecting the 
geometry of the water molecule. The oxygen atom in the water molecule is bonded 
to the hydrogen atoms such that an angle of 1058 is formed between the two bonds 
(Fig. 25.17). The center of the negative charge distribution is near the oxygen atom, 
and the center of the positive charge distribution lies at a point midway along the 
line joining the hydrogen atoms (the point labeled 3 in Fig. 25.17). We can model 
the water molecule and other polar molecules as dipoles because the average posi-
tions of the positive and negative charges act as point charges. As a result, we can 
apply our discussion of dipoles to the behavior of polar molecules.

Washing with soap and water is a household scenario in which the dipole struc-
ture of water is exploited. Grease and oil are made up of nonpolar molecules, 
which are generally not attracted to water. Plain water is not very useful for remov-
ing this type of grime. Soap contains long molecules called surfactants. In a long 
molecule, the polarity characteristics of one end of the molecule can be different 
from those at the other end. In a surfactant molecule, one end acts like a nonpolar 
molecule and the other acts like a polar molecule. The nonpolar end can attach to 
a grease or oil molecule, and the polar end can attach to a water molecule. There-
fore, the soap serves as a chain, linking the dirt and water molecules together. 
When the water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 25.18a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed 
to the left as in Figure 25.18b causes the center of the negative charge distribution 
to shift to the right relative to the positive charges. This induced polarization is the 
effect that predominates in most materials used as dielectrics in capacitors.

O

HH 105°

2

1 1

The center of the positive charge 
distribution is at the point    .

Figure 25.17  The water mole-
cule, H2O, has a permanent polar-
ization resulting from its nonlin-
ear geometry.

21

1 1

1

2

E$  

a

b

Figure 25.18  (a) A linear sym-
metric molecule has no perma-
nent polarization. (b) An external 
electric field induces a polariza-
tion in the molecule.

 Example 25.6     The H2O Molecule

The water (H2O) molecule has an electric dipole moment of 6.3 3 10230 C ? m. A sample contains 1021 water molecules, 
with the dipole moments all oriented in the direction of an electric field of magnitude 2.5 3 105 N/C. How much work is 
required to rotate the dipoles from this orientation (u 5 08) to one in which all the moments are perpendicular to the field 
(u 5 908)?

S O L U T I O N

Conceptualize  When all the dipoles are aligned with the electric field, the dipoles–electric field system has the minimum 
potential energy. This energy has a negative value given by the product of the right side of Equation 25.21, evaluated at 08, and 
the number N of dipoles.

Categorize  The combination of the dipoles and the electric field is identified as a system. We use the nonisolated system model 
because an external agent performs work on the system to change its potential energy.

Analyze Write the appropriate reduction of the conservation  (1)   DUE 5 W 
of energy equation, Equation 8.2, for this situation:

Use Equation 25.21 to evaluate the initial and final potential  W 5 U908
 2 U08

 5 (2NpE cos 908) 2 (2NpE cos 08) 
energies of the system and Equation (1) to calculate the work   5 NpE 5 (1021)(6.3 3 10230 C ? m)(2.5 3 105 N/C) 
required to rotate the dipoles: 

 5   1.6 3 1023 J

Finalize Notice that the work done on the system is positive because the potential energy of the system has been raised from 
a negative value to a value of zero.
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   25.7    An Atomic Description of Dielectrics
In Section 25.5, we found that the potential difference DV0 between the plates of 
an empty capacitor is reduced to DV0/k when a dielectric is introduced between the 
plates. The potential difference is reduced because the magnitude of the electric 
field decreases between the plates. In particular, if E

S
0 is the electric field without 

the dielectric, the field in the presence of a dielectric is

 E
S

5
E
S

0

�
 (25.23)

First consider a dielectric made up of polar molecules placed in the electric field 
between the plates of a capacitor. The dipoles (that is, the polar molecules making 
up the dielectric) are randomly oriented in the absence of an electric field as shown 
in Figure 25.19a. When an external field E

S
0 due to charges on the capacitor plates 

is applied, a torque is exerted on the dipoles, causing them to partially align with 
the field as shown in Figure 25.19b. The dielectric is now polarized. The degree of 
alignment of the molecules with the electric field depends on temperature and the 
magnitude of the field. In general, the alignment increases with decreasing tem-
perature and with increasing electric field.

If the molecules of the dielectric are nonpolar, the electric field due to the plates 
produces an induced polarization in the molecule. These induced dipole moments 
tend to align with the external field, and the dielectric is polarized. Therefore, a 
dielectric can be polarized by an external field regardless of whether the molecules 
in the dielectric are polar or nonpolar.

With these ideas in mind, consider a slab of dielectric material placed 
between the plates of a capacitor with each plate carrying a charge density with 
a magnitude s. This will result in a uniform electric field E

S
0 as shown in Figure 

25.19c. The electric field due to the plates is directed to the right and polarizes 
the dielectric. The net effect on the dielectric is the formation of an induced posi-
tive surface charge density sind on the right face and an equal-magnitude negative 
surface charge density 2sind on the left face as shown in Figure 25.19c. Because 
we can model these surface charge distributions as being due to charged parallel 
plates, the induced surface charges on the dielectric give rise to an induced elec-
tric field E

S
ind in the direction opposite the external field E

S
0. Therefore, the net 

electric field E
S

 in the dielectric has a magnitude

 E 5 E 0 2 E ind (25.24)

In the parallel-plate capacitor shown in Figure 25.19c, the external field E 0 is 
related to the charge density s on the plates through the relationship E 0 5 s/e0. 
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Polar molecules are 
randomly oriented in 
the absence of an 
external electric field.

When an external 
electric field is applied, 
the molecules partially 
align with the field.

The charged edges of the dielectric 
can be modeled as an additional 
pair of parallel plates establishing 
an electric field Eind in the 
direction opposite that of E0.

S

S

�ss

Figure 25.19  (a) Polar molecules 
in a dielectric. (b) An electric 
field is applied to the dielectric. 
(c) Details of the electric field 
inside the dielectric.
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682 Chapter 25 Capacitance and Dielectrics

The induced electric field in the dielectric is related to the induced charge density 
sind through the relationship E ind 5 sind/e0. Because E 5 E 0/k 5 s/ke0, substitution 
into Equation 25.24 gives

  
�

��0

5
�

�0

2
�ind

�0

 

  �ind 5 S� 2 1
� D� (25.25)

Because k . 1, this expression shows that the charge density sind induced on the 
dielectric is less than the charge density s on the plates. For instance, if k 5 3, the 
induced charge density is two-thirds the charge density on the plates. If no dielec-
tric is present, then k 5 1 and sind 5 0 as expected. If the dielectric is replaced by 
an electrical conductor for which E 5 0, however, Equation 25.24 indicates that 
E 0 5 E ind, which corresponds to sind 5 s. That is, the surface charge induced on 
the conductor is equal in magnitude but opposite in sign to that on the plates, 
resulting in a net electric field of zero in the conductor (see Fig. 24.17).

 Example 25.7     Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate area 
A. An uncharged metallic slab of thickness a is inserted midway 
between the plates.

(A) Find the capacitance of the device.

S O L U T I O N

Conceptualize  Figure 25.20a shows the metallic slab between the 
plates of the capacitor. Any charge that appears on one plate of the 
capacitor must induce a charge of equal magnitude and opposite 
sign on the near side of the slab as shown in Figure 25.20a. Con-
sequently, the net charge on the slab remains zero and the electric 
field inside the slab is zero.

Categorize  The planes of charge on the metallic slab’s upper and 
lower edges are identical to the distribution of charges on the plates 
of a capacitor. The metal between the slab’s edges serves only to 
make an electrical connection between the edges. Therefore, we can 
model the edges of the slab as conducting planes and the bulk of the 
slab as a wire. As a result, the capacitor in Figure 25.20a is equivalent 
to two capacitors in series, each having a plate separation (d 2 a)/2 
as shown in Figure 25.20b.

Analyze  Use Equation 25.3 and the rule for adding two  
1
C

5
1

C 1

 1
1

C 2

5
1

�0A

sd 2 ady2

1
1

�0A

sd 2 ady2

 
capacitors in series (Eq. 25.12) to find the equivalent  
capacitance in Figure 25.20b:

   C 5 
�0A

d 2 a

(B)  Show that the capacitance of the original capacitor is unaffected by the insertion of the metallic slab if the slab is infin-
itesimally thin.

S O L U T I O N

In the result for part (A), let a S 0: C 5 lim
a S 0

S �0 A

d 2 aD 5
�0A

d

d a

(d 2 a)/2

�

� 1   1  1   1   11   1  1   1   1

1   1  1   1   1

2   2  2   2   2

1  1  1  1  1

2   2  2   2   2

2   2  2   2   22   2  2   2   2

2�

2�

a b

(d 2 a)/2

(d 2 a)/2

(d 2 a)/2

Figure 25.20  (Example 25.7) (a) A parallel-plate capaci-
tor of plate separation d partially filled with a metallic slab 
of thickness a. (b) The equivalent circuit of the device in 
(a) consists of two capacitors in series, each having a plate 
separation (d 2 a)/2.
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25.7 c o n t i n u e d

Finalize  The result of part (B) is the original capacitance before the slab is inserted, which tells us that we can insert an infin-
itesimally thin metallic sheet between the plates of a capacitor without affecting the capacitance. We use this fact in the next 
example.

W H A T  I F ?  What if the metallic slab in part (A) is not midway between the plates? How would that affect the capacitance?

Answer  Let’s imagine moving the slab in Figure 25.20a upward so that the distance between the upper edge of the slab and 
the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d 2 b 2 a. As in part (A), we 
find the total capacitance of the series combination:

 
1
C

5
1

C 1

1
1

C 2

5
1

�0Ayb
1

1
�0Aysd 2 b 2 ad

 5
b

�0A
1

d 2 b 2 a
�0A

5
d 2 a
�0A

   S   C 5
�0A

d 2 a

which is the same result as found in part (A). The capacitance is independent of the value of b, so it does not matter where 
the slab is located. In Figure 25.20b, when the central structure is moved up or down, the decrease in plate separation of one 
capacitor is compensated by the increase in plate separation for the other.

 Example 25.8     A Partially Filled Capacitor

A parallel-plate capacitor with a plate separation d has a 
capacitance C0 in the absence of a dielectric. What is the 
capacitance when a slab of dielectric material of dielectric 
constant k and thickness fd is inserted between the plates 
(Fig. 25.21a), where f is a fraction between 0 and 1?

S O L U T I O N

Conceptualize  In our previous discussions of dielectrics 
between the plates of a capacitor, the dielectric filled the vol-
ume between the plates. In this example, only part of the volume 
between the plates contains the dielectric material.

Categorize  In Example 25.7, we found that an infinitesimally 
thin metallic sheet inserted between the plates of a capacitor does 
not affect the capacitance. Imagine sliding an infinitesimally thin 
metallic slab along the bottom face of the dielectric shown in  
Figure 25.21a. We can model this system as a series combina-
tion of two capacitors as shown in Figure 25.21b. One capacitor 
has a plate separation fd and is filled with a dielectric; the other 
has a plate separation (1 2 f )d and has air between its plates.

Analyze  Evaluate the two capacitances in Figure 25.21b  C 1 5
��0 A

fd
 and C 2 5

�0 A

s1 2 f dd
 

from Equation 25.17:

Find the equivalent capacitance C from Equation 25.12   
1
C

5
1

C 1

1
1

C 2

5
fd

��0 A
1

s1 2 f dd
�0 A

 
for two capacitors combined in series:

    
1
C

5
fd

��0 A
1

�s1 2 f dd
��0 A

5
f 1 �s1 2 f d

�
 

d
�0A

Invert and substitute for the capacitance without the  C 5
�

f 1 �s1 2 f d
 

�0 A

d
5

�

f 1 �s1 2 f d
 C 0  

dielectric, C 0 5 e0A/d:

Finalize  Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, which is 
consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the plates. In this limit, 
C S kC 0, which is consistent with Equation 25.16.

fd

(1 2 f )d
d

C 1

C 2(1 2 f )d

�

�

a b

fd

Figure 25.21 (Example 25.8) (a) A parallel-plate capacitor of 
plate separation d partially filled with a dielectric of thickness 
fd. (b) The equivalent circuit of the capacitor consists of two 
capacitors connected in series.
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684 Chapter 25 Capacitance and Dielectrics

Summary
 › Definitions

A capacitor consists of two separated conductors called plates. If the capacitor 
is charged, the plates carry charges of equal magnitude and opposite sign. 
The capacitance C of any capacitor is the ratio of the charge Q on either con-
ductor to the potential difference DV between them:

 C ;
Q

DV
 (25.1)

The capacitance depends only on the geometry of the conductors and not on 
an external source of charge or potential difference. The SI unit of capaci-
tance is coulombs per volt, or the farad (F): 1 F 5 1 C/V.

 › Concepts and Principles

If two or more capacitors are connected in parallel, the potential difference  
is the same across all capacitors. The equivalent capacitance of a parallel 
combination of capacitors is

 C eq 5 C 1 1 C 2 1 C 3 1
 . . .  (25.9)

If two or more capacitors are connected in series, the charge is the same on 
all capacitors, and the equivalent capacitance of the series combination is 
given by

 
1

C eq

5
1

C 1

1
1

C 2

1
1

C 3

1 Á  (25.12)

These two equations enable you to simplify many electric circuits by replacing 
multiple capacitors with a single equivalent capacitance.

Energy is stored in a charged capacitor because 
the charging process is equivalent to the trans-
fer of charges from one conductor at a lower 
electric potential to another conductor at a 
higher potential. The energy stored in a capac-
itor of capacitance C with charge Q and poten-
tial difference DV is

 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C sDV d2 (25.13)

The electric dipole moment pS of an electric 
dipole has a magnitude

 p ; 2aq (25.18)

where 2a is the distance between the charges 
q and 2q. The direction of the electric dipole 
moment vector is from the negative charge 
toward the positive charge.

When a dielectric material is inserted between the plates of a capacitor, 
the capacitance increases by a dimensionless factor k, called the dielectric 
constant:

 C 5 �C 0 (25.16)

where C 0 is the capacitance in the absence of the dielectric.

The torque acting on an electric dipole in a 
uniform electric field E

S
 is

 t
S

5 pS 3 E
S

 (25.20)

The potential energy of the system of an electric 
dipole in a uniform external electric field E

S
 is

 UE 5 2pS ? E
S

 (25.22)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your group is a team of teaching assistants for a physics 
professor. The professor asks your group to set up and 
test the apparatus shown in Figure TP25.1 for a classroom 
demonstration showing the force between the plates in 
a capacitor. The negative plate of the capacitor at the 
right of the figure is clamped in place. The upper, pos-
itive plate is free to move up and down. Both plates are 
of area A. A potential difference DV is applied across the 
capacitor. (a) What is the separation distance d between 
the capacitor plates when the gravitational force on the 
hanging ball on the left is balanced by the electrical force 

M

�V

A

d
� ���

� � � �
�

�

Figure TP25.1
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on the upper plate on the right? (b) Is this equilibrium 
stable or unstable?

2. ACTIVITy  Your group is performing electrical experiments 
in your physics laboratory. Your supply of capacitors in the 
stockroom has run low and you have only two different  
values of capacitance available: 20 mF and 50 mF. You 
have a large number of each of these capacitors. (a) Your  

experiments require a 45-mF capacitor and a 35-mF capac-
itor. Split your group into two halves. Group (i) will deter-
mine how to form a 45-mF capacitor from your supply, while 
group (ii) will do the same for a 35-mF capacitor. (b) After 
working on the experiment for a while, you realize you 
now need a 105-mF capacitor. Have your whole group work 
together to find at least three ways to combine the capaci-
tors in your stockroom to generate 105 mF.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 25.1  Definition of Capacitance

1. (a) When a battery is connected to the plates of a  
3.00-mF capacitor, it stores a charge of 27.0 mC. What is the 
voltage of the battery? (b) If the same capacitor is connected 
to another battery and 36.0 mC of charge is stored on the 
capacitor, what is the voltage of the battery?

2. Two conductors having net charges of 110.0 mC and 
210.0  mC have a potential difference of 10.0 V between 
them. (a) Determine the capacitance of the system. (b) What 
is the potential difference between the two conductors if the 
charges on each are increased to 1100 mC and 2100 mC?

Section 25.2  Calculating Capacitance

3. When a potential difference of 150 V is applied to the 
plates of a parallel-plate capacitor, the plates carry a surface 
charge density of 30.0 nC/cm2. What is the spacing between 
the plates?

4. An air-filled parallel-plate capacitor has plates of area 
2.30  cm2 separated by 1.50 mm. (a) Find the value of its 
capacitance. The capacitor is connected to a 12.0-V battery. 
(b) What is the charge on the capacitor? (c) What is the 
magnitude of the uniform electric field between the plates?

5. A variable air capacitor used 
in a radio tuning circuit 
is made of N semicircular 
plates, each of radius R and 
positioned a distance d from 
its neighbors, to which it is 
electrically connected. As 
shown in Figure P25.5, a sec-
ond identical set of plates is 
enmeshed with the first set. 
Each plate in the second set 
is halfway between two plates 
of the first set. The second 
set can rotate as a unit. Deter-
mine the capacitance as a function of the angle of rotation 
u, where u 5 0 corresponds to the maximum capacitance.

6. Review. A small object of mass m carries a charge q and 
is suspended by a thread between the vertical plates of 
a  parallel-plate capacitor. The plate separation is d. If 
the thread makes an angle u with the vertical, what is the 
potential difference between the plates?

Section 25.3  Combinations of Capacitors

7. Find the equivalent capacitance of a 4.20-mF capacitor and 
an 8.50-mF capacitor when they are connected (a) in series 
and (b) in parallel.

8. Why is the following situation impossible? A technician is testing 
a circuit that contains a capacitance C. He realizes that a 
better design for the circuit would include a capacitance 73C  
rather than C. He has three additional capacitors, each with 
capacitance C. By combining these additional capacitors in 
a certain combination that is then placed in parallel with 
the original capacitor, he achieves the desired capacitance.

9. A group of identical capacitors is connected first in series 
and then in parallel. The combined capacitance in paral-
lel is 100 times larger than for the series connection. How 
many capacitors are in the group?

10. Three capacitors are connected to a battery as shown in 
Figure P25.10. Their capac-
itances are C 1 5 3C, C 2  5 
C, and C3 5 5C. (a) What  
is the equivalent capacitance 
of this set of capacitors?  
(b) State the ranking of the 
capacitors according to the 
charge they store from largest 
to smallest. (c) Rank the capac-
itors according to the potential 
differences across them from largest to smallest. (d) What 
If? Assume C3 is increased. Explain what happens to the 
charge stored by each capacitor.

11. Four capacitors are connected as shown in Figure P25.11. 
(a)  Find the equivalent capacitance between points a and 
b. (b) Calculate the charge on each capacitor, taking DVab 5 
15.0 V.

6.00 �F

20.0 �F

3.00 �F15.0 

a 

�F

b 

Figure P25.11

12. (a) Find the equivalent capacitance between points a and 
b for the group of capacitors connected as shown in Figure 
P25.12 (page 686). Take C1 5 5.00 mF, C2  5 10.0 mF, and  

V

T

T

V

�

d

R

Figure P25.5

C2 C3

C1

2

1

Figure P25.10
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686 Chapter 25 Capacitance and Dielectrics

C3 5 2.00 mF. (b) What charge is stored on C3 if the poten-
tial difference between points a and b is 60.0 V?

C2 C2

C1 C1

C2 C2

C3

b

a

Figure P25.12

13. Find the equivalent capacitance between points a and b in 
the combination of capacitors shown in Figure P25.13.

ba

6.0 �F

5.0 �F
7.0 �F

4.0 �F

Figure P25.13

14. You are working at an electronics fabrication shop. Your 
current project is on the team producing capacitors for 
the timer circuit that delays the closing of an elevator door. 
According to its design specification, the timer circuit is 
to have a capacitance of 32.0 mF between two points A and 
B. As your capacitors come off the assembly line, you find 
that they have a variation of 65.00% from this value. After 
a team meeting to evaluate this situation, the team decides 
that capacitances in the range 32.0 6 0.5 mF are acceptable 
and do not need modification. For capacitances outside this 
range, the director does not wish to discard the capacitors, 
but rather to add extra capacitors in series or parallel with 
the main capacitor to bring the total equivalent capacitance 
to the exact design value of 32.0 mF. You are put in charge of 
procuring the extra capacitors. What range of capacitances 
for these extra capacitors do you need to cover the entire 
range of variation of 65.00%? All capacitances can be mea-
sured to three significant figures.

15. Two capacitors give an equivalent capacitance of  
9.00 pF when connected in parallel and an equivalent 
capacitance of 2.00 pF when connected in series. What is 
the capacitance of each capacitor?

16. Two capacitors give an equivalent capacitance of Cp when 
connected in parallel and an equivalent capacitance of Cs 
when connected in series. What is the capacitance of each 
capacitor?

Section 25.4  Energy Stored in a Charged Capacitor

17. A 3.00-mF capacitor is connected to a 12.0-V battery.  
How much energy is stored in the capacitor? (b) Had the 
capacitor been connected to a 6.00-V battery, how much 
energy would have been stored?

18. Two capacitors, C1 5 18.0 mF and C2 5 36.0 mF, are con-
nected in series, and a 12.0-V battery is connected across 

the two capacitors. Find (a) the equivalent capacitance 
and (b) the energy stored in this equivalent capaci-
tance. (c) Find the energy stored in each individual  
capacitor. (d) Show that the sum of these two energies is the 
same as the energy found in part (b). (e) Will this equality 
always be true, or does it depend on the number of capaci-
tors and their capacitances? (f) If the same capacitors were 
connected in parallel, what potential difference would be 
required across them so that the combination stores the 
same energy as in part (a)? (g) Which capacitor stores more 
energy in this situation, C1 or C2?

19. Two identical parallel-plate capacitors, each with capac-
itance 10.0 mF, are charged to potential difference 50.0 V 
and then disconnected from the battery. They are then con-
nected to each other in parallel with plates of like sign con-
nected. Finally, the plate separation in one of the capacitors 
is doubled. (a) Find the total energy of the system of two 
capacitors before the plate separation is doubled. (b) Find 
the potential difference across each capacitor after the plate 
separation is doubled. (c) Find the total energy of the sys-
tem after the plate separation is doubled. (d) Reconcile the 
difference in the answers to parts (a) and (c) with the law of 
conservation of energy.

20. Two identical parallel-plate capacitors, each with capacitance 
C, are charged to potential difference DV and then discon-
nected from the battery. They are then connected to each 
other in parallel with plates of like sign connected. Finally, 
the plate separation in one of the capacitors is doubled.  
(a) Find the total energy of the system of two capacitors before 
the plate separation is doubled. (b) Find the potential differ-
ence across each capacitor after the plate separation is doubled. 
(c) Find the total energy of the system after the plate separa-
tion is doubled. (d) Reconcile the difference in the answers to 
parts (a) and (c) with the law of conservation of energy.

21. Two capacitors, C1 5 25.0 mF and C2 5 5.00 mF, are con-
nected in parallel and charged with a 100-V power supply. 
(a) Draw a circuit diagram and (b) calculate the total energy 
stored in the two capacitors. (c) What If? What potential dif-
ference would be required across the same two capacitors 
connected in series for the combination to store the same 
amount of energy as in part (b)? (d) Draw a circuit diagram 
of the circuit described in part (c).

22. A parallel-plate capacitor has a charge Q and plates of 
area A. What force acts on one plate to attract it toward 
the other plate? Because the electric field between the 
plates is E 5 Q /Ae0, you might think the force is F 5  
QE 5 Q 2/Ae0. This conclusion is wrong because the field E 
includes contributions from both plates, and the field cre-
ated by the positive plate cannot exert any force on the pos-
itive plate. Show that the force exerted on each plate is actu-
ally F 5 Q 2/2Ae0. Suggestion: Let C 5 e0A/x for an arbitrary 
plate separation x and note that the work done in separating 
the two charged plates is W 5 e F dx.

23. Consider two conducting spheres with radii R1 and R 2 sep-
arated by a distance much greater than either radius. A 
total charge Q is shared between the spheres. We wish to 
show that when the electric potential energy of the system 
has a minimum value, the potential difference between 
the spheres is zero. The total charge Q is equal to q1 1 q2, 
where q1 represents the charge on the first sphere and q2 
the charge on the second. Because the spheres are very far 
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apart, you can assume the charge of each is uniformly dis-
tributed over its surface. (a) Show that the energy associated 
with a single conducting sphere of radius R and charge q 
surrounded by a vacuum is UE 5 keq

2/2R. (b) Find the total 
energy of the system of two spheres in terms of q1, the total 
charge Q , and the radii R 1 and R 2. (c)  To minimize the 
energy, differentiate the result to part (b) with respect to 
q1 and set the derivative equal to zero. Solve for q1 in terms 
of Q and the radii. (d) From the result to part (c), find the 
charge q2. (e) Find the potential of each sphere. (f) What is 
the potential difference between the spheres?

Section 25.5  Capacitors with Dielectrics

24. A supermarket sells rolls of aluminum foil, plastic wrap, 
and waxed paper. (a) Describe a capacitor made from such 
materials. Compute order-of-magnitude estimates for (b) its 
capacitance and (c) its breakdown voltage.

25. Determine (a) the capacitance and (b) the maximum 
potential difference that can be applied to a Teflon-filled 
parallel-plate capacitor having a plate area of 1.75 cm2 and a 
plate separation of 0.040 0 mm.

26. The voltage across an air-filled parallel-plate capacitor 
is measured to be 85.0 V as shown in Figure P25.26a. 
When a dielectric is inserted and completely fills the 
space between the plates as in Figure P25.26b, the voltage  
drops to 25.0 V. (a) What is the dielectric constant of the 
inserted material? (b) Can you identify the dielectric? If 
so, what is it? (c) If the dielectric does not completely fill 
the space between the plates, what could you conclude 
about the voltage across the plates?

C0 C

Dielectric

VV0D D

a b

Figure P25.26

27. A commercial capacitor 
is to be constructed as 
shown in Figure P25.27. 
This particular capac-
itor is made from two 
strips of aluminum foil 
separated by a strip of 
paraffin-coated paper. 
Each strip of foil and 
paper is 7.00 cm wide. 
The foil is 0.004 00 mm 
thick, and the paper is 0.025 0 mm thick and has a dielec-
tric constant of 3.70. What length should the strips have if a 

capacitance of 9.50 3 1028 F is desired before the capacitor 
is rolled up? (Adding a second strip of paper and rolling the 
capacitor would effectively double its capacitance by allow-
ing charge storage on both sides of each strip of foil.)

28. Each capacitor in the combination shown in Figure P25.28 
has a breakdown voltage of 15.0 V. What is the breakdown 
voltage of the combination between points a and b?

20.0 �F

10.0 �F

20.0 �F

20.0 �F

20.0 �F ba

Figure P25.28

29. A 2.00-nF parallel-plate capacitor is charged to an initial 
potential difference DVi 5 100 V and is then isolated. The 
dielectric material between the plates is mica, with a dielec-
tric constant of 5.00. (a) How much work is required to with-
draw the mica sheet? (b) What is the potential difference 
across the capacitor after the mica is withdrawn?

Section 25.6  Electric Dipole in an Electric Field

30. An infinite line of positive charge lies along the y axis, with 
charge density l 5 2.00 mC/m. A dipole is placed with its 
center along the x axis at x 5 25.0 cm. The dipole consists 
of two charges 610.0 mC separated by 2.00 cm. The axis of 
the dipole makes an angle of 35.08 with the x axis, and the 
positive charge is farther from the line of charge than the 
negative charge. Find the net force exerted on the dipole.

31. A small object with electric dipole moment pS is placed in 
a nonuniform electric field E

S
5 E sxd i

⁄
. That is, the field is 

in the x direction, and its magnitude depends only on the 
coordinate x. Let u represent the angle between the dipole 
moment and the x direction. Prove that the net force on the 
dipole is

F 5 pSdE
dxD cos �

 acting in the direction of increasing field.

Section 25.7  An Atomic Description of Dielectrics

32. The general form of Gauss’s law describes how a charge cre-
ates an electric field in a material, as well as in vacuum:

#E
S   

? dA
S

5
q in

�

 where e 5 ke0 is the permittivity of the material. (a) A sheet 
with charge Q uniformly distributed over its area A is sur-
rounded by a dielectric. Show that the sheet creates a uni-
form electric field at nearby points with magnitude E 5 
Q /2Ae. (b) Two large sheets of area A, carrying opposite 
charges of equal magnitude Q , are a small distance d apart. 
Show that they create uniform electric field in the space 
between them with magnitude E 5 Q /Ae. (c) Assume the 
negative plate is at zero potential. Show that the positive 
plate is at potential Qd/Ae. (d) Show that the capacitance of 
the pair of plates is given by C 5 Ae/d 5 kAe0/d.

V

Aluminum

Paper
7.00 cm

Figure P25.27
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additional ProblemS

33.  You are working in a laboratory, using very sensitive mea-
surement equipment. Your supervisor has explained that 
the equipment is also very sensitive to electrical discharge 
from human operators. Specification tables for the equip-
ment indicate that an electrical discharge providing even a 
very small amount of energy of 250 mJ is enough to damage 
the equipment. Your supervisor wants to install an appara-
tus that will be used to remove the electrical charge from 
individuals’ bodies before they touch the equipment. To 
do this, she asks you to estimate (a) the capacitance of the 
human body and determine (b) the charge on the body 
and (c) the electric potential of the body, relative to a point 
infinitely far away, corresponding to the energy transfer 
that will damage the equipment.

34. Four parallel metal plates P1, P2, P3, and P4, each of area 
7.50  cm2, are separated successively by a distance d 5 
1.19 mm as shown in Figure P25.34. Plate P1 is connected 
to the negative terminal of a battery, and P2 is connected 
to the positive terminal. The battery maintains a potential 
difference of 12.0 V. (a) If P3 is connected to the negative 
terminal, what is the capacitance of the three-plate system 
P1P2P3? (b) What is the charge on P2? (c) If P4 is now con-
nected to the positive terminal, what is the capacitance of 
the four-plate system P1P2P3P4? (d) What is the charge on P4?

12.0 V

P2 P3 P4P1

d d d

2

1

Figure P25.34

35. A uniform electric field E 5 3 000 V/m exists within a cer-
tain region. What volume of space contains an energy equal 
to 1.00 3 1027 J? Express your answer in cubic meters and 
in liters.

36. Two large, parallel metal plates, each of area A, are oriented 
horizontally and separated by a distance 3d. A grounded 
conducting wire joins them, and initially each plate car-
ries no charge. Now a third identical plate carrying charge 
Q is inserted between the two plates, parallel to them and 
located a distance d from the upper plate as shown in Fig-
ure P25.36. (a) What induced charge appears on each of the 
two original plates? (b) What potential difference appears 
between the middle plate and each of the other plates?

2d

d

Figure P25.36

37. A parallel-plate capacitor with vacuum between its horizon-
tal plates has a capacitance of 25.0 mF. A nonconducting 

liquid with dielectric constant 6.50 is poured into the space 
between the plates, filling up a fraction f of its volume. 
(a) Find the new capacitance as a function of f. (b) What 
should you expect the capacitance to be when f 5 0? Does 
your expression from part (a) agree with your answer? (c) 
What capacitance should you expect when f 5 1? Does the 
expression from part (a) agree with your answer?

38. Why is the following situation impossible? A 10.0-mF capac-
itor has plates with vacuum between them. The capac-
itor is charged so that it stores 0.050 0 J of energy. A  
particle with charge 23.00 mC is fired from the positive 
plate toward the negative plate with an initial kinetic energy 
equal to 1.00 3 1024 J. The particle arrives at the negative 
plate with a reduced kinetic energy.

39. Two square plates of sides , are placed parallel to each 
other with separation d as suggested in Figure P25.39. You 
may assume d is much less than ,. The plates carry uni-
formly distributed static charges 1Q 0 and 2Q 0. A block 
of metal has width ,, length ,, and thickness slightly less 
than d. It is inserted a distance x into the space between 
the plates. The charges on the plates remain uniformly dis-
tributed as the block slides in. In a static situation, a metal 
prevents an electric field from penetrating inside it. The 
metal can be thought of as a perfect dielectric, with k S .̀  
(a) Calculate the stored energy in the system as a function 
of x. (b) Find the direction and magnitude of the force 
that acts on the metallic block. (c) The area of the advanc-
ing front face of the block is essentially equal to ,d. Consid-
ering the force on the block as acting on this face, find the 
stress (force per area) on it. (d) Express the energy density 
in the electric field between the charged plates in terms  
of Q 0, ,, d, and e0. (e) Explain how the answers to parts  
(c) and (d) compare with each other.

x
d

,

1   1   1   1   1

2   2   2   2   2

1Q 0

2Q 0

Figure P25.39

40. (a) Two spheres have radii a and b, and their centers  
are a distance d apart. Show that the capacitance of this sys-
tem is

C 5
4��0

1
a

1
1
b

2
2
d

 provided d is large compared with a and b. Suggestion: 
Because the spheres are far apart, assume the potential of 
each equals the sum of the potentials due to each sphere. 
(b) Show that as d approaches infinity, the above result 
reduces to that of two spherical capacitors in series.

41. Assume that the internal diameter of the Geiger– 
Mueller tube described in Problem 42 in Chapter 24 is 
2.50 cm and that the wire along the axis has a diameter 
of 0.200 mm. The dielectric strength of the gas between 
the central wire and the cylinder is 1.20 3 106 V/m.  
Use the result of that problem to calculate the maximum 
potential difference that can be applied between the wire 
and the cylinder before breakdown occurs in the gas.
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42. A parallel-plate capacitor of plate separation d is charged  
to a potential difference DV0. A dielectric slab of thick-
ness d and dielectric constant k is introduced between the 
plates while the battery remains connected to the plates. 
(a) Show that the ratio of energy stored after the dielectric 
is introduced to the energy stored in the empty capacitor is  
UE  /U0 5 k. (b) Give a physical explanation for this increase 
in stored energy. (c) What happens to the charge on the 
capacitor? Note: This situation is not the same as in Exam-
ple 25.5, in which the battery was removed from the circuit 
before the dielectric was introduced.

43. To repair a power supply for a stereo amplifier, an elec-
tronics technician needs a 100-mF capacitor capable of 
withstanding a potential difference of 90 V between the 
plates. The immediately available supply is a box of five  
100-mF capacitors, each having a maximum voltage capa-
bility of 50 V. (a) What combination of these capacitors has 
the proper electrical characteristics? Will the technician 
use all the capacitors in the box? Explain your answers. 
(b)  In the combination of capacitors obtained in part 
(a), what will be the maximum voltage across each of the 
capacitors used?

44. Example 25.1 explored a cylindrical capacitor of length , 
with radii a and b for the two conductors. In the What If? 
section of that example, it was claimed that increasing , by 
10% is more effective in terms of increasing the capacitance 
than increasing a by 10% if b . 2.85a. Verify this claim 
mathematically.

45. You are part of a team working in a machine parts mechan-
ic’s shop. An important customer has asked your company 
to provide springs with a very precise force constant k. 
You devise the electrical circuit shown in Figure P25.45 to 
measure the spring constant of each of the springs to be 
provided to the customer. The circuit consists of two iden-
tical, parallel metal plates free to move, other than being 
connected to identical metal springs, a switch, and a battery 
with terminal voltage DV. With the switch open, the plates 
are uncharged, are separated by a distance d, and have a 
capacitance C. When the switch is closed, the plates become 
charged and attract each other. The distance between the 
plates changes by a factor f, after which the plates are in 
equilibrium between the spring forces and the attractive 
electric force between the plates. To keep the plates from 
going into oscillations, you hold each plate with insulating 
gloves as the switch is closed and apply a force on the plates 
that allows them to move together at a slow constant speed 
until they are at the equilibrium separation, at which point 
you can release the plates. You determine an expression for 
the spring constant in terms of C, d, DV, and f. 

kk
d

V

S
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Figure P25.45 Problems 45 and 50.

challenge ProblemS

 46. Consider two long, parallel, and oppositely charged wires 
of radius r with their centers separated by a distance D that 
is much larger than r. Assuming the charge is distributed 
uniformly on the surface of each wire, show that the capaci-
tance per unit length of this pair of wires is

C
/

5
��0

ln sDyrd

 47. Some physical systems possessing capacitance continuously 
distributed over space can be modeled as an infinite array 
of discrete circuit elements. Examples are a microwave 
waveguide and the axon of a nerve cell. To practice anal-
ysis of an infinite array, determine the equivalent capac-
itance C  between terminals X and Y of the infinite set of 
capacitors represented in Figure P25.47. Each capacitor has 
capacitance C0. Suggestions: Imagine that the ladder is cut at 
the line AB and note that the equivalent capacitance of the 
infinite section to the right of AB is also C.

C0

C0

C0

X

Y

A

B

Figure P25.47

 48. A parallel-plate capacitor with plates of area LW and 
plate separation t has the region between its plates filled 
with wedges of two dielectric materials as shown in Fig-
ure P25.48. Assume t is much less than both L and W. (a) 
Determine its capacitance. (b) Should the capacitance be 
the same if the labels k1 and k2 are interchanged? Demon-
strate that your expression does or does not have this 
property. (c) Show that if k1 and k2 approach equality to 
a common value k, your result becomes the same as the 
capacitance of a capacitor containing a single dielectric: 
C 5 ke0LW/t.

�2
�1t

L
W

Figure P25.48

 49. A capacitor is constructed from two square, metal-
lic plates of sides , and separation d. Charges 1Q and 
2Q are placed on the plates, and the power supply is 
then removed. A material of dielectric constant k is 
inserted a distance x into the capacitor as shown in Fig-
ure P25.49 (page 690). Assume d is much smaller than x.  
(a) Find the equivalent capacitance of the device.  
(b) Calculate the energy stored in the capacitor. (c)  Find 
the direction and magnitude of the force exerted by the 
plates on the dielectric. (d) Obtain a numerical value 
for the force when x 5 ,/2, assuming , 5 5.00  cm, d 5  
2.00 mm, the dielectric is glass (k 5 4.50), and the capac-
itor was charged to 2.00 3 103 V before the dielectric was 

CR
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690 Chapter 25 Capacitance and Dielectrics

inserted. Suggestion: The system can be considered as two 
capacitors connected in parallel.

x
d

,

1   1   1   1   1

2   2   2   2   2

1Q

2Q

�

Figure P25.49

 50. This problem is a continuation of Problem 45. You are 
part of a team working in a machine parts mechanic’s 
shop. An important customer has asked your company to 
provide springs with a very precise force constant k. You 
devise the electrical circuit shown in Figure P25.45 to 
measure the spring constant of each of the springs to be 
provided to the customer. 

   The circuit consists of two identical, parallel metal 
plates connected to identical metal springs, a switch, and 
a battery with emf DV. With the switch open, the plates 
are uncharged, are separated by a distance d, and have a 
capacitance C. 

   To provide a comparison value for the spring constant 
that you found in Problem 45, you slide a slab of material 
with dielectric constant k and thickness t between the plates, 
so that it is in contact with one of the plates as shown in Fig-
ure P25.50. When the switch is closed, the plates become 
charged and attract each other. The distance between the 
plates changes by a factor f, after which the plates are in 
equilibrium between the spring forces and the attractive 
electric force between the plates. To keep the plates from 
going into oscillations, you hold each plate with insulating 
gloves as the switch is closed and apply a force on the plates 
that allows them to move together at a slow constant speed 
until they are at the equilibrium separation, at which point 
you can release the plates. Find an expression for the spring 
constant in terms of C, d, DV, k, t, and f. CR
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26Current and Resistance

26.1 Electric Current

26.2 Resistance

26.3 A Model for Electrical 
Conduction

26.4 Resistance and 
Temperature

26.5 Superconductors

26.6 Electrical Power

Storyline You have returned from your spring break vacation in 
Florida and are back in classes. While driving to campus one day, you pass an 
electrical substation and begin to wonder what goes on there. You park and walk 
up to the fence surrounding the substation. A sign says, “Danger! High Voltage! 
Keep out!” This starts you wondering about high voltage. The voltage in your 
home, you know, is delivered at 240 volts. Why would the voltage at the substa-
tion be any higher? You pull out your smartphone and do a little online searching. 
You find that substations are designed to change the voltage from high values 
to low values. You also find that energy is transferred by electric power lines 
from the source at potential differences as high as 765 kilovolts! You say,  
“Wait a minute! Why is that necessary? Why don’t we just transfer electricity  
at 240 volts, and we won’t need all this substation stuff?” 

ConneCtionS So far in our study of electricity, we have considered primar-
ily situations involving stationary electric charge distributions, which result in elec-
tric fields in a region of space and electric forces on charged particles (Chapter 22), 
potential differences between points in space (Chapter 24), and capacitance associ-
ated with a pair of conductors (Chapter 25). In this chapter, we consider situations  
involving electric charges that are in motion through some region of space. We use 
the term electric current, or simply current, to describe the rate of flow of charge. 
Most practical applications of electricity deal with electric currents, including a 
variety of home appliances. For example, the voltage from a wall plug produces a 
current in the coils of a toaster when it is turned on. In these common situations, 
current exists in a conductor such as a copper wire. Currents can also exist outside 
a conductor. For instance, a beam of electrons in a particle accelerator constitutes 

An electrical substation, 
at which high voltages are 
converted to low voltages. 
While the concept of voltage 
has already been discussed 
in Chapter 24, the concept 
of current in this chapter 
allows us to understand why 
energy is transferred at high 
voltages on the electrical 
grid. (emel82/Shutterstock)
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692 Chapter 26 Current and Resistance

a current. Our study of current will allow us to define electrical resistance and intro-
duce a new circuit element, the resistor. We conclude the chapter by returning to 
the concept of energy and discussing the rate at which energy is transferred to a 
device in an electric circuit. The energy transfer mechanism in Equation 8.2 that 
corresponds to this process is electrical transmission TET. Our discussions in this 
chapter will prepare us to design electric circuits in Chapter 27 and beyond.

   26.1    Electric Current
In this first section, we study the basic behavior of a flow of electric charges through 
a region of space. The flow of charges between two points in space is driven by a 
potential difference between the points. Whenever there is a net flow of charge 
through some region, an electric current is said to exist. The amount of current 
depends both on the potential difference and any material that may fill the space 
through which the charges flow.

It is instructive to compare electric current to the flow of viscous fluids in pipes dis-
cussed in Section 14.7. For example, the flow of water in a plumbing pipe is driven by a 
pressure difference and can be quantified as the volume flow rate, often measured in 
liters per minute. A river current can be characterized by describing the rate at which 
the water flows past a particular location. For example, the flow over the brink at Niag-
ara Falls is maintained at rates between 1 400 m3/s and 2 800 m3/s.

There is also an analogy between thermal conduction and current. In Section 
19.6, we discussed the flow of energy by heat through a sample of material. The rate 
of energy flow is determined by the material as well as the temperature difference 
across the material as described by Equation 19.17. Another analogy is diffusion, for 
example, when a drop of food coloring is placed in a cup of water and spreads to 
eventually fill the cup. The flow of atoms or molecules in diffusion is driven by a 
concentration difference.

To define current quantitatively, suppose charges are moving perpendicular to 
a surface of area A as shown in Figure 26.1. (This area could be the cross-sectional 
area of a wire, for example.) The current is defined as the rate at which charge 
flows through this surface. If DQ is the amount of charge that passes through this 
surface in a time interval Dt, the average current Iavg is equal to the charge that 
passes through A per unit time:

 I avg 5
DQ

Dt
 (26.1)

If the rate at which charge flows varies in time, the current varies in time; we define 
the instantaneous current I as the limit of the average current as Dt S 0:

 I ;
dQ

dt
 (26.2)

The SI unit of current is the ampere (A):

 1 A 5 1 C/s (26.3)

That is, 1 A of current is equivalent to 1 C of charge passing through a surface in 1 s.
The charged particles passing through the surface in Figure 26.1 can be posi-

tive, negative, or both. It is conventional to assign to the current a direction that is 
the same as that of the flow of positive charge. In electrical conductors such as cop-
per or aluminum, the current results from the motion of negatively charged elec-
trons. Therefore, in an ordinary conductor, the direction of the current is oppo-
site the direction of flow of electrons. For a beam of positively charged protons in 
an accelerator, however, the current is in the direction of motion of the protons. 
In some cases—such as those involving gases and electrolytes, for instance—the 

Electric current 

A

I

�

�

�
�

�

The direction of the current is 
the direction in which positive 
charges flow when free to do so.

Figure 26.1  Charges in motion 
through an area A. The time rate 
at which charge flows through the 
area is defined as the current I.

Pitfall Prevention 26.1
“Current Flow” Is Redundant  
The phrase current flow is com-
monly used, although it is techni-
cally incorrect because current is 
a flow (of charge). This wording is 
similar to the phrase heat transfer, 
which is also redundant because 
heat is a transfer (of energy). We 
will avoid this phrase and speak of 
flow of charge or charge flow.
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    26.1 Electric Current 693

current is the result of the flow of both positive and negative charges. It is common 
to refer to a moving charge (positive or negative) as a mobile charge carrier.

Microscopic Model of Current
We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a cylindrical  
conductor of cross-sectional area A (Fig. 26.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 26.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ

Dt
5 nqvdA (26.4)

In reality, the speed of the charge carriers vd is an average speed called the drift 
speed. To understand the meaning of drift speed, consider an isolated conduc-
tor in which the charge carriers are free electrons, as discussed in Section 22.2. 
These electrons undergo random thermal motion that is analogous to the motion 
of gas molecules. The electrons collide repeatedly with the metal atoms, and their 
resultant motion is complicated and zigzagged as in Figure 26.3a. When a potential 
difference is applied across the conductor (for example, by means of a battery), an 
electric field is set up in the conductor; this field exerts an electric force on the elec-
trons, producing a current. In addition to the zigzag motion due to the collisions 
with the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 26.3b.

You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s molecules 
flowing through a pipe stuffed with steel wool. The energy transferred from the 
electrons to the metal atoms during collisions causes an increase in the atom’s 
vibrational energy and a corresponding increase in the conductor’s temperature.

Q uiCk Quiz 26.1  Consider positive and negative charges of equal magnitude 
moving horizontally through the four regions shown in Figure 26.4. Rank the 
current in these four regions from highest to lowest.
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Figure 26.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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The random motion of the 
charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 26.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of 
an electric field. Because of the 
acceleration of the charge carriers 
due to the electric force, the paths 
are actually parabolic. The drift 
speed, however, is much smaller 
than the average speed, so the 
parabolic shape is not visible on 
this scale.
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Figure 26.4  (Quick Quiz (26.1) Charges move through four regions.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



694 Chapter 26 Current and Resistance

 Example 26.1    Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building has a cross-sectional area of 3.31 3 1026 m2. It carries a constant 
current of 10.0 A. What is the drift speed of the electrons in the wire? Assume each copper atom contributes one free elec-
tron to the current. The density of copper is 8.92 g/cm3.

S o l u T i o n

Conceptualize Imagine electrons following a zigzag motion such as that in Figure 26.3a, with a drift velocity parallel to the 
wire superimposed on the motion as in Figure 26.3b. As mentioned earlier, the drift speed is small, and this example helps us 
quantify the speed.

Categorize We evaluate the drift speed using Equation 26.4. Because the current is constant, the average current during any 
time interval is the same as the constant current: Iavg 5 I.

Analyze  The periodic table of the elements in Appendix C shows that the molar mass of copper is M 5 63.5 g/mol. Recall 
that 1 mol of any substance contains Avogadro’s number of atoms (NA 5 6.02 3 1023 mol21).

Use the molar mass and the density of copper to find   V 5
M
r

 
the volume of 1 mole of copper:

From the assumption that each copper atom contributes  n 5
NA

V
5

NA r

M
 

one free electron to the current, find the electron density  
in copper:

Solve Equation 26.4 for the drift speed and substitute for  vd 5
I avg

nqA
5

I
nqA

5
IM

qANA r
 

the electron density:

Substitute numerical values: vd 5
s10.0 Ads0.063 5 kgymold

s1.60 3 10219 Cds3.31 3 1026 m2ds6.02 3 1023 mol21ds8 920 kgym3d

5  2.23 3 1024 mys

   26.2    Resistance
In Section 24.6, we argued that the electric field inside a conductor is zero. This 
statement is true, however, only if the conductor is in static equilibrium as stated in 
that discussion. If a wire is connected across the terminals of a battery, the conduc-
tor is not in static equilibrium. In this case, there is a nonzero electric field in the 
conductor, and a current exists in the wire.

Consider a conductor of cross-sectional area A carrying a current I. The current 
density J in the conductor is defined as the current per unit area. Because the cur-
rent I 5 nqvd A, the current density is

 J ;
I
A

5 nqvd (26.5)

where J has SI units of amperes per meter squared. This expression is valid only if 
the current density is uniform and only if the surface of cross-sectional area A is 
perpendicular to the direction of the current.

Current density 

Finalize This result shows that typical drift speeds are very 
small. For instance, electrons traveling with a speed of 2.23 3  
1024 m/s would take about 75 min to travel 1 m! You might 
therefore wonder why a light turns on almost instanta-
neously when its switch is thrown. In a conductor, changes 
in the electric field that drives the free electrons according 

to the particle in a field model travel through the conduc-
tor with a speed close to that of light. So, when you flip on 
a light switch, electrons already in the lightbulb experience 
electric forces and begin moving after a time interval on the 
order of nanoseconds.
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A current density and an electric field are established in a conductor whenever 
a potential difference is maintained across the conductor. In some materials, the 
current density is proportional to the electric field:

 J 5 sE (26.6)

where the constant of proportionality s is called the conductivity of the conductor.1 
Materials that obey Equation 26.6 are said to follow Ohm’s law, named after Georg 
Simon Ohm. More specifically, Ohm’s law states the following:

For many materials (including most metals), the ratio of the current density 
to the electric field is a constant s that is independent of the electric field 
producing the current.

Materials and devices that obey Ohm’s law and hence demonstrate this simple rela-
tionship between E and J are said to be ohmic. Experimentally, however, it is found 
that not all materials and devices have this property. Those that do not obey Ohm’s 
law are said to be nonohmic. Ohm’s law is not a fundamental law of nature; rather, it 
is an empirical relationship valid only for certain situations.

We can obtain an equation useful in practical applications by considering a seg-
ment of straight wire of uniform cross-sectional area A and length , as shown in 
Figure 26.5. A potential difference DV 5 Vb 2 Va is maintained across the wire, 
creating in the wire an electric field and a current. If the field is assumed to be 
uniform, the magnitude of the potential difference across the wire is related to the 
field within the wire through Equation 24.6,

 DV 5 E, 

Therefore, using Equation 26.6, we can express the potential difference across the 
wire as

DV 5  
/J
s

 

Because J 5 I/A, the potential difference across the wire is

 DV 5 S /
sAD I 5 R I  

The quantity R 5 ,/sA is called the resistance of the conductor. We define the 
resistance in terms of dynamic variables as the ratio of the potential difference 
across a conductor to the current in the conductor:

 R ;
DV
I

  (26.7)

We will use this equation again and again when studying electric circuits. This 
result shows that resistance has SI units of volts per ampere. One volt per ampere is 
defined to be one ohm (V):

 1 V ; 1 V/A (26.8)

Equation 26.7 shows that if a potential difference of 1 V across a conductor causes a 
current of 1 A, the resistance of the conductor is 1 V. For example, if an electrical 
appliance connected to a 120-V source of potential difference carries a current of 
6 A, its resistance is 20 V.

Most electric circuits use circuit elements called resistors to control the current 
in the various parts of the circuit. As with capacitors in Chapter 25, many resistors 
are built into integrated circuit chips (Section 42.7), but stand-alone resistors are 
still available and widely used. Two common types are the composition resistor, which 

Georg Simon ohm
German physicist (1789–1854)
Ohm, a high school teacher and later a 
professor at the University of Munich, 
formulated the concept of resistance 
and discovered the proportionalities 
expressed in Equations 26.6 and 26.7.
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A potential difference �V � 
Vb � Va maintained across the 
conductor sets up an electric 
field E, and this field produces 
a current I  that is proportional 
to the potential difference.

S

Figure 26.5  A uniform conduc-
tor of length , and cross-sectional 
area A.

Pitfall Prevention 26.2
Equation 26.7 Is Not Ohm’s Law  
Many individuals call Equation 
26.7 Ohm’s law, but that is incor-
rect. This equation is simply the 
definition of resistance, and it 
provides an important relation-
ship between voltage, current, and 
resistance. Ohm’s law is related 
to a proportionality of J to E  
(Eq. 26.6) or, equivalently, of I to 
DV, which, from Equation 26.7, 
indicates that the resistance is con-
stant, independent of the applied 
voltage. We will see some devices 
for which Equation 26.7 correctly 
describes their resistance, but 
that do not obey Ohm’s law. Equa-
tion 26.7 can be written as DV 5 IR.  
Compare to Equation 14.14.

1 Do not confuse conductivity s with surface charge density, for which the same symbol is used.
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696 Chapter 26 Current and Resistance

contains carbon, and the wire-wound resistor, which consists of a coil of wire. Values 
of resistors in ohms are normally indicated by color coding as shown in Figure 26.6 
and Table 26.1. The first two colors on a resistor give the first two digits in the resis-
tance value, with the decimal place to the right of the second digit. The third color 
represents the power of 10 for the multiplier of the resistance value. The last color 
is the tolerance of the resistance value. As an example, the four colors on the resis-
tor at the bottom of Figure 26.6 are yellow (5 4), violet (5 7), black (5 100), and 
gold (5 5%), and so the resistance value is 47 3 100 5 47 V with a tolerance value  
of 5% 5 2 V.

The inverse of conductivity is resistivity2 r:

 r 5
1
s

 (26.9)

where r has the units ohm ? meters (V ? m). Because R 5 ,/sA, we can express the 
resistance of a uniform block of material along the length , as

 R 5 r 
/
A

 (26.10)

Every ohmic material has a characteristic resistivity that depends on the prop-
erties of the material and on temperature. In addition, as you can see from  
Equation 26.10, the resistance of a sample of the material depends on the geometry 
of the sample as well as on the resistivity of the material. Table 26.2 gives the resis-
tivities of a variety of materials at 208C. Notice the enormous range, from very low 
values for good conductors such as copper and silver to very high values for good 
insulators such as glass and rubber. An ideal conductor would have zero resistivity, 
and an ideal insulator would have infinite resistivity.

Equation 26.10 shows that the resistance of a given cylindrical conductor such as 
a wire is proportional to its length and inversely proportional to its cross-sectional 
area. If the length of a wire is doubled, its resistance doubles. If its cross-sectional 
area is doubled, its resistance decreases by one-half. The situation is analogous to 
the flow of a liquid through a pipe. As the pipe’s length is increased, the resistance 
to flow increases. As the pipe’s cross-sectional area is increased, more liquid crosses 
a given cross section of the pipe per unit time interval. Therefore, more liquid flows 
for the same pressure differential applied to the pipe, and the resistance to flow 
decreases.

Ohmic materials and devices have a linear current–potential difference relation-
ship over a broad range of applied potential differences (Fig. 26.7a). The slope of 

Resistivity is the inverse 
of conductivity

Resistance of a uniform 
material along the length ,

 table 26.1  Color Coding for Resistors

Color Number Multiplier Tolerance

Black 0  1 
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold  1021  5%
Silver  1022 10%
Colorless   20%

The colored bands on 
this resistor are yellow, 
violet, black, and gold.

Figure 26.6  A close-up view of a 
circuit board shows the color cod-
ing on a resistor. The gold band 
on the left tells us that the resistor 
is oriented “backward” in this view 
and we need to read the colors 
from right to left.
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2 Do not confuse resistivity r with mass density or charge density, for which the same symbol is used.

Pitfall Prevention 26.3
Resistance and Resistivity  
Resistivity is a property of a sub-
stance, whereas resistance is a prop-
erty of an object. We have seen sim-
ilar pairs of variables before. For 
example, density is a property of a 
substance, whereas mass is a prop-
erty of an object. Equation 26.10  
relates resistance to resistivity, and 
Equation 1.1 relates mass to den-
sity. Similarly, specific heat, which 
we studied in Chapter 19, is a 
property of a substance, while heat 
capacity is a property of an object.
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the I-versus-DV curve in the linear region yields a value for 1/R. Nonohmic materi-
als have a nonlinear current–potential difference relationship. One common semi-
conducting device with nonlinear I-versus-DV characteristics is the junction diode 
(Fig. 26.7b), which we discuss in Chapter 42 of the extended version of this text. 
The resistance of this device is low for currents in one direction (positive DV) and 
high for currents in the reverse direction (negative DV). In fact, most modern elec-
tronic devices, such as transistors, have nonlinear current–potential difference 
relationships; their proper operation depends on the particular way they violate 
Ohm’s law.

Q uiCk Quiz 26.2  A cylindrical wire has a radius r and length ,. If both r 
and , are doubled, does the resistance of the wire (a) increase, (b) decrease, or 
(c) remain the same?

Q uiCk Quiz 26.3  In Figure 26.7b, as the applied voltage increases, does the 
resistance of the diode (a) increase, (b) decrease, or (c) remain the same?

 table 26.2  Resistivities and Temperature Coefficients of Resistivity  
for Various Materials
  Temperature
Material Resistivitya (V ? m) Coefficientb a [(°C)21]

Silver 1.59 3 1028 3.8 3 1023

Copper 1.7 3 1028 3.9 3 1023

Gold 2.44 3 1028 3.4 3 1023

Aluminum 2.82 3 1028 3.9 3 1023

Tungsten 5.6 3 1028 4.5 3 1023

Iron 10 3 1028 5.0 3 1023

Platinum 11 3 1028 3.92 3 1023

Lead 22 3 1028 3.9 3 1023

Nichromec 1.00 3 1026 0.4 3 1023

Carbon 3.5 3 1025 20.5 3 1023

Germanium 0.46 248 3 1023

Silicond 2.3 3 103 275 3 1023

Glass 1010 to 1014

Hard rubber , 1013

Sulfur    1015

Quartz (fused) 75 3 1016

a All values at 20°C. All elements in this table are assumed to be free of impurities.
b See Section 26.4.
c A nickel–chromium alloy commonly used in heating elements. The resistivity of Nichrome 
varies with composition and ranges between 1.00 3 1026 and 1.50 3 1026 V ? m.
d The resistivity of silicon is very sensitive to purity. The value can be changed by several 
orders of magnitude when it is doped with other atoms.

Figure 26.7  (a) The current– 
potential difference curve for an 
ohmic material. The curve is  
linear, and the slope is equal to 
the inverse of the resistance of  
the conductor. (b) A nonlinear  
current–potential difference 
curve for a junction diode. This 
device does not obey Ohm’s law.

I

Slope = 1
R

V�

a

I

V�

b

 Example 26.2   The Resistance of Nichrome Wire

The radius of 22-gauge Nichrome wire is 0.32 mm.

(A) Calculate the resistance per unit length of this wire.

S o l u T i o n

Conceptualize Table 26.2 shows that Nichrome has a resistivity two orders of magnitude larger than the best conductors in 
the table. Therefore, we expect it to have some special practical applications that the best conductors may not have.

Categorize We model the wire as a cylinder so that a simple geometric analysis can be applied to find the resistance.

continued
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26.2 c o n t i n u e d

Analyze Use Equation 26.10 and the resistivity of Nichrome  
R
/

5
r

A
5

r

pr 2 5
1.0 3 1026 V ? m

p s0.32 3 1023 md2 5  3.1 V/m 
from Table 26.2 to find the resistance per unit length:

(B) If a potential difference of 10 V is maintained across a 1.0-m length of the Nichrome wire, what is the current in  
the wire?

S o l u T i o n

Analyze Use Equation 26.7 to find the current: I 5
DV
R

5
DV

sRy/d/
5

10 V
s3.1 Vymds1.0 md

5   3.2 A

Finalize Because of its high resistivity and resistance to oxidation, Nichrome is often used for heating elements in toasters, 
irons, and electric heaters.

W H A T  i F ? What if the wire were composed of copper instead of Nichrome?  How would the values of the resistance per 
unit length and the current change?

Answer Table 26.2 shows us that copper has a resistivity two orders of magnitude smaller than that for Nichrome. Therefore, 
we expect the answer to part (A) to be smaller and the answer to part (B) to be larger. Calculations show that a copper wire of 
the same radius would have a resistance per unit length of only 0.053 V/m. A 1.0-m length of copper wire of the same radius 
would carry a current of 190 A with an applied potential difference of 10 V.

 Example 26.3    The Radial Resistance of a Coaxial Cable

Coaxial cables are used extensively for cable television and other electronic applica-
tions. A coaxial cable consists of two concentric cylindrical conductors. The region 
between the conductors is completely filled with polyethylene plastic as shown in  
Figure 26.8a. Current leakage through the plastic, in the radial direction, is unwanted. 
(The cable is designed to conduct current along its length, but that is not the current 
being considered here.) The radius of the inner conductor is a 5 0.500 cm, the radius 
of the outer conductor is b 5 1.75 cm, and the length is L 5 15.0 cm. The resistivity of 
the plastic is 1.0 3 1013 V ? m. Calculate the radial resistance of the plastic between 
the two conductors.

S o l u T i o n

Conceptualize Imagine two currents as suggested in the text of the problem. The 
desired current is along the cable, carried within the conductors. The undesired cur-
rent corresponds to leakage through the plastic, and its direction is radial.

Categorize Because the resistivity and the geometry of the plastic are known, we cat-
egorize this problem as one in which we find the resistance of the plastic from these 
parameters. Equation 26.10, however, represents the resistance of a block of material. 
We have a more complicated geometry in this situation. Because the area through which 
the charges pass depends on the radial position, we must use integral calculus to deter-
mine the answer.

Analyze We divide the plastic into concentric cylindrical shells of infinitesimal thick-
ness dr (Fig. 26.8b). Any charge passing from the inner to the outer conductor must 
move radially through this shell. Use a differential form of Equation 26.10, replacing , 
with dr for the length variable: dR 5 r dr/A, where dR is the resistance of a shell of plastic 
of thickness dr and surface area A.  

Write an expression for the resistance of our hollow  dR 5
r dr

A
5

r

2prL
 dr  

cylindrical shell of plastic representing the area as the  
surface area of the shell:

L

Outer
conductor

Inner
conductor

Polyethylene

a

b

Current
direction

End view

dr

r

a

b

Figure 26.8  (Example 26.3) A coax-
ial cable. (a) Polyethylene plastic fills 
the gap between the two conductors. 
(b) End view, showing current leakage.
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   26.3    A Model for Electrical Conduction
In this section, we describe a structural model of electrical conduction in metals 
that was first proposed by Paul Drude (1863–1906) in 1900. (See Sections 1.2 and 
20.1 for a review of structural models.) This model leads to Ohm’s law and shows 
that resistivity can be related to the motion of electrons in metals. Although the 
Drude model described here has limitations, it introduces concepts that are applied 
in more elaborate treatments.

Following the outline of structural models from Section 20.1, the Drude model 
for electrical conduction has the following properties:

1. Physical components: 
Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. We identify the system 
as the combination of the atoms and the conduction electrons. The conduc-
tion electrons, although bound to their respective atoms when the atoms are 
not part of a solid, become free when the atoms condense into a solid.

2. Behavior of the components: 
(a) In the absence of an electric field, the conduction electrons move in 

random directions through the conductor (Fig. 26.3a). The situation is 
similar to the motion of gas molecules confined in a vessel. In fact, some 
scientists refer to conduction electrons in a metal as an electron gas.

(b) When an electric field is applied to the system, the free electrons drift 
slowly in a direction opposite that of the electric field (Fig. 26.3b), with 
an average drift speed vd that is much smaller (typically 1024 m/s) than 
their average speed vavg between collisions (typically 106 m/s).

(c) The electron’s motion after a collision is independent of its motion 
before the collision. The excess energy acquired by the electrons due to 
the work done on them by the electric field is transferred to the atoms 
of the conductor when the electrons and atoms collide.

26.3 c o n t i n u e d

Integrate this expression from r 5 a to r 5 b: (1)   R 5 #dR 5
r

2pL
 #

b

a
 
dr
r

5
r

2pL
  ln Sb

aD
Substitute the values given: R 5

1.0 3 1013 V ? m
2p s0.150 md

  ln S 1.75 cm
0.500 cmD 5  1.33 3 1013 V

Finalize Let’s compare this resistance to that of the inner copper conductor of the cable along the 15.0-cm length.

Use Equation 26.10 to find the resistance of the  R Cu 5 r 
/
A

5 s1.7 3 1028 V ? md 3 0.150 m
p s5.00 3 1023 md24 

copper cylinder:
 5 3.2 3 1025 V

This resistance is 18 orders of magnitude smaller than the radial resistance. Therefore, almost all the current corresponds to 
charge moving along the length of the cable, with a very small fraction leaking in the radial direction.

W H A T  i F ? Suppose the coaxial cable is enlarged to 
twice the overall diameter with two possible choices:  
(1) the ratio b/a is held fixed, or (2) the difference b 2 a is 
held fixed. For which choice does the leakage current 
between the inner and outer conductors increase when the 
voltage is applied between them?

Answer For the current to increase, the resistance 
must decrease. For choice (1), in which b/a is held fixed, 

Equation  (1) shows that the resistance is unaffected. For 
choice (2), we do not have an equation involving the differ-
ence b 2 a to inspect. Looking at Figure 26.8b, however, we 
see that increasing b and a while holding the difference con-
stant results in charge flowing through the same thickness 
of plastic but through a larger area perpendicular to the 
flow. This larger area results in lower resistance and a higher 
current.
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700 Chapter 26 Current and Resistance

With regard to property 2(c) above, the energy transferred to the atoms causes the 
internal energy of the system and, therefore, the temperature of the conductor to 
increase.

We are now in a position to derive an expression for the drift velocity, using sev-
eral of our analysis models. When a free electron of mass me and charge q (5 2e) is 
subjected to an electric field E

S
, it is described by the particle in a field model and 

experiences a force F
S

5 qE
S

. The electron is a particle under a net force, and its 
acceleration can be found from Newton’s second law, oF

S
5 maS:

 aS 5
o F

S

m
5

qE
S

me

 (26.11)

Because the electric field is uniform, the electron’s acceleration is constant, so the 
electron can be modeled as a particle under constant acceleration. If vSi is the elec-
tron’s initial velocity the instant after a collision (which occurs at a time defined as 
t 5 0), the velocity of the electron at a very short time t later (immediately before 
the next collision occurs) is, from Equation 4.8,

 vSf 5 vSi 1 aSt 5 vSi 1
qE

S

me

 t (26.12)

Let’s now take the average value of vSf  for all the electrons in the wire over all possi-
ble collision times t and all possible values of vSi. Assuming the initial velocities are 
randomly distributed over all possible directions (property 2(a) above), the aver-
age value of vSi is zero. The average value of the second term of Equation 26.12 is 
sq E

S
ymedt, where t is the  average time interval between successive collisions. Because the 

average value of vSf  is equal to the drift velocity,

 vSf,avg 5 vSd 5
qE

S

me

 t (26.13)

The value of t depends on the size of the metal atoms and the number of  
electrons per unit volume. We can relate this expression for drift velocity in  
Equation 26.13 to the current in the conductor. Substituting the magnitude of 
the velocity from Equation 26.13 into Equation 26.4, the average current in the 
conductor is given by

 Iavg 5 nq SqE
me

 tDA 5
nq 2tA

me

 E  (26.14)

Because the current density J  is the current divided by the area A,

 J 5
nq 2t

me

 E  

where n is the number of electrons per unit volume. Comparing this expression 
with Ohm’s law, J 5 sE, we obtain the following relationships for conductivity and 
resistivity of a conductor:

 s 5
nq 2t

me

 (26.15)

 r 5
1
s

5
me

nq 2t
 (26.16)

According to this classical model, conductivity and resistivity do not depend on the 
strength of the electric field. This feature is characteristic of a conductor obeying 
Ohm’s law.

The model shows that the resistivity can be calculated from a knowledge of 
the density of the electrons, their charge and mass, and the average time inter-
val t between collisions. This time interval is related to the average distance 

Drift velocity in terms of 
microscopic quantities

Current density in terms 
of microscopic quantities

Conductivity in terms 
of microscopic quantities

Resistivity in terms 
of microscopic quantities

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    26.4 Resistance and Temperature 701

between collisions ,avg (the mean free path) and the average speed vavg through the 
expression3

 t 5
/avg

vavg

 (26.17)

Although this structural model of conduction is consistent with Ohm’s law, it 
does not correctly predict the values of resistivity or the behavior of the resistivity 
with temperature. For example, the results of classical calculations for vavg using the 
ideal gas model for the electrons are about a factor of ten smaller than the actual 
values, which results in incorrect predictions of values of resistivity from Equation 
26.16. Furthermore, according to Equations 26.16 and 26.17, the resistivity is pre-
dicted to vary with temperature as does vavg, which, according to an ideal-gas model 
(Chapter 20, Eq. 20.44), is proportional to ÏT . This behavior is in disagreement 
with the experimentally observed linear dependence of resistivity with temperature 
for pure metals. (See Section 26.4.) Because of these incorrect predictions, we must 
modify our structural model. We shall call the model that we have developed so far 
the classical model for electrical conduction. To account for the incorrect predic-
tions of the classical model, we develop it further into a quantum mechanical model, 
which can be found in advanced textbooks.

   26.4    Resistance and Temperature
At the end of the preceding section, we discussed the temperature variation of 
resistivity. Over a limited temperature range, the resistivity of a conductor varies 
approximately linearly with temperature according to the expression

 r 5 r0[1 1 a(T 2 T0)] (26.18)

where r is the resistivity at some temperature T (in degrees Celsius), r0 is the resis-
tivity at some reference temperature T0 (usually taken to be 208C), and a is the 
temperature coefficient of resistivity. From Equation 26.18, the temperature coef-
ficient of resistivity can be expressed as

 a 5
Dryr0

DT
 (26.19)

where Dr 5 r 2 r0 is the change in resistivity in the temperature interval DT 5  
T 2 T0. Compare the form of Equation 26.19 with Equation 18.4 for the coefficient 
of thermal expansion.

The temperature coefficients of resistivity for various materials are given in  
Table 26.2. Notice that the unit for a is degrees Celsius21 [(8C)21]. Because resistance 
is proportional to resistivity (Eq. 26.10), the variation of resistance of a sample is

 R 5 R0[1 1 a(T 2 T0)] (26.20)

where R0 is the resistance at temperature T0. Use of this property enables precise 
temperature measurements through careful monitoring of the resistance of a 
probe made from a particular material.

For some metals such as copper, resistivity is nearly proportional to temperature 
as shown in Figure 26.9. A nonlinear region always exists at very low temperatures, 
however, and the resistivity usually reaches some finite value as the temperature 
approaches absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal. 
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.

  Variation of r with 
temperature

3Recall that the average speed of a group of particles depends on the temperature of the group (Chapter 20) and is 
not the same as the drift speed vd .

T0

T0

r

r

As T approaches absolute zero, 
the resistivity approaches a 
nonzero value.

Figure 26.9  Resistivity versus tem-
perature for a metal such as copper. 
The curve is linear over a wide range 
of temperatures, and r increases 
with increasing temperature. 
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702 Chapter 26 Current and Resistance

Notice that three of the a values in Table 26.2 are negative, indicating that the 
resistivity of these materials decreases with increasing temperature. This behav-
ior is indicative of a class of materials called semiconductors, first introduced in 
Section 22.2, and is due to an increase in the density of charge carriers at higher 
temperatures.

Q uiCk Quiz 26.4  When does an incandescent lightbulb carry more current,  
(a) immediately after it is turned on and the glow of the metal filament is increas-
ing or (b) after it has been on for a few milliseconds and the glow is steady?

   26.5    Superconductors
There is a class of metals and compounds whose resistance decreases to zero when 
they are below a certain temperature Tc, known as the critical temperature. These 
materials are known as superconductors. The resistance–temperature graph for a 
superconductor follows that of a normal metal at temperatures above Tc (Fig. 26.10). 
When the temperature is at or below Tc, the resistivity drops suddenly to zero. This 
phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh-Onnes 
(1853–1926) as he worked with mercury, which is a superconductor below 4.2 K. 
Measurements have shown that the resistivities of superconductors below their Tc 
values are less than 4 3 10225 V ? m, or approximately 1017 times smaller than the 
resistivity of copper. In practice, these resistivities are considered to be zero.

Today, thousands of superconductors are known, and as Table 26.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high critical 
temperatures, whereas superconducting materials such as those observed by Kam-
erlingh-Onnes are metals. If a room-temperature superconductor is ever identified, 
its effect on technology could be tremendous.

The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent room-temperature conduc-
tors, do not exhibit superconductivity.

One truly remarkable feature of superconductors is that once a current is set 
up in them, it persists without any applied potential difference (because R 5 0). Steady 
currents have been observed to persist in superconducting loops for several years 
with no apparent decay!

An important and useful application of superconductivity is in the develop-
ment of superconducting magnets, in which the magnitudes of the magnetic 
field are approximately ten times greater than those produced by the best normal  

0.10

0.05

4.44.24.0 4.1 4.3
T (K)

0.15

Tc

0.00

R ( )�

The resistance drops 
discontinuously to zero at Tc, 
which is 4.15 K for mercury.

Figure 26.10  Resistance versus 
temperature for a sample of mer-
cury (Hg). The graph follows that 
of a normal metal above the  
critical temperature Tc.

 table 26.3  Critical Temperatures  
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88
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electromagnets. Such superconducting magnets are being considered as a means 
of storing energy. Superconducting magnets are currently used in medical mag-
netic resonance imaging, or MRI, units, which produce high-quality images of 
internal organs without the need for excessive exposure of patients to x-rays or 
other harmful radiation.

A successful theory for superconductivity in metals was published in 1957 by 
John Bardeen (1908–1991), L. N. Cooper (b. 1930), and J. R. Schrieffer (b. 1931); 
it is generally called BCS theory, based on the first letters of their last names. This 
theory led to a Nobel Prize in Physics for the three scientists in 1972.

An important development in physics that elicited much excitement in the scien-
tific community was the discovery of high-temperature copper oxide–based super-
conductors. The excitement began with a 1986 publication by J. Georg Bednorz  
(b. 1950) and K. Alex Müller (b. 1927), scientists at the IBM Zurich Research  
Laboratory in Switzerland. In their seminal paper,4 Bednorz and Müller reported 
strong evidence for superconductivity at 30 K in an oxide of barium, lanthanum, 
and copper. They were awarded the Nobel Prize in Physics in 1987 for their remark-
able discovery.  Later that year, teams of scientists from Japan and the United States 
reported superconductivity at 105 K in an oxide of bismuth, strontium, calcium, 
and copper. Superconductivity at temperatures as high as 150 K have been reported 
in an oxide containing mercury.  The search for novel superconducting materials 
continues both for scientific reasons and because practical applications become 
more probable and widespread as the critical temperature is raised.

   26.6    Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 26.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.

Imagine following a positive quantity of charge Q moving clockwise around 
the circuit in Figure 26.11 from point a through the battery and resistor back to 
point a. We identify the entire circuit as our system. As the charge moves from a 
to b through the battery, the electric potential energy of the system increases by an 
amount Q DV while the chemical potential energy in the battery decreases by the 
same amount. (Recall from Eq. 24.3 that DUE 5 q DV.) As the charge moves from 
c to d through the resistor, however, the electric potential energy of the system 
decreases due to collisions of electrons with atoms in the resistor. In this process, 
the electric potential energy is transformed to internal energy corresponding to 
increased vibrational motion of the atoms in the resistor. Because the resistance 
of the interconnecting wires is neglected, no energy transformation occurs for 
paths bc and da. When the charge returns to point a, the net result is that some of 
the chemical potential energy in the battery has been delivered to the resistor and 
resides in the resistor as internal energy Eint associated with molecular vibration.

Let us analyze the energy situation in Figure 26.11 in terms of Equation 8.2. If 
we choose the resistor as the system, Equation 8.2 becomes, during a time interval 
after the switch is closed,

DEint 5 Q 1 TET 1 TER

4 J. G. Bednorz and K. A. Müller, Z. Phys. B 64:189, 1986.

�

b

a

c

d

R

I

V
�

�

The direction of the 
effective flow of positive 
charge is clockwise.

Figure 26.11 A circuit consisting 
of a resistor of resistance R and a 
battery having a potential differ-
ence DV across its terminals.

Pitfall Prevention 26.4
Charges Do Not Move All the Way 
Around a Circuit in a Short Time  
In terms of understanding the 
energy transfer in a circuit, it is 
useful to imagine a charge moving 
all the way around the circuit 
even though it would take hours 
to do so.
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704 Chapter 26 Current and Resistance

The left side represents the increasing temperature of the resistor as it receives 
energy TET from the battery and radiates energy TER into the surroundings. The 
heat Q is another process by which the resistor can transfer energy because it is 
in thermal contact with the air and it is warmer than the air. Once the resistor 
reaches a steady-state temperature, the left side of the equation becomes zero, and 
the input electrical energy is balanced by the output heat and radiation.

If we choose the entire circuit as the system, Equation 8.2 for this same time 
interval becomes

DUc 1 DEint 5 Q 1 TER

The term DUc on the left side represents the decreasing chemical potential energy 
of the battery as it delivers energy to the resistor. The right side represents thermal 
conduction of energy Q into the air and energy TER radiating into the surround-
ings from the resistor. Once the resistor reaches a steady-state temperature, the 
term DEint becomes zero. The equation then represents the continuous draining of 
energy from the battery, with the energy leaving the circuit by heat and radiation, 
eventually becoming internal energy in the surroundings. Notice that TET does not 
appear in this equation, because the transfer of energy by electrical transmission 
occurs within this system.

Some electrical devices include heat sinks 5 connected to parts of the circuit to 
prevent these parts from reaching dangerously high temperatures. Heat sinks are 
pieces of metal with many fins. Because the metal’s high thermal conductivity pro-
vides a rapid transfer of energy by heat away from the hot component and the large 
number of fins provides a large surface area in contact with the air, energy can 
transfer by radiation and into the air by heat at a high rate.

Let’s now investigate the rate at which the electric potential energy of the sys-
tem decreases as the charge Q passes through the resistor, using the first part of  
Equation 24.3:

 
dUE

dt
5

d
dt

 sQ DV d 5
dQ

dt
 DV 5 I DV  

where I is the current in the circuit. The system regains this potential energy when 
the charge passes through the battery, at the expense of chemical energy in the bat-
tery. The rate at which the potential energy of the system decreases as the charge 
passes through the resistor is equal to the rate at which the system gains inter-
nal energy in the resistor. Therefore, the power P, representing the rate at which 
energy is delivered to the resistor, is

 P 5 I DV  (26.21)

We derived this result by considering a battery delivering energy to a resistor. Equa-
tion 26.21, however, can be used to calculate the power delivered by a voltage source 
to any device carrying a current I and having a potential difference DV between its 
terminals.

Using Equation 26.21 and DV 5 IR for a resistor, we can express the power deliv-
ered to the resistor in the alternative forms

 P 5 I 2R 5
sDV d2

R
 (26.22)

When I is expressed in amperes, DV in volts, and R in ohms, the SI unit of power 
is the watt, as it was in Chapter 8 in our discussion of mechanical power. The pro-
cess by which energy is transformed to internal energy in a conductor of resistance  
R is often called joule heating;6 this transformation is also often referred to as  

5 This usage is another misuse of the word heat that is ingrained in our common language.
6 It is commonly called joule heating even though the process of heat does not occur when energy delivered to a resistor 
appears as internal energy. It is another example of incorrect usage of the word heat that has become entrenched in 
our language.

Pitfall Prevention 26.5
Misconceptions About Current  
Several common misconceptions 
are associated with current in a 
circuit like that in Figure 26.11. 
One is that current comes out 
of one terminal of the battery 
and is then “used up” as it passes 
through the resistor, leaving 
current in only one part of the 
circuit. The current is actually 
the same everywhere in the circuit. 
A related misconception has the 
current coming out of the resistor 
being smaller than that going in 
because some of the current is 
“used up.” Yet another miscon-
ception has current coming out 
of both terminals of the battery, 
in opposite directions, and then 
“clashing” in the resistor, deliv-
ering the energy in this manner. 
That is not the case; charges flow 
in the same rotational sense at all 
points in the circuit.

Pitfall Prevention 26.6
Energy Is Not “Dissipated” In 
some books, you may see Equation 
26.22 described as the power  
“dissipated in” a resistor, sug-
gesting that energy disappears. 
Instead, we say energy is “deliv-
ered to” a resistor, and appears 
within it as internal energy.
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an I 2R loss. When evaluating the electrical power delivered to a device in a circuit, 
keep in mind that Equation 26.21 can be used generally, but Equation 26.22 is only 
to be used when evaluating the power delivered to a resistor.

Let us now address the question raised in the opening storyline: Why is 
energy transported through electrical wires at very high voltages? When trans-
porting energy by electricity through power lines (Fig. 26.12), we cannot assume 
the lines have zero resistance. Real power lines do indeed have resistance, and 
power is delivered to the resistance of these wires. Utility companies seek to 
minimize the energy transformed to internal energy in the lines and maximize 
the energy delivered to the consumer. Because P 5 I DV, the same amount of 
energy can be transported either at high currents and low potential differences 
or at low currents and high potential differences. Utility companies choose to 
transport energy at low currents and high potential differences primarily for 
economic reasons. Copper wire is very expensive, so it is cheaper to use high-re-
sistance wire (that is, wire having a small cross-sectional area; see Eq. 26.10). 
Therefore, in the expression for the power delivered to a resistor, P 5 I 2R , the 
resistance of the wire is fixed at a relatively high value for economic consider-
ations. The I 2R loss can be reduced by keeping the current I as low as possi-
ble, which means transferring the energy at a high voltage. At the substation, 
the potential difference is usually reduced by a device called a transformer. Of 
course, when the potential difference decreases, the current increases by the 
same factor and the power remains the same. We shall discuss transformers in 
greater detail in Chapter 32.

Figure 26.12  These power lines 
transfer energy from the electric 
company to homes and businesses. 
The energy is transferred at a very 
high voltage, possibly hundreds of 
thousands of volts in some cases. 
Even though it makes power lines 
very dangerous, the high voltage 
results in less loss of energy due to 
resistance in the wires.
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 Example 26.4     Power in an Electric Heater

An electric heater is constructed by applying a potential difference of 120 V across a Nichrome wire that has a total resis-
tance of 8.00 V. Find the current carried by the wire and the power rating of the heater.

S o l u T i o n

Conceptualize As discussed in Example 26.2, Nichrome wire has high resistivity and is often used for heating elements in 
toasters, irons, and electric heaters. Therefore, we expect the power delivered to the wire to be relatively high.

Categorize We evaluate the power from Equation 26.22, so we categorize this example as a substitution problem.

Use Equation 26.7 to find the current in the wire:  I 5
DV
R

5
120 V
8.00 V

5  15.0 A

Find the power rating using the expression P 5 I 2R  P 5 I 2R 5 s15.0 Ad2s8.00 Vd 5 1.80 3 103 W 5  1.80 kW 
from Equation 26.22:

W H A T  i F ?  What if the heater were accidentally connected to a 240-V supply? (That is difficult to do because the shape 
and orientation of the metal contacts in 240-V plugs are different from those in 120-V plugs.) How would that affect the 
current carried by the heater and the power rating of the heater, assuming the resistance remains constant?

Answer If the applied potential difference were doubled, Equation 26.7 shows that the current would double. According to 
Equation 26.22, P 5 (DV)2/R, the power would be four times larger.

 Example 26.5    Linking Electricity and Thermodynamics

An immersion heater must increase the temperature of 1.50 kg of water from 10.08C to 50.08C in 10.0 min while operating 
at 110 V.

(A) What is the required resistance of the heater?

continued
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26.5 c o n t i n u e d

S o l u T i o n

Conceptualize An immersion heater is a resistor that is inserted into a container of water. As energy is delivered to the immer-
sion heater, raising its temperature, energy leaves the surface of the resistor by heat, going into the water. When the immer-
sion heater reaches a constant temperature, the rate of energy delivered to the resistance by electrical transmission (TET) is 
equal to the rate of energy delivered by heat (Q) to the water.

Categorize This example allows us to link our new understanding of power in electricity with our experience with specific 
heat in thermodynamics (Chapter 19). The water is a nonisolated system. Its internal energy is rising because of energy trans-
ferred into the water by heat from the resistor, so Equation 8.2 reduces to DEint 5 Q. In our model, we assume the energy that 
enters the water from the heater remains in the water.

Analyze To simplify the analysis, let’s ignore the initial period during which the temperature of the resistor increases and 
also ignore any variation of resistance with temperature. Therefore, we imagine a constant rate of energy transfer for the 
entire 10.0 min.

Set the rate of energy delivered to the resistor equal  P 5
sDV d2

R
5

Q

Dt
 

to the rate of energy Q entering the water by heat:

Use Equation 19.4, Q 5 mc DT, to relate the energy  
sDV d2

R
5

mc DT
Dt

   S   R 5
sDV d2 Dt
mc DT

 
input by heat to the resulting temperature change  
of the water and solve for the resistance:

Substitute the values given in the statement of the  R 5
s110 Vd2s600 sd

s1.50 kgds4 186 Jykg ? 8Cds50.08C 2 10.08Cd
5  28.9 V 

problem:

(B)  Estimate the cost of heating the water.

S o l u T i o n

Multiply the power by the time interval to find the  TET 5 P Dt 5
sDV d2

R
 Dt 5

s110 Vd2

28.9 V
s10.0 mindS 1 h

60.0 minD 
amount of energy transferred to the resistor:
   5 69.8 Wh 5 0.069 8 kWh

Find the cost knowing that energy is purchased at  Cost 5 (0.069 8 kWh)($0.11/kWh) 5 $0.008 5  0.8¢ 
an estimated price of 11¢ per kilowatt-hour:

Finalize The cost to heat the water is very low, less than one cent. In reality, the cost is higher because some energy is trans-
ferred from the water into the surroundings by heat and electromagnetic radiation while its temperature is increasing. If you 
have electrical devices in your home with power ratings on them, use this power rating and an approximate time interval of 
use to estimate the cost for one use of the device.

Summary
 › Definitions

The electric current I in a conductor is defined as

 I ;
dQ

dt
 (26.2)

where dQ is the charge that passes through a cross section of the conductor in a time 
interval dt. The SI unit of current is the ampere (A), where 1 A 5 1 C/s.

The current density J in a conductor is 
the current per unit area:

 J ;
I
A

 (26.5)

The resistance R of a conductor is defined as

 R ;
DV
I

  (26.7)

where DV is the potential difference across the conductor and I is the current it carries. The SI unit of resistance is volts per ampere, 
which is defined to be 1 ohm (V); that is, 1 V 5 1 V/A.
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 › Concepts and Principles

The average current in a conductor is 
related to the motion of the charge car-
riers through the relationship

 Iavg 5 nqvd A (26.4)

where n is the density of charge carriers, 
q is the charge on each carrier, vd is the 
drift speed, and A is the cross-sectional 
area of the conductor.

The current density in an ohmic conductor is proportional to the electric field 
according to the expression

 J 5 sE (26.6)

The proportionality constant s is called the conductivity of the material of which 
the conductor is made. The inverse of s is known as resistivity r (that is, r 5 1/s). 
Equation 26.6 is known as Ohm’s law, and a material is said to obey this law if the 
ratio of its current density to its applied electric field is a constant that is indepen-
dent of the applied field.

For a uniform block 
of material of cross- 
sectional area A and 
length ,, the resistance 
over the length , is

  R 5 r 
/
A

 (26.10)

where r is the resistiv-
ity of the material.

In a classical model of electrical conduction in metals, the electrons are treated as molecules of a gas. 
In the absence of an electric field, the average velocity of the electrons is zero. When an electric field is 
applied, the electrons move (on average) with a drift velocity vSd that is opposite the electric field. The 
drift velocity is given by

 vSd 5
qE

S

me

 t (26.13)

where q is the electron’s charge, me is the mass of the electron, and t is the average time interval 
between electron–atom collisions. According to this model, the resistivity of the metal is

 r 5
me

nq 2t
 (26.16)

where n is the number of free electrons per unit volume.

The resistivity of a conductor var-
ies approximately linearly with 
temperature according to the 
expression

  r 5 r0[1 1 a(T 2 T0)] (26.18)

where r0 is the resistivity at some 
reference temperature T0 and a 
is the temperature coefficient of 
resistivity.

If a potential difference DV is maintained across a circuit element, the power, or rate at 
which energy is supplied to the element, is

 P 5 I  DV (26.21)

Because the potential difference across a resistor is given by DV 5 IR, we can express the 
power delivered to a resistor as

 P 5 I 2R 5
sDV d2

R
 (26.22)

The energy delivered to a resistor by electrical transmission TET appears in the form of 
internal energy Eint in the resistor.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Imagine a system run by a gasoline engine that operates 
a conveyor belt. The belt carries basketballs to the top 
of a hill. At the top, the basketballs are dumped out and 
roll down the hill. They roll at an approximately constant 
speed because of the continuous collisions the balls make 
with trees, grass, and shrubs on the way down. The average 
speed of the balls downhill is the same as that with which 
they move on the conveyor belt. At the bottom of the hill, 
the balls arrive at the conveyor belt and are carried again 
to the top. Imagine that this system is a mechanical anal-
ogy to the electrical circuit in Figure 26.11. Discuss in your 
group the following: In the mechanical system, what is the 
analog to (a) the resistance, (b) the battery, (c) the elec-
trons in the wires, (d) the electric field in the wires, and  

(e) the terminal voltage of the battery. (f) What is the analog 
to the situation in which the battery eventually runs out of 
energy? (g) Write the appropriate reduction of Equation 8.2  
for the system of the conveyor belt, the basketballs, and 
the Earth (excluding the atmosphere) and a time interval 
from before the system is turned on (and all the basketballs 
are at the bottom of the hill) until a few minutes after it 
is turned on. Ignore air resistance on the basketballs. (h) 
Write the equation in part (g) for a time interval well after 
the system is turned on and the temperature of the system 
has stabilized. Compare the equation to the analogous 
energy equation for the circuit in Figure 26.11 and com-
ment on the comparison. (i) In part (g), it is mentioned 
that the basketballs all start at the bottom of the hill when 
the system is first turned on. How is this not analogous to 
the circuit in Figure 26.11?
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2. ACTIvITy  With your group, consider the table below that 
shows voltage and current data for two different electrical 
devices. Which of the devices obeys Ohm’s law?

Voltage Applied to 
Device (V)

Current in Device 
1 (A)

Current in Device 
2 (A)

1.00 0.123 0.123
2.00 0.249 0.250
3.00 0.365 0.389
4.00 0.486 0.545
5.00 0.621 0.701
6.00 0.745 0.909
7.00 0.854 1.230
8.00 0.984 1.550
9.00 1.102 1.719

10.0 1.241 1.747

3. The ratio of the electric charge to the mass of an elec-
tron, e/me, was measured in 1897 by J.J. Thomson using a 
cathode-ray tube. (See Section 28.3.) Another way to find 
this ratio is by means of the Tolman–Stewart experiment. In 
this experiment, a coil consisting of a number N of circu-
lar turns of wire is rotated at a constant angular speed v0 
about an axis perpendicular to the plane of the coil and 
passing through the common center of the turns. Because 
the electrons in the coil are carried around a circular 
path, there is a current I0 associated with the movement 
of the electrons. The coil is then quickly brought to a stop 
and the amount of charge that passes through a slice of 
the coil containing all N turns during the stopping of the 
coil is measured by specialized apparatus. Because elec-
trons are not attached to atoms, they will keep rotating 
for a very short time interval after the coil is stopped until 
they make enough collisions so that their motion is ran-
dom. With your group, follow the steps outlined here to 
find an expression for the charge to mass ratio of the elec-
tron. (a) Assume that the current falls off exponentially 
with time as the coil is brought to rest: I 5 I0e

2bt, where b 
is some unknown parameter. Find the total charge Q, in 
terms of I0 and b, that passes through a measuring device 
located at some position around the circular ring from  
t 5 0 when the rotation first begins to decrease until  
t 5 .̀ (b) Find the change DE int in internal energy of the 
coil of N turns, due to the current and the resistance R in 
the ring during the slowing-down process from t 5 0 to  
t 5 .̀ Express the change in terms of N, I0, R , and Q.  
(c) Find the change in kinetic energy of all the electrons 
in the coil as it slows down, in terms of m, r, and v0, where 
m is the mass of all of the electrons in the coil and r is 
the radius of the coil. (d) From Equation 8.2, the energy 
equation for the system of the coil from t 5 0 to t 5 ` is 
DK 1 DE int 5 0, where we imagine that the coil is stopped 
essentially immediately by a brake located at some point 
on the circumference of the coil. Even though the coil 
itself stops, we are interested only in the electrons in the 
coil. By stopping the coil immediately, we do no work on 

the coil that might increase its internal energy beyond 
that due to the collisions of the electrons with the lattice 
atoms. Substitute your results from parts (b) and (c) into 
this reduced form of Equation 8.2. With the help of Equa-
tion 26.4, solve the equation in part (d) to find the ratio  
e/me in terms of r, v0, R , and Q. All of these quantities can 
be measured in the experiment.

4. ACTIvITy  Wire to be used in buildings and homes in the 
United States is standardized according to the AWG sys-
tem (American Wire Gauge). Wires are assigned a gauge 
number according to their diameter. The scale ranges 
from gauge 0000 to gauge 36. The table below shows a 
portion of the data table for wire gauges. In a home, a 
15-A circuit usually is constructed from 14-gauge cop-
per wire, while a 20-A circuit uses 12-gauge copper wire. 
These numbers are indicated by the column headed 
“Ampacity,” which is a shortened version of “ampere 
capacity,” or the highest safe current that can be carried 
by the wire.

Wire 
Gauge

Diameter 
(mm)

(Copper Wire) 
Ampacity (A)

(Copper Wire) 
Resistance per Unit 

Length (mV/m)

  1 7.348 110 0.406 6
 2 6.544 95 0.512 7
 3 5.827 85 0.646 5
 4 5.189 70 0.815 2
 5 4.621 1.028
 6 4.115 55 1.296
 7 3.665 1.634
 8 3.264 40 2.061
 9 2.906 2.599
10 2.588 30 3.277
11 2.305 4.132
12 2.053 20 5.211
13 1.828 6.571
14 1.628 15 8.286
15 1.450 10.45

  In your group, perform the following activities related to 
these data. (a) From the data, determine the resistivity 
of copper. Compare to the value in Table 26.2. (b) There 
is not a linear relationship between the wire gauge and 
the diameter of the wire. Find an equation that relates 
the wire gauge to the logarithm (base 10) of the diame-
ter. (c) A graph of ampacity versus diameter of the wire is 
approximately a straight line. But a combination of Equa-
tions 26.7 and 26.10 shows that current is proportional 
to the square of the diameter of the wire. What argument 
can you make that this equation could be modified so 
that the maximum safe current is proportional to the 
diameter? Remember that the ampacity is the largest safe 
current and the major worry about high currents in wires 
in an increase in their temperature, which could cause  
a fire.
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtion 26.1 Electric Current

1. A 200-km-long high-voltage transmission line 2.00 cm in 
diameter carries a steady current of 1 000 A. If the conductor  
is copper with a free charge density of 8.50 3 1028 electrons 
per cubic meter, how many years does it take one electron to 
travel the full length of the cable?

2. A small sphere that carries a charge q is whirled in a circle 
at the end of an insulating string. The angular frequency 
of revolution is v. What average current does this revolving 
charge represent?

3. In the Bohr model of the hydrogen atom (which will be 
covered in detail in Chapter 41), an electron in the lowest 
energy state moves at a speed of 2.19 3 106 m/s in a circular 
path of radius 5.29 3 10211 m. What is the effective current 
associated with this orbiting electron?

4. A copper wire has a circular cross section with a radius of 
1.25 mm. (a) If the wire carries a current of 3.70 A, find the 
drift speed of the electrons in this wire. (b) All other things 
being equal, what happens to the drift speed in wires made 
of metal having a larger number of conduction electrons 
per atom than copper? Explain.

5. Suppose the current in a conductor decreases exponentially 
with time according to the equation I(t) 5 I0e

2t /t, where I0 
is the initial current (at t 5 0) and t is a constant having 
dimensions of time. Consider a fixed observation point 
within the conductor. (a) How much charge passes this 
point between t 5 0 and t 5 t? (b) How much charge passes 
this point between t 5 0 and t 5 10t? (c) What If? How 
much charge passes this point between t 5 0 and t 5 `?

6. Figure P26.6 represents a section of a conductor of nonuni-
form diameter carrying a current of I 5 5.00 A. The radius 
of cross-section A1 is r1 5 0.400 cm. (a) What is the magni-
tude of the current density across A1? The radius r2 at A2 is 
larger than the radius r1 at A1. (b) Is the current at A2 larger, 
smaller, or the same? (c) Is the current density at  
A2 larger, smaller, or the same? Assume A2 5 4A1. Specify 
the (d) radius, (e) current, and (f) current density at A2.

7. The quantity of charge q (in coulombs) that has passed 
through a surface of area 2.00 cm2 varies with time accord-
ing to the equation q 5 4t3 1 5t 1 6, where t is in seconds. 
(a) What is the instantaneous current through the surface 
at t 5 1.00 s? (b) What is the value of the current density?

8. A Van de Graaff generator (see Problem 24) produces a 
beam of 2.00-MeV deuterons, which are heavy hydrogen 
nuclei containing a proton and a neutron. (a) If the beam 
current is 10.0 mA, what is the average separation of the deu-
terons? (b) Is the electrical force of repulsion among them a 
significant factor in beam stability? Explain.

9. An electric current in a conductor varies with time accord-
ing to the expression I(t) 5 100 sin (120pt), where I  is in 
amperes and t is in seconds. What is the total charge passing 
a given point in the conductor from t 5 0 to t 5 1

240 s?

SeCtion 26.2 Resistance

10. A wire 50.0 m long and 2.00 mm in diameter is connected 
to a source with a potential difference of 9.11 V, and the cur-
rent is found to be 36.0 A. Assume a temperature of 20.08C 
and, using Table 26.2, identify the metal out of which the 
wire is made.

11. An electric heater carries a current of 13.5 A when operat-
ing at a voltage of 120 V. What is the resistance of the heater?

12. You are working at a company that manufactures electri-
cal wire. Gold is the most ductile of all metals: it can be 
stretched into incredibly long, thin wires. The company has 
developed a new technique that will stretch 1.00 g of gold 
into a wire of length L 5 2.40 km and uniform diameter. 
Your supervisor gives you the task of determining the resis-
tance of such a wire at 20.08C.

13. Suppose you wish to fabricate a uniform wire from 1.00 g of 
copper. If the wire is to have a resistance of R 5 0.500 V and 
all the copper is to be used, what must be (a) the length and 
(b) the diameter of this wire?

14. Suppose you wish to fabricate a uniform wire from a mass m 
of a metal with density rm and resistivity r. If the wire is to 
have a resistance of R and all the metal is to be used, what 
must be (a) the length and (b) the diameter of this wire?

SeCtion 26.3 A Model for Electrical Conduction

15. A current density of 6.00 3 10213 A/m2 exists in the atmo-
sphere at a location where the electric field is 100 V/m. Cal-
culate the electrical conductivity of the Earth’s atmosphere 
in this region.

16. An iron wire has a cross-sectional area of 5.00 3 1026 m2.  
Carry out the following steps to determine the drift speed 
of the conduction electrons in the wire if it carries a current 
of 30.0 A. (a) How many kilograms are there in 1.00 mole of  
iron? (b) Starting with the density of iron and the result of part  
(a), compute the molar density of iron (the number of moles 
of iron per cubic meter). (c) Calculate the number density 
of iron atoms using Avogadro’s number. (d) Obtain the 
number density of conduction electrons given that there are 
two conduction electrons per iron atom. (e) Calculate the 
drift speed of conduction electrons in this wire.

SeCtion 26.4 Resistance and Temperature

17. What is the fractional change in the resistance of an iron fil-
ament when its temperature changes from 25.08C to 50.08C?
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710 Chapter 26 Current and Resistance

18. A certain lightbulb has a tungsten filament with a resistance 
of 19.0 V when at 20.08C and 140 V when hot. Assume the 
resistivity of tungsten varies linearly with temperature even 
over the large temperature range involved here. Find the 
temperature of the hot filament.

19. An aluminum wire with a diameter of 0.100 mm has a uni-
form electric field of 0.200 V/m imposed along its entire 
length. The temperature of the wire is 50.08C. Assume 
one free electron per atom. (a) Use the information in  
Table 26.2 to determine the resistivity of aluminum at this 
temperature. (b) What is the current density in the wire? 
(c)  What is the total current in the wire? (d) What is the 
drift speed of the conduction electrons? (e) What potential 
difference must exist between the ends of a 2.00-m length of 
the wire to produce the stated electric field?

20. Plethysmographs are devices used for measuring changes in 
the volume of internal organs or limbs. In one form of this 
device, a rubber capillary tube with an inside diameter of 
1.00 mm is filled with mercury at 20.08C. The resistance of 
the mercury is measured with the aid of electrodes sealed 
into the ends of the tube. If 100 cm of the tube is wound in 
a helix around a patient’s upper arm, the blood flow dur-
ing a heartbeat causes the arm to expand, stretching the 
length of the tube by 0.040 0 cm. From this observation and 
assuming cylindrical symmetry, you can find the change in 
volume of the arm, which gives an indication of blood flow. 
Taking the resistivity of mercury to be 9.58 3 1027 V ? m,  
calculate (a) the resistance of the mercury and (b) the 
fractional change in resistance during the heartbeat. Hint: 
The fraction by which the cross-sectional area of the mer-
cury column decreases is the fraction by which the length 
increases because the volume of mercury is constant.

21. At what temperature will aluminum have a resistivity that is 
three times the resistivity copper has at room temperature?

22. You are working in a laboratory that studies the effects of 
currents in various crystals. One of the experiments involves 
a requirement for a steady current of I 5 0.500 A in a wire 
that delivers the current to the crystal. Both the wire and 
the crystal are in a chamber whose interior temperature T 
will vary from 240.08C to 1508C. The wire is made of tung-
sten and is of length L 5 25.0 cm and radius r 5 1.00 mm. 
A test run is being made before the crystal is added to the 
circuit. Your supervisor asks you to determine the range of 
voltages that must be supplied to the wire in the test run to 
maintain its current at 0.500 A.

SeCtion 26.6 Electrical Power

23. Assume that global lightning on the Earth constitutes a 
constant current of 1.00 kA between the ground and an 
atmospheric layer at potential 300 kV. (a) Find the power of 
terrestrial lightning. (b) For comparison, find the power of  
sunlight falling on the Earth. Sunlight has an intensity  
of 1 370 W/m2 above the atmosphere. Sunlight falls per-
pendicularly on the circular projected area that the Earth 
presents to the Sun.

24. The Van de Graaff generator, diagrammed in Figure P26.24, 
is an electrostatic device that can raise the metal dome to 
a high voltage. The dome of such a generator is seen on 
the left in Figure 22.1a. In the device, charge is delivered 
continuously to the high-potential dome by means of a 
moving belt of insulating material. The belt is charged at  

point Ⓐ by means of a discharge 
between comb-like metallic 
needles and a grounded grid. 
The needles are maintained 
at a positive electric potential 
of typically 104 V. The positive 
charge on the moving belt is 
transferred to the dome by 
a second comb of needles at 
point Ⓑ. Because the electric 
field inside the dome is negligi-
ble, the positive charge on the 
belt is easily transferred to the 
dome from its interior regard-
less of its potential. Suppose 
the generator is operating so 
that the potential difference 
between the high potential 
dome Ⓑ and the charging nee-
dles at Ⓐ is 15.0 kV. Calculate 
the power required to drive the 
belt against electrical forces at 
an instant when the effective 
current delivered to the dome 
is 500 mA.

25. A 100-W lightbulb connected to a 120-V source experiences 
a voltage surge that produces 140 V for a moment. By what 
percentage does its power output increase? Assume its resis-
tance does not change.

26. The potential difference across a resting neuron in the 
human body is about 75.0 mV and carries a current of about 
0.200 mA. How much power does the neuron release?

27. The cost of energy delivered to residences by electrical 
transmission varies from $0.070/kWh to $0.258/kWh 
throughout the United States; $0.110/kWh is the average 
value. At this average price, calculate the cost of (a) leav-
ing a 40.0-W porch light on for two weeks while you are on 
vacation, (b) making a piece of dark toast in 3.00 min with 
a 970-W toaster, and (c) drying a load of clothes in 40.0 min 
in a 5.20 3 103-W dryer.

28. Residential building codes typically require the use of 
12-gauge copper wire (diameter 0.205 cm) for wiring recep-
tacles. Such circuits carry currents as large as 20.0 A. If a 
wire of smaller diameter (with a higher gauge number) car-
ried that much current, the wire could rise to a high tem-
perature and cause a fire. (a) Calculate the rate at which 
internal energy is produced in 1.00 m of 12-gauge copper 
wire carrying 20.0 A. (b) What If? Repeat the calculation for 
a 12-gauge aluminum wire. (c) Explain whether a 12-gauge 
aluminum wire would be as safe as a copper wire.

29. Assuming the cost of energy from the electric company is 
$0.110/kWh, compute the cost per day of operating a lamp 
that draws a current of 1.70 A from a 110-V line.

30. An 11.0-W energy-efficient fluorescent lightbulb is designed 
to produce the same illumination as a conventional 40.0-W 
incandescent lightbulb. Assuming a cost of $0.110/kWh for 
energy from the electric company, how much money does the 
user of the energy-efficient bulb save during 100 h of use?

31. A 500-W heating coil designed to operate from 110 V is 
made of Nichrome wire 0.500 mm in diameter. (a) Assum-
ing the resistivity of the Nichrome remains constant at its 
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20.08C value, find the length of wire used. (b) What If? Now 
consider the variation of resistivity with temperature. What 
power is delivered to the coil of part (a) when it is warmed 
to 1 2008C?

32. Why is the following situation impossible? A politician is decry-
ing wasteful uses of energy and decides to focus on energy 
used to operate plug-in electric clocks in the United States. 
While many people use their smartphone as an alarm clock, 
he estimates that there are still 270 million plug-in alarm 
clocks in continuous use. The clocks transform energy taken 
in by electrical transmission at the average rate 2.50 W.  
The politician gives a speech in which he complains that, 
at today’s electrical rates, the nation is losing $100 million 
every year to operate these clocks.

33. Make an order-of-magnitude estimate of the cost of one per-
son’s routine use of a handheld hair dryer for 1 year. If you do 
not use a hair dryer yourself, observe or interview someone 
who does. State the quantities you estimate and their values.

additional ProbleMS

34. Lightbulb A is marked “25 W 120 V,” and lightbulb B is 
marked “100 W 120 V.” These labels mean that each light-
bulb has its respective power delivered to it when it is con-
nected to a constant 120-V source. (a) Find the resistance of 
each lightbulb. (b) During what time interval does 1.00 C 
pass into lightbulb A? (c) Is this charge different upon its 
exit versus its entry into the lightbulb? Explain. (d) In what 
time interval does 1.00 J pass into lightbulb A? (e) By what 
mechanisms does this energy enter and exit the lightbulb? 
Explain. (f) Find the cost of running lightbulb A continu-
ously for 30.0 days, assuming the electric company sells its 
product at $0.110 per kWh.

35. One wire in a high-voltage transmission line carries 1 000 A 
starting at 700 kV for a distance of 100 mi. If the resistance 
in the wire is 0.500 V/mi, what is the power loss due to the 
resistance of the wire?

36. You are working with an oceanographer 
who is studying how the ion concentra-
tion in seawater depends on depth. She 
shows you the device that she uses to 
measure the resistivity of water from a 
boat. It consists of a pair of concentric 
metallic cylinders at the end of a cable 
(Fig. P26.36). Seawater flows freely 
between the two cylindrical shells. She 
makes a measurement by lowering the 
device into the water and applying a 
potential difference DV between the 
inner and outer cylinders. This produces an outward radial 
current I in the seawater between the shells. She shows you 
the current and voltage data for the water at a particular 
depth and is then called away to answer a long call on her 
cellphone about a laboratory issue back on the mainland. 
As she leaves, she says, “Have the resistivity of the water cal-
culated when I get back.” She forgot to show you any tables 
or formulas to use to determine the resistivity, so you are on 
your own. Quick! Find an expression for the resistivity in 
terms of I and DV  before she finishes her phone call!

37. A charge Q is placed on a capacitor of capacitance C. 
The capacitor is connected into the circuit shown in Fig-
ure P26.37, with an open switch, a resistor, and an initially 

uncharged capacitor of capacitance 3C. The switch is then 
closed, and the circuit comes to equilibrium. In terms of Q 
and C, find (a) the final potential difference between the 
plates of each capacitor, (b) the charge on each capacitor, 
and (c) the final energy stored in each capacitor. (d) Find 
the internal energy appearing in the resistor.

38. An experiment is conducted to measure the electrical resis-
tivity of Nichrome in the form of wires with different lengths 
and cross-sectional areas. For one set of measurements, a 
student uses 30-gauge wire, which has a cross- sectional area 
of 7.30 3 1028 m2. The student measures the potential dif-
ference across the wire and the current in the wire with a 
voltmeter and an ammeter, respectively. (a) For each set of 
measurements given in the table taken on wires of three 
different lengths, calculate the resistance of the wires and 
the corresponding values of the resistivity. (b) What is the 
average value of the resistivity? (c) Explain how this value 
compares with the value given in Table 26.2.

L (m) DV (V) I (A) R (V) r (V ? m)

0.540 5.22 0.72
1.028 5.82 0.414
1.543 5.94 0.281

39. A straight, cylindrical wire lying along the x axis has a 
length of 0.500 m and a diameter of 0.200 mm. It is made 
of a material described by Ohm’s law with a resistivity of  
r  5 4.00 3 1028 V ? m. Assume a potential of 4.00 V is 
maintained at the left end of the wire at x 5 0. Also assume  
V 5 0 at x 5 0.500 m. Find (a) the magnitude and direction 
of the electric field in the wire, (b) the resistance of the wire, 
(c) the magnitude and direction of the electric current in 
the wire, and (d) the current density in the wire. (e) Show 
that E 5 rJ.

40. A straight, cylindrical wire lying along the x axis has a 
length L and a diameter d. It is made of a material described 
by Ohm’s law with a resistivity r. Assume potential V is main-
tained at the left end of the wire at x 5 0. Also assume the 
potential is zero at x 5 L. In terms of L, d, V, r, and physi-
cal constants, derive expressions for (a) the magnitude and 
direction of the electric field in the wire, (b) the resistance 
of the wire, (c) the magnitude and direction of the electric 
current in the wire, and (d) the current density in the wire. 
(e) Show that E 5 rJ.

41. Review. An office worker uses an immersion heater to warm 
250 g of water in a light, covered, insulated cup from 20.08C 
to 1008C in 4.00 min. The heater is a Nichrome resistance 
wire connected to a 120-V power supply. Assume the wire is 
at 1008C throughout the 4.00-min time interval. (a) Specify 
a relationship between a diameter and a length that the wire 
can have. (b) Can it be made from less than 0.500 cm3 of 
Nichrome?
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712 Chapter 26 Current and Resistance

42. The strain in a wire can be monitored and computed by mea-
suring the resistance of the wire. Let Li represent the orig-
inal length of the wire, Ai its original cross-sectional area,  
Ri 5 rLi /Ai the original resistance between its ends, and  
d 5 DL/Li 5 (L 2 Li )/Li the strain resulting from the applica-
tion of tension. Assume the resistivity and the volume of the 
wire do not change as the wire stretches. (a) Show that the 
resistance between the ends of the wire under strain is given 
by R 5 Ri (1 1 2d 1 d2). (b) If the assumptions are precisely 
true, is this result exact or approximate? Explain your answer.

43. A close analogy exists between the flow of energy by heat 
because of a temperature difference (see Section 19.6) and 
the flow of electric charge because of a potential difference. 
In a metal, energy dQ and electrical charge dq are both 
transported by free electrons. Consequently, a good electri-
cal conductor is usually a good thermal conductor as well. 
Consider a thin conducting slab of thickness dx, area A, 
and electrical conductivity s, with a potential difference dV 
between opposite faces. (a) Show that the current I 5 dq/dt  
is given by the equation on the left:

 Charge conduction Thermal conduction

 
dq

dt
5 sA*dV

dx * dQ

dt
5 kA*dT

dx *
In the analogous thermal conduction equation on the right 
(Eq. 19.17), the rate dQ /dt of energy flow by heat (in SI units  
of joules per second) is due to a temperature gradient  
dT/dx in a material of thermal conductivity k. (b) State anal-
ogous rules relating the direction of the electric current to 
the change in potential and relating the direction of energy 
flow to the change in temperature.

44. The dielectric material between the plates of a parallel- 
plate capacitor always has some nonzero conductivity s. 
Let A represent the area of each plate and d the distance 
between them. Let k represent the dielectric constant of the 
material. (a) Show that the resistance R and the capacitance 
C of the capacitor are related by

RC 5
ke0

s

(b) Find the resistance between the plates of a 14.0-nF 
capacitor with a fused quartz dielectric.

45. Review. A parallel-plate capacitor consists of square plates 
of edge length , that are separated by a distance d, where  
d ,, ,. A potential difference DV  is maintained between the  
plates. A material of dielectric constant k fills half the space 
between the plates. The dielectric slab is withdrawn from 
the capacitor as shown in Figure P26.45. (a) Find the capac-
itance when the left edge of the dielectric is at a distance 
x from the center of the capacitor. (b) If the dielectric is 
removed at a constant speed v, what is the current in the 
circuit as the dielectric is being withdrawn?

46. The current–voltage characteristic curve for a semiconduc-
tor diode as a function of temperature T is given by

I 5 I0(e
e DV/kBT 2 1)

Here the first symbol e represents Euler’s number, the base 
of natural logarithms. The second e is the magnitude of the 
electron charge, the kB stands for Boltzmann’s constant, 
and T is the absolute temperature. (a) Set up a spreadsheet 
to calculate I and R 5 DV/I for DV 5 0.400 V to 0.600 V  
in increments of 0.005 V. Assume I0 5 1.00 nA. (b) Plot R 
versus DV for T 5 280 K, 300 K, and 320 K.

47. Why is the following situation impossible? An inquisitive phys-
ics student takes a 100-W incandescent lightbulb out of its 
socket and measures its resistance with an ohmmeter. He 
measures a value of 10.5 V. He is able to connect an amme-
ter to the lightbulb socket to correctly measure the current 
drawn by the bulb while operating. Inserting the bulb back 
into the socket and operating the bulb from a 120-V source, 
he measures the current to be 11.4 A.

ChallenGe ProbleMS

48. A more general definition of the temperature coefficient of 
resistivity is

a 5
1
r

 
dr

dT

where r is the resistivity at temperature T. (a) Assuming a is 
constant, show that

r 5 r0e
a(T 2 T0)

where r0 is the resistivity at temperature T0. (b) Using the 
series expansion ex < 1 1 x  for x ,, 1, show that the resistiv-
ity is given approximately by the expression

r 5 r0[1 1 a(T 2 T0)] for a(T 2 T0) ,, 1

49. A spherical shell with inner radius ra and outer radius rb is 
formed from a material of resistivity r. It carries current 
radially, with uniform density in all directions. Show that 
its resistance is

R 5
r

4p
S1

ra

2
1
rb
D

50. Material with uniform resistivity r is formed into a wedge as 
shown in Figure P26.50. Show that the resistance between 
face A and face B of this wedge is

R 5 r 
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A bird rests on a powerline. Why is the bird safe from electrocution? (Hydromet/Shutterstock)

27.1 Electromotive Force

27.2 Resistors in Series  
and Parallel

27.3 Kirchhoff’s Rules

27.4 RC Circuits

27.5 Household Wiring and 
Electrical Safety

Storyline You are doing your homework on a Saturday and 
notice that the sky is darkening. You look out the window and are surprised to 
see a rare display of lightning in California. You excitedly call your electrical engi-
neer uncle in Florida, with whom you had earlier discussions. You tell him that 
you are going to go out in an open field and observe the lightning. He tells you 
that it is dangerous to be the highest point in an open field because you might 
be struck by the lightning. You explain that if the lightning gets close, you will lie 
down on the ground to be safe. He says, “Oh, no, don’t do that! After all, cows 
are killed by lightning more often than chickens!” Puzzled, you begin to ask what 
he means, but then he is called away from the phone by your aunt and he must 
hang up. What did his cryptic comment mean? While contemplating this ques-
tion, you look out the window and see a bird sitting on a high-voltage power line. 
Now, why isn’t that bird electrocuted? Should you think about that, or go out to 
the field and watch the lightning?

ConneCtions In previous chapters, we have introduced two types of  
circuit elements: capacitors and resistors. We can combine these elements with 
batteries to form a variety of electric circuits, which we analyze in this chapter. 
We were first introduced to circuit diagrams in Section 25.3. In this chapter, we 
will make frequent use of circuit diagrams to help us understand the behavior of 
more complex circuits. Some circuits containing multiple resistors can be com-
bined using simple rules. The analysis of more complicated circuits is simplified 
using Kirchhoff’s rules, which follow from the laws of conservation of energy and 
conservation of electric charge for isolated systems. Most of the circuits ana-
lyzed are assumed to be in steady state, which means that currents in the circuit 

Direct-Current Circuits

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



714 Chapter 27 Direct-Current Circuits

are constant in magnitude and direction. A current that is constant in direction is 
called a direct current (DC). We will study alternating current (AC), in which the 
current changes direction periodically, in Chapter 32.

   27.1    Electromotive Force
Consider the simple circuit shown in Figure 26.11 (page 703). This circuit is easy 
to analyze. Suppose we expand this circuit by adding another resistor, another bat-
tery, and, possibly, one or more capacitors. Now it may not seem so easy for you to 
analyze. Let’s embark on our journey to see how to analyze these kinds of circuits.

We will generally use a battery as a source of energy for circuits in our discussion. 
A battery is called either a source of electromotive force or, more commonly, a source of 
emf. (The phrase electromotive force is an unfortunate historical term, describing not 
a force, but rather a potential difference in volts.) The emf « of a battery is the 
maximum possible voltage the battery can provide between its terminals. You can 
think of a source of emf as a “charge pump.” When an electric potential difference 
exists between two points, the source moves charges “uphill” from the lower poten-
tial to the higher.

Because the potential difference at the battery terminals is constant in a par-
ticular circuit, the current in the circuit is constant in magnitude and direction 
and is called direct current. We shall generally assume the connecting wires in a 
circuit have no resistance. The positive terminal of a battery is at a higher poten-
tial than the negative terminal. Because a real battery is made of matter, there 
is resistance to the flow of charge within the battery. This resistance is called 
internal resistance r. For an idealized battery with zero internal resistance, the 
potential difference across the battery (called its terminal voltage) equals its emf. 
For a real battery, however, the terminal voltage is not equal to the emf for a bat-
tery in a circuit in which there is a current. To understand why, consider the cir-
cuit diagram in Figure 27.1a. We model the battery as shown in the diagram; it is 
represented by the dashed rectangle containing an ideal, resistance-free emf « in 
series with an internal resistance r. A resistor of resistance R is connected across 
the terminals of the battery. Now imagine moving through the battery from a to d 
and measuring the electric potential at various locations. Passing from the nega-
tive terminal to the positive terminal, the potential increases by an amount «. As 
we move through the resistance r, however, the potential decreases by an amount Ir, 
where I is the current in the circuit. Therefore, the terminal voltage of the battery 
DV 5 Vd 2 Va is

 DV 5 « 2 Ir  (27.1)

Figure 27.1b is a graphical representation of the changes in electric potential as the 
circuit is traversed in the clockwise direction. From Equation 27.1, notice that « is 
equivalent to the open-circuit voltage, that is, the terminal voltage when the cur-
rent is zero. The emf is the voltage labeled on a battery; for example, the emf of a D 
cell is 1.5 V. The actual potential difference between a battery’s terminals depends 
on the current in the battery as described by Equation 27.1. 

Figure 27.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load 
resistor might be a simple resistive circuit element as in Figure 27.1a, or it could be 
the resistance of some electrical device (such as a toaster, electric heater, or light-
bulb) connected to the battery (or, in the case of household devices, to the wall out-
let). The resistor represents a load on the battery because the battery must supply 
energy to operate the device containing the resistance. The potential difference 
across the load resistance is DV 5 IR. Combining this expression with Equation 
27.1, we see that

 « 5 IR 1 Ir  (27.2)
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Figure 27.1 (a) Circuit diagram 
of a source of emf « (in this case, 
a battery), of internal resistance r, 
connected to an external resistor 
of resistance R. (b) Graphical  
representation showing how 
the electric potential changes 
as the circuit in (a) is traversed 
clockwise.
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    27.1 Electromotive Force 715

Solving for the current gives

 I 5
«

R 1 r
 (27.3)

Equation 27.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.

Multiplying Equation 27.2 by the current I in the circuit gives

 I« = I 2R 1 I 2r (27.4)

Equation 27.4 indicates that because power P 5 I DV (see Eq. 26.21), the total power 
output I« associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 27.1  To maximize the percentage of the power from the emf of a 
battery that is delivered to a device external to the battery, what should the inter-
nal resistance of the battery be? (a) It should be as low as possible. (b) It should be 
as high as possible. (c) The percentage does not depend on the internal resistance.

Pitfall Prevention 27.1
Batteries Do Not Supply Electrons  
A battery does not supply elec-
trons to the circuit. It establishes 
the electric field that exerts a 
force on electrons already in the 
wires and elements of the circuit.

Pitfall Prevention 27.2
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 27.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 27.1. A battery 
is a source of constant emf.

 Example 27.1     Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance  
of 3.00 V.

(A) Find the current in the circuit and the terminal voltage of the battery.

S O L U T I O N

Conceptualize Study Figure 27.1a, which shows a circuit consistent with the problem statement. The battery delivers energy to 
the load resistor.

Categorize This example involves simple calculations from this section, so we categorize it as a substitution problem.

Use Equation 27.3 to find the current in the circuit: I 5
«

R 1 r
5

12.0 V
3.00 V 1 0.050 0 V

5  3.93 A

Use Equation 27.1 to find the terminal voltage: DV 5 « 2 Ir 5 12.0 V 2 s3.93 Ads0.050 0 Vd 5  11.8 V

To check this result, calculate the voltage across the load  DV 5 IR 5 s3.93 Ads3.00 Vd 5 11.8 V 
resistance R:

(B) Calculate the power delivered to the load resistor, the power delivered to the internal resistance of the battery, and the 
power delivered by the battery.

S O L U T I O N

Use Equation 26.22 to find the power delivered to the  PR 5 I  2R 5 (3.93 A)2(3.00 V) 5 46.3 W  
load resistor:

Find the power delivered to the internal resistance:   Pr 5 I  2r 5 (3.93 A)2(0.050 0 V) 5 0.772 W

Find the power delivered by the battery by adding these    P 5 PR 1 Pr 5 46.3 W 1 0.772 W 5 47.1 W  
quantities:

W H A T  I F ? As a battery ages, its internal resistance increases. Suppose the internal resistance of this battery rises  
to 2.00 V toward the end of its useful life. How does that alter the battery’s ability to deliver energy?

Answer Let’s connect the same 3.00-V load resistor to the battery.

continued
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716 Chapter 27 Direct-Current Circuits

27.1 c o n t i n u e d

Find the new current in the battery: I 5
«

R 1 r
5

12.0 V
3.00 V 1 2.00 V

5 2.40 A

Find the new terminal voltage: DV 5 « 2 Ir 5 12.0 V 2 (2.40 A)(2.00 V) 5 7.2 V

Find the new powers delivered to the load resistor and  PR 5 I 2R 5 (2.40 A)2(3.00 V) 5 17.3 W 
internal resistance: Pr 5 I 2r 5 (2.40 A)2(2.00 V) 5 11.5 W

In this situation, the terminal voltage is only 60% of the emf. Notice that 40% of the power from the battery is delivered to the 
internal resistance when r is 2.00 V. When r is 0.050 0 V as in part (B), this percentage is only 1.6%. Consequently, even though 
the emf remains fixed, the increasing internal resistance of the battery significantly reduces the battery’s ability to deliver 
energy to an external load.

 Example 27.2    Matching the Load

Find the load resistance R  for which the maximum power is delivered to the load resistance in Figure 27.1a.

S O L U T I O N

Conceptualize Think about varying the load resistance in  
Figure 27.1a and the effect on the power delivered to the load 
resistance. When R is large, there is very little current, so the 
power I 2R delivered to the load resistor is small. When R is 
small, let’s say R ,, r, the current is large and the power deliv-
ered to the internal resistance is I 2r .. I 2R. Therefore, the 
power delivered to the load resistor is small compared to that 
delivered to the internal resistance. For some intermediate 
value of the resistance R, the power must maximize.

Categorize We categorize this example as an analysis prob-
lem because we must undertake a procedure to maximize the 
power. The circuit is the same as that in Example 27.1. The 
load resistance R in this case, however, is a variable.

Analyze  Find the power delivered to the load resistance  (1)   P 5 I  

2R 5
«2R

sR 1 r d2 
using Equation 26.22, with I given by Equation 27.3:

Differentiate the power with respect to the load  
dP
dR

5
d

dR
 3 «2R

sR 1 r d24 5
d

dR
  f«2R sR 1 rd22g 5 0 

resistance R and set the derivative equal to zero 
   [«2(R 1 r)22] 1 [«2R(22)(R 1 r)23] 5 0

 
to maximize the power:

       
«2sR 1 r d
sR 1 r d3 2

2«2R
sR 1 r d3 5

«2sr 2 R d
sR 1 r d3 5 0

Solve for R: R 5 r

Finalize  To check this result, let’s plot P versus R as in Figure 27.2. The graph shows that P reaches a maximum value at R 5 r. 
Equation (1) shows that this maximum value is Pmax 5 «2/4r.

r 2r 3r
R

Pmax

P

Figure 27.2 (Example 
27.2) Graph of the power P 
delivered by a battery to a 
load resistor of resistance 
R as a function of R.

   27.2    Resistors in Series and Parallel
In Section 25.3, we studied capacitors in series and parallel connections. In this 
section, we connect resistors in series and parallel and analyze the results. We will 
make multiple uses of Equation 26.7 in this process.

When two or more resistors are connected together as are the incandescent 
lightbulbs in Figure 27.3a, they are said to be in a series combination. Figure 27.3b 
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    27.2 Resistors in Series and Parallel 717

is the circuit diagram for the lightbulbs, shown as resistors, and the battery. What if 
you wanted to replace the series combination with a single resistor that would draw 
the same current from the battery? What would be its value? In a series connection, 
if an amount of charge Q exits resistor R1, charge Q must also enter the second 
resistor R2. Otherwise, charge would accumulate on the wire between the resistors. 
Therefore, the same amount of charge passes through both resistors in a given 
time interval and the currents are the same in both resistors:

 I 5 I1 5 I2 (27.5)

where I is the current leaving the battery, I1 is the current in resistor R1, and I2 is the 
current in resistor R 2.

The potential difference applied across the series combination of resistors divides 
between the resistors. In Figure 27.3b, because the voltage drop1 from a to b equals 
I1R1 and the voltage drop from b to c equals I2R2, the voltage drop from a to c is

 DV 5 DV1 1 DV2 5 I1R1 1 I2R 2 (27.6)

The potential difference across the battery is also applied to the equivalent  
resistance R eq in Figure 27.3c:

DV 5 IR eq

where the equivalent resistance has the same effect on the circuit as the series com-
bination because it results in the same current I in the battery. Substituting this 
expression into Equation 27.6 gives

 IR eq 5 I1R1 1 I2R 2    S    R eq 5 R1 1 R 2 (27.7)

where we have canceled the currents I, I1, and I2 because they are all the same  
(Eq. 27.5). We see that we can replace the two resistors in series with a single equiv-
alent resistance whose value is the sum of the individual resistances.

The equivalent resistance of three or more resistors connected in series is

 R eq 5 R1 1 R 2 1 R 3 1  ? ? ?  (27.8)

This relationship indicates that the equivalent resistance of a series combination 
of resistors is the numerical sum of the individual resistances and is always greater 
than any individual resistance.

Looking back at Equation 27.3, we see that the denominator of the right-hand 
side is the simple algebraic sum of the external and internal resistances. That is 
consistent with the internal and external resistances being in series in Figure 27.1a.

  The equivalent resistance of a 
series combination of resistors

1 The term voltage drop is synonymous with a decrease in electric potential across a resistor. It is often used by individ-
uals working with electric circuits.

� �

�V1

I1 I2

�V2

�V1 �V2

�V

I1

I

I2

I

� � � �

a b c

��

R1 R2

V

R1 R2a b c ca

Req R1 R2 

V� �

A pictorial representation 
of two resistors connected 
in series to a battery

A circuit diagram showing 
the two resistors connected 
in series to a battery

A circuit diagram showing 
the equivalent resistance of 
the resistors in series

Figure 27.3 Two incandescent lightbulbs with resistances R1 and R2 connected in series. All three diagrams 
are equivalent.
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718 Chapter 27 Direct-Current Circuits

Now consider two resistors in a parallel combination as shown in Figure 27.5. 
As with the series combination, what is the value of the single resistor that could 
replace the combination and draw the same current from the battery? Notice that 
both resistors are connected directly across the terminals of the battery. Therefore, 
the potential differences across the resistors are the same:

 DV 5 DV1 5 DV2  (27.9)

where DV is the terminal voltage of the battery.
When charges reach point a in Figure 27.5b, they split into two parts, with 

some going toward R1 and the rest going toward R2. A junction is any such point 

b

R1

R2

V

a

R1

R2

Req  
    R1    R2

1 1 1

� V�

� �

�V1

�V2

�V

I1

I2

I1

I2

a b c

A pictorial representation 
of two resistors connected 
in parallel to a battery

� � � �

��

A circuit diagram showing 
the two resistors connected 
in parallel to a battery

A circuit diagram showing 
the equivalent resistance of 
the resistors in parallel

I I

Figure 27.5 Two incandescent 
lightbulbs with resistances 
R1 and R2 connected in par-
allel. All three diagrams are 
equivalent.

If the filament of one incandescent lightbulb in Figure 27.3 were to fail, the 
circuit would no longer be complete (resulting in an open-circuit condition) 
and the second lightbulb would also go out. This fact is a general feature of a 
series circuit: if one device in the series creates an open circuit, all devices are 
inoperative.

Q uick Quiz 27.2  With the switch in the circuit of Figure 27.4a closed, there 
is no current in R2 because the current has an alternate zero-resistance path 
through the switch. There is current in R1, and this current is measured with 
the ammeter (a device for measuring current) at the bottom of the circuit. If 
the switch is opened (Fig. 27.4b), there is current in R2. What happens to the 
reading on the ammeter when the switch is opened? (a) The reading goes up. 
(b) The reading goes down. (c) The reading does not change.

Pitfall Prevention 27.3
Local and Global Changes A local 
change in one part of a circuit 
may result in a global change 
throughout the circuit. For exam-
ple, if a single resistor is changed 
in a circuit containing several 
resistors and batteries, the cur-
rents in all resistors and batteries, 
the terminal voltages of all bat-
teries, and the voltages across all 
resistors may change as a result.

Pitfall Prevention 27.4
Current Does Not Take the Path  
of Least Resistance You may have 
heard the phrase “current takes the 
path of least resistance” (or similar 
wording) in reference to a parallel 
combination of current paths such 
that there are two or more paths 
for the current to take. Such word-
ing is incorrect. The current takes 
all paths. Those paths with lower 
resistance have larger  currents, 
but even very high resistance paths 
carry some of the current. In theory, 
if current has a choice between a 
zero-resistance path and a finite 
resistance path, all the current 
takes the path of zero  resistance; a 
path with zero resistance, however, 
is an idealization.

a

b

R1

R2

R1

R2

A

A

�

�

�

�

a

b

R1

R2

R1

R2

A

A

�

�

�

�

Figure 27.4 (Quick Quiz 
27.2) What happens when 
the switch is opened?
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    27.2 Resistors in Series and Parallel 719

in a circuit where a current can split. This split results in less current in each 
individual resistor than the current leaving the battery. Because electric charge is 
conserved, the current I that enters point a must equal the total current leaving 
that point:

 I 5 I1 1 I2 5
DV1

R1

1
DV2

R2

 (27.10)

where I1 is the current in R1 and I2 is the current in R2.
The current in the equivalent resistance Req in Figure 27.5c is

 I 5
DV
Req

 

where the equivalent resistance has the same effect on the circuit as the two resis-
tors in parallel; that is, the equivalent resistance draws the same current I from the 
battery. Substituting this last equation into Equation 27.10, we see that the equiva-
lent resistance of two resistors in parallel is given by

 
DV
Req

5
DV1

R1

1
DV2

R2

   S   
1

Req

5
1
R1

1
1
R2

 (27.11)

where we have canceled DV, DV1, and DV2 because they are all the same (Eq. 27.9).
An extension of this analysis to three or more resistors in parallel gives

 
1

R eq

5
1
R 1

1
1
R 2

1
1
R 3

1 Á  (27.12)

This expression shows that the inverse of the equivalent resistance of two or more 
resistors in a parallel combination is equal to the sum of the inverses of the indi-
vidual resistances. Furthermore, the equivalent resistance is always less than the 
smallest resistance in the group.

Household circuits are always wired such that the appliances are connected in 
parallel. Each device operates independently of the others so that if one is switched 
off, the others remain on. In addition, in this type of connection, all the devices 
operate on the same voltage.

Let’s use the concepts in this section to address our opening storyline. First, 
why don’t you want to stand in an open field during a lightning storm? A stroke 
of lightning begins with a stepped leader moving downward from a charged cloud. 
This is a column of negative charge moving toward the ground along a zig-zag 
path at high speed. The stepped leader is not the flash of light that you associate 
with lightning. From the ground, a column of positive charge, called a return stroke, 
begins to move upward from a point of large electric field. When a stepped leader 
and a return stroke meet in the air, as is about to happen at the left side of the 
photo on page 636, a conducting channel opens up between the cloud and the 
ground, a large current suddenly exists, and a bright flash of light is emitted.

If you are standing in an open field, your head represents a sharp point relative 
to the flat field. Therefore, because you and the ground are both charged, and as 
we found out in Section 24.6, your head as a sharp point has a very strong electric 
field at its surface. That increases the probability that a return stroke will begin 
from your head rather than from the flat ground, endangering your safety.

So why not lie on the ground to remove your head as a sharp point? When light-
ning strikes, the current in the air also exists in the surface of the ground, spread-
ing out radially from the point from which the return stroke began. If you lie on 
the ground with your body along a radial line to the return stroke, your body is 
placed in parallel with the current from the lightning stroke. Therefore, some cur-
rent could take a path through your body, from the contact point at the upper part 
of the your body to the contact point at your feet. This is why cows are killed by 
lightning. They have contact points at their front feet and also at their hind feet.  

  The equivalent resistance  
of a parallel combination of 
resistors
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720 Chapter 27 Direct-Current Circuits

If their body is aimed at the return stroke, a significant amount of current can 
exist in their bodies. Chickens have two contact points also, but their feet are close 
together. Therefore, the resistance of the ground is smaller between their feet than 
that for the cow. As a result, the potential difference between the two contact points 
on the ground is smaller for the chicken, so less current exists in their bodies than 
for the cows.

Finally, what about the bird on the wire? It may be that the wire is insulated, keep-
ing the bird safe. Even if the wire is not insulated, however, for the types of birds that 
land on wires, their feet are even closer together than chicken feet. Furthermore, 
the wire most likely has a smaller resistivity than the ground. Both factors lead to a 
very small potential difference between the feet of the bird when it is connected in 
parallel with the wire. In turn, there is very little current in the body of the bird.

Q uick Quiz 27.3  With the switch in the circuit of Figure 27.6a open, there is 
no current in R2. There is current in R1, however, and it is measured with the 
ammeter at the right side of the circuit. If the switch is closed (Fig. 27.6b), there 
is current in R2. What happens to the reading on the ammeter when the switch 
is closed? (a) The reading increases. (b) The reading decreases. (c) The reading 
does not change.

Q uick Quiz 27.4  Consider the following choices: (a) increases, (b) decreases,  
(c) remains the same. From these choices, choose the best answer for the fol-
lowing situations. (i) In Figure 27.3, a third resistor is added in series with the 
first two. What happens to the current in the battery? (ii) What happens to the 
terminal voltage of the battery? (iii) In Figure 27.5, a third resistor is added in 
parallel with the first two. What happens to the current in the battery? (iv) What 
happens to the terminal voltage of the battery?

R1

R2

R1

R2

A

A

��

��

a

b

Figure 27.6 (Quick Quiz 27.3) 
What happens when the switch  
is closed?

 Conceptual Example 27.3    Landscape Lights

A homeowner wishes to install low-voltage landscape lighting in his back yard. To save money, he purchases inexpensive 
18-gauge cable, which has a relatively high resistance per unit length. This cable consists of two side-by-side wires separated 
by insulation, like the cord on an appliance. He runs a 200-foot length of this cable from the power supply to the farthest 
point at which he plans to position a light fixture. He attaches light fixtures across the two wires on the cable at 10-foot 
intervals so that the light fixtures are in parallel. Because of the cable’s resistance, the brightness of the lightbulbs in the 
fixtures is not as desired. Which of the following problems does the homeowner have? (a) All the lightbulbs glow equally 
less brightly than they would if lower-resistance cable had been used. (b) The brightness of the lightbulbs decreases as you 
move farther from the power supply.

S O L U T I O N

A circuit diagram for the system appears in Figure 27.7. The 
horizontal resistors with letter subscripts (such as RA) represent 
the resistance of the wires in the cable between the light fix-
tures, and the vertical resistors with number subscripts (such 
as R1) represent the resistance of the light fixtures themselves. 
Part of the terminal voltage of the power supply is dropped 
across resistors RA and RB. Therefore, the voltage across light 
fixture R1 is less than the terminal voltage. There is a further 
voltage drop across resistors RC and RD. Consequently, the volt-
age across light fixture R 2 is smaller than that across R1. This 
pattern continues down the line of light fixtures, so the correct 
choice is (b). Each successive light fixture has a smaller voltage 
across it and glows less brightly than the one before.

RA RC

R2R1

RB RD

Power
supply

�

�

Resistance of the 
light fixtures

Resistance in the 
wires of the cable

Figure 27.7 (Conceptual Example 27.3) The circuit diagram for a 
set of landscape light fixtures connected in parallel across the two 
wires of a two-wire cable.
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 Example 27.4    Find the Equivalent Resistance

Four resistors are connected as shown in Figure 27.8a.

(A)  Find the equivalent resistance between points a and c.

S O L U T I O N

Conceptualize Imagine charges flowing into and through this 
combination from the left. All charges must pass from a to b 
through the first two resistors, but the charges split at b into two 
different paths when encountering the combination of the 6.0-V 
and the 3.0-V resistors.

Categorize Because of the simple nature of the combination of 
resistors in Figure 27.8, we categorize this example as one for 
which we can use the rules for series and parallel combinations 
of resistors.

Analyze  The combination of resistors can be reduced in steps as 
shown in Figure 27.8.

Find the equivalent resistance between a and b of the  R eq 5 8.0 V 1 4.0 V 5 12.0 V 
8.0-V and 4.0-V resistors, which are in series (left-hand  
red-brown circles):

Find the equivalent resistance between b and c of the   
1

Req

5
1

6.0 V
1

1
3.0 V

5
3

6.0 V
  

6.0-V and 3.0-V resistors, which are in parallel (right- 
hand red-brown circles): 

 Req 5
6.0 V

3
5 2.0 V

The circuit of equivalent resistances now looks like  Req 5 12.0 V 1 2.0 V 5 14.0 V  
Figure 27.8b. The 12.0-V and 2.0-V resistors are in series  
(green circles). Find the equivalent resistance from a to c:

This resistance is that of the single equivalent resistor in Figure 27.8c.

(B) What is the current in each resistor if a potential difference of 42 V is maintained between a and c?

S O L U T I O N

The currents in the 8.0-V and 4.0-V resistors are the same because they are in series. In addition, they carry the same current 
that would exist in the 14.0-V equivalent resistor subject to the 42-V potential difference.

Use Equation 26.7 (R 5 DV/I) and the result from part  I 5
DVac

Req

5
42 V

14.0 V
5 3.0 A  

(A) to find the current in the 8.0-V and 4.0-V resistors:

Set the voltages across the resistors in parallel in Figure 27.8a  DV1 5 DV2   S   (6.0 V)I1 5 (3.0 V)I2   S   I2 5 2I1 
equal to find a relationship between the currents:

Use I1 1 I2 5 3.0 A to find I1: I1 1 I2 5 3.0 A   S   I1 1 2I1 5 3.0 A   S   I1 5 1.0 A

Find I2: I2 5 2I1 5 2(1.0 A) 5 2.0 A

Finalize  As a final check of our results, note that DVbc 5 (6.0 V)I1 5 (3.0 V)I2 5 6.0 V and DVab 5 (12.0 V)I 5 36 V; therefore, 
DVac 5 DVab 1 DVbc 5 42 V, as it must.

6.0 �

3.0 �

c
b

I1

I2

4.0 �8.0 �

a

c

2.0 �12.0 �

ba

14.0 �

ca

I

b

c

a

Figure 27.8 (Exam-
ple 27.4) The original 
network of resistors 
is reduced to a single 
equivalent resistance.
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722 Chapter 27 Direct-Current Circuits

 Example 27.5    Three Resistors in Parallel

Three resistors are connected as shown in Figure 27.9a. 
A potential difference of 18.0 V is maintained between 
points a and b.

(A)  Calculate the equivalent resistance of the circuit.

S O L U T I O N

Conceptualize In Figure 27.9a, it should be clear that the 
6.00-W and 9.00-W resistors are connected in parallel. What 
about the 3.00-W resistor? Imagine sliding that resistor to 
the left, without altering the connections, around the cor-
ner and halfway down the vertical wire marked with the cur-
rent I1. This does not change the electrical characteristics of 
the circuit. It should be clear now that we are dealing with 
a simple parallel combination of three resistors. Notice that 
the current I splits into three currents I1, I2, and I3 in the 
three resistors.

Categorize This problem can be solved with rules developed in this section, so we categorize it as a substitution problem. 
Because the three resistors are connected in parallel, we can use the rule for resistors in parallel, Equation 27.12, to evaluate 
the equivalent resistance.

Use Equation 27.12 to find Req: 
1

Req

5
1

3.00 V
1

1
6.00 V

1
1

9.00 V
5

11
18.0 V

 

   Req 5
18.0 V

11
5 1.64 V

(B)  Find the current in each resistor.

S O L U T I O N

The potential difference across each resistor is 18.0 V.  I1 5
DV
R1

5
18.0 V
3.00 V

5 6.00 A  
Apply the relationship DV 5 IR to find the currents:

   
I2 5

DV
R2

5
18.0 V
6.00 V

5 3.00 A

   I3 5
DV
R3

5
18.0 V
9.00 V

5 2.00 A

(C)  Calculate the power delivered to each resistor and the total power delivered to the combination of resistors.

S O L U T I O N

Apply the relationship P 5 I 2R to each resistor using the  3.00-V: P1 5 I1
2R1 5 (6.00 A)2(3.00 V) 5 108 W  

currents calculated in part (B): 
6.00-V: P2 5 I2

2R2 5 (3.00 A)2(6.00 V) 5 54 W

   9.00-V: P3 5 I3
2R3 5 (2.00 A)2(9.00 V) 5 36 W

These results show that the smallest resistor receives the most power. Summing the three quantities gives a total power 
of 198 W. We could have calculated this final result from part (A) by considering the equivalent resistance as follows:  
P 5 (DV  )2/R eq 5 (18.0 V)2/1.64 V 5 198 W.

W H A T  I F ?  What if the circuit were as shown in Figure 27.9b instead of as in Figure 27.9a? How would that affect the 
calculation?

Answer There would be no effect on the calculation. The physical placement of a circuit element is not important, as 
we saw when we moved the 3.00-V resistor in Figure 27.9a. Only the electrical arrangement is important. In Figure 27.9b, 
the battery still maintains a potential difference of 18.0 V between points a and b, so the two circuits in the figure are  
electrically identical.

I1 I2 I3

I
a

b

18.0 V

3.00 �

6.00 � 9.00 �

I1 I2 I3

a

b

3.00 � 6.00 � 9.00 �18.0 V

I

a b

Figure 27.9 (Example 27.5) (a) Three resistors connected in  
parallel. The voltage across each resistor is 18.0 V. (b) Another 
circuit with three resistors and a battery. Is it equivalent to the 
circuit in (a)?
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    27.3 Kirchhoff’s Rules 723

   27.3    Kirchhoff’s Rules
As we saw in the preceding section, combinations of resistors can be simplified 
and analyzed using the rules for series and parallel combinations of resistors. Very 
often, however, it is not possible to reduce a circuit to a single loop using these 
rules. For example, consider the circuit in Figure 27.10, which is the same as that in 
Figure 27.9b, but with the addition of one battery. This circuit cannot be reduced 
to a simple combination of resistors in series and parallel. The procedure for ana-
lyzing more complex circuits is made possible by using the following two principles, 
called Kirchhoff’s rules.

1.  Junction rule. At any junction, the sum of the currents must equal zero:

 o
junction

 I 5 0 (27.13)

2.  Loop rule. The sum of the potential differences across all elements 
around any closed circuit loop must be zero:

 o
closed loop

 DV 5 0 (27.14)

Kirchhoff’s first rule is a statement of conservation of electric charge. All 
charges that enter a given point in a circuit must leave that point because 
charge cannot build up or disappear at a point. Currents directed into the 
junction are entered into the sum in the junction rule as 1I, whereas currents 
directed out of a junction are entered as 2I. Applying this rule to the junction in  
Figure 27.11a gives

I 1 2 I 2 2 I 3 5 0

Figure 27.11b represents a mechanical analog of this situation, in which water 
flows through a branched pipe having no leaks. Because water does not build up 
anywhere in the pipe, the flow rate into the pipe on the left equals the total flow 
rate out of the two branches on the right.

Kirchhoff’s loop rule arises because the electric force is conservative. The 
electric potential is similar to a state variable, such as internal energy, in 
thermodynamics. For a given state of a thermodynamic system, the internal 
energy has a definite value. At any point in a circuit, the electric potential has 
a definite value. Now imagine starting at a given point in a circuit and moving 
around the circuit, measuring the potential. The potential will rise as you 
pass through some circuit elements and fall as you pass through others. When 
you arrive back at the starting point, you must measure the same potential as 
when you started. The thermodynamic analog is that when you return to the 
initial point on a PV diagram, the internal energy of the system must have the 
same value as when you started.

The only way you can arrive at the same potential when you return to the 
starting point is if the sum of the increases in potential in some circuit elements 
equals the sum of the decreases as you pass through others. This is the loop rule. 
Look again at Figure 27.1b as an example. The potential was defined as zero at 
point a, and returned to zero at point f , which is connected to point a with a  
resistance-free wire.

I1

I2

I3

Flow in

Flow out

a

b

The total amount of charge flowing 
in the branches on the right must 
equal the amount flowing in the 
single branch on the left.

The total amount of water flowing 
out of the branches on the right 
must equal the amount flowing into 
the single branch on the left.

Figure 27.11 (a) Kirchhoff’s 
junction rule. (b) A mechanical 
analog of the junction rule.

I1 I2 I3

a

b

3.00 � 6.00 � 9.00 �18.0 V

18.0 V

I

Figure 27.10 The circuit of Fig-
ure 27.9b with one battery added 
in the left branch.
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724 Chapter 27 Direct-Current Circuits

Figure 27.12 shows the sign conventions for the changes in electric potential as 
you travel through batteries and resistors in multiloop circuits:

 ● Charges move from the high-potential end of a resistor toward the low- 
potential end, so if a resistor is traversed in the direction of the current, the 
potential difference DV across the resistor is 2IR (Fig. 27.12a).

 ● If a resistor is traversed in the direction opposite the current, the potential dif-
ference DV across the resistor is 1IR (Fig. 27.12b).

 ● If a source of emf (assumed to have zero internal resistance) is traversed in 
the direction of the emf (from negative to positive), the potential difference 
DV is 1« (Fig. 27.12c).

 ● If a source of emf (assumed to have zero internal resistance) is traversed in 
the direction opposite the emf (from positive to negative), the potential dif-
ference DV is 2« (Fig. 27.12d).

There are limits on the number of times you can usefully apply Kirchhoff’s rules 
in analyzing a circuit. You can use the junction rule as often as you need as long 
as you include in it a current that has not been used in a preceding junction-rule 
equation. In general, the number of times you can use the junction rule is one 
fewer than the number of junction points in the circuit. You can apply the loop rule 
as often as needed as long as a new circuit element (resistor or battery) or a new 
current appears in each new equation. In general, to solve a particular circuit prob-
lem, the number of independent equations you need to obtain from the two rules 
equals the number of unknown currents.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is 
assumed the circuits have reached steady-state conditions; in other words, the cur-
rents in the various branches are constant. Any capacitor acts as an open branch in 
a circuit; that is, the current in the branch containing the capacitor is zero under 
steady-state conditions.

I

I

a b

a b

a b

a b

� �

� �

�V � �IR

�V � �e

�V � �IR

�V � �e

e

e

b

c

d

a

In each diagram, �V � Vb � Va 
and the circuit element is 
traversed from a to b, left to right.

Figure 27.12 Rules for determining 
the signs of the potential differences 
across a resistor and a battery. (The 
battery is assumed to have no inter-
nal resistance.) 

PRoBLEM-SoLVING STRATEGy  Kirchhoff’s Rules

The following procedure is recommended for solving problems that involve circuits that 
cannot be reduced by the rules for combining resistors in series or parallel.

1. Conceptualize. Study the circuit diagram and make sure you recognize all elements 
in the circuit. Identify the polarity of each battery and try to imagine the directions in 
which the current would exist in the batteries.

2. Categorize. Determine whether the circuit can be reduced by means of combin-
ing series and parallel resistors. If so, use the techniques of Section 27.2. If not, apply 
Kirchhoff’s rules according to the Analyze step below.

3. Analyze. Assign labels to all known quantities and symbols to all unknown quantities. 
You must assign directions to the currents in each part of the circuit. Although the assign-
ment of current directions is arbitrary, you must adhere rigorously to the directions you 
assign when you apply Kirchhoff’s rules.

Apply the junction rule (Kirchhoff’s first rule) to all junctions in the circuit except 
one. Now apply the loop rule (Kirchhoff’s second rule) to as many loops in the circuit 
as are needed to obtain, in combination with the equations from the junction rule, as 
many equations as there are unknowns. To apply this rule, you must choose a direction 
in which to travel around the loop (either clockwise or counterclockwise) and correctly 
identify the change in potential as you cross each element. Be careful with signs! Follow 
the rules in Figure 27.12 carefully.

Solve the equations simultaneously for the unknown quantities.

4. Finalize. Check your numerical answers for consistency. Do not be alarmed if any of 
the resulting currents have a negative value. That only means you have guessed the  
direction of that current incorrectly, but its magnitude will be correct.

Gustav kirchhoff
German Physicist (1824–1887)
Kirchhoff, a professor at Heidelberg, and 
Robert Bunsen invented the spectro-
scope and founded the science  
of spectroscopy, which we shall study 
in Chapter 41. They discovered the ele-
ments cesium and rubidium and invented 
astronomical spectroscopy.
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    27.3 Kirchhoff’s Rules 725

 Example 27.6     A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries as shown in Figure 27.13. 
(Neglect the internal resistances of the batteries.) Find the current in the circuit.

S O L U T I O N

Conceptualize Figure 27.13 shows the polarities of the batteries and a guess at the direc-
tion of the current. The 12-V battery is the stronger of the two, so the current should 
be counterclockwise. Therefore, we expect our guess for the direction of the current to 
be wrong, but we will continue and see how this incorrect guess is represented by our  
final answer.

Categorize We do not need Kirchhoff’s rules to analyze this simple circuit, but let’s use 
them anyway simply to see how they are applied. There are no junctions in this single-loop 
circuit; therefore, the current is the same in all elements.

Analyze  Let’s assume the current is clockwise as shown in Figure 27.13. Traversing the  
circuit in the clockwise direction, starting at a, we see that a S b represents a potential dif-
ference of 1«1, b S c represents a potential difference of 2IR1, c S d represents a potential 
difference of 2«2, and d S a represents a potential difference of 2IR 2.

Apply Kirchhoff’s loop rule to the single loop  o DV 5 0   S   «1 2 IR1 2 «2 2 IR 2 5 0 
in the circuit:

Solve for I and use the values given in  (1)   I 5
«1 2 «2

R 1 1 R 2

5
6.0 V 2 12 V
8.0 V 1 10 V

5 20.33 A  
Figure 27.13:

Finalize  The negative sign for I indicates that the direction of the current is opposite the assumed direction. The emfs in 
the numerator subtract because the batteries in Figure 27.13 have opposite polarities. The resistances in the denominator add 
because the two resistors are in series.

W H A T  I F ? What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?

Answer Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify it accord-
ingly. Because the polarities of the two batteries are now in the same direction, the signs of «1 and «2 are the same and Equa-
tion (1) becomes

I 5
«1 1 «2

R1 1 R2

5
6.0 V 1 12 V
8.0 V 1 10 V

5 1.0 A

I

c

a b

d
� �

� �

e1 � 6.0 V

R1 � 8.0 �R2 � 10 �

e2 � 12 V

Figure 27.13 (Example 27.6)  
A series circuit containing two 
batteries and two resistors, 
where the polarities of the  
batteries are in opposition.

 Example 27.7     A Multiloop Circuit

Find the currents I 1, I 2, and I 3 in the circuit shown in  
Figure 27.14.

S O L U T I O N

Conceptualize Imagine physically rearranging the circuit while 
keeping it electrically the same. Can you rearrange it so that it 
consists of simple series or parallel combinations of resistors? You 
should find that you cannot. (If the 10.0-V battery were removed 
and replaced by a wire from b to the 6.0-V resistor, the circuit 
would consist of only series and parallel combinations.)

Categorize We cannot simplify the circuit by the rules associated with combining resistances in series and in parallel.  
Therefore, this problem is one in which we must use Kirchhoff’s rules.

Analyze We identify three different currents and arbitrarily choose their directions as labeled in Figure 27.14.

Figure 27.14 (Exam-
ple 27.7) A circuit contain-
ing different branches.

14.0 V

e

b

4.0 �

10.0 V
6.0 �

f

I2

c

I3

I1

2.0 �
da

� �

� �

continued
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726 Chapter 27 Direct-Current Circuits

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, and I3. abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0 
There are three loops in the circuit: abcda, befcb, and aefda. befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0 
We need only two loop equations to determine the unknown 

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0
 

currents. (The third equation would give no new information.)  
Let’s choose to traverse these loops in the clockwise direction.  
Apply Kirchhoff’s loop rule to loops abcda and befcb:

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

   (4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term  (5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0 
in Equation (4) by 3: (6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and  266.0 V 2 (22.0 V)I2 5 0 
find I2: I2 5 23.0 A

Use this value of I 2 in Equation (3) to find I 1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

   224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

   I1 5 2.0 A

Use Equation (1) to find I 3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Finalize  Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in Figure 27.14. 
The numerical values for the currents are correct. Despite the incorrect direction, we must continue to use these negative values in 
subsequent calculations because our equations were established with our original choice of direction. What would have happened 
had we left the current directions as labeled in Figure 27.14 but traversed the loops in the opposite direction?

27.7 c o n t i n u e d

   27.4    RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

charging a capacitor
Figure 27.15 shows a simple series RC circuit. Let’s assume the capacitor in this cir-
cuit is initially uncharged. There is no current while the switch is open (Fig. 27.15a). 
If the switch is thrown to position a at t 5 0 (Fig. 27.15b), however, charge begins to 
flow, setting up a current in the circuit, and the capacitor begins to charge.2 Notice 
that during charging, charges do not jump across the capacitor plates because the 
gap between the plates represents an open circuit. Instead, charge is transferred 
between each plate and its connecting wires due to the electric field established in 
the wires by the battery until the capacitor is fully charged. As the plates are being 
charged, the potential difference across the capacitor increases. The value of the 
maximum charge on the plates depends on the voltage of the battery. Once the 
maximum charge is reached, the current in the circuit is zero because the potential 
difference across the capacitor matches that supplied by the battery.

2In previous discussions of capacitors, we assumed a steady-state situation, in which no current was present in any 
branch of the circuit containing a capacitor. Now we are considering the case before the steady-state condition is real-
ized; in this situation, charges are moving and a current exists in the wires connected to the capacitor.
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    27.4 RC Circuits 727

To analyze this circuit quantitatively, let’s apply Kirchhoff’s loop rule to the cir-
cuit after the switch is thrown to position a. Traversing the loop in Figure 27.15b 
clockwise gives

 « 2
q

C
2 iR 5 0 (27.15)

where q/C is the potential difference across the capacitor and iR is the potential 
difference across the resistor. When we study electric circuits in which charge or 
current is changing in time, we will use lower case q and i for the time-varying 
values. We will reserve uppercase letters for initial, final, or steady-state values. 
We have used the sign conventions discussed earlier for the signs on « and iR in  
Equation 27.15. The capacitor is traversed in the direction from the positive plate 
to the negative plate, which represents a decrease in potential. Therefore, we use a 
negative sign for this potential difference in Equation 27.15.

We can use Equation 27.15 to find the initial current Ii in the circuit and the 
maximum charge Qmax on the capacitor. At the instant the switch is thrown to posi-
tion a (t 5 0), the charge on the capacitor is zero. Equation 27.15 shows that the 
initial current Ii in the circuit is a maximum and is given by

 Ii 5
«
R
 scurrent at t 5 0d (27.16)

At this time, the potential difference from the battery terminals appears entirely 
across the resistor. Later, when the capacitor is charged to its maximum value Q max, 
charges cease to flow, the current in the circuit is zero, and the potential difference 
from the battery terminals appears entirely across the capacitor. Substituting i 5 0 
into Equation 27.15 gives the maximum charge on the capacitor:

 Q max 5 C « (maximum charge) (27.17)

To determine analytical expressions for the time dependence of the charge and 
current, we must solve Equation 27.15, a single equation containing two variables q 
and i. The current in all parts of the series circuit must be the same. Therefore, the 
current in the resistance R  must be the same as the current between each capacitor 
plate and the wire connected to it. This current is equal to the time rate of change 
of the charge on the capacitor plates. Therefore, we substitute i 5 dq/dt into Equa-
tion 27.15 and rearrange the equation:

 
dq

dt
5

«
R

2
q

RC
 

To find an expression for q, we solve this separable differential equation as follows. 
First combine the terms on the right-hand side:

 
dq

dt
5

C «
RC

2
q

RC
5 2

q 2 C «
RC

 

Multiply this equation by dt and divide by q 2 C«:

 
dq

q 2 C « 5 2 
1

RC
 dt 

Integrate this expression, using q 5 0 at t 5 0:

 #
q

0
 

dq

q 2 C « 5 2
1

RC
 #

t

0
 dt 

 ln Sq 2 C «
2C «  D 5 2

t
RC

  

R

C

b

a

e

Ri

C

b

a

e

R

C

b

a

� �

� �

e
� �

� �

� �

When the switch is thrown 
to position a, the capacitor 
begins to charge up. 

When the switch is thrown 
to position b, the capacitor 
discharges.

a

b

c

Figure 27.15 A capacitor in 
series with a resistor, switch, and 
battery.
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728 Chapter 27 Direct-Current Circuits

From the definition of the natural logarithm, we can write this expression as

 q(t) 5 C«(1 2 e2t/RC) 5 Q max(1 2 e2t/RC)  (27.18)

where e is the base of the natural logarithm and we have made the substitution 
from Equation 27.17.

We can find an expression for the current in the circuit as a function of time by 
differentiating Equation 27.18 with respect to time. Using i 5 dq/dt, we find that

 i std 5
«
R

 e2tyRC  (27.19)

Plots of capacitor charge and circuit current versus time are shown in Figure 27.16. 
Notice that the charge is zero at t 5 0 and approaches the maximum value C« as  
t S .̀ The current has its maximum value Ii 5 «/R at t 5 0 and decays exponen-
tially to zero as t S .̀ The quantity RC, which appears in the exponents of Equa-
tions 27.18 and 27.19, is called the time constant t of the circuit:

 t 5 RC  (27.20)

The time constant represents the time interval during which the current decreases 
to 1/e of its initial value; that is, after a time interval t, the current decreases to i 5 
e21Ii 5 0.368Ii. After a time interval 2t, the current decreases to i 5 e22Ii 5 0.135Ii  , 
and so forth. Likewise, in a time interval t, the charge increases from zero to  
C«[1 2 e21] 5 0.632C«.

The energy supplied by the battery during the time interval required to fully charge 
the capacitor is Q  max« 5 C  « 2. After the capacitor is fully charged, the energy stored in  
the capacitor is 1

2 Q  max« 5 1
2C  « 2, which is only half the energy output of the battery. 

It is left as a problem (Problem 44) to show that the remaining half of the energy sup-
plied by the battery appears as internal energy in the resistor.

Discharging a capacitor
Imagine that the capacitor in Figure 27.15b is completely charged. An initial poten-
tial difference Q i /C exists across the capacitor, and there is zero potential differ-
ence across the resistor because i 5 0. If the switch is now thrown to position b at 
t 5 0 (Fig. 27.15c), the capacitor begins to discharge through the resistor. At some 
time t during the discharge, the current in the circuit is i and the charge on the 

Charge as a function of time 
for a capacitor being charged

Current as a function of time  
for a capacitor being charged

q

t

Ce

0.632Ce

0.865Ce
0.950Ce

i

t0.049 8Ii

0.135Ii

0.368Ii

Ii

4T3T2TT 4T3T2TT

The charge approaches 
its maximum value Ce 
as t approaches infinity.

The current has its maximum
value Ii � e/R  at t � 0 and 
decays to zero exponentially 
as t approaches infinity.

After a time interval equal to 
one time constant T has passed, 
the charge is 63.2% of the 
maximum value Ce.

After a time interval equal 
to one time constant T has 
passed, the current is 36.8% 
of its initial value.

a b

Figure 27.16 (a) Plot of capacitor 
charge versus time for the circuit 
shown in Figure 27.15b. (b) Plot of 
current versus time for the circuit 
shown in Figure 27.15b.
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capacitor is q. The circuit in Figure 27.15c is the same as the circuit in Figure 27.15b 
except for the absence of the battery. Therefore, we eliminate the emf « from Equa-
tion 27.15 to obtain the appropriate loop equation for the circuit in Figure 27.15c:

 2
q

C
2 iR 5 0 (27.21)

When we substitute i 5 dq/dt into this expression, it becomes

 2R 
dq

dt
5

q

C
 

 
dq
q

5 2 
1

RC
 dt 

Integrating this expression using q 5 Q i at t 5 0 gives

 #
q

Q i

 
dq
q

5 2 
1

RC
 #

t

0
 dt 

 ln S q

Q i
D 5 2 

t
RC

 

 q std 5 Q i 
e2tyRC  (27.22)

Differentiating Equation 27.22 with respect to time gives the instantaneous current 
as a function of time:

 i std 5 2
Q  i

RC
 e2tyRC  (27.23)

where Q i /RC 5 Ii is the initial current. Figure 27.15b shows a downward current 
in the resistor that we guessed in order to apply Kirchhoff’s rules and generate 
Equations 27.15 and 27.21. Equation 27.23 shows that the current in the discharg-
ing capacitor is negative, indicating that the current is upward in the resistor in  
Figure 27.15c. Both the charge on the capacitor and the current decay exponen-
tially at a rate characterized by the time constant t 5 RC.

Q uick Quiz 27.5  Consider the circuit in Figure 27.17 and assume the battery has 
no internal resistance. (i) Just after the switch is closed, what is the current in the 
battery? (a) 0 (b) «/2R (c) 2«/R (d) «/R (e) impossible to determine (ii) After a 
very long time, what is the current in the battery? Choose from the same choices.

  Charge as a function of time 
for a discharging capacitor

  Current as a function of time 
for a discharging capacitor

C

RR
e

�

�

Figure 27.17 (Quick Quiz 27.5) 
How does the current vary after 
the switch is closed?

 Conceptual Example 27.8    Intermittent Windshield Wipers

Many automobiles are equipped with windshield wipers that can operate intermittently during a light rainfall. How does 
the operation of such wipers depend on the charging and discharging of a capacitor?

S O L U T I O N

The wipers are part of an RC circuit whose time constant can be varied by selecting different values of R through a multipo-
sition switch. As the voltage across the capacitor increases, the capacitor reaches a point at which it discharges and triggers 
the wipers. The circuit then begins another charging cycle. The time interval between the individual sweeps of the wipers is 
determined by the value of the time constant.

 Example 27.9    Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in series to a battery as shown in Figure 27.15, where « 5 12.0 V,  
C 5 5.00 mF, and R 5 8.00 3 105 V. The switch is thrown to position a. Find the time constant of the circuit, the maximum 
charge on the capacitor, the maximum current in the circuit, and the charge and current as functions of time.

continued

    27.4 RC Circuits 729
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730 Chapter 27 Direct-Current Circuits

27.9 c o n t i n u e d

S O L U T I O N

Conceptualize Study Figure 27.15 and imagine throwing the switch to position a as shown in Figure 27.15b. Upon doing so, 
the capacitor begins to charge.

Categorize We evaluate our results using equations developed in this section, so we categorize this example as a substitution 
problem.

Evaluate the time constant of the circuit from  t 5 RC 5 (8.00 3 105 V)(5.00 3 1026 F) 5 4.00 s  
Equation 27.20:

Evaluate the maximum charge on the capacitor,  Q max 5 C « 5 (5.00 mF)(12.0 V) 5 60.0 mC  
which occurs as t S ∞, from Equation 27.17:

Evaluate the maximum current in the circuit,  Ii 5
«
R

5
12.0 V

8.00 3 105 V
5 15.0 mA  

which occurs at t 5 0, from Equation 27.16:

Use these values in Equations 27.18 and 27.19 to  (1)   q std 5 60.0s1 2 e2ty4.00d  
find the charge and current as functions of time: 

(2)   i st d 5 15.0e2ty4.00

In Equations (1) and (2), q is in microcoulombs, i is in microamperes, and t is in seconds.

 Example 27.10     Discharging a Capacitor in an RC Circuit

Consider a capacitor of capacitance C that is being discharged through a resistor of resistance R as shown in Figure 27.15c.

(A)  After how many time constants is the charge on the capacitor one-fourth its initial value?

S O L U T I O N

Conceptualize Study Figure 27.15 and imagine throwing the switch to position b as shown in Figure 27.15c. Upon doing so, 
the capacitor begins to discharge.

Categorize We categorize the example as one involving a discharging capacitor and use the appropriate equations.

Analyze  Substitute q(t) 5 Q i /4 into Equation 27.22: 
Q  i

4
5 Q i 

e2tyRC 

   1
4 5 e2tyRC

Take the logarithm of both sides of the equation and  2ln 4 5 2 
t

RC
 

solve for t: 
t 5 RC ln 4 5 1.39RC 5 1.39t

(B)  The energy stored in the capacitor decreases with time as the capacitor discharges. After how many time constants is 
this stored energy one-fourth its initial value?

S O L U T I O N

Use Equations 25.13 and 27.22 to express the energy  (1)   U st d 5
q 

2

2C
5

Q i
2

2C
 e22tyRC 

stored in the capacitor at any time t:

Substitute U st d 5 1
4   

sQ i
2 y2C d into Equation (1): 1

4 
Q i

2

2C
5

Q i
2

2C
 e22tyRC 

   1
4 5 e22tyRC 

Take the logarithm of both sides of the equation and  2ln 4 5 2
2t

RC
 

solve for t: 
t 5 1

2RC ln 4 5 0.693RC 5 0.693t
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27.10 c o n t i n u e d

Finalize  Notice that because the energy depends on the square of the charge, the energy in the capacitor drops more rapidly 
than the charge on the capacitor.

W H A T  I F ?  What if you want to describe the circuit in terms of the time interval required for the charge to fall to one-
half its original value rather than by the time constant t? That would give a parameter for the circuit called its half-life t1/2. How 
is the half-life related to the time constant?

Answer In one half-life, the charge falls from Q i to Q i /2. Therefore, from Equation 27.22,

Q  i

2
5 Q  i 

e2t 1y2 yRC   S   12 5 e2t 1y2 yRC

which leads to

t1/2 5 0.693t

The concept of half-life will be important to us when we study nuclear decay in Chapter 43. The radioactive decay of an 
unstable sample behaves in a mathematically similar manner to a discharging capacitor in an RC circuit.

 Example 27.11    Energy Delivered to a Resistor

A 5.00-mF capacitor is charged to a potential difference of 800 V and then discharged through a resistor. How much energy 
is delivered to the resistor in the time interval required to fully discharge the capacitor?

S O L U T I O N

Conceptualize In part (B) of Example 27.10, we considered the energy decrease in a discharging capacitor to a value of one-
fourth the initial energy. In this example, the capacitor fully discharges.

Categorize We solve this example using two approaches. The first approach is to model the circuit as an isolated system for 
energy. Because energy in an isolated system is conserved, the initial electric potential energy UE stored in the capacitor is 
transformed into internal energy E int 5 ER in the resistor. The second approach is to model the resistor as a nonisolated system 
for energy. Energy enters the resistor by electrical transmission from the capacitor, causing an increase in the resistor’s inter-
nal energy.

Analyze  We begin with the isolated system approach.

Write the appropriate reduction of the conservation of  DU 1 DE int 5 0 
energy equation, Equation 8.2:

Substitute the initial and final values of the energies: (0 2 UE) 1 (E int 2 0) 5 0   S   ER 5 UE

Use Equation 25.13 for the electric potential energy in  ER 5 1
2C «2 

the capacitor:

Substitute numerical values: ER 5 1
2  
s5.00 3 1026 Fds800 Vd2 5 1.60 J

The second approach, which is more difficult but perhaps more instructive, is to note that as the capacitor discharges through 
the resistor, the rate at which energy is delivered to the resistor by electrical transmission is i 2R, where i is the instantaneous 
current given by Equation 27.23.

Evaluate the energy delivered to the resistor by  P 5
dE
dt

   S   ER 5 #
`

0
P dt 

integrating the power over all time because it  
takes an infinite time interval for the capacitor  
to completely discharge:

Substitute for the instantaneous power delivered  ER 5 #
`

0
i 

2R dt 
to the resistor from Equation 26.22:

continued
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27.11 c o n t i n u e d

Substitute for the current from Equation 27.23: ER 5 #
`

0
S 2

Q  i

RC
 e2tyRCD2

 R dt 5
Q  i

2

RC 
2 #

`

0
 e22tyRC dt 5

«2

R
 #

`

0
 e22tyRC dt

Substitute the value of the integral, which is  ER 5
«2

R
 SRC

2 D 5 1
2C «2 

RC/2 (see Problem 28):

Finalize  This result agrees with that obtained using the isolated system approach, as it must. We can use this second approach 
to find the total energy delivered to the resistor at any time after the switch is closed by simply replacing the upper limit in the 
integral with that specific value of t.

   27.5    Household Wiring and Electrical Safety
Many considerations are important in the design of an electrical system of a home 
that will provide adequate electrical service for the occupants while maximizing 
their safety. We discuss some aspects of a home electrical system in this section.

Household Wiring
Household circuits represent a practical application of some of the ideas presented 
in this chapter. In our world of electrical appliances, it is useful to understand the 
power requirements and limitations of conventional electrical systems and the 
safety measures that prevent accidents.

In a conventional installation, the utility company distributes electric power to 
individual homes by means of a pair of wires, with each home connected in par-
allel to these wires. One wire is called the live wire3 as illustrated in Figure 27.18, 
and the other is called the neutral wire. The neutral wire is grounded; that is, its 
electric potential is taken to be zero. The potential difference between the live 
and neutral wires is approximately 120 V. This voltage alternates in time, and 
the potential of the live wire oscillates relative to ground. Much of what we have 
learned so far in this chapter for the constant-emf situation (direct current) can 
also be applied to the alternating current that power companies supply to busi-
nesses and households. (Alternating voltage and current are discussed in detail 
in Chapter 32.)

To record a household’s energy consumption, a meter is connected in series with 
the live wire entering the house. After the meter, the wire splits so that there are 
several separate circuits in parallel distributed throughout the house. Each circuit 
contains a circuit breaker (or, in older installations, a fuse). A circuit breaker is 
a special switch that opens if the current exceeds the rated value for the circuit 
breaker. The wire and circuit breaker for each circuit are carefully selected to meet 
the current requirements for that circuit. If a circuit is to carry currents as large as 
30 A, a heavy wire and an appropriate circuit breaker must be selected to handle 
this current. A circuit used to power only lamps and small appliances often requires 
only 20 A. Each circuit has its own circuit breaker to provide protection for that 
part of the entire electrical system of the house.

As an example, consider a circuit in which a toaster oven, a microwave oven, and 
a coffee maker are connected (corresponding to R1, R2, and R3 in Fig. 27.18). We 
can calculate the current in each appliance by using the expression P 5 I DV. The 
toaster oven, rated at 1 000 W, draws a current of 1 000 W/120 V 5 8.33 A. The 
microwave oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 
800 W, draws 6.67 A. When the three appliances are operated simultaneously, they 
draw a total current of 25.8 A. Therefore, the circuit must be wired to handle at 

3Live wire is a common expression for a conductor whose electric potential is above or below ground potential.

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Electrical
meter

R3

W

The electrical meter measures 
the power in watts.

Figure 27.18 Wiring diagram for 
one parallel circuit in a household 
electrical system. The resistances 
represent appliances or other elec-
trical devices that operate with an 
applied voltage of 120 V.
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    27.5 Household Wiring and Electrical Safety 733

least this much current. If the rating of the circuit breaker protecting the circuit 
is too small—say, 20 A—the breaker will be tripped when the third appliance is 
turned on, preventing all three appliances from operating. To avoid this situa-
tion, the toaster oven and coffee maker can be operated on one 20-A circuit and 
the microwave oven on a separate 20-A circuit.

Many heavy-duty appliances such as electric ranges and clothes dryers 
require 240 V for their operation. The power company supplies this voltage 
by providing a third wire that is 120 V below ground potential (Fig. 27.19). 
The potential difference between this live wire and the other live wire (which 
is 120 V above ground potential) is 240 V. An appliance that operates from 
a 240-V line requires half as much current compared with operating it at  
120 V; therefore, smaller wires can be used in the higher-voltage circuit with-
out overheating.

electrical Safety
When the live wire of an electrical outlet is connected directly to ground, the circuit 
is completed and a short-circuit condition exists. A short circuit occurs when almost 
zero resistance exists between two points at different potentials, and the result is 
a very large current. When that happens accidentally, a properly operating circuit 
breaker opens the circuit and no damage is done. A person in contact with ground, 
however, can be electrocuted by touching the live wire of a frayed cord or other 
exposed conductor. An exceptionally effective (and dangerous!) ground contact is 
made when the person either touches a water pipe (normally at ground potential) or 
stands on the ground with wet feet. The latter situation represents effective ground 
contact because normal, nondistilled water is a conductor due to the large number 
of ions associated with impurities. This situation should be avoided at all cost.

Many 120-V outlets are designed to accept a three-pronged power cord. (This 
feature is required in all new electrical installations.) One of these prongs is the 
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally 
at 0 V, which carries current to ground. Figure 27.20a shows a connection to an 
electric drill with only these two wires. If the live wire accidentally makes contact 
with the casing of the electric drill (which can occur if the wire insulation wears 
off), current can be carried to ground by way of the person, resulting in an electric 
shock. The third wire in a three-pronged power cord, the round prong, is a safety 
ground wire that normally carries no current. It is both grounded and connected 
directly to the casing of the appliance. If the live wire is accidentally shorted to the 

�120 V �120 V 

b

Figure 27.19 (a) An outlet for 
connection to a 240-V supply.  
(b) The connections for each of 
the openings in a 240-V outlet.

©
 C

en
ga

ge

a

In the situation shown, the live wire has come into contact 
with the drill case. As a result, the person holding the drill acts 
as a current path to ground and receives an electric shock.

In this situation, the drill case remains at ground 
potential and no current exists in the person.

“Ouch!”

Motor

“Hot”

Circuit
breaker 120 V 

“Neutral”

Ground

I

I

Wall
outlet Motor

“Hot”

Circuit
breaker

120 V 

“Neutral”

Ground

“Ground”

I

I

3-wire
outlet

I

I

I

a b

Figure 27.20 (a) A diagram of the circuit for an electric drill with only two connecting wires. The 
normal current path is from the live wire through the motor connections and back to ground through 
the neutral wire. (b) This shock can be avoided by connecting the drill case to ground through a 
third ground wire. The wire colors represent electrical standards in the United States: the “hot” wire 
is black, the ground wire is green, and the neutral wire is white (shown as gray in the figure).
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734 Chapter 27 Direct-Current Circuits

Summary
 › Definitions

The emf of a battery is equal to the voltage across its terminals when the current is zero. That is, the emf is equivalent to the  
open-circuit voltage of the battery.

 › Concepts and Principles

The equivalent resistance of a set 
of resistors connected in a series 
combination is

 Req 5 R1 1 R2 1 R3 1 ? ? ? (27.8)

The equivalent resistance of a set 
of resistors connected in a paral-
lel combination is found from the 
relationship

 
1

Req

5
1
R1

1
1
R2

1
1
R3

1 Á  (27.12)

Circuits involving more than one loop are conveniently analyzed with the use of  
Kirchhoff’s rules:

 1. Junction rule. At any junction, the sum of the currents must equal zero:

 o
junction

I 5 0 (27.13)

 2.  Loop rule. The sum of the potential differences across all elements around any cir-
cuit loop must be zero:

 o
closed loop

DV 5 0 (27.14)

When a resistor is traversed in the direction of the current, the potential difference DV 
across the resistor is 2IR. When a resistor is traversed in the direction opposite the cur-
rent, DV 5 1IR. When a source of emf is traversed in the direction of the emf (negative 
terminal to positive terminal), the potential difference is 1«. When a source of emf is 
traversed opposite the emf (positive to negative), the potential difference is 2«.

If a capacitor is charged with a battery through a resis-
tor of resistance R, the charge on the capacitor and 
the current in the circuit vary in time according to the 
expressions

 q(t ) 5 Q max(1 2 e2t /RC ) (27.18)

 i st d 5
«
R

 e2tyRC (27.19)

where Q  max 5 C « is the maximum charge on the capacitor.  
The product RC is called the time constant t of the 
circuit.

If a charged capacitor of capacitance C is discharged through a resis-
tor of resistance R, the charge and current decrease exponentially in 
time according to the expressions

 q(t ) 5 Q i e
2t/RC (27.22)

 i st d 5 2
Q i

RC
 e2tyRC (27.23)

where Q i is the initial charge on the capacitor and Q i /RC is the initial 
current in the circuit.

casing in this situation, most of the current takes the low-resistance path through 
the appliance to ground as shown in Figure 27.20b.

Special power outlets called ground-fault circuit interrupters, or GFCIs, are used 
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of 
homes. These devices are designed to protect persons from electric shock by sens-
ing small currents (, 5 mA) leaking to ground. (The principle of their operation 
is described in Chapter 30.) When an excessive leakage current is detected, the 
current is shut off in less than 1 ms.

Electric shock can result in fatal burns or can cause the muscles of vital organs 
such as the heart to malfunction. The degree of damage to the body depends on the 
magnitude of the current, the length of time it acts, the part of the body touched 
by the live wire, and the part of the body in which the current exists. Currents of 
5 mA or less cause a sensation of shock, but ordinarily do little or no damage. If the 
current is larger than about 10 mA, the muscles contract and the person may be 
unable to release the live wire. If the body carries a current of about 100 mA for only 
a few seconds, the result can be fatal. Such a large current paralyzes the respiratory 
muscles and prevents breathing. In some cases, currents of approximately 1 A can  
produce serious (and sometimes fatal) burns. In practice, no contact with live wires 
is regarded as safe whenever the voltage is greater than 24 V.
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think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You and your cousins are playing with your niece, showing 
her some simple electric circuits. You connect a 9.0-V battery 
to an electric buzzer with two wires equipped with alligator 
clips on each end. Both wires are copper and of diameter 
0.500 mm. Wire 1 is 1.00 m long, while wire 2 is 0.250 m long. 
You expect your niece to be thrilled with the sound from the 
buzzer, but something is wrong. The sound is much too weak. 
You happen to have a multimeter, so you can take voltage 
and current measurements. Half of your group takes mea-
surements, while the circuit is operating: voltage across bat-
tery, 8.60 V; voltage across buzzer, 6.40 V; voltage across wire  
2, 0.010 V current in circuit, 0.500 A. The other half of your 
group looks online and finds that the battery you are using 
should have an internal resistance less than 0.900 V, and that 
the buzzer you are using should have no more than 15.0 V  
of resistance while in operation. The halves of your group 
now reconvene and determine which component is defec-
tive: the battery, the buzzer, wire 1, or wire 2.

2. ACTIVITy  Your group is performing electrical experiments 
in your physics laboratory. Your supply of resistors in the 
stockroom has run low and you only have two different values 
of resistance: 20 V and 50 V. (a) Your experiments require 
a 45-V resistor and a 35-V resistor. Split your group into two 
halves. Group (i) will determine how to form a 45-V resis-
tor from your supply, while group (ii) will do the same for a  
35-V resistor. (b) After working on the experiment for a 
while, you realize you now need a 105-V resistor. Have your 
whole group work together to find at least three ways to 
combine the resistors in your stockroom to generate 105 V.

3. Consider the table below, which shows a typical amount of 
power utilized for a number of household appliances. In the 
third column, discuss in your group and enter the number of 
such appliances in a typical home. Many of these will be 1,  
some will be 0 if the item is not used, and others will be greater 
than one, such as the number of lightbulbs in the home. In 
the time column, estimate the amount of time in hours that 
each appliance would be used in a day. Multiply columns 2, 3,  
and 4 to obtain the energy use in one day for each appli-
ance in the last column. From these results, estimate (a) 
the monthly energy usage of this household in kWh and  
(b) the monthly electric bill if electricity costs 11¢ per kWh.

Appliance Power (W)
Number 
of items

Time of 
use in one 

day (h)

Energy in 
one day 
(kWh)

Household:

Central air 
conditioner

5 000

Vacuum cleaner 500
Electric water 

heater
475

Appliance Power (W)
Number 
of items

Time of 
use in one 

day (h)

Energy in 
one day 
(kWh)

LCD television 215
100-watt 

incandescent 
bulb

100

CFL bulb 25
Ceiling fan 100
LED bulb 10
Table fan 20
Garage door 

opener
350

Satellite dish 30
Plasma 

television
340

Kitchen:

Oven 3 000
Dishwasher 1 200
Coffee machine 1 500
Microwave oven 1 500
Toaster 1 100
Refrigerator 400

Bathroom:

Hair dryer 1 500
Electric shaver 15
Curling iron 90

Laundry:

Electric clothes 
dryer

3 400

Iron 1 100
Washing 

machine
500

Computer:

Laptop 
computer

100

Desktop 
computer

120

Cell phone 
recharger

4

Internet router 15
Inkjet printer 25

Bedroom:

Electric blanket 200
Clock radio 2
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736 Chapter 27 Direct-Current Circuits

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 27.1 Electromotive Force

1. Two 1.50-V batteries—with their positive terminals in the 
same direction—are inserted in series into a flashlight. One 
battery has an internal resistance of 0.255 V, and the other 
has an internal resistance of 0.153 V. When the switch is 
closed, the bulb carries a current of 600 mA. (a) What is the 
bulb’s resistance? (b) What fraction of the chemical energy 
transformed appears as internal energy in the batteries?

2. As in Example 27.2, consider a power supply with fixed emf « 
and internal resistance r causing current in a load resistance 
R. In this problem, R is fixed and r is a variable. The effi-
ciency is defined as the energy delivered to the load divided 
by the energy delivered by the emf. (a)  When the internal 
resistance is adjusted for maximum power transfer, what is 
the efficiency? (b) What should be the internal resistance for 
maximum possible efficiency? (c) When the electric company 
sells energy to a customer, does it have a goal of high effi-
ciency or of maximum power transfer? Explain. (d) When 
a student connects a loudspeaker to an amplifier, does she 
most want high efficiency or high power transfer? Explain.

Section 27.2 Resistors in Series and Parallel

3. Figure P27.3 shows the interior of a three-way incandescent 
lightbulb, which provides three levels of light intensity. The 
socket of the lamp is equipped with a four-position switch for 
selecting different light intensities, with the positions 
described as follows: (1) off (switches S1 and S2 both open), 
(2) switch S1 closed, (3) switch S2 closed, and (4) switches  
S1 and S2 both closed. The lightbulb contains two filaments. 
When the lamp is connected to a 120-V source, one filament 
receives 100 W of power and the other receives 75 W. What is 
the total power input to the light bulb when (a) only switch 
S1 is closed, (b) only switch S2 is closed, and (c) both switches 
are closed? (d) What If? Suppose the 75-W filament breaks 
and no longer is able to carry a current. How many switch 
positions will result in light leaving the bulb and what will 
be the power input to the bulb in those positions?

4. A lightbulb marked “75 W [at] 120 V” is screwed into a socket 
at one end of a long extension cord, in which each of the 
two conductors has resistance 0.800 V. The other end of the 
extension cord is plugged into a 120-V outlet. (a) Explain 

why the actual power delivered to the lightbulb cannot be 75 
W in this situation. (b) Draw a circuit diagram. (c) Find the 
actual power delivered to the lightbulb in this circuit.

5. Consider the two circuits shown in Figure P27.5 in which 
the batteries are identical. The resistance of each lightbulb 
is R. Neglect the internal resistances of the batteries. (a) 
Find expressions for the currents in each lightbulb. (b) How 
does the brightness of B compare with that of C? Explain. 
(c) How does the brightness of A compare with that of B and 
of C? Explain.

6. Consider strings of 
incandescent lights 
that are used for 
many ornamental 
purposes, such as 
decorating Christ-
mas trees. Over the 
years, both parallel 
and series connec-
tions have been used 
for strings of lights, 
and the bulbs have 
varied in design. 
Because series-wired 
lightbulbs operate 
with less energy per 
bulb and at a lower 
temperature, they are 
safer than parallel- 
wired lightbulbs, where each bulb operates at 120 V. To prevent 
the failure of one lightbulb from causing the entire string to go 
out for the bulbs wired in series, a new design was developed. 
Figure P27.6a shows one of these types of miniature lightbulb 
designed to operate in a series connection. When the filament 
breaks in one of these lightbulbs, the break in the filament rep-
resents the largest resistance in the series, much larger than 
that of the intact filaments. As a result, most of the applied 
120 V appears across the lightbulb with the broken filament. 
Inside the lightbulb, a small jumper loop covered by an insu-
lating material is wrapped around the filament leads. When 
the filament fails and 120 V appears across the lightbulb, an 
arc burns the insulation on the jumper and connects the fil-
ament leads, as shown in Figure P27.6b. This connection now 
provides a low-resistance path through the lightbulb, even 
though its filament is no longer active, and the voltage across 
the bulb drops to zero. All the other lightbulbs not only stay 
on, but they glow more brightly because the total resistance 
of the string is reduced and consequently the current in each 
remaining lightbulb increases. Suppose you have a string of 
48 bulbs, each one with a resistance of 8.00 V. Assume the  

120 V

S2

S1

100-W filament

75-W filament

Figure P27.3

A B C

� � � �
e e

Figure P27.5

Filament

Jumper

Glass insulator

I I

I

a b

Figure P27.6
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resistance of a bulb with its filament broken drops to zero. Sup-
pose that a bulb becomes dangerously warm, so that it could set 
something on fire, if it receives a power of 1.75 W. How many 
bulbs can fail before the string of lights becomes dangerous?

7. You are working at an electronics fabrication shop. Your cur-
rent project is on the team producing resistors for the timer 
circuit that delays the closing of an elevator door. According 
to its design specification, the timer circuit is to have a resis-
tance of 32.0 V between two points A and B. As your resistors 
come off the assembly line, you find that they have a variation 
of 65.00% from this value. After a team meeting to evaluate 
this situation, the team decides that resistances in the range 
32.0 6 0.5 V are acceptable and do not need modification. 
For resistances outside this range, the director does not wish 
to discard the resistors, but rather to add extra resistors in 
series or parallel with the main resistor to bring the total 
equivalent resistance to the exact design value of 32.0 V. 
You are put in charge of procuring the extra resistors. What 
range of resistances for these extra resistors do you need to 
cover the entire range of variation of 65.00%? All resistances 
can be measured to three significant figures.

8. In your new job at an engineering company, your supervi-
sor asks you to fabricate a resistor that has a resistance of  
R 5 0.100 V and no change in resistance with temperature. 
She suggests making the resistor from lengths of cylindrical 
carbon and Nichrome wires of equal radius, placed end-to-
end. She wants the combination to fit into a machine that 
allows for a radius of the resistor to be r 5 1.50 mm. What 
are the lengths of the two segments of the resistor?

9. A battery with « 5 6.00 V and no internal resistance sup-
plies current to the circuit shown in Figure P27.9. When the 
double-throw switch S is open as shown in the figure, the 
current in the battery is 1.00 mA. When the switch is closed 
in position a, the current in the battery is 1.20 mA. When 
the switch is closed in position b, the current in the battery 
is 2.00 mA. Find the resistances (a) R1, (b) R2, and (c) R3.

10. A battery with emf « and no internal resistance supplies 
current to the circuit shown in Figure P27.9. When the dou-
ble-throw switch S is open as shown in the figure, the cur-
rent in the battery is I0. When the switch is closed in position 
a, the current in the battery is Ia. When the switch is closed 
in position b, the current in the battery is Ib. Find the resis-
tances (a) R1, (b) R2, and (c) R3.

11. Today’s class on current and resistance is about to begin 
and you await your professor, who is known for unorthodox 
demonstrations. He walks in just at the beginning time for 
the class, and is carrying hot dogs! He then proceeds to set 
up a demonstration using an older style of hot dog cooker 
in which the hot dogs are directly connected across 120 V 
from the wall socket. He has modified the cooker so it sim-
ultaneously applies the 120 V to three combinations: across 

the ends of a single hot dog, across the ends of two hot dogs 
in parallel, and across the outer ends of two hot dogs in 
series. He explains that he has measured the resistance of a 
hot dog to be 11.0 V, and that a hot dog requires 75.0 kJ of 
energy to cook it. He says he will give extra credit to anyone 
who, before any hot dog begins smoking, can determine (a) 
which hot dog(s) will cook first, and (b) the time interval for 
each hot dog to cook. Quick! Get to work!

12. Why is the following situation impossible? A technician is test-
ing a circuit that contains a resistance R. He realizes that a 
better design for the circuit would include a resistance 7

3R 
rather than R. He has three additional resistors, each with 
resistance R. By combining these additional resistors in a 
certain combination that is then placed in series with the 
original resistor, he achieves the desired resistance.

13. Calculate the power delivered to each resistor in the circuit 
shown in Figure P27.13.

14. For the purpose of measuring the electric resistance of shoes 
through the body of the wearer standing on a metal ground 
plate, the American National Standards Institute (ANSI) 
specifies the circuit shown in Figure P27.14. The potential 
difference DV across the 1.00-MV resistor is measured with an 
ideal voltmeter. (a) Show that the resistance of the footwear is

Rshoes 5
50.0 V 2 DV

DV
  

  (b) In a medical test, a current through the human body 
should not exceed 150 mA. Can the current delivered by the 
ANSI- specified circuit exceed 150 mA? To decide, consider a 
person standing barefoot on the ground plate.

15. Four resistors are connected to a battery as shown in Fig-
ure P27.15. (a) Determine the potential difference across each 
resistor in terms of «. (b) Determine the current in each resis-
tor in terms of I. (c) What 
If? If R3 is increased, 
explain what happens to 
the current in each of the 
resistors. (d) In the limit 
that R3 S ,̀ what are the 
new values of the current 
in each resistor in terms 
of I, the original current 
in the battery?

CR
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�
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Figure P27.9  
Problems 9 and 10.

 Problems 737

R2 = 2R

R3 = 4R

R1 = R

R4 = 3R

I

e

Figure P27.15
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16. You have a faculty position at a community college and are 
teaching a class in automotive technology. You are deep in a 
discussion of using jumper cables to start a car with a dead 
battery from a car with a fresh battery. You have drawn the 
circuit diagram in Figure P27.16 to explain the process. The 
battery on the left is the live battery in the correctly func-
tioning car, with emf « and internal resistance RL, where 
the L subscript refers to “live.” Its terminals are connected 
directly across those of the dead battery, in the middle of 
the diagram, with emf « and internal resistance RD, where 
the D subscript refers to “dead.” Then, the starter in the car 
with the dead battery is activated by closing the ignition 
switch, allowing the car to start. The resistance of the starter 
is RS. A student raises his hand and asks, “So is the dead 
battery being charged while the starter is operating?” How 
do you respond?

Section 27.3 Kirchhoff’s Rules

17. The circuit shown in Figure P27.17 is connected for  
2.00 min. (a) Determine the current in each branch of 
the circuit. (b) Find the energy delivered by each  
battery. (c) Find the energy delivered to each resistor.  
(d) Identify the type of energy storage transformation that 
occurs in the operation of the circuit. (e) Find the total 
amount of energy transformed into internal energy in the 
resistors.

18. The following equations describe an electric circuit:

2I1 (220 V) 1 5.80 V 2 I2 (370 V) 5 0

1I2 (370 V) 1 I3 (150 V) 2 3.10 V 5 0

I1 1 I3 2 I2 5 0

  (a) Draw a diagram of the circuit. (b) Calculate the unknowns 
and identify the physical meaning of each unknown.

19. Taking R 5 1.00 kV and « 5 250 V in Figure P27.19, deter-
mine the direction and magnitude of the current in the 
horizontal wire between a and e.

20. In the circuit of Figure P27.20, the current I1  5 3.00 A  
and the values of « for the ideal battery and R are unknown. 
What are the currents (a) I2 and (b) I3? (c) Can you find the 
values of « and R? If so, find their values. If not, explain.

21. (a) Can the circuit shown in Figure P27.21 be reduced to a 
single resistor connected to a battery? Explain. Calculate 
the currents (b) I1, (c) I2, and (d) I3.

22. For the circuit shown in Figure P27.22, we wish to find the 
currents I1, I2, and I3. Use Kirchhoff’s rules to obtain equa-
tions for (a) the upper loop, (b) the lower loop, and (c) the 
junction on the left side. In each case, suppress units for 
clarity and simplify, combining the terms. (d)  Solve the 
junction equation for I3. (e) Using the equation found in 
part (d), eliminate I3 from the equation found in part (b). 
(f) Solve the equa-
tions found in parts 
(a) and (e) simulta-
neously for the two 
unknowns I1 and I2. 
(g)  Substitute the 
answers found in 
part (f) into the junc-
tion equation found 
in part (d), solving 
for I3. (h) What is 
the significance of 
the negative answer 
for I2?
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Section 27.4 RC Circuits

23. An uncharged capacitor and a resistor are connected 
in series to a source of emf. If « 5 9.00 V, C 5 20.0 mF,  
and R 5 100 V, find (a) the time constant of the circuit, (b) 
the maximum charge on the capacitor, and (c) the charge 
on the capacitor at a time equal to one time constant after 
the battery is connected.

24. Show that the time constant in Equation 27.20 has units  
of time.

25. In the circuit of Figure P27.25, the switch S has been open 
for a long time. It is then suddenly closed. Take « 5 10.0 V, 
R1 5 50.0 kV, R2 5 100 kV, and C 5 10.0 mF. Determine the 
time constant (a) before the switch is closed and (b) after 
the switch is closed. (c) Let the switch be closed at t  5 0. 
Determine the current in the switch as a function of time.

26. In the circuit of Figure P27.25, the switch S has been open 
for a long time. It is then suddenly closed. Determine the 
time constant (a) before the switch is closed and (b) after 
the switch is closed. (c) Let the switch be closed at t 5 0. 
Determine the current in the switch as a function of time.

27. A 10.0-mF capacitor is charged by a 10.0-V battery through a 
resistance R. The capacitor reaches a potential difference of 
4.00 V in a time interval of 3.00 s after charging begins. Find R.

28. Show that the integral #
`

0  e22tyRC dt in Example 27.11 has the 
value 12RC.

Section 27.5 Household Wiring and Electrical Safety

29. You and your roommates are studying hard for your physics 
exam. You study late into the night and then fall into your bed 
for some sleep. You all wake early before the exam and scram-
ble groggily around making breakfast. You can’t agree on what 
to have, so one of you cooks waffles on a 990-watt waffle iron 
while another toasts bread in a 900-watt toaster. You want to 
make coffee with a 650-watt coffeemaker, and you plug it into 
the same power strip into which the waffle iron and toaster are 
plugged. Will the 20-A circuit breaker remain operational?

30. An electric heater is rated at 1.50 3 103 W, a toaster at 750 W,  
and an electric grill at 1.00 3 103 W. The three appliances 
are connected to a common 120-V household circuit.  
(a) How much current does each draw? (b) If the circuit is  
protected with a 25.0-A circuit breaker, will the circuit 
breaker be tripped in this situation? Explain your answer.

31. Turn on your desk lamp. Pick up the cord, with your thumb 
and index finger spanning the width of the cord. (a) Com-
pute an order-of-magnitude estimate for the current in your 
hand. Assume the conductor inside the lamp cord next to 
your thumb is at potential , 102 V at a typical instant and 
the conductor next to your index finger is at ground poten-
tial (0 V). The resistance of your hand depends strongly on 

the thickness and the moisture content of the outer layers 
of your skin. Assume the resistance of your hand between 
fingertip and thumb tip is , 104 V. You may model the cord 
as having rubber insulation. State the other quantities you 
measure or estimate and their values. Explain your rea-
soning. (b) Suppose your body is isolated from any other 
charges or currents. In order-of-magnitude terms, estimate 
the potential difference between your thumb where it con-
tacts the cord and your finger where it touches the cord.

aDDitional ProblemS

32. Four resistors are connected in parallel across a 9.20-V 
battery. They carry currents of 150 mA, 45.0 mA,  
14.0 mA, and 4.00 mA. If the resistor with the largest resis-
tance is replaced with one having twice the resistance, (a) 
what is the ratio of the new current in the battery to the 
original current? (b) What If? If instead the resistor with 
the smallest resistance is replaced with one having twice the 
resistance, what is the ratio of the new total current to the 
original current? (c) On a February night, energy leaves a 
house by several energy leaks, including 1.50 3 103 W by 
conduction through the ceiling, 450 W by infiltration (air-
flow) around the windows, 140 W by conduction through 
the basement wall above the foundation sill, and 40.0 W by 
conduction through the plywood door to the attic. To pro-
duce the biggest saving in heating bills, which one of these 
energy transfers should be reduced first? Explain how you 
decide. Clifford Swartz suggested the idea for this problem.

33. Find the equivalent resistance between points a and b in  
Figure P27.33.

34. The circuit in Figure P27.34a consists of three resistors and 
one battery with no internal resistance. (a) Find the current 
in the 5.00-V resistor. (b) Find the power delivered to the 
5.00-V resistor. (c) In each of the circuits in Figures P27.34b, 
P27.34c, and P27.34d, an additional 15.0-V battery has 
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740 Chapter 27 Direct-Current Circuits

been inserted into the circuit. Which diagram or diagrams  
represent a circuit that requires the use of Kirchhoff’s rules 
to find the currents? Explain why. (d) In which of these 
three new circuits is the smallest amount of power delivered 
to the 10.0-V resistor? (You need not calculate the power in 
each circuit if you explain your answer.)

35. The circuit in Figure P27.35 has been connected for several 
seconds. Find the current (a) in the 4.00-V battery, (b)  in 
the 3.00-V resistor, (c) in the 8.00-V battery, and (d) in the 
3.00-V battery. (e) Find the charge on the capacitor.

36. The resistance between terminals a and b in Figure P27.36 is 
75.0 V. If the resistors labeled R have the same value,  
determine R.

37. (a) Calculate the potential difference between points a and 
b in Figure P27.37 and (b) identify which point is at the 
higher potential.

38. Why is the following situation impossible? A battery has an 
emf of « 5 9.20 V and an internal resistance of r 5  
1.20 V. A resistance R is connected across the battery and 
extracts from it a power of P 5 21.2 W.

39. When two unknown resistors are connected in series with 
a battery, the battery delivers 225 W and carries a total cur-
rent of 5.00 A. For the same total current, 50.0 W is delivered 
when the resistors are connected in parallel. Determine the 
value of each resistor.

40. When two unknown resistors are connected in series with 
a battery, the battery delivers total power Ps and carries a 
total current of I. For the same total current, a total power 

Pp is delivered when the resistors are connected in parallel. 
Determine the value of each resistor.

41. The circuit in Figure P27.41 contains two resistors,  
R1 5 2.00 kV and R2 5 3.00 kV, and two capacitors, C1 5 
2.00 mF and C2 5 3.00 mF, connected to a battery with emf 
« 5 120 V. If there are no charges on the capacitors before 
switch S is closed, determine the charges on capacitors (a) 
C1 and (b) C2 as functions of time, after the switch is closed.

42. Two resistors R1 and R2 are in parallel with each other. 
Together they carry total current I. (a) Determine the current 
in each resistor. (b) Prove that this division of the total current 
I  between the two resistors results in less power delivered to 
the combination than any other division. It is a general princi-
ple that current in a direct current circuit distributes itself so that the 
total power delivered to the circuit is a minimum.

43. A power supply has an open-circuit voltage of 40.0 V and an 
internal resistance of 2.00 V. It is used to charge two storage 
batteries connected in series, each having an emf of 6.00 V 
and internal resistance of 0.300 V. If the charging current is 
to be 4.00 A, (a) what additional resistance should be added 
in series? At what rate does the internal energy increase in 
(b) the supply, (c) in the batteries, and (d) in the added 
series resistance? (e) At what rate does the chemical energy 
increase in the batteries?

44. A battery is used to charge a capacitor through a resistor as 
shown in Figure P27.44. Show that half the energy supplied 
by the battery appears as internal energy in the resistor and 
half is stored in the capacitor.

45. An ideal voltmeter connected across a cer-
tain fresh 9-V battery reads 9.30 V, and an 
ideal ammeter briefly connected across the 
same battery reads 3.70 A. We say the bat-
tery has an open-circuit voltage of 9.30 V  
and a short- circuit current of 3.70 A. Model 
the battery as a source of emf « in series 
with an internal resistance r as in Fig-
ure 27.1a. Determine both (a) « and (b) r.  
An experimenter connects two of these 
identical batteries together as shown in 
Figure P27.45. Find (c) the open-circuit 
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voltage and (d) the short-circuit current of the pair of con-
nected batteries. (e) The experimenter connects a 12.0-V 
resistor between the exposed terminals of the connected 
batteries. Find the current in the resistor. (f) Find the power 
delivered to the resistor. (g) The experimenter connects a 
second identical resistor in parallel with the first. Find the 
power delivered to each resistor. (h) Because the same pair 
of batteries is connected across both resistors as was con-
nected across the single resistor, why is the power in part  
(g) not the same as that in part (f)?

46. (a) Determine the equilibrium charge on the capacitor in 
the circuit of Figure P27.46 as a function of R. (b) Evaluate 
the charge when R 5 10.0 V. (c) Can the charge on the 
capacitor be zero? If so, for what value of R? (d) What is the 
maximum possible magnitude of the charge on the capaci-
tor? For what value of R is it achieved? (e) Is it experimen-
tally meaningful to take R 5 `? Explain your answer. If so, 
what charge magnitude does it imply?

47. In Figure P27.47, suppose the switch has been closed for a 
time interval sufficiently long for the capacitor to become 
fully charged. Find (a) the steady-state current in each resis-
tor and (b) the charge Q max on the capacitor. (c) The switch 
is now opened at t 5 0. Write an equation for the current in 
R2 as a function of time and (d) find the time interval 
required for the charge on the capacitor to fall to one-fifth 
its initial value.

48. Figure P27.48 shows a circuit model for the transmission of an 
electrical signal such as cable TV to a large number of subscrib-
ers. Each subscriber connects a load resistance RL between the 
transmission line and the ground. The ground is assumed to 
be at zero potential and able to carry any current between any 
ground connections with negligible resistance. The resistance 
of the transmission line between the connection points of dif-
ferent subscribers is modeled as the constant resistance R  T  . 
Show that the equivalent resistance across the signal source is

Req 5 1
2   

fs4R T 
R L 1 R T

2   d1y2 1 R T g

   Suggestion: Because the number of subscribers is large, 
the equivalent resistance would not change noticeably  
if the first subscriber canceled the service. Consequently, 
the equivalent resistance of the section of the circuit to the 
right of the first load resistor is nearly equal to Req.

49. The student engineer of a 
campus radio station wishes 
to verify the effectiveness 
of the lightning rod on the 
antenna mast (Fig. P27.49). 
The unknown resistance Rx 
is between points C and E. 
Point E is a true ground, but 
it is inaccessible for direct 
measurement because this 
stratum is several meters below the Earth’s surface. Two 
identical rods are driven into the ground at A and B, intro-
ducing an unknown resistance Ry. The procedure is as fol-
lows. Measure resistance R1 between points A and B, then 
connect A and B with a heavy conducting wire and measure 
resistance R2 between points A and C. (a) Derive an equa-
tion for Rx in terms of the observable resistances, R1 and R2. 
(b) A satisfactory ground resistance would be Rx , 2.00 V. Is 
the grounding of the station adequate if measurements give 
R1 5 13.0 V and R2 5 6.00 V? Explain.

50. A voltage DV is applied to a series configuration of n resistors, 
each of resistance R. The circuit components are reconnected 
in a parallel configuration, and voltage DV is again applied. 
Show that the power delivered to the series configuration is  
1/n2 times the power delivered to the parallel configuration.

cHallenGe Problem

 51. The switch in Figure P27.51a closes when DVc . 2
3 DV  and 

opens when DVc , 1
3 DV. The ideal voltmeter reads a poten-

tial difference as plotted in Figure P27.51b. What is the 
period T of the waveform in terms of R1, R2, and C?
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Magnetic Fields28

28.1 Analysis Model: 
Particle in a Field 
(Magnetic)

28.2 Motion of a Charged 
Particle in a Uniform 
Magnetic Field

28.3 Applications Involving 
Charged Particles 
Moving in a Magnetic 
Field

28.4 Magnetic Force Acting 
on a Current-Carrying 
Conductor

28.5 Torque on a Current 
Loop in a Uniform 
Magnetic Field

28.6 The Hall Effect

Storyline Your family is taking a trip to British Columbia by air. 
After landing in Vancouver, you take a small private plane to a local airport. You 
are amazed that you can look right into the cockpit and see what the pilot sees 
out the front window. Your view is especially exciting as you are landing. You 
notice the runway ahead of you has the characters “35R” painted on it. You won-
der how that runway number is determined. After landing at the local airport, your 
family’s plan is to go into the wilderness and try to find their way around using a 
smartphone compass. You pull out your smartphone, open the compass app, and 
point in a direction, saying, “That’s North!” Another member of your family tells 
you that that’s not true North, because the west coast of Canada has a relatively 
large magnetic declination. Not having heard of magnetic declination, you quietly 
put your phone away as the other family member uses some math to determine 
the actual direction of true North. You vow to spend some time in your hotel 
room tonight looking for magnetic declination online.

ConneCtionS At the beginning of Chapter 22, we investigated some 
interesting phenomena related to electricity: a balloon rubbed on your hair 
attracts bits of paper, rubbing your shoes on a wool rug and touching a friend 
creates a spark. Many of us have experienced effects of magnetism in our 
lives, also. As children, we might have played with magnets or explored with a 
compass. In this chapter, we explore a new type of field, the magnetic field. This 
investigation will connect to the last few chapters in that we find the magnetic 
field exerts forces on electrically charged particles. These forces occur only if 
the charged particles are moving, however. This fact will form the basis of all 
that we study in this chapter. In the subsequent chapter, we will investigate 

Here is a pilot’s view of a 
runway soon before he lands 

a plane on it. What do the 
symbols “35R” signify?  
(Craig Mills/Shutterstock)
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    28.1 Analysis Model: Particle in a Field (Magnetic) 743

another strong connection between electricity and magnetism by showing that 
the source of a magnetic field is moving electric charges. As we move forward, 
we shall find that these connections between electricity and magnetism lead 
to the existence of electromagnetic waves, which we study in Chapter 33. The 
existence of these waves, in turn, leads to the entire topic of optics, about which 
we learn in Chapters 34 to 37.

   28.1    Analysis Model: Particle in a Field (Magnetic)
In our study of electricity in Chapter 22, we first discussed electric forces 
between charged particles. We then made great progress in our understanding 
by introducing the notion of an electric field. We studied in detail the effects 
on a charged particle placed in an electric field. We will follow a similar process 
here, with some differences. Because magnetic effects, such as that of a bar mag-
net picking up a paper clip, occur at a distance without need for physical contact, 
we will simply assume the existence of a magnetic field for now. We will explore 
the behavior of charged particles residing in that field. Because the source of a 
magnetic field is more complicated than that of an electric field, we will post-
pone a detailed discussion of the source of a magnetic field until Chapter 29, 
and devote that entire chapter to that discussion. Let us just say for now that 
the region of space surrounding any moving electric charge contains a magnetic 
field. A magnetic field also surrounds a magnetic substance making up a perma-
nent magnet.

The source of any magnetic field possesses two poles, a north pole and a south 
pole. The poles received their names because of the way a magnet, such as that in 
a compass, behaves in the presence of the Earth’s magnetic field. If a bar magnet 
is suspended from its midpoint and can swing freely in a horizontal plane, it will 
rotate until its magnetic north pole points toward the Earth’s geographic North 
Pole and its magnetic south pole points toward the Earth’s geographic South Pole. 
The poles of a magnet have some similarities to electric charges: experiments show 
that magnetic poles exert attractive or repulsive forces on each other and that these 
forces vary as the inverse square of the distance between the interacting poles. 
There are major differences between electric charges and magnetic poles, however. 
For example, electric charges can be isolated (witness the electron and proton), 
whereas a single magnetic pole has never been isolated; magnetic poles are always 
found in pairs. All attempts thus far to detect an isolated magnetic pole have been 
unsuccessful. No matter how many times a permanent magnet is cut in two, each 
piece always has a north and a south pole.

Historically, the symbol B
S

 has been used to represent a magnetic field, and we 
use this notation in this book. The direction of the magnetic field B

S
 at any location 

is the direction in which the north pole of a compass needle points at that location. 
As with the electric field, we can represent the magnetic field by means of drawings 
with magnetic field lines.

Figure 28.1 shows how the magnetic field lines of a bar magnet can be traced 
with the aid of a compass. Notice that the magnetic field lines outside the magnet 
point away from the north pole and toward the south pole. One can display mag-
netic field patterns of a bar magnet using small iron filings as shown in Figure 28.2 
(page 744).

The configuration of the Earth’s magnetic field, pictured in Figure 28.3 
(page 744), is very much like the one that would be achieved by burying a gigantic 
bar magnet deep in the Earth’s interior. The reason that the north pole of a mag-
netic is attracted toward the north geographic pole of the Earth is that the south 
pole of the model bar magnet is presently located near the north geographic pole. 
If a compass needle is supported by bearings that allow it to rotate in the vertical 
plane as well as in the horizontal plane, the needle is horizontal with respect to 

Hans Christian Oersted
Danish Physicist and Chemist 
(1777–1851)
Oersted is best known for observing 
that a compass needle deflects when 
placed near a wire carrying a current. 
This important discovery was the first 
evidence of the connection between 
electric and magnetic phenomena.  
Oersted was also the first to prepare 
pure aluminum.
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Figure 28.1 Compass needles 
can be used to trace the magnetic 
field lines in the region outside a 
bar magnet.
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744 Chapter 28 Magnetic Fields

Figure 28.2  Magnetic field pat-
terns can be displayed with iron 
filings sprinkled on paper near 
magnets.

Magnetic field 
pattern surrounding 
a bar magnet

Magnetic field pattern 
between opposite poles 
(N–S) of two bar magnets

Magnetic field pattern 
between like poles (N–N) 
of two bar magnets
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Figure 28.3 The Earth’s mag-
netic field lines can be modeled 
as originating from a bar magnet. 
Notice that the north geomagnetic 
pole is associated with the south 
pole of the model magnet.

the Earth’s surface only near the equator. As the compass is moved northward, the 
needle rotates so that it points more and more toward the Earth’s surface. Finally, 
at some point, the north pole of the needle points directly downward. 

The bar magnet model in Figure 28.3 is simplified. Because the magnetic field 
of the Earth is not exactly the same as that of a simple bar magnet, and because 
there are magnetic anomalies in the Earth’s crust, there are actually two types of 
magnetic poles. The point on the surface at which a compass needle points straight 
down is the North magnetic pole. The position of the magnetic pole has moved 
over hundreds of miles since the year 1900, from latitude 708 N to its present lati-
tude of 868 N. The North geomagnetic pole is the point on the Earth’s surface at 
which the magnetic axis of the model bar magnet intersects the surface. By con-
trast, this point has moved only over a relatively small distance at about latitude  
808 N since 1900. While the north magnetic pole has been moving northward, 
closer to the north geographic pole, the south magnetic pole has also been moving 
northward, away from the south geographic pole. It is currently near latitude 658 S, 
while the south geomagnetic pole is near 808 S. 

It is this difference between the geographic and magnetic north poles that causes 
the difficulty in determining North with a compass mentioned in the opening 
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storyline. Your compass will point toward the magnetic north pole, but in a region 
like British Columbia, that direction is quite different from the direction along a 
longitude line toward the geographic North Pole. For example, in Vancouver, your 
compass needle will point about 178 to the east of true north. The number in the 
runway marker in the chapter opening photograph refers to the direction of the 
runway relative to magnetic north, divided by 10. Therefore, runway 35 is oriented 
3508, measured clockwise, from magnetic north. The letter R tells us that there are 
at least two parallel runways in this direction, and this one is on the right. The other  
runway is marked 35L, for left, and there may even be a 35C for center. At Vancouver 
International Airport, there are two runways at an orientation of 1008 relative to 
true north. Because of magnetic declination, however, they are not marked as 
runway 10, but rather as runways 8L and 8R, because they are oriented 838 from 
magnetic north.

The direction of the Earth’s magnetic field has reversed several times during 
the last million years. Evidence for this reversal is provided by basalt, a type of rock 
that contains iron. Basalt forms from material spewed forth by volcanic activity on 
the ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s 
magnetic field direction. The rocks are dated by other means to provide a time line 
for these periodic reversals of the magnetic field.

We can quantify the magnetic field B
S

 by using our model of a particle in a field, 
like the model discussed for gravity in Chapter 13 and for electricity in Chapter 22. 
The existence of a magnetic field at some point in space can be determined by 
measuring the magnetic force F

S
B exerted on an appropriate test particle placed at 

that point. This process is the same one we followed in defining the electric field in 
Chapter 22. If we perform such an experiment by placing a particle with charge q 
in the magnetic field, we find the following results that are similar to those for 
experiments on electric forces, where F

S
e 5 qE

S
 (Eq. 22.8):

 ● The magnetic force is proportional to the charge q of the particle. 
 ● The magnetic force on a negative charge is directed opposite to the force on 

a positive charge moving in the same direction. 
 ● The magnetic force is proportional to the magnitude of the magnetic 

field vector B
S

. 

We also find the following results, which are totally different from those for experi-
ments on electric forces: 

 ● The magnetic force is proportional to the speed v of the particle. 
 ● If the velocity vector makes an angle u with the magnetic field, the magnitude 

of the magnetic force is proportional to sin u. 
 ● When a charged particle moves parallel to the magnetic field vector, the mag-

netic force on the charge is zero. 
 ● When a charged particle moves in a direction not parallel to the magnetic 

field vector, the magnetic force acts in a direction perpendicular to both vS 
and B

S
; that is, the magnetic force is perpendicular to the plane formed by vS 

and B
S

. 

These results show that the magnetic force on a particle is more complicated 
than the electric force. The magnetic force is distinctive because it depends on the 
velocity of the particle and because its direction is perpendicular to both vS and B

S
.  

Figure 28.4 (page 746) shows the details of the direction of the magnetic force on 
a charged particle. Despite this complicated behavior, these observations can be 
summarized in a compact way by writing the magnetic force in the form

 F
S

B 5 qvS 3 B
S

 (28.1)

which by definition of the cross product (see Section 11.1) is perpendicular to  
both vS and B

S
. We can regard this equation as an operational definition of the 

  Vector expression for 
the magnetic force on a 
charged particle moving in a 
magnetic field
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The magnetic forces 
on oppositely charged 
particles moving at the 
same velocity in a 
magnetic field are in 
opposite directions.
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The magnetic force is 
perpendicular to both v and B.S S

Figure 28.4  (a) The direction of 
the magnetic force F

S
B acting on 

a charged particle moving with 
a velocity vS in the presence of a 
magnetic field B

S
. (b) Magnetic 

forces on positive and negative 
charges. A uniform magnetic 
field is represented by uniformly 
spaced magnetic field lines. At any 
point, the magnetic field vector 
B
S

 is parallel to the field line. The 
dashed lines show the paths of the 
particles, which are investigated 
in Section 28.2.

magnetic field at some point in space. That is, the magnetic field is defined in terms 
of the force acting on a moving charged particle. Equation 28.1 is the mathematical 
representation of the magnetic version of the particle in a field analysis model and 
is the magnetic analog to Equation 22.8.

Figure 28.5 reviews two right-hand rules for determining the direction of the 
cross product vS 3 B

S
 and determining the direction of F

S
B. The rule in Figure 28.5a 

depends on our right-hand rule for the cross product in Figure 11.2. Point the four 
fingers of your right hand along the direction of vS with the palm facing B

S
 and curl  

them toward B
S

. Your extended thumb, which is at a right angle to your fingers,  
points in the direction of vS 3 B

S
. Because F

S
B 5 q vS 3 B

S
, F

S
B is in the direction of 

your thumb if q is positive and is opposite the direction of your thumb if q is neg-
ative. (If you need more help understanding the cross product, you should review 
Section 11.1, including Fig. 11.2.)

An alternative rule is shown in Figure 28.5b. Here the thumb points in the direc-
tion of vS and the extended fingers in the direction of B

S
. Now, the force F

S
B on a 

positive charge extends outward from the palm. The advantage of this rule is that 
the force on the charge is in the direction you would push on something with your 
hand: outward from your palm. The force on a negative charge is in the opposite 
direction. You can use either of these two right-hand rules.

B
S

FB
S

FB
S

a b

(1) Point your fingers in 
the direction of v and 
then curl them toward 
the direction of B.

S

S

(1) Point your fingers 
in the direction of B, 
with v coming out of 
your thumb.

S

S

B
S

vS

vS

(2) Your upright thumb 
shows the direction of 
the magnetic force on a 
positive particle.

(2) The magnetic 
force on a positive 
particle is in the 
direction you would 
push with your palm.

Figure 28.5 Two right-hand 
rules for determining the 
direction of the magnetic force 
F
S

B 5 q vS 3 B
S

 acting on a particle 
with charge q moving with a veloc-
ity vS in a magnetic field B

S
. (a) In 

this rule, the magnetic force is in 
the direction in which your thumb 
points. (b) In this rule, the mag-
netic force is in the direction of 
your palm, as if you are pushing 
the particle with your hand.
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Based on Equation 11.3, the magnitude of the magnetic force on a charged par-
ticle is

 FB 5 |q|vB sin u (28.2)

where u is the smaller angle between vS and B
S

. From this expression, we see that FB 
is zero when vS is parallel or antiparallel to B

S
 (u 5 0 or 1808) and maximum when  

vS is perpendicular to B
S

 (u 5 908).

Q uiCk Quiz 28.1  An electron moves in the plane of this paper toward the top  
of the page. A magnetic field is also in the plane of the page and directed 
toward the right. What is the direction of the magnetic force on the electron? 
(a) toward the top of the page (b) toward the bottom of the page (c) toward the 
left edge of the page (d) toward the right edge of the page (e) upward out of the 
page (f) downward into the page

Let’s compare the important differences between the electric and magnetic ver-
sions of the particle in a field model:

 ● The electric force vector is along the direction of the electric field, whereas 
the magnetic force vector is perpendicular to the magnetic field.

 ● The electric force acts on a charged particle regardless of whether the par-
ticle is moving, whereas the magnetic force acts on a charged particle only 
when the particle is in motion.

 ● The electric force does work in displacing a charged particle, whereas the 
magnetic force associated with a steady magnetic field does no work when a 
particle is displaced because the force is perpendicular to the displacement 
of its point of application.

From the last statement and on the basis of the work–kinetic energy theorem, we 
conclude that the kinetic energy of a charged particle moving through a magnetic 
field cannot be altered by the magnetic field alone. The field can alter the direction 
of the velocity vector, but it cannot change the speed or kinetic energy of the particle.

From Equation 28.2, we see that the SI unit of magnetic field is the newton per 
coulomb-meter per second, which is called the tesla (T):

 1 T 5 1 
N

C ? mys
 

Because a coulomb per second is defined to be an ampere,

 1 T 5 1 
N

A ? m
 

A non-SI magnetic-field unit in common use, called the gauss (G), is related to the 
tesla through the conversion 1 T 5 104 G. Table 28.1 shows some typical values of 
magnetic fields.

  Magnitude of the magnetic 
force on a charged particle 
moving in a magnetic field

 The tesla

 TaBle 28.1  Some Approximate Magnetic Field Magnitudes

Source of Field Field Magnitude (T)

Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 1022

Surface of the Sun 1022

Surface of the Earth 5 3 1025

Inside human brain (due to nerve impulses) 10213
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analYsis MOdel Particle in a Field (Magnetic)

Imagine some source (which we 
will investigate later) establishes 
a magnetic field B

S
 throughout 

space. Now imagine a particle 
with charge q is placed in that 
field. The particle interacts with 
the magnetic field so that the 
particle experiences a magnetic 
force given by

 F
S

B 5 q vS 3 B
S

 (28.1)

Examples:

 ● an ion moves in a circular path in the magnetic field of a 
mass spectrometer (Section 28.3)

 ● a current exists in a conducting bar when it is moved in a 
magnetic field (Chapter 30)

 ● a coil in a motor rotates in response to the magnetic field 
in the motor (Chapter 30)

 ● in a bubble chamber, particles created in collisions follow 
curved paths in a magnetic field, allowing the particles to 
be identified (Chapter 44)

z

x

y
B
S

S
FB � q v � B
S

q

vS

S

 Example 28.1    An Electron Moving in a Magnetic Field

An electron moves through space as a cosmic ray (see page 752) 
with a speed of 8.0 3 106 m/s along the x axis (Fig. 28.6).  
At its location, the magnetic field of the Earth has a magni-
tude of 0.050 mT, and is directed at an angle of 608 to the 
x axis, lying in the xy plane. Calculate the magnetic force on 
the electron.

S o L U T I o n

Conceptualize Recall that the magnetic force on a charged parti-
cle is perpendicular to the plane formed by the velocity and mag-
netic field vectors. Use one of the right-hand rules in Figure 28.5 
to convince yourself that the direction of the force on the elec-
tron is downward, in the 2z direction in Figure 28.6.

Categorize We evaluate the magnetic force using the magnetic version of the particle in a field model.

Analyze Use Equation 28.2 to find the magnitude of the  FB 5 |q |vB sin u 
magnetic force:

5 (1.6 3 10219 C)(8.0 3 106 m/s)(5.0 3 1025 T)(sin 608)

5  5.5 3 10217 N

Finalize For practice using the vector product, evaluate this force in vector notation using Equation 28.1. The magnitude of 
the magnetic force may seem small to you, but remember that it is acting on a very small particle, the electron. To convince 
yourself that this is a substantial force for an electron, calculate the initial acceleration of the electron due to this force.

z

x

60�

y

FB
S

B
S

�e

vS

Figure 28.6  (Example 28.1) 
The magnetic force F

S
B acting 

on the electron is in the nega-
tive z direction when vS and B

S
 

lie in the xy plane.

   28.2    Motion of a Charged Particle in a Uniform 
Magnetic Field
In Figure 28.4b, we show two charged particles in a uniform magnetic field at an 
instant of time. The dashed lines suggest the subsequent motion of the two parti-
cles in response to the magnetic force on them. In this section, we investigate more 
details about this motion and the paths followed by the particles.

Before we continue our discussion, some explanation of the notation used in this 
book is in order. To indicate the direction of B

S
 in illustrations, we sometimes pre sent 

perspective views such as those in Figure 28.6. If B
S

 lies in the plane of the page or is 
present in a perspective drawing, we use green vectors or green field lines with arrow-
heads. In nonperspective illustrations, we depict a magnetic field perpendicular 
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a

b

Magnetic field lines coming 
out of the paper are indicated 
by dots, representing the tips 
of arrows coming outward.

Magnetic field lines going 
into the paper are indicated 
by crosses, representing the 
feathers of arrows going 
inward.

Bout
S

Bin
S

Figure 28.7 Representations of 
magnetic field lines perpendicu-
lar to the page.

Figure 28.8 When the velocity 
of a charged particle is perpendic-
ular to a uniform magnetic field, 
the particle moves in a circular 
path in a plane perpendicular 
to B

S
.

r

q

q

q

vS

vS

vS

FB
S

FB
S

FB
S

Bin
S

�

�

�

The magnetic force FB  acting on 
the charge is always directed 
toward the center of the circle.

S

to and directed out of the page with a series of green dots, which represent  
the tips of arrows coming toward you (see Fig. 28.7a). In this case, the field is 
labeled B

S
out. If B

S
 is directed perpendicularly into the page, we use green crosses, 

which represent the feathered tails of archery-type arrows fired away from you, as 
in Figure 28.7b. In this case, the field is labeled B

S
in, where the subscript “in” indi-

cates “into the page.” The same notation with crosses and dots is also used for other 
quantities that might be perpendicular to the page such as forces, velocities, and 
current directions.

Now consider the special case of a positively charged particle moving in a uni-
form magnetic field with the initial velocity vector of the particle perpendicular 
to the field. Let’s assume the direction of the magnetic field is into the page as in 
Figure 28.8. The particle in a field model tells us that the magnetic force on the 
particle is perpendicular to both the magnetic field lines and the velocity of the 
particle. The fact that there is a force on the particle tells us to apply the particle 
under a net force model to the particle. As the particle changes the direction of its 
velocity in response to the magnetic force, the magnetic force remains perpendic-
ular to the velocity. As we found in Section 6.1, if the force is always perpendicular 
to the velocity, the path of the particle is a circle! Figure 28.8 shows the particle 
moving in a circle in a plane perpendicular to the magnetic field. Although magne-
tism and magnetic forces may be new and unfamiliar to you now, we see a magnetic 
effect that results in something with which we are familiar: the particle in uniform 
circular motion model!

The particle moves in a circle because the magnetic force F
S

B is perpendicu-
lar to vS and B

S
 and has a constant magnitude qvB. As Figure 28.8 illustrates, the  

rotation is counterclockwise for a positive charge in a magnetic field directed into 
the page. If q were negative, the rotation would be clockwise. We use the particle 
under a net force model to write Newton’s second law for the particle:

 o F 5 FB 5 ma 

Because the particle moves in a circle, we also model it as a particle in uniform cir-
cular motion and we replace the acceleration with centripetal acceleration:

 FB 5 qvB 5
mv2

r
 

This expression leads to the following equation for the radius of the circular path:

 r 5
mv
qB

 (28.3)

That is, the radius of the path is proportional to the linear momentum mv of the 
particle and inversely proportional to the magnitude of the charge on the parti-
cle and to the magnitude of the magnetic field. The angular speed of the particle 
(from Eq. 10.10) is

 v 5
v
r

5
qB
m

 (28.4)

The period of the motion (the time interval the particle requires to complete one 
revolution) is equal to the circumference of the circle divided by the speed of the 
particle:

 T 5
2pr

v
5

2p

v
5

2pm
qB

 (28.5)

These results show that the angular speed of the particle and the period of the 
circular motion do not depend on the speed of the particle or on the radius of the 
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orbit. The angular speed v is often referred to as the cyclotron frequency because 
charged particles circulate at this angular frequency in the type of accelerator 
called a cyclotron, which is discussed in Section 28.3.

Q uiCk Quiz 28.2  A charged particle is moving perpendicular to a magnetic 
field in a circle with a radius r. (i) An identical particle enters the field, with vS 
perpendicular to B

S
, but with a higher speed than the first particle. Compared 

with the radius of the circle for the first particle, is the radius of the circular 
path for the second particle (a) smaller, (b) larger, or (c) equal in size? (ii) The 
magnitude of the magnetic field is increased. From the same choices, compare 
the radius of the new circular path of the first particle with the radius of its 
initial path.

In Figure 28.8, the velocity vector vS is perpendicular to the magnetic field B
S

.  
If a charged particle moves in a uniform magnetic field with its velocity at some 
arbitrary angle with respect to B

S
, its path is a helix. For example, if the field is 

directed in the x direction as shown in Figure 28.9, there is no component of 
magnetic force in the x direction. As a result, ax 5 0, and the x component of 
the velocity of the particle remains constant; the charged particle is a particle in 
equilibrium in this direction. The magnetic force qvS 3 B

S
 causes the components 

vy and vz to change in time, however, and the resulting motion is a helix whose 
axis is parallel to the magnetic field. The projection of the path onto the yz plane 
(viewed along the x axis) is a circle. (The projections of the path onto the xy and 
xz planes are sinusoids!) Equations 28.3 to 28.5 still apply provided v is replaced 
by v

'
5 Ïvy

2 1 vz
2.

Figure 28.9 A charged particle 
having a velocity vector that has 
a component parallel to a uni-
form magnetic field moves in a 
helical path.

Helical
path

x

�q

z

y

�
B
S

 Example 28.2    A Proton Moving Perpendicular to a Uniform Magnetic Field

A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35-T magnetic field perpendicular to the velocity of 
the proton. Find the speed of the proton.

S o L U T I o n

Conceptualize  From our discussion in this section, we know the proton follows a circular path when moving perpendicular  
to a uniform magnetic field. In Chapter 38, we will learn that the highest possible speed for a particle is the speed of light,  
3.00 3 108 m/s, so the speed of the particle in this problem must come out to be smaller than that value.

Categorize The proton is described by both the particle in a field model and the particle in uniform circular motion model. These 
models led to Equation 28.3.

Analyze
Solve Equation 28.3 for the speed of the particle: v 5

qBr

mp

Substitute numerical values: v 5
s1.60 3 10219 Cds0.35 Tds0.14 md

1.67 3 10227 kg
 

5  4.7 3 106 mys

Finalize The speed is indeed smaller than the speed of light, as required.

W H A T  I F ?  What if an electron, rather than a proton, moves in a direction perpendicular to the same magnetic field 
with this same speed? Will the radius of its orbit be different?

Answer An electron has a much smaller mass than a proton, so the magnetic force should be able to change its velocity much 
more easily than that for the proton. Therefore, we expect the radius to be smaller. Equation 28.3 shows that r is proportional 
to m with q, B, and v the same for the electron as for the proton. Consequently, the radius will be smaller by the same factor as 
the ratio of masses me /mp.
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 Example 28.3    Bending an Electron Beam

In an experiment designed to measure the magnitude of a uniform magnetic field, 
electrons are accelerated from rest through a potential difference of 350 V and then 
enter a uniform magnetic field that is perpendicular to the velocity vector of the elec-
trons. The electrons travel along a curved path because of the magnetic force exerted 
on them, and the radius of the path is measured to be 7.5 cm. (Such a curved beam of 
electrons is shown in Fig. 28.10.)

(A) What is the magnitude of the magnetic field?

S o L U T I o n

Conceptualize This example involves electrons accelerating from rest due to an electric 
force and then moving in a circular path due to a magnetic force. With the help of Fig-
ures 28.8 and 28.10, visualize the circular motion of the electrons.

Categorize Equation 28.3 shows that we need the speed v of the electron to find the 
magnetic field magnitude, and v is not given. Consequently, we must find the speed of the electron based on the potential 
difference through which it is accelerated. To do so, we categorize the first part of the problem by modeling an electron and 
the electric field as an isolated system in terms of energy. Once the electron enters the magnetic field, we categorize the second 
part of the problem as one involving a particle in a field and a particle in uniform circular motion, as we have done in this section.

Analyze Write the appropriate reduction of the  DK 1 DUE 5 0 
conservation of energy equation, Equation 8.2,  
for the electron– electric field system:

Substitute the appropriate initial and final energies  s1
2mev

2 2 0d 1 sq DVd 5 0 
for the time interval during which the electron  
accelerates from rest:

Solve for the final speed of the electron: v 5Î22q DV

me

Substitute numerical values: v 5Î22s21.60 3 10219 Cds350 Vd
9.11 3 10231 kg

 5 1.11 3 107 mys

Now imagine the electron entering the magnetic  B 5
mev

er
 

field with this speed. Solve Equation 28.3 for the  
magnitude of the magnetic field:

Substitute numerical values: B 5
s9.11 3 10231 kgds1.11 3 107 mysd

s1.60 3 10219 Cds0.075 md
5  8.4 3 1024 T

(B) What is the angular speed of the electrons?

S o L U T I o n

Use Equation 10.10: v 5
v
r

5
1.11 3 107 mys

0.075 m
5  1.5 3 108 radys

Finalize The angular speed can be represented as v 5 (1.5 3 108 rad/s)(1 rev/2p rad) 5 2.4 3 107 rev/s. The electrons travel 
around the circle 24 million times per second! This answer is consistent with the very high speed found in part (A).

Figure 28.10  (Example 28.3) 
The bending of an electron beam 
in a magnetic field.
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W H A T  I F ? What if a sudden voltage surge causes the 
accelerating voltage to increase to 400 V? How does that 
affect the angular speed of the electrons, assuming the 
magnetic field remains constant?

Answer The increase in accelerating voltage DV causes the 
electrons to enter the magnetic field with a higher speed v. 
This higher speed causes them to travel in a circle with a 
larger radius r. The angular speed is the ratio of v to r. Both 
v and r increase by the same factor, so the effects cancel and 

the angular speed remains the same. Equation 28.4 is an 
expression for the cyclotron frequency, which is the same as 
the angular speed of the electrons. The cyclotron frequency 
depends only on the charge q, the magnetic field B, and the 
mass me, none of which have changed. Therefore, the volt-
age surge has no effect on the angular speed. (In reality, 
however, the voltage surge may also increase the magnetic 
field if the magnetic field is powered by the same source 
as the accelerating voltage. In that case, the angular speed 
increases according to Eq. 28.4.)
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When charged particles move in a nonuniform magnetic field, the motion is 
complex. For example, in a magnetic field that is strong at the ends and weak in the 
middle such as that shown in Figure 28.11, the particles can oscillate between two 
positions. A charged particle starting at one end spirals along the field lines until 
it reaches the other end, where it reverses its path and spirals back. This configura-
tion is known as a magnetic bottle because charged particles can be trapped within it. 

The Van Allen radiation belts consist of charged particles (mostly electrons and 
protons) surrounding the Earth in doughnut-shaped regions (Fig. 28.12). The par-
ticles, trapped by the Earth’s nonuniform magnetic field, spiral around the field 
lines from pole to pole, covering the distance in only a few seconds. These parti-
cles originate mainly from the Sun, but some come from stars and other heavenly 
objects. For this reason, the particles are called cosmic rays. Most cosmic rays are 
deflected by the Earth’s magnetic field and never reach the atmosphere. Some of 
the particles become trapped, however, and it is these particles that make up the 
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such 
collisions are the origin of the beautiful aurora borealis, or northern lights, in 
the northern hemisphere and the aurora australis in the southern hemisphere. 
Auroras are usually confined to the polar regions because the Van Allen belts are 
nearest the Earth’s surface there. Occasionally, though, solar activity causes larger 
numbers of charged particles to enter the belts and significantly distort the normal 
magnetic field lines associated with the Earth. In these situations, an aurora can 
sometimes be seen at lower latitudes.

   28.3    Applications Involving Charged Particles  
Moving in a Magnetic Field
A charge moving with a velocity vS in the presence of both an electric field E

S
 and 

a magnetic field B
S

 is described by two particle in a field models. It experiences 
both an electric force qE

S
 and a magnetic force qvS 3 B

S
. The total force (called the 

Lorentz force) acting on the charge is

 F
S

5 qE
S

1 qvS 3 B
S

 (28.6)

Let us investigate some devices that take advantage of the Lorentz force.

Velocity selector
In many experiments involving moving charged particles, it is important that all 
particles move with essentially the same velocity, which can be achieved by applying 
a combination of an electric field, created by parallel plates, and a magnetic field 
oriented as shown in Figure 28.13. A uniform electric field is directed to the right 
(in the plane of the page in Fig. 28.13), and a uniform magnetic field is applied 
in the direction perpendicular to the electric field (into the page in Fig. 28.13). If 
q is positive and the velocity vS is upward, the magnetic force qvS 3 B

S
 is to the left 

and the electric force qE
S

 is to the right. When the magnitudes of the two fields are 
chosen so that qE 5 qvB, the forces cancel. The charged particle is modeled as a 
particle in equilibrium and moves in a straight vertical line through the region of 
the fields. From the expression qE 5 qvB, we find that

 v 5
E
B

 (28.7)

Only those particles having this speed pass undeflected through the mutually 
perpendicular electric and magnetic fields. The magnetic force exerted on parti-
cles moving at speeds greater than that is stronger than the electric force, and the 
particles are deflected to the left. Those moving at slower speeds are deflected to 
the right.

Figure 28.12  The Van Allen belts 
are made up of charged particles 
trapped by the Earth’s nonuniform 
magnetic field. The magnetic field 
lines are in green, and the particle 
paths are dashed black lines.

Path of
particle

The magnetic force exerted on 
the particle near either end of 
the bottle has a component that 
causes the particle to spiral back 
toward the center.

�

Figure 28.11  A charged particle 
moving in a nonuniform magnetic 
field (a magnetic bottle) spirals 
about the field and oscillates 
between the endpoints.

Source

Slit

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Bin
S

E
S

FB
S

Fe
S

vS

�

Figure 28.13 A velocity selector. 
When a positively charged par-
ticle is moving with velocity vS in 
the presence of a magnetic field 
directed into the page and an 
electric field directed to the right, 
it experiences an electric force q E

S
 

to the right and a magnetic force 
qvS 3 B

S
 to the left.
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The Mass spectrometer
A mass spectrometer separates ions according to their mass-to-charge ratio. In 
one version of this device, known as the Bainbridge mass spectrometer, a beam of 
ions first passes through a velocity selector and then enters a second uniform 
magnetic field B

S
0 that has the same direction as the magnetic field in the selec-

tor (Fig. 28.14). Upon entering the second magnetic field, the ions are described 
by the particle in uniform circular motion model. They move in a semicircle of 
radius r before striking a detector array at P. If the ions are positively charged, 
the beam deflects to the left as Figure 28.14 shows. If the ions are negatively 
charged, the beam deflects to the right. From Equation 28.3, we can express the 
ratio m/q as

 
m
q

5
rB 0

v
 

Using Equation 28.7 gives

 
m
q

5
rB 0B

E
 (28.8)

Therefore, we can determine m/q by measuring the radius of curvature and know-
ing the field magnitudes B, B0, and E. In practice, one usually measures the masses 
of various isotopes of a given ion, with the ions all carrying the same charge q. In 
this way, the mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897 
to measure the ratio e/me for electrons. Figure 28.15a shows the basic apparatus 
he used. Electrons are accelerated from the cathode and pass through two slits. 
They then drift into a region of perpendicular electric and magnetic fields. The 
magnitudes of the two fields are first adjusted to produce an undeflected beam. 
When the magnetic field is turned off, the electric field produces a measurable  
beam deflection that is recorded on the fluorescent screen. From the size of the 
deflection and the measured values of E and B, the charge-to-mass ratio can 
be determined. The results of this crucial experiment represent the discovery of 
the electron as a fundamental particle of nature.

r

P

Velocity selector

q

Detector
array

Bin
S vS

E
S
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S

�

�

�
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�
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�

�

Figure 28.14 A mass spectrom-
eter. Positively charged particles 
are sent first through a velocity 
selector and then into a region 
where the magnetic field B

S
0 

causes the particles to move in 
a semicircular path and strike a 
detector array at P.

a

Fluorescent
coating

Slits
Cathode

Deflection
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Magnetic field coil

Deflected
electron beam

Undeflected
electron beam�
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�

Electrons are accelerated from the cathode, pass through two slits, and 
are deflected by both an electric field (formed by the charged 
deflection plates) and a magnetic field (directed perpendicular to the 
electric field). The beam of electrons then strikes a fluorescent screen.
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Figure 28.15  (a) Thomson’s apparatus for measuring e/me. (b) J. J. Thomson (left) in the Cavendish 
Laboratory, University of Cambridge. The man on the right, Frank Baldwin Jewett, is a distant relative 
of John W. Jewett, Jr., coauthor of this text.
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The Cyclotron
A cyclotron is a device that can accelerate charged particles to very high speeds. 
The energetic particles produced are used to bombard atomic nuclei and thereby 
produce nuclear reactions of interest to researchers. A number of hospitals use 
cyclotron facilities to produce radioactive substances for diagnosis and treatment.

Both electric and magnetic forces play key roles in the operation of a cyclotron, a 
schematic drawing of which is shown in Figure 28.16a. The charges move inside two 
semicircular containers D1 and D2, referred to as dees because of their shape like the 
letter D. A high-frequency alternating potential difference is applied to the dees, 
and a uniform magnetic field is directed perpendicular to them. A positive ion 
released at P near the center of the magnet in one dee moves in a semicircular path 
(indicated by the dashed black line in the drawing) and arrives back at the gap 
in a time interval T/2, where T is the time interval needed to make one complete 
trip around the two dees, given by Equation 28.5. The frequency of the applied 
potential difference is adjusted so that the polarity of the dees is reversed in the 
same time interval during which the ion travels around one dee. If the applied 
potential difference is adjusted such that D1 is at a lower electric potential than D2 
by an amount DV, the ion accelerates across the gap to D1 and its kinetic energy 
increases by an amount q DV. It then moves around D1 in a semicircular path of 
greater radius (because its speed has increased). After a time interval T/2, it again 
arrives at the gap between the dees. By this time, the polarity across the dees has 
again been reversed and the ion is given another “kick” across the gap. The motion 
continues so that for each half-circle trip around one dee, the ion gains additional 
kinetic energy equal to q DV. When the radius of its path is nearly that of the dees, 
the energetic ion leaves the system through the exit slit. The cyclotron’s operation 
depends on T being independent of the speed of the ion and of the radius of the 
circular path (Eq. 28.5).

We can obtain an expression for the kinetic energy of the ion when it exits the 
cyclotron in terms of the radius R of the dees. From Equation 28.3, we know that  
v 5 qBR/m. Hence, the kinetic energy is

 K 5 1
2mv2 5

q 2B 2R 2

2m
 (28.9)

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic 
effects come into play. (Such effects are discussed in Chapter 38.) Observations 

PiTfall PreVenTiOn 28.1
The Cyclotron Is Not the Only 
Type of Particle Accelerator The 
cyclotron is important historically 
because it was the first particle 
accelerator to produce particles 
with very high speeds. Cyclo-
trons still play important roles in 
medical applications and some 
research activities. Many other 
research activities make use of a 
different type of accelerator called 
a synchrotron.
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Figure 28.16  (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which an alter-
nating potential difference is applied, and a uniform magnetic field. (The south pole of the magnet is 
not shown.) (b) The first cyclotron, invented by E. O. Lawrence and M. S. Livingston in 1934.
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show that T increases and the moving ions do not remain in phase with the applied 
potential difference. Some accelerators overcome this problem by modifying the 
period of the applied potential difference so that it remains in phase with the 
moving ions.

   28.4    Magnetic Force Acting on a Current- 
Carrying Conductor
If a magnetic force is exerted on a single charged particle when the particle moves 
through a magnetic field, it should not surprise you that a current-carrying wire 
also experiences a force when placed in a magnetic field. The current is a collection 
of many charged particles in motion; hence, the resultant force exerted by the field 
on the wire is the vector sum of the individual forces exerted on all the charged 
particles making up the current. The force exerted on the particles is transmitted 
to the wire when the particles collide with the atoms making up the wire.

One can demonstrate the magnetic force acting on a current-carrying conductor 
by hanging a wire between the poles of a magnet as shown in Figure 28.17a. For ease 
in visualization, part of the horseshoe magnet in part (a) is removed to show the end 
face of the south pole in parts (b) through (d) of Figure 28.17. The magnetic field is 
directed into the page and covers the region within the shaded squares. When the 
current in the wire is zero, the wire remains vertical as in Figure 28.17b. When the 
wire carries a current directed upward as in Figure 28.17c, however, the wire deflects 
to the left. If the current is reversed as in Figure 28.17d, the wire deflects to the right.

Let’s quantify this discussion by considering a straight segment of wire of length 
L and cross-sectional area A carrying a current I in a uniform magnetic field B

S
 

as in Figure 28.18. According to the magnetic version of the particle in a field 
model, the magnetic force exerted on a charge q moving with a drift velocity vSd is  
q vSd 3 B

S
. To find the total force acting on the wire, we multiply the force q vSd 3 B

S
 

exerted on one charge by the number of charges in the segment. Because the vol-
ume of the segment is AL, the number of charges in the segment is nAL, where n is 

When the 
current is 
upward, the 
wire deflects 
to the left.

When the 
current is 
downward, the 
wire deflects 
to the right.

When there is 
no current in 
the wire, the 
wire remains 
vertical.

a b c d

I � 0 
I

Bin
S

Bin
S

Bin
S

N

S

I

Figure 28.17  (a) A wire suspended vertically between the poles of a magnet. (b)–(d) The setup 
shown in (a) as seen looking at the south pole of the magnet so that the magnetic field (green crosses) 
is directed into the page.
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The average magnetic force 
exerted on a charge moving 
in the wire is qvd � B.S S

The magnetic force on the wire 
segment of length L is I L � B.

S S

Figure 28.18  A segment of a 
current-carrying wire in a mag-
netic field B

S
.
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756 Chapter 28 Magnetic Fields

the number of mobile charge carriers per unit volume. Hence, the total magnetic 
force on the segment of wire of length L is

 F
S

B 5 sqvSd 3 B
S

dnAL 

We can write this expression in a more convenient form by noting that, from Equa-
tion 26.4, the current in the wire is I 5 nqvdA. Therefore,

 F
S

B 5 I L
S

3 B
S

 (28.10)

where L
S

 is a vector that points in the direction of the current I and has a magni-
tude equal to the length L of the segment. This expression applies only to a straight 
segment of wire in a uniform magnetic field.

Now consider an arbitrarily shaped wire segment of uniform cross section in a 
magnetic field as shown in Figure 28.19. It follows from Equation 28.10 that the 
magnetic force exerted on a small segment of vector length d sS in the presence of 
a field B

S
 is

 dF
S

B 5 I d sS 3 B
S

 (28.11)

where dF
S

B is directed out of the page for the directions of B
S

 and d sS in Figure 28.19. 
Equation 28.11 can be considered as an alternative definition of B

S
. That is, we can 

define the magnetic field B
S

 in terms of a measurable force exerted on a current 
element, where the force is a maximum when B

S
 is perpendicular to the element 

and zero when B
S

 is parallel to the element.
To calculate the total force F

S
B acting on the wire shown in Figure 28.19, we inte-

grate Equation 28.11 over the length of the wire:

 F
S

B 5 I #
b

a
 d sS 3 B

S
 (28.12)

where a and b represent the endpoints of the wire. When this integration is carried 
out, the magnitude of the magnetic field and the direction the field makes with the 
vector d sS may differ at different points.

Q uiCk Quiz 28.3  A wire carries current in the plane of this paper toward the 
top of the page. The wire experiences a magnetic force toward the right edge of 
the page. Is the direction of the magnetic field causing this force (a) in the plane 
of the page and toward the left edge, (b) in the plane of the page and toward the 
bottom edge, (c) upward out of the page, or (d) downward into the page?

Force on a segment of 
current-carrying wire in a 

uniform magnetic field

I
B
S

Sd s

The magnetic force on any 
segment d s is I d s � B and 
is directed out of the page.

SS S

Figure 28.19  A wire segment of 
arbitrary shape carrying a current 
I in a magnetic field B

S
 experi-

ences a magnetic force.

 Example 28.4    Force on a Semicircular Conductor

A wire bent into a semicircle of radius R forms a closed circuit and carries a current 
I. The wire lies in the xy plane, and a uniform magnetic field is directed along the 
positive y axis as in Figure 28.20. Find the magnitude and direction of the magnetic 
force acting on the straight portion of the wire and on the curved portion.

S o L U T I o n

Conceptualize Using the right-hand rule for cross products, we see that the force  
F
S

1 on the straight portion of the wire is out of the page and the force F
S

2 on the curved 
portion is into the page. Is F

S
2 larger in magnitude than F

S
1 because the length of the 

curved portion is longer than that of the straight portion?

Categorize Because we are dealing with a current-carrying wire in a magnetic field 
rather than a single charged particle, we must use Equation 28.12 to find the total 
force on each portion of the wire.

R

I

x

y

I

d

u

u

u

B
S

Sd s

Figure 28.20  (Example 28.4) The 
magnetic force on the straight portion 
of the loop is directed out of the page, 
and the magnetic force on the curved 
portion is directed into the page.
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28.4 c o n t i n u e d

Analyze Notice that d sS is perpendicular to B
S

  F
S

1 5 I #
b

a
d sS 3 B

S
5 I #

R

2R
B dx k

⁄
5  2IRB k

⁄
 

everywhere on the straight portion of the wire. Use  
Equation 28.12 to find the force on this portion:

To find the magnetic force on the curved part,  (1)   dF
S

2 5 I d sS 3 B
S

5 2IB sin u ds k
⁄
 

first write an expression for the magnetic force  
dF

S
2 on the element d sS in Figure 28.20:

From the geometry in Figure 28.20, write an  (2)   ds 5 R du 
expression for ds:

Substitute Equation (2) into Equation (1) and  F
S

2 5 2#
p

0
IRB sin u du k

⁄
5 2IRB #

p

0
sin u du k

⁄
5 2IRB f2cos ug

p

0  k
⁄
 

integrate over the angle u from 0 to p:
 5 IRBscos p 2 cos 0dk

⁄
5 IRBs21 2 1dk

⁄
5  22IRB k

⁄

Finalize Two very important general statements follow from this example. First, the force on the curved portion is the same 
in magnitude as the force on a straight wire between the same two points. In general, the magnetic force on a curved current-
carrying wire in a uniform magnetic field is equal to that on a straight wire connecting the endpoints and carrying the  
same current. Furthermore, F

S
1 1 F

S
2 5 0 is also a general result: the net magnetic force acting on any closed current loop in 

a uniform magnetic field is zero.

   28.5    Torque on a Current Loop in a Uniform  
Magnetic Field
In Example 28.4, we found the net force on the loop in Figure 28.20 to be zero. 
What if the loop were mounted on pivots at its lowest corners so that it is free to 
rotate around the x axis? There would be zero net force on the loop, but would it 
remain at rest when released? Keep in mind that zero net force does not necessarily 
mean zero net torque!

Consider a rectangular loop carrying a current I in the presence of a uniform 
magnetic field directed parallel to the plane of the loop as shown in Figure 28.21a. 
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field and experience forces.
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sides � and � because 
these sides are parallel to B.
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S S
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b
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Sides � and � are 
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field and experience forces.

a

b

No magnetic forces act on 
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The magnetic forces F2 and F4 
exerted on sides � and � 
create a torque that tends to 
rotate the loop clockwise.

S S

S

Figure 28.21  (a) Overhead view 
of a rectangular current loop in a 
uniform magnetic field. (b) Edge 
view of the loop sighting down 
sides ➁ and ➃. The side you see 
in this view is side ➂. The purple 
dot in the left circle represents 
current in wire ➁ directed toward 
you; the purple cross in the right 
circle represents current in wire 
➃ directed away from you.
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No magnetic forces act on sides ➀ and ➂ because these wires are parallel to the 
field; hence, L

S
3 B

S
5 0 for these sides. Magnetic forces do, however, act on sides ➁ 

and ➃ because these sides are oriented perpendicular to the field. The magnitude 
of these forces is, from Equation 28.10,

F2 5 F4 5 IaB

The direction of F
S

2, the magnetic force exerted on wire ➁, is out of the page in 
the view shown in Figure 28.20a and that of F

S
4, the magnetic force exerted on 

wire ➃, is into the page in the same view. If we view the loop from side ➂ and 
sight along sides ➁ and ➃, we see the view shown in Figure 28.21b, and the two 
magnetic forces F

S
2 and F

S
4 are directed as shown. Notice that the two forces 

point in opposite directions but are not directed along the same line of action. If 
the loop is pivoted so that it can rotate about point O, these two forces produce 
about O a torque that rotates the loop clockwise. The magnitude of this torque 
tmax is

 tmax 5 F2 
b
2

1 F4 
b
2

5 sIaBd 
b
2

1 sIaBd 
b
2

5 IabB 

where the moment arm about O is b/2 for each force. Because the area enclosed by 
the loop is A 5 ab, we can express the maximum torque as

 tmax 5 IAB (28.13)

Imagine that the loop is released from rest. The loop is modeled as a rigid object 
under a net torque (Chapter 10), and will begin to rotate in response to the net 
torque. The sense of the rotation is clockwise when viewed from side ➂ as indi-
cated in Figure 28.21b. If the current direction were reversed, the force directions 
would also reverse and the rotational tendency would be counterclockwise. This 
behavior is exploited practically in a device called a motor, which we discuss in 
Chapter 30.

Equation 28.13 uses the subscript “max” because the torque has its maximum 
value when the magnetic field is parallel to the loop. Now suppose the uniform 
magnetic field makes an angle u , 908 with a line perpendicular to the plane of the 
loop as in Figure 28.22. For convenience, let’s assume B

S
 is perpendicular to sides 

➁ and ➃. In this case, the magnetic forces F
S

1 and F
S

3 exerted on sides ➀ and ➂ 
cancel each other and produce no torque because they act along the same line. The 
magnetic forces F

S
2 and F

S
4 acting on sides ➁ and ➃, however, produce a torque  

about any point. Referring to the edge view shown in Figure 28.22, we see that 
the  moment arm of F

S
2 about the point O is equal to (b/2) sin u. Likewise, the 

moment arm of F
S

4 about O is also equal to (b/2) sin u. Because F2 5 F4 5 IaB, the 
magnitude of the net torque about O is

t 5 F2 
b
2

 sin u 1 F4 
b
2

 sin u 

 5 IaBSb
2

 sin uD 1 IaBSb
2

 sin uD 5 IabB sin u

 5 IAB sin u (28.14)

where A 5 ab is the area of the loop. This result shows that the torque has its max-
imum value IAB when the field is perpendicular to the normal to the plane of the 
loop (u 5 908) as discussed with regard to Figure 28.21 and is zero when the field is 
parallel to the normal to the plane of the loop (u 5 0).

Ob
2
– sin 

b
2
–

�

�

u u

u

F2
S

F4
S

B
S

A
S

When the normal to the loop 
makes an angle u with the 
magnetic field, the moment arm 
for the torque is (b/2) sin u.

Figure 28.22 An edge view of 
the loop in Figure 28.21 with the 
normal to the loop at an angle u 
with respect to the magnetic field.
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Comparing Equation 28.14 with Equation 11.3, we see that a 
convenient vector expression for the torque exerted on a loop 
about an axis passing through its center when it is placed in a 
uniform magnetic field B

S
 is

 tS 5 I A
S

3 B
S

 (28.15)

where A
S

, the vector shown in Figure 28.22, is perpendicular to 
the plane of the loop and has a magnitude equal to the area of 
the loop. To determine the direction of A

S
, use the right-hand 

rule described in Figure 28.23. When you curl the fingers of 
your right hand in the direction of the current in the loop, your 
thumb points in the direction of A

S
. Figure 28.22 shows that the 

loop tends to rotate in the direction of decreasing values of u 
(that is, such that the area vector A

S
 rotates toward the direction 

of the magnetic field).
The product IA

S
 is defined to be the magnetic dipole moment 

mS (often simply called the “magnetic moment”) of the loop:

 mS ; I A
S

 (28.16)

The SI unit of magnetic dipole moment is the ampere-meter2 (A ? m2). If a coil of 
wire contains N loops of the same area, the magnetic moment of the coil is

 mScoil 5 NI A
S

 (28.17)

Using Equation 28.16, we can express the torque exerted on a current-carrying 
loop in a magnetic field B

S
 as

 tS 5 mS 3 B
S

 (28.18)

This result is analogous to Equation 25.20, tS 5 pS 3 E
S

, for the torque exerted on 
an electric dipole in the presence of an electric field E

S
, where pS is the electric 

dipole moment.
Although we obtained the torque for a particular orientation of B

S
 with respect 

to the loop, the equation tS 5 mS 3 B
S

 is valid for any orientation. Furthermore, 
although we derived the torque expression for a rectangular loop, the result is valid 
for a loop of any shape. 

In Section 25.6, we found that the potential energy of a system of an electric 
dipole in an electric field is given by UE 5 2pS  ? E

S
. This energy depends on the 

orientation of the dipole in the electric field. Likewise, the potential energy of a 
system of a magnetic dipole in a magnetic field depends on the orientation of the 
dipole in the magnetic field and is given by

 UB 5 2mS ? B
S

 (28.19)

This expression shows that the system has its lowest energy Umin 5 2mB when  
mS points in the same direction as B

S
. The system has its highest energy Umax 5 1mB 

when mS points in the direction opposite B
S

.

Q uiCk Quiz 28.4  (i) Rank the magnitudes of the torques acting on the rect-
angular loops (a), (b), and (c) shown edge-on in Figure 28.24 (page 760) from 
highest to lowest. All loops are identical and carry the same current. (ii) Rank 
the magnitudes of the net forces acting on the rectangular loops shown in 
Figure 28.24 from highest to lowest.

  Magnetic dipole moment  
of a current loop

  Torque on a magnetic moment 
in a magnetic field

  Potential energy of a system 
of a magnetic moment in a 
magnetic field

(1) Curl your 
fingers in the 
direction of the 
current around 
the loop.

(2) Your thumb 
points in the 
direction of A  
and m. 

I

m
S

S

S

A
S

Figure 28.23  Right-hand rule for determining the 
direction of the vector A

S
 for a current loop. The 

direction of the magnetic moment mS is the same as 
the direction of A

S
.
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760 Chapter 28 Magnetic Fields

ca b

Figure 28.24  (Quick Quiz 
28.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
experiences the greatest net 
force?

 Example 28.5    Rotating a Coil

Consider the loop of wire in Figure 28.25a. Imagine it is pivoted along side ➃, which is parallel to the z axis and fas-
tened so that side ➃ remains fixed and the rest of the loop hangs vertically in the gravitational field of the Earth but 
can rotate around side ➃ (Fig. 28.25b). The mass of the loop is 50.0 g, and the sides are of lengths a 5 0.200 m and 
b 5 0.100 m. The loop carries a current of 3.50 A and is immersed in a vertical uniform magnetic field of magnitude  
0.010 0 T in the positive y direction (Fig. 28.25c). What angle does the plane of the loop make with the vertical?

S o L U T I o n

Conceptualize In the edge view of Figure 
28.25b, notice that the magnetic moment 
of the loop is to the left. Therefore, when 
the loop is in the magnetic field, the 
magnetic torque on the loop causes it to 
rotate in a clockwise direction around side 
➃, which we choose as the rotation axis. 
Imagine the loop making this clockwise 
rotation so that the plane of the loop is 
at some angle u to the vertical as in Fig-
ure 28.25c. The gravitational force on the 
loop exerts a torque that would cause a 
rotation in the counterclockwise direction 
if the magnetic field were turned off.

Categorize At some angle of the loop, 
the two torques described in the Concep-
tualize step are equal in magnitude and 
the loop is at rest. We therefore model the 
loop as a rigid object in equilibrium.

Analyze Evaluate the magnetic torque on  tSB 5 mS 3 B
S

5 2mB sin s908 2 ud k
⁄

5 2IAB cos u k
⁄

5 2IabB cos u k
⁄
 

the loop about side ➃ from Equation 28.18:

Evaluate the gravitational torque on the loop  tSg 5 rS 3 m gS 5 mg 
b
2

 sin u k
⁄
 

about side ➃, noting that the gravitational force  
can be modeled to act at the center of the loop:

From the rigid body in equilibrium model, add the  o  tS 5 2IabB cos u k
⁄

1 mg 
b
2

 sin u k
⁄

5 0 
torques and set the net torque equal to zero:

Solve for u: IabB cos u 5 mg 
b
2

 sin u   S   tan u 5
2IaB
mg

u 5 tan21S2IaB
mg D

Substitute numerical values: u 5 tan21 32s3.50 Ads0.200 mds0.010 0 Td
s0.050 0 kgds9.80 mys2d 4 5  1.648

Finalize The angle is relatively small, so the loop still hangs almost vertically. If the current I or the magnetic field B is 
increased, however, the angle increases as the magnetic torque becomes stronger.

�

�
I �

�

� �
I

I

I

2
sin ub

�

�

2
cos u

u

b

b

a m
S

m
S

x

y

x

y

gS gS 
B
S

a b c

The loop hangs vertically 
and is pivoted so that it 
can rotate around side �.

The magnetic torque causes the 
loop to rotate in a clockwise 
direction around side �, whereas 
the gravitational torque is in the 
opposite direction.

Figure 28.25  (Example 28.5) (a) The dimensions of a rectangular current loop. 
(b) Edge view of the loop sighting down sides ➁ and ➃. (c) An edge view of the loop  
in (b) rotated through an angle with respect to the horizontal when it is placed in a 
magnetic field.
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    28.6 The Hall Effect 761

   28.6    The Hall Effect
When a current-carrying conductor is placed in a magnetic field, a potential dif-
ference is generated between two points lying along a direction perpendicular to 
both the current and the magnetic field. This phenomenon, first observed by Edwin 
Hall (1855–1938) in 1879, is known as the Hall effect. The arrangement for observing 
the Hall effect consists of a flat conductor carrying a current I in the x direction as 
shown in Figure 28.26. A uniform magnetic field B

S
 is applied in the y direction. 

If the charge carriers are electrons moving in the negative x direction with a drift 
velocity vSd, they experience an upward magnetic force F

S
B 5 qvSd 3 B

S
, are deflected 

upward, and accumulate at the upper edge of the flat conductor, leaving an excess 
of positive charge at the lower edge (Fig. 28.27a). This accumulation of charge at the 
edges establishes an electric field in the conductor and increases until the electric 
force on carriers remaining in the bulk of the conductor balances the magnetic force 
acting on the carriers. The moving electrons can now be described by the particle in 
equilibrium model, and they are no longer deflected upward. A sensitive voltmeter 
connected across the sample as shown in Figure 28.27 can measure the potential 
difference, known as the Hall voltage DVH, generated across the conductor.

If the charge carriers are positive and hence move in the positive x direction 
(for rightward current) as shown in Figures 28.26 and 28.27b, they also experience  
an upward magnetic force q vSd 3 B

S
, which produces a buildup of positive charge on 

the upper edge and leaves an excess of negative charge on the lower edge. Hence, 
the sign of the Hall voltage generated in the sample is opposite the sign of the Hall 
voltage resulting from the deflection of electrons. The sign of the charge carriers 
can therefore be determined from measuring the polarity of the Hall voltage.

In deriving an expression for the Hall voltage, first note that the magnetic force 
exerted on the carriers has magnitude qvdB. In equilibrium, this force is balanced 
by the electric force qEH, where EH is the magnitude of the electric field due to the 
charge separation (sometimes referred to as the Hall field). Therefore,

qvdB 5 qEH

EH 5 vdB

If d is the width of the conductor, the Hall voltage is

 DVH 5 EHd 5 vdBd (28.20)

Therefore, the measured Hall voltage gives a value for the drift speed of the charge 
carriers if d and B are known.

y

x

z

a

t

d

c

I

FB
S

FB
S

vd
S

vd
S

B
S

When I is in the x direction and 
B in the y direction, both positive 
and negative charge carriers are 
deflected upward in the 
magnetic field.

S

B
S

�

�

Figure 28.26  To observe the 
Hall effect, a magnetic field is 
applied to a current-carrying con-
ductor. The Hall voltage is mea-
sured between points a and c.

===+=====++2.50 V===+=====++1.50 V
I

I

c

a

VH I
I

c

a

� VH�
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Svd

S

B
S

B
S

q EH
S

q EH
S

q vd
S B

S
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When the charge carriers are 
negative, the upper edge of the 
conductor becomes negatively 
charged and c is at a lower 
electric potential than a.

The charge carriers are no longer 
deflected when the edges become 
sufficiently charged that there is a 
balance between the electric force and 
the magnetic force.

When the charge carriers are 
positive, the upper edge of the 
conductor becomes positively 
charged and c is at a higher 
potential than a.

a b

Figure 28.27  The sign of the Hall voltage depends on the sign of the charge carriers.
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762 Chapter 28 Magnetic Fields

We can obtain the charge-carrier density n by measuring the current in the sam-
ple. From Equation 26.4, we can express the drift speed as

 vd 5
I

nqA
 (28.21)

where A is the cross-sectional area of the conductor. Substituting Equation 28.21 
into Equation 28.20 and solving for B gives

 B 5
nqA

Id
 DVH (28.22)

Because A 5 td, where t is the thickness of the conductor, we can also express Equa-
tion 28.22 as

 B 5
nqt

I
 DVH (28.23)

This relationship shows that a properly calibrated conductor can be used to mea-
sure the magnitude of an unknown magnetic field.

The Hall voltage 

 Example 28.6    The Hall Effect for Copper

A rectangular copper strip 1.5 cm wide and 0.10 cm thick carries a current of 5.0 A. Find the Hall voltage for a 1.2-T mag-
netic field applied in a direction perpendicular to the strip.

S o L U T I o n

Conceptualize  Study Figures 28.26 and 28.27 carefully and make sure you understand that a Hall voltage is developed between 
the top and bottom edges of the strip.

Categorize We evaluate the Hall voltage using an equation developed in this section, so we categorize this example as a sub-
stitution problem.

Assuming one electron per atom is available  (1) n 5
NA

V
5

NAr

M
 

for conduction, find the charge-carrier density  
in terms of the molar mass M and density r  
of copper:

Solve Equation 28.23 for the Hall voltage  DVH 5
IB
nqt

5
MIB

NA rqt
 

and substitute Equation (1):

Substitute numerical values: DVH 5
s0.063 5 kgymolds5.0 Ads1.2 Td

s6.02 3 1023 mol21ds8 920 kgym3ds1.60 3 10219 Cds0.001 0 md

5  0.44 mV

Such an extremely small Hall voltage is expected in good conductors. (Notice that the width of the conductor is not needed 
in this calculation.)

W H A T  I F ?  What if the strip has the same dimensions but is made of a semiconductor? Will the Hall voltage be smaller 
or larger?

Answer In semiconductors, n is much smaller than it is in metals that contribute one electron per atom to the current; hence, 
the Hall voltage is usually larger because it varies as the inverse of n. Currents on the order of 0.1 mA are generally used for 
such materials. Consider a piece of silicon that has the same dimensions as the copper strip in this example and whose value 
for n is 1.0 3 1020 electrons/m3. Taking B 5 1.2 T and I 5 0.10 mA, we find that DVH 5 7.5 mV. A potential difference of this 
magnitude is readily measured.
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summary
 › Definition

The magnetic dipole moment mS of a loop carrying a current I is

 mS ; IA
S

 (28.16)

where the area vector A
S

 is perpendicular to the plane of the loop and  uA
S

u  is equal to the area of the loop. The SI unit of mS is A ? m2.

 › Concepts and Principles

If a charged particle moves in a uniform magnetic field so that its initial velocity is perpendicular to the field, the particle moves in 
a circle, the plane of which is perpendicular to the magnetic field. The radius of the circular path is

 r 5
mv
qB

 (28.3)

where m is the mass of the particle and q is its charge. The angular speed of the charged particle is

 v 5
qB

m
 (28.4)

If a straight conductor of length L carries a current I, the 
force exerted on that conductor when it is placed in a uni-
form magnetic field B

S
 is

 F
S

B 5 I L
S

3 B
S

 (28.10)

where the direction of L
S

 is in the direction of the current 
and uL

S
u 5 L.

If an arbitrarily shaped wire carrying a current I is placed in a 
magnetic field, the magnetic force exerted on a very small seg-
ment d sS is

 dF
S

B 5 I d sS 3 B
S

 (28.11)

To determine the total magnetic force on the wire, one must inte-
grate Equation 28.11 over the wire, keeping in mind that both B

S
 

and d sS may vary at each point.

The torque tS on a current loop placed in a uniform mag-
netic field B

S
 is

 tS 5 mS 3 B
S

 (28.18)

The potential energy of the system of a magnetic dipole in a mag-
netic field is

 UB 5 2mS  ?  B
S

 (28.19)

 › Analysis Models for Problem Solving

Particle in a Field (Magnetic) A source (to be discussed in Chapter 29) establishes a magnetic field B
S

 
throughout space. When a particle with charge q and moving with velocity vS is placed in that field, it 
experiences a magnetic force given by

 F
S

B 5 q vS 3  B
S

 (28.1)

The direction of this magnetic force is perpendicular both to the velocity of the particle and to the 
magnetic field. The magnitude of this force is

 FB 5 uq uvB sin u (28.2)

where u is the smaller angle between vS and B
S

. The SI unit of B
S

 is the tesla (T), where 1 T 5 1 N/A · m.

z

x

y
B
S

S
FB � q v � B
S

q

vS

S
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Think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your team is working for a spring manufacturing company. 
The team has been asked to design a new method of mea-
suring the spring constant of a spring. Together, you have 
come up with the design shown in Figure TP28.1. Part (a) 
of the figure shows a side view of a conducting loop of area 
A 5 ab. The loop is pivoted at O. The center point of the left 
side of the loop is attached to the upper end of a spring of 
force constant k. The lower end of the spring is attached to a 
rigid support. The loop is in a magnetic field of magnitude 
B directed toward the right. When a current I exists in the 

loop, the loop rotates to a new equilibrium position at angle 
u, as shown in part (b) of Figure TP28.1. Find an expression 
for the spring constant k of the spring. Assume the rotation 
of the loop is small enough that the spring remains essen-
tially vertical.

2. ACTIvITy  Your group has just completed taking data for a 
Hall voltage experiment in your physics laboratory, using 
the setup shown in Figure 28.27. The following table shows 
the measurements. If the measurements were taken with a 
current of 0.200 A, and the sample is made from a material 
having a charge-carrier density of 1.00 3 1026 carriers/m3, 
what is the thickness of the sample?

B (T) DVH (mV)

0.00 0
0.10 11.0
0.20 19.0
0.30 28.0
0.40 42.0
0.50 50.0
0.60 61.0
0.70 68.0
0.80 79.0
0.90 90.0
1.00 102

b
2

a b

O

I
k

k

B
S B

S

u

Figure TP28.1

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

seCTiOn 28.1 Analysis Model: Particle in a Field (Magnetic)

Problems 1–2 and 4 in Chapter 11 can be assigned with this 
section as review for the vector product.

1. At the equator, near the surface of the Earth, the mag-
netic field is approximately 50.0 mT northward, and the 
electric field is about 100 N/C downward in fair weather. 
Find the gravitational, electric, and magnetic forces on an 
electron in this environment, assuming that the electron 
has an instantaneous velocity of 6.00 3 106 m/s directed to 
the east.

2. Consider an electron near the Earth’s equator. In which 
direction does it tend to deflect if its velocity is (a) directed 
downward? (b) Directed northward? (c) Directed westward? 
(d) Directed southeastward?

3. Find the direction of the magnetic field acting on a posi-
tively charged particle moving in the various situations 
shown in Figure P28.3 if the direction of the magnetic force 
acting on it is as indicated.

4. A proton moving at 4.00 3 106 m/s through a magnetic field 
of magnitude 1.70 T experiences a magnetic force of magni-
tude 8.20 3 10213 N. What is the angle between the proton’s 
velocity and the field?

5. A proton travels with a speed of 5.02 3 106 m/s in a direc-
tion that makes an angle of 60.08 with the direction of a 
magnetic field of magnitude 0.180 T in the positive x direc-
tion. What are the magnitudes of (a) the magnetic force on 
the proton and (b) the proton’s acceleration?

6. A laboratory electromagnet produces a magnetic field of 
magnitude 1.50 T. A proton moves through this field with 
a speed of 6.00 3 106 m/s. (a) Find the magnitude of the 

T

 (out)

 (in)

FB
S

FB
S

FB
S

vS vS

vS

a b c

Figure P28.3
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maximum magnetic force that could be exerted on the pro-
ton. (b) What is the magnitude of the maximum accelera-
tion of the proton? (c) Would the field exert the same mag-
netic force on an electron moving through the field with the 
same speed? (d) Would the electron experience the same 
acceleration? Explain.

7. A proton moves perpendicular to a uniform magnetic field 
B
S

 at a speed of 1.00 3 107 m/s and experiences an accelera-
tion of 2.00 3 1013 m/s2 in the positive x direction when its 
velocity is in the positive z direction. Determine the magni-
tude and direction of the field.

seCTiOn 28.2 Motion of a Charged Particle  
in a Uniform Magnetic Field

8. An accelerating voltage of 2.50 3 103 V is applied to an elec-
tron gun, producing a beam of electrons originally traveling 
horizontally north in vacuum toward the center of a viewing 
screen 35.0 cm away. What are (a) the magnitude and (b) 
the direction of the deflection on the screen caused by the 
Earth’s gravitational field? What are (c) the magnitude and 
(d) the direction of the deflection on the screen caused by 
the vertical component of the Earth’s magnetic field, taken 
as 20.0 mT down? (e) Does an electron in this vertical mag-
netic field move as a projectile, with constant vector accel-
eration perpendicular to a constant northward component 
of velocity? (f) Is it a good approximation to assume it has 
this projectile motion? Explain.

9. A proton (charge 1e, mass mp ), a deuteron (charge 1e, mass 
2mp ), and an alpha particle (charge 12e, mass 4mp ) are accel-
erated from rest through a common potential difference  
DV. Each of the particles enters a uniform magnetic field 
B
S

, with its velocity in a direction perpendicular to B
S

. The 
proton moves in a circular path of radius rp. In terms of rp, 
determine (a) the radius rd of the circular orbit for the deu-
teron and (b) the radius r

a
 for the alpha particle.

10. Review. A 30.0-g metal ball having net charge Q 5 5.00 mC 
is thrown out of a window horizontally north at a speed  
v 5 20.0 m/s. The window is at a height h 5 20.0 m above 
the ground. A uniform, horizontal magnetic field of magni-
tude B 5 0.010 0 T is perpendicular to the plane of the ball’s 
trajectory and directed toward the west. (a) Assuming the 
ball follows the same trajectory as it would in the absence 
of the magnetic field, find the magnetic force acting on the 
ball just before it hits the ground. (b) Based on the result of 
part (a), is it justified for three-significant-digit precision to 
assume the trajectory is unaffected by the magnetic field? 
Explain.

11. Review. One electron collides elastically with a second elec-
tron initially at rest. After the collision, the radii of their 
trajectories are 1.00 cm and 2.40 cm. The trajectories are 
perpendicular to a uniform magnetic field of magnitude 
0.044 0 T. Determine the energy (in keV) of the incident 
electron.

12. Review. One electron collides elastically with a second elec-
tron initially at rest. After the collision, the radii of their 
trajectories are r1 and r2. The trajectories are perpendicular 
to a uniform magnetic field of magnitude B. Determine the 
energy of the incident electron.

13. Review. An electron moves in a circular path perpendicu-
lar to a constant magnetic field of magnitude 1.00 mT. The 

angular momentum of the electron about the center of the 
circle is 4.00 3 10225 kg ? m2/s. Determine (a) the radius of 
the circular path and (b) the speed of the electron.

seCTiOn 28.3 Applications Involving Charged Particles 
Moving in a Magnetic Field

14. A cyclotron designed to accelerate protons has a magnetic 
field of magnitude 0.450 T over a region of radius 1.20 m. 
What are (a) the cyclotron frequency and (b) the maximum 
speed acquired by the protons?

15. You are working as a medical assistant at a proton beam 
facility, where high-speed protons are used to bombard 
cancer cells. The protons are accelerated with a cyclotron, 
which you find very interesting because of your background 
in physics. You are explaining this to a patient who has some 
familiarity with cyclotrons. She asks, “How many revolutions 
does a proton make in the cyclotron before it reaches its exit 
kinetic energy?” You are taken aback, both by the high qual-
ity of her question and the fact that you never thought of 
such a question before. You tell her you will try to get her an 
answer before she finishes her treatment today. When you 
are finished preparing her for treatment, you go into the 
cyclotron room and look at the machine. Only three num-
bers are available on the machine labeling: the exit energy 
K 5 250 MeV, the radius at which the protons exit, r 5 
0.850 m, and the accelerating potential difference between 
the dees, DV 5 800 V. You go back to the patient prepared to 
give her a total number of times the protons go around the 
cyclotron before exiting.

16. Singly charged uranium-238 ions are accelerated through 
a potential difference of 2.00 kV and enter a uniform mag-
netic field of magnitude 1.20 T directed perpendicular to 
their velocities. (a) Determine the radius of their circular 
path. (b) Repeat this calculation for  uranium-235 ions. (c) 
What If? How does the ratio of these path radii depend on 
the accelerating voltage? (d) On the magnitude of the mag-
netic field?

17. A cyclotron (Fig. 28.16) designed to accelerate protons has 
an outer radius of 0.350 m. The protons are emitted nearly at 
rest from a source at the center and are accelerated through 
600 V each time they cross the gap between the dees. The 
dees are between the poles of an electromagnet where the 
field is 0.800 T. (a) Find the cyclotron frequency for the pro-
tons in this cyclotron. Find (b) the speed at which protons 
exit the cyclotron and (c) their maximum kinetic energy. 
(d) How many revolutions does a proton make in the cyclo-
tron? (e) For what time interval does the proton accelerate?

18. A particle in the cyclotron shown in Figure 28.16a gains 
energy q DV from the alternating power supply each time it 
passes from one dee to the other. The time interval for each 
full orbit is

T 5
2p

v
5

2pm
qB

  so the particle’s average rate of increase in energy is

2q DV

T
5

q 2B DV

pm

  Notice that this power input is constant in time. On the 
other hand, the rate of increase in the radius r of its path is 

T
T

CR
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766 Chapter 28 Magnetic Fields

not constant. (a) Show that the rate of increase in the radius 
r of the particle’s path is given by

dr
dt

5
1
r
  

DV
pB

  (b) Describe how the path of the particles in Figure 28.16a 
is consistent with the result of part (a). (c) At what rate is 
the radial position of the protons in a cyclotron increasing 
immediately before the protons leave the cyclotron? Assume 
the cyclotron has an outer radius of 0.350 m, an accelerat-
ing voltage of DV 5 600 V, and a magnetic field of magni-
tude 0.800 T. (d) By how much does the radius of the pro-
tons’ path increase during their last full revolution?

19. In his experiments on “cathode rays” during which he dis-
covered the electron, J. J. Thomson showed that the same 
beam deflections resulted with tubes having cathodes made 
of different materials and containing various gases before 
evacuation. (a) Are these observations important? Explain 
your answer. (b) When he applied various potential differ-
ences to the deflection plates and turned on the magnetic 
coils, alone or in combination with the deflection plates, 
Thomson observed that the fluorescent screen continued 
to show a single small glowing patch. Argue whether his 
observation is important. (c) Do calculations to show that 
the charge-to-mass ratio Thomson obtained was huge com-
pared with that of any macroscopic object or of any ionized 
atom or molecule. How can one make sense of this com-
parison? (d) Could Thomson observe any deflection of the 
beam due to gravitation? Do a calculation to argue for your 
answer. Note: To obtain a visibly glowing patch on the flu-
orescent screen, the potential difference between the slits 
and the cathode must be 100 V or more.

seCTiOn 28.4 Magnetic Force Acting on a Current- 
Carrying Conductor

20. A straight wire carrying a 3.00-A current is placed in a uni-
form magnetic field of magnitude 0.280 T directed perpen-
dicular to the wire. (a) Find the magnitude of the magnetic 
force on a section of the wire having a length of 14.0 cm. (b) 
Explain why you can’t determine the direction of the mag-
netic force from the information given in the problem.

21. A wire carries a steady current of 2.40 A. A straight section 
of the wire is 0.750 m long and lies along the x axis within 
a uniform magnetic field, B

S
5 1.60k

⁄
 T. If the current is in 

the positive x direction, what is the magnetic force on the 
section of wire?

22. Why is the following situation impossible? Imagine a copper wire 
with radius 1.00 mm encircling the Earth at its magnetic 
equator, where the field direction is horizontal. A power 
supply delivers 100 MW to the wire to maintain a current 
in it, in a direction such that the magnetic force from the 
Earth’s magnetic field is upward. Due to this force, the wire 
is levitated immediately above the ground.

23. Review. A rod of mass 0.720 kg and radius 6.00 cm rests 
on two parallel rails (Fig. P28.23) that are d 5 12.0 cm 
apart and L 5 45.0 cm long. The rod carries a current of 
I 5 48.0 A in the direction shown and rolls along the rails 
without slipping. A uniform magnetic field of magnitude 
0.240 T is directed perpendicular to the rod and the rails. 
If it starts from rest, what is the speed of the rod as it leaves 
the rails?

24. Review. A rod of mass m and radius R rests on two paral-
lel rails (Fig. P28.23) that are a distance d apart and have a 
length L. The rod carries a current I in the direction shown 
and rolls along the rails without slipping. A uniform mag-
netic field B is directed perpendicular to the rod and the 
rails. If it starts from rest, what is the speed of the rod as it 
leaves the rails?

25. A wire having a mass per unit length of 0.500 g/cm carries 
a 2.00-A current horizontally to the south. What are (a) the 
direction and (b) the magnitude of the minimum magnetic 
field needed to lift this wire vertically upward?

26. Consider the system pictured in Figure  P28.26. A 15.0-cm 
horizontal wire of mass 15.0 g is placed between two thin, 
vertical conductors, and a uniform magnetic field acts per-
pendicular to the page. The wire is free to move vertically 
without friction on the two vertical conductors. When a 
5.00-A current is directed as shown in the figure, the hori-
zontal wire moves upward at constant velocity in the presence 
of gravity. (a) What forces 
act on the horizontal wire, 
and (b) under what con-
dition is the wire able to 
move upward at constant 
velocity? (c) Find the mag-
nitude and direction of 
the minimum magnetic 
field required to move the 
wire at constant speed. (d) 
What happens if the mag-
netic field exceeds this 
minimum value?

27. A strong magnet is placed 
under a horizontal con-
ducting ring of radius r 
that carries current I as 
shown in Figure  P28.27. 
If the magnetic field B

S
 

makes an angle u with 
the vertical at the ring’s 
location, what are (a) the 
magnitude and (b) the 
direction of the resul-
tant magnetic force on 
the ring?

28. In Figure P28.28, the 
cube is 40.0 cm on each 
edge. Four straight segments of wire—ab, bc, cd, and da—
form a closed loop that carries a current I 5 5.00 A in the 
direction shown. A uniform magnetic field of magnitude 
B 5 0.020 0 T is in the positive y direction. Determine the 
magnetic force vector on (a) ab, (b) bc, (c) cd, and (d) da. 
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(e)  Explain how you could find the force exerted on the 
fourth of these segments from the forces on the other three, 
without further calculation involving the magnetic field.

seCTiOn 28.5 Torque on a Current Loop in a Uniform 
Magnetic Field

29. A magnetized sewing needle has a magnetic moment of 
9.70  mA ? m2. At its location, the Earth’s magnetic field is 
55.0 mT northward at 48.08 below the horizontal. Identify 
the orientations of the needle that represent (a)  the min-
imum potential energy and (b) the maximum potential 
energy of the needle–field system. (c) How much work must 
be done on the system to move the needle from the mini-
mum to the maximum potential energy orientation?

30. A 50.0-turn circular coil of radius 5.00 cm can be oriented 
in any direction in a uniform magnetic field having a magni-
tude of 0.500 T. If the coil carries a current of 25.0 mA, find 
the magnitude of the maximum possible torque exerted on 
the coil.

31. You are in charge of planning a physics magic show for an 
open house on your campus. You come up with the follow-
ing plan for one trick. You will place a sphere on a rough 
inclined plane of angle u, as shown in Figure P28.31, and 
it will not roll down the incline. Here is the secret that only 
you know: The sphere is nonconducting, has a mass of 
80.0 g, and a radius 20.0 cm. A flat, compact coil of wire 
with five turns is wrapped tightly around it, with each turn 
concentric with the sphere. The sphere is placed on the 
incline so that the coil is parallel to the plane. You estab-
lish a uniform magnetic field of 0.350 T vertically upward 
in the region of the sphere. (a) What current in the coil 
do you need to make this trick work? (b) You explain the 
trick to a friend in confidence and he suggests lowering the 
angle u of the plane to make the required current lower. 
How do you respond?

32. You are working in your dream job: an assistant for the 
special effects department of a movie studio. You have just 
been given this assignment: the star of a horror movie is 
walking down a spooky hallway when suddenly, due to some 

unknown and strange supernatural forces, all the pictures 
hanging on the wall start rotating about their upper edges 
until they are sticking straight out from the wall! To set up 
this effect, you attach the pictures to the wall with hinges 
along their upper end and wrap 20 turns of wire around the 
outside frame of the picture, as shown in Figure P28.32a. 
You set up a uniform magnetic field in the hallway that is 
directed upward and oriented at an angle of g 5 5.008 to the 
vertical, with its horizontal component directed perpendic-
ularly into the wall. When you send a current of I 5 10.0 A 
through the wire around each picture, the frame swings 
up perpendicular to the wall as shown in Figure P28.32b. 
Consider a particular picture of width w 5 40.6 cm, height 
h 5 50.8 cm, and mass m 5 0.750 kg. (a) Your supervisor 
asks you to determine the magnetic field magnitude that is  
necessary for this picture to rotate so that its face is par-
allel to the floor and perpendicular to the wall, as in Fig-
ure P28.32b. (b) She also asks about any dangers associated 
with this magnetic field.

33. A rectangular coil consists of N 5 100 closely wrapped 
turns and has dimensions a 5 0.400  m and b 5 0.300 m. 
The coil is hinged along the y axis, and its plane makes an 
angle u 5 30.08 with the x axis (Fig. P28.33). (a) What is the 
magnitude of the torque exerted on the coil by a uniform 
magnetic field B 5 0.800 T directed in the positive x direc-
tion when the current is I 5 1.20 A in the direction shown? 
(b) What is the expected direction of rotation of the coil?
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768 Chapter 28 Magnetic Fields

34. A rectangular loop of wire has dimensions 0.500  m by 
0.300  m. The loop is pivoted at the x axis and lies in the 
xy plane as shown in Figure P28.34. A uniform magnetic 
field of magnitude 1.50 T is directed at an angle of 40.08 
with respect to the y axis with field lines parallel to the yz 
plane. The loop carries a current of 0.900 A in the direc-
tion shown. (Ignore gravitation.) We wish to evaluate the 
torque on the current loop. (a) What is the direction of 
the magnetic force exerted on wire segment ab? (b) What 
is the direction of the torque associated with this force 
about an axis through the origin? (c) What is the direction 
of the magnetic force exerted on segment cd? (d) What is 
the direction of the torque associated with this force about 
an axis through the origin? (e) Can the forces examined in 
parts (a) and (c) combine to cause the loop to rotate around 
the x axis? (f) Can they affect the motion of the loop in any 
way? Explain. (g) What is the direction of the magnetic 
force exerted on segment bc? (h) What is the direction of 
the torque associated with this force about an axis through 
the origin? (i) What is the torque on segment ad about an 
axis through the origin? (j) From the point of view of Figure 
P28.34, once the loop is released from rest at the position 
shown, will it rotate clockwise or counterclockwise around 
the x axis? (k)  Compute the magnitude of the magnetic 
moment of the loop. (l) What is the angle between the mag-
netic moment vector and the magnetic field? (m) Compute 
the torque on the loop using the results to parts (k) and (l).

35. A wire is formed into a circle having a diameter of 10.0 cm 
and is placed in a uniform magnetic field of 3.00 mT. The 
wire carries a current of 5.00 A. Find (a) the maximum 
torque on the wire and (b) the range of potential energies of 
the wire–field system for different orientations of the circle.

seCTiOn 28.6 The Hall Effect

36. A Hall-effect probe operates with a 120-mA current. When 
the probe is placed in a uniform magnetic field of mag-
nitude 0.080 0 T, it produces a Hall voltage of 0.700 mV. 
(a) When it is used to measure an unknown magnetic field, 
the Hall voltage is 0.330 mV. What is the magnitude of the 
unknown field? (b) The thickness of the probe in the direc-
tion of B

S
 is 2.00 mm. Find the density of the charge carriers, 

each of which has charge of magnitude e.

addiTiOnal PrOBleMs

37. Carbon-14 and carbon-12 ions (each with charge of magni-
tude e) are accelerated in a cyclotron. If the cyclotron has a 
magnetic field of magnitude 2.40 T, what is the difference 
in cyclotron frequencies for the two ions?

38. Figure 28.11 shows a charged particle traveling in a nonuni-
form magnetic field forming a magnetic bottle. (a) Explain 
why the positively charged particle in the figure must be 

moving clockwise when viewed from the right of the figure. 
The particle travels along a helix whose radius decreases 
and whose pitch decreases as the particle moves into a stron-
ger magnetic field. If the particle is moving to the right 
along the x axis, its velocity in this direction will be reduced 
to zero and it will be reflected from the right-hand side of 
the bottle, acting as a “magnetic mirror.” The particle ends 
up bouncing back and forth between the ends of the bottle. 
(b) Explain qualitatively why the axial velocity is reduced to 
zero as the particle moves into the region of strong mag-
netic field at the end of the bottle. (c) Explain why the tan-
gential velocity increases as the particle approaches the end 
of the bottle. (d) Explain why the orbiting particle has a 
magnetic dipole moment.

39. Within a cylindrical region of space of radius 100  Mm, a 
magnetic field is uniform with a magnitude 25.0 mT and ori-
ented parallel to the axis of the cylinder. The magnetic field 
is zero outside this cylinder. A cosmic-ray proton traveling 
at one-tenth the speed of light is heading directly toward 
the center of the cylinder, moving perpendicular to the 
cylinder’s axis. (a) Find the radius of curvature of the path 
the proton follows when it enters the region of the field. (b) 
Explain whether the proton will arrive at the center of the 
cylinder.

40. Heart–lung machines and artificial kidney machines 
employ electromagnetic blood pumps. The blood is con-
fined to an electrically insulating tube, cylindrical in prac-
tice but represented here for simplicity as a rectangle of 
interior width w and height h. Figure P28.40 shows a rect-
angular section of blood within the tube. Two electrodes 
fit into the top and the bottom of the tube. The potential 
difference between them establishes an electric current 
through the blood, with current density J over the section of 
length L shown in Figure P28.40. A perpendicular magnetic 
field exists in the same region. (a) Explain why this arrange-
ment produces on the liquid a force that is directed along 
the length of the pipe. (b) Show that the section of liquid 
in the magnetic field experiences a pressure increase JLB. 
(c) After the blood leaves the pump, is it charged? (d) Is it 
carrying current? (e) Is it magnetized? (The same electro-
magnetic pump can be used for any fluid that conducts elec-
tricity, such as liquid sodium in a nuclear reactor.)

41. Review. A proton is at rest at the plane boundary of a region 
containing a uniform magnetic field B (Fig. P28.41). An 
alpha particle moving horizontally makes a head-on elastic 
collision with the proton. Immediately after the collision, 
both particles enter the magnetic field, moving perpendic-
ular to the direction of the field. The radius of the proton’s 
trajectory is R. The mass of the alpha particle is four times 
that of the proton, and its charge is twice that of the proton. 
Find the radius of the alpha particle’s trajectory.
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42. (a) A proton moving with velocity vS 5 vi i
⁄
 experiences a 

magnetic force F
S

5 Fi j
⁄
. Explain what you can and cannot 

infer about B
S

 from this information. (b) What If? In terms 
of Fi, what would be the force on a proton in the same field 
moving with velocity vS 5 2vi i

⁄
? (c) What would be the 

force on an electron in the same field moving with velocity 
vS 5 2vi i

⁄
?

43. A proton having an initial velocity of 20.0 i
⁄
 Mm/s enters a 

uniform magnetic field of magnitude 0.300 T with a direc-
tion perpendicular to the proton’s velocity. It leaves the 
field-filled region with velocity 220.0 j

⁄
 Mmys. Determine 

(a) the direction of the magnetic field, (b) the radius of 
curvature of the proton’s path while in the field, (c) the 
distance the proton traveled in the field, and (d) the time 
interval during which the proton is in the field.

44. You have been called in as an expert witness in a civil case. 
The case involves a dispute between neighbors. The plaintiff 
neighbor is complaining about a buzzing noise during the 
night that prevents the plaintiff from sleeping. He claims 
that the buzzing is coming from a light fixture on the defen-
dant’s porch ceiling. The defendant likes to do installations 
and repairs himself and has done a sloppy job of installing 
the light fixture. The fixture hangs vertically from a single 
wire that is attached through the porch ceiling and down 
the wall to one connector in a nearby electrical outlet. The 
second wire is hung horizontally with strings at the level of 
the light and then runs down the wall to the other connec-
tor in the outlet. The defendant leaves the light on all night 
long for security. Recalling his high school physics, the 
plaintiff states that the combination of the 60-Hz household 
voltage and the magnetic field of the Earth results in an 
oscillating driving force on the single wire from which the 
light fixture hangs vertically. This, in turn, sets up a stand-
ing wave in the wire, and that is the cause of the buzz. You 
have been hired by the defense attorney. Upon hearing the 
details of the case, you obtain permission from the defen-
dant and make measurements. The mass of the light fixture 
is 17.5 kg. The vertical wire from which it hangs is 0.150 m 
long and has a mass of 0.030 kg. Is the plaintiff correct that 
the magnetic field of the Earth is causing the buzzing of the 
wire? Ignore any effect of the second wire.

45. Model the electric motor in a handheld electric mixer as a 
single flat, compact, circular coil carrying electric current in 
a region where a magnetic field is produced by an external 
permanent magnet. You need consider only one instant in 
the operation of the motor. (We will consider motors again 
in Chapter 30.) Make order-of-magnitude estimates of (a) 
the magnetic field, (b) the torque on the coil, (c) the current 
in the coil, (d) the coil’s area, and (e) the number of turns 
in the coil. The input power to the motor is electric, given by  
P 5 I DV, and the useful output power is mechanical, P 5 tv.

46. Why is the following situation impossible? Figure P28.46 shows an 
experimental technique for altering the direction of travel 
for a charged particle. A particle of charge q 5 1.00 mC and 
mass m 5 2.00 3 10213 kg enters the bottom of the region of 
uniform magnetic field at speed v 5 2.00 3 105 m/s, with 
a velocity vector perpendicular to the field lines. The mag-
netic force on the particle causes its direction of travel to 
change so that it leaves the region of the magnetic field at 
the top traveling at an angle from its original direction. The 
magnetic field has magnitude B 5 0.400 T and is directed 
out of the page. The length h of the magnetic field region 
is 0.110  m. An experimenter performs the technique and 
measures the angle u at which the particles exit the top of 
the field. She finds that the angles of deviation are exactly 
as predicted.

47. A heart surgeon monitors the flow rate of blood through 
an artery using an electromagnetic flowmeter (Fig. P28.47). 
Electrodes A and B make contact with the outer surface of 
the blood vessel, which has a diameter of 3.00 mm. (a) For 
a magnetic field magnitude of 0.040 0 T, an emf of 160 mV 
appears between the electrodes. Calculate the speed of 
the blood. (b) Explain why electrode A has to be positive 
as shown. (c) Does the sign of the emf depend on whether 
the mobile ions in the blood are predominantly positively or 
negatively charged? Explain.

48. Review. (a) Show that a magnetic dipole in a uniform mag-
netic field, displaced from its equilibrium orientation and 
released, can oscillate as a torsional pendulum (Section 
15.5) in simple harmonic motion. (b) Is this statement 
true for all angular displacements, for all displacements 
less than 1808, or only for small angular displacements? 
Explain. (c) Assume the dipole is a compass needle—a 
light bar magnet—with a magnetic moment of magnitude 
m. It has moment of inertia I about its center, where it is 
mounted on a frictionless, vertical axle, and it is placed in 
a horizontal magnetic field of magnitude B. Determine 
its frequency of oscillation. (d) Explain how the compass 
needle can be conveniently used as an indicator of the 
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770 Chapter 28 Magnetic Fields

magnitude of the external magnetic field. (e) If its fre-
quency is 0.680 Hz in the Earth’s local field, with a horizon-
tal component of 39.2 mT, what is the magnitude of a field 
parallel to the needle in which its frequency of oscillation 
is 4.90 Hz?

CHallenge PrOBleMs

49. Consider an electron orbiting a proton and maintained in 
a fixed circular path of radius R 5 5.29 3 10211 m by the 
Coulomb force. Treat the orbiting particle as a current loop. 
Calculate the resulting torque when the electron– proton 
system is placed in a magnetic field of 0.400 T directed per-
pendicular to the magnetic moment of the loop.

50. Protons having a kinetic energy of 5.00 MeV (1 eV 5 1.60 3 
10219 J) are moving in the positive x direction and enter a 
magnetic field B

S
5 0.050 0k

⁄
 T directed out of the plane of 

the page and extending from x 5 0 to x 5 1.00 m as shown 
in Figure P28.50. (a) Ignoring relativistic effects, find the 
angle a between the initial velocity vector of the proton 

beam and the velocity vector after the beam emerges from 
the field. (b) Calculate the y component of the protons’ 
momenta as they leave the magnetic field.

51. Review. A wire having a linear mass density of 1.00 g/cm 
is placed on a horizontal surface that has a coefficient of 
kinetic friction of 0.200. The wire carries a current of 1.50 A 
toward the east and slides horizontally to the north at con-
stant velocity. What are (a) the magnitude and (b) the direc-
tion of the smallest magnetic field that enables the wire to 
move in this fashion?
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Storyline You begin working part-time as a janitor at a local  
hospital to earn some extra spending money. Your supervisor is going through 
your orientation. She is showing you the janitorial equipment and supplies. She 
then tells you to listen very carefully while she tells you about cleaning the room 
in which an MRI (Magnetic Resonance Imaging) machine is located. She explains 
that the MRI magnet is always on, even when the room is not being used during 
the night. Metal objects can be attracted to the very strong magnetic field of the 
MRI machine. She stresses that there have been accidents, even fatal accidents, 
involving MRI machines, including many involving janitorial equipment. There was 
even a case where a gun was pulled away from a police officer by an MRI and 
discharged as it struck the machine. As a result, there are special types of clean-
ing equipment and supplies that must be used in the area of the MRI machine. 
She makes you promise that you will use only the special janitorial equipment 
and supplies in the MRI room. After the orientation, you wonder how the MRI 
machine can create such a strong magnetic field. You also carefully study the 
special equipment for use in the MRI room to find out what makes it safe to use 
near the MRI machine.

ConneCtions In Chapter 28, we discussed the magnetic force exerted 
on a charged particle moving in a magnetic field. To complete the description of 
the magnetic interaction, this chapter explores where the magnetic field comes 
from in the first place: moving charges. We begin by showing how to use the 
law of Biot and Savart to calculate the magnetic field produced at some point in 
space by a small current element. This formalism is used to investigate several 
magnetic configurations. We eventually generate Ampère’s law, which is useful 

29.1 The Biot–Savart Law

29.2 The Magnetic Force 
Between Two Parallel 
Conductors

29.3 Ampère’s Law

29.4 The Magnetic Field of a 
Solenoid

29.5 Gauss’s Law in 
Magnetism

29.6 Magnetism in Matter

29

Sources of the Magnetic Field

A technician prepares a 
patient to receive a scan 
from a magnetic resonance 
imaging (MRI) machine in a 
hospital. Superconducting 
wires (Section 26.5) are 
used to create a very strong 
magnetic field in the interior 
of the machine, as well as 
around the machine.  
(James Steidl/Shutterstock)
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772 Chapter 29 Sources of the Magnetic Field

in calculating the magnetic field of a highly symmetric configuration carrying a 
steady current, and is reminiscent of Gauss’s law in Chapter 23. After completing 
this chapter, we will be prepared for the subsequent chapters, which address 
the combination of electric and magnetic effects that is called electromagnetism. 
Electromagnetism is the basis of many physical phenomena that we will study for 
the rest of the book.

   29.1    The Biot–Savart Law
The relationship between magnetism and electricity was discovered in 1819 when, 
during a lecture demonstration, Hans Christian Oersted found that an electric cur-
rent in a wire deflected a nearby compass needle. In the 1820s, further connections 
between electricity and magnetism were demonstrated independently by Faraday 
and Joseph Henry (1797–1878). They showed that an electric current can be pro-
duced in a circuit either by moving a magnet near the circuit or by changing the 
current in a nearby circuit. These observations demonstrate that a changing mag-
netic field creates an electric field. Years later, theoretical work by Maxwell showed 
that the reverse is also true: a changing electric field creates a magnetic field. In 
general, then, the source of a magnetic field is a moving electric charge.

Shortly after Oersted’s discovery, Jean-Baptiste Biot (1774–1862) and Félix Savart 
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart 
arrived at a mathematical expression that gives the magnetic field at some point in 
space in terms of the current that produces the field. In Chapter 22, we showed that 
the mathematical expression for the electric field due to a single charge (Eq. 22.9) 
is relatively simple. We will find that the mathematical expression for the magnetic 
field is not quite so simple. That expression is based on the following experimental 
observations for the magnetic field d B

S
 at a point P associated with a length ele-

ment d sS of a wire carrying a steady current I (Fig. 29.1):

 ● The vector d B
S

 is perpendicular both to d sS (which points in the direction of 
the current) and to the unit vector r⁄ directed from d sS toward P.

 ● The magnitude of d B
S

 is inversely proportional to r 2, where r is the distance 
from d sS to P.

 ● The magnitude of d B
S

 is proportional to the current I and to the magnitude  
ds of the length element d sS.

 ● The magnitude of d B
S

 is proportional to sin u, where u is the angle between 
the vectors d sS and r⁄.

These observations are summarized in the mathematical expression known 
today as the Biot–Savart law:

 d B
S

5
m0

4p
  

I d sS 3 r⁄

r 2  (29.1)

where m0 is a constant called the permeability of free space:

 m0 5 4p 3 1027 T ? myA (29.2)

Interesting similarities and differences exist between Equation 29.1 for the 
magnetic field due to a current element and Equation 22.9 for the electric field 
due to a point charge. The magnitude of the magnetic field varies as the inverse 
square of the distance from the source, as does the electric field due to a point 
charge. The directions of the two fields are quite different, however. The electric 
field created by a point charge is radial, but the magnetic field created by a cur-
rent element is perpendicular to both the length element d sS and the unit vector r⁄ 
as described by the cross product in Equation 29.1. Hence, if the conductor lies in 

Biot–Savart law 

Permeability of free space 

Pitfall Prevention 29.1
The Biot–Savart Law The 
magnetic field described by the 
Biot–Savart law is the field due to a 
given current-carrying conductor. 
Do not confuse this field with any 
external field that may be applied 
to the conductor from some other 
source.

Pd

r

d
P �

d

r̂

r̂

u

Bin
S

Bout
S

sS

I

The direction of the field 
is out of the page at P.

The direction of the field 
is into the page at P �.

Figure 29.1  The magnetic  
field dB

S
 at a point due to the cur-

rent I through a length element 
d sS is given by the Biot–Savart law. 
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    29.1 The Biot–Savart Law 773

the plane of the page as shown in Figure 29.1, d B
S

 points out of the page at P and 
into the page at P9.

Notice that the field d B
S

 in Equation 29.1 is the field created at a point by the 
current in only a small length element d sS of the conductor. To find the total mag-
netic field B

S
 created at some point by a current of finite size, we must sum up 

contributions from all current elements I d sS that make up the current. That is, we 
must evaluate B

S
 by integrating Equation 29.1:

 B
S

5
m0I

4p
 # 

d sS 3 r⁄ 
r 2  (29.3)

where the integral is taken over the entire current distribution. This expres-
sion must be handled with special care because the integrand is a cross product 
and therefore a vector quantity. We shall see one case of such an integration in 
Example 29.1.

Although the Biot–Savart law was discussed for a current-carrying wire, it is also 
valid for a current consisting of charges flowing through space such as the particle 
beam in an accelerator. In that case, d sS represents the length of a small segment of 
space in which the charges flow.

The Biot–Savart law gives the magnetic field of an isolated current element at 
some point, but such an isolated current element cannot exist the way an isolated 
electric charge can. A current element must be part of an extended current distribu-
tion because a complete circuit is needed for charges to flow. Therefore, the Biot–
Savart law (Eq. 29.1) is only the first step in a calculation of a magnetic field; it must 
be followed by an integration over the current distribution as in Equation 29.3.

Q uick Quiz 29.1  Consider the magnetic field due to the current in the wire 
shown in Figure 29.2. Rank the points A, B, and C in terms of magnitude of the 
magnetic field that is due to the current in just the length element d sS shown 
from greatest to least.

Example 29.1 below investigates the magnetic field due to a long, straight wire. 
This geometry is important because it occurs often. Figure 29.3 is a perspective view 
of the magnetic field surrounding a long, straight, current-carrying wire. Because 
of the wire’s symmetry, the magnetic field lines are circles concentric with the wire 
and lie in planes perpendicular to the wire. The magnitude of B

S
 is constant on any 

circle of radius a and will be found in Example 29.1. A convenient rule for deter-
mining the direction of B

S
 is to grasp the wire with the right hand, positioning the 

thumb along the direction of the current. The four fingers wrap in the direction of 
the magnetic field.

Figure 29.3 also shows that the magnetic field line has no beginning and no end. 
Rather, it forms a closed loop. That is a major difference between magnetic field 
lines and electric field lines, which begin on positive charges and end on negative 
charges. We will explore this feature of magnetic field lines further in Section 29.5. 
Test the right-hand rule for the field vectors in Figure 29.1.

A

CB

sSdddd I

Figure 29.2  (Quick Quiz 29.1) 
Where is the magnetic field due to 
the current element the greatest?

a

I

B
S

 

Figure 29.3  The right-hand rule 
for determining the direction of 
the magnetic field surrounding a 
long, straight wire carrying a cur-
rent. Notice that the magnetic field 
lines form circles around the wire.

 Example 29.1    Magnetic Field Surrounding a Thin, Straight Conductor

Consider a thin, straight wire of finite length carrying a constant current I and placed along the x axis as shown in  
Figure 29.4 (page 774). Determine the magnitude and direction of the magnetic field at point P due to this current.

S O L U T I O N

Conceptualize  From the Biot–Savart law, we expect that the magnitude of the field is proportional to the current in the wire 
and decreases as the distance a from the wire to point P increases. We also expect the field to depend on the angles u1 and u2 in 
Figure 29.4b. We place the origin at O and let point P be along the positive y axis.

continued
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774 Chapter 29 Sources of the Magnetic Field

29.1 c o n t i n u e d

Categorize  We are asked to find the magnetic field due to a sim-
ple current distribution, so this example is a typical problem for 
which the Biot–Savart law is appropriate. We must find the field 
contribution from a small element of current and then integrate 
over the current distribution. When finding the electric field 
due to continuous linear charge distribution in Section 23.1,  
we expressed the element of charge dq in Equation 23.1 as dq 5 
l dx. When using the Biot–Savart law, we have a similar element 
in I d s

S
. In this element, however, I is constant and d s

S
 is chosen 

to be parallel to the direction of I.

Analyze  Let’s start by considering a length element d sS located 
a distance r from P as shown in Figure 29.4a. The direction of 
the magnetic field at point P due to the current in this element 
is out of the page because d sS 3 r⁄ is out of the page. (Check this 
direction using the right-hand rule in Figure 29.3.) In fact, because all the current elements I d sS lie in the plane of the page, 
they all produce a magnetic field directed out of the page at point P. Therefore, the direction of the magnetic field at point P 
is out of the page and we need only find the magnitude of the field. 

Evaluate the cross product in the Biot–Savart law: d sS 3 r⁄ 5 ud sS 3 r⁄uk
⁄

5 3dx sin Sp

2
2 uD4k

⁄
5 sdx cos udk

⁄

Substitute into Equation 29.1: (1)   d B
S

5 sdBdk
⁄

5
m0I

4p
  

dx cos u
r 2  k

⁄

From the geometry in Figure 29.4a, express r in  (2)   r 5
a

cos u
 

terms of u:

Notice that tan u 5 2x/a from the right triangle in  x 5 2a tan u 
Figure 29.4a (the negative sign is necessary because  
d sS is located at a negative value of x) and solve for x :

Find the differential dx: (3)   dx 5 2a sec2 u du 5 2
a du

cos2 u

Substitute Equations (2) and (3) into the expression  (4)   dB 5 2
m0I

4p
 S a du

cos2 uDScos2 u
a 2  D cos u 5 2

m0I

4pa
  cos u du 

for the z component of the field from Equation (1):

Integrate Equation (4) over all length elements on the  B 5 2
m0I

4pa
 #

u2

u1

cos u du 5
m0I

4pa
ssin u1 2 sin u2d  (29.4) 

wire, where the subtending angles range from u1 to u2 as  
defined in Figure 29.4b:

Finalize  We can use this result to find the magnitude of the magnetic field of any straight current- carrying wire if we know the 
geometry and hence the angles u1 and u2. Consider the special case of an infinitely long, straight wire. If the wire in Figure 29.4b  
becomes infinitely long, we see that u1 5 p/2 and u2 5 2p/2 for length elements ranging between positions x 5 2` and  
x 5 1 .̀ Because (sin u1 2 sin u2) 5 [sin p/2 2 sin (2p/2)] 5 2, Equation 29.4 becomes

 B 5
m0I

2pa
 (29.5)

Equations 29.4 and 29.5 both show that the magnitude of the magnetic field is proportional to the current and decreases with 
increasing distance from the wire, as expected. Equation 29.5 has the same mathematical form as the expression for the mag-
nitude of the electric field due to a long charged wire (see Eq. 23.8).

a b

O
x

r̂

r a

P
� � � dx

x

P

y

x

y

u
u1 u2

I
sSd

sSd

Figure 29.4  (Example 29.1) (a) A thin, straight wire carrying 
a current I. (b) The angles u1 and u2, from point P to the ends 
of the wire, are used for determining the net field.

 Example 29.2    Magnetic Field Due to a Curved Wire Segment

Calculate the magnetic field at point O for the current-carrying wire segment shown in Figure 29.5. The wire consists of 
two straight portions and a circular arc of radius a, which subtends an angle u.
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    29.1 The Biot–Savart Law 775

29.2 c o n t i n u e d

S O L U T I O N

Conceptualize  The magnetic field at O due to the current in the straight segments 
AA9 and CC9 is zero because d sS is parallel to r⁄ along these paths, which means that 
d sS 3 r⁄ 5 0 for these paths. Therefore, we expect the magnetic field at O to be due only 
to the current in the curved portion of the wire.

Categorize  Because we can ignore segments AA9 and CC9, this example is categorized 
as an application of the Biot–Savart law to the curved wire segment AC.

Analyze  Each length element d sS along path AC is at the same distance a from O, and 
the current in each contributes a field element d B

S
 directed into the page at O. Further-

more, at every point on AC, d sS is perpendicular to r⁄; hence, ud sS 3 r⁄ u 5 ds.

From Equation 29.1, find the magnitude of the field at O  dB 5
m0

4p
  

I ds
a 2  

due to the current in an element of length ds:

Integrate this expression over the curved path AC, noting   B 5
m0I

4pa 2 #ds 5
m0I

4pa 2 s 
that I and a are constants:

From the geometry, note that s 5 au and substitute:  B 5
m0I

4pa 2 sa ud 5
m0I

4pa
 u  (29.6)

Finalize  Equation 29.6 gives the magnitude of the magnetic field at O. The direction of B
S

 is into the page at O because 
d sS 3 r⁄ is into the page for every length element.

W H A T  I F ?  What if you were asked to find the magnetic field at the center of a circular wire loop of radius R that carries 
a current I ? Can this question be answered at this point in our understanding of the source of magnetic fields?

Answer Yes, it can. The straight wires in Figure 29.5 do not contribute to the magnetic field. The only contribution is from 
the curved segment. As the angle u increases, the curved segment becomes a full circle when u 5 2p. Therefore, you can find 
the magnetic field at the center of a wire loop by letting u 5 2p in Equation 29.6:

B 5
m0I

4pa
 2p 5

m0I

2a

This result is a limiting case of a more general result discussed in Example 29.3.

sSd
O

A

r̂

C

I

a

a

a

u

IIIII

I

C �

A �

Figure 29.5  (Example 29.2) A por-
tion of a wire forms an arc of a circle. 
The length of the curved segment 
AC is s.

 Example 29.3     Magnetic Field on the Axis of a Circular Current Loop

Consider a circular wire loop of radius a located in the  
yz plane and carrying a steady current I as in Figure 29.6.  
Calculate the magnetic field at an axial point P a distance x 
from the center of the loop.

S O L U T I O N

Conceptualize  Compare this problem to Example 23.2 for 
the electric field due to a ring of charge. Figure 29.6 shows  
the magnetic field contribution d B

S
  at P due to a single current 

element at the top of the ring. This field vector can be resolved 
into components dBx parallel to the axis of the ring and dB

>
 per-

pendicular to the axis. Think about the magnetic field contribu-
tion from a current element at the bottom of the loop. Because of 
the symmetry of the situation, the perpendicular components of 
the field due to elements at the top and bottom of the ring can-
cel. This cancellation occurs for all pairs of segments around the 
ring, so we can ignore the perpendicular component of the field 
and focus solely on the parallel components, which simply add. continued

O

a

d

y

z

I

r̂

r

x
P

xdBx

dB�
d

u

u

B
S

sS

Figure 29.6  (Example 29.3) Geometry for calculating the 
magnetic field at a point P lying on the axis of a current loop. 
By symmetry, the total field B

S
 is along this axis.
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776 Chapter 29 Sources of the Magnetic Field

29.3 c o n t i n u e d

Categorize  We are asked to find the magnetic field due to a simple current distribution, so this example is a typical problem 
for which the Biot–Savart law is appropriate.

Analyze  In this situation, every length element d sS is perpendicular to the vector r⁄ at the location of the element. Therefore, 
for any element, ud sS 3 r⁄ u 5 sdsds1d sin 908 5 ds. Furthermore, all length elements around the loop are at the same distance r 
from P, where r2 5 a2 1 x2.

Use Equation 29.1 to find the magnitude of d B
S

  dB 5
m0I

4p
  

ud sS 3 r⁄u
r 2 5

m0I

4p
  

ds
sa 2 1 x2d

 
due to the current in any length element d sS:

Find the x component of the field element: (1) dBx 5
m0I

4p
  

ds
sa 2 1 x2d

  cos u

From the geometry, evaluate cos u: cos u 5
a

sa 2 1 x2d1y2

Substitute into Equation (1) and integrate over the  Bx 5
m0I

4p
 $  

ds
a 2 1 x2  3 a

sa 2 1 x2d1y245
m0I

4p
  

a
sa 2 1 x2d3y2

 $ ds 
entire loop, noting that x and a are both constant:

The remaining integral is the circumference of the loop: Bx 5
m0I

4p
  

a
sa 2 1 x2d3y2

s2pad 5
m0Ia 2

2sa 2 1 x2d3y2
 (29.7)

Finalize  To find the magnetic field at the center of the loop, set x 5 0 in Equation 29.7. At this special point,

 B 5
m0I

2a
 sat x 5 0d (29.8)

which is consistent with the result of the What If? feature of Example 29.2.
 The pattern of magnetic field lines for a circular current loop is shown in Figure 29.7a.  
For clarity, the lines are drawn for only the plane that contains the axis of the loop. The 
field-line pattern is axially symmetric and is similar to the pattern around a bar magnet, 
which is shown in Figure 29.7b.

W H A T  I F ? What if we consider points on the x axis very far from the loop? How 
does the magnetic field behave at these distant points?

Answer In this case, in which x .. a, we can neglect the term a 2 in the denominator of 
Equation 29.7 and obtain

 B <
m0Ia 2

2x3  (for x .. a) (29.9)

The magnitude of the magnetic moment m of the loop is defined as the product of current and loop area (see Eq. 28.16):  
m 5 I(pa2) for our circular loop. Therefore, we can express Equation 29.9 as

 B <
m0

2p
  

m

x3 (29.10)

This result is similar in form to the expression for the electric field due to an electric dipole, E 5 ke(p/y3) (see Example 22.6), 
where p 5 2aq is the electric dipole moment as defined in Equation 25.18.

a b

S

N

I
S

N

Figure 29.7  (Example 29.3) 
(a) Magnetic field lines surrounding 
a current loop. (b) Magnetic field 
lines surrounding a bar magnet. 
Notice the similarity between this line 
pattern and that of a current loop.

Although the Earth’s magnetic field pattern (Fig. 28.3) is similar to the one that 
would be set up by a bar magnet (Fig. 29.7b) deep within the Earth, the source of 
this magnetic field cannot be large masses of permanently magnetized material. 
The Earth does indeed have large deposits of iron ore deep beneath its surface, 
but the high temperatures in the Earth’s core prevent the iron from retaining any 
permanent magnetization. (See Section 29.6.) Scientists consider it more likely that 
the source of the Earth’s magnetic field is convection currents in the Earth’s outer 
core. Charged ions or electrons circulating in the liquid outer core could produce a 
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    29.2 The Magnetic Force Between Two Parallel Conductors  777

magnetic field just like a current loop does, as in Example 29.3. There is also strong 
evidence that the magnitude of a planet’s magnetic field is related to the plan-
et’s rate of rotation. For example, Jupiter rotates faster than the Earth, and space 
probes indicate that Jupiter’s magnetic field is stronger than the Earth’s. Venus, on 
the other hand, rotates more slowly than the Earth, and its magnetic field is found 
to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

   29.2    The Magnetic Force Between Two  
Parallel Conductors
In Chapter 28, we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor acts 
as a source of a magnetic field, it is easy to understand that two current-carrying 
conductors exert magnetic forces on each other. One wire establishes the magnetic 
field and the other wire is modeled as a collection of particles in a magnetic field. 
Such forces between wires can be used as the basis for defining the ampere and the 
coulomb.

Consider two long, straight, parallel wires separated by a distance a and car-
rying currents I1 and I2 in the same direction as in Figure 29.8. Let’s determine 
the force exerted on one wire due to the magnetic field set up by the other wire. 
Wire 2, which carries a current I2 and is identified arbitrarily as the source wire, 
creates a magnetic field B

S
2 at the location of wire 1, the test wire. The magnitude 

of this magnetic field is the same at all points on wire 1. The direction of B
S

2 
can be found using the right-hand rule in Figure 29.3, and is perpendicular to 
wire 1 as shown in Figure 29.8. According to Equation 28.10, the magnetic force  
on a length , of wire 1 is F

S
1 5 I1O

S
3 B

S
2. Because O

S
 is perpendicular to B

S
2 in this  

situation, the magnitude of F
S

1 is F1 5 I1,B2. Because the magnitude of B
S

2 is given 
by Equation 29.5,

 F1 5 I1/B 2 5 I1/Sm0I2

2pa
 D 5

m0I1I2

2pa
/ (29.11)

The direction of F
S

1 is toward wire 2 because O
S

3 B
S  

2 is in that direction. When the 
field set up at wire 2 by wire 1 is calculated, the force F

S
2 acting on wire 2 is found  

to be equal in magnitude and opposite in direction to F
S

1, which is what we  
expect because Newton’s third law must be obeyed. When the currents are in oppo-
site directions (that is, when one of the currents is reversed in Fig. 29.8), the forces 
are reversed and the wires repel each other. Hence, parallel conductors carrying 
currents in the same direction attract each other, and parallel conductors carrying 
currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote the 
magnitude of the magnetic force between the wires as simply FB. We can rewrite 
this magnitude in terms of the force per unit length:

 
FB

/
5

m0 I1I2

2pa
 (29.12)

The force between two parallel wires is used to define the ampere as follows:

When the magnitude of the force per unit length between two long, parallel 
wires that carry identical currents and are separated by 1 m is 2 3 1027 N/m, 
the current in each wire is defined to be 1 A.

 Definition of the ampere

The value 2 3 1027 N/m is obtained from Equation 29.12 with I1 5 I2 5 1 A and  
a 5 1 m. Because this definition is based on a force, a mechanical measurement 
can be used to standardize the ampere. For instance, the National Institute of  

B2
S

2

1
�

I1

I2

aF1
S

The field B2 due to the current in 
wire 2 exerts a magnetic force of 
magnitude F1 � I1�B 2 on wire 1.

S

Figure 29.8 Two parallel wires 
that each carry a steady current 
exert a magnetic force on each 
other. The force is attractive if the 
currents are parallel (as shown) 
and repulsive if the currents are 
antiparallel.
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778 Chapter 29 Sources of the Magnetic Field

Standards and Technology uses an instrument called a current balance for primary 
current measurements. The results are then used to standardize other, more con-
ventional electrical instruments such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere: When a 
conductor carries a steady current of 1 A, the quantity of charge that flows through 
a cross section of the conductor in 1 s is 1 C.

In deriving Equations 29.11 and 29.12, we assumed both wires are long com-
pared with their separation distance. In fact, only one wire needs to be long. The 
equations accurately describe the forces exerted on each other by a long wire and a 
straight, parallel wire of limited length ,.

Q uick Quiz 29.2  A loose spiral spring carrying no current is hung from a 
ceiling. When a switch is thrown so that a current exists in the spring, do the 
coils (a) move closer together, (b) move farther apart, or (c) not move at all?

 Example 29.4     Suspending a Wire

Two infinitely long, parallel wires are lying on the ground 
a distance a 5 1.00 cm apart as shown in Figure 29.9a. A 
third wire, of length L 5 10.0 m and mass 400 g, carries 
a current of I1 5 100 A and is levitated above the first two 
wires, at a horizontal position midway between them. The 
infinitely long wires carry equal currents I2 in the same 
direction, but in the direction opposite that in the levitated 
wire. What current must the infinitely long wires carry so 
that the three wires form an equilateral triangle?

S O L U T I O N

Conceptualize  Because the current in the short wire is 
opposite those in the long wires, the short wire is repelled 
from both of the others. Imagine the currents in the long 
wires in Figure 29.9a are increased. The repulsive force 
becomes stronger, and the levitated wire rises to the point at which the wire is once again levitated in equilibrium at a 
higher position. Figure 29.9b shows the desired situation with the three wires forming an equilateral triangle.

Categorize  Because the levitated wire is subject to forces but does not accelerate, it is modeled as a particle in equilibrium.

Analyze  The horizontal components of the magnetic forces on the levitated wire cancel. The vertical components are both 
positive and add together. Choose the z axis to be upward through the top wire in Figure 29.9b and in the plane of the page.

Find the total magnetic force in the upward direction on  F
S

B 5 2Sm0I1I2

2pa
 /D cos u k

⁄
5

m0I1I2

pa
/ cos u k

⁄
 

the levitated wire:

Find the gravitational force on the levitated wire: F
S

g 5 2mg k
⁄

Apply the particle in equilibrium model by adding the  o F
S

5 F
S

B 1 F
S

g 5
m0I1I2

pa
/ cos u k

⁄
2 mg k

⁄
5 0 

forces and setting the net force equal to zero:

Solve for the current in the wires on the ground: I 2 5
mg pa

m0I1/ cos u

Substitute numerical values: I 2 5
s0.400 kgds9.80 mys2dps0.010 0 md

s4p 3 1027 T ? myAds100 Ads10.0 md cos 30.08

  5 113 A

Finalize  The currents in all wires are on the order of 102 A. Such large currents would require specialized equipment. There-
fore, this situation would be difficult to establish in practice. Is the equilibrium of wire 1 stable or unstable?

a b

I1

I1

I2 I2
a

LI2 a

a

a u

Fg
S

FB,R
S

FB,L
S

I2

Figure 29.9  (Example 29.4) (a) Two current-carrying wires lie 
on the ground and suspend a third wire in the air by magnetic 
forces. (b) End view. In the situation described in the example, 
the three wires form an equilateral triangle. The two magnetic 
forces on the levitated wire are F

S
B ,L, the force due to the left- 

hand lower wire, and F
S

B ,R , the force due to the right-hand wire. The 
gravitational force F

S
g  on the levitated wire is also shown.
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   29.3 Ampère’s Law 779

  29.3    Ampère’s Law
In Figure 28.1, we show how compasses can be used to map out the magnetic field 
lines around a bar magnet. Figure 29.10 shows how compasses can be used to 
demonstrate the magnetic field lines around a long, vertical wire. When no current 
is present in the wire (Fig. 20.10a), all the compass needles point in the same direc-
tion (that of the horizontal component of the Earth’s magnetic field) as expected. 
When the wire carries a strong, steady current, the needles all deflect in a direction 
tangent to the circle as in Figure 29.10b. These observations demonstrate that the 
direction of the magnetic field produced by the current in the wire is consistent 
with the right-hand rule described in Figure 29.3. When the current is reversed, 
the needles in Figure 29.10b also reverse.

Now let’s evaluate the product B
S  

? d sS for a small length element d sS on the circu-
lar path defined by the compass needles and sum the products for all elements over 
the closed circular path.1 Along this path, the vectors d sS and B

S
 are parallel at each 

point (see Fig. 29.10b), so B
S  

? d sS 5 B ds. Furthermore, the magnitude of B
S

 is con-
stant on this circle and is given by Equation 29.5. Therefore, the sum of the products 
B ds over the closed path, which is equivalent to the line integral of  B

S  
? d sS, is

$ B
S  

? d sS 5 B $ ds 5
m0I

2pr
s2prd 5 m0I

where $ ds 5 2pr is the circumference of the circular path of radius r. Although 
this result was calculated for the special case of a circular path surrounding a wire 
of infinite length, it holds for a closed path of any shape (an amperian loop) sur-
rounding a current that exists in an unbroken circuit. The general case, known as 
Ampère’s law, can be stated as follows:

The line integral of B
S  

? d sS around any closed path equals m0I, where I is the 
total steady current passing through any surface bounded by the closed path:

 $ B
S  

? d sS 5 m0I  (29.13)  Ampère’s law

1You may wonder why we would choose to evaluate this scalar product. The origin of Ampère’s law is in 19th-century 
science, in which a “magnetic charge” (the supposed analog to an isolated electric charge) was imagined to be moved 
around a circular field line. The work done on the charge was related to B

S  
? d sS, just as the work done moving an elec-

tric charge in an electric field is related to E
S  

? d sS. Therefore, Ampère’s law, a valid and useful principle, arose from 
an erroneous and abandoned work calculation!

Figure 29.10 (a) and (b) Compasses show the effects of the current in a nearby wire. (c) Circular 
magnetic field lines surrounding a current-carrying conductor, displayed with iron filings.

a b

When no current is present in the 
wire, all compass needles point in 
the same direction (toward the 
Earth’s north pole).

When the wire carries a strong 
current, the compass needles 
deflect in a direction tangent to 
the circle, which is the direction 
of the magnetic field created by 
the current.
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andre-Marie ampère
French Physicist (1775–1836)
Ampère is credited with the discovery of 
electromagnetism, which is the relation-
ship between electric currents and mag-
netic fields. Ampère’s genius, particularly 
in mathematics, became evident by the 
time he was 12 years old; his personal 
life, however, was filled with tragedy. His 
father, a wealthy city official, was guillo-
tined during the French Revolution, and 
his wife died young, in 1803. Ampère died 
at the age of 61 of pneumonia.
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Pitfall Prevention 29.2
Avoiding Problems with 
Signs When using Ampère’s law, 
apply the following right-hand 
rule. Point your thumb in the 
direction of the current through 
the amperian loop. Your curled 
fingers then point in the direction 
that you should integrate when tra-
versing the loop to avoid having to 
define the current as negative.
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780 Chapter 29 Sources of the Magnetic Field

Notice the italics in the shaded box. We can choose any path and any surface 
bounded by that path. In most cases, we choose paths that are simple, such as cir-
cles or rectangles. Also, in most cases, we choose the flat surface bounded by the 
path. Imagine a drumhead: the circular rim is the path and the flat drumhead 
membrane is the surface. If the membrane vibrates, however, there are instants of 
time when the path remains fixed, but the surface is not flat; the membrane bows 
upward or downward from its equilibrium position. We will see in Chapter 33 a 
situation in which we need to consider a surface other than the flat one bounded 
by the path.

Ampère’s law describes the creation of magnetic fields by all continuous current 
configurations, but at our mathematical level it is useful only for calculating the 
magnetic field of current configurations having a high degree of symmetry. Its use 
is similar to that of Gauss’s law in calculating electric fields for highly symmetric 
charge distributions.

Q uick Quiz 29.3  Rank the 
magnitudes of $ B

S  
? d sS for the 

closed paths a through d in 
Figure 29.11 from greatest  
to least.

Q uick Quiz 29.4  Rank the 
magnitudes of $ B

S  
? d sS for the 

closed paths a through d in Fig-
ure 29.12 from greatest to least.

ExAMPLE 29.6   

1 A 
5 A 

b

a

d

c

2 A 

Figure 29.11  (Quick 
Quiz 29.3) Four closed 
paths around three 
current-carrying wires.

a

b

c

d

Figure 29.12  (Quick 
Quiz 29.4) Several closed 
paths near a single cur-
rent-carrying wire.

 Example 29.5     The Magnetic Field Created by a Long Current-Carrying Wire

A long, straight wire of radius R carries a steady current I that is uniformly dis-
tributed through the cross section of the wire (Fig. 29.13). Calculate the mag-
netic field a distance r from the center of the wire in the regions r $ R and  
r , R.

S O L U T I O N

Conceptualize  Study Figure 29.13 to understand the structure of the wire and the cur-
rent in the wire. The current creates magnetic fields everywhere, both inside and outside 
the wire. Based on our discussions about long, straight wires, we expect the magnetic 
field lines to be circles centered on the central axis of the wire. In Example 29.1, we used 
a for the distance from a wire of negligible radius. In this example, the wire has a radius 
R. We will use r for the distance from the center of the wire and compare regions both 
inside and outside the wire.

Categorize  Because the wire has a high degree of symmetry, we categorize this example 
as an Ampère’s law problem. For the r $ R case, we should arrive at the same result as was 
obtained in Example 29.1, where we applied the Biot–Savart law to the same situation.

Analyze  For the magnetic field exterior to the wire, let us choose for our path of inte-
gration circle 1 in Figure 29.13. From symmetry, B

S
 must be constant in magnitude and 

parallel to d sS at every point on this circle.

2

R

r

1

d sS 

I

Figure 29.13  (Example 29.5) A 
long, straight wire of radius R car-
rying a steady current I uniformly 
distributed across the cross section 
of the wire. The magnetic field at 
any point can be calculated from 
Ampère’s law using a circular  
path of radius r, concentric with 
the wire.
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   29.3 Ampère’s Law 781

29.5 c o n t i n u e d

Note that the total current passing through the plane of  $ B
S  

?  d sS 5 B $ ds 5 B s2prd 5 m0I  
the circle is I and apply Ampère’s law:

Solve for B: B 5 
m0I

2pr
    (for r $ R) (29.14)

Now consider the interior of the wire, where r , R. Here the current I9 passing through the plane of circle 2 is less than the 
total current I. Because the current is uniformly distributed across the cross section of the wire, the current density J (Eq. 26.5) is con-
stant in the interior of the wire. Therefore, for any area A of the interior perpendicular to the length of the wire, the current 
passing through that area is I9 5 JA.

Set the ratio of the current I9 enclosed by circle 2 to the  
I 9

I
5

JA9

JA
5

pr 2

pR 2 
entire current I equal to the ratio of the area pr2 enclosed  
by circle 2 to the cross-sectional area pR2 of the wire:

Solve for I9: I 9 5
r 2

R 2 I

Apply Ampère’s law to circle 2: $ B
S  

?  d sS 5 B s2prd 5 m0I 9 5 m0S r 2

R 2 ID
Solve for B: B 5 S m0 I

2pR 2Dr     (for r , R) (29.15)

Finalize  The magnetic field exterior to the wire (Eq. 29.14) is 
identical in form to Equation 29.5, except for the substitution 
of r for a. As is often the case in highly symmetric situations, 
it is much easier to use Ampère’s law than the Biot–Savart 
law (Example 29.1). The magnetic field interior to the wire is 
similar in form to the expression for the electric field inside a 
uniformly charged sphere (see Example 23.6). The magnitude 
of the magnetic field versus r for this configuration is plotted 
in Figure 29.14. Inside the wire, B S 0 as r S 0. Furthermore, Equations 29.14 and 29.15 give the same value of the magnetic 
field at r 5 R, demonstrating that the magnetic field is continuous at the surface of the wire.

R
r 

B � r 

 

B

B � 1/r 

Figure 29.14  (Example 29.5) 
Magnitude of the magnetic field 
versus r for the wire shown in Fig-
ure 29.13. The field is proportional 
to r inside the wire and varies as 1/r 
outside the wire.

 Example 29.6     The Magnetic Field Created by a Toroid

A device called a toroid (Fig. 29.15) is often used to create an almost 
uniform magnetic field in some enclosed area. The device consists of 
a conducting wire wrapped around a ring (a torus, which is shaped like 
a doughnut) made of a nonconducting material. For a toroid having N 
closely spaced turns of wire, calculate the magnetic field in the region 
occupied by the torus, a distance r from the center.

S O L U T I O N

Conceptualize  Study Figure 29.15 carefully to understand how the wire is 
wrapped around the torus. The torus could be a solid material or it could 
be air, with a stiff wire wrapped into the shape shown in Figure 29.15 to 
form an empty toroid. Imagine each turn of the wire to be a circular loop 
as in Example 29.3. The magnetic field at the center of the loop is perpen-
dicular to the plane of the loop. Therefore, the magnetic field lines of the 
collection of loops will form circles within the toroid such as suggested by 
loop 1 in Figure 29.15.

Categorize  Because the toroid has a high degree of symmetry, we catego-
rize this example as an Ampère’s law problem.

Analyze  Consider the circular amperian loop (loop 1) of radius r in the 
plane of Figure 29.15. By symmetry, the magnitude of the field is constant 

caI

I

r

b

Loop 1

Loop 2

B
S

 d sS 

Figure 29.15  (Example 29.6) A toroid consist-
ing of many turns of wire. If the turns are closely 
spaced, the magnetic field in the interior of the 
toroid is tangent to the dashed circle (loop 1) and 
varies as 1/r. The dimension a is the cross-sectional 
radius of the torus. The field outside the toroid is 
very small and can be described by using the ampe-
rian loop (loop 2) at the right side, perpendicular 
to the page.

continued
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782 Chapter 29 Sources of the Magnetic Field

   29.4    The Magnetic Field of a Solenoid
A solenoid is a long wire wound in the form of a helix. With this configuration, a rea-
sonably uniform magnetic field can be produced in the space surrounded by the turns 
of wire—which we shall call the interior of the solenoid—when the solenoid carries a 
current. When the turns are closely spaced, each can be approximated as a circular 
loop; the net magnetic field is the vector sum of the fields resulting from all the turns.

Figure 29.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. The field lines in the interior are nearly parallel to one another, are uni-
formly distributed, and are close together, indicating that the field in this space is 
strong and almost uniform.

If the turns are closely spaced and the solenoid is of finite length, the exter-
nal magnetic field lines are as shown in Figure 29.17a. This field line distribution 
is similar to that surrounding a bar magnet (Fig. 29.17b). Hence, one end of the  

on this circle and tangent to it, so B
S  

? d sS 5 B ds. Furthermore, the wire passes through the loop N times, so the total current 
through the loop is NI.

Apply Ampère’s law to loop 1: $ B
S  

? d sS 5 B $ ds 5 B s2prd 5 m0NI

Solve for B: B 5 
m0NI

2pr
 (29.16)

29.6 c o n t i n u e d

Finalize  This result shows that B varies as 1/r and hence is 
nonuniform in the region occupied by the torus. If, however, 
r is very large compared with the cross-sectional radius a of 
the torus, the field is approximately uniform inside the torus.
 For an ideal toroid, in which the turns are closely spaced, 
the external magnetic field is close to zero, but it is not exactly 
zero. In Figure 29.15, imagine the radius r of amperian loop 
1 to be either smaller than b or larger than c. In either case, 
the loop encloses zero net current, so $ B

S
?d sS 5 0. You might 

think this result proves that B
S

5 0, but it does not. Consider 
the amperian loop (loop 2) on the right side of the toroid in 

Figure 29.15. The plane of this loop is perpendicular to the 
page, and the toroid passes through the loop. As charges 
enter the toroid as indicated by the current directions in Fig-
ure 29.15, they work their way counterclockwise around the 
toroid. Therefore, there is a counterclockwise current around 
the toroid, so that a current passes through amperian loop 2! 
This current is small, but not zero. As a result, the toroid acts 
as a current loop and produces a weak external field of the 
form shown in Figure 29.7. The reason $ B

S
?d sS 5 0 for ampe-

rian loop 1 of radius r , b or r . c is that the field lines are 
perpendicular to d sS, not because B

S
5 0.

Exterior

Interior

Figure 29.16  The magnetic field 
lines for a loosely wound solenoid.

Figure 29.17  (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a steady 
current. The field in the interior space is strong and nearly uniform. (b) The magnetic field pattern of 
a bar magnet, displayed with small iron filings on a sheet of paper.

a
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The magnetic field lines 
resemble those of a bar 
magnet, meaning that the 
solenoid effectively has 
north and south poles.
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    29.4 The Magnetic Field of a Solenoid 783

solenoid behaves like the north pole of a magnet and the opposite end behaves 
like the south pole. As the length of the solenoid increases, the interior field 
becomes more uniform and the exterior field becomes weaker. An ideal solenoid is 
approached when the turns are closely spaced and the length is much greater than 
the radius of the turns. Figure 29.18 shows a longitudinal cross section of part of 
such a solenoid carrying a current I. In this case, the external field is close to zero 
and the interior field is uniform over a great volume.

Consider the amperian loop (loop 1) perpendicular to the page in Figure 29.18, 
surrounding the ideal solenoid. This loop encloses a small current as the charges 
in the wire move coil by coil along the length of the solenoid. Therefore, there is 
a nonzero magnetic field outside the solenoid. It is a weak field, with circular field 
lines, like those due to a line of current as in Figure 29.3. For an ideal solenoid, this 
weak field is the only field external to the solenoid. 

We can use Ampère’s law to obtain a quantitative expression for the interior 
magnetic field in an ideal solenoid. Because the solenoid is ideal, B

S
 in the inte-

rior space is uniform and parallel to the axis and the magnetic field lines in the 
exterior space form circles around the solenoid. The planes of these circles are 
perpendicular to the page. Consider the rectangular path (loop 2) of length , and 
width w shown in Figure 29.18. Let’s apply Ampère’s law to this path by evaluating 
the integral of B

S  
? d sS over each side of the rectangle. The contribution along side 

3 is zero because the external magnetic field lines are perpendicular to the path in 
this region. The contributions from sides 2 and 4 are both zero, again because B

S
 is 

perpendicular to d sS along these paths, both inside and outside the solenoid. Side 1 
gives a contribution to the integral because along this path B

S
 is uniform and paral-

lel to d sS. The integral over the closed rectangular path is therefore

$ B
S  

? d sS 5  #
path 1

B
S  

? d sS 5 B #
path 1

ds 5 B/

The right side of Ampère’s law involves the total current I through the area 
bounded by the path of integration. In this case, the total current through the 
rectangular path equals the current through each turn multiplied by the number 
of turns. If N is the number of turns in the length ,, the total current through the 
rectangle is NI. Therefore, Ampère’s law applied to this path gives

$ B
S  

? d sS 5 B/ 5 m0NI

 B 5 m0 
N
/

 I 5 m0nI  (29.17)

where n 5 N/, is the number of turns per unit length.
We also could obtain this result by reconsidering the magnetic field of a toroid 

(see Example 29.6). If the radius r of the torus in Figure 29.15 containing N turns is 
much greater than the toroid’s cross-sectional radius a, a short section of the toroid 
approximates a solenoid for which n 5 N/2pr. In this limit, Equation 29.16 agrees 
with Equation 29.17.

Equation 29.17 is valid only for points near the center of the length (that is, far 
from the ends) of a very long solenoid. As you might expect, the field near each 
end is smaller than the value given by Equation 29.17. As the length of a solenoid 
increases, the magnitude of the field at the end approaches half the magnitude at 
the center (see Problem 45).

Q uick Quiz 29.5  Consider a solenoid that is very long compared with its 
radius. Of the following choices, what is the most effective way to increase the 
magnetic field in the interior of the solenoid? (a) double its length, keeping the 
number of turns per unit length constant (b) reduce its radius by half, keeping 
the number of turns per unit length constant (c) overwrap the entire solenoid 
with an additional layer of current-carrying wire

  Magnetic field inside  
a solenoid

Ampère’s law applied to the 
circular path whose plane is 
perpendicular to the page can be 
used to show that there is a weak 
field outside the solenoid.

Ampère’s law applied to the 
rectangular dashed path can be 
used to calculate the 
magnitude of the interior field.

3

2

4

1 �

w

Loop 1

Loop 2

B
S

Figure 29.18  Cross-sectional view 
of an ideal solenoid, where the inte-
rior magnetic field is uniform and 
the exterior field is close to zero.
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784 Chapter 29 Sources of the Magnetic Field

   29.5    Gauss’s Law in Magnetism
The flux associated with a magnetic field is defined in a manner similar to that 
used to define electric flux (see Eq. 23.4). Consider an element of area dA on an 
arbitrarily shaped surface as shown in Figure 29.19. If the magnetic field at this 
element is B

S
, the magnetic flux through the element is B

S  
? dA

S
, where dA

S
 is a vector 

that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; # B
S  

?  dA
S

 (29.18)

Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with dA

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u (29.19)

If the magnetic field is parallel to the plane as in Figure 29.20a, then u 5 908 and 
the flux through the plane is zero. If the field is perpendicular to the plane as in  
Figure 29.20b, then u 5 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

Definition of magnetic flux 

B
S

 
u

d A 
S

Figure 29.19  The magnetic  
flux through an area element dA  
is B

S  
? dA

S
5 B d  A cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Figure 29.20 Magnetic flux 
through a plane lying in a mag-
netic field. a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

a

b

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

 Example 29.7     Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a cur-
rent I (Fig. 29.21). The distance between the wire and the closest side of the loop is c. 
The wire is parallel to the long side of the loop. Find the total magnetic flux through 
the loop due to the current in the wire.

S O L U T I O N

Conceptualize  As we saw in Figure 29.3, the magnetic field lines due to the wire will be 
circles, many of which will pass through the rectangular loop. We know that the magni-
tude of the magnetic field is a function of distance r from a 
long wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the area of 
the loop, we must integrate over this area to find the total flux. 
That identifies this as an analysis problem.

b
r

I

c a

dr

Figure 29.21  (Example 
29.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.
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    29.5 Gauss’s Law in Magnetism 785

In Chapter 23, we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the 
number of electric field lines leaving the surface depends only on the net charge 
within it. This behavior exists because electric field lines originate and terminate 
on electric charges.

The situation is quite different for magnetic fields, which are continuous and 
form closed loops. In other words, as illustrated by the magnetic field lines of a cur-
rent in Figure 29.3 and of a bar magnet in Figure 29.22, magnetic field lines do not 
begin or end at any point. For any closed surface such as the one outlined by the 
dashed line in Figure 29.22, the number of lines entering the surface equals the 
number leaving the surface; therefore, the net magnetic flux is zero. In contrast, 
for a closed surface surrounding one charge of an electric dipole (Fig. 29.23), the 
net electric flux is not zero.

29.7 c o n t i n u e d

Analyze  Noting that B
S

 is parallel to dA
S

 at any point  FB 5 # B
S   

?  dA
S

5 # B dA 5  # 
m0I

2pr
 dA 

within the loop, find the magnetic flux through the  
rectangular area using Equation 29.18 and incorporate  
Equation 29.14 for the magnetic field:

Express the area element (the tan strip in Fig. 29.21) as  FB 5 # 
m0I

2pr
 b dr 5

m0Ib

2p
 # 

dr
r

 
dA 5 b dr and substitute:

Integrate from r 5 c  to r 5 a 1 c: FB 5
m0Ib

2p
 #

a1c

c
  

dr
r

5
m0Ib

2p
  ln r *

a1c

c

       5
m0Ib

2p
 ln Sa 1 c

c D 5
m0Ib

2p
  ln S1 1

a
cD

Finalize  Notice how the flux depends on the size of the loop. Increasing either a or b increases the flux as expected. If c 
becomes large such that the loop is very far from the wire, the flux approaches zero, also as expected. If c goes to zero, the 
flux becomes infinite. In principle, this infinite value occurs because the field becomes infinite at r 5 0 (assuming an infini-
tesimally thin wire). That will not happen in reality because the thickness of the wire prevents the left edge of the loop from 
reaching r 5 0.

N

S

The net magnetic flux 
through a closed surface 
surrounding one of the 
poles or any other 
closed surface is zero.

Figure 29.22  The magnetic field lines of a bar mag-
net form closed loops. (The dashed line represents 
the intersection of a closed surface with the page.)

�

�

The electric flux 
through a closed 
surface surrounding 
one of the charges 
is not zero.

Figure 29.23  The electric field lines surrounding 
an electric dipole begin on the positive charge and 
terminate on the negative charge.
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786 Chapter 29 Sources of the Magnetic Field

Gauss’s law in magnetism states that

the net magnetic flux through any closed surface is always zero:

 $ B
S   

?  dA
S

5 0 (29.20)Gauss’s law in magnetism  

This statement represents that isolated magnetic poles (monopoles) have never 
been detected and perhaps do not exist. Nonetheless, scientists continue the search 
because certain theories that are otherwise successful in explaining fundamental 
physical behavior suggest the possible existence of magnetic monopoles.

   29.6    Magnetism in Matter
The magnetic field produced by a current in a coil of wire gives us a hint as to what 
causes certain materials to exhibit strong magnetic properties. Earlier we found 
that a solenoid like the one shown in Figure 29.17a has a north pole and a south 
pole. In general, any current loop has a magnetic field and therefore has a mag-
netic dipole moment, including the atomic-level current loops described in some 
models of the atom.

the Magnetic Moments of atoms
Let’s begin our discussion with a classical model of the atom in which electrons 
move in circular orbits around the much more massive nucleus as shown in  
Figure 29.24. In this model, an orbiting electron constitutes a tiny current loop 
(because it is a moving charge). Although this model has many deficiencies, some 
of its predictions are in good agreement with the correct theory, which is expressed 
in terms of quantum physics.

Let’s call the current of the orbiting electron I. Because the orbit has an area 
A, there is a magnetic moment associated with the orbiting electron of magnitude 
m 5 IA. In addition, the electron has an angular momentum about the nucleus of 
magnitude L 5 mevr, where me is the mass of the electron and v is its orbital speed. 
Because the electron is negatively charged, the  vectors mS and L

S
 point in opposite 

directions. Both vectors are perpendicular to the plane of the orbit as indicated in 
Figure 29.24.

A fundamental outcome of quantum physics is that orbital angular momentum 
is quantized and is equal to multiples of " 5 h/2p 5 1.05 3 10234 J ? s, where h is 
Planck’s constant (see Chapter 39). The smallest nonzero value of the electron’s 
magnetic moment resulting from its orbital motion is

 m 5 Ï2 
e

2me

 " (29.21)

We shall see in Chapter 41 how expressions such as Equation 29.21 arise.
Because all substances contain electrons, you may wonder why most sub-

stances are not magnetic. The main reason is that, in most substances, the mag-
netic moment of one electron in an atom is canceled by that of another electron 
orbiting in the opposite direction. The net result is that, for most materials, the 
magnetic effect produced by the orbital motion of the electrons is either zero or  
very small.

In addition to its orbital magnetic moment, an electron (as well as protons, neu-
trons, and other particles) has an intrinsic property called spin that also contributes 
to its magnetic moment. Classically, the electron might be viewed as spinning about 
its axis as shown in Figure 29.25, but you should be very careful with the classical 
interpretation. The magnitude of the angular momentum S

S
 associated with spin 

The electron has an angular 
momentum     in one direction 
and a magnetic moment     in 
the opposite direction.

r

I
m
S

m
S

L
S

L
S

e�

Figure 29.24  An electron mov-
ing in the direction of the gray 
arrow in a circular orbit of radius 
r. Because the electron carries 
a negative charge, the direction 
of the current due to its motion 
about the nucleus is opposite the 
direction of that motion.

Pitfall Prevention 29.3
The Electron Does Not Spin The 
electron is not physically spinning. 
It has an intrinsic angular momen-
tum as if it were spinning, but the 
notion of rotation for a point 
particle is meaningless. Rotation 
applies only to a rigid object, with 
an extent in space, as in Chapter 
10. Spin angular momentum is 
actually a relativistic effect.
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    29.6 Magnetism in Matter 787

is on the same order of magnitude as the magnitude of the angular momentum L
S

  
due to the orbital motion. The magnitude of the spin angular momentum of an 
electron predicted by quantum theory is

S 5
Ï3
2

 "

The magnetic moment characteristically associated with the spin of an electron has 
the value

 mspin 5
e "

2me

 (29.22)

This combination of constants is called the Bohr magneton mB:

 mB 5
e "

2me

5 9.27 3 10224 JyT (29.23)

Therefore, atomic magnetic moments can be expressed as multiples of the Bohr 
magneton. (Note that 1 J/T 5 1 A ? m2.)

In atoms containing many electrons, the electrons usually pair up with their 
spins opposite each other; therefore, the spin magnetic moments cancel. Atoms 
containing an odd number of electrons, however, must have at least one unpaired 
electron and therefore some spin magnetic moment. The total magnetic moment 
of an atom is the vector sum of the orbital and spin magnetic moments, and a few 
examples are given in Table 29.1. Notice that helium and neon have zero moments 
because their individual spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its constitu-
ent protons and neutrons. The magnetic moment of a proton or neutron, however, 
is much smaller than that of an electron and can usually be neglected. We can 
understand this smaller value by inspecting Equation 29.23 and replacing the mass 
of the electron with the mass of a proton or a neutron. Because the masses of the 
proton and neutron are much greater than that of the electron, their magnetic 
moments are on the order of 103 times smaller than that of the electron.

ferromagnetism
A small number of substances exhibit strong magnetic effects called ferromag-
netism. Some examples of ferromagnetic substances are iron, cobalt, nickel, gad-
olinium, and dysprosium. These substances contain permanent atomic magnetic 
moments that tend to align parallel to each other even in a weak external mag-
netic field. The substance remains magnetized after the external field is removed, 
leading to a permanent magnet. This permanent alignment is due to a strong cou-
pling between neighboring moments, a coupling that can be understood only in 
quantum-mechanical terms.

All ferromagnetic materials are made up of microscopic regions called domains, 
regions within which all magnetic moments are aligned. These domains have volumes 
of about 10212 to 1028 m3 and contain 1017 to 1021 atoms. The boundaries between 
the various domains having different orientations are called domain walls. In an 
unmagnetized sample, the magnetic moments in the domains are randomly oriented 
so that the net magnetic moment is zero as in Figure 29.26a (page 788). When the 
sample is placed in an external magnetic field B

S
, the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 29.26b. As the external field becomes very strong as in Figure 29.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetization 
in the direction of the original field. At ordinary temperatures, thermal agitation is 
not sufficient to disrupt this preferred orientation of magnetic moments.

spin

S
S

m
S

Figure 29.25  Classical model of 
a spinning electron. We can adopt 
this model to remind ourselves 
that electrons have an intrinsic 
angular momentum. The model 
should not be pushed too far, 
however; it gives an incorrect mag-
nitude for the magnetic moment, 
incorrect quantum numbers, and 
too many degrees of freedom.

 table 29.1  Magnetic 
Moments of Some Atoms  
and Ions
 Magnetic
 Moment
Atom or Ion (10224 J/T)

H 9.27
He 0
Ne 0
Ce31 19.8
Yb31 37.1
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788 Chapter 29 Sources of the Magnetic Field

When the temperature of a ferromagnetic substance reaches or exceeds a crit-
ical temperature called the Curie temperature, the substance loses its residual 
magnetization. Below the Curie temperature, the magnetic moments are aligned 
and the substance is ferromagnetic. Above the Curie temperature, the thermal 
agitation is great enough to cause a random orientation of the moments and the 
substance becomes paramagnetic. Curie temperatures for several ferromagnetic  
substances are given in Table 29.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a 
weak magnetic moment is induced in the direction opposite the applied field, 
causing diamagnetic substances to be weakly repelled by a magnet. Although 
diamagnetism is present in all matter, its effects are much smaller than those 
of paramagnetism or ferromagnetism and are evident only when those other 
effects do not exist.

We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
 

. This added magnetic force combines with the electrostatic  
force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.

As you recall from Chapter 26, a superconductor is a substance in which the elec-
trical resistance is zero below some critical temperature. Certain types of supercon-
ductors also exhibit perfect diamagnetism in the superconducting state. As a result, 
an applied magnetic field is expelled by the superconductor so that the field is zero 
in its interior. This phenomenon is known as the Meissner effect. If a permanent 
magnet is brought near a superconductor, the two objects repel each other. This 

 table 29.2  Curie Temperatures for 
Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

a

c

b

In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
S

B
S

dA
S

B
S

When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
S

B
S

As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 29.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a 
ferromagnetic substance.
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repulsion is illustrated in Figure 29.27, which shows a small permanent magnet lev-
itated above a superconductor maintained at 77 K.

Superconducting wires in the MRI’s solenoid are what allow the MRI machine 
in the opening storyline to provide such a large magnetic field. Because the resis-
tance of the wires is zero, a very high current is possible, creating a very strong mag-
netic field, whose magnitude is given approximately by Equation 29.17. As shown in 
Table 28.1, a typical field magnitude in an MRI machine is 1.5 T. Because the sole-
noid is not infinite, there is an external magnetic field as discussed in Section 29.4. 
As a result, if a ferromagnetic material is present near the MRI, it can be attracted 
strongly to the machine, leading to the possibility of a violent event. The special 
equipment that you use in the MRI room must have no ferromagnetic material, 
and, ideally, no paramagnetic material.

Figure 29.27  An illustration of 
the Meissner effect, shown by this 
magnet suspended above a cooled 
ceramic superconductor disk, has 
become our most visual image of 
high-temperature superconductivity. 
Superconductivity is the loss of all 
resistance to electrical current and is 
a key to more-efficient energy use. 

In the Meissner effect, the small 
magnet at the top induces currents 
in the superconducting disk below, 
which is cooled to �321�F (77 K). 
The currents create a repulsive 
magnetic force on the magnet 
causing it to levitate above the 
superconducting disk.
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Summary
 › Definition

 › Concepts and Principles

The magnetic flux FB through a surface is defined by the surface integral

 FB ; #B
S   

?  dA
S

 (29.18)

The Biot–Savart law says that the magnetic field d B
S

 at a point P 
due to a length element d sS that carries a steady current I is

 d B
S

5
m0

4p
 

I d sS 3 r⁄ 
r 2  (29.1)

where m0 is the permeability of free space, r is the distance from 
the element to the point P, and r⁄ is a unit vector pointing from 
d sS toward point P. We find the total field at P by integrating this 
expression over the entire current distribution.

The magnetic force per unit length between two parallel 
wires separated by a distance a and carrying currents I 1 
and I 2 has a magnitude

 
FB

/
5

m0I1I2

2pa
 (29.12)

The force is attractive if the currents are in the same 
direction and repulsive if they are in opposite directions.

continued

 Summary 789
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790 Chapter 29 Sources of the Magnetic Field

Ampère’s law says that the line 
integral of B

S   
?  d sS around any 

closed path equals m0I, where I is 
the total steady current through 
any surface bounded by the closed 
path:

  $ B
S   

?  d sS 5 m0I  (29.13)

The magnitude of the magnetic field at a distance r from a long, straight wire carrying an 
electric current I is

 B 5
m0I

2pr
 (29.14)

The field lines are circles concentric with the wire.
The magnitudes of the fields inside a toroid and solenoid are

 B 5
m0NI

2pr
 storoidd (29.16)

 B 5 m0 
N
/

 I 5 m0nI ssolenoidd (29.17)

where N is the total number of turns.

Gauss’s law of magnetism states 
that the net magnetic flux through 
any closed surface is zero:

 $ B
S  

? dA
S

5 0 (29.20)

Substances can be classified into one of three categories that describe their magnetic 
behavior. Diamagnetic substances are those in which the magnetic moment is weak 
and opposite the applied magnetic field. Paramagnetic substances are those in which 
the magnetic moment is weak and in the same direction as the applied magnetic field. 
In ferromagnetic substances, interactions between atoms cause magnetic moments 
to align and create a strong magnetization that remains after the external field  
is removed.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your professor sometimes employs group exams in his 
class, in which students work together and everyone 
receives the same grade. Your group is working on one 
of these exams and is faced with the following situation. 
Figure TP29.1 shows a side view of a tightly wound sole-
noid of length ,, radius a, and n turns per unit length. 
The solenoid, which carries a current I, is located with its 
center at x 5 0. Notice that the solenoid is not infinitely 
long. Your group is tasked with determining the magnetic 
field at arbitrary points along the axis of the solenoid. 

Toward this end, carry out the steps in the following plan: 
(a) By modeling each short length dx of the solenoid as a 
circular current loop, find the magnetic field due to the 
entire solenoid at point P on the x axis, a distance d from 
its center. (b) Let d S 0 to find the magnetic field on the x 
axis at the midpoint of the solenoid. (c) In the expression 
in part (b), let , S ` to find the field inside an infinitely 
long solenoid. (d) How does the result in part (c) compare 
to Equation 29.17?

2. ACTiviTy  For this activity, your group will need a large 
nail, a length of wire, a battery, and some paper clips. 
(a) One member of the group wraps the wire four times 
around the nail, laying each new turn of wire next to the 
previous one, and leaving enough length of both ends 
of the wire to connect the ends to a battery. Another 
connects the ends of the wire to a battery. The appara-
tus is now an electromagnet. See how many paper clips 
the electromagnet will pick up off the table so they are 
suspended from the tip of the nail. Record your group’s 
results. (b) Now continue the experiment by wrapping two 
more turns of wire next to the previous ones, for a total of 
6 turns, and measuring the number of paper clips picked 
up. Repeat the experiment for 8 turns, 10 turns, 12 turns, 
and 14 turns. From your group’s data, predict the number 
of paper clips the nail will pick up for 20 turns of wire. 
(c)  Wrap 20 turns and measure the number of paper 
clips. How did your group’s prediction match the results? 
(d) Now wrap 20 turns of wire, but with the final 10 turns 
wrapped on top of the first layer of 10 turns. How many 
paper clips does this magnet pick up?

dx

P

d

x � 0

x � �
2
1

� x �
2
1

�

Figure TP29.1
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 29.1 The Biot–Savart Law

1. Calculate the magnitude of the magnetic field at a point 
25.0 cm from a long, thin conductor carrying a current of 
2.00 A.

2. You are working as an expert witness in a civil case. You have 
been hired by the attorney for a company that manufactures 
compasses. The company is being sued by a novice hiker who 
used one of the company’s top-level compasses. The hiker 
claims that the compass was defective, sending him off in a 
different direction from his desired direction. After taking 
off in the erroneous direction, he dropped and lost his com-
pass so that he could not take subsequent measurements. 
As a result, he became lost for days, with the subsequent 
ill effects on his health and lost wages from missed days at 
work. The hiker has provided the exact location at which 
he took the erroneous compass reading. You take a trip to 
this location and look around. You notice that there is an 
electric power transmission line directly above your location, 
running in a north–south direction. Using trigonometry, 
you determine that the power line is a vertical distance of 
6.65 m above the ground. Upon returning to your office, you 
contact employees of the electric power company, who tell 
you that that particular rural power line actually carries DC 
current with a typical magnitude during the day of 135 A. 
(a) In order to provide advice in this case, you calculate the 
magnetic field caused by the power line at the location of the 
hiker. (b) What advice do you give to the attorney?

3. In Niels Bohr’s 1913 model of the hydrogen atom, an electron 
circles the proton at a distance of 5.29 3 10211 m with a speed 
of 2.19 3 106 m/s. Compute the magnitude of the magnetic 
field this motion produces at the location of the proton.

4. An infinitely long wire carrying a current I is bent at a right 
angle as shown in Figure P29.4. Determine the magnetic field 
at point P, located a distance x from the corner of the wire.

5. A long, straight wire carries a current I. A right-angle bend 
is made in the middle of the wire. The bend forms an arc of 
a circle of radius r as shown in Figure P29.5. Determine the 
magnetic field at point P, the center of the arc.

6. Consider a flat, circular current loop of radius R carrying 
a current I. Choose the x axis to be along the axis of the 
loop, with the origin at the loop’s center. Plot a graph of 
the ratio of the magnitude of the magnetic field at coor-
dinate x to that at the origin for x 5 0 to x 5 5R. It may be 
helpful to use a programmable calculator or a computer to 
solve this problem.

7. Three long, parallel conductors each carry a current of  
I 5 2.00 A. Figure P29.7 is an end view of the conductors, 
with each current coming out of the page. Taking a 5 1.00 cm,  
determine the magnitude and direction of the magnetic 
field at (a) point A, (b) point B, and (c) point C.

8. One long wire carries current 30.0 A to the left along the  
x axis. A second long wire carries current 50.0 A to the right 
along the line (y 5 0.280 m, z 5 0). (a) Where in the plane 
of the two wires is the total magnetic field equal to zero? 
(b) A particle with a charge of 22.00 mC is moving with a 
velocity of 150i

⁄
 Mm/s along the line (y 5 0.100 m, z 5 0). 

Calculate the vector magnetic force acting on the particle. 
(c) What If? A uniform electric field is applied to allow this 
particle to pass through this region undeflected. Calculate 
the required vector electric field.

9. Determine the magnetic field (in terms of I, a, and d) at the 
origin due to the current loop in Figure P29.9. The loop 
extends to infinity above the figure.

10. A wire carrying a current I is bent into the shape of an equi-
lateral triangle of side L. (a) Find the magnitude of the 
magnetic field at the center of the triangle. (b) At a point 
halfway between the center and any vertex, is the field stron-
ger or weaker than at the center? Give a qualitative argu-
ment for your answer.

11. Two long, parallel wires carry currents of I1 5 3.00 A and  
I2 5 5.00  A in the directions indicated in Figure P29.11 
(page 792). (a) Find the magnitude and direction of the mag-
netic field at a point midway between the wires. (b) Find the 
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792 Chapter 29 Sources of the Magnetic Field

magnitude and direction of the magnetic field at point P, 
located d 5 20.0 cm above the wire carrying the 5.00-A current.

Section 29.2 The Magnetic Force Between Two  
Parallel Conductors

12. Two parallel wires separated by 4.00 cm repel each other 
with a force per unit length of 2.00 3 1024 N/m. The cur-
rent in one wire is 5.00 A. (a) Find the current in the other 
wire. (b) Are the currents in the same direction or in oppo-
site directions? (c) What would happen if the direction of 
one current were reversed and doubled?

13. Two parallel wires are separated by 6.00 cm, each carrying 
3.00 A of current in the same direction. (a) What is the mag-
nitude of the force per unit length between the wires? (b) Is 
the force attractive or repulsive?

14. Two long wires hang vertically. Wire 1 carries an upward 
current of 1.50 A. Wire 2, 20.0 cm to the right of wire 1, 
carries a downward current of 4.00 A. A third wire, wire 3, 
is to be hung vertically and located such that when it carries 
a certain current, each wire experiences no net force. (a) Is 
this situation possible? Is it possible in more than one way? 
Describe (b) the position of wire 3 and (c) the magnitude 
and direction of the current in wire 3.

15. You are part of a team working in a machine parts 
mechanic’s shop. An important customer has asked your 
company to provide springs with a very precise force con-
stant k. To measure the spring constant, you fasten two of 
the springs between the ends of two very long wires of 
length L, separated by the unstretched length , of the 
springs as shown in Figure P29.15. The specific attach-
ment method that you use insulates the springs from the 
wires so that no current passes through the springs. You 
lay the apparatus f lat on a table and then pass a current of 
magnitude I through the wires, in opposite directions. As 
a result the springs stretch by a distance d and come to 
equilibrium. You determine an expression for the spring 
constant in terms of L, I, ,, and d.

16. Why is the following situation impossible? Two parallel copper con-
ductors each have length , 5 0.500 m and radius r 5 250 mm.  
They carry currents I 5 10.0 A in opposite directions and 
repel each other with a magnetic force FB 5 1.00 N.

17. The unit of magnetic flux is named for Wilhelm Weber. A 
practical-size unit of magnetic field is named for Johann 
Karl Friedrich Gauss. Along with their individual accom-
plishments, Weber and Gauss built a telegraph in 1833 that 
consisted of a battery and switch, at one end of a transmis-
sion line 3 km long, operating an electromagnet at the other 
end. Suppose their transmission line was as diagrammed in 
Figure P29.17. Two long, parallel wires, each having a mass 
per unit length of 40.0 g/m, are supported in a horizontal 
plane by strings , 5 6.00 cm long. When both wires carry 
the same current I, the wires repel each other so that the 
angle between the supporting strings is u 5 16.08.  
(a) Are the currents in the same direction or in opposite 
directions? (b) Find the magnitude of the current. (c) If this 
transmission line were taken to Mars, would the current 
required to separate the wires by the same angle be larger 
or smaller than that required on the Earth? Why?

Section 29.3 Ampère’s Law

18. Niobium metal becomes a superconductor when cooled 
below 9 K. Its superconductivity is destroyed when the sur-
face magnetic field exceeds 0.100 T. In the absence of any 
external magnetic field, determine the maximum current 
a 2.00-mm-diameter niobium wire can carry and remain 
superconducting.

19. The magnetic coils of a tokamak fusion reactor are in the 
shape of a toroid having an inner radius of 0.700 m and an 
outer radius of 1.30 m. The toroid has 900 turns of large-di-
ameter wire, each of which carries a current of 14.0 kA. Find 
the magnitude of the magnetic field inside the toroid along 
(a) the inner radius and (b) the outer radius.

20. A packed bundle of 100 long, straight, insulated wires forms 
a cylinder of radius R 5 0.500 cm. If each wire carries 2.00 A, 
what are (a) the magnitude and (b) the direction of the mag-
netic force per unit length acting on a wire located 0.200 cm 
from the center of the bundle? (c) What If? Would a wire on 
the outer edge of the bundle experience a force greater or 
smaller than the value calculated in parts (a) and (b)? Give a 
qualitative argument for your answer.

21. The magnetic field 40.0 cm away from a long, straight wire 
carrying current 2.00 A is 1.00 mT. (a) At what distance is 
it 0.100 mT? (b) What If? At one instant, the two conduc-
tors in a long household extension cord carry equal 2.00-A 
currents in opposite directions. The two wires are 3.00 mm 
apart. Find the magnetic field 40.0 cm away from the mid-
dle of the straight cord, in the plane of the two wires. (c) At 
what distance is it one-tenth as large? (d) The center wire 
in a coaxial cable carries current 2.00 A in one direction, 
and the sheath around it carries current 2.00 A in the oppo-
site direction. What magnetic field does the cable create at 
points outside the cable?

22. A long, cylindrical conductor of radius R carries a current I 
as shown in Figure P29.22. The current density J, however, is 
not uniform over the cross section of the conductor but 
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rather is a function of the radius according to J 5 br, where b 
is a constant. Find an expression for the magnetic field mag-
nitude B (a) at a distance r1 , R and (b) at a distance r2 . R,  
measured from the center of the conductor.

Section 29.4 The Magnetic Field of a Solenoid

23. A long solenoid that has 1 000 turns uniformly distributed 
over a length of 0.400 m produces a magnetic field of mag-
nitude 1.00 3 1024 T at its center. What current is required 
in the windings for that to occur?

24. A certain superconducting magnet in the form of a solenoid 
of length 0.500 m can generate a magnetic field of 9.00 T 
in its core when its coils carry a current of 75.0 A. Find the 
number of turns in the solenoid.

25. You are working at a company that manufactures solenoids 
for industrial and research use. A client has ordered a sole-
noid that will be operated by a 1 000-V power supply and 
must be of length , 5 25.0 cm. A cylindrical experimental 
package of radius rs 5 1.00 cm must fit inside the solenoid. 
The client wants the largest possible magnetic field inside 
the solenoid. The thinnest copper wires allowed by your 
company are AWG 36, which corresponds to a wire diame-
ter of dw 5 0.127 mm. You determine the maximum magni-
tude of magnetic field that can be created in the solenoid to 
report to the client.

26. You are given a certain volume of copper from which you 
can make copper wire. To insulate the wire, you can have 
as much enamel as you like. You will use the wire to make a 
tightly wound solenoid 20 cm long having the greatest possi-
ble magnetic field at the center and using a power supply that 
can deliver a current of 5 A. The solenoid can be wrapped 
with wire in one or more layers. (a) Should you make the 
wire long and thin or shorter and thick? Explain. (b) Should 
you make the radius of the solenoid small or large? Explain.

Section 29.5 Gauss’s Law in Magnetism

27. Consider the hemispherical closed surface in Figure P29.27. 
The hemisphere is in a uniform magnetic field that makes an 
angle u with the vertical. Calculate the magnetic flux through 
(a) the flat surface S1 and (b) the hemispherical surface S2.

28. You are working for a company that creates special magnetic 
environments. Your new supervisor has come from the fin-
ancial side of the organization rather than the technical 
side. He has promised a client that the company can provide 
a device that will create a magnetic field inside a cylindrical 
chamber that is directed along the cylinder axis at all points 
in the chamber and increases in the axial direction as the 
square of the value of y, where y is the in the axial direction 
and y 5 0 is at the bottom end of the cylinder. Prepare a cal-
culation to show that the field requested by your supervisor 
and promised to a client is impossible.

29. A solenoid of radius r 5 1.25 cm and length , 5 30.0 cm has 
300 turns and carries 12.0 A. (a) Calculate the flux through 
the surface of a disk-shaped area of radius R 5 5.00 cm that 
is positioned perpendicular to and centered on the axis of 
the solenoid as shown in Figure P29.29a. (b) Figure P29.29b 
shows an enlarged end view of the same solenoid. Calculate 
the flux through the tan area, which is an annulus with 
an inner radius of a 5 0.400 cm and an outer radius of  
b 5 0.800 cm.

Section 29.6 Magnetism in Matter

30. The magnetic moment of the Earth is approximately  
8.00  3 1022 A ? m2. Imagine that the planetary magnetic 
field were caused by the complete magnetization of a huge 
iron deposit with density 7 900 kg/m3 and approximately  
8.50 3 1028 iron atoms/m3. (a) How many unpaired electrons, 
each with a magnetic moment of 9.27 3 10224 A ? m2, would 
participate? (b) At two unpaired electrons per iron atom, how 
many kilograms of iron would be present in the deposit?

aDDitional ProbleMS

31. A 30.0-turn solenoid of length 6.00 cm produces a magnetic 
field of magnitude 2.00 mT at its center. Find the current in 
the solenoid.

32. Why is the following situation impossible? The magnitude of 
the Earth’s magnetic field at either pole is approximately  
7.00 3 1025 T. Suppose the field fades away to zero before 
its next reversal. Several scientists propose plans for artifi-
cially generating a replacement magnetic field to assist with 
devices that depend on the presence of the field. The plan 
that is selected is to lay a copper wire around the equator 
and supply it with a current that would generate a magnetic 
field of magnitude 7.00 3 1025 T at the poles. (Ignore mag-
netization of any materials inside the Earth.) The plan is 
implemented and is highly successful.

33. Suppose you install a compass on the center of a car’s dash-
board. (a) Assuming the dashboard is made mostly of plastic,  
compute an order-of-magnitude estimate for the magnetic 
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794 Chapter 29 Sources of the Magnetic Field

field at this location produced by the current when you 
switch on the car’s headlights. (b) How does this estimate 
compare with the Earth’s magnetic field?

34. A very long, thin strip of metal of width w carries a current I 
along its length as shown in Figure P29.34. The current is 
distributed uniformly across the width of the strip. Find the 
magnetic field at point P in the diagram. Point P is in the 
plane of the strip at distance b away from its edge.

35. A nonconducting ring of radius 10.0 cm is uniformly 
charged with a total positive charge 10.0 mC. The ring 
rotates at a constant angular speed 20.0 rad/s about an axis 
through its center, perpendicular to the plane of the ring. 
What is the magnitude of the magnetic field on the axis of 
the ring 5.00 cm from its center?

36. A nonconducting ring of radius R is uniformly charged with a 
total positive charge q. The ring rotates at a constant angular 
speed v about an axis through its center, perpendicular to 
the plane of the ring. What is the magnitude of the magnetic 
field on the axis of the ring a distance 12R from its center?

37. A very large parallel-plate capacitor has uniform charge per 
unit area 1s on the upper plate and 2s on the lower plate. 
The plates are horizontal, and both move horizontally with 
speed v to the right. (a) What is the magnetic field between 
the plates? (b) What is the magnetic field just above or just 
below the plates? (c) What are the magnitude and direction 
of the magnetic force per unit area on the upper plate? (d) 
At what extrapolated speed v will the magnetic force on 
a plate balance the electric force on the plate? Suggestion:  
Use Ampere’s law and choose a path that closes between the 
plates of the capacitor.

38. Two circular coils of radius R, each with N turns, are perpen-
dicular to a common axis. The coil centers are a distance R 
apart. Each coil carries a steady current I in the same direc-
tion as shown in Figure P29.38. (a) Show that the magnetic 
field on the axis at a distance x from the center of one coil is

  B 5
Nm0IR 2

2 3 1
sR 2 1 x2d3y2

1
1

s2R 2 1 x2 2 2Rxd3y2 4

(b) Show that dB/dx and d 2B/dx 2 are both zero at the point 
midway between the coils. We may then conclude that the 
magnetic field in the region midway between the coils is uni-
form. Coils in this configuration are called Helmholtz coils.

39. Two identical, flat, circular coils of wire each have 100 turns 
and radius R 5 0.500 m. The coils are arranged as a set of 
Helmholtz coils so that the separation distance between 
the coils is equal to the radius of the coils (see Fig. P29.38). 
Each coil carries current I 5 10.0 A. Determine the magni-
tude of the magnetic field at a point on the common axis of 
the coils and halfway between them.

40. Two circular loops are parallel, coaxial, and almost in con-
tact, with their centers 1.00 mm apart (Fig. P29.40). Each 
loop is 10.0 cm in radius. The top loop carries a clockwise 
current of I 5 140 A. The bottom loop carries a counter-
clockwise current of I 5 140 A. (a) Calculate the magnetic 
force exerted by the bottom loop on the top loop. (b) Sup-
pose a student thinks the first step in solving part (a) is to 
use Equation 29.7 to find the magnetic field created by one 
of the loops. How would you argue for or against this idea? 
(c) The upper loop has a mass of 0.021 0 kg. Calculate its 
acceleration, assuming the only forces acting on it are the 
force in part (a) and the gravitational force.

41. As seen in previous chapters, any object with electric charge, 
stationary or moving, other than the charged object that 
created the field, experiences a force in an electric field. 
Also, any object with electric charge, stationary or moving, 
can create an electric field (Chapter 22). Similarly, an elec-
tric current or a moving electric charge, other than the cur-
rent or charge that created the field, experiences a force in a  
magnetic field (Chapter 28), and an electric current creates 
a magnetic field (Section 29.1). (a) To understand how a 
moving charge can also create a magnetic field, consider a 
particle with charge q moving with velocity vS. Define the 
position vector rS 5 r r⁄ leading from the particle to some 
location. Show that the magnetic field at that location is

B
S

5
m0

4p
  

q vS 3 r⁄

r 2

(b) Find the magnitude of the magnetic field 1.00 mm to 
the side of a proton moving at 2.00 3 107 m/s. (c) Find the 
magnetic force on a second proton at this point, moving 
with the same speed in the opposite direction. (d) Find the 
electric force on the second proton.

42. Review. Rail guns have been suggested for launching projec-
tiles into space without chemical rockets. A tabletop model 
rail gun (Fig. P29.42) consists of two long, parallel, horizon-
tal rails , 5 3.50 cm apart, bridged by a bar of mass m 5 3.00 g  
that is free to slide without friction. The rails and bar have 
low electric resistance, and the current is limited to a con-
stant I 5 24.0 A by a power supply that is far to the left of 
the figure, so it has no magnetic effect on the bar. Figure 
P29.42 shows the bar at rest at the midpoint of the rails at 
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the moment the current is established. We wish to find the 
speed with which the bar leaves the rails after being released 
from the midpoint of the rails. (a) Find the magnitude of 
the magnetic field at a distance of 1.75 cm from a single 
long wire carrying a current of 2.40 A. (b) For purposes of 
evaluating the magnetic field, model the rails as infinitely 
long. Using the result of part (a), find the magnitude and 
direction of the magnetic field at the midpoint of the bar.  
(c) Argue that this value of the field will be the same at all 
positions of the bar to the right of the midpoint of the rails. 
At other points along the bar, the field is in the same direc-
tion as at the midpoint, but is larger in magnitude. Assume 
the average effective magnetic field along the bar is five times 
larger than the field at the midpoint. With this assumption, 
find (d) the magnitude and (e) the direction of the force on 
the bar. (f) Is the bar properly modeled as a particle under 
constant acceleration? (g) Find the velocity of the bar after 
it has traveled a distance d 5 130 cm to the end of the rails.

43. Fifty turns of insulated wire 0.100 cm in diameter are tightly 
wound to form a flat spiral. The spiral fills a disk surrounding 
a circle of radius 5.00 cm and extending to a radius 10.00 cm  
at the outer edge. Assume the wire carries a current I at the 
center of its cross section. Approximate each turn of wire 
as a circle. Then a loop of current exists at radius 5.05 cm,  
another at 5.15 cm, and so on. Numerically calculate the 
magnetic field at the center of the coil.

44. An infinitely long, straight wire carrying a current I 1 is par-
tially surrounded by a loop as shown in Figure P29.44. The 
loop has a length L and radius R, and it carries a current I 2. 
The axis of the loop coincides with the wire. Calculate the 
magnetic force exerted on the loop.

challenge ProbleMS

 45. Consider a solenoid of length , and radius a containing N 
closely spaced turns and carrying a steady current I. (a) In 
terms of these parameters, find the magnetic field at a 
point along the axis as a function of position x from the 
end of the solenoid. (b) Show that as , becomes very long, B 
approaches m0NI/2, at each end of the solenoid.

 46. We have seen that a long solenoid produces a uniform mag-
netic field directed along the axis of a cylindrical region. To 
produce a uniform magnetic field directed parallel to a diame-
ter of a cylindrical region, however, one can use the saddle coils 
illustrated in Figure P29.46. The loops are wrapped over a 
long, somewhat flattened tube. Figure P29.46a shows one 
wrapping of wire around the tube. This wrapping is continued 
in this manner until the visible side has many long sections of 
wire carrying current to the left in Figure  P29.46a and the 
back side has many lengths carrying current to the right. The 
end view of the tube in Figure P29.46b shows these wires and 
the currents they carry. By wrapping the wires carefully, the 
distribution of wires can take the shape suggested in the end 
view such that the overall current distribution is approxi-
mately the superposition of two overlapping, circular cylin-
ders of radius R (shown by the dashed lines) with uniformly 
distributed current, one toward you and one away from you. 
The current density J is the same for each cylinder. The center 
of one cylinder is described by a position vector d

S
 relative to 

the center of the other cylinder. Prove that the magnetic field 
inside the hollow tube is m0 Jd/2 downward. Suggestion: The 
use of vector methods simplifies the calculation.

 47. A wire carrying a current I is bent into the shape of an expo-
nential spiral, r 5 e u, from u 5 0 to u 5 2p as suggested in 
Figure P29.47. To complete a loop, the ends of the spiral are 
connected by a straight wire along the x axis. (a) The angle 
b between a radial line and its tangent line at any point on a 
curve r 5 f(u) is related to the function by

tan b 5
r

drydu

  Use this fact to show that b 5 p/4. (b) Find the magnetic 
field at the origin.
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796 Chapter 29 Sources of the Magnetic Field

 48. A sphere of radius R has a uniform vol-
ume charge density r. When the sphere 
rotates as a rigid object with angular 
speed v about an axis through its center 
(Fig. P29.48), determine (a) the mag-
netic field at the center of the sphere and 
(b) the magnetic moment of the sphere.

 49. A long, cylindrical conductor of radius 
a has two cylindrical cavities each of 
diameter a through its entire length as shown in the end 
view of Figure P29.49. A current I is directed out of the 
page and is uniform through a cross section of the con-
ducting material. Find the magnitude and direction of 
the magnetic field in terms of m0, I, r, and a at (a) point P1 
and (b) point P2.

 50. A wire is formed into the shape of a square of edge length 
L (Fig. P29.50). Show that when the current in the loop is I, 
the magnetic field at point P a distance x from the center of 
the square along its axis is

B 5
m0IL

2

2psx2 1 L2y4dÏx2 1 L2y2

 51. The magnitude of the force on a magnetic dipole mS aligned 
with a nonuniform magnetic field in the positive x direction 
is Fx 5 umSudBydx. Suppose two flat loops of wire each have 
radius R and carry a current I. (a) The loops are parallel to 
each other and share the same axis. They are separated by 
a variable distance x .. R. Show that the magnetic force 
between them varies as 1/x 4. (b) Find the magnitude of this 
force, taking I 5 10.0 A, R 5 0.500 cm, and x 5 5.00 cm.
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30

A windmill takes energy from the wind and converts it to electricity. How does it do that? What’s 
inside the box behind the blades? (Lukasz Janyst/Shutterstock)

Faraday’s Law

30.1 Faraday’s Law of 
Induction

30.2 Motional emf

30.3 Lenz’s Law

30.4 The General Form of 
Faraday’s Law

30.5 Generators and Motors

30.6 Eddy Currents

Storyline You are taking a weekend drive outside of town and 
enjoying the scenery. At one point, you pass by a wind farm and are impressed 
with the number and size of the windmills that are generating electricity. While 
you know that the energy to drive the windmill comes from the wind, you are not 
sure how the energy is converted to electricity. You look carefully at the wind-
mills and notice that each one has a box or an enclosure behind the blades. Is the 
enclosure just a support mechanism for the blades, or is there something going 
on inside that enclosure? Is that where the electricity comes from?

ConneCtions So far, our studies in electricity and magnetism have treated 
electric fields and magnetic fields as separate entities. Electric fields are caused 
by stationary charges and magnetic fields are caused by moving charges. Exper-
iments conducted by Michael Faraday in England in 1831 and independently by 
Joseph Henry in the United States that same year showed interesting effects 
when a changing magnetic field exists in a region of space. One effect occurs 
when a battery-free circuit is placed in the region of changing magnetic field. We 
find that a current exists in the circuit! As we study this type of phenomenon 
further, we find that, even if the circuit is not present, there is an electric field in 
the region of changing magnetic field! These results suggest a deep relationship 
between electric and magnetic fields. We use the term induced to describe the 
effects: there is an induced current in the circuit and an induced electric field in 
the region of changing magnetic field. The mathematical relationship between 
electric and magnetic fields that we generate in this chapter is called Faraday’s 
law of induction. This will be our first introduction to electromagnetism, a topic 
that has revolutionized research in physics, and has allowed the development of 
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798 Chapter 30 Faraday’s Law

myriad electronic devices, such as your smartphone. Our study of electromagne-
tism will lead to electromagnetic waves, providing the foundation for our study of 
optics in Chapters 34–37.

   30.1    Faraday’s Law of Induction
Let’s begin our investigation into the induced currents mentioned in the introduc-
tion by considering the experimental results obtained when a loop of wire is con-
nected to a sensitive ammeter as illustrated in Figure 30.1. Notice first that there 
is no battery providing energy to the loop of wire. When a magnet is held stationary 
near the loop, as in Figure 30.1a, no current is measured in the loop. The passage 
of the static magnetic field lines through the loop have no electrical effect. But now 
move the magnet toward the loop, as in Figure 30.1b. A quite remarkable thing 
happens: a current is induced in the loop, as measured by the ammeter! When the 
magnet stops moving, the current falls to zero again. Now pull the magnet away 
from the loop, as in Figure 30.1c. Again, an induced current is registered, in the 
opposite direction to that in Figure 30.1b.

This simple experiment suggests a fundamental connection between electric 
and magnetic fields. A stationary charge establishes an electric field, as discussed 
in Chapter 22. If the charge moves, the electric field at a point in space near the 
charge must change with time. A moving charge, however, is a current. And, as we 
found in Chapter 29, a current establishes a magnetic field. Therefore, a changing 
electric field results in a magnetic field. With the experiment described in the pre-
vious paragraph, we see the reverse: a changing magnetic field induces a current, 
which is due to an electric field in the wire!

Now let’s describe an experiment conducted by Faraday and illustrated in Fig-
ure 30.2. A primary coil is wrapped around an iron ring and connected to a switch 
and a battery. A secondary coil also is wrapped around the ring and is connected to 
a sensitive ammeter. No battery is present in the secondary circuit, and the second-
ary coil is not electrically connected to the primary coil. 

When the switch is open as shown in Figure 30.2, no current is detected in the 
secondary circuit, as indicated by the reading on the ammeter. But what happens 
if we close the switch? We find that the current reading jumps momentarily as the 
switch is thrown closed and then falls back to zero. As the switch remains closed, 

I
N S

When the magnet is 
moved toward the loop of 
wire, the ammeter shows 
that a current is induced 
in the loop.

N S

When a magnet is held 
stationary near a loop of wire 
connected to a sensitive 
ammeter, there is no induced 
current in the loop, even 
when the magnet is inside 
the loop.

ba

I

N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .b

Figure 30.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the 
British military.
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    30.1 Faraday’s Law of Induction 799

the current reading in the secondary circuit remains at zero even though there is 
current in the primary circuit. Now, when the switch is opened, the current read-
ing again jumps momentarily, with the opposite sign as that when the switch was 
opened, and then falls back to zero.

The experiments shown in Figures 30.1 and 30.2 have one thing in common: in 
each case, a current is induced in a loop when the magnetic flux through the loop 
changes with time. In Figure 30.1, the magnetic field changes because the magnet is 
moved relative to the loop. In Figure 30.2, the closing of the switch allows a current 
to exist in the primary coil. This current establishes a magnetic field in the iron 
ring that changes from zero to its equilibrium value after the switch closes. The 
changing magnetic field through the secondary coil induces a current. When the 
switch is reopened, the magnetic field drops back to zero and there is momentary 
induced current in the secondary coil in the opposite direction. We have discussed 
that a current is due to an emf (Section 27.1), so we say that an emf is induced by a 
changing magnetic field. Experiments show that the induced emf in a loop of wire 
is related to the time rate of change of the magnetic flux through the loop. This 
statement can be written mathematically as Faraday’s law of induction:

 « 5 2 
dFB

dt
 (30.1)

where FB 5 eB
S   

?  d A
S

 is the magnetic flux through the loop. (See Section 29.5.)
If a coil consists of N loops with the same area, like the secondary loop in Fig-

ure 30.2, and FB is the magnetic flux through one loop, an emf is induced in every 
loop. The loops are in series, so their emfs add; therefore, the total induced emf in 
the coil is given by

 « 5 2N  
dFB

dt
 (30.2)

The negative sign in Equations 30.1 and 30.2 is of important physical significance 
and will be discussed in Section 30.3.

Suppose a loop enclosing an area A lies in a uniform magnetic field B
S

 as in Fig-
ure 30.3. The magnetic flux through the loop is equal to BA cos u, where u is the 
angle between the magnetic field and the normal to the loop; hence, the induced 
emf can be expressed as

 « 5 2 
d
dt

sBA cos ud (30.3)

 Faraday’s law of induction

When the switch in the 
primary circuit is closed, 
the ammeter reading in the 
secondary circuit changes 
momentarily.

The current induced in the secondary 
circuit is caused by the changing magnetic 
field through the secondary coil.

Secondary
coil

Primary
coil

� �
Battery Iron

Figure 30.2 Faraday’s 
experiment.

Loop of
area A

u

u

Normal
to loop

B
S

Figure 30.3  A conducting loop 
that encloses an area A in the 
presence of a uniform magnetic 
field B

S
. The angle between B

S
 and 

the normal to the loop is u.
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800 Chapter 30 Faraday’s Law

From this expression, we see that an emf can be induced in the circuit in several ways:

 ● The magnitude of B
S

 can change with time.
 ● The area enclosed by the loop can change with time.
 ● The angle u between B

S
 and the normal to the loop can change with time.

 ● Any combination of the above can occur.

Q uick Quiz 30.1  A circular loop of wire is held in a uniform magnetic field, 
with the plane of the loop perpendicular to the field lines. Which of the fol-
lowing will not cause a current to be induced in the loop? (a) crushing the loop 
(b) rotating the loop about an axis perpendicular to the field lines (c) keeping 
the orientation of the loop fixed and moving it along the field lines (d) pulling 
the loop out of the field

Some Applications of Faraday’s Law
The ground fault circuit interrupter (GFCI), mentioned in Section 27.5, is an 
interesting safety device that protects users of electrical appliances in the home 
against electric shock. Its operation makes use of Faraday’s law. In the GFCI 
shown in Figure 30.4, wire 1 leads from the wall outlet to the appliance to be 
protected and wire 2 leads from the appliance back to the wall outlet. An iron 
ring surrounds the two wires, and a sensing coil is wrapped around part of the 
ring. Because the currents in the wires are in opposite directions and of equal 
magnitude, there is zero net current flowing through the ring and the net mag-
netic flux through the sensing coil is zero. Now suppose the return current in 
wire 2 changes so that the two currents are not equal in magnitude. (That can 
happen if, for example, the appliance becomes wet, enabling current to leak to 
ground.) Then the net current through the ring is not zero and the magnetic flux 
through the sensing coil is no longer zero. Because household current is alternat-
ing (meaning that its direction keeps reversing), the magnetic flux through the 
sensing coil changes with time, inducing an emf in the coil. This induced emf is 
used to trigger a circuit breaker, which stops the current before it is able to reach 
a harmful level.

Another interesting application of Faraday’s law is the production of sound in 
an electric guitar. The coil in this case, called the pickup coil, is placed near the 
vibrating guitar string, which is made of a metal that can be magnetized. A perma-
nent magnet inside the coil magnetizes the portion of the string nearest the coil 
(Fig. 30.5a). When the string vibrates at some frequency, its magnetized segment 
produces a changing magnetic flux through the coil. The changing flux induces an 
emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the 
loudspeakers, which produce the sound waves we hear.

Circuit
breaker

Sensing
coil

Alternating
current

Iron
ring

1

2

Figure 30.4  Essential components 
of a ground fault circuit interrupter.

Figure 30.5  (a) In an electric 
guitar, a vibrating magnetized 
string induces an emf in a pickup 
coil. (b) The pickups (the circles 
beneath the metallic strings) of 
this electric guitar detect the vibra-
tions of the strings and send this 
information through an amplifier 
and into speakers. (A switch on the 
guitar allows the musician to select 
which set of six pickups is used.)
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 Example 30.1    Inducing an emf in a Coil

A coil consists of 200 turns of wire. Each turn is a square of side d 5 
18 cm, and a uniform magnetic field directed perpendicular to the plane 
of the coil is turned on. Figure 30.6 shows the behavior of the magnitude 
of the magnetic field with time. From t 5 0 to t 5 0.80 s, the field changes 
linearly from 0 to 0.50 T. After t 5 0.80 s, the magnitude of the field 
decays in time according to the expression B 5 Bmaxe

2at, where a is some 
constant and Bmax 5 0.50 T.

(A) What is the magnitude of the induced emf in the coil between t 5 0 
and t 5 0.80 s?

B

0.80 s

Bmax

t

Figure 30.6  (Example 30.1) The magnitude of 
the uniform magnetic field through a loop of wire 
increases linearly and then decreases exponentially.
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   30.2    Motional emf
In Section 30.1 and Example 30.1, we analyzed a situation in which a coil of wire 
was stationary and the magnetic field changed in time. Let’s now look at something 
different. Suppose that a magnetic field is uniform and constant, and we move a 
conductor in the field. We find that there is an emf induced in the conductor. We 
call such an emf a motional emf.

The straight, isolated conductor of length , shown in Figure 30.7 is moving 
through a uniform magnetic field directed into the page. For simplicity, let’s assume 
the conductor is moving in a direction perpendicular to the field with constant veloc-
ity under the influence of some external agent. From the magnetic version of the par-
ticle in a field model, the electrons in the conductor experience a force F

S
B 5 q vS 3 B

S
 

(Eq. 28.1) that is directed along the length ,, perpendicular to both vS and B
S

. Under 
the influence of this force, the electrons move to the lower end of the conductor and 
accumulate there, leaving a net positive charge at the upper end. As a result of this 
charge separation, an electric field E

S
 is produced inside the conductor. Therefore, 

the electrons in the wire are also described by the electric version of the particle in a 
field model. The charges accumulate at both ends until the downward magnetic force 
qvB on electrons between the ends of the conductor is balanced by the upward elec-
tric force qE. The electrons are then described by the particle in equilibrium model: 

 o F 5 0 S qE 2 qvB 5 0 S E 5 vB 

30.1 c o n t i n u e d

S o L u T I o n

Conceptualize From the description in the problem, imagine magnetic field lines passing through the coil. Because the mag-
netic field is changing in magnitude, an emf is induced in the coil.

Categorize We will evaluate the emf using Faraday’s law from this section, so we categorize this example as a substitu-
tion problem.

Evaluate Equation 30.2 for the situation described  u«u 5 N 
DFB

Dt
5 N 

DsBAd
Dt

5 NA 
DB
Dt

5 Nd 2 
Bf 2 Bi

Dt
 

here, noting that the magnetic field changes linearly  
with time:

Substitute numerical values: u«u 5 s200ds0.18 md2 
s0.50 T 2 0d

0.80 s
5  4.0 V

(B) What is the magnitude of the induced emf in the coil after t 5 0.80 s?

Evaluate Equation 30.2 for the situation  « 5 2N 
dFB

dt
5 2N 

d
dt

 sAB max e
2at d 5 2NAB max  

d
dt

 e2at 5  aNd 
2B max e2at 

described here:

Substitute numerical values: « 5 a(200)(0.18 m)2(0.50 T)e2at 5 3.2ae2at

This expression indicates that the emf in the loop decays exponentially after t 5 0.80 s. The initial magnitude of the emf 
depends on the unknown parameter a.

W H A T  I F ?  What if you were asked to find the magnitude of the induced current in the coil while the field is changing 
during the first 0.80 s? Can you answer that question?

Answer If the ends of the coil are not connected to a circuit, the answer to this question is easy: the current is zero! (Charges 
move within the wire of the coil, but they cannot move into or out of the ends of the coil.) For a steady current to exist, the 
ends of the coil must be connected to each other or to an external circuit. Let’s assume the coil is connected to a circuit and 
the total resistance of the coil and the circuit is 2.0 V. Then, the magnitude of the induced current in the coil is

I 5
u«u
R

5
4.0 V
2.0 V

5 2.0 A

Bin
S

�

�
�

�
�

E
S

Fe
S

FB
S

vS

Due to the magnetic force on 
electrons, the ends of the 
conductor become oppositely 
charged, which establishes an 
electric field in the conductor.

In steady state, the electric and 
magnetic forces on an electron 
in the conductor are balanced.

�

Figure 30.7  A straight electrical 
conductor of length , moving with 
a velocity vS through a uniform 
magnetic field B

S
 directed perpen-

dicular to vS.
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The magnitude of the electric field produced in the conductor is related to the 
potential difference across the ends of the conductor according to the relationship 
DV 5 E, (Eq. 24.6). Therefore, for the equilibrium condition,

 DV 5 E, 5 B,v (30.4)

where the upper end of the conductor in Figure 30.7 is at a higher electric potential 
than the lower end. Therefore, a potential difference is maintained between the 
ends of the conductor as long as the conductor continues to move through the uni-
form magnetic field. If the direction of the motion is reversed, the polarity of the 
potential difference is also reversed.

A more interesting situation occurs when the moving conductor is part of a 
closed conducting path. Consider a circuit consisting of a conducting bar of length 
, sliding along two fixed, parallel conducting rails as shown in Figure 30.8a. For 
simplicity, let’s assume the bar has zero resistance and the stationary part of the 
circuit has a resistance R. A uniform and constant magnetic field B

S
 is applied 

perpendicular to the plane of the circuit. As the bar is pulled to the right with a 
velocity vS under the influence of an applied force F

S
app, electrons in the bar are 

moving particles in a magnetic field, so they experience a magnetic force directed 
downward in the bar, as in Figure 30.7. As a result, a potential difference is estab-
lished between the ends of the moving bar. Because of the closed conducting path 
in this situation, the bar is part of a complete circuit, as shown in Figure 30.8b. 
The moving bar acts as a source of emf for the circuit. Electrons everywhere in the 
circuit move clockwise around the circuit, constituting a current I in the counter-
clockwise direction.

Let’s address this situation by noting that the flux through the circuit in Fig-
ure 30.8a changes because the area of the circuit changes as the bar moves. Because 
the area enclosed by the circuit at any instant is ,x, where x is the position of the 
bar, the magnetic flux through that area is

FB 5 B,x

Using Faraday’s law and noting that x changes with time at a rate dx/dt 5 v, the 
speed of the bar, we find that the induced motional emf is

« 5 2
dFB

dt
5 2

d
dt

sB/xd 5 2B/ 
dx
dt

 « 5 2B,v (30.5)Motional emf 

a b

vS

R � B�v

I

I

R

x

�

I

e

A counterclockwise current I is 
induced in the loop. The magnetic 
force       on the bar carrying this 
current opposes the motion.

Fapp
S

FB
S

FB
S

Bin
S

�

�Figure 30.8 (a) A conducting 
bar sliding with a velocity vS along 
two conducting rails under the 
action of an applied force F

S
app. 

Because of the current in the bar, 
there is a magnetic force F

S
B on 

the bar in the direction opposite 
to the applied force. (b) The 
equivalent circuit diagram for the 
setup shown in (a).
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The magnitude of the emf is the same result that we obtained in Equation 30.4 
using a force model! Because the resistance of the circuit is R, the magnitude of the 
induced current is

 I 5
u«u
R

5
B/v
R

 (30.6)

Using Figure 30.7, we analyzed the motional emf generated in a moving bar 
using a force model. With the help of Figure 30.8, we used Faraday’s law to generate 
the same expression for the motional emf. Now let’s consider an energy approach. 
You may wonder about the source of the energy delivered to the resistor in Figure 
30.8 because there is no battery in the circuit. Assume that the bar is modeled as a 
particle in equilibrium, moving at constant speed under the influence of two forces 
of equal magnitude: Fapp 5 FB. The applied force must do work on the bar to keep 
it moving at this constant speed against the magnetic force F

S
B on the moving elec-

trons. The transfer of energy represented by this work results in the warming up of 
the resistor!

Let’s verify this statement mathematically. Identifying the bar and magnetic field 
as a nonisolated system for energy, the appropriate reduction of Equation 8.2 is 0 5 
Wapp 1 TET, where Wapp is the work done by the agent moving the bar and TET is the 
energy transferred out of the bar and into the resistor by electrical transmission. 
Taking a time derivative of this equation gives dWapp/dt 5 2dTET  /dt or Papp 5 2Pelec. 
In this expression, Papp is the power input from the agent moving the bar and Pelec  
is the rate of energy transferring from the bar to the resistor by electricity. The 
power Pelec is a negative number because energy is leaving the bar by this method. 
Let us verify this equation by using, respectively, Equations 8.18, 5.8, 28.10, 30.5, 
26.7, and 26.22:

 Papp 5 Fappv 5 FBv 5 (I,B)v 5 I(B,v) 5 I« 5 I(IR) 5 I  2R 5 2Pelec (30.7)

In the final step, we recognize that P 5 I  2R is the rate of energy delivered to the 
resistor, so 2I  2R is the rate at which energy leaves the bar.

Q uick Quiz 30.2  In Figure 30.8a, a given applied force of magnitude F results 
in a constant speed v and a power input P. Imagine that the force is increased 
so that the constant speed of the bar is doubled to 2v. Under these conditions, 
what are the new force and the new power input? (a) 2F and 2P (b) 4F and 2P  
(c) 2F and 4P (d) 4F and 4P

 Example 30.2    Magnetic Force Acting on a Sliding Bar

The conducting bar illustrated in Figure 30.9 moves on two frictionless, par-
allel rails in the presence of a uniform magnetic field directed into the page. 
The bar has mass m, and its length is ,. The bar is given an initial velocity vSi to 
the right and is released at t 5 0.

(A) Using Newton’s laws, find the speed of the bar as a function of time after 
it is released.

S o L u T I o n

Conceptualize As the bar slides to the right in Figure 30.9, a counterclockwise 
current is established in the circuit consisting of the bar, the rails, and the resis-
tor. The upward current in the bar results in a magnetic force to the left on the 
bar as shown in the figure. Therefore, the bar must slow down, so our mathemat-
ical solution should demonstrate that.

Categorize The text already categorizes this problem as one that uses Newton’s laws. We model the bar as a particle under a 
net force.

�
R FB

S
vi
S

Bin
S

x

I

Figure 30.9 (Example 30.2) A conducting 
bar of length , on two fixed conducting rails 
is given an initial velocity vSi to the right.

continued
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30.2 c o n t i n u e d

Analyze From Equation 28.10, the magnetic force is FB 5 2I,B, where the negative sign indicates that the force is to the left. 
The magnetic force is the only horizontal force acting on the bar.

Using the particle under a net force model, apply Newton’s  Fx 5 ma   S   2I/B 5 m 
dv
dt

 
second law to the bar in the horizontal direction:

Substitute I 5 B,v/R from Equation 30.6: m 
dv
dt

5 21B/v
R 2/B 5 2 

B 2/2

R
 v

Rearrange the equation so that all occurrences of the  
dv
v

5 2SB 2/2

mR D dt 
variable v are on the left and those of t are on the right:

Integrate this equation using the initial condition that   #
v

vi

dv
v

5 2 

B 2/2

mR
 #

t

0
dt 

v 5 vi at t 5 0 and noting that (B2,2/mR) is a constant:

ln Sv
vi
D 5 2SB 2/2

mR Dt 

Define the constant t 5 mR/B2,2 and solve for the speed: (1)   v 5  vi e
2tyt

Finalize This expression for v indicates that the speed of the bar decreases with time under the action of the magnetic force 
as expected from our conceptualization of the problem. The mathematical form of the decrease is exponential.

(B) Show that the same result is found by using an energy approach.

S o L u T I o n

Categorize The text of this part of the problem tells us to use an energy approach for the same situation. We model the bar in 
Figure 30.9 as a nonisolated system for energy. 

Analyze The appropriate reduction of Equation 8.2 is DK 5 TET. The term on the left represents the change in the speed of 
the bar, while the right-hand term represents energy transferred out of the bar by electricity.

Differentiate the reduction of Equation 8.2 with respect  
dK
dt

5
dTET

dt
5 Pelec 5 2I  

2R 
to time:

Substitute for the kinetic energy of the bar from Equation 7.16  
d
dt

 s 
1
2mv2 d 5 21B/v

R 2
2

R S mv 
dv
dt

5 2 

sB/vd2

R
 

and the current from Equation 30.6:

Rearrange terms: 
dv
v

5 2SB 2/ 2

mR D dt

Finalize This result is the same expression to be integrated that we found in part (A).

W H A T  I F ?  Suppose you wished to increase the distance through which the bar moves between the time it is initially 
projected and the time it essentially comes to rest. You can do so by changing one of three variables—vi, R, or B—by a factor 
of 2 or 12 . Which variable should you change to maximize the distance, and would you double it or halve it?

Answer Increasing vi would make the bar move farther. Increasing R would decrease the current and therefore the magnetic 
force, making the bar move farther. Decreasing B would decrease the magnetic force and make the bar move farther. Which 
method is most effective, though?

Use Equation (1) to find the distance the bar moves  v 5
dx
dt

5 vi e
2tyt 

by integration:

  x 5 #
`

0
vi e

2tyt dt 5 2vi te2tyt*
`

0

 5 2vi t s0 2 1d 5 vi t 5 vi S mR
B 2/2D

This expression shows that doubling vi or R will double the distance. Changing B by a factor of 12, however, causes the distance 
to be four times as great!
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 Example 30.3    Motional emf Induced in a Rotating Bar

A conducting bar of length , rotates with a constant 
angular speed v about a pivot at one end. A uniform 
magnetic field B

S
 is directed perpendicular to the 

plane of rotation as shown in Figure 30.10. Find the 
motional emf induced between the ends of the bar.

S o L u T I o n

Conceptualize The rotating bar is different in nature 
from the bar moving translationally in Figure 30.7. 
Consider a small segment of the bar, however. It is a 
short length of conductor moving in a magnetic field 
and has an emf generated in it like the moving bar in Figure 30.7. By thinking of each small segment as a source of emf, we 
see that all segments are in series and the emfs add over the length of the bar.

Categorize Based on the conceptualization of the problem, we approach this example as we did in the discussion leading to 
Equation 30.5, with the added feature that the short segments of the bar are traveling in circular paths.

Analyze Evaluate the magnitude of the emf induced in a segment  d« 5 Bv dr 
of the bar of length dr having a velocity vS from Equation 30.5:

Find the total emf between the ends of the bar by adding  « 5 #Bv dr  
the emfs induced across all segments:

The tangential speed v of an element is related to the  « 5 B #v dr 5 Bv#
/

0
 r dr 5  12 Bv/2 

angular speed v through the relationship v 5 rv  
(Eq. 10.10); use that fact and integrate:

Finalize In Equation 30.5 for a sliding bar, we can increase « by increasing B, ,, or v. Increasing any one of these variables 
by a given factor increases « by the same factor. Therefore, you would choose whichever of these three variables is most con-
venient to increase. For the rotating rod, however, there is an advantage to increasing the length of the rod to raise the emf 
because , is squared. Doubling the length gives four times the emf, whereas doubling the angular speed only doubles the emf.

W H A T  I F ?  Suppose, after reading through this example, you come up with a brilliant idea. A Ferris wheel has radial 
metallic spokes between the hub and the circular rim. These spokes move in the magnetic field of the Earth, so each spoke acts 
like the bar in Figure 30.10. You plan to use the emf generated by the rotation of the Ferris wheel to power the incandescent 
lightbulbs on the wheel. Will this idea work?

Answer If you calculate a typical emf generated by a spoke, you find that it is about 1 mV, too small to operate an incandes-
cent lightbulb. (Try this calculation!)

An additional difficulty is related to energy. Even assuming you could find lightbulbs that operate using a potential differ-
ence on the order of millivolts, a spoke must be part of a circuit to provide a voltage to the lightbulbs. Consequently, the spoke 
must carry a current. Because this current-carrying spoke is in a magnetic field, a magnetic force is exerted on the spoke in 
the direction opposite its direction of motion. As a result, the motor of the Ferris wheel must supply more energy to perform 
work against this magnetic drag force. The motor must ultimately provide the energy that is operating the lightbulbs, and you 
have not gained anything for free!

Bin
S

�

dr
r

Pivot

vS

Figure 30.10  (Example 30.3)  
A conducting bar rotating 
around a pivot at one end in 
a uniform magnetic field that 
is perpendicular to the plane 
of rotation. A motional emf is 
induced between the ends of 
the bar.

   30.3    Lenz’s Law
Faraday’s law (Eq. 30.1) indicates that the induced emf and the change in flux have 
opposite algebraic signs. This feature has a very real physical interpretation that 
has come to be known as Lenz’s law:1

The induced current in a loop is in the direction that creates a magnetic field 
that opposes the change in magnetic flux through the area enclosed by the loop.

 Lenz’s law

1Developed by German physicist Heinrich Lenz (1804–1865).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



806 Chapter 30 Faraday’s Law

That is, the induced current tends to keep the original magnetic flux through the 
loop from changing. We shall show that this law is a consequence of the law of con-
servation of energy.

To understand Lenz’s law, let’s return to the example of a bar moving to the 
right on two parallel rails in the presence of a uniform magnetic field (the external 
magnetic field, shown by the green crosses in Fig. 30.11a). As the bar moves to the 
right, the magnetic flux through the area enclosed by the circuit increases with 
time because the area increases. Lenz’s law states that the induced current in the 
circuit must be directed so that the magnetic field it produces opposes the change 
in the external magnetic flux. Because the magnetic flux due to an external field 
directed into the page is increasing, the induced current in the circuit—if it is to 
oppose this change—must produce a field directed out of the page in the area 
enclosed by the circuit. Hence, the induced current in the loop of the circuit must 
be directed counterclockwise when the bar moves to the right. (Use the right-hand 
rule to verify this direction.) If the bar is moving to the left as in Figure 30.11b, the 
external magnetic flux through the area enclosed by the loop decreases with time. 
Because the field is directed into the page, the direction of the induced current 
must be clockwise if it is to produce a field that also is directed into the page. In 
either case, the induced current attempts to maintain the original flux through the 
area enclosed by the current loop.

Let’s examine this situation using energy considerations. Suppose the bar is 
given a slight push to the right. In the preceding analysis, we found that this motion 
sets up a counterclockwise current in the loop. What happens if we assume the 
current is clockwise? In this case, the current is downward in the bar. According 
to Equation 28.10, the direction of the magnetic force exerted on the bar is to the 
right. This force would accelerate the rod and increase its speed, which in turn 
would cause the area enclosed by the loop to increase more rapidly. The result 
would be an increase in the induced current, which would cause an increase in 
the force, which would produce an increase in the current, and so on—a runaway 
situation. In effect, the system would acquire energy with no input of energy. This 
behavior is clearly inconsistent with all experience and violates the law of conserva-
tion of energy. Therefore, the current must be counterclockwise.

Q uick Quiz 30.3  Figure 30.12 shows a circular loop of wire falling toward a 
wire carrying a current to the left. What is the direction of the induced current 
in the loop of wire? (a) clockwise (b) counterclockwise (c) zero (d) impossible 
to determine
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I
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I
R

vS

As the conducting bar slides to the 
right, the magnetic flux due to the 
external magnetic field into the 
page through the area enclosed by 
the loop increases in time.

Bin
S

By Lenz’s law, the 
induced current in 
the circuit must be 
counterclockwise  
to produce a 
counteracting 
magnetic field 
directed out of 
the page.

Figure 30.11  (a) Lenz’s law can 
be used to determine the direc-
tion of the induced current.  
(b) When the bar moves to the 
left, the induced current must be 
clockwise. Why?

I

vS

Figure 30.12  (Quick Quiz 30.3)
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 Conceptual Example 30.4    Application of Lenz’s Law

A magnet is placed near a metal loop as shown in Figure 30.13a.

(A) Find the direction of the induced current in the loop when the magnet is pushed toward the loop.

S o L u T I o n

This is the same situation as in Figure 30.1b. In the discussion of that figure, we said that the direction of the current was oppo-
site to that in Figure 30.1c, but at that point we could not specify the direction further than that. Now, we can. As the magnet 
moves to the right toward the loop in Figure 30.13a, the external magnetic flux through the loop increases with time. To coun-
teract this increase in flux due to a field toward the right, the induced current produces its own magnetic field to the left as 
illustrated in Figure 30.13b; hence, the induced current is in the direction shown. Knowing that like magnetic poles repel each 
other, we conclude that the left face of the current loop acts like a north pole and the right face acts like a south pole.

(B) Find the direction of the induced current in the loop when the magnet is pulled away from the loop.

S o L u T I o n

If the magnet moves to the left as in Figure 30.13c, its flux through the area enclosed by the loop decreases in time. Now the 
induced current in the loop is in the direction shown in Figure 30.13d because this current direction produces a magnetic field 
in the same direction as the external field. In this case, the left face of the loop is a south pole and the right face is a north pole.

Figure 30.13  (Conceptual Example 30.4) A moving bar magnet induces a current in a conducting loop.

a b c d

When the magnet is moved 
toward the stationary conducting 
loop, a current is induced in the 
loop in the direction shown. The 
magnetic field lines are due to 
the bar magnet.

When the magnet is moved 
away from the stationary 
conducting loop, a current is 
induced in the loop in the 
direction shown.

This induced current in the 
loop produces a magnetic 
field directed to the right 
and so counteracts the 
decreasing external flux.

This induced current in 
the loop produces its own 
magnetic field directed to 
the left that counteracts the 
increasing external flux.

I
S NSN

S N I

vS

IS N

vS

I

 Conceptual Example 30.5    A Loop Moving Through a Magnetic Field

A rectangular metallic loop of dimensions , and w and resistance R moves with constant speed v to the right as in Fig-
ure  30.14a (page 808). The loop passes through a uniform magnetic field B

S
 directed into the page and extending a  

distance 3w along the x axis. Define x as the position of the right side of the loop along the x axis.

(A) Plot the magnetic flux through the area enclosed by the loop as a function of x.

S o L u T I o n

Figure 30.14b shows the flux through the area enclosed by the loop as a function of x. Before the loop enters the field, the flux 
through the loop is zero. As the loop enters the field, the flux increases linearly with position until the left edge of the loop is 
just inside the field. As the loop moves through the uniform field, the flux through the loop remains constant. Finally, the flux 
through the loop decreases linearly to zero as the loop leaves the field.

(B) Plot the induced motional emf in the loop as a function of x.

S o L u T I o n

Before the loop enters the field, no motional emf is induced in it because no field is present (Fig. 30.14c). As the right side of the 
loop enters the field, the magnetic flux directed into the page increases. Hence, according to Lenz’s law, the induced current is 

continued
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30.5 c o n t i n u e d

counterclockwise because it must produce its own magnetic field directed out of the page. 
The motional emf 2B,v (from Eq. 30.5) arises from the magnetic force experienced by 
charges in the right side of the loop. When the loop is entirely in the field, the change in 
magnetic flux through the loop is zero; hence, the motional emf vanishes. That happens 
because once the left side of the loop enters the field, the motional emf induced in it cancels 
the motional emf present in the right side of the loop. As the right side of the loop leaves the 
field, the flux through the loop begins to decrease, a clockwise current is induced, and the 
induced emf is B,v. As soon as the left side leaves the field, the emf decreases to zero.

(C) Plot the external applied force necessary to counter the magnetic force and keep 
v constant as a function of x.

S o L u T I o n

The external force that must be applied to the loop to maintain this motion is plotted 
in Figure 31.14d. Before the loop enters the field, no magnetic force acts on it; hence, 
the applied force must be zero if v is constant. When the right side of the loop enters the 
field, the applied force on the loop must increase to maintain constant speed of the loop. 
The applied force must be equal in magnitude and opposite in direction to the magnetic 
force exerted on that side, so that the loop is a particle in equilibrium. When the loop is 
entirely in the field, the flux through the loop is not changing with time. Hence, the net 
emf induced in the loop is zero and the current also is zero. Therefore, no external force 
is needed to maintain the motion: the applied force 
drops to zero. Finally, as the right side leaves the field, 
the applied force must be equal in magnitude and 
opposite in direction to the magnetic force acting on 
the left side of the loop, which is still in the field.

From this analysis, we conclude that power is sup-
plied only when the loop is either entering or leaving 
the field. Furthermore, this example shows that the 
motional emf induced in the loop can be zero even 
when there is motion through the field! A motional 
emf is induced only when the magnetic flux through 
the loop changes in time.
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Figure 30.14  (Conceptual Exam-
ple 30.5) (a) A conducting rectan-
gular loop of width w and length , 
moving with a velocity vS through a 
uniform magnetic field extending 
a distance 3w. (b) Magnetic flux 
through the area enclosed by the 
loop as a function of loop position. 
(c) Induced emf as a function of 
loop position. (d) Applied force 
required for constant velocity as a 
function of loop position.

   30.4    The General Form of Faraday’s Law
Let’s look once again at a conducting loop in a magnetic field, as in Figure 30.15. 
Imagine that the magnetic field changes in time. According to Equation 29.18, the 
changing field results in a changing magnetic flux through the loop. According 
to Equation 30.1, the changing flux causes an emf in the loop. According to Equa-
tion 26.7, the emf causes a current in the loop. According to Equation 26.6, current 
is driven by an electric field in the loop. The electric field that is driving the cur-
rent in the loop is shown at several points in Figure 30.15. 

We have found, then, that a changing magnetic field has generated an electric 
field. We alluded to this phenomenon at the beginning of Section 30.1, and now we 
are prepared to discuss more details. Here’s the question that will lead to a remark-
able feature of this discussion: what if we take the conducting loop away? This, of course,  
would take away the charges moving around the loop, but we find the following: 
the electric field is still there! The moving charges in the loop simply demonstrated 
that the electric field was there, but the loop is not necessary for the existence of 
the electric field. Its existence is due solely to the changes in the magnetic field.

Let’s try to quantify this new type of electric field. In Equation 24.3, we found 
that a potential difference between two points in space was equal to the line inte-
gral of the dot product of the electric field and an infinitesimal displacement along 
a path between the points. Let’s apply this to a trip around our conducting loop in 

Bin
S

r

E
S

E
S

E
SE

S

If     changes in time, an electric 
field is induced in a direction 
tangent to the circumference of 
the loop.

B
S

Figure 30.15  A conducting loop 
of radius r in a uniform magnetic 
field perpendicular to the plane 
of the loop.
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    30.4 The General Form of Faraday’s Law 809

Figure 30.15, where the potential difference around the loop will be represented by 
the emf induced in the loop by the changing magnetic field. Using the integral for 
the emf in Equation 30.1, we find

 $ E
S  

? d sS 5 2 

dFB

dt
 (30.8)

Equation 30.8 is the general form of Faraday’s law. It represents all situations in 
which a changing magnetic field generates an electric field. In Chapter 33, we will 
discuss a generalization of Ampere’s law (Eq. 29.13) that represents magnetic fields 
generated by changing electric fields. In that chapter, we will gather together all of 
these and other important equations into a set called Maxwell’s equations, which will 
form the basis of all electromagnetic phenomena.

Let’s use Equation 30.8 to find the electric field generated by the changing 
magnetic field in Figure 30.15. The electric field is everywhere parallel to the dis-
placement vectors on the loop, so the dot product becomes simply Eds. Because 
the magnetic field is uniform, the symmetry of the loop tells us that E is the same 
everywhere on the loop. Therefore, Equation 30.8 becomes

 E $  ds 5 2 

d
dt

 sBAd S E(2pr) 5 2 

dB
dt

 spr2d S E 5 2 

r
2

 
dB
dt

 (30.9)

If the time variation of the magnetic field is specified, the induced electric field 
can be calculated from Equation 30.9.

Equation 24.3 evaluates the potential difference between two points in space as 
an integral between those two points of the electric field created by some source 
charges. Suppose you integrate around a circular path in space in a region contain-
ing such an electric field, returning to the same point. If the two points in Equation 
24.3 are the same, the integral reduces to zero, which makes sense: the potential 
difference between two points in space that are the same has to be zero.

But the integral in Equation 30.8 is the same integral and we discussed taking 
a trip around the circular loop in Figure 30.15. The value of the integral is not 
zero in this case. What’s going on? This is evidence that the electric field we are 
discussing here is different in nature from that formed by the stationary charges 
in Chapter 23. We describe an induced electric field as nonconservative, because 
the integral around a closed path is not zero. Despite this difference in nature, 
the induced electric field has many of the same properties as electric fields due to 
source charges. For example, an induced electric field can apply forces on charged 
particles according to Equation 22.8.

 General form of Faraday’s law

PitFALL Prevention 30.1
Induced Electric Fields The 
changing magnetic field does not 
need to exist at the location of the 
induced electric field. In Figure 
30.15, even a loop outside the 
region of magnetic field experi-
ences an induced electric field.

 Example 30.6    Electric Field Induced by a Changing Magnetic Field in a Solenoid

A long solenoid of radius R has n turns of wire per unit length and carries a time-varying 
current that varies sinusoidally as I 5 Imax cos vt, where Imax is the maximum current and v 
is the angular frequency of the alternating current source (Fig. 30.16).

(A) Determine the magnitude of the induced electric field outside the solenoid at a dis-
tance r . R from its long central axis.

S o L u T I o n

Conceptualize Figure 30.16 shows the physical situation. As the current in the coil changes, 
imagine a changing magnetic field at all points in space as well as an induced electric field.

Categorize In this analysis problem, because the current varies in time, the magnetic field is 
changing, leading to an induced electric field as opposed to the electrostatic electric fields due 
to stationary electric charges.

Analyze First consider an external point and take the path for the line integral to be a circle 
of radius r centered on the solenoid as illustrated in Figure 30.16.

Path of integration

R

I
I

r

Figure 30.16  (Example 30.6) 
A long solenoid carrying a 
time-varying current given 
by I 5 Imax cos vt. An electric 
field is induced both inside 
and outside the solenoid.

continued
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Evaluate the right side of Equation 30.8, noting  (1)   2 

dFB

dt
5 2 

d
dt

 sBpR 2d 5 2pR 2 
dB
dt

 
that the magnetic field B

S
 inside the solenoid is  

perpendicular to the circle bounded by the path  
of integration:

Evaluate the magnetic field inside the solenoid from  (2)   B 5 m0nI 5 m0nImax cos vt 
Equation 29.17:

Substitute Equation (2) into Equation (1): (3)   2 

dFB

dt
5 2pR 2m0nImax 

d
dt

 scos vtd 5 pR 2m0nImax v sin vt

Evaluate the left side of Equation 30.8, noting  (4)   $ E
S  

? d sS 5 E s2prd 
that the magnitude of E

S
 is constant on the path  

of integration and E
S

 is tangent to it:

Substitute Equations (3) and (4) into  E(2pr) 5 pR2m0nImaxv sin vt 
Equation 30.8:

Solve for the magnitude of the electric field: E 5  
m0nImaxvR 2

2r
  sin vt  (for r . R)

Finalize This result shows that the amplitude of the electric field outside the solenoid falls off as 1/r and varies sinusoidally 
with time. It is proportional to the current I as well as to the frequency v, consistent with the fact that a larger value of v 
means more change in magnetic flux per unit time. As we will learn in Chapter 33, the time-varying electric field creates an 
additional contribution to the magnetic field. The magnetic field can be somewhat stronger than we first stated, both inside 
and outside the solenoid. The correction to the magnetic field is small if the angular frequency v is small. At high frequencies, 
however, a new phenomenon can dominate: The electric and magnetic fields, each re-creating the other, constitute an electro-
magnetic wave radiated by the solenoid as we will study in Chapter 33.

(B) What is the magnitude of the induced electric field inside the solenoid, a distance r from its axis?

S o L u T I o n

Analyze For an interior point (r , R), the magnetic flux through an integration loop is given by FB 5 Bpr2.

Evaluate the right side of Equation 30.8: (5)   2 

dFB

dt
5 2 

d
dt

sBpr 2d 5 2pr 2 
dB
dt

Substitute Equation (2) into Equation (5): (6)   2 

dFB

dt
5 2pr 2m0 nImax 

d
dt

scos vtd 5 pr 2m0nImaxv sin vt

Substitute Equations (4) and (6) into  E(2pr) 5 pr2m0nImaxv sin vt 
Equation 30.8:

Solve for the magnitude of the electric field: E 5  
m0nImax v

2
 r sin vt  (for r , R)

Finalize This result shows that the amplitude of the electric field induced inside the solenoid by the changing magnetic flux 
through the solenoid increases linearly with r and varies sinusoidally with time. As with the field outside the solenoid, the field 
inside is proportional to the current I and the frequency v.

   30.5    Generators and Motors
You may own an emergency flashlight or radio that operates by turning a crank 
with your hand. Inside this device is a generator that converts the energy from your 
hand into electrical potential energy. Let us look first at the direct-current (DC) 
generator, which is illustrated in Figure 30.17a. In its simplest form, it consists of 
a loop of wire rotated by some external means in a magnetic field. As the loop 
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rotates, the magnetic flux through the area enclosed by the loop changes with time, 
and this change induces an emf and a current in the loop according to Faraday’s 
law. The ends of the loop are connected to a split ring device, called a commutator, 
that rotates with the loop. Connections from the commutator, which act as output 
terminals of the generator, to the external circuit are made by stationary metallic 
brushes in contact with the commutator.

In this configuration, the output voltage always has the same polarity and pul-
sates with time as shown in Figure 30.17b. We can understand why by noting that 
the contacts to the split ring reverse their roles every half cycle. At the same time, 
the polarity of the induced emf reverses; hence, the polarity of the split ring (which 
is the same as the polarity of the output voltage) remains the same.

A pulsating DC current is not suitable for most applications. To obtain a steadier 
DC current, commercial DC generators use many coils and commutators distrib-
uted so that the sinusoidal pulses from the various coils are out of phase. When 
these pulses are superimposed, the DC output is almost free of fluctuations.

Let us now consider the alternating-current (AC) generator. As with the DC gen-
erator, it consists of a loop of wire rotated by some external means in a magnetic 
field (Fig. 30.18a). The ends of the loop are connected to two slip rings that rotate 
with the loop. Connections from these slip rings, which act as output terminals of 
the generator, to the external circuit are made by stationary metallic brushes in 
contact with the slip rings.

In commercial power plants, the energy required to rotate the loop can be 
derived from a variety of sources. For example, in a hydroelectric plant, falling 
water directed against the blades of a turbine produces the rotary motion. For 
the windmills in the opening storyline, the rotation of the blades from the wind 

a b

Commutator

N

Brush

t

e
S

Figure 30.17 (a) Schematic  
diagram of a DC generator.  
(b) The magnitude of the emf  
varies in time, but the polarity 
never changes.

a b

An emf is induced in a loop 
that rotates in a magnetic field.

Slip rings N

Brushes

External
circuit

emax

t

e
S

Figure 30.18 (a) Schematic dia-
gram of an AC generator. (b) The 
alternating emf induced in the 
loop plotted as a function of time.
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causes the rotation of a loop in a generator, which is what is in the box behind 
the blades.

Instead of a single turn, suppose a coil with N turns (a more practical situation), 
with the same area A, rotates in a magnetic field with a constant angular speed v. If 
u is the angle between the magnetic field and the normal to the plane of the coil as 
in Figure 30.19, the magnetic flux through the coil at any time t is

FB 5 BA cos u 5 BA cos vt

where we have used the relationship u 5 vt between angular position and angular 
speed (see Eq. 10.3). (We have set the clock so that t 5 0 when u 5 0.) Hence, the 
induced emf in the coil is

 « 5 2N 
dFB

dt
5 2NBA 

d
dt

scos vtd 5 NBAv sin vt (30.10)

This result shows that the emf varies sinusoidally with time as plotted in Fig-
ure 30.18b. Equation 30.10 shows that the maximum emf has the value

 «max 5 NBAv (30.11)

which occurs when vt 5 908 or 2708. In other words, « 5 «max when the magnetic 
field is in the plane of the coil and the time rate of change of flux is a maximum. 
Furthermore, the emf is zero when vt 5 0 or 1808, that is, when B

S
 is perpendicular 

to the plane of the coil and the time rate of change of flux is zero.
The frequency for commercial generators in the United States and Canada is 

60 Hz, whereas in some European countries it is 50 Hz. (Recall that v 5 2pf, where 
f is the frequency in hertz.)

Q uick Quiz 30.4  In an AC generator, a coil with N turns of wire spins in a 
magnetic field. Of the following choices, which does not cause an increase in 
the emf generated in the coil? (a) replacing the coil wire with one of lower resis-
tance (b) spinning the coil faster (c) increasing the magnetic field (d) increasing 
the number of turns of wire on the coil

B
S

Normal

u

Figure 30.19  A cutaway view of 
a loop enclosing an area A and 
containing N turns, rotating with 
constant angular speed v in a 
magnetic field. The emf induced 
in the loop varies sinusoidally 
in time.

 Example 30.7    emf Induced in a Generator

The coil in an AC generator consists of 8 turns of wire, each of area A 5 0.090 0 m2, and the total resistance of the wire is 
12.0 V. The coil rotates in a 0.500-T magnetic field at a constant frequency of 60.0 Hz.

(A) Find the maximum induced emf in the coil.

S o L u T I o n

Conceptualize Study Figure 30.18 to make sure you understand the operation of an AC generator.

Categorize We evaluate parameters using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 30.11 to find the maximum induced emf: «max 5 NBAv 5 NBA(2pf)

Substitute numerical values: «max 5 8(0.500 T)(0.090 0 m2)(2p)(60.0 Hz) 5  136 V

(B) What is the maximum induced current in the coil when the output terminals are connected to a low-resistance 
conductor?

S o L u T I o n

Use Equation 26.7 and the result to part (A): Imax 5
«max 

R
5

136 V
12.0 V

5   11.3 A
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A motor is a device into which energy is transferred by electrical transmission while 
energy is transferred out by work. A motor is essentially a generator operating in 
reverse. Instead of generating a current by rotating a coil, a current is supplied 
to the coil by a battery, and the torque acting on the current-carrying coil (Sec-
tion 28.5) causes it to rotate.

Useful mechanical work can be done by attaching the rotating coil of a motor 
to some external device. As the coil rotates in a magnetic field, however, the 
changing magnetic flux induces an emf in the coil; consistent with Lenz’s law, 
this induced emf always acts to reduce the current in the coil. The phrase back 
emf is used to indicate an emf that tends to reduce the supplied current. Because 
the voltage available to supply current equals the difference between the sup-
ply voltage and the back emf, the current in the rotating coil is limited by the 
back emf.

When a motor is first turned on, there is initially no back emf, and the current is 
very large because it is limited only by the resistance of the coil. As the coil begins 
to rotate, the induced back emf increases with the speed of the coil and opposes 
the applied voltage, and the current in the coil decreases. If the motor is allowed 
to run under no mechanical load, the back emf reduces the current to a value just 
large enough to overcome energy losses due to internal energy and friction. If a 
very heavy load jams the motor so that it cannot rotate, the lack of a back emf can 
lead to dangerously high current in the motor’s wire. This dangerous situation is 
explored in the What If? section of Example 30.8.

 Example 30.8    The Induced Current in a Motor

A motor contains a coil with a total resistance of 10 V and is supplied by a voltage of 120 V. When the motor is running at its 
maximum speed, the back emf is 70 V.

(A) Find the current in the coil at the instant the motor is turned on.

S o L u T I o n

Conceptualize Think about the motor just after it is turned on. It has not yet moved, so there is no back emf generated. As 
a result, the current in the motor is high. After the motor begins to turn, a back emf is generated and the current decreases.

Categorize We need to combine our new understanding about motors with the relationship between current, voltage, and 
resistance in this substitution problem.

Evaluate the current in the coil from Equation 26.7 with  I 5
«
R

5
120 V
10 V

5  12 A 
no back emf generated:

(B) Find the current in the coil when the motor has reached maximum speed.

S o L u T I o n

Evaluate the current in the coil with the maximum back  I 5
« 2 «back 

R
5

120 V 2 70 V
10 V

5
50 V
10 V

5  5.0 A 
emf generated:

The current drawn by the motor when operating at its maximum speed is significantly less than that drawn before it begins 
to turn.

W H A T  I F ?  Suppose this motor is in a circular saw. When you are operating the saw, the blade becomes jammed in a 
piece of wood and the motor cannot turn. By what percentage does the power input to the motor increase when it is jammed?

Answer You may have everyday experiences with motors becoming warm when they are prevented from turning. That is due 
to the increased power input to the motor. The higher rate of energy transfer results in an increase in the internal energy of 
the coil, an undesirable effect.

continued
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Set up the ratio of power input to the motor when  
Pjammed

Pnot jammed

5
IA

2   R

IB 
2R

5
IA

2

IB
2  

jammed, using the current calculated in part (A),  
to that when it is not jammed, part (B):

Substitute numerical values: 
Pjammed

Pnot jammed

5
s12 Ad2

s5.0 Ad2 5 5.76

That represents a 476% increase in the input power! Such a high power input can cause the coil to become so hot that it 
is damaged.

   30.6    Eddy Currents
As we have seen, an emf and a current are induced in a loop of wire by a chang-
ing magnetic flux. Imagine now a plate of metal, such as the one hanging from a 
rod in Figure 30.20. A metal plate can be considered to be a combination of many 
concentric circular conducting loops of various radii. Therefore, circulating cur-
rents called eddy currents are induced in bulk pieces of metal moving through a 
magnetic field. This phenomenon can be demonstrated by allowing the plate in 
Figure 30.20 to swing back and forth through a magnetic field. As the plate enters 
the field, the changing magnetic flux induces an emf in the plate, which in turn 
causes the free electrons in the plate to move, producing the swirling eddy cur-
rents. According to Lenz’s law, the direction of the eddy currents is such that they 
create magnetic fields that oppose the change that causes the currents. For this rea-
son, the eddy currents must produce effective magnetic poles on the plate, which 
are repelled by the poles of the magnet; this situation gives rise to a repulsive force 
that opposes the motion of the plate. (If the opposite were true, the plate would 
accelerate and its energy would increase after each swing, in violation of the law of 
conservation of energy.)

As indicated in Figure 30.21a, with B
S

 directed into the page, the induced eddy 
current is counterclockwise as the swinging plate enters the field at position 1 
because the flux due to the external magnetic field into the page through the 
plate is increasing. Hence, by Lenz’s law, the induced current must provide its own 

As the plate enters or leaves the 
field, the changing magnetic flux 
induces an emf, which causes 
eddy currents in the plate.

S

vS

Pivot

N

Figure 30.20  Formation of eddy 
currents in a conducting plate 
moving through a magnetic field.
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As the conducting plate enters 
the field, the eddy currents 
are counterclockwise.

As the plate leaves 
the field, the currents 
are clockwise.
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When slots are cut in the 
conducting plate, the eddy 
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As the conducting plate enters 
the field, the eddy currents 
are counterclockwise.

As the plate leaves 
the field, the currents 
are clockwise.
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When slots are cut in the 
conducting plate, the eddy 
currents are reduced and the 
plate swings more freely 
through the magnetic field.

Figure 30.21 When a con-
ducting plate swings through a 
magnetic field, eddy currents are 
induced and the magnetic force 
F
S

B on the plate opposes its veloc-
ity, causing it to eventually come 
to rest.
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magnetic field out of the page. The opposite is true as the plate leaves the field at 
position 2, where the current is clockwise. Because the induced eddy current always 
produces a magnetic retarding force F

S
B when the plate enters or leaves the field, 

the swinging plate eventually comes to rest. If slots are cut in the plate as shown in 
Figure 30.21b, many of the conducting loops in the plate are cut and the eddy cur-
rents and, therefore, the corresponding retarding force, are greatly reduced. 

The braking systems on many subway and rapid-transit cars make use of electro-
magnetic induction and eddy currents. An electromagnet attached to the train is 
positioned near the steel rails. (An electromagnet is essentially a solenoid with an 
iron core.) The braking action occurs when a large current is passed through the 
electromagnet. The relative motion of the magnet and rails induces eddy currents 
in the rails, and the direction of these currents produces a drag force on the moving 
train. Because the eddy currents decrease steadily in magnitude as the train slows 
down, the braking effect is quite smooth. As a safety measure, some power tools use 
eddy currents to stop rapidly spinning blades once the device is turned off.

Eddy currents are often undesirable because they represent a transformation 
of mechanical energy to internal energy in the resistance of the metal. To reduce 
this energy loss, conducting parts are often laminated; that is, they are built up 
in thin layers separated by a nonconducting material such as lacquer or a metal 
oxide. This layered structure prevents large current loops and effectively confines 
the currents to small loops in individual layers. Such a laminated structure is used 
in transformer cores (see Section 32.8) and motors to minimize eddy currents and 
thereby increase the efficiency of these devices.

Summary
 › Concepts and Principles

Faraday’s law of induction states that the emf induced in a loop is directly 
proportional to the time rate of change of magnetic flux through the loop, or

 « 5 2 
dFB

dt
 (30.1)

where FB 5 eB
S  

? d A
S

 is the magnetic flux through the loop.

When a conducting bar of length , moves at a 
velocity vS through a magnetic field B

S
, where 

B
S

 is perpendicular to the bar and to vS, the 
motional emf induced in the bar is

 « 5 2B,v (30.5)

A general form of Faraday’s law of induction is

 $ E
S  

? d sS 5 2
dFB

dt
 (30.8)

where E
S

 is the nonconservative electric field that is produced by the changing magnetic flux.

Lenz’s law states that the induced 
current and induced emf in a con-
ductor are in such a direction as to 
set up a magnetic field that opposes 
the change that produced them.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. ACTIvITy  In this activity, your group will build a simple 
homopolar motor. You will need the following components:

AA battery
Wood screw
Disk magnet
Insulated wire, about 10 cm long, with ends stripped

Place the disk magnet on the head of the screw, where it 
should be attracted and stay attached. Hang the point of the 
screw from the flat bottom of the battery, where it will be 
magnetically attracted and hang. Figure TP30.1 (page 816) 
shows the structure of the motor. Put one end of the wire 
on the button at the top of the battery and hold it with a 
finger or tape. Touch the other end of the wire to the edge 
of the disk magnet, and watch the screw spin! The tip of 
the screw may wander as it spins. If it arrives at the edge 
of the flat part of the bottom of the battery, it may find a 
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816 Chapter 30 Faraday’s Law

spot where the friction 
at the tip prevents its 
rotation. Record the 
sense of rotation of the 
screw and report what 
happens if (a) the disk 
magnet is turned over 
to reverse its poles, and 
(b) the battery is turned 
over so that the screw 
hangs from the button.

2. Your group has an 
idea for the design of a 
new fitness apparatus 
that will make use of induced emf. You plan to construct 
a cylindrical cage, with a horizontal axis, using 32 metal 
rods of length , 5 0.800 m mounted between two circular 
metal endpieces of radius r 5 25.0 cm as shown in part (a) 
of Figure TP30.2. Between the endpieces you will connect 
a resistor. This cage will be mounted on a pivot so that it 
can rotate around the centers of the metal endpieces. In 
addition, an electromagnet is mounted with one pole inside 
the cage and the other outside, as shown in part (b) of 
Figure TP30.2. The figure shows an endview of the poles 
of the magnet, which extend into the page a distance ,, so 
that the magnetic poles are as long as the metal rods. The 
magnet produces a magnetic field of magnitude B 5 0.250 
T between its poles. In use, the operator stands facing the 
cage and continuously pulls downward on the metal rods 
at the left of the cage as shown in Figure TP30.2b. This sets 

the cage in rotation, causing the metal rods to pass between 
the poles of the magnet. The emf generated in the metal 
rods creates a current, and the magnetic force on this cur-
rent provides a resistive force to the rotation of the cage. 
(a) Discuss in your group the following and perform the 
requested calculation: Your design goal is that the opera-
tor should do work at the rate of 100 watts when the cage is 
rotating at a constant angular speed of 5.00 rad/s. Before 
building the apparatus, see if your design goal is feasible by 
calculating the resistance required between the endpieces. 
(b) Discuss in your group the following questions: How safe 
is this device? Can you see a safety flaw?

Wire

AA battery

Wood
screw

Disk
magnet

Figure TP30.1

N

Pull
down
here

South pole is in
the cage and not

visible in this view.

S

a b

Figure TP30.2

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 30.1 Faraday’s Law of Induction

1. A circular loop of wire of radius 12.0 cm is placed in a 
magnetic field directed perpendicular to the plane of the 
loop as in Figure P30.1. If the field decreases at the rate of 
0.050 0 T/s in some time interval, find the magnitude of the 
emf induced in the loop during this interval.

2. An instrument based on induced emf has been used to 
measure projectile speeds up to 6 km/s. A small magnet is 
imbedded in the projectile as shown in Figure P30.2. The 
projectile passes through two coils separated by a distance 
d. As the projectile passes through each coil, a pulse of emf 
is induced in the coil. The time interval between pulses 

can be measured accurately with an oscilloscope, and thus 
the speed can be determined. (a) Sketch a graph of DV ver-
sus t for the arrangement shown. Consider a current that 
flows counterclockwise as viewed from the starting point 
of the projectile as positive. On your graph, indicate which 
pulse is from coil 1 and which is from coil 2. (b) If the 
pulse separation is 2.40 ms and d 5 1.50 m, what is the 
projectile speed? 

3. Scientific work is currently under way to determine whether 
weak oscillating magnetic fields can affect human health. 
For example, one study found that drivers of trains had a 
higher incidence of blood cancer than other railway work-
ers, possibly due to long exposure to mechanical devices 
in the train engine cab. Consider a magnetic field of mag-
nitude 1.00 3 1023 T, oscillating sinusoidally at 60.0 Hz. 
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If the diameter of a red blood cell is 8.00 mm, determine the 
maximum emf that can be generated around the perimeter 
of a cell in this field.

4. A long solenoid has n 5 400 turns per meter and carries a 
current given by I 5 30.0(1 2 e21.60t ), where I is in amperes 
and t is in seconds. Inside the solenoid and coaxial with it 
is a coil that has a radius of R 5 6.00 cm and consists of a 
total of N 5 250 turns of fine wire (Fig. P30.4). What emf is 
induced in the coil by the changing current?

5. An aluminum ring of radius r1 5 5.00 cm and resistance 
3.00 3 1024 V is placed around one end of a long air-
core solenoid with 1 000 turns per meter and radius r2 5 
3.00 cm as shown in Figure P30.5. Assume the axial com-
ponent of the field produced by the solenoid is one-half 
as strong over the area of the end of the solenoid as at 
the center of the solenoid. Also assume the solenoid pro-
duces negligible field outside its cross-sectional area. The 
current in the solenoid is increasing at a rate of 270 A/s. 
(a) What is the induced current in the ring? At the center 
of the ring, what are (b) the magnitude and (c) the direc-
tion of the magnetic field produced by the induced current 
in the ring?

6. An aluminum ring of radius r1 and resistance R is placed 
around one end of a long air-core solenoid with n turns 
per meter and smaller radius r2 as shown in Figure P30.5. 
Assume the axial component of the field produced by the 
solenoid over the area of the end of the solenoid is one-half 
as strong as at the center of the solenoid. Also assume the 
solenoid produces negligible field outside its cross-sectional 
area. The current in the solenoid is increasing at a rate of 
DI/Dt. (a) What is the induced current in the ring? (b) At 
the center of the ring, what is the magnetic field produced 
by the induced current in the ring? (c) What is the direction 
of this field?

7. A coil formed by wrapping 50 turns of wire in the shape of a 
square is positioned in a magnetic field so that the normal 
to the plane of the coil makes an angle of 30.08 with the 
direction of the field. When the magnetic field is increased 

uniformly from 200 mT to 600 mT in 0.400 s, an emf of 
magnitude 80.0 mV is induced in the coil. What is the total 
length of the wire in the coil?

8. When a wire carries an AC current with a known frequency, 
you can use a Rogowski coil to determine the amplitude Imax 
of the current without disconnecting the wire to shunt the 
current through a meter. The Rogowski coil, shown in Fig-
ure P30.8, simply clips around the wire. It consists of a tor-
oidal conductor wrapped around a circular return cord. Let 
n represent the number of turns in the toroid per unit dis-
tance along it. Let A represent the cross- sectional area of 
the toroid. Let I(t) 5 Imax sin vt represent the current to be 
measured. (a) Show that the amplitude of the emf induced 
in the Rogowski coil is «max 5 m0nAvImax. (b) Explain why 
the wire carrying the unknown current need not be at the 
center of the Rogowski coil and why the coil will not respond 
to nearby currents that it does not enclose.

9. A toroid having a rectangular cross section (a 5 2.00 cm 
by b 5 3.00 cm) and inner radius R 5 4.00 cm consists of 
N 5 500 turns of wire that carry a sinusoidal current I 5  
Imax sin vt, with Imax 5 50.0 A and a frequency f 5 v/2p 5 
60.0 Hz. A coil that consists of N9 5 20 turns of wire is 
wrapped around one section of the toroid as shown in Fig-
ure P30.9. Determine the emf induced in the coil as a func-
tion of time.

Section 30.2 Motional emf

Problem 47 in Chapter 28 can be assigned with this section.

10. A small airplane with a wingspan of 14.0 m is flying due 
north at a speed of 70.0 m/s over a region where the vertical 
component of the Earth’s magnetic field is 1.20 mT down-
ward. (a) What potential difference is developed between 
the airplane’s wingtips? (b) Which wingtip is at higher 
potential? (c) What If? How would the answers to parts (a) 
and (b) change if the plane turned to fly due east? (d) Can 
this emf be used to power a lightbulb in the passenger com-
partment? Explain your answer.
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818 Chapter 30 Faraday’s Law

11. A helicopter (Fig. P30.11) has blades of length 3.00 m,  
extending out from a central hub and rotating at 2.00 rev/s. 
If the vertical component of the Earth’s magnetic field is 
50.0 mT, what is the emf induced between the blade tip and 
the center hub? 

12. A 2.00-m length of wire is held in an east–west direction and 
moves horizontally to the north with a speed of 0.500 m/s. 
The Earth’s magnetic field in this region is of magnitude 
50.0 mT and is directed northward and 53.08 below the hor-
izontal. (a) Calculate the magnitude of the induced emf 
between the ends of the wire and (b) determine which end 
is positive.

13. A metal rod of mass m slides without friction along two 
parallel horizontal rails, separated by a distance , and con-
nected by a resistor R, as shown in Figure P30.13. A uniform 
vertical magnetic field of magnitude B is applied perpendic-
ular to the plane of the paper. The applied force shown in 
the figure acts only for a moment, to give the rod a speed v. 
In terms of m, ,, R, B, and v, find the distance the rod will 
then slide as it coasts to a stop. 

14. Why is the following situation impossible? An automobile has a 
vertical radio antenna of length , 5 1.20 m. The automobile 
travels on a curvy, horizontal road where the Earth’s mag-
netic field has a magnitude of B 5 50.0 mT and is directed 
toward the north and downward at an angle of u  5 65.08 
below the horizontal. The motional emf developed between 
the top and bottom of the antenna varies with the speed 
and direction of the automobile’s travel and has a maximum 
value of 4.50 mV.

15. A conducting bar of length , moves to the right on two fric-
tionless rails as shown in Figure P30.15. A uniform magnetic 
field directed into the page has a magnitude of 0.300  T. 
Assume R 5 9.00 V and , 5 0.350 m. (a) At what constant 
speed should the bar move to produce an 8.50-mA current in 
the resistor? (b) What is the direction of the induced current? 
(c) At what rate is energy delivered to the resistor? (d) Explain 
the origin of the energy being delivered to the resistor.

16. An astronaut is connected to her spacecraft by a 25.0-m-long 
tether cord as she and the spacecraft orbit the Earth in a 
circular path at a speed of 7.80 3 103 m/s. At one instant, 
the emf between the ends of a wire embedded in the cord 
is measured to be 1.17 V. Assume the long dimension of the 
cord is perpendicular to the Earth’s magnetic field at that 
instant. Assume also the tether’s center of mass moves with 
a velocity perpendicular to the Earth’s magnetic field. (a) 
What is the magnitude of the Earth’s field at this location? 
(b) Does the emf change as the system moves from one loca-
tion to another? Explain. (c) Provide two conditions under 
which the emf would be zero even though the magnetic 
field is not zero.

17. You are working for a company that manufactures motors 
and generators. At the end of your first day of work, your 
supervisor explains to you that you will be assigned to a team 
that is designing a new homopolar generator. You have no idea 
what that is, but agree wholeheartedly to the assignment. 
At home that evening, you go online to learn about the 
homopolar generator and find the following. The homopo-
lar generator, also called the Faraday disk, is a low-voltage, 
high-current electric generator. It consists of a rotating con-
ducting disk with one stationary brush (a sliding electrical 
contact) at its axle and another at a point on its circumfer-
ence as shown in Figure P30.17. A uniform magnetic field 
is applied perpendicular to the plane of the disk. When 
superconducting coils are used to produce a large magnetic 
field, a homopolar generator can have a power output of 
several megawatts. Such a generator is useful, for example, 
in purifying metals by electrolysis. If a voltage is applied to 
the output terminals of the generator, it runs in reverse as a 
homopolar motor capable of providing great torque, useful in 
ship propulsion. At work the next morning, your supervisor 
tells you that the homopolar generator under consideration 
will have a magnetic field of magnitude B 5 0.900 T and the 
radius of the disk is r 5 0.400 m. The desired emf to be gen-
erated with the device is « 5 25.0 V. Your supervisor asks 
you to determine the required angular speed of the disk to 
achieve this result.
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18. You are working in a laboratory that uses motional emf to 
make magnetic measurements. You have found that it is dif-
ficult to create a uniform magnetic field across the entire 
sliding-bar apparatus shown in Figure 30.8a, with a resis-
tance R connected between the rails. You decide to inves-
tigate creating the magnetic field with a long, straight, cur-
rent-carrying conductor lying next to and parallel to one of 
the rails, as shown in Figure P30.18. This will create a non- 
uniform field across the plane of the bar and rails. You set 
up the apparatus in this way, with the current-carrying wire 
a distance a from the upper rail. You wish to find an expres-
sion for the force necessary to slide the bar at a constant 
speed of v to the right in Figure P30.18 if the wire carries a 
current I. (Hint: Two separate integrations will be required.)

19. You are working in a factory that produces long bars of cop-
per with a square cross section. In one section of the pro-
duction process, the bars must slide down a plane inclined 
at an angle u 5 21.08 to the horizontal. It has been found 
that the bars travel with too high a speed and become 
dented or bent when they arrive at the bottom of the plane 
and must be discarded. In order to prevent this waste, you 
devise a way to deliver the bars at the bottom of the plane at 
a lower speed. You replace the inclined plane with a pair of 
parallel metal rails, shown in Figure P30.19, separated by a 
distance , 5 2.00 m. The smooth bars of mass m 5 1.00 kg 
will slide down the smooth rails, with the length of the bar 
always perpendicular to the rails. The rails are immersed in 
a magnetic field of magnitude B, and a resistor of resistance 
R 5 1.00 Ω is connected between the upper ends of the 
rails. Determine the magnetic field necessary in your device 
so that the bars will arrive at the bottom of the plane with a 
maximum speed v 5 1.00 m/s.

20. You are working in a factory that produces long bars of cop-
per with a square cross section. In one section of the pro-
duction process, the bars must slide down an inclined plane 
of angle u. It has been found that the bars travel with too 
high a speed and become dented or bent when they arrive 
at the bottom of the plane and must be discarded. In order 
to prevent this waste, you devise a way to deliver the bars at 
the bottom of the plane at a lower speed. You replace the 
inclined plane with a pair of parallel metal rails, shown in 
Figure P30.19, separated by a distance ,. The smooth bars 
of mass m will slide down the smooth rails, with the length 
of the bar always perpendicular to the rails. The rails are 
immersed in a magnetic field of magnitude B, and a resistor 
of resistance R is connected between the upper ends of the 
rails. Determine the magnetic field necessary in your device 
so that the bars will arrive at the bottom of the plane with a 
maximum speed vmax.

Section 30.4 The General Form of Faraday’s Law

21. Within the green dashed circle shown in Figure P30.21, the 
magnetic field changes with time according to the expres-
sion B 5 2.00t3 2 4.00t2 1 0.800, where B is in teslas, t is 
in seconds, and R 5 2.50 cm. When t 5 2.00 s, calculate 
(a) the magnitude and (b) the direction of the force exerted 
on an electron located at point P, which is at a distance r 5 
5.00 cm from the center of the circular field region. (c) At 
what instant is this force equal to zero?

22. A long solenoid with 1.00 3 103 turns per meter and radius 
2.00 cm carries an oscillating current I 5 5.00 sin 100pt, 
where I is in amperes and t is in seconds. (a) What is the 
electric field induced at a radius r 5 1.00 cm from the axis 
of the solenoid? (b) What is the direction of this electric 
field when the current is increasing counterclockwise in the 
solenoid?

Section 30.5 Generators and Motors

Problem 45 in Chapter 28 can be assigned with this section.

23. A generator produces 24.0 V when turning at 900 rev/min. 
What emf does it produce when turning at 500 rev/min?

24. Figure P30.24 (page 820) is a graph of the induced emf ver-
sus time for a coil of N turns rotating with angular speed v in 
a uniform magnetic field directed perpendicular to the coil’s 
axis of rotation. What If? Copy this sketch (on a larger scale) 
and on the same set of axes show the graph of emf versus t 
(a) if the number of turns in the coil is doubled, (b) if instead 
the angular speed is doubled, and (c) if the angular speed is 
doubled while the number of turns in the coil is halved.
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820 Chapter 30 Faraday’s Law

25. The rotating loop in an AC generator is a square 10.0 cm 
on each side. It is rotated at 60.0 Hz in a uniform magnetic 
field of 0.800 T. Calculate (a) the flux through the loop as 
a function of time, (b) the emf induced in the loop, (c) the 
current induced in the loop for a loop resistance of 1.00 V, 
(d) the power delivered to the loop, and (e) the torque that 
must be exerted to rotate the loop.

26. In Figure P30.26, a semicircular conductor of radius R  5 
0.250 m is rotated about the axis AC at a constant rate of 
120 rev/min. A uniform magnetic field of magnitude  
1.30 T fills the entire region below the axis and is directed 
out of the page. (a) Calculate the maximum value of the 
emf induced between the ends of the conductor. (b) What 
is the value of the average induced emf for each complete 
rotation? (c) What If? How would your answers to parts (a) 
and (b) change if the magnetic field were allowed to extend 
a distance R above the axis of rotation? Sketch the emf ver-
sus time (d) when the field is as drawn in Figure P30.26 and 
(e) when the field is extended as described in part (c).

Section 30.6 Eddy Currents

27. Figure P30.27 represents an electromagnetic brake that uses 
eddy currents. An electromagnet hangs from a railroad car 
near one rail. To stop the car, a large current is sent through 

the coils of the electromagnet. The moving electromagnet 
induces eddy currents in the rails, whose fields oppose the 
change in the electromagnet’s field. The magnetic fields of 
the eddy currents exert force on the current in the electro-
magnet, thereby slowing the car. The direction of the car’s 
motion and the direction of the current in the electromag-
net are shown correctly in the picture. Determine which 
of the eddy currents shown on the rails is correct. Explain 
your answer.

AdditionAL ProbLeMS

28. Suppose you wrap wire onto the core from a roll of Scotch 
tape to make a coil. Describe how you can use a bar magnet 
to produce an induced voltage in the coil. What is the order 
of magnitude of the emf you generate? State the quantities 
you take as data and their values.

29. A rectangular loop of area A 5 0.160 m2 is placed in a region 
where the magnetic field is perpendicular to the plane of 
the loop. The magnitude of the field is allowed to vary in 
time according to B 5 0.350 e2t/2.00, where B is in teslas and 
t is in seconds. The field has the constant value 0.350 T for 
t , 0. What is the value for « at t 5 4.00 s?

30. A rectangular loop of area A is placed in a region where 
the magnetic field is perpendicular to the plane of the 
loop. The magnitude of the field is allowed to vary in time 
according to B 5 Bmaxe

2t/t, where Bmax and t are constants. 
The field has the constant value Bmax for t , 0. Find the emf 
induced in the loop as a function of time.

31. A circular coil enclosing an 
area of 100 cm2 is made of 
200 turns of copper wire 
(Figure P30.31). The wire 
making up the coil has no 
resistance; the ends of the 
wire are connected across 
a 5.00-V resistor to form a 
closed circuit. Initially, a 
1.10-T uniform magnetic field points perpendicularly upward 
through the plane of the coil. The direction of the field then 
reverses so that the final magnetic field has a magnitude of 
1.10 T and points downward through the coil. If the time 
interval required for the field to reverse directions is 0.100 s,  
what is the average current in the coil during that interval?

32. Consider the apparatus shown in Figure P30.32: a conduct-
ing bar is moved along two rails connected to an incandes-
cent lightbulb. The whole system is immersed in a mag-
netic field of magnitude B 5 0.400 T perpendicular and 
into the page. The distance between the horizontal rails is 
, 5 0.800 m. The resistance of the lightbulb is R 5 48.0 V, 
assumed to be constant. The bar and rails have negligible 
resistance. The bar is moved toward the right by a constant 
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force of magnitude F 5 0.600 N. We wish to find the maxi-
mum power delivered to the lightbulb. (a) Find an expres-
sion for the current in the lightbulb as a function of B, ,, R, 
and v, the speed of the bar. (b) When the maximum power 
is delivered to the lightbulb, what analysis model properly 
describes the moving bar? (c) Use the analysis model in part 
(b) to find a numerical value for the speed v of the bar when 
the maximum power is being delivered to the lightbulb. (d) 
Find the current in the lightbulb when maximum power is 
being delivered to it. (e) Using P 5 I  2R, what is the maxi-
mum power delivered to the lightbulb? (f) What is the max-
imum mechanical input power delivered to the bar by the 
force F? (g) We have assumed the resistance of the lightbulb 
is constant. In reality, as the power delivered to the lightbulb 
increases, the filament temperature increases and the resis-
tance increases. Does the speed found in part (c) change 
if the resistance increases and all other quantities are held 
constant? (h) If so, does the speed found in part (c) increase 
or decrease? If not, explain. (i) With the assumption that the 
resistance of the lightbulb increases as the current increases, 
does the power found in part (f) change? (j)  If so, is the 
power found in part (f) larger or smaller? If not, explain.

33. A guitar’s steel string vibrates (see Fig. 30.5). The compo-
nent of magnetic field perpendicular to the area of a pickup 
coil nearby is given by

B 5 50.0 1 3.20 sin 1 046pt

  where B is in milliteslas and t is in seconds. The circular 
pickup coil has 30 turns and radius 2.70 mm. Find the emf 
induced in the coil as a function of time.

34. Why is the following situation impossible? A conducting rectan-
gular loop of mass M 5 0.100 kg, resistance R 5 1.00 V, and 
dimensions w 5 50.0 cm by , 5 90.0 cm is held with its lower 
edge just above a region with a uniform magnetic field of 
magnitude B 5 1.00 T as shown in Figure P30.34. The loop 
is released from rest. Just as the top edge of the loop reaches 
the region containing the field, the loop moves with a speed 
4.00 m/s.

35. A conducting rod of length , 5 35.0 cm is free to slide on 
two parallel conducting bars as shown in Figure P30.35. Two 
resistors R1 5 2.00 V and R2 5 5.00 V are connected across 
the ends of the bars to form a loop. A constant magnetic 
field B 5 2.50 T is directed perpendicularly into the page. 
An external agent pulls the rod to the left with a constant 
speed of v 5 8.00 m/s. Find (a) the currents in both resis-
tors, (b) the total power delivered to the resistance of the 
circuit, and (c) the magnitude of the applied force that is 
needed to move the rod with this constant velocity.

36. Magnetic field values are often determined by using a 
device known as a search coil. This technique depends on 
the measurement of the total charge passing through a coil 
in a time interval during which the magnetic flux linking 
the windings changes either because of the coil’s motion 
or because of a change in the value of B. (a) Show that as 
the flux through the coil changes from F1 to F2, the charge 
transferred through the coil is given by Q 5 N(F2 2 F1)/R, 
where R is the resistance of the coil and N is the number of 
turns. (b) As a specific example, calculate B when a total 
charge of 5.00 3 1024 C passes through a 100-turn coil of 
resistance 200 V and cross-sectional area 40.0 cm2 as it is 
rotated in a uniform field from a position where the plane 
of the coil is perpendicular to the field to a position where it 
is parallel to the field.

37. The plane of a square loop of wire with edge length a 5 
0.200 m is oriented vertically and along an east–west axis. 
The Earth’s magnetic field at this point is of magnitude 
B 5 35.0 mT and is directed northward at 35.08 below the 
horizontal. The total resistance of the loop and the wires 
connecting it to a sensitive ammeter is 0.500 V. If the 
loop is suddenly collapsed by horizontal forces as shown 
in Figure P30.37, what total charge enters one terminal of 
the ammeter?

38. In Figure P30.38, the rolling axle, 1.50 m long, is pushed 
along horizontal rails at a constant speed v 5 3.00 m/s. A 
resistor R 5 0.400 V is connected to the rails at points a 
and b, directly opposite each other. The wheels make good 
electrical contact with the rails, so the axle, rails, and R 
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822 Chapter 30 Faraday’s Law

form a closed-loop circuit. The only significant resistance 
in the circuit is R. A uniform magnetic field B 5 0.080 0 T 
is vertically downward. (a) Find the induced current I in the 
resistor. (b) What horizontal force F is required to keep the 
axle rolling at constant speed? (c) Which end of the resistor, 
a or b, is at the higher electric potential? (d) What If? After 
the axle rolls past the resistor, does the current in R reverse 
direction? Explain your answer.

39. Figure P30.39 shows a stationary conductor whose shape 
is similar to the letter e. The radius of its circular portion 
is a 5 50.0 cm. It is placed in a constant magnetic field of 
0.500 T directed out of the page. A straight conducting rod, 
50.0 cm long, is pivoted about point O and rotates with a 
constant angular speed of 2.00 rad/s. (a) Determine the 
induced emf in the loop POQ. Note that the area of the loop 
is ua2/2. (b) If all the conducting material has a resistance 
per length of 5.00 V/m, what is the induced current in the 
loop POQ at the instant 0.250 s after point P passes point Q? 

40. A conducting rod moves with a constant velocity in a direc-
tion perpendicular to a long, straight wire carrying a cur-
rent I as shown in Figure P30.40. Show that the magnitude 
of the emf generated between the ends of the rod is

u«u 5
m0vI/

2pr

  In this case, note that the emf decreases with increasing r as 
you might expect.

41. Figure P30.41 shows a compact, circular 
coil with 220 turns and radius 12.0  cm 
immersed in a uniform magnetic field 
parallel to the axis of the coil. The 
rate of change of the field has the 
constant magnitude 20.0 mT/s. (a) What 

additional information is necessary to determine whether 
the coil is carrying clockwise or counterclockwise current? 
(b) The coil overheats if more than 160 W of power is deliv-
ered to it. What resistance would the coil have at this critical 
point? (c) To run cooler, should it have lower resistance or 
higher resistance?

42. Review. In Figure P30.42, a uniform magnetic field 
decreases at a constant rate dB/dt 5 2K, where K is a posi-
tive constant. A circular loop of wire of radius a containing 
a resistance R and a capacitance C is placed with its plane 
normal to the field. (a) Find the charge Q on the capacitor 
when it is fully charged. (b) Which plate, upper or lower, is 
at the higher potential? (c) Discuss the force that causes the 
separation of charges.

43. An N -turn square coil with side , and resistance R is 
pulled to the right at constant speed v in the presence of a 
uniform magnetic field B acting perpendicular to the coil 
as shown in Figure P30.43. At t 5 0, the right side of the 
coil has just departed the right edge of the field. At time 
t, the left side of the coil enters the region where B 5 0. 
In terms of the quantities N, B, ,, v, and R , find symbolic 
expressions for (a) the magnitude of the induced emf 
in the loop during the time interval from t 5 0 to t, (b) 
the magnitude of the induced current in the coil, (c) the 
power delivered to the coil, and (d) the force required to 
remove the coil from the field. (e) What is the direction of 
the induced current in the loop? (f) What is the direction 
of the magnetic force on the loop while it is being pulled 
out of the field?

44. A conducting rod of length , moves with velocity vS parallel 
to a long wire carrying a steady current I. The axis of the 
rod is maintained perpendicular to the wire with the near 
end a distance r away (Fig. P30.44). Show that the magni-
tude of the emf induced in the rod is

u«u 5
m0Iv

2p
  ln S1 1

/
rD
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45. A long, straight wire carries a current given by I 5  
Imax sin (vt 1 f). The wire lies in the plane of a rectangular 
coil of N turns of wire as shown in Figure P30.45. The quan-
tities Imax, v, and f are all constants. Assume Imax 5 50.0 A, 
v 5 200p s21, N  5 100, h 5 w 5 5.00 cm, and L 5 20.0 cm. 
Determine the emf induced in the coil by the magnetic field 
created by the current in the straight wire.

46. A rectangular loop of dimen-
sions , and w moves with a 
constant velocity vS away from a 
long wire that carries a current 
I in the plane of the loop (Fig. 
P30.46). The total resistance of 
the loop is R. Derive an expres-
sion that gives the current in the 
loop at the instant the near side 
is a distance r from the wire.

47. A thin wire , 5 30.0 cm long is held 
parallel to and d 5 80.0 cm above a 
long, thin wire carrying I 5 200 A 
and fixed in position (Fig. P30.47). 
The 30.0-cm wire is released at the 
instant t 5 0 and falls, remaining 
parallel to the current-carrying 
wire as it falls. Assume the falling 
wire accelerates at 9.80 m/s2. (a) 
Derive an equation for the emf induced in it as a function of 
time. (b) What is the minimum value of the emf? (c) What 
is the maximum value? (d) What is the induced emf 0.300 s 
after the wire is released?

chALLenge ProbLeMS

48. An induction furnace uses electromagnetic induction to pro-
duce eddy currents in a conductor, thereby raising the con-
ductor’s temperature. Commercial units operate at frequen-
cies ranging from 60 Hz to about 1 MHz and deliver powers 
from a few watts to several megawatts. Induction heating 
can be used for warming a metal pan on a kitchen stove. 
It can be used to avoid oxidation and contamination of 
the metal when welding in a vacuum enclosure. To explore 

induction heating, consider a flat conducting disk of radius 
R, thickness b, and resistivity r. A sinusoidal magnetic field 
Bmax cos vt is applied perpendicular to the disk. Assume the 
eddy currents occur in circles concentric with the disk. (a) 
Calculate the average power delivered to the disk. (b) What 
If? By what factor does the power change when the ampli-
tude of the field doubles? (c) When the frequency doubles? 
(d) When the radius of the disk doubles?

49. A bar of mass m and resistance R slides without friction in a 
horizontal plane, moving on parallel rails as shown in Fig-
ure P30.49. The rails are separated by a distance d. A battery 
that maintains a constant emf « is connected between the 
rails, and a constant magnetic field B

S
 is directed perpendic-

ularly out of the page. Assuming the bar starts from rest at 
time t 5 0, show that at time t it moves with a speed

v 5
«
Bd

s1 2 e2B 2d 2t ymRd

50. A betatron is a device that accelerates electrons to energies 
in the MeV range by means of electromagnetic induction. 
Electrons in a vacuum chamber are held in a circular orbit 
by a magnetic field perpendicular to the orbital plane. The 
magnetic field is gradually increased to induce an elec-
tric field around the orbit. (a) Show that the electric field 
is in the correct direction to make the electrons speed up. 
(b) Assume the radius of the orbit remains constant. Show 
that the average magnetic field over the area enclosed by 
the orbit must be twice as large as the magnetic field at the 
circle’s circumference.

51. Review. The bar of mass m in Figure P30.51 is pulled hori-
zontally across parallel, frictionless rails by a massless string 
that passes over a light, frictionless pulley and is attached to 
a suspended object of mass M. The uniform upward mag-
netic field has a magnitude B, and the distance between the 
rails is ,. The only significant electrical resistance is the load 
resistor R shown connecting the rails at one end. Assuming 
the suspended object is released with the bar at rest at t 5 0, 
derive an expression that gives the bar’s horizontal speed as 
a function of time.
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Storyline You are still on your weekend trip that you began in 
the previous chapter. You pull up to a stop at a traffic light where there is very 
little traffic. The light immediately turns green for you. You have noticed this phe-
nomenon before, but now, after having studied physics, you say, “Wait a minute! 
How exactly does the traffic light know that my car is here?” You try it again, 
pulling into a left-turn lane. The left-turn green arrow illuminates! As you approach 
more traffic lights, you look around for some type of structure that might contain 
something that detects the presence of your car. You don’t see anything mounted 
on poles or overhead that might serve as a detector. Then you notice that there 
are circular grooves that appear to be sawn into the roadway near each intersec-
tion. Could that have something to do with it?

ConneCtions In Chapter 30, we saw that an emf and a current are induced 
in a loop of wire when the magnetic flux through the area enclosed by the loop 
changes with time. This phenomenon of induction has some practical conse-
quences. In this chapter, we first describe an effect known as self-induction,  
in which a time-varying current in a circuit produces an induced emf opposing the 
emf that initially set up the time-varying current. Self-induction is the basis of the 
inductor, a new circuit element. We can combine the inductor into electric circuits 
with our previously introduced circuit elements, the capacitor and the resistor. 
We discuss the energy stored in the magnetic field of an inductor and the energy 
density associated with the magnetic field. We will find that circuits including 
inductors can have behavior similar to the simple harmonic oscillator that we 
studied back in Chapter 15. In addition, our understanding of inductors will allow 
us to move forward and understand the operation of AC circuits in Chapter 32.

31.1 Self-Induction and 
Inductance

31.2 RL Circuits

31.3 Energy in a Magnetic 
Field

31.4 Mutual Inductance

31.5 Oscillations in an  
LC Circuit

31.6 The RLC Circuit

31 Inductance

At an intersection controlled 
by a traffic light, one can 

often see circles cut into the 
pavement. The photograph 

shows a roadway with 
several such circles, all 

connected by dark straight 
lines to a point near the 

bottom of the image. What is 
the purpose of these circles? 

(John W. Jewett, Jr.)
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    31.1 Self-Induction and Inductance 825

   31.1    Self-Induction and Inductance
Now that we have studied Faraday’s law, we need to distinguish carefully between 
emfs and currents that are caused by physical sources such as batteries and those 
that are induced by changing magnetic fields. When we use a term (such as emf 
or current) without an adjective, we are describing the parameters associated with 
a physical source. We use the adjective induced to describe those emfs and currents 
caused by a changing magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf as shown 
in Figure 31.1. The circuit diagram is represented in perspective to show the orien-
tations of some of the magnetic field lines due to the current in the circuit. When 
the switch is thrown to its closed position, we observe that the current does not 
immediately jump from zero to its maximum value «/R. Faraday’s law of electro-
magnetic induction (Eq. 30.1) can be used to describe this effect as follows. The 
circuit is a current loop. Therefore, it is a source of a magnetic field. The magnetic 
field lines from this field pass through the loop of the circuit itself. As the current 
increases with time after the switch is thrown closed, there is an increasing mag-
netic flux through the loop of the circuit. This increasing flux creates an induced 
emf in the circuit. The direction of the induced emf is such that it would cause an 
induced current in the loop (if the loop did not already carry a current), which 
would establish a magnetic field opposing the change in the original magnetic 
field. Therefore, the direction of the induced emf is opposite the direction of the 
emf of the battery, which results in a gradual rather than instantaneous increase in 
the current to its final equilibrium value. Because of the direction of the induced 
emf, it is also called a back emf, similar to that in a motor as discussed in Chapter 30. 
This effect is called self-induction because the changing flux through the circuit 
and the resultant induced emf arise from the circuit itself. The emf «L set up in this 
case is called a self-induced emf.

To obtain a quantitative description of self-induction, recall from Faraday’s law 
that the induced emf is equal to the negative of the time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field, which in turn is 
proportional to the current in the circuit. Therefore, a self-induced emf in a circuit 
is always proportional to the time rate of change of the current in the circuit. For 
any loop of wire, we can write this proportionality as

 «L 5 2L 
di
dt

 (31.1)

where L is a proportionality constant—called the inductance of the loop—that 
depends on the geometry of the loop and other physical characteristics. If we  
consider a closely spaced coil of N turns (a toroid or an ideal solenoid) carrying 
a current i and containing N turns, Faraday’s law tells us that «L 5 2N d FB /dt  
(Eq. 30.2). Comparing this expression with Equation 31.1, we see that

 L 5
NFB

i
 (31.2)

where it is assumed the same magnetic flux passes through each turn and L is the 
inductance of the entire coil.

From Equation 31.1, we can also write the inductance as the ratio

 L 5 2 

«L

diydt
 (31.3)

The SI unit of inductance is the henry (H), which as we can see from Equation 
31.3 is 1 volt-second per ampere: 1 H 5 1 V ? s/A. Recall that resistance is a measure 
of the opposition to current as given by Equation 26.7, R 5 DV/I; in comparison, 

 Inductance of an N-turn coil

Joseph Henry
American Physicist (1797–1878)
Henry became the first director of the 
Smithsonian Institution and first presi-
dent of the Academy of Natural Science. 
He improved the design of the electro-
magnet and constructed one of the first 
motors. He also discovered the phenome-
non of self-induction, but he failed to pub-
lish his findings. The unit of inductance, 
the henry, is named in his honor.
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After the switch is closed, the 
current produces a magnetic flux 
through the area enclosed by the 
loop. As the current increases 
toward its equilibrium value, this 
magnetic flux changes in time
and induces an emf in the loop.
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Figure 31.1  Self-induction in a 
simple circuit.
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826 Chapter 31 Inductance

Equation 31.3, being of the same mathematical form as Equation 26.7, shows us 
that inductance is a measure of the opposition to a change in current.

As shown in Example 31.1, the inductance of a coil depends on its geometry. This 
dependence is analogous to the capacitance of a capacitor depending on the geome-
try of its plates as we found in Equation 25.3 and the resistance of a resistor depend-
ing on the length and area of the conducting material in Equation 26.10. Inductance 
calculations can be quite difficult to perform for complicated geometries, but the 
examples below involve simple situations for which inductances are easily evaluated.

Q uick Quiz 31.1  A coil with zero resistance has its ends labeled a and b. 
The potential at a is higher than at b. Which of the following could be con-
sistent with this situation? (a) The current is constant and is directed from a 
to b. (b) The current is constant and is directed from b to a. (c) The current 
is increasing and is directed from a to b. (d) The current is decreasing and is 
directed from a to b. (e) The current is increasing and is directed from b to a.  
(f) The current is decreasing and is directed from b to a.

 Example 31.1    Inductance of a Solenoid

Consider a uniformly wound solenoid having N turns and length ,. Assume , is much longer than the radius of the wind-
ings and the core of the solenoid is air.

(A) Find the inductance of the solenoid.

S O L U T I O N

Conceptualize  The magnetic field lines from each turn of the solenoid pass through all the turns, so an induced emf in each 
coil opposes changes in the current.

Categorize We categorize this example as a substitution problem. Because the solenoid is long, we can use the results for an 
ideal solenoid obtained in Chapter 29.

Find the magnetic flux through each turn of area A in  FB 5 BA 5 m0niA 5 m0 
N
/

 iA 
the solenoid, using the expression for the magnetic field  
from Equation 29.17:

Substitute this expression into Equation 31.2: L 5
NFB

i
5 m0 

N 2

/
 A  (31.4)

(B) Calculate the inductance of the solenoid if it contains 300 turns, its length is 25.0 cm, and its cross-sectional area is 4.00 cm2.

S O L U T I O N

Substitute numerical values into Equation 31.4: L 5 s4p 3 1027 T ? myAd 
3002

25.0 3 1022 m
 s4.00 3 1024 m2d

   5 1.81 3 1024 T ? m2/A 5 0.181 mH

(C)  Calculate the self-induced emf in the solenoid if the current it carries decreases at the rate of 50.0 A/s.

S O L U T I O N

Substitute di/dt 5 250.0 A/s and the answer to part (B)  «L 5 2L 
di
dt

5 2s1.81 3 1024 Hds250.0 Aysd 
into Equation 31.1:   

5 9.05 mV

The result for part (A) shows that L depends on geometry and is proportional to the square of the number of turns. Because 
N 5 n,, we can also express the result in the form

 L 5 m0 
sn/d2

/
A 5 m0n2A/ 5 m0n

2V  (31.5)

where V 5 A, is the interior volume of the solenoid.
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    31.2 RL Circuits 827

   31.2    RL Circuits
If a circuit contains a coil such as a solenoid, the inductance of the coil prevents 
the current in the circuit from increasing or decreasing instantaneously. A circuit 
element that has a large inductance is called an inductor and has the circuit symbol 

. We always assume the inductance of the remainder of a circuit is negligi-
ble compared with that of the inductor. Keep in mind, however, that even a circuit 
without a coil has some inductance that can affect the circuit’s behavior.

Because the inductance of an inductor results in a back emf, an inductor in a 
circuit opposes changes in the current in that circuit. If the battery voltage in the 
circuit is increased so that the current rises, the inductor opposes this change and 
the rise is not instantaneous. If the battery voltage is decreased, the inductor causes 
a slow drop in the current rather than an immediate drop. Therefore, the inductor 
causes the circuit to be “sluggish” as it reacts to changes in the voltage.

Consider the circuit shown in Figure 31.2a, which contains a battery of negligi-
ble internal resistance. This circuit is an RL circuit because the elements connected 
to the battery are a resistor and an inductor. The curved lines on switch S2 suggest 
this switch can never be open; it is always set to either a or b. (If the switch is con-
nected to neither a nor b, any current in the circuit suddenly stops.) Suppose S2 is 
set to a and switch S1 is open for t , 0 and then thrown closed at t 5 0 as shown 
in Figure  31.2b. The current in the circuit begins to increase, and a back emf  
(Eq. 31.1) that opposes the increasing current is induced in the inductor.

At an instant when the current is changing, let’s apply Kirchhoff’s loop rule to 
this circuit, traversing the outer loop in Figure 31.2b in the clockwise direction:

 « 2 iR 2 L 
di
dt

5 0 (31.6)

where iR is the voltage drop across the resistor. (Kirchhoff’s rules were developed 
for circuits with steady currents, but they can also be applied to a circuit in which 
the current is changing if we imagine them to represent the circuit at one instant of 
time.) Now let’s find a solution to this differential equation, which is similar to that 
for the RC circuit (see Section 27.4).

A mathematical solution of Equation 31.6 represents the current in the circuit 
as a function of time. To find this solution, we change variables for convenience, 
letting x 5 («/R) 2 i, so dx 5 2di. With these substitutions, Equation 31.6 becomes

x 1
L
R

  
dx
dt

5 0

Rearranging and integrating this last expression gives

#
x

x0

 
dx
x

5 2 

R
L

 #
t

0
 dt   S  ln 

x
x0

5 2 

R
L

 t

where x0 is the value of x at time t 5 0. Taking the antilogarithm of this result gives

x 5 x0e
2Rt/L

Because i 5 0 at t 5 0, note from the definition of x that x0 5 «/R. Hence, this last 
expression is equivalent to

 
«
R

2 i 5
«
R

 e2RtyL  S  i 5
«
R

s1 2 e2RtyLd

This expression shows how the inductor affects the current. The current does not 
increase instantly to its final equilibrium value when the switch is closed, but instead 
increases according to an exponential function. If the inductance is removed from 
the circuit, which corresponds to letting L approach zero, the exponential term 
becomes zero and there is no time dependence of the current in this case; the cur-
rent increases instantaneously to its final equilibrium value in the absence of the 
inductance.

S1

S2

L

Ra

b

2

1
«

When switch S1 is open, 
there is no current anywhere 
in the circuit.

S1

S2

L

R

i

a

b

2

1
«

When switch S1 is thrown
closed, the current increases
and an emf that opposes the 
increasing current is induced
in the inductor.

a

b

Figure 31.2 An RL circuit.  
(a) We begin with switch S1 open, 
so that the battery is not con-
nected to the other elements in 
the circuit. (b) When switch S1 
is thrown closed, the battery is 
connected and a current begins to 
build in the circuit.
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828 Chapter 31 Inductance

We can also write this expression as

 i 5
«
R

s1 2 e2tytd  (31.7)

where the constant t is the time constant of the RL circuit:

 t 5
L
R

 (31.8)

Physically, t is the time interval required for the current in the circuit to reach  
(1 2 e21) 5 0.632 5 63.2% of its final value «/R. The time constant is a useful 
parameter for comparing the time responses of various circuits.

Figure 31.3 shows a graph of the current versus time in the RL circuit. Notice 
that the equilibrium value of the current, which occurs as t approaches infinity, is 
«/R. That can be seen by setting di/dt equal to zero in Equation 31.6 and solving 
for the current i. (At equilibrium, the change in the current is zero.) Therefore, the 
current initially increases very rapidly and then gradually approaches the equilib-
rium value «/R as t approaches infinity.

Let’s also investigate the time rate of change of the current. Taking the first time 
derivative of Equation 31.7 gives

 
di
dt

5
«
L

 e2tyt (31.9)

This result shows that the time rate of change of the current is a maximum 
(equal to «/L) at t 5 0 and falls off exponentially to zero as t approaches infinity  
(Fig. 31.4).

Suppose switch S2 in the circuit in Figure 31.2b has been set at position a long 
enough (and switch S1 remains closed) to allow the current to reach its equilibrium 
value I 5 «/R, as shown in Figure 31.5a. If S2 is thrown from a to b, the circuit is 
now described by only the right-hand loop as seen in Figure 31.5b. Therefore, the 
battery has been eliminated from the circuit. Setting « 5 0 in Equation 31.6 gives

iR 1 L 
di
dt

5 0

After switch S1 is thrown closed 
at t 5 0,  the current increases 
toward its maximum value 
«/R.

t

R
0.632

i

«

R
0.950 «

R
0.865 «

� 2� 3� 4�

R
«

Figure 31.3 Plot of the current 
versus time for the RL circuit shown 
in Figure 31.2b. The time constant t 
is the time interval required for i to 
reach 63.2% of its maximum value.

The time rate of change of 
current is a maximum at t � 0, 
which is the instant at which  
switch S1 is thrown closed.

di
dt

L
e

L
0.049 8 e

L
0.368 e

L
0.135 e

t
t 2t 3t 4t

Figure 31.4  Plot of di/dt versus  
time for the RL circuit shown in Fig-
ure 31.2b. The rate of change of the 
current decreases exponentially with 
time as i increases toward its maxi-
mum value.

Figure 31.5 (a) The condition 
shown in Figure 31.2b has existed 
for a long time and the current 
has its maximum value. (b) When 
switch S2 is thrown to position b, 
the current begins to fall.

S1

S2

L

R

I

a

b

2

1
«

When switch S1 has been 
closed for a long time, the 
current in the circuit reaches 
its steady state value I.

a

S1

S2

L

R

i

a

2

1
«

b

b

When the switch S2 is thrown 
to position b, the battery is no
longer part of the circuit and
the current decreases.
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It is left as a problem (Problem 12) to show that the solution of this differential 
equation is

 i 5
«
R

 e2tyt 5 Ii e
2tyt  (31.10)

where « is the emf of the battery and Ii 5 «/R is the initial current at the instant 
the switch is thrown to b.

If the circuit did not contain an inductor, the current would immediately 
decrease to zero when the battery is removed. When the inductor is present, it 
opposes the decrease in the current and causes the current to decrease exponen-
tially. A graph of the current in the circuit versus time (Fig. 31.6) shows that the 
current is continuously decreasing with time.

Q uick Quiz 31.2  Consider the circuit in Figure 31.2a with S1 open and S2 at 
position a. Switch S1 is now thrown closed as in Figure 31.2b. (i) At the instant it 
is closed, across which circuit element is the voltage equal to the emf of the bat-
tery? (a) the resistor (b) the inductor (c) both the inductor and resistor (ii) After 
a very long time, across which circuit element is the voltage equal to the emf of 
the battery? Choose from among the same answers.

At t � 0, switch S2 is thrown to 
position b and the current has 
its maximum value e/R.

R
0.368 e

R
0.135 e

R
0.049 8 e

R
e

t

i

t 2t 3t 4t

Figure 31.6 Current versus  
time for the circuit shown in  
Figure 31.5b. For t , 0, switch  
S2 is at position a.

 Example 31.2    Time Constant of an RL Circuit

Consider the circuit in Figure 31.2 again. Suppose the circuit elements have the following values: « 5 12.0 V, R 5 6.00 V, 
and L 5 30.0 mH.

(A)  Find the time constant of the circuit.

S O L U T I O N

Conceptualize You should understand the operation and behavior of the circuit in Figure 31.2 from the discussion in  
this section.

Categorize We evaluate the results using equations developed in this section, so this example is a substitution problem.

Evaluate the time constant from Equation 31.8: t 5
L
R

5
30.0 3 1023 H

6.00 V
5 5.00 ms

(B)  Switch S2 is at position a, and switch S1 is thrown closed at t 5 0. The circuit now appears as in Figure 31.2b. Calculate 
the current in the circuit at t 5 2.00 ms.

S O L U T I O N

Evaluate the current at t 5 2.00 ms  i 5
«
R

 s1 2 e2tytd 5
12.0 V
6.00 V

s1 2 e22.00 msy5.00 msd 5 2.00 A s1 2 e20.400d 
from Equation 31.7:  

5 0.659 A

(C)  Compare the potential difference across the resistor with that across the inductor.

S O L U T I O N

At the instant Switch S1 is closed, there is no current and therefore no potential difference across the resistor. At this instant, 
the battery voltage appears entirely across the inductor in the form of a back emf of 12.0 V as the inductor tries to maintain 
the zero-current condition. (The top end of the inductor in Fig. 31.2b is at a higher electric potential than the bottom end.) As 
time passes, the emf across the inductor decreases and the current in the resistor (and hence the voltage across it) increases as 
shown in Figure 31.7 (page 830). The sum of the two voltages at all times is 12.0 V.

W H A T  I F ? In Figure 31.7, the voltages across the resistor and inductor are equal at 3.4 ms. What if you wanted to delay 
the condition in which the voltages are equal to some later instant, such as t 5 10.0 ms? Which parameter, L or R, would 
require the least adjustment, in terms of a percentage change, to achieve that?

continued

    31.2 RL Circuits 829
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830 Chapter 31 Inductance

   31.3    Energy in a Magnetic Field
As we move forward, we will find that we will need to address energy considerations 
in circuits with inductors. In general, a battery in a circuit containing an induc-
tor must provide more energy than one in a circuit without the inductor. When 
switch S1 in Figure 31.2b is thrown closed, part of the energy supplied by the bat-
tery appears as internal energy in the resistance in the circuit, and the remaining 
energy is stored in the magnetic field of the inductor. Multiplying each term in 
Equation 31.6 by i and rearranging the expression gives

 i« 5 i 2R 1 Li 
di
dt

 (31.11)

Recognizing i « as the rate at which energy is supplied by the battery and i 2R as the 
rate at which energy is delivered to the resistor, we see that Li(di/dt) must represent 
the rate at which energy is being stored in the inductor, associated with the mag-
netic field of the inductor. If UB is the energy stored in the inductor at any time, we 
can write the rate dUB /dt at which energy is stored as

dUB

dt
5 Li 

di
dt

To find the total energy stored in the inductor at any instant, let’s rewrite this 
expression as dUB 5 Li di and integrate:

UB 5 #dUB 5 #
i

0
Li di 5 L #

i

0
i di

 UB 5 1
2 Li 2  (31.12)

where L has been removed from the integral because it is constant. Equation 31.12 
represents the energy stored in the magnetic field of the inductor when the current 
is i. It is similar in form to Equation 25.13 for the energy stored in the electric field 
of a capacitor, UE 5 1

2C(DV)2. In either case, energy is required to establish a field.
We can also determine the energy density of a magnetic field and compare it to 

the energy density of an electric field, found in Section 25.4. For simplicity, con-
sider a solenoid whose inductance is given by Equation 31.5:

L 5 m0n
2V

Energy stored in an inductor  

31.2 c o n t i n u e d

Answer Figure 31.7 shows that the voltages are equal 
when the voltage across the inductor has fallen to half 
its original value. Therefore, the time interval required 
for the voltages to become equal is the half-life t 1/2 of 
the decay. We introduced the half-life in the What If? 
section of Example 27.10 to describe the exponential 
decay in RC circuits, where t1/2 5 0.693t.

From the desired half-life of 10.0 ms, use the result from  t 5
t1y2

0.693
5

10.0 ms
0.693

5 14.4 ms 
Example 27.10 to find the time constant of the circuit:

Hold L fixed and find the value of R that gives this  t 5
L
R

   S   R 5
L
t

5
30.0 3 1023 H

14.4 ms
5 2.08 V 

time constant:

Now hold R fixed and find the appropriate value of L: t 5
L
R

   S   L 5 tR 5 s14.4 msds6.00 Vd 5 86.4 3 1023 H

The change in R corresponds to a 65% decrease compared with the initial resistance. The change in L represents a 188% 
increase in inductance! Therefore, a much smaller percentage adjustment in R can achieve the desired effect than would an 
adjustment in L.

2 8
0

4

8

12

�vL

t (ms)
1064

�v (V)

�vR

Figure 31.7  (Example 31.2) 
The time behavior of the voltages 
across the resistor and inductor 
in Figure 31.2b given the values 
provided in this example.

Pitfall Prevention 31.1
Capacitors, Resistors, and Induc-
tors Store Energy Differently  
Different energy-storage mecha-
nisms are at work in capacitors,  
inductors, and resistors. A charged 
capacitor stores energy as electri-
cal potential energy. An inductor 
stores energy as what we could call 
magnetic potential energy when it 
carries current. Energy delivered 
to a resistor is transformed to 
internal energy.
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    31.3 Energy in a Magnetic Field 831

The magnetic field of a solenoid is given by Equation 29.17:

B 5 m0ni

Substituting the expression for L and i 5 B/m0n into Equation 31.12 gives

 UB 5 1
2Li 2 5 1

2 m0n
2V S B

m0n
D2

5
B 2

2m0

 V  (31.13)

The magnetic energy density, or the energy stored per unit volume in the magnetic 
field of the inductor, is uB 5 UB /V, or

 uB 5
B 2

2m0

 (31.14)

Although this expression was derived for the special case of a solenoid, it is valid for 
any region of space in which a magnetic field exists. Equation 31.14 is similar in form to 
Equation 25.15 for the energy per unit volume stored in an electric field, uE 5 1

2e0 E 2.  
In both cases, the energy density is proportional to the square of the field magnitude.

Q uick Quiz 31.3  You are performing an experiment that requires the 
 highest-possible magnetic energy density in the interior of a very long current-
carrying solenoid. Which of the following adjustments increases the energy 
density? (More than one choice may be correct.) (a) increasing the number of 
turns per unit length on the solenoid (b) increasing the cross-sectional area of 
the solenoid (c) increasing only the length of the solenoid while keeping the 
number of turns per unit length fixed (d) increasing the current in the solenoid

 Magnetic energy density

 Example 31.3    What Happens to the Energy in the Inductor?

Consider once again the RL circuit shown in Figure 31.5a, with switch S2 at position a and the current having reached its 
steady-state value. When S2 is thrown to position b, as in Figure 31.5b, the current in the right-hand loop decays exponen-
tially with time according to Equation 31.10. Show that all the energy initially stored in the magnetic field of the inductor 
appears as internal energy in the resistor as the current decays to zero.

S O L U T I O N

Conceptualize Before S2 is thrown to b, the current is constant at its maximum value, and energy is being delivered at a constant 
rate to the resistor from the battery. A constant amount of energy is stored in the magnetic field of the inductor. After t 5 0,  
when S2 is thrown to b, the battery can no longer provide energy and energy is delivered to the resistor only from the inductor.

Categorize We model the right-hand loop of the circuit as an isolated system so that energy is transferred between components 
of the system but does not leave the system.

Analyze We begin by evaluating the energy delivered to the resistor, which appears as internal energy in the resistor.

Begin with Equation 26.22 and recognize that the rate  
dE int

dt
5 P 5 i 2R 

of change of internal energy in the resistor is the power  
delivered to the resistor: 

Substitute the current given by Equation 31.10 into this  
dE int

dt
5 i 2R 5 sIi e

2RtyLd2R 5 Ii
2Re22RtyL 

equation:

Solve for dEint and integrate this expression over the  E int 5 #
`

0
Ii

2  Re22RtyL dt 5 I i
2  R #

`

0
e 22RtyL dt 

limits t 5 0 to t S `:

The value of the definite integral can be shown to be  E int 5 I i
2  R S L

2RD 5 1
2LI i

2  
L/2R (see Problem 22). Use this result to evaluate Eint:

Finalize This result is equal to the initial energy stored in the magnetic field of the inductor, given by Equation 31.12, as we 
set out to prove.
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 Example 31.4    The Coaxial Cable

Coaxial cables are often used to connect electrical devices, such as your video sys-
tem, and in receiving signals in television cable systems. Model a long coaxial cable 
as a thin, cylindrical conducting shell of radius b concentric with a solid cylinder of 
radius a as in Figure 31.8. The conductors carry the same current i in opposite direc-
tions. Calculate the inductance L of a length , of this cable.

S O L U T I O N

Conceptualize Consider Figure 31.8. Although we do not have a visible coil in this 
geometry, imagine a thin, radial slice of the coaxial cable such as the light gold rect-
angle in Figure 31.8. If the inner and outer conductors are connected at the ends of 
the cable (above and below the figure), this slice represents one large conducting loop. 
The current in the loop sets up a magnetic field between the inner and outer conduc-
tors that passes through this loop. If the current changes, the magnetic field changes 
and the induced emf opposes the original change in the current in the conductors.

Categorize We categorize this situation as one in which we must return to the funda-
mental definition of inductance, Equation 31.2.

Analyze We must find the magnetic flux through the light gold rectangle in Figure 31.8.  
Ampère’s law (see Section 29.3) tells us that the magnetic field in the region between the 
conductors is due to the inner conductor alone and that its magnitude is B 5 m0i/2pr, where r is measured from the common 
center of the cylinders. A sample circular field line is shown in Figure 31.8, along with a field vector tangent to the field line. 
 The magnetic field is perpendicular to the light gold rectangle of length , and width b 2 a, the cross section of interest. 
Because the magnetic field varies with radial position across this rectangle, we must use calculus to find the total magnetic flux.

Divide the light gold rectangle into strips of width dr  dFB 5 B dA 5 B/ dr  
such as the darker strip in Figure 31.8. Evaluate the  
magnetic flux through such a strip:

Substitute for the magnetic field and integrate over the  FB 5 #
b

a
 
m0 i

2pr
 / dr 5

m0 i/

2p
 #

b

a
 
dr
r

5
m0 i/

2p
  ln Sb

a
 D 

entire light gold rectangle:

Use Equation 31.2 to find the inductance of the cable: L 5
FB

i
5

m0/

2p
 ln Sb

aD
Finalize The inductance depends only on geometric factors related to the cable. It increases if , increases, if b increases, or 
if a decreases. This result is consistent with our conceptualization: any of these changes increases the size of the loop repre-
sented by our radial slice and through which the magnetic field passes, increasing the inductance.

i

�

b
dr

r
i

a

B
S

Figure 31.8  (Example 31.4) Section 
of a long coaxial cable. The inner and 
outer conductors carry equal currents 
in opposite directions.

   31.4    Mutual Inductance
Very often, the magnetic flux through the area enclosed by a circuit varies with 
time because of time-varying currents in nearby circuits. This condition induces an 
emf through a process known as mutual induction, so named because it depends on 
the interaction of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in  
Figure 31.9. The current i1 in coil 1, which has N1 turns, creates a magnetic field. 
Some of the magnetic field lines pass through coil 2, which has N2 turns. The mag-
netic flux caused by the current in coil 1 and passing through coil 2 is represented 
by F12. In analogy to Equation 31.2, we can identify the mutual inductance M12 of 
coil 2 with respect to coil 1:

 M12 5
N2F12

i 1

 (31.15)

Mutual inductance depends on the geometry of both circuits and on their orien-
tation with respect to each other. As the circuit separation distance increases, the 
mutual inductance decreases because the flux linking the circuits decreases.

A current in coil 1 sets up a 
magnetic field, and some of 
the magnetic field lines pass 
through coil 2.

Coil 1 Coil 2

N1 i1

N2 i2

Figure 31.9  A cross-sectional 
view of two adjacent coils.
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    31.4 Mutual Inductance 833

If the current i1 varies with time, we see from Faraday’s law and Equation 31.15 
that the emf induced by coil 1 in coil 2 is

 «2 5 2N2 
dF12

dt
5 2N2 

d
dt SM12i1

N2
D 5 2M12 

di1

dt
 (31.16)

In the preceding discussion, it was assumed the current is in coil 1. Let’s also 
imagine a current i2 in coil 2. The preceding discussion can be repeated to show 
that there is a mutual inductance M21. If the current i2 varies with time, the emf 
induced by coil 2 in coil 1 is

 «1 5 2M 21 
di 2

dt
 (31.17)

In mutual induction, the emf induced in one coil is always proportional to the rate 
at which the current in the other coil is changing. Although the proportionality 
constants M12 and M21 have been treated separately, it can be shown that they are 
equal. Therefore, with M12 5 M21 5 M, Equations 31.16 and 31.17 become

«2 5 2M 
di1

dt
 and «1 5 2M 

di 2

dt

These two equations are similar in form to Equation 31.1 for the self-induced emf 
« 5 2L (di/dt). The unit of mutual inductance is the henry.

Q uick Quiz 31.4  In Figure 31.9, coil 1 is moved closer to coil 2, with the ori-
entation of both coils remaining fixed. Because of this movement, the mutual 
induction of the two coils (a) increases, (b) decreases, or (c) is unaffected.

 Example 31.5    Wireless Battery Charger

An electric toothbrush has a base designed to hold the tooth-
brush handle when not in use. As shown in Figure 31.10a, the 
handle has a cylindrical hole that fits loosely over a matching 
cylinder on the base. When the handle is placed on the base, 
a changing current in a solenoid inside the base cylinder 
induces a current in a coil inside the handle. This induced 
current charges the battery in the handle.
 We can model the base as a solenoid of length , with  
NB turns (Fig. 31.10b), carrying a current i, and having a 
cross-sectional area A. The handle coil contains NH turns and 
completely surrounds the base coil. Find the mutual induc-
tance of the system.

S O L U T I O N

Conceptualize Be sure you can identify the two coils in the situa-
tion and understand that a changing current in one coil induces 
a current in the second coil.

Categorize We will determine the result using concepts discussed in this section, so we categorize this example as a substitu-
tion problem.

Use Equation 29.17 to express the magnetic field in the  B 5 m0 
NB

/
 i 

interior of the base solenoid:

Find the mutual inductance, noting that the magnetic  M 5
NHFBH

i
5

N H BA

i
5 m0 

NBNH

/
 A  

flux FBH through the handle’s coil caused by the magnetic  
field of the base coil is BA:

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging used by 
some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charging apparatus.

b

Coil 1 (base)

Coil 2
(handle)

NB

NH�

a

©
 b

y 
Br

au
n 

Gm
bH

, K
ro

nb
er

g

Figure 31.10  (Example 31.5) (a) This electric toothbrush 
uses the mutual induction of solenoids as part of its battery- 
charging system. (b) A coil of NH turns wrapped around the 
center of a solenoid of NB turns.
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   31.5    Oscillations in an LC Circuit
In Section 31.2, we connected the new circuit element we are studying, the inductor, 
with a resistor and studied the behavior of the circuit. Let’s now connect an induc-
tor with a capacitor, as shown in Figure 31.11. This combination is an LC circuit.  
When the switch is in position a as in Figure 31.11, the battery is charging the capac-
itor. Because we assume no resistance in the circuit, this charging process is essen-
tially instantaneous. In addition, the absence of resistance means that no energy 
in the circuit is transformed to internal energy. We also assume an idealized situ-
ation in which energy is not radiated away from the circuit (TER in Equation 8.2).  
In reality, this radiation will occur, and is discussed in Chapter 33.

When the capacitor is fully charged, energy is stored in the capacitor’s electric 
field and is equal to UE 5 Q 2max/2C (Eq. 25.13). With the switch at position a, the 
inductor is not in the circuit, so no energy is stored in the inductor. Now imag-
ine the switch in Figure 31.11 is thrown to position b. The capacitor begins to 
discharge; the rate at which charges leave the capacitor plates (which is also the 
rate at which the charge on the capacitor changes) is equal to the current in the 
circuit. The energy stored in the electric field of the capacitor decreases. Because 
there is a current in the circuit, some energy is now stored in the magnetic field of 
the inductor. Therefore, energy is transferred from the electric field of the capac-
itor to the magnetic field of the inductor. When the capacitor is fully discharged, 
it stores no energy. At this time, the current reaches its maximum value and all 
the energy in the circuit is stored in the inductor. The current continues in the 
same direction, decreasing in magnitude, with the capacitor eventually becom-
ing fully charged again but with the polarity of its plates now opposite the initial 
polarity. At that point, the current stops and there is no energy stored in the 
inductor. This process is followed by another discharge until the circuit returns 
to its original state of maximum charge Q  max and the plate polarity shown in Fig-
ure 31.11. The energy continues to transfer back and forth between inductor and 
capacitor.

Consider some arbitrary time t after the switch in Figure 31.11 has been thrown 
to position b. At such a time, the capacitor has a charge q , Q  max and the current 
is i , Imax. Because we have assumed the circuit  resistance to be zero, there is no 
change in the internal energy in the circuit. In addition, we have assumed no elec-
tromagnetic radiation. With these assumptions, the circuit is an isolated system for 
energy, and Equation 8.2 becomes

 DUE 1 DUB 5 0 (31.18)

Differentiate Equation 31.18 with respect to time, using Equations 25.13 and 31.12 
for the energies stored in the capacitor and inductor, respectively:

 
d
dt S q 2

2C
1 1

2Li 2D 5
q

C
  

dq

dt
1 Li 

di
dt

5 0 (31.19)

We can reduce this result to a differential equation in one variable by remembering 
that the current in the circuit is equal to the rate at which the charge on the capac-
itor changes: i 5 dq/dt. It then follows that di/dt 5 d 2q/dt 2. Substitution of these 
relationships into Equation 31.19 and rearranging gives us

 
d2q

dt 
2 5 2 

1
LC

 q (31.20)

Let’s solve for q by noting that this expression is of the same form as the analogous 
Equation 15.3 for a particle in simple harmonic motion:

d2x
dt 

2 5 2 

k
m

 x

Total energy stored in  
an LC circuit

L

a

b

S

C
�

�
e

�

�

Figure 31.11  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max. The switch is at  
position a for t , 0 and then 
thrown to position b at t 5 0.
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    31.5 Oscillations in an LC Circuit 835

where k is the spring constant, m is the mass of the particle, and the charge q plays 
the same mathematical role in Equation 31.20 as does x in Equation 15.3. The solu-
tion of this mechanical equation has the general form (Eq. 15.6):

x 5 A cos (vt 1 f)

where A is the amplitude of the simple harmonic motion (the maximum value of x),  
v is the angular frequency of this motion, given by Equation 15.9, and f is the 
phase constant; the values of A and f depend on the initial conditions. Because 
Equation 31.20 is of the same mathematical form as the differential equation of  
the simple harmonic oscillator, it has a solution of the same form:

 q 5 Q  max cos (vt 1 f) (31.21)

where Q  max is the maximum charge on the capacitor and the angular frequency 
v is the square root of the coefficient of q in Equation 31.20 (see Equations 15.3  
and 15.5):

 v 5
1

ÏLC
 (31.22)

The charge on the capacitor undergoes a simple harmonic oscillation, alternat-
ing between polarities. Note that the angular frequency of the oscillations depends 
solely on the inductance and capacitance of the circuit. Equation 31.22 gives the 
natural frequency of oscillation of the LC circuit.

Because q varies sinusoidally with time, the current in the circuit also varies sinu-
soidally. We can show that by differentiating Equation 31.21 with respect to time:

 i 5
dq

dt
5 2vQ max sin svt 1 fd 5 2Imaxsinsvt 1 fd (31.23)

A representation of the energy oscillations in an LC circuit is shown in Fig-
ure 31.12 (page 836). As mentioned, the behavior of the circuit is analogous to 
that of the particle in simple harmonic motion studied in Chapter 15. For exam-
ple, consider the block–spring system shown in Figure 15.10. The oscillations 
of this mechanical system are shown at the right of Figure 31.12. The potential 
energy 1

2kx 
2 stored in the stretched spring is analogous to the potential energy 

q 2/2C stored in the capacitor in Figure 31.12. The kinetic energy 12mv 

2 of the mov-
ing block is analogous to the magnetic energy 1

2Li 2 stored in the inductor, which 
requires the presence of moving charges. In Figure 31.12a, all the energy is stored 
as electric potential energy in the capacitor at t 5 0 (because i 5 0), just as all 
the energy in a block–spring system is initially stored as potential energy in the 
spring if it is stretched and released at t 5 0. In Figure 31.12b, all the energy 
is stored as magnetic energy 1

2LI 2
max in the inductor, where Imax is the maximum 

current. Figures  31.12c and 31.12d show subsequent quarter-cycle situations in 
which the energy is all electric or all magnetic. At intermediate points, part of the 
energy is electric and part is magnetic (Fig. 31.12e).

Graphs of q versus t and i versus t are shown in Figure 31.13 (page 836). The 
charge on the capacitor oscillates between the extreme values Q  max and 2Q  max, 
and the current oscillates between Imax and 2Imax. Furthermore, the current is 908 
out of phase with the charge. That is, when the charge is a maximum, the current is 
zero, and when the charge is zero, the current has its maximum value.

Plots of the time variations of UE and UB are shown in Figure 31.14 (page 836). 
The sum UE 1 UB is a constant and is equal to the total energy Q 

2 

max /2C, or 12LI 2
max.  

Analytical verification is straightforward. The amplitudes of the two graphs in 
Figure 31.14 must be equal because the maximum energy stored in the capacitor 
(when I 5 0) must equal the maximum energy stored in the inductor (when q 5 0). 
This equality is expressed mathematically as

Q 2
max

2C
5

LI 2
max

2

  Charge as a function of time 
for an ideal LC circuit

  Angular frequency of oscillation 
in an LC circuit

  Current as a function of time 
for an ideal LC current
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Figure 31.12 Energy transfer in a resistanceless, nonradiating LC circuit. The capacitor has a charge Q max at t 5 0, the 
instant at which the switch in Figure 31.11 is thrown to position b. The mechanical analog of this circuit is the particle 
in simple harmonic motion, represented by the block–spring system at the right of the figure. (a)–(d)  At these special 
instants, all of the energy in the circuit resides in one of the circuit elements. (e) At an arbitrary instant, the energy is 
split between the capacitor and the inductor.

The charge q and the current i 
are 90� out of phase with each 
other.

q

Imax

Q max

i

t

t

0 T 2TT
2

3T
2

Figure 31.13 Graphs of charge 
versus time and current versus 
time for a resistanceless, nonradi-
ating LC circuit.

The sum of the two curves is a 
constant and is equal to the total 
energy stored in the circuit.

t

t
T
2

T 3T
2

2T

UB

UE

Q 

2
max

2C

LI 2
max

2

0

0

Figure 31.14  Plots of UE versus t 
and UB versus t for a resistanceless, 
nonradiating LC circuit.
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    31.6 The RLC Circuit 837

In our idealized situation, the oscillations in the circuit persist indefinitely; the 
total energy U of the circuit, however, remains constant only if energy transfers and 
transformations are neglected. In actual circuits, there is always some resistance 
and some energy is therefore transformed to internal energy. We mentioned at the 
beginning of this section that we are also ignoring radiation from the circuit. In 
reality, radiation is inevitable in this type of circuit, and the total energy in the cir-
cuit continuously decreases as a result of this process.

Q uick Quiz 31.5  (i) At an instant of time during the oscillations of an LC circuit, 
the current is at its maximum value. At this instant, what happens to the voltage 
across the capacitor? (a) It is different from that across the inductor. (b) It is zero. 
(c) It has its maximum value. (d) It is impossible to determine. (ii) Now consider 
an instant when the current is momentarily zero. From the same choices, describe 
the magnitude of the voltage across the capacitor at this instant.

 Example 31.6    Oscillations in an LC Circuit

In Figure 31.11, the battery has an emf of 12.0 V, the inductance is 2.81 mH, and the capacitance is 9.00 pF. The switch has 
been set to position a for a long time so that the capacitor is charged. The switch is then thrown to position b, removing the 
battery from the circuit and connecting the capacitor directly across the inductor.

(A)  Find the frequency of oscillation of the circuit.

S O L U T I O N

Conceptualize When the switch is thrown to position b, the active part of the circuit is the right-hand loop, which is  
an LC circuit.

Categorize We use equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 31.22 to find the frequency: f 5
v

2p
5

1

2pÏLC

Substitute numerical values: f 5
1

2p[(2.81 3 1023 H)(9.00 3 10212 F)]1y2
5 1.00 3 106 Hz

(B)  What are the maximum values of charge on the capacitor and current in the circuit?

S O L U T I O N

Find the initial charge on the capacitor, which equals  Q  max 5 C DV 5 (9.00 3 10212 F)(12.0 V) 5  1.08 3 10210 C 
the maximum charge:

Use Equation 31.23 to express the maximum current  Imax 5 vQ  max 5 2pfQ  max 5 (2p 3 106 s21)(1.08 3 10210 C) 
in terms of the maximum charge:     

5 6.79 3 1024 A

   31.6    The RLC Circuit
The LC circuit studied in Section 31.5 was idealized: the resistance of the circuit 
was zero. Let’s now turn our attention to a more realistic circuit consisting of a resis-
tor, an inductor, and a capacitor connected as shown in Figure 31.15a (page 838). 
We assume the resistance of the resistor represents all the resistance in the circuit. 
Suppose the switch has been at position a for a long time so that the capacitor has 
an initial charge Q max. The switch is now thrown to position b as shown in Fig-
ure 31.15b. The three circuit elements are now connected in series. Continuing to 
ignore electromagnetic radiation from the circuit, we can write the appropriate 
reduction of Equation 8.2 for the circuit as

DUE 1 DUB 1 DEint 5 0
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where the internal energy represents the warming up of the resistor. Now differen-
tiate this equation with respect to time:

dUE

dt
1

dUB

dt
1

d E int

dt
5 0

Use Equations 25.13 and 31.12 to evaluate the first two derivatives, and recognize 
that the third term is the rate at which energy is delivered to the resistor:

q

C
 
dq

dt
1 Li 

di
dt

1 i 
2R 5 0

Recognizing that the current in the circuit is equal to the time rate of change of 
charge on the capacitor, substitute i 5 dq/dt, and rearrange:

 L 
d2q

dt2 1 R 
dq

dt
1

q

C
5 0 (31.24)

The RLC circuit is analogous to the damped harmonic oscillator discussed in 
Section 15.6 and illustrated in Figure 15.19. The equation of motion for a particle 
undergoing damped harmonic oscillation is, from Equation 15.31,

 m 
d2x
dt 2 1 b 

dx
dt

1 kx 5 0 (31.25)

Comparing Equations 31.24 and 31.25, we see that q corresponds to the position x 
of the particle at any instant, L to the mass m of the particle, R to the damping coef-
ficient b, and C to 1/k, where k is the force constant of the spring. These and other 
relationships are listed in Table 31.1.

Because the analytical solution of Equation 31.24 is cumbersome, we give only 
a qualitative description of the circuit behavior. In the simplest case, when R 5 0, 
Equation 31.24 reduces to that of a simple LC circuit as expected, and the charge 
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The switch is set first to position
a, and the capacitor is charged. 

�
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b
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The switch is thrown to 
position b and oscillations begin.

�

�

b

Figure 31.15 A series RLC circuit. 
(a) With the switch in position a, 
the capacitor is charged by the bat-
tery. (b) When the switch is thrown 
to position b, the battery is removed 
from the circuit and the current in 
the RLC circuit oscillates.

 table 31.1  Analogies Between the RLC Circuit and the Particle in Damped Harmonic Motion

  One-Dimensional
RLC Circuit  Particle in Damped Harmonic Motion

Charge q 4 x Position
Current i 4 vx Velocity
Potential difference DV 4 Fx Force
Resistance R 4 b Viscous damping coefficient
Capacitance C 4 1/k (k 5 spring constant)
Inductance L 4 m Mass

Current 5 time derivative 
 i 5

dq

dt
  4 vx 5

dx
dt

 
Velocity 5 time derivative 

 of charge    of position 

Rate of change of current 5 
 
di
dt

5
d 2q

dt2   4 ax 5
dvx

dt
5

d 2x
dt2  

Acceleration 5 second time 
 second time derivative    derivative of position 
 of charge

Energy in inductor  UB 5 1
2 Li 2  4 K 5 1

2mv2 Kinetic energy of moving particle

Energy in capacitor  UE 5 1
2 

q 2

C
  4 U 5 1

2 kx2 Potential energy stored in a spring

Rate of energy loss due  i 2R  4 bv2 Rate of energy loss due 
 to resistance    to friction

RLC circuit L 
d 2q

dt 
2 1 R 

dq

dt
1

q

C
5 0 4 m 

d 2x
dt 

2 1 b 
dx
dt

1 kx 5 0 Particle in damped harmonic motion
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and the current oscillate sinusoidally in time. This situation is equivalent to remov-
ing all damping in the mechanical oscillator.

When R is small, a situation that is analogous to light damping in the mechani-
cal oscillator, the solution of Equation 31.24 is

 q 5 Q maxe
2Rt/2L cos vdt (31.26)

where vd, the angular frequency at which the circuit oscillates, is given by

 vd 5 3 1
LC

2 S R
2LD24

1y2

 (31.27)

That is, the value of the charge on the capacitor undergoes a damped harmonic 
oscillation in analogy with a particle–spring system moving in a viscous medium. 
Equation 31.27 shows that when R ,, Ï4LyC  (so that the second term in the 
brackets is much smaller than the first), the frequency vd of the damped oscillator 
is close to that of the undamped oscillator, 1yÏLC . Because i 5 dq/dt, it follows that 
the current also undergoes damped harmonic oscillation. A plot of the charge ver-
sus time for the damped oscillator is shown in Figure 31.16a, and an oscilloscope 
trace for a real RLC circuit is shown in Figure 31.16b. The maximum value of q 
decreases after each oscillation, just as the amplitude of a damped particle–spring 
system decreases in time.

For larger values of R, the oscillations damp out more rapidly; in fact, there 
exists a critical resistance value Rc 5 Ï4LyC  above which no oscillations occur. A 
system with R 5 Rc is said to be critically damped. When R exceeds Rc, the system is 
said to be overdamped.

Now, what’s going on with the circles cut into the street in the opening storyline? In 
those circles, there is a loop of wire buried under the street surface. As we know from 
this chapter, a loop of wire acts as an inductor. The loop under the street is connected 
to a circuit, by wires buried in the straight-line cuts we see in the photograph. The 
circuit is an RLC circuit, with the loop in the street acting as the primary induction L 
in the circuit. The control electronics drives the RLC circuit with an oscillating voltage 
so that the circuit oscillates at its natural frequency, given by Equation 31.27. When 
a vehicle drives up and stops over the loop, the inductance of the loop changes for 
two reasons: (1) The metal of the car represents a magnetic material (Section 29.6), 
which alters the magnetic field passing through the loop; and (2) eddy currents 
(Section 30.6) are induced in the metal of the car, producing additional magnetic 
field lines that pass through the inductance loop. The change in the inductance L of 
the loop changes its natural frequency of oscillation. The control electronics detects 
this change, and sends a signal to change the light from red to green.

a

The q -versus-t curve represents 
a plot of Equation 31.26.

Q max
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0 t

b
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Figure 31.16 (a) Charge versus 
time for a damped RLC circuit. 
The charge decays in this way when 
R , Ï4LyC. (b) Oscilloscope 
pattern showing the decay in the 
oscillations of an RLC circuit.
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The inductance of any coil is

 L 5
NFB

i
 (31.2)

where N is the total number of turns and FB is the magnetic 
flux through the coil. The inductance of a device depends on its 
geometry. For example, the inductance of an air-core solenoid is

 L 5 m0 
N 2

/
 A (31.4)

where , is the length of the solenoid and A is the cross- 
sectional area.

The energy stored in the magnetic field of an inductor carrying 
a current i is

 UB 5 1
2Li 2 (31.12)

This energy is the magnetic counterpart to the energy stored in 
the electric field of a charged capacitor.
 The energy density at a point where the magnetic field is B is

 uB 5
B 2

2m0

 (31.14)

In an LC circuit that has zero resistance and does not radiate 
electromagnetically (an idealization), the values of the charge on 
the capacitor and the current in the circuit vary sinusoidally in 
time at an angular frequency given by

 v 5
1

ÏLC
 (31.22)

The energy in an LC circuit continuously transfers between energy 
stored in the capacitor and energy stored in the inductor.

If a resistor and inductor are connected in series to a battery 
of emf « at time t 5 0, the current in the circuit varies in 
time according to the expression

 i 5
«
R

s1 2 e2tytd (31.7)

where t 5 L/R is the time constant of the RL circuit. If we 
replace the battery in the circuit by a resistanceless wire, 
the current decays exponentially with time according to the 
expression

 i 5
«
R

 e2tyt (31.10)

where «/R is the initial current in the circuit.

The mutual inductance of a system of two coils is

 M12 5
N2F12

i1

5 M21 5
N1F21

i 2

5 M  (31.15)

This mutual inductance allows us to relate the induced emf 
in a coil to the changing source current in a nearby coil 
using the relationships

   «2 5 2M12 
di1

dt
 and «1 5 2M21 

di 2

dt
 (31.16, 31.17)

In an RLC circuit with small resistance, the charge on the 
capacitor varies with time according to

 q 5 Q  maxe
2Rt/2L cos vdt (31.26)

where

 vd 5 3 1
LC

2 S R
2LD241y2

 (31.27)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. One member of your group suggests that the RL circuit in 
Figure 31.5a be modified so that a third switch S3 is added as 
shown in Figure TP31.1. Switch S1 has been closed for a long 
time and switch S2 has been at position a for a long time, so 
that the current in the inductor has reached its maximum 
value. The inductor has a resistance RL in its windings. Now, 
switch S3 is thrown closed at t 5 0. The group member who 
suggested the circuit challenges the rest of the group to dis-
cuss and solve the following problem: Find the subsequent 

S1

S3

S2

L

R

I

a

b

�

�
e

Figure TP31.1

Summary
 › Concepts and Principles

When the current in a loop of wire changes with time, an emf is induced in the loop according to Faraday’s law. The self-induced emf is

 «L 5 2L 
di
dt

 (31.1)

where L is the inductance of the loop. Inductance is a measure of how much opposition a loop offers to a change in the current in 
the loop. Inductance has the SI unit of henry (H), where 1 H 5 1 V ? s/A.
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 Problems 841

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 31.1  Self-Induction and Inductance

1. A 2.00-H inductor carries a steady current of 0.500 A. When 
the switch in the circuit is opened, the current is effectively 
zero after 10.0 ms. What is the average induced emf in the 
inductor during this time interval?

2. A coiled telephone cord forms a spiral with 70.0 turns, a diam-
eter of 1.30 cm, and an unstretched length of 60.0 cm. Deter-
mine the inductance of one conductor in the unstretched cord.

3. An emf of 24.0 mV is induced in a 500-turn coil when the 
current is changing at the rate of 10.0 A/s. What is the mag-
netic flux through each turn of the coil at an instant when 
the current is 4.00 A?

4. A 40.0-mA current is carried by a uniformly wound air-core 
solenoid with 450 turns, a 15.0-mm diameter, and 12.0-cm 
length. Compute (a) the magnetic field inside the sole-
noid, (b) the magnetic flux through each turn, and (c) the  
inductance of the solenoid. (d) What If? If the current were 
different, which of these quantities would change?

5. A self-induced emf in a solenoid of inductance L changes in 
time as « 5 «0e

2kt. Assuming the charge is finite, find the 
total charge that passes a point in the wire of the solenoid.

6. A toroid has a major radius R and a minor radius r and is tightly 
wound with N turns of wire on a hollow cardboard torus. Fig-
ure P31.6 shows half of this toroid, allowing us to see its cross 
section. If R .. r, the magnetic field in the region enclosed 
by the wire is essentially the same as the magnetic field of a  
solenoid that has been bent into a large circle of radius R. 

Modeling the field as the uniform field of a long solenoid, 
show that the inductance of such a toroid is approximately

L < 1
2 m0 N 2 

r 2

R

7. A 10.0-mH inductor carries a current i 5 Imax sin vt, with 
Imax 5 5.00 A and f 5 v/2p 5 60.0 Hz. What is the self-in-
duced emf as a function of time?

8. The current in a 4.00 mH-inductor varies in time as shown 
in Figure P31.8. Construct a graph of the self-induced emf 
across the inductor over the time interval t 5 0 to t 5 12.0 ms.

9. You are working as an electrical technician. One day, out in 
the field, you need an inductor but cannot find one. Look-
ing in your wire supply cabinet, you find a cardboard tube 
with single-conductor wire wrapped uniformly around it to 
form a solenoid. You carefully count the turns of wire and 
find that there are 580 turns. The diameter of the tube is  
8.00 cm, and the length of the wire-wrapped portion  
is 36.0 cm. You pull out your calculator to determine (a) the 
inductance of the coil and (b) the emf generated in it if the 
current in the wire increases at the rate of 4.00 A/s.

Section 31.2  RL Circuits

10. A 510-turn solenoid has a radius of 8.00 mm and an over-
all length of 14.0 cm. (a) What is its inductance? (b) If the 
solenoid is connected in series with a 2.50-V resistor and a 
battery, what is the time constant of the circuit?
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current as a function of time in (a) the resistor R, (b) the 
inductor L, and (c) the switch S3. As a bonus question, the 
group is given the following challenge: (d) What is the cur-
rent in switch S3 at time t 5 0?

2. ACTIvITy  Your team has used a data logger with graphing 
software to take data on the voltage across the capacitor in 
the series RLC circuit in Figure 31.15. Switch S has been at 
position a for a very long time and is then thrown to posi-
tion b. You know that the capacitance C is 15.0 mF. Your data 
logger makes a graph of the voltage across the capacitor as a 
function of time, with t 5 0 being the instant the switch was 
thrown to position b. The graph is shown in Figure TP31.2. 
Using the graph, discuss this situation in your group and 
determine (a) the emf of the battery, (b) the inductance L, 
and (c) the resistance R.

1
2

�1
0

�2

3

i (mA)

t (ms)
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Figure P31.8
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842 Chapter 31 Inductance

11. A series RL circuit with L 5 3.00 H and a series RC circuit 
with C 5 3.00 mF have equal time constants. If the two cir-
cuits contain the same resistance R, (a) what is the value of R?  
(b) What is the time constant?

12. Show that i 5 Iie
2t/t is a solution of the differential equation

iR 1 L 
di
dt

5 0

 where Ii is the current at t 5 0 and t 5 L/R.

13. A circuit consists of a coil, a switch, and a battery, all in 
series. The internal resistance of the battery is negligible 
compared with that of the coil. The switch is originally 
open. It is thrown closed, and after a time interval Dt, the 
current in the circuit reaches 80.0% of its final value. The 
switch then remains closed for a time interval much longer 
than Dt. The wires connected to the terminals of the bat-
tery are then short-circuited with another wire and removed 
from the battery, so that the current is uninterrupted. (a) 
At an instant that is a time interval Dt after the short circuit, 
the current is what percentage of its maximum value? (b) At 
the moment 2Dt after the coil is short-circuited, the current 
in the coil is what percentage of its maximum value?

14. You are working as a demonstration assistant for a physics 
professor. He shows you the circuit in Figure P31.14, which 
he wants you to build for an upcoming class. The lightbulb 
is a household incandescent bulb that receives energy at the 
rate of 40.0 W when operating at 120 V. It has a resistance 
R1, which, for simplicity, we will assume is constant at all 
operating voltages. The battery in the circuit has an emf of 
12.0 V. When the switch has been closed for a long time, the 
bulb glows dimly, since it is powered by only 12.0 V. When 
the switch is opened, however, the bulb flashes brightly and 
then gradually dims to darkness. Your professor wants you 
to determine two values: (a) the resistance R2 that is neces-
sary for the bulb to initially flash, when the switch is opened, 
at the same brightness it would have if plugged into a 120-V 
socket; (b) the inductance L necessary to keep the current 
in the lightbulb above 50.0% of its value when the switch 
is opened, for a time interval of 2.00 s after it is opened. 
Assume a resistance-free inductor and that the resistance of 
the lightbulb does not vary with temperature.

15. The switch in Figure P31.15 is open for t , 0 and is then 
thrown closed at time t 5 0. Assume R 5 4.00 V, L 5 1.00 H, 

and « 5 10.0 V. Find (a) the current in the inductor and (b) 
the current in the switch as functions of time thereafter.

16. The switch in Figure P31.15 is open for t , 0 and is then 
thrown closed at time t 5 0. Find (a) the current in the 
inductor and (b) the current in the switch as functions of 
time thereafter.

17. An inductor that has an inductance of 15.0 H and a resistance 
of 30.0 V is connected across a 100-V battery. What is the rate 
of increase of the current (a) at t 5 0 and (b) at t 5 1.50 s?

18. Two ideal inductors, L1 and L2, have zero internal resistance 
and are far apart, so their magnetic fields do not influence 
each other. (a) Assuming these inductors are connected in 
series, show that they are equivalent to a single ideal inductor 
having Leq 5 L1 1 L2. (b) Assuming these same two induc-
tors are connected in parallel, show that they are equiva-
lent to a single ideal inductor having 1/Leq 5 1/L1 1 1/L2.  
(c) What If? Now consider two inductors L1 and L2 that have 
nonzero internal resistances R1 and R2, respectively. Assume 
they are still far apart, so their mutual inductance is zero, 
and assume they are connected in series. Show that they are 
equivalent to a single inductor having Leq 5 L1 1 L2 and  
Req 5 R1 1 R2. (d) If these same inductors are now con-
nected in parallel, is it necessarily true that they are equiv-
alent to a single ideal inductor having 1/Leq 5 1/L1 1 1/L2 
and 1/Req 5 1/R1 1 1/R2? Explain your answer.

19. Consider the current pulse i(t) shown in Figure P31.19a. The 
current begins at zero, becomes 10.0 A between t 5 0 and  
t 5 200 ms, and then is zero once again. This pulse is applied 
to the input of the partial circuit shown in Figure P31.19b. 
Determine the current in the inductor as a function of time.

Section 31.3  Energy in a Magnetic Field

20. Calculate the energy associated with the magnetic field of 
a 200-turn solenoid in which a current of 1.75 A produces a 
magnetic flux of 3.70 3 1024 T ? m2 in each turn.

21. An air-core solenoid with 68 turns is 8.00 cm long and has 
a diameter of 1.20 cm. When the solenoid carries a current 
of 0.770 A, how much energy is stored in its magnetic field?

22. Complete the calculation in Example 31.3 by proving that 

#
`

0
 e22RtyL dt 5

L
2R

23. A 24.0-V battery is connected in series with a resistor and 
an inductor, with R 5 8.00 V and L 5 4.00 H, respectively. 
Find the energy stored in the inductor (a) when the current 
reaches its maximum value and (b) at an instant that is a 
time interval of one time constant after the switch is closed.

24. A flat coil of wire has an inductance of 40.0 mH and a resis-
tance of 5.00 V. It is connected to a 22.0-V battery at the 
instant t 5 0. Consider the moment when the current is 3.00 A.  
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 Problems 843

(a) At what rate is energy being delivered by the battery?  
(b) What is the power being delivered to the resistance of 
the coil? (c) At what rate is energy being stored in the mag-
netic field of the coil? (d) What is the relationship among 
these three power values? (e) Is the relationship described 
in part (d) true at other instants as well? (f)  Explain the 
relationship at the moment immediately after t 5 0 and at a 
moment several seconds later.

Section 31.4  Mutual Inductance

25. An emf of 96.0 mV is induced in the windings of a coil 
when the current in a nearby coil is increasing at the rate 
of 1.20 A/s. What is the mutual inductance of the two coils?

26. Two solenoids A and B, spaced close to each other and 
sharing the same cylindrical axis, have 400 and 700 turns, 
respectively. A current of 3.50 A in solenoid A produces 
an average flux of 300 mWb through each turn of A and 
a flux of 90.0 mWb through each turn of B. (a) Calculate 
the mutual inductance of the two solenoids. (b) What is the 
inductance of A? (c) What emf is induced in B when the cur-
rent in A changes at the rate of 0.500 A/s?

27. Solenoid S1 has N1 turns, radius R1, and length ,. It is so long 
that its magnetic field is uniform nearly everywhere inside it 
and is nearly zero outside. Solenoid S2 has N2 turns, radius  
R2 , R1, and the same length as S1. It lies inside S1, with 
their axes parallel. (a) Assume S1 carries variable current i.  
Compute the mutual inductance characterizing the emf 
induced in S2. (b) Now assume S2 carries current i. Compute 
the mutual inductance to which the emf in S1 is propor-
tional. (c) State how the results of parts (a) and (b) compare 
with each other.

28. Two single-turn circular loops of wire have radii R and r, 
with R .. r. The loops lie in the same plane and are con-
centric. (a) Show that the mutual inductance of the pair 
is approximately M 5 m0pr 2/2R. (b) Evaluate M for r 5 
2.00 cm and R 5 20.0 cm.

Section 31.5  Oscillations in an LC Circuit

29. In the circuit of Figure P31.29, the battery emf is 50.0 V, the 
resistance is 250 V, and the capacitance is 0.500 mF. The 
switch S is closed for a long time interval, and zero potential 
difference is measured across the capacitor. After the switch 
is opened, the potential difference across the capacitor 
reaches a maximum value of 150 V. What is the value of the 
inductance?

30. Why is the following situation impossible? The LC circuit shown 
in Figure P31.30 has L 5 30.0 mH and C 5 50.0 mF. The 
capacitor has an initial charge of 200 mC. The switch is 
closed, and the circuit undergoes undamped LC oscillations. 
At periodic instants, the energies stored by the capacitor  
and the inductor are equal, with each of the two components 
storing 250 mJ.

31. An LC circuit consists of a 20.0-mH inductor and a 0.500-mF  
capacitor. If the maximum instantaneous current in the 
circuit is 0.100 A, what is the greatest potential difference 
across the capacitor?

32. An LC circuit like that in Figure P31.30 consists of a 3.30-H 
inductor and an 840-pF capacitor that initially carries a  
105-mC charge. The switch is open for t , 0 and is then thrown 
closed at t 5 0. Compute the following quantities at t 5 2.00 ms:  
(a) the energy stored in the capacitor, (b) the energy stored in 
the inductor, and (c) the total energy in the circuit.

Section 31.6  The RLC Circuit

33. In Figure 31.15, let R 5 7.60 V, L 5 2.20 mH, and C 5  
1.80 mF. (a) Calculate the frequency of the damped oscilla-
tion of the circuit when the switch is thrown to position b. 
(b) What is the critical resistance for damped oscillations?

34. Show that Equation 31.24 in the text is Kirchhoff’s loop rule 
as applied to the circuit in Figure 31.15b.

35. Electrical oscillations are initiated in a series circuit con-
taining a capacitance C, inductance L, and resistance R.  
(a) If R ,, Ï4LyC  (weak damping), what time interval 
elapses before the amplitude of the current oscillation falls 
to 50.0% of its initial value? (b) Over what time interval 
does the energy decrease to 50.0% of its initial value?

additional ProblemS

36. Review. Consider a capacitor with vacuum between its large, 
closely spaced, oppositely charged parallel plates. (a) Show 
that the force on one plate can be accounted for by thinking 
of the electric field between the plates as exerting a “neg-
ative pressure” equal to the energy density of the electric 
field. (b) Consider two infinite plane sheets carrying elec-
tric currents in opposite directions with equal linear current 
densities Js. Calculate the force per area acting on one sheet 
due to the magnetic field, of magnitude m0   Js /2, created by 
the other sheet. (c) Calculate the net magnetic field between 
the sheets and the field outside of the volume between 
them. (d) Calculate the energy density in the magnetic field 
between the sheets. (e) Show that the force on one sheet can 
be accounted for by thinking of the magnetic field between 
the sheets as exerting a positive pressure equal to its energy 
density. This result for magnetic pressure applies to all cur-
rent configurations, not only to sheets of current.

37. A capacitor in a series LC circuit has an initial charge Q and 
is being discharged. When the charge on the capacitor is 
Q /2, find the flux through each of the N turns in the coil of 
the inductor in terms of Q , N, L, and C.

38. In the circuit diagrammed in Figure P31.15, assume the 
switch has been closed for a long time interval and is opened 
at t 5 0. Also assume R 5 4.00 V, L 5 1.00 H, and « 5 10.0 V.  
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844 Chapter 31 Inductance

(a) Before the switch is opened, does the inductor behave 
as an open circuit, a short circuit, a resistor of some partic-
ular resistance, or none of those choices? (b) What current 
does the inductor carry? (c) How much energy is stored in 
the inductor for t , 0? (d) After the switch is opened, what 
happens to the energy previously stored in the inductor? (e) 
Sketch a graph of the current in the inductor for t $ 0. Label 
the initial and final values and the time constant.

39. (a) A flat, circular coil does not actually produce a uniform 
magnetic field in the area it encloses. Nevertheless, estimate 
the inductance of a flat, compact, circular coil with radius 
R and N turns by assuming the field at its center is uniform 
over its area. (b) A circuit on a laboratory table consists 
of a 1.50-volt battery, a 270-V resistor, a switch, and three 
30.0-cm-long patch cords connecting them. Suppose the cir-
cuit is arranged to be circular. Think of it as a flat coil with one 
turn. Compute the order of magnitude of its inductance and  
(c) of the time constant describing how fast the current 
increases when you close the switch.

40. At the moment t 5 0, a 24.0-V battery is connected to a 5.00-
mH coil and a 6.00-V resistor. (a) Immediately thereafter, 
how does the potential difference across the resistor com-
pare to the emf across the coil? (b) Answer the same ques-
tion about the circuit several seconds later. (c)  Is there an 
instant at which these two voltages are equal in magnitude? 
If so, when? Is there more than one such instant? (d) After 
a 4.00-A current is established in the resistor and coil, the 
battery is suddenly replaced by a short circuit. Answer parts 
(a), (b), and (c) again with reference to this new circuit.

41. You are working on an LC circuit for an experiment you are 
performing in your basement. You have an appropriate capa-
citor, but you need to build your own inductor. You wish to 
cut a wooden ring with a rectangular cross section, as shown 
in Figure P31.41, from wood with thickness h 5 1.00 cm.  
You want to wrap 500 turns of wire around it to form a 
toroidal inductor. For your experiment, you need to have  
1.82 3 10–4 J of energy stored in the inductor when it carries 
a current of 2.00 A. In order to cut the appropriate wooden 
ring, you need to determine the ratio b/a. Ignore any effect 
of the wood core on the magnetic field.

42. You are working on an LC circuit for an experiment you 
are performing in your basement. You have an appropri-
ate capacitor, but you need to build your own inductor. You 
wish to cut a wooden ring with a rectangular cross section, 
as shown in Figure P31.41, from wood with thickness h. You 
want to wrap N turns of wire around it to form a toroidal 
inductor. For your experiment, you need to have energy  
UB stored in the inductor when it carries a current i. In order 
to cut the appropriate wooden ring, you need to determine 
the ratio b/a. Ignore any effect of the wood core on the mag-
netic field.

43. You are trying out to represent your campus in the Physics 
Olympics. You have just been given a problem involving the 
circuit shown in Figure P31.43. The values of the circuit  
elements are « 5 12.0 V, R 5 10.0 V, C 5 5.00 mF, and  
L 5 2.00 mH. The inductor is resistance-free and the capa-
citor begins with zero charge. Switch S has been set to posi-
tion a for a long time. At t 5 0, switch S is thrown to position 
b. What is the charge on the capacitor at t 5 1.00 s? To qual-
ify for the team, you must be the first contestant to determ-
ine the answer! Ready? Go!

44. Why is the following situation impossible? You are working on 
an experiment involving a series circuit consisting of a 
charged 500-mF capacitor, a 32.0-mH inductor, and a resis-
tor R. You discharge the capacitor through the inductor 
and resistor and observe the decaying oscillations of the 
current in the circuit. When the resistance R is 8.00 V, the 
decay in the oscillations is too slow for your experimental 
design. To make the decay faster, you double the resistance. 
As a result, you generate decaying oscillations of the cur-
rent that are perfect for your needs.

45. A time-varying current i is sent through a 50.0-mH inductor 
from a source as shown in Figure P31.45a. The current is 
constant at i 5 21.00 mA until t 5 0 and then varies with 
time afterward as shown in Figure P31.45b. Make a graph of 
the emf across the inductor as a function of time.

46. At t 5 0, the open switch in Figure P31.46 is thrown closed. 
We wish to find a symbolic expression for the current in 
the inductor for time t . 0. Let this current be called i and 
choose it to be downward in the inductor in Figure P31.46. 
Identify i1 as the current to the right through R1 and i 2 
as the current downward through R 2. (a)  Use Kirchhoff’s 
junction rule to find a relation among the three currents. 
(b) Use Kirchhoff’s loop rule around the left loop to find 
another relationship. (c) Use Kirchhoff’s loop rule around 
the outer loop to find a third relationship. (d) Eliminate 
i1 and i2 among the three equations to find an equation 
involving only the current i. (e) Compare the equation in 
part (d) with Equation 31.6 in the text. Use this comparison 
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to rewrite Equation 31.7 in the text for the situation in this 
problem and show that

i std 5
«
R 1

f1 2 e2sR9yLdtg

 where R 9 5 R 1R 2/(R 1 1 R 2).

Problems 47 and 48 apply ideas from this and earlier chapters 
to some properties of superconductors, which were introduced 
in Section 26.5.

47. Review. The use of superconductors has been proposed for 
power transmission lines. A single coaxial cable (Fig. P31.47) 
could carry a power of 1.00 3 103 MW (the output of a large 
power plant) at 200 kV, DC, over a distance of 1.00 3 103 km 
without loss. An inner wire of radius a 5 2.00 cm, made 
from the superconductor Nb3Sn, carries the current I in one 
direction. A surrounding superconducting cylinder of 
radius b 5 5.00 cm would carry the return current I. In such 
a system, what is the magnetic field (a) at the surface of the 
inner conductor and (b) at the inner surface of the outer 
conductor? (c) How much energy would be stored in the 
magnetic field in the space between the conductors in a 
1.00 3 103 km superconducting line? (d) What is the pres-
sure exerted on the outer conductor due to the current in 
the inner conductor?

48. Review. A fundamental property of a type I superconduct-
ing material is perfect diamagnetism, or demonstration of the 
Meissner effect, illustrated in Figure 29.27 in Section 29.6 and 
described as follows. If a sample of superconducting material 
is placed into an externally produced magnetic field or is 
cooled to become superconducting while it is in a magnetic 
field, electric currents appear on the surface of the sample. 
The currents have precisely the strength and orientation 
required to make the total magnetic field be zero through-
out the interior of the sample. This problem will help you 
understand the magnetic force that can then act on the sam-
ple. Compare this problem with Problem 39 in Chapter 25, 
pertaining to the force attracting a perfect dielectric into a 
strong electric field.
 A vertical solenoid with a length of 120 cm and a diam-
eter of 2.50 cm consists of 1 400 turns of copper wire car-
rying a counterclockwise current (when viewed from above) 
of 2.00 A as shown in Figure P31.48a. (a) Find the magnetic 

field in the vacuum inside the solenoid. (b) Find the energy 
density of the magnetic field. Now a superconducting bar 
2.20 cm in diameter is inserted partway into the solenoid. 
Its upper end is far outside the solenoid, where the magnetic 
field is negligible. The lower end of the bar is deep inside the 
solenoid. (c) Explain how you identify the direction required 
for the current on the curved surface of the bar so that the 
total magnetic field is zero within the bar. The field created 
by the supercurrents is sketched in Figure P31.48b, and 
the total field is sketched in Figure P31.48c. (d) The field 
of the solenoid exerts a force on the current in the super-
conductor. Explain how you determine the direction of the 
force on the bar. (e) Noting that the units J/m3 of energy 
density are the as the units N/m2 of pressure, calculate the 
magnitude of the force by multiplying the energy density of 
the solenoid field times the area of the bottom end of the  
superconducting bar.

49. A wire of nonmagnetic material, with radius R, carries cur-
rent uniformly distributed over its cross section. The total 
current carried by the wire is I. Show that the magnetic 
energy per unit length inside the wire is m0I

2/16p.

cHallenge ProblemS

50. In earlier times when many households received nondigital 
television signals from an antenna, the lead-in wires from 
the antenna were often constructed in the form of two paral-
lel wires (Fig. P31.50). The two wires carry currents of equal 
magnitude in opposite directions. The center-to-center  
separation of the wires is w, and a is their radius. Assume 
w is large enough compared with a that the wires carry the 
current uniformly distributed over their surfaces and negli-
gible magnetic field exists inside the wires. (a) Why does this 
configuration of conductors have an inductance? (b) What 
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846 Chapter 31 Inductance

constitutes the flux loop for this configuration? (c) Show  
that the inductance of a length x of this type of lead-in is

L 5
m0x

p
  ln Sw 2 a

a D
51. Assume the magnitude of the magnetic field outside a 

sphere of radius R is B 5 B0(R/r)2, where B0 is a constant. 
(a) Determine the total energy stored in the magnetic field 
outside the sphere. (b) Evaluate your result from part (a) for  
B 0 5 5.00 3 1025 T and R 5 6.00 3 106 m, values appropri-
ate for the Earth’s magnetic field.

52. In Figure P31.52, the battery 
has emf « 5 18.0 V and the 
other circuit elements have 
values L 5 0.400 H, R1 5 
2.00  kV, and R 2 5 6.00 kV. 
The switch is closed for t , 0,  
and steady-state conditions 
are established. The switch is 
then opened at t 5 0. (a) Find 
the emf across L immediately 
after t 5 0. (b) Which end of 

the coil, a or b, is at the higher potential? (c) Make graphs of 
the currents in R1 and in R 2 as a function of time, treating the  
steady-state directions as positive. Show values before and 
after t 5 0. (d) At what moment after t 5 0 does the current 
in R 2 have the value 2.00 mA?

53. Two inductors having inductances L1 and L2 are connected 
in parallel as shown in Figure P31.53a. The mutual induc-
tance between the two inductors is M. Determine the equiv-
alent inductance Leq for the system (Fig. P31.53b).
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Alternating-Current Circuits 32

32.1 AC Sources

32.2 Resistors in an 
AC Circuit

32.3 Inductors in an 
AC Circuit

32.4 Capacitors in an 
AC Circuit

32.5 The RLC Series Circuit

32.6 Power in an AC Circuit

32.7 Resonance in a Series  
RLC Circuit

32.8 The Transformer and  
Power Transmission

Storyline You are in your garage gathering some tools to 
investigate an electrical receptacle in your house that seems to be giving you 
some trouble. You grab an extension cord and decide to test it to make sure its 
ground wire is operating properly. To do so, you use a receptacle tester. You plug 
this device into an electrical receptacle and the combination of lights indicates 
whether the receptacle is properly grounded and operating correctly. You plug 
this device into the end of your extension cord. You then accidentally drop the 
end of the cord and notice something interesting about the appearance of the  
light from the device. To investigate further, you pick up the tester, turn off 
the lights in the garage, and swing the end of the cord with the tester in a circle. 
Whoa! The lights on the receptacle tester appears as a circular series of bright 
and dark segments. What causes this effect? You spend the next few minutes 
trying out different radii of the circle, different angular speeds, etc.

ConneCtionS In earlier chapters, we have studied a number of circuit 
elements: capacitors, resistors, and inductors. Beginning in Chapter 25, we 
connected these elements to batteries, forming direct-current (DC) circuits, in 
which the current always travels in the same direction. In subsequent chapters, 
we found a number of interesting effects when we combined elements in RC, 
LC, RL, and RLC circuits. But, so far, we have only used batteries as the power 
source. Every time you turn on a television set, a computer, or any of a multitude 
of other electrical appliances in a home, you are calling on an alternating-current 
(AC) circuit to provide the power to operate them. In this type of circuit, the 
power source does not provide a fixed voltage like a battery, but rather supplies 
an alternating voltage, usually sinusoidal. An understanding of AC circuits will 

A receptacle tester, used 
to test electrical sockets in 
the home. Notice that the 
two right-hand lights are 
illuminated if the socket 
is wired correctly. Other 
combinations of lights 
indicate specific problems 
with the receptacle.  
(Matt Howard/Shutterstock)
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848 Chapter 32 Alternating-Current Circuits

allow investigations well beyond the scope of this text, from home electrical sys-
tems up to studies of the power grid of a public utility that is providing energy on 
a large scale to homes and businesses.

   32.1    AC Sources
An AC circuit consists of circuit elements and a power source that provides an alter-
nating voltage Dv. This time-varying voltage from the source is described by

 Dv 5 DVmax sin vt (32.1)

where DVmax is the maximum output voltage of the source, or the voltage ampli-
tude, and v is the angular frequency of the source. There are various possibilities 
for AC sources, including generators as discussed in Section 30.5 and electrical 
oscillators. In a home, each electrical outlet serves as an AC source. Because the 
output voltage of an AC source varies sinusoidally with time, the voltage is positive 
during one half of the cycle and negative during the other half as in Figure 32.1. 
Likewise, the current in any circuit driven by an AC source is an alternating current 
that also varies sinusoidally with time.

From Equation 15.12, the angular frequency of the AC voltage is

 v 5 2pf 5
2p

T
 

where f is the frequency of the source and T is the period. The source determines the 
frequency of the current in any circuit connected to it. Commercial electric-power 
plants in the United States use a frequency of 60.0 Hz, which corresponds to an 
angular frequency of 377 rad/s.

The receptacle into which you plug your receptacle tester in the opening 
storyline is an AC source. Therefore, the lights on the device are actually flashing 
on and off many times per second. The flashing is too fast for you to detect if you 
hold the tester still. But when you rotate it in a circle, the on-and-off flashing of the 
lights on the tester is apparent.

   32.2    Resistors in an AC Circuit
With this introduction to AC sources, let’s apply an AC source to our familiar cir-
cuit elements individually, and then apply it to a combination of all the elements. 
We begin with a resistor.

Consider a simple AC circuit consisting of a resistor and an AC source  
as shown in Figure 32.2. At any instant, the algebraic sum of the voltages around 
a closed loop in a circuit must be zero (Kirchhoff’s loop rule). Therefore, Dv 1 
DvR 5 0. At the instant in the figure, the current is clockwise around the circuit; 
let’s travel around the circuit in the same direction. Using the sign conventions in 
Figure 27.12, we see that the voltage across the resistor is negative. For the current 
to be in a clockwise direction, the left side of the AC source must be momentarily 
positive, so, again from Figure 27.12, the voltage across the AC source is positive. 
Therefore,

 Dv 2 iRR 5 0 (32.2)

If we rearrange Equation 32.2 and substitute DVmax sin vt for Dv, the instantaneous 
current in the resistor is

 iR 5
Dv
R

5
DVmax

R
  sin vt 5 Imax sin vt (32.3)

�v

t

T
�Vmax

Figure 32.1  The voltage sup-
plied by an AC source is sinusoidal 
with a period T.

R

�vR

iR

�v � �Vmax sin vt 

Figure 32.2 A circuit consist-
ing of a resistor of resistance R 
connected to an AC source, 
designated by the symbol

. At the moment 
depicted in the figure, the current 
is to the right in the resistor.
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    32.2 Resistors in an AC Circuit 849

where Imax is the maximum current:

 Imax 5
DVmax

R
 (32.4)

Equation 26.7 shows that the instantaneous voltage across the resistor is

 DvR 5 iR R 5 ImaxR sin vt (32.5)

A plot of voltage and current versus time for this circuit is shown in Figure 32.3a. 
At point a, the current has a maximum value in one direction, arbitrarily called the 
positive direction. Between points a and b, the current is decreasing in magnitude 
but is still in the positive direction. At point b, the current is momentarily zero; it 
then begins to increase in the negative direction between points b and c. At point c, 
the current has reached its maximum value in the negative direction.

The current and voltage are in step with each other because they both vary as 
sin vt and reach their maximum values at the same time as shown in Figure 32.3a. 
They are said to be in phase, similar to the way two waves can be in phase as dis-
cussed in our study of wave motion in Chapter 17. For resistors in AC circuits, there 
are no new concepts to learn. Resistors behave essentially the same way in both DC 
and AC circuits. That, however, is not the case for capacitors and inductors, as we 
shall see.

To simplify our analysis of circuits containing two or more elements, we use a 
graphical representation called a phasor diagram. A phasor is a vector whose length 
is proportional to the maximum value of the variable it represents (DVmax for volt-
age and Imax for current in this discussion). The phasor rotates counterclockwise at 
an angular speed equal to the angular frequency associated with the variable. The 
projection of the phasor onto the vertical axis represents the instantaneous value of 
the quantity it represents.

Figure 32.3b shows voltage and current phasors for the circuit of Figure 32.2 
at some instant of time. Notice that Figure 32.3a shows the current and voltage 
at all times along the t axis. Figure 32.3b shows the current and voltage phasors 
at only one time. As time progresses, the phasors rotate counterclockwise. The 
projections of the phasor arrows onto the vertical axis are determined by a 
sine function of the angle of the phasor with respect to the horizontal axis. For 
example, the projection of the current phasor in Figure 32.3b is i R 5 Imax sin vt. 
Notice that this expression is the same as Equation 32.3. Therefore, the projec-
tion of a current phasor represents a current that varies sinusoidally in time. We 
can do the same with time-varying voltages. The advantage of this approach is 

  Maximum current  
in a resistor

  Voltage across a resistor

Pitfall Prevention 32.1
Time-Varying Values We continue 
to use lowercase symbols Dv and 
i to indicate the instantaneous 
values of time-varying voltages and 
currents. We will add a subscript 
to indicate the appropriate circuit 
element. Capital letters represent 
maximum values of voltage and cur-
rent such as DVmax and Imax. We will 
also use capital letters to represent 
average values of current or voltage.

Pitfall Prevention 32.2
A Phasor Is Like a Graph An alter-
nating voltage can be presented 
in different representations. One 
graphical representation is shown 
in Figure 32.1 in which the voltage 
is drawn in rectangular coordi-
nates, with voltage on the vertical 
axis and time on the horizontal 
axis. Figure 32.3b shows another 
graphical representation. The 
phase space in which the phasor 
is drawn is similar to polar coordi-
nate graph paper. The radial coor-
dinate represents the amplitude 
of the voltage. The angular coor-
dinate is the phase angle. The ver-
tical-axis coordinate of the tip of 
the phasor represents the instan-
taneous value of the voltage. The 
horizontal coordinate represents 
nothing at all. As shown in Fig-
ure 32.3b, alternating currents can 
also be represented by phasors.

  To help with this discussion of 
phasors, review Section 15.4, where 
we represented the simple har-
monic motion of a real object by the 
projection of an imaginary object’s 
uniform circular motion onto a 
coordinate axis. A phasor is a direct 
analog to this representation.

The current and the voltage are in phase:
they simultaneously reach their 
maximum values, their minimum values, 
and their zero values.

The current and the voltage 
phasors are in the same 
direction because the current is 
in phase with the voltage.

iR

�vR

Imax

Imax

�Vmax

t

a

b

c

T
vt

�Vmax

iR , �vRiR , �vR

a b

iR

�vR

Figure 32.3 (a) Plots of the instan-
taneous current iR and instanta-
neous voltage DvR across a resistor 
as functions of time. At time t 5 T, 
one cycle of the time-varying 
voltage and current has been com-
pleted. (b) Phasor diagram for the 
resistive circuit showing that the 
current is in phase with the voltage.
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that the phase relationships among currents and voltages can be represented as 
vector additions of phasors using the vector addition techniques discussed in 
Chapter 3.

In the case of the single-loop resistive circuit of Figure 32.2, the current and 
voltage phasors are in the same direction in Figure 32.3b because iR and DvR are in 
phase. The current and voltage in circuits containing capacitors and inductors have 
different phase relationships.

Q uick Quiz 32.1  Consider the voltage phasor in Figure 32.4, shown at three 
instants of time. (i) Choose the part of the figure, (a), (b), or (c), that represents 
the instant of time at which the instantaneous value of the voltage has the larg-
est magnitude. (ii) Choose the part of the figure that represents the instant of 
time at which the instantaneous value of the voltage has the smallest magnitude.

For the simple resistive circuit in Figure 32.2, notice that the average value of 
the current over one cycle is zero. That is, the current is maintained in the pos-
itive direction for the same amount of time and at the same magnitude as it is 
maintained in the negative direction. The direction of the current, however, has no 
effect on the behavior of the resistor. We can understand this concept by realizing 
that collisions between electrons and the fixed atoms of the resistor result in an 
increase in the resistor’s temperature at all times; it doesn’t matter which way the 
electrons are going.

We can make this discussion quantitative by recalling from Equation 26.22 that 
the rate at which energy is delivered to a resistor is the power P 5 i 2R, where i is 
the instantaneous current in the resistor. Because this rate is proportional to the 
square of the current, it makes no difference whether the current is direct or alter-
nating, that is, whether the sign associated with the current is positive or negative. 
The temperature increase produced by an alternating current having a maximum 
value Imax, however, is not the same as that produced by a direct current equal to 
Imax because the alternating current has this maximum value for only an instant 
during each cycle (Fig. 32.5a). What is of importance in an AC circuit is an average 
value of  current, referred to as the rms current. As we learned in Section 20.1, the 
notation rms stands for root-mean-square, which in this case means the square root 
of the mean (average) value of the square of the current: I rms 5 Ïsi 2davg

. Because i2 
varies as sin2 vt and because the average value of i 2 is 1

2I 2
max (see Fig. 32.5b), the 

rms current is

 I rms 5
Imax

Ï2
5 0.707Imax (32.6)rms current 

a

b

c

Figure 32.4  (Quick Quiz 32.1) 
A voltage phasor is shown at three 
instants of time, (a), (b), and (c).

a

b

The gray shaded regions under the curve and above the 
red dashed line have the same area as the gray shaded 
regions above the curve and below the red dashed line.

Imax

i 

2

t

t

i

I 2
max

1
2

I 2
max

0

0

(i2)avg �Figure 32.5  (a) Graph of the 
current in a resistor as a function 
of time. (b) Graph of the current 
squared in a resistor as a function 
of time, showing that the red 
dashed line is the average of  
I 2

max sin
2 vt. In general, the aver-

age value of sin2 vt or cos2 vt over 
one cycle is 12.
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    32.3 Inductors in an AC Circuit 851

This equation states that an alternating current whose maximum value is 2.00 A  
delivers to a resistor the same power as a direct current that has a value of  
(0.707)(2.00 A) 5 1.41 A. The average power delivered to a resistor that carries an 
alternating current is

 Pavg 5 I  2rmsR (32.7)

Alternating voltage is also best discussed in terms of rms voltage, and the rela-
tionship is identical to that for current:

 DVrms 5
DVmax

Ï2
5 0.707 DVmax (32.8)

When we speak of measuring a 120-V alternating voltage from an electrical outlet 
in the home, we are referring to an rms voltage of 120 V. A calculation using Equa-
tion 32.8 shows that such an alternating voltage has a maximum value of about 
170 V. One reason rms values are often used when discussing alternating currents 
and voltages is that AC ammeters and voltmeters are designed to read rms values. 
Furthermore, with rms values, many of the equations we use have the same form as 
their direct-current counterparts.

  Average power delivered  
to a resistor

  rms voltage

 Example 32.1    What Is the rms Current?

The voltage output of an AC source is given by the expression Dv 5 200 sin vt, where Dv is in volts. Find the rms current in 
the circuit when this source is connected to a 47.0-V resistor.

S O l u T I O N

Conceptualize Figure 32.2 shows the physical situation for this problem.

Categorize We evaluate the current with an equation developed in this section, so we categorize this example as a substitu-
tion problem.

Combine Equations 32.4 and 32.6 to find the  I rms 5
I max

Ï2
5

DVmax

Ï2R
 

rms current:

Comparing the expression for voltage output with  I rms 5
200 V

Ï2 s47.0 Vd
5  3.01 A 

the general form Dv 5 DVmax sin vt shows that  
DVmax 5 200 V. Substitute numerical values:

   32.3    Inductors in an AC Circuit
Now let’s move on to another circuit element to which we will apply an alternating 
voltage. Consider an AC circuit consisting only of an inductor connected to the 
terminals of an AC source as shown in Figure 32.6. Because DvL 5 2L(diL/dt) is the 
self-induced instantaneous voltage across the inductor (see Eq. 31.1), Kirchhoff’s 
loop rule applied to this circuit gives Dv 1 DvL 5 0, or

 Dv 2 L 
diL

dt
5 0 

Substituting DVmax sin vt for Dv and rearranging gives

 Dv 5 L 
diL

dt
5 DVmax sin vt (32.9)

L

�vL

�v � �Vmax sin vt 

iL

Figure 32.6 A circuit consisting 
of an inductor of inductance L 
connected to an AC source.
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Solving this equation for diL gives

diL 5
DVmax

L
  sin vt dt

Integrating this expression1 gives the instantaneous current iL in the inductor as a 
function of time:

 iL 5
DVmax

L
 # sin vt dt 5 2 

DVmax

vL
  cos vt (32.10)

Using the trigonometric identity cos vt 5 2sin(vt 2 p/2), we can express Equation 
32.10 as

 iL 5
DVmax

vL
  sin Svt 2

p

2D (32.11)

Comparing this result with Equation 32.9 shows that the instantaneous current iL 
in the inductor and the instantaneous voltage DvL across the inductor are out of 
phase by p/2 rad 5 908.

A plot of voltage and current versus time is shown in Figure 32.7a. When the voltage 
DvL across the inductor is a maximum (point a in Fig. 32.7a), the current in the induc-
tor has a value of zero (point d ), but is changing at its highest rate. When the voltage 
is zero (point b ), the current has its maximum value (point e). Notice that the voltage 
reaches its maximum value one-quarter of a period before the current reaches its max-
imum value. Therefore, for a sinusoidal applied voltage, the current in an inductor 
always lags behind the voltage across the inductor by 908 (one-quarter cycle in time).

As with the relationship between current and voltage for a resistor, we can rep-
resent this relationship for an inductor with a phasor diagram as in Figure 32.7b. 
The phasors are at 908 to each other, representing the 908 phase difference between 
current and voltage. (See Eqs. 32.9 and 32.11.)

Equation 32.10 shows that the current in an inductive circuit reaches its maxi-
mum value when cos vt 5 61:

 Imax 5
DVmax

vL
 (32.12)

Notice that this expression is similar in form to the relationship between current, 
voltage, and resistance in a DC circuit, I 5 DV/R (Eq. 26.7). Because Imax has units 
of amperes and DVmax has units of volts, vL must have units of ohms. Therefore, vL 

Current in an inductor 
in an AC circuit

Maximum current in 
an inductor

1 We neglect the constant of integration here because it depends on the initial conditions, which are not important 
for this situation.

The current lags the voltage by 
one-fourth of a cycle.

The current and voltage phasors 
are at 90� to each other.

Imax

t

a

c

d b

e

Tf

�Vmax

�vL, iL

vt

�vL

iL iL

�vL �Vmax

Imax

a b

�vL, iL

Figure 32.7 (a) Plots of the 
instantaneous current iL and 
instantaneous voltage DvL across 
an inductor as functions of time. 
(b) Phasor diagram for the induc-
tive circuit.
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    32.3 Inductors in an AC Circuit 853

has the same units as resistance and is related to current and voltage in the same 
way as resistance. It must behave in a manner similar to resistance in the sense that it 
represents opposition to the flow of charge. Because vL depends on the applied fre-
quency v, the inductor reacts differently, in terms of offering opposition to current, 
for different frequencies. For this reason, we define vL as the inductive reactance XL:

 XL ; vL (32.13)

Therefore, we can write Equation 32.12 as

 Imax 5
DVmax

XL

 (32.14)

The expression for the rms current in an inductor is similar to Equation 32.14, with 
Imax replaced by Irms and DVmax replaced by DVrms.

Equation 32.13 indicates that, for a given applied voltage, the inductive reac-
tance increases as the frequency increases. This conclusion is consistent with Fara-
day’s law: the greater the rate of change of current in the inductor, the larger the 
back emf. The larger back emf translates to an increase in the reactance and a 
decrease in the current.

Using Equations 32.9 and 32.14, we find that the instantaneous voltage across 
the inductor is

 DvL 5 2L 
diL

dt
5 2DVmax sin vt 5 2Imax XL  sin vt (32.15)

Q uick Quiz 32.2  Consider the AC circuit in Figure 32.8. The frequency of the 
AC source is adjusted while its voltage amplitude is held constant. When does the 
lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows 
brightest at low frequencies. (c) The brightness is the same at all frequencies.

  Inductive reactance

  Voltage across an inductor

L

R

Figure 32.8  (Quick Quiz 32.2) 
At what frequencies does the light-
bulb glow the brightest?

 Example 32.2    A Purely Inductive AC Circuit

In a purely inductive AC circuit, L 5 25.0 mH and the rms voltage is 150 V. Calculate the inductive reactance and rms cur-
rent in the circuit if the frequency is 60.0 Hz.

S O l u T I O N

Conceptualize Figure 32.6 shows the physical situation for this problem. Keep in mind that inductive reactance increases with 
increasing frequency of the applied voltage.

Categorize We determine the reactance and the current from equations developed in this section, so we categorize this 
example as a substitution problem.

Use Equation 32.13 to find the inductive reactance: XL 5 vL 5 2pfL 5 2p(60.0 Hz)(25.0 3 1023 H)

5  9.42 V

Use an rms version of Equation 32.14 to find the  I rms 5
DVrms

XL

5
150 V
9.42 V

5  15.9 A 
rms current:

W H A T  I F ? If the frequency increases to 6.00 kHz, what happens to the rms current in the circuit?

Answer If the frequency increases, the inductive reactance also increases because the current is changing at a higher rate. 
The increase in inductive reactance results in a lower current.

Let’s calculate the new inductive reactance and the new rms current:

XL 5 2p(6.00 3 103 Hz)(25.0 3 1023 H) 5 942 V

I rms 5
150 V
942 V

5 0.159 A
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854 Chapter 32 Alternating-Current Circuits

   32.4    Capacitors in an AC Circuit
Figure 32.9 shows an AC circuit consisting of a capacitor connected across the 
terminals of an AC source. Kirchhoff’s loop rule applied to this circuit gives  
Dv 1 DvC 5 0, or

 Dv 2
q

C
5 0 (32.16)

where q is the charge on the capacitor and the negative sign is due to the fact that 
the sign of the potential difference across the capacitor is opposite that of the 
source, as we discussed with regard to Figure 27.15. Substituting DVmax sin vt for Dv 
and rearranging gives

 q 5 C DVmax sin vt (32.17)

where q is the instantaneous charge on the capacitor. Differentiating Equation 
32.17 with respect to time gives the instantaneous current in the circuit:

 iC 5
dq

dt
5 vC DVmax cos vt (32.18)

Using the trigonometric identity cos vt 5 sin (vt 1 p/2), we can express Equation 
32.18 in the alternative form

 iC 5 vC DVmax sin Svt 1
p

2D (32.19)

Comparing this expression with Dv 5 DVmax sin vt shows that the current is p/2 
rad 5 908 out of phase with the voltage across the capacitor. A plot of current and 
voltage versus time for the capacitor appears in Figure 32.10.

Consider a point such as a in Figure 32.10a where the voltage across the capaci-
tor is a maximum. That occurs when the capacitor reaches its maximum charge. At 
this instant, the current is zero (point d). At points such as e, the current has a max-
imum magnitude, which occurs at those instants when the charge on the capacitor 
reaches zero and the capacitor begins to recharge with the opposite polarity. When 
the charge is zero, the voltage across the capacitor is zero (point b).

As with inductors, we can represent the current and voltage for a capacitor on a 
phasor diagram. The phasor diagram in Figure 32.10b shows that for a sinusoidally 
applied voltage, the current always leads the voltage across a capacitor by 908.

Equation 32.18 shows that the current in the circuit reaches its maximum value 
when cos vt 5 61:

 Imax 5 vC DVmax 5
DVmax

s1yvCd
 (32.20)

Current in a capacitor 
in an AC circuit

C

�vC

�v � �Vmax sin vt 

iC

Figure 32.9 A circuit consisting 
of a capacitor of capacitance C 
connected to an AC source.

a b

Imax
Imax

a

d b

c

e

t
T

�Vmax

�vC , iC �vC , iC

iC

�vC
�Vmax

iC

�vC

The current and voltage phasors 
are at 90� to each other.

The current leads the voltage 
by one-fourth of a cycle.

vt

Figure 32.10 (a) Plots of the 
instantaneous current iC and 
instantaneous voltage DvC across  
a capacitor as functions of time.  
(b) Phasor diagram for the capac-
itive circuit.
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    32.4 Capacitors in an AC Circuit 855

As in the case with inductors, this looks like Equation 26.7, so the denominator 
plays the role of resistance, with units of ohms. We give the combination 1/vC the 
symbol XC, and because this function varies with frequency, we define it as the 
capacitive reactance:

 XC ;
1

vC
 (32.21)

We can now write Equation 32.20 as

 Imax 5
DVmax

XC

 (32.22)

The rms current is given by an expression similar to Equation 32.22, with Imax 
replaced by Irms and DVmax replaced by DVrms.

Using Equation 32.22, we can express the instantaneous voltage across the 
capacitor as

 DvC 5 DVmax sin vt 5 Imax XC sin vt (32.23)

Equations 32.21 and 32.22 indicate that as the frequency of the voltage source 
increases, the capacitive reactance decreases and the maximum current therefore 
increases. The frequency of the current is determined by the frequency of the volt-
age source driving the circuit. As the frequency approaches zero, the capacitive 
reactance approaches infinity and the current therefore approaches zero. This con-
clusion makes sense because the circuit approaches direct current conditions as v 
approaches zero and the capacitor represents an open circuit.

Q uick Quiz 32.3  Consider the AC circuit in Figure 32.11. The frequency of 
the AC source is adjusted while its voltage amplitude is held constant. When 
does the lightbulb glow the brightest? (a) It glows brightest at high frequencies. 
(b) It glows brightest at low frequencies. (c) The brightness is the same at all 
frequencies.

Q uick Quiz 32.4  Consider the AC circuit in Figure 32.12. The frequency of 
the AC source is adjusted while its voltage amplitude is held constant. When 
does the lightbulb glow the brightest? (a) It glows brightest at high frequencies. 
(b) It glows brightest at low frequencies. (c) The brightness is the same at all 
frequencies.

  Capacitive reactance

  Maximum current  
in a capacitor

  Voltage across a capacitor

C

R

Figure 32.11  (Quick Quiz 32.3)

L

R

C

Figure 32.12  (Quick Quiz 32.4)

 Example 32.3    A Purely Capacitive AC Circuit

An 8.00-mF capacitor is connected to the terminals of a 60.0-Hz AC source whose rms voltage is 150 V. Find the capacitive 
reactance and the rms current in the circuit.

S O l u T I O N

Conceptualize Figure 32.9 shows the physical situation for this problem. Keep in mind that capacitive reactance decreases 
with increasing frequency of the applied voltage.

Categorize We determine the reactance and the current from equations developed in this section, so we categorize this 
example as a substitution problem.

Use Equation 32.21 to find the capacitive reactance: X C 5
1

vC
5

1
2pfC

5
1

2ps60.0 Hzds8.00 3 1026 Fd
5  332 V

Use an rms version of Equation 32.22 to find the  I rms 5
DVrms

XC

5
150 V
332 V

5  0.452 A 
rms current:

continued
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32.3 c o n t i n u e d

W H A T  I F ? What if the frequency is doubled? What happens to the rms current in the circuit?

Answer If the frequency increases, the capacitive reactance decreases, which is just the opposite from the case of an induc-
tor. The decrease in capacitive reactance results in an increase in the current.

Let’s calculate the new capacitive reactance and the new rms current:

X C 5
1

vC
5

1
2ps120 Hzds8.00 3 1026 Fd

5 166 V

I rms 5
150 V
166 V

5 0.904 A

   32.5    The RLC Series Circuit
In the previous sections, we considered individual circuit elements connected to 
an AC source. Figure 32.13 shows a circuit that contains a combination of all three 
of our circuit elements: a resistor, an inductor, and a capacitor connected in series. 
We studied this circuit in Section 31.6, where we charged the capacitor and then 
closed a switch to connect the other two circuit elements. That led to oscillations 
of the circuit that were damped due to the resistance. We compared the circuit 
to a mechanical oscillator (Figure 15.1), where we pull a block outward, stretch-
ing a spring, and let it go, watching the damped oscillations due to friction. In 
Section 15.7, we applied a sinusoidal driving force to a mechanical oscillator. Let us 
look at the electrical analog to this situation here, where we connect an alternating-
voltage source across the series connection of circuit elements. If the applied 
voltage varies sinusoidally with time, the instantaneous applied voltage is

Dv 5 DVmax sin vt

The current in the circuit is given by

i 5 Imax sin svt 2 fd

where f is some phase angle between the current and the applied voltage. Based 
on our discussions of phase in Sections 32.3 and 32.4, we expect that the current 
will generally not be in phase with the voltage in an RLC circuit. 

Because the circuit elements in Figure 32.13 are in series, the current every-
where in the circuit must be the same at any instant. That is, the current at all 
points in a series AC circuit has the same amplitude and phase. Based on the 
preceding sections, we know that the voltage across each element has a differ-
ent amplitude and phase. In particular, the voltage across the resistor is in phase 
with the current, the voltage across the inductor leads the current by 908, and the 
voltage across the capacitor lags behind the current by 908. Using these phase 
relationships, we can express the instantaneous voltages across the three circuit 
elements as

 DvR 5 Imax R sin vt 5 DVR sin vt (32.24)

 DvL 5 ImaxXL sin Svt 1
p

2D 5 DVL cos vt (32.25)

 DvC 5 ImaxXC sin Svt 2
p

2D 5 2DVC cos vt (32.26)

The sum of these three voltages must equal the instantaneous voltage Dv from 
the AC source, but it is important to recognize that because the three voltages 

R L C

�vR �vL �vC

Figure 32.13 A series circuit 
consisting of a resistor, an induc-
tor, and a capacitor connected to 
an AC source.
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    32.5 The RLC Series Circuit 857

have different phase relationships with the current, they cannot be added 
directly. Figure 32.14 represents the phasors at an instant at which the current 
in all three elements is momentarily zero. The zero current is represented by 
the current phasor along the horizontal axis in each part of the figure. Next the 
voltage phasor is drawn at the appropriate phase angle to the current for each 
element.

Because phasors are rotating vectors, the voltage phasors in Figure 32.14 can 
be combined using vector addition as in Figure 32.15. In Figure 32.15a, the volt-
age phasors in Figure 32.14 are combined on the same coordinate axes. Figure 
32.15b shows the vector addition of the voltage phasors. The voltage phasors DVL 
and DVC are in opposite directions along the same line, so we can construct the 
difference phasor DVL 2 DVC, which is perpendicular to the phasor DVR. This 
diagram shows that the vector sum of the voltage amplitudes DVR, DVL, and DVC  
equals a phasor whose length is the maximum applied voltage DVmax and that 
makes an angle f with the current phasor Imax. From the right triangle in Fig-
ure 32.15b, we see that

DVmax 5 ÏDVR
2  1 sDVL 2 DVC 

d2 5 ÏsImaxRd2 1 sImaxXL 2 ImaxXC 
d2

DVmax 5 Imax ÏR 2 1 sXL 2 XC 
d2

Therefore, we can express the maximum current as

 Imax 5
DVmax

ÏR 2 1 sXL 2 XC 
d2

 (32.27)

Once again, this expression has the same mathematical form as Equation 26.7. 
The denominator of the fraction plays the role of resistance and is called the 
impedance Z of the circuit:

 Z ; ÏR 2 1 sXL 2 XCd2 (32.28)

where impedance also has units of ohms. Therefore, Equation 32.27 can be written 
in the form

 Imax 5
DVmax

Z
 (32.29)

Equation 32.29 is the AC equivalent of Equation 26.7. Note that the impedance 
and therefore the current in an AC circuit depend on the resistance, the induc-
tance, the capacitance, and the frequency (because the reactances are frequency 
dependent).

Capacitor

v

c

�VC

Imax

b

Inductor

v

Imax

�VL

a

Resistor

v

Imax �VR

Figure 32.14  Phase relationships 
between the voltage and  
current phasors for (a) a resistor, 
(b) an inductor, and (c) a capaci-
tor connected in series.

The total voltage �Vmax 
makes an angle f with Imax.

The phasors of Figure 32.14 
are combined on a single set 
of axes.

�VL

�VR
�VC

�VR

�VL � �VC

Imax
Imax

Vmax�

v

f

v

a b

Figure 32.15 (a) The phasors 
in Figure 32.14 for the elements 
in a series RLC circuit are com-
bined on a single diagram. (b) 
The inductance and capacitance 
phasors are added together and 
then added vectorially to the resis-
tance phasor.
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858 Chapter 32 Alternating-Current Circuits

From the right triangle in the phasor diagram in Figure 32.15b, the phase angle 
f between the current and the voltage is found as follows:

f 5 tan21 SDVL 2 DVC

DVR
D 5 tan21 SImaxXL 2 ImaxXC

ImaxR D
 f 5 tan21 SXL 2 XC

R D (32.30)

When XL . XC (which occurs at high frequencies), the phase angle is positive, signi-
fying that the current lags the applied voltage as in Figure 32.15b. We describe this 
situation by saying that the circuit is more inductive than capacitive. When XL , XC, 
the phase angle is negative, signifying that the current leads the applied voltage, 
and the circuit is more capacitive than inductive. When XL 5 XC, the phase angle is 
zero and the circuit is purely resistive.

Q uick Quiz 32.5  Label each part of Figure 32.16, (a), (b), and (c), as repre-
senting XL . XC, XL 5 XC, or XL , XC.

Phase angle 

�Vmax
Imax

b

�Vmax

Imax

ca

�VmaxImax

Figure 32.16  (Quick Quiz 32.5)  
Match the phasor diagrams to 
the relationships between the 
reactances.

 Example 32.4    Analyzing a Series RLC Circuit

A series RLC circuit has R 5 425 V, L 5 1.25 H, and C 5 3.50 mF. It is connected to an AC source with f 5 60.0 Hz and  
DVmax 5 150 V.

(A) Determine the inductive reactance, the capacitive reactance, and the impedance of the circuit.

S O l u T I O N

Conceptualize The circuit of interest in this example is shown in Figure 32.13. The current in the combination of the resistor, 
inductor, and capacitor oscillates at a particular phase angle with respect to the applied voltage.

Categorize The circuit is a simple series RLC circuit, so we can use the approach discussed in this section.

Analyze Find the angular frequency: v 5 2pf 5 2p(60.0 Hz) 5 377 s21

Use Equation 32.13 to find the inductive reactance: XL 5 vL 5 (377 s21)(1.25 H) 5  471 V

Use Equation 32.21 to find the capacitive reactance: X C 5
1

vC
5

1
s377 s21ds3.50 3 1026 Fd

5  758 V

Use Equation 32.28 to find the impedance: Z 5 ÏR 2 1 sXL 2 X C d2

5 Ïs425 Vd2 1 s471 V 2 758 Vd2 5  513 V

(B) Find the maximum current in the circuit.

S O l u T I O N

Use Equation 32.29 to find the maximum current: I max 5
DVmax

Z
5

150 V
513 V

5   0.293 A
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32.4 c o n t i n u e d

(C) Find the phase angle between the current and voltage.

S O l u T I O N

Use Equation 32.30 to calculate the phase angle: f 5 tan21 SXL 2 XC

R D 5 tan21 S471 V 2 758 V
425 V D 5  234.08

(D) Find the maximum voltage across each element.

S O l u T I O N

Use Equations 32.4, 32.14, and 32.22 to calculate the  DVR 5 I max R 5 s0.293 Ads425 Vd 5  124 V 
maximum voltages:
 DVL 5 I max XL 5 s0.293 Ads471 Vd 5  138 V

 DVC 5 I maxX C 5 s0.293 Ads758 Vd 5  222 V

(E) What replacement value of L should an engineer analyzing the circuit choose such that the current leads the applied 
voltage by 30.08 rather than 34.08? All other values in the circuit stay the same.

S O l u T I O N

Solve Equation 32.30 for the inductive  X L 5 X C 1 R tan f 
reactance:

Substitute Equations 32.13 and 32.21 into this  vL 5
1

vC
1 R tan f 

expression:

Solve for L: L 5
1
v S 1

vC
1 R tan fD

Substitute the given values: L 5
1

s377 s21d 3 1
s377 s21ds3.50 3 1026 Fd

1 s425 Vd tan s230.08d4 

 L 5  1.36 H

Finalize Because the capacitive reactance is larger than the inductive reactance, the circuit is more capacitive than inductive. 
In this case, the phase angle f is negative, so the current leads the applied voltage.

Using Equations 32.24, 32.25, and 32.26, the instantaneous voltages across the three elements are

 DvR 5 (124 V) sin 377t

 DvL 5 (138 V) cos 377t

 DvC 5 (2222 V) cos 377t

W H A T  I F ?  What if you added up the maximum voltages across the three circuit elements? Is that a physically 
meaningful quantity?

Answer The sum of the maximum voltages across the elements is DVR 1 DVL 1 DVC 5 484 V. This sum is much greater than 
the maximum voltage of the source, 150 V. The sum of the maximum voltages is a meaningless quantity because when sinus-
oidally varying quantities are added, both their amplitudes and their phases must be taken into account. The maximum voltages 
across the various elements occur at different times. Therefore, the voltages must be added in a way that takes account of the 
different phases as shown in Figure 32.15.

   32.6    Power in an AC Circuit
Now let’s take an energy approach to analyzing AC circuits and consider the trans-
fer of energy from the AC source to the circuit. The power delivered by a battery to 
an external DC circuit is equal to the product of the current and the terminal volt-
age of the battery. Likewise, the instantaneous power delivered by an AC source to 
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860 Chapter 32 Alternating-Current Circuits

a circuit is the product of the current and the applied voltage. For the RLC circuit 
shown in Figure 32.13, we can express the instantaneous power p as

p 5 i Dv 5 [Imax sin (vt 2 f)][DVmax sin vt ]

 p 5 Imax DVmax sin vt sin (vt 2 f) (32.31)

This result is a complicated function of time and is therefore not very useful from 
a practical viewpoint. What is generally of interest is the average power over one 
or more cycles. Such an average can be computed by first using the trigonometric 
identity sin (vt 2 f) 5 sin vt cos f 2 cos vt sin f. Substituting this identity into 
Equation 32.31 gives

 p 5 Imax DVmax sin
2 vt cos f 2 Imax DVmax sin vt cos vt sin f (32.32)

Let’s now take the time average of p over one or more cycles, noting that Imax, 
DVmax, f, and v are all constants. The time average of the first term on the right 
of the equal sign in Equation 32.32 involves the average value of sin2 vt, which is 
1
2 . The time average of the second term on the right of the equal sign is identically 
zero because sin vt cos vt 5 1

2 sin 2vt, and the average value of sin 2vt is zero. 
Therefore, we can express the average power Pavg as

 Pavg 5 1
2 Imax DVmax cos f (32.33)

It is convenient to express the average power in terms of the rms current and rms 
voltage defined by Equations 32.6 and 32.8:

 Pavg 5 Irms  DVrms cos f (32.34)

where the quantity cos f is called the power factor. Figure 32.15b shows that 
the maximum voltage across the resistor is given by DVR 5 DVmax cos f 5 ImaxR. 
Therefore, 

 cos f 5 Imax 
R

DVmax

5
R
Z

 (32.35)

and we can express Pavg as

Pavg 5 I rms DVrms cos f 5 I rms DVrmsSR
ZD 5 I rmsSDVrms

Z DR

Recognizing that DVrms /Z 5 Irms gives

 Pavg 5 I  2rmsR (32.36)

The average power delivered by the source is converted to internal energy in the 
resistor, just as in the case of a DC circuit. When the load is purely resistive, f 5 0, 
cos f 5 1, and, from Equation 32.34, we see that

Pavg 5 Irms  DVrms

Note that no power losses are associated with ideal capacitors and ideal induc-
tors in an AC circuit. Energy is temporarily stored as UE in a capacitor and UB in an 
inductor, but no energy is transformed to Eint in these circuit elements.

Equation 32.34 shows that the power delivered by an AC source to any circuit 
depends on the phase, a result that has many interesting applications. For exam-
ple, a factory that uses large motors in machines, generators, or transformers has a 
large inductive load (because of all the windings). To deliver greater power to such 
devices in the factory without using excessively high voltages, technicians introduce 
capacitance in the circuits to shift the phase.

Average power delivered 
to an RLC circuit
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Q uick Quiz 32.6  An AC source drives an RLC circuit with a fixed voltage 
amplitude. If the driving frequency is v1, the circuit is more capacitive than 
inductive and the phase angle is 2108. If the driving frequency is v2, the circuit 
is more inductive than capacitive and the phase angle is 1108. At what frequency 
is the largest amount of power delivered to the circuit? (a) It is largest at v1. (b) It 
is largest at v2. (c) The same amount of power is delivered at both frequencies.

   32.7    Resonance in a Series RLC Circuit
We investigated mechanical oscillating systems in Chapter 15. In Section 15.7, we 
considered the situation in which an oscillating system is driven by an external 
force that varies sinusoidally in time. This led to the concept of resonance, where 
the system exhibits its maximum response when driven at its natural frequency. As 
shown in Section 31.6, a series RLC circuit is an electrical oscillating system with a 
natural frequency. Imagine now driving the circuit with a sinusoidal voltage like 
that in Equation 32.1. We expect a resonance phenomenon. Such a circuit is said 
to be in  resonance when the driving frequency is such that the rms current has its 
maximum value. In general, the rms current in the circuit can be written

 I rms 5
DVrms

Z
 (32.37)

where Z is the impedance of the circuit. Substituting the expression for Z from 
Equation 32.28 into Equation 32.37 gives

 I rms 5
DVrms

ÏR 2 1 sXL 2 XCd2
 (32.38)

Because the impedance depends on the frequency of the source, the current in 
the RLC circuit also depends on the frequency. The angular frequency v0 at which  
XL 2 XC 5 0 is called the resonance frequency of the circuit. At this frequency, the 
circuit will exhibit its maximum response: the rms current in Equation 32.38 will 
have its largest value. To find v0, we set XL 5 XC, which gives v0L 5 1/v0C, or

 v0 5
1

ÏLC
 (32.39)   Resonance frequency

 Example 32.5    Average Power in an RLC Series Circuit

Calculate the average power delivered to the series RLC circuit described in Example 32.4.

S O l u T I O N

Conceptualize Consider the circuit in Figure 32.13 and imagine energy being delivered to the circuit by the AC source. 
Review Example 32.4 for other details about this circuit.

Categorize We find the result by using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 32.8 and the maximum voltage from  DVrms 5
DVmax

Ï2
5

150 V

Ï2
5 106 V 

Example 32.4 to find the rms voltage from the source:

Similarly, find the rms current in the circuit: I rms 5
I max

Ï2
5

0.293 A

Ï2
5 0.207 A

Use Equation 32.34 to find the power delivered by  Pavg 5 Irms Vrms cos f 5 (0.207 A)(106 V) cos (234.08) 
the source:

5  18.2 W
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862 Chapter 32 Alternating-Current Circuits

This frequency matches the natural frequency of oscillation of an LC circuit (see 
Section 31.5). Therefore, as we expect, the rms current in a series RLC circuit has 
its maximum value when the frequency of the applied voltage matches the natural 
oscillator frequency, which depends only on L and C. Furthermore, at the reso-
nance frequency, the current is in phase with the applied voltage.

Q uick Quiz 32.7  What is the impedance of a series RLC circuit at resonance?  
(a) larger than R (b) less than R (c) equal to R (d) impossible to determine

A plot of rms current versus angular frequency for a series RLC circuit is shown 
in Figure 32.17a. The data assume a constant DVrms 5 5.0 mV, L 5 5.0 mH, and C 5 
2.0 nF. The three curves correspond to three values of R. In each case, the rms 
current has its maximum value at the resonance frequency v0. Furthermore, the 
curves become narrower and taller as the resistance decreases.

Equation 32.38 shows that when R 5 0, the current becomes infinite at reso-
nance. Real circuits, however, always have some resistance, which limits the value 
of the current to some finite value. The analog in a mechanical oscillating system 
is that the amplitude of the oscillation cannot become infinite, because there is 
always some friction in the system.

We can also calculate the average power as a function of frequency for a series 
RLC circuit. Using Equations 32.36, 32.37, and 32.28 gives

 Pavg 5 I 2
rms R 5

sDVrmsd
2

Z 2  R 5
sDVrmsd

2R

R 2 1 sXL 2 XC 
d2 (32.40)

Because XL 5 vL, XC 5 1/vC, and v0
2 5 1/LC, the term (XL 2 XC )2 can be expressed as

sXL 2 XCd2 5 SvL 2
1

vCD2

5
L2

v2 sv2 2 v0
2  d2

Using this result in Equation 32.40 gives

 Pavg 5
sDVrmsd

2 Rv2

R 2 v2 1 L2sv2 2 v0
2  d2 (32.41)

Equation 32.41 shows that at resonance, when v 5 v0, the average power is a max-
imum and has the value (DVrms)

2/R. Figure 32.17b is a plot of average power versus 

Average power as a function 
of frequency in an RLC circuit

Figure 32.17 (a) The rms cur-
rent versus frequency for a series 
RLC circuit for three values of R . 
(b) Average power delivered to 
the circuit versus frequency for 
the series RLC circuit for three 
values of R .
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    32.8 The Transformer and Power Transmission 863

frequency for three values of R in a series RLC circuit. As the resistance is made 
smaller, the curve becomes sharper in the vicinity of the resonance frequency. This 
curve sharpness is usually described by a dimensionless parameter known as the 
quality factor,2 denoted by Q:

 Q 5
v0

Dv
 (32.42)

where Dv is the width of the curve measured between the two values of v for which 
Pavg has one-half its maximum value, called the half-power points (see Fig. 32.17b). It 
is left as a problem (Problem 48) to show that the width at the half-power points has 
the value Dv 5 R/L so that

 Q 5
v0L

R
 (32.43)

The receiving circuit of a radio is an important application of a resonance RLC 
circuit. The driving voltages on the circuit come from a large number of radio 
signals from nearby transmitting stations causing electromagnetic oscillations in 
the antenna of the radio. Despite being driven by many voltages simultaneously 
from different radio stations, the circuit will respond only to one: the one whose 
frequency matches that of the resonance frequency of the radio. The resonance 
frequency can be varied by adjusting the capacitance of the circuit, which you do 
when you turn the tuning knob. The one signal to which the circuit responds is 
then passed on to the amplifier and loudspeakers. Because many signals over a 
range of frequencies drive the tuning circuit, it is important to design a high-Q 
circuit to eliminate unwanted signals. In this manner, stations whose frequencies 
are near but not equal to the resonance frequency have a response at the receiver 
that is negligibly small relative to the signal that matches the resonance frequency.

  Quality factor

 Example 32.6    A Resonating Series RLC Circuit

Consider a series RLC circuit for which R 5 150 V, L 5 20.0 mH, DVrms 5 20.0 V, and v 5 5 000 s21. Determine the value of 
the capacitance for which the current is a maximum.

S O l u T I O N

Conceptualize In this problem, the driving frequency is fixed. We wish to design the circuit in Figure 32.13 so that its reso-
nance frequency matches the driving frequency.

Categorize We find the result by using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 32.39 to solve for the required capacitance  v0 5
1

ÏLC
   S   C 5

1
v0

2L
 

in terms of the resonance frequency:

Note that we only need two of the quantities provided.  C 5
1

s5.00 3 103 s21d2s20.0 3 1023 Hd
5  2.00 mF 

Substitute numerical values:

   32.8    The Transformer and Power Transmission
As discussed in Section 26.6, it is economical to use a high voltage and a low current 
to minimize the I  2R loss in transmission lines when electric power is transmitted 
over great distances. Consequently, 350-kV lines are common, and in many areas, 
even higher-voltage (765-kV) lines are used. At the receiving end of such lines, the 

2 The quality factor is also defined as the ratio 2pE/DE, where E is the energy stored in the oscillating system and DE 
is the energy decrease per cycle of oscillation due to the resistance.
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consumer requires power at a low voltage (for safety and for efficiency in design). 
In practice, the voltage is decreased to approximately 20 000 V at a distribution 
substation, then to 4 000 V for delivery to residential areas, and finally to 120 V 
and 240 V at the customer’s site. Therefore, a device is needed that can change the 
alternating voltage and current without causing appreciable changes in the power 
delivered. The AC transformer is that device. Figure 32.18 shows a typical trans-
former in a residential area.

In its simplest form, the AC transformer consists of two coils of wire wound 
around a core of iron as illustrated in Figure 32.19. (Compare this arrangement to 
Faraday’s experiment in Figure 30.2.) The coil on the left, which is connected to 
the input alternating-voltage source and has N1 turns, is called the primary winding 
(or the primary). The coil on the right, consisting of N2 turns and connected to a 
load resistor RL, is called the secondary winding (or the secondary). The purposes of 
the iron core are to increase the magnetic flux through the coil and to provide a 
medium in which nearly all the magnetic field lines through one coil pass through 
the other coil. In this way, the iron core increases the mutual induction of the coils.

Faraday’s law (Eq. 30.1) gives the relationship between the voltage Dv1 across the 
primary and the flux FB through each turn of the primary:

 Dv1 5 2N1 
dFB

dt
 (32.44)

If we assume all magnetic field lines remain within the iron core, the flux through 
each turn of the primary equals the flux through each turn of the secondary. 
Hence, the voltage across the secondary is

 Dv2 5 2N2 
dFB

dt
 (32.45)

Solving Equation 32.44 for d FB /dt and substituting the result into Equation 32.45 
gives

 Dv2 5
N2

N1

 Dv1 (32.46)

When N2 . N1, the output voltage Dv2 exceeds the input voltage Dv1. This configu-
ration is referred to as a step-up transformer. When N2 , N1, the output voltage is less 
than the input voltage, and we have a step-down transformer. A circuit diagram for a 
transformer connected to a load resistance is shown in Figure 32.20.

When a current I1 exists in the primary circuit, a current I2 is induced in the 
secondary. (In this discussion, uppercase I and DV refer to rms values.) If the load 
in the secondary circuit is a pure resistance, the induced current is in phase with 
the induced voltage. The power supplied to the secondary circuit must be provided 
by the AC source connected to the primary circuit. In an ideal transformer where 
there are no losses, the power I1 DV1 supplied by the source is equal to the power  
I2 DV2 in the secondary circuit. That is,

 I1 DV1 5 I2 DV2 (32.47)

The value of the load resistance RL determines the value of the secondary current 
because I2 5 DV2/RL. Furthermore, the current in the primary is I1 5 DV1/Req, 
where

 R eq 5 SN1

N2
D2

 RL (32.48)

is the equivalent resistance of the load resistance when viewed from the primary 
side. We see from this analysis that a transformer may be used to match resis-
tances between the primary circuit and the load. In this manner, maximum power 
transfer can be achieved between a given power source and the load resistance. 

Figure 32.18 The transformer 
on this power pole steps down 
AC voltage from 4 000 V to 240 V 
for distribution to individual 
residences.
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An alternating voltage �v1 is 
applied to the primary coil, and 
the output voltage �v2 is across 
the resistor of resistance RL.

�v1

Figure 32.19  An ideal trans-
former consists of two coils wound 
on the same iron core. 

N1 N2

I1 I2

RL�v1 �v2

Figure 32.20  Circuit diagram 
for a transformer.
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    32.8 The Transformer and Power Transmission 865

For example, a transformer connected between the 1-kV output of an audio ampli-
fier and an 8-V speaker ensures that as much of the audio signal as possible is 
transferred into the speaker. In stereo terminology, this process is called impedance 
matching.

In the discussion above, we have assumed an ideal transformer in which the 
energy losses in the windings and core are zero. In reality, there are possibilities for 
energy loss, and there are ways of minimizing them. Eddy currents can be gener-
ated in the iron core, leading to an increase in internal energy due to the resistance 
of the iron. These losses can be reduced by using a laminated core as discussed in 
Section 30.6. Transformation of energy to internal energy in the finite resistance 
of the coil wires is usually quite small. Typical transformers have power efficiencies 
from 90% to 99%.

To operate properly, many common household electronic devices require low 
voltages. A small transformer that plugs directly into the wall like the one illustrated 
in Figure 32.21 can provide the proper voltage. The photograph shows the two wind-
ings wrapped around a common iron core that is found inside all these little “black 
boxes.” This particular transformer converts the 120-V AC in the wall socket to 
12.5-V AC. (Can you determine the ratio of the numbers of turns in the two coils?) 

nikola tesla
American Physicist (1856–1943)
Tesla was born in Croatia, but he spent 
most of his professional life as an 
inventor in the United States. He was a 
key figure in the development of alter-
nating-current electricity, high-voltage 
transformers, and the transport of elec-
trical power using AC transmission lines. 
Tesla’s viewpoint was at odds with the 
ideas of Thomas Edison, who committed 
himself to the use of direct current in 
power transmission. Tesla’s AC approach 
won out.
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Figure 32.21  Electronic devices are often powered by AC adaptors containing transformers such as 
this one. These adaptors alter the AC voltage. In many applications, the adaptors also convert alter-
nating current to direct current.

The primary winding in this transformer is 
attached to the prongs of the plug, whereas 
the secondary winding is connected to the 
power cord on the right.
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 Example 32.7    The Economics of AC Power

An electricity-generating station needs to deliver energy at a rate of 20 MW to a city 1.0 km away. A common voltage for 
commercial power generators is 22 kV, but a step-up transformer is used to boost the voltage to 230 kV before transmission.

(A) If the resistance of the wires is 2.0 V and the energy costs are about 11¢/kWh, estimate the cost of the energy converted 
to internal energy in the wires during one day.

S O l u T I O N

Conceptualize The resistance of the wires is in series with the resistance representing the load (homes and businesses). There-
fore, there is a voltage drop in the wires, which means that some of the transmitted energy is converted to internal energy in 
the wires and never reaches the load.

Categorize This problem involves finding the power delivered to a resistive load in an AC circuit. Let’s ignore any capacitive 
or inductive characteristics of the load and set the power factor equal to 1.

continued
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32.7 c o n t i n u e d

Analyze Calculate the energy TET delivered to the  TET 5 Pwires Dt 
wires over a time interval Dt:

Use Equation 32.36 to evaluate the power delivered  TET 5 I  rms
2 Rwires Dt 

to the wires:

Use Equation 32.36 to evaluate the rms current: (1)   TET 5
P 2avg

DV 2rms

 RwiresDt

Substitute numerical values: TET 5
s20 3 106 Wd2

s230 3 103 Vd2 s2.0 Vds24 hd 5 3.6 3 105 Wh 5 360 kWh

Find the cost of this energy at a rate of 11¢/kWh: Cost 5 (360 kWh)($0.11/kWh) 5  $40

(B) Repeat the calculation for the hypothetical situation in which the power plant delivers the energy at its original voltage 
of 22 kV.

S O l u T I O N

Use the new voltage in Equation (1): TET 5
s20 3 106 Wd2

s22 3 103 Vd2  s2.0 Vds24 hd 5 4.0 3 107 Wh 5 4.0 3 104 kWh

Find the cost of this energy at a rate of 11¢/kWh: Cost 5 (4.0 3 104 kWh)($0.11/kWh) 5  $4.4 3 103

Finalize Notice the tremendous savings that are possible through the use of transformers and high-voltage transmission 
lines. Such savings in combination with the efficiency of using alternating current to operate motors led to the universal adop-
tion of alternating current instead of direct current for commercial power grids.

Summary
 › Definitions

In AC circuits that contain inductors 
and capacitors, it is useful to define the 
inductive reactance XL and the capaci-
tive reactance XC as

 X L ; vL (32.13)

 X C ;
1

vC
 (32.21)

where v is the angular frequency of the 
AC source. The SI unit of reactance is 
the ohm.

The impedance Z of an RLC series AC circuit is

 Z ; ÏR 2 1 sX L 2 X C 
d2 (32.28)

This expression illustrates that we cannot simply add the resistance and reactances 
in a circuit. We must account for the applied voltage and current being out of phase, 
with the phase angle f between the current and voltage being

 f 5 tan21 SXL 2 XC

R D (32.30)

The sign of f can be positive or negative, depending on whether XL is greater or less 
than XC. The phase angle is zero when XL 5 XC.

 › Concepts and Principles

The rms current and rms voltage in an AC circuit in which the voltages and current vary sinusoidally are given by

 I rms 5
I max

Ï2
5 0.707I max (32.6)

 DVrms 5
DVmax

Ï2
5 0.707 DVmax (32.8)

where Imax and DVmax are the maximum values.
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If an AC circuit consists of a source and a resistor, the current is in phase with 
the voltage. That is, the current and voltage reach their maximum values at the 
same time.
 If an AC circuit consists of a source and an inductor, the current lags the 
voltage by 908. That is, the voltage reaches its maximum value one-quarter of a 
period before the current reaches its maximum value.
 If an AC circuit consists of a source and a capacitor, the current leads the 
voltage by 908. That is, the current reaches its maximum value one-quarter of a 
period before the voltage reaches its maximum value.

The average power delivered by the source 
in an RLC circuit is

 Pavg 5 I rms DVrms cos f (32.34)

An equivalent expression for the average 
power is

 Pavg 5 I 2
rms R (32.36)

The average power delivered by the source 
results in increasing internal energy in the 
resistor. No power loss occurs in an ideal 
inductor or capacitor.

The rms current in a series RLC circuit is

 I rms 5
DVrms

ÏR 2 1 sX L 2 X Cd2
 (32.38)

AC transformers allow for easy changes in 
alternating voltage according to

 Dv2 5
N2

N1

 Dv1 (32.46)

where N1 and N2 are the numbers of wind-
ings on the primary and secondary coils, 
respectively, and Dv1 and Dv2 are the volt-
ages on these coils.

A series RLC circuit is in resonance when the inductive reactance equals the 
capacitive reactance. When this condition is met, the rms current given by Equa-
tion 32.38 has its maximum value. The resonance frequency v0 of the circuit is

 v0 5
1

ÏLC
 (32.39)

The rms current in a series RLC circuit has its maximum value when the fre-
quency of the source equals v0, that is, when the “driving” frequency matches 
the resonance frequency.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Figure TP32.1 shows an RLC circuit with three possibil-
ities for measuring an output voltage Dvout. The curves 

in Figure  32.17a show the rms current measured in the 
resistance as the source frequency is varied. The output 
voltage DVR 5 IrmsR will exhibit a similar behavior as the 
frequency varies. The output voltages across the inductor 
and the capacitor will show different behavior. (a) Show 
that the magnitudes of the output voltages across the 
capacitor and the inductor have the same value at reso-
nance. (b) Show that the magnitude of the output voltage 
across the resistor at resonance can be either smaller or 
larger than those across the inductor and capacitor, and 
find the value of R at which all three output voltages are 
the same at resonance. (c) The magnitudes of the output 
voltages do not all reach the maximum value at the same 
frequency. Show that, for the resistance from part (b), the 
frequency at which the magnitude of the inductor volt-
age maximizes is twice that at which the capacitor voltage 
maximizes. Suggestion: For part (c), split your group in two 
and have one group work on the inductor and the other 
one work on the capacitor. 

2. ACTIVITy  In Section 27.4, we studied RC circuits, with a DC 
voltage applied. We learned about both charging and dis-
charging the capacitor in that discussion. Let’s now apply an 
AC voltage to an RC circuit. Figure TP32.2 (page 868) shows 
an RC circuit with two possibilities for measuring an output 
voltage Dvout. Discuss the following questions in your group. 
(a) For which possibility will the output voltage be small at 
lower frequencies and equal to the input voltage at high fre-
quencies? (b) For which possibility will the output voltage be 
small at high frequencies and equal to the input voltage at 
low frequencies?

R C

a

L

Dvout

R C

b

L

Dvout

c

R CL

Dvout

Figure TP32.1
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868 Chapter 32 Alternating-Current Circuits

3. In Sections 32.5 and 32.7, we investigated the series RLC 
circuit. Figure TP32.3a shows a parallel RLC circuit. Dis-
cuss in your group how this circuit would be different from 
the series circuit. As with any parallel circuit, the instanta-
neous voltages (and rms voltages) across each of the three 
circuit elements are the same. Furthermore, each voltage is 
in phase with the current in the resistor. The currents in C 

and L lead or lag the current in the resistor as shown in the 
current phasor diagram, Figure TP32.3b. Work with your 
group to perform the following for this circuit: (a) Show 
that the rms current delivered by the source is

Irms 5 DVrms3 1
R 

2 1 1vC 2
1

vL2
2

4
1y2

(b) Show that the phase angle f between DVrms and Irms is 
given by

tan f 5 R 1vC 2
1

vL2
(c) Show that the current delivered by the source reaches 
a minimum when the circuit is driven at its resonance fre-
quency. (d) Find an expression for the impedance of the 
parallel RLC circuit.

4. ACTIVITy  As a group, consider and discuss the circuit 
shown in Figure 32.6, with an inductor and an AC source. 
The inductor has an inductance of 3.50 mH. Suppose 
that the AC source does not provide a sinusoidal voltage, 
although the voltage is still periodic. The result of the AC 
source is that the current in the circuit can be expressed 
during the first second after the AC source is turned on as 

i(t) 5 5(6.00 3 1023)t 0 , t , 0.600 s
9.00 3 1023 2 (9.00 3 1023)t 0.600 s , t , 1.00 s

where the current i is in amperes and the time t is in sec-
onds. This pattern in the current repeats for every subse-
quent second of time.

(a) Draw a graph of the current in the circuit as a func-
tion of time. (b) Draw a graph of the voltage across the 
inductor as a function of time.

CR

i

�vout

CR

ii

�vout

Figure TP32.2

�v

�VmaxIC IR

I

R L C

L

v

a b

Figure TP32.3

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 32.2 Resistors in an AC Circuit

1. (a) What is the resistance of a lightbulb that uses an average 
power of 75.0 W when connected to a 60.0-Hz power source 
having a maximum voltage of 170 V? (b) What If? What is 
the resistance of a 100-W lightbulb?

2. A certain lightbulb is rated at 60.0 W when operating at an 
rms voltage of 120 V. (a) What is the peak voltage applied 
across the bulb? (b) What is 
the resistance of the bulb? 
(c) Does a 100-W bulb have 
greater or less resistance 
than a 60.0-W bulb? Explain.

3. The current in the circuit 
shown in Figure P32.3 equals 
60.0% of the peak current 
at t 5 7.00 ms. What is the 
lowest source frequency that 
gives this current?

4. Figure P32.4 shows three lightbulbs connected to a 120-V 
AC (rms) household supply voltage. Bulbs 1 and 2 have a 

power rating of 150 W, and bulb 3 has a 100-W rating. Find 
(a) the rms current in each bulb and (b) the resistance of 
each bulb. (c) What is the total resistance of the combina-
tion of the three lightbulbs?

5. In the AC circuit shown in Figure P32.3, R 5 70.0 V and the 
output voltage of the AC source is DVmax sin vt. (a) If DVR 5 
0.250 DVmax for the first time at t 5 0.010 0  s, what is the 
angular frequency of the source? (b) What is the next value 
of t for which DVR 5 0.250 DVmax?

Section 32.3 Inductors in an AC Circuit

6. In a purely inductive AC circuit as shown in Figure P32.6, 
DVmax 5 100 V. (a)  The maximum current is 7.50 A at 
50.0 Hz. Calculate the inductance L. (b) What If? At what 
angular frequency v is the maximum current 2.50 A?

T

R
Vmax sin vt�

Figure P32.3  
Problems 3 and 5.

120 V 1 2 3

Figure P32.4
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7. For the circuit shown in Figure P32.6, DVmax 5 80.0 V, v 5 
65.0p rad/s, and L 5 70.0 mH. Calculate the current in the 
inductor at t 5 15.5 ms.

8. A 20.0-mH inductor is connected to a North American 
electrical outlet (DVrms 5 120 V, f 5 60.0 Hz). Assuming the 
energy stored in the inductor is zero at t 5 0, determine the 
energy stored at t 5 1

180  s.

9. An AC source has an output rms voltage of 78.0 V at a fre-
quency of 80.0 Hz. If the source is connected across a 25.0-
mH inductor, what are (a) the inductive reactance of the 
circuit, (b) the rms current in the circuit, and (c) the maxi-
mum current in the circuit?

10. Review. Determine the maximum magnetic flux through 
an inductor connected to a North American electrical out-
let (DVrms 5 120 V, f 5 60.0 Hz).

Section 32.4 Capacitors in an AC Circuit

11. A 1.00-mF capacitor is connected to a North American 
electrical outlet (DVrms 5 120 V, f 5 60.0 Hz). Assuming the 
energy stored in the capacitor is zero at t 5 0, determine the 
magnitude of the current in the wires at t 5 1

180 s.

12. An AC source with an output rms voltage of 36.0 V at a fre-
quency of 60.0 Hz is connected across a 12.0-mF capacitor. 
Find (a) the capacitive reactance, (b) the rms current, and 
(c) the maximum current in the circuit. (d) Does the capac-
itor have its maximum charge when the current has its max-
imum value? Explain.

13. What is the maximum current in a 2.20-mF capacitor when 
it is connected across (a) a North American electrical outlet 
having DVrms 5 120 V and f 5 60.0 Hz and (b) a European 
electrical outlet having DVrms 5 240 V and f 5 50.0 Hz?

14. A capacitor C is connected to a power supply that operates 
at a frequency f and produces an rms voltage DV. What is the 
maximum charge that appears on either capacitor plate?

Section 32.5 The RLC Series Circuit

15. In addition to phasor diagrams showing voltages such as in 
Figure 32.15, we can draw phasor diagrams with resistance 
and reactances. The resultant of adding the phasors is the 
impedance. Draw to scale a phasor diagram showing Z, XL, 
XC, and f for an AC series circuit for which R 5 300 V, C 5 
11.0 mF, L 5 0.200 H, and f 5 500/p Hz.

16. An AC source with DVmax 5 150 V and f 5 50.0 Hz is con-
nected between points a and d in Figure P32.16. Calculate 

the maximum voltages between (a) points a and b, (b) points 
b and c, (c) points c and d, and (d) points b and d.

17. You are working in a factory and have been tasked with 
determining the electrical needs for a new motor that will 
be installed on an assembly line. The motor has been tested 
under load conditions and found to have a resistance of 
35.0 V and an inductive reactance of 50.0 V. We can model 
the motor as a series RL circuit. The motor will have its 
own dedicated circuit with an rms voltage of 480 V. You 
need to determine the peak current drawn by the motor to 
determine the size of the circuit breaker needed to protect 
the circuit.

18. Draw phasors to scale for the following voltages in SI units: 
(a) 25.0 sin vt at vt 5 90.08, (b) 30.0 sin vt at vt 5 60.08, and 
(c) 18.0 sin vt at vt 5 3008.

19. An RLC circuit consists of a 150-V resistor, a 21.0-mF capaci-
tor, and a 460-mH inductor connected in series with a 120-V, 
60.0-Hz power supply. (a) What is the phase angle between 
the current and the applied voltage? (b) Which reaches its 
maximum earlier, the current or the voltage?

20. A 60.0-V resistor is connected in series with a 30.0-mF capac-
itor and a source whose maximum voltage is 120 V, operat-
ing at 60.0 Hz. Find (a) the capacitive reactance of the cir-
cuit, (b) the impedance of the circuit, and (c) the maximum 
current in the circuit. (d) Does the voltage lead or lag the 
current? (e) How will adding an inductor in series with the 
existing resistor and capacitor affect the current? Explain.

Section 32.6 Power in an AC Circuit

21. A series RLC circuit has a resistance of 45.0 V and an imped-
ance of 75.0 V. What average power is delivered to this cir-
cuit when DVrms 5 210 V?

22. Why is the following situation impossible? A series circuit con-
sists of an ideal AC source (no inductance or capacitance in 
the source itself) with an rms voltage of DV at a frequency 
f and a magnetic buzzer with a resistance R and an induc-
tance L. By carefully adjusting the inductance L of the cir-
cuit, a power factor of exactly 1.00 is attained.

23. A series RLC circuit has a resistance of 22.0 V and an imped-
ance of 80.0 V. If the rms voltage applied to the circuit is 
160 V, what average power is delivered to the circuit?

24. An AC voltage of the form Dv 5 90.0 sin 350t, where Dv is 
in volts and t is in seconds, is applied to a series RLC circuit. 
If R 5 50.0 V, C 5 25.0 mF, and L 5 0.200 H, find (a) the 
impedance of the circuit, (b) the rms current in the circuit, 
and (c) the average power delivered to the circuit.

Section 32.7 Resonance in a Series RLC Circuit

25. The LC circuit of a radar transmitter oscillates at 9.00 GHz. 
(a) What inductance is required for the circuit to resonate 
at this frequency if its capacitance is 2.00 pF? (b) What is the 
inductive reactance of the circuit at this frequency?

26. A series RLC circuit has components with the following val-
ues: L 5 20.0 mH, C 5 100 nF, R 5 20.0 V, and DVmax  5 
100  V, with Dv 5 DVmax sin vt. Find (a) the resonant fre-
quency of the circuit, (b) the amplitude of the current at 
the resonant frequency, (c) the Q of the circuit, and (d) the 
amplitude of the voltage across the inductor at resonance.

V

V

V

V

CR

V

V

L

Vmax sin t� v

Figure P32.6 Problems 6 and 7.

a dcb

40.0 � 185 mH 65.0 mF

Figure P32.16 Problems 16 and 51.
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870 Chapter 32 Alternating-Current Circuits

27. You wish to build a series RLC circuit for a project you are 
working on. Looking in your electronics parts box, you are 
disappointed to find that you have only two resistors, each 
of resistance 47.0 V, two capacitors, each of capacitance 
5.00 nF, and one inductor of inductance 5.00 mH. You need 
to determine the lowest possible angular frequency at reso-
nance that you can obtain from all five components by con-
necting the inductor in series with a combination of the two 
resistors and a combination of the two capacitors.

28. A 10.0-V resistor, 10.0-mH inductor, and 100-mF capacitor 
are connected in series to a 50.0-V (rms) source having vari-
able frequency. If the operating frequency is twice the res-
onance frequency, find the energy delivered to the circuit 
during one period.

29. A resistor R, inductor L, and capacitor C are connected in 
series to an AC source of rms voltage DV and variable fre-
quency. If the operating frequency is twice the resonance 
frequency, find the energy delivered to the circuit during 
one period.

Section 32.8 The Transformer and Power Transmission

30. The primary coil of a transformer has N1 5 350 turns, and 
the secondary coil has N2 5 2 000 turns. If the input volt-
age across the primary coil is Dv 5 170 cos vt, where Dv is 
in volts and t is in seconds, what rms voltage is developed 
across the secondary coil?

31. A person is working near the secondary of a transformer 
as shown in Figure P32.31. The primary voltage is 120 V at 
60.0 Hz. The secondary voltage is 5 000 V. The capacitance 
Cs, which is the stray capacitance between the hand and the 
secondary winding, is 20.0 pF. Assuming the person has a 
body resistance to ground of Rb 5 50.0 kV, determine the 
rms voltage across the body. Suggestion: Model the secondary 
of the transformer as an AC source.

32. A transmission line that has a resistance per unit length of 
4.50 3 1024 V/m is to be used to transmit 5.00 MW across 
400 mi (6.44 3 105 m). The output voltage of the source is 
4.50 kV. (a) What is the line loss if a transformer is used to 
step up the voltage to 500 kV? (b) What fraction of the input 
power is lost to the line under these circumstances? (c) What 
If? What difficulties would be encountered in attempting to 
transmit the 5.00 MW at the source voltage of 4.50 kV?

additional ProblemS

33. Why is the following situation impossible? An RLC circuit is used 
in a radio to tune into a North American AM commercial 
radio station. The values of the circuit components are R 5 
15.0 V, L 5 2.80 mH, and C 5 0.910 pF.

34. A 400-V resistor, an inductor, and a capacitor are in series 
with an AC source. The reactance of the inductor is 700 V, 
and the circuit impedance is 760 V. (a) What are the possi-
ble values of the reactance of the capacitor? (b) If you find 
that the power delivered to the circuit decreases as you raise 
the frequency, what is the capacitive reactance in the orig-
inal circuit? (c) Repeat part (a) assuming the resistance is 
200 V instead of 400 V and the circuit impedance continues 
to be 760 V.

35. Energy is to be transmitted over a pair of copper wires in a 
transmission line at the rate of 20.0 kW with only a 1.00% 
loss over a distance of 18.0 km at potential difference 
DVrms 5 1.50 3 103 V between the wires. Assuming the cur-
rent density is uniform in the conductors, what is the diame-
ter required for each of the two wires?

36. Energy is to be transmitted over a pair of copper wires in 
a transmission line at a rate P with only a fractional loss 
f over a distance , at potential difference DVrms between 
the wires. Assuming the current density is uniform in the 
conductors, what is the diameter required for each of the 
two wires?

37. A transformer may be used to provide maximum power 
transfer between two AC circuits that have different 
impedances Z1 and Z2. This process is called impedance 
matching. (a) Show that the ratio of turns N1/N2 for this 
trans former is

N1

N2

5 ÎZ 1

Z 2

  (b) Suppose you want to use a transformer as an 
 impedance-matching device between an audio amplifier 
that has an output impedance of 8.00 kV and a speaker that 
has an input impedance of 8.00 V. What should your N1/N2 
ratio be?

38. Show that the rms value for the sawtooth voltage shown in 
Figure P33.38 is DVmaxyÏ3.

39. Marie Cornu, a physicist at the Polytechnic Institute in 
Paris, invented phasors in about 1880. This problem 
helps you see their general utility in representing oscilla-
tions. Two mechanical vibrations are represented by the 
expressions

y1 5 12.0 sin 4.50t

  and

y2 5 12.0 sin (4.50t 1 70.08)

  where y1 and y2 are in centimeters and t is in seconds. Find 
the amplitude and phase constant of the sum of these 
functions (a) by using a trigonometric identity (as from 
Appendix B) and (b) by representing the oscillations as 
phasors. (c) State the result of comparing the answers to 
parts (a) and (b). (d) Phasors make it equally easy to add 
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T

V

Rb
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5 000 V

Transformer

Figure P32.31

��Vmax
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t

v�

Figure P33.38
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traveling waves. Find the amplitude and phase constant of 
the sum of the three waves represented by

y1 5 12.0 sin (15.0x 2 4.50t 1 70.08)

y2 5 15.5 sin (15.0x 2 4.50t 2 80.08)

y3 5 17.0 sin (15.0x 2 4.50t 1 1608)

  where x, y1, y2, and y3 are in centimeters and t is in seconds.

40. A series RLC circuit has resonance angular frequency 2.00 3 
103 rad/s. When it is operating at some input frequency, 
XL  5 12.0 V and XC 5 8.00 V. (a) Is this input frequency 
higher than, lower than, or the same as the resonance fre-
quency? Explain how you can tell. (b) Explain whether it is 
possible to determine the values of both L and C. (c) If it is 
possible, find L and C. If it is not possible, give a compact 
expression for the condition that L and C must satisfy.

41. Review. One insulated conductor from a household exten-
sion cord has a mass per length of 19.0 g/m. A section of this 
conductor is held under tension between two clamps. A sub-
section is located in a magnetic field of magnitude 15.3 mT 
directed perpendicular to the length of the cord. When the 
cord carries an AC current of 9.00 A at a frequency of 60.0 
Hz, it vibrates in resonance in its simplest standing-wave 
vibration mode. (a) Determine the relationship that must 
be satisfied between the separation d of the clamps and the 
tension T in the cord. (b) Determine one possible combina-
tion of values for these variables.

42. (a) Sketch a graph of the phase angle for an RLC series 
circuit as a function of angular frequency from zero to 
a frequency much higher than the resonance frequency. 
(b)  Identify the value of f at the resonance angular fre-
quency v0. (c) Prove that the slope of the graph of f versus 
v at the resonance point is 2Q/v0.

43. A series RLC circuit contains the following components: R 5 
150 V, L 5 0.250 H, C 5 2.00 mF, and a source with DVmax 5 
210 V operating at 50.0 Hz. Our goal is to find the phase 
angle, the power factor, and the power input for this circuit. 
(a) Find the inductive reactance in the circuit. (b) Find the 
capacitive reactance in the circuit. (c) Find the impedance 
in the circuit. (d) Calculate the maximum current in the 
circuit. (e) Determine the phase angle between the current 
and source voltage. (f) Find the power factor for the circuit. 
(g) Find the power input to the circuit.

44. Review. In the circuit shown in Figure P32.44, assume all 
parameters except C are given. Find (a) the current in the 
circuit as a function of time and (b) the power delivered to 
the circuit. (c) Find the current as a function of time after 
only switch 1 is opened. (d) After switch 2 is also opened, the 

current and voltage are in phase. Find the capacitance C. 
Find (e) the impedance of the circuit when both switches 
are open, (f) the maximum energy stored in the capacitor 
during oscillations, and (g) the maximum energy stored 
in the inductor during oscillations. (h) Now the frequency 
of the voltage source is doubled. Find the phase difference 
between the current and the voltage. (i) Find the frequency 
that makes the inductive reactance one-half the capacitive 
reactance.

45. You have decided to build your own speaker system for your 
home entertainment system. The system will consist of two 
loudspeakers: a large “woofer,” to which you want to send 
low audio frequencies (bass), and a small “tweeter,” which 
should receive high audio frequencies (treble). To separate 
the high and low frequencies of the audio signal, you build 
the “crossover network” shown in Figure P32.45. The input 
voltage is the audio output of the amplifier in your system, 
shown in the figure as an AC source. You have two outputs as 
shown: one across the resistor and one across the capacitor. 
(a) Across which element should you connect the woofer? 
(b) Across which element should you connect the tweeter? 
(c) To choose the appropriate values of R and C, you need to 
determine an expression for the ratio of the output voltage 
to the input voltage as a function of angular frequency v 
for the resistor as an output. (d) You need to determine a 
similar expression for the ratio of the output voltage to the 
input voltage as a function of angular frequency v for the 
capacitor as an output.

46. A series RLC circuit is operating at 2.00 3 103 Hz. At this 
frequency, XL 5 XC 5 1 884 V. The resistance of the circuit 
is 40.0 V. (a) Prepare a table showing the values of XL, XC, 
and Z for f 5 300, 600, 800, 1.00 3 103, 1.50 3 103, 2.00 3 
103, 3.00 3 103, 4.00 3 103, 6.00 3 103, and 1.00 3 104 Hz. 
(b) Plot on the same set of axes XL, XC, and Z as a function 
of ln f.

47. You are trying to become a member of the Physics Olympics 
team. Your physics professor is training you and some other 
students by having you compete with each other to solve 
problems as accurately and quickly as you can. During one 
session, he springs the RLC circuit shown in Figure P32.47 
(page 872) on you. Figure P32.47a shows the circuit with a 
battery as the energy source. The battery has an emf « and 
internal resistance r. He tells you the following, assuming 
switch S has been at position a for a long time:

 ● If only switch SL is closed, and switches SC and SR are 
open, and then switch S is thrown to position b, the 
time constant of the circuit is t1 5 0.200 ms. Switch S is 
returned to position a for a long time.

CR

CR

R

L

S1

C S2

Vmax cos vt�

Figure P32.44

R

CvinD DvC

DvR

Figure P32.45
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872 Chapter 32 Alternating-Current Circuits

 ● If only switch SC is closed, and switches SL and SR are 
open, and then switch S is thrown to position b, the time 
constant of the circuit is t2 5 0.050 0 ms. Switch S is 
returned to position a for a long time.

In Figure P32.47b, an AC source with a variable frequency 
has been added to the same circuit, and switch S is thrown 
to position b. Switches SC, SL, and SR are all open. At what 
angular frequency v should the AC source be set so that the 
circuit exhibits resonance? Quick! Get to work!

48. A series RLC circuit in which R 5 1.00 V, L 5 1.00 mH, 
and C 5 1.00 nF is connected to an AC source delivering 

1.00 V (rms). (a) Make a precise graph of the power deliv-
ered to the circuit as a function of the frequency and 
(b) verify that the full width of the resonance peak at half-
maximum is R/2pL.

challenge ProblemS

49. The resistor in Figure P32.49 represents the midrange 
speaker in a three-speaker system. Assume its resistance 
to be constant at 8.00 V. The source represents an audio 
amplifier producing signals of uniform amplitude DVmax 5 
10.0 V at all audio frequencies. The inductor and capaci-
tor are to function as a band-pass filter with DVout/DVin 5 1

2 at 
200 Hz and at 4.00 3 103 Hz. Determine the required values 
of (a) L and (b) C. Find (c) the maximum value of the ratio 
DVout/DVin; (d) the frequency f0 at which the ratio has its 
maximum value; (e) the phase shift between Dvin and Dvout 
at 200 Hz, at f0, and at 4.00 3 103 Hz; and (f) the average  
power transferred to the speaker at 200 Hz, at f0, and at 
4.00 3 103 Hz. (g) Recognizing that the diagram represents 
an RLC circuit driven by an AC source, find its quality factor.

50. An 80.0-V resistor and a 200-mH inductor are connected in 
parallel across a 100-V (rms), 60.0-Hz source. (a) What is the 
rms current in the resistor? (b) By what angle does the total 
current lead or lag behind the voltage?

51. An AC source with DVrms 5 120 V is connected between 
points a and d in Figure P32.16. At what frequency will it 
deliver a power of 250 W? Explain your answer.
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b

SC
SL

SR

2

1
«

C

R
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Figure P32.47
R
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The introduction of home 
Wi-Fi has revolutionized 
how we connect to the 
Internet. Are your neighbors 
seeing your Wi-Fi signal? 
(crazystocker/Shutterstock)

33.1 Displacement Current 
and the General Form 
of Ampère’s Law

33.2 Maxwell’s Equations 
and Hertz’s Discoveries

33.3 Plane Electromagnetic 
Waves

33.4 Energy Carried by 
Electromagnetic 
Waves

33.5 Momentum and 
Radiation Pressure

33.6 Production of 
Electromagnetic 
Waves by an Antenna

33.7 The Spectrum of 
Electromagnetic 
Waves

Electromagnetic Waves

Storyline You are performing online research on your smartphone,  
using the Wi-Fi signal from your home network. The signal suddenly cuts out, and 
you go to the Wi-Fi settings on your smartphone to investigate. In the list of avail-
able networks, you see that your network has come back up, but you also notice 
that you are receiving a signal from your next-door neighbor’s house. This starts 
you wondering if your neighbors are receiving your Wi-Fi signal. You take your 
smartphone outside and start walking away from your house, monitoring the Wi-Fi 
signal strength indicator on your smartphone. You are surprised to see that the sig-
nal is available outside. How does the signal go through the walls of your house? In 
fact, what exactly is a Wi-Fi signal? As you walk away from your house, the signal 
strength drops off. Why does that happen? What’s going on here?

ConneCtions This chapter represents a very strong connection between 
three parts of the book. In Part 2, we discussed mechanical waves, such as 
sound, ocean waves, and waves on strings. Here in Part 4, we are investigating 
the principles of electromagnetism. In this chapter, we connect these seemingly 
disparate sets of chapters. We find that the principles of electromagnetism pre-
dict the possibility of electromagnetic waves. This theoretical prediction is clearly 
borne out in practice, of course, by our experience with a wide variety of elec-
tromagnetic waves: light, radio, microwaves, x-rays, etc. The behavior of these 
waves has clear similarities with mechanical waves, with one strong difference: 
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874 Chapter 33 Electromagnetic Waves

electromagnetic waves do not require a medium; they can propagate through 
empty space! The understanding of electromagnetic waves has led to many 
practical communication systems, including radio, television, cell phone systems, 
wireless Internet connectivity, and optoelectronics. Furthermore, the study of 
electromagnetic waves prepares us for Part 5 of the book, in which we study 
optics, which describes the detailed behavior of electromagnetic waves.

   33.1    Displacement Current and the General  
Form of Ampère’s Law
In Chapter 29, we discussed using Ampère’s law (Eq. 29.13) to analyze the magnetic 
fields created by currents:

$ B
S  

? d sS 5 m0I

In this equation, the line integral is over any closed path through which conduction 
current passes, where conduction current is defined by the expression I 5 dq/dt.  
(In this section, we use the term conduction current to refer to the current carried 
by charge carriers in the wire to distinguish it from a new type of current we shall 
introduce shortly.) We have accepted Ampère’s law as a fundamental equation 
in electromagnetism. But suppose we found a situation where it doesn’t apply? 
James Clerk Maxwell recognized such a situation and modified Ampère’s law 
accordingly.

Consider a capacitor being charged as illustrated in Figure 33.1. When a conduc-
tion current is present, the charge on the positive plate changes, but no conduction 
current exists in the gap between the plates because there are no charge carri-
ers in the gap. Now consider the two surfaces S1 and S2 in Figure 33.1, bounded 
by the same path P. Surface S1 is a flat circular area, through which the wire 
passes. Surface S2 is a hemisphere, sharing the same path P with surface S1. The 
surface of the hemisphere passes through the space between the capacitor plates.  
Ampère’s law states that r B

S  
? d sS around this path must equal m0I, where I is the total 

current through any surface bounded by the path P.
When the path P is considered to be the boundary of S1, rB

S  
? d sS 5 m0I  because 

the conduction current I passes through S1. When the path is considered to be the  
boundary of S2, however, rB

S  
? d sS 5 0 because no conduction current passes 

through S2. Therefore, we have a contradictory situation that arises from the discon-
tinuity of the current! Ampère’s law gives two different answers for the two surfaces!

Maxwell solved this problem by postulating an additional term on the right 
side of Ampère’s law, which includes a factor called the displacement current Id  
defined as1

 Id ; e0 
d FE

dt
 (33.1)

where e0 is the permittivity of free space (see Section 22.3) and FE ; eE
S  

? dA
S

 is the 
electric flux (see Eq. 23.4) for the electric field between the plates of the capacitor. 
This flux passes through S2 but not S1.

As the capacitor is being charged (or discharged), the changing electric field 
between the plates may be considered equivalent to a current given by Equa-
tion 33.1 that acts as a continuation of the conduction current in the wire. When 

James Clerk Maxwell
Scottish Theoretical Physicist 
(1831–1879)
Maxwell developed the electromagnetic 
theory of light and the kinetic theory of 
gases, and explained the nature of Sat-
urn’s rings and color vision. Maxwell’s 
successful interpretation of the elec-
tromagnetic field resulted in the field 
equations that bear his name. Formida-
ble mathematical ability combined with 
great insight enabled him to lead the 
way in the study of electromagnetism 
and kinetic theory. He died of cancer 
before he was 50.
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1Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate implications, the 
word is historically entrenched in the language of physics, so we continue to use it.

Path P 

�q

S1

S2

q

I

I

The conduction current I  in the 
wire passes only through S1, which 
leads to a contradiction in 
Ampère’s law that is resolved only 
if one postulates a displacement 
current through S2.

Figure 33.1  Two surfaces S1 and 
S2 near the plate of a capacitor are 
bounded by the same path P.
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    33.1 Displacement Current and the General Form of Ampère’s Law  875

the expression for the displacement current is added to the conduction current on 
the right side of Ampère’s law, the difficulty represented in Figure 33.1 is resolved.  
No matter which surface bounded by the path P is chosen, either a conduction current 
or a displacement current passes through it. With this new term Id, we can express the 
general form of Ampère’s law (sometimes called the Ampère–Maxwell law) as

 $ B
S  

? d sS 5 m0sI 1 Idd 5 m0I 1 m0e0 
dFE

dt
 (33.2)

This result was a remarkable example of theoretical work by Maxwell, and it con-
tributed to major advances in the understanding of electromagnetism.

We can understand the meaning of Equation 33.2 by considering Figure 33.2, which 
is similar to Figure 33.1, but we have now identified a flat plane S passing between 
the plates of the capacitor. The electric flux through surface S is FE 5 eE

S  
? dA

S
5 EA,  

where A is the area of the capacitor plates and E is the magnitude of the uniform elec-
tric field between the plates. If q is the charge on the plates at any instant, then E 5  
q/(e0A) (see the What If? in Example 23.8). Therefore, the electric flux through S is

 FE 5 EA 5
q
e0

 

Hence, the displacement current through S is

 Id 5 e0 
dFE

dt
5

dq

dt
 (33.3)

That is, the displacement current Id through S is precisely equal to the conduction 
current I in the wires connected to the capacitor!

Q uiCk Quiz 33.1  In an RC circuit, the capacitor begins to discharge. (i) During 
the discharge, in the region of space between the plates of the capacitor, is there 
(a) conduction current but no displacement current, (b) displacement current but 
no conduction current, (c) both conduction and displacement current, or (d) no 
current of any type? (ii) In the same region of space, is there (a) an electric field 
but no magnetic field, (b) a magnetic field but no electric field, (c) both electric 
and magnetic fields, or (d) no fields of any type?

 Ampère–Maxwell law

I
�q

I

The electric field lines between 
the plates create an electric flux 
through surface S.

E
S

Sq

Figure 33.2  When a conduction 
current exists in the wires, a chang-
ing electric field E

S
 exists between 

the plates of the capacitor.

 Example 33.1   Displacement Current in a Capacitor

A sinusoidally varying voltage is applied across a capacitor as shown in Figure 33.3. The 
capacitance is C 5 8.00 mF, the frequency of the applied voltage is f 5 3.00 kHz, and the 
voltage amplitude is DVmax 5 30.0 V. Find the displacement current in the capacitor.

S O L U T I O N

Conceptualize  Figure 33.3 represents the circuit diagram for this situation. Figure 33.2 shows 
a close-up of the capacitor and the electric field between the plates.

Categorize  We determine results using equations discussed in this section, so we categorize 
this example as a substitution problem.

Use Equation 33.3 to find the displacement  id 5
dq

dt
5

d
dt

sC DvC 
d 5 C 

d
dt

sDVmax sin vtd 
current as a function of time. Note that the    

5 vC DVmax cos vt 5 2pf C DVmaxcos s2pft d
 

charge on the capacitor is q 5 C DvC:

Substitute numerical values to obtain  id 5 2p s3.00 3 103 Hz ds8.00 3 1026 Fds30.0 V d cos f2p s3.00 3 103 Hzdt g
the current in amperes:

 5 4.52 cos s1.88 3 104 td

C

�vC

�Vmax sin vt 

Figure 33.3  (Example 33.1)
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876 Chapter 33 Electromagnetic Waves

   33.2    Maxwell’s Equations and Hertz’s Discoveries
We now present four equations that are regarded as the basis of all electrical and 
magnetic phenomena. We’ve seen all four equations before. These equations, devel-
oped by Maxwell, are as fundamental to electromagnetic phenomena as Newton’s 
laws are to mechanical phenomena. In fact, the theory that Maxwell developed was 
more far-reaching than even he imagined because it turned out to be in agreement 
with the special theory of relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we have 
already discussed, but they have additional important consequences. For simplicity, 
we present Maxwell’s equations as applied to free space, that is, in the absence of 
any dielectric or magnetic material. The four equations are

Equation 23.7 S $ E
S  

? d A
S

5
q
e0

 (33.4)

Equation 29.20 S $ B
S  

? d A
S

5 0  (33.5)

Equation 30.8 S $ E
S  

? d sS 5 2 

d FB

dt
 (33.6)

Equation 33.2 S $ B
S  

? d sS 5 m0I 1 e0m0 
dFE

dt
 (33.7)

Equation 33.4 is Gauss’s law: the total electric flux through any closed surface 
equals the net charge inside that surface divided by e0. This law relates an electric 
field to the charge distribution that creates it.

Equation 33.5 is Gauss’s law in magnetism, and it states that the net magnetic 
flux through a closed surface is zero. That is, the number of magnetic field lines 
that enter a closed volume must equal the number that leave that volume, which 
implies that magnetic field lines cannot begin or end at any point. If they did, it 
would mean that isolated magnetic monopoles existed at those points. That iso-
lated magnetic monopoles have not been observed in nature can be taken as a 
confirmation of Equation 33.5.

Equation 33.6 is Faraday’s law of induction, which describes the creation of an 
electric field by a changing magnetic flux. This law states that the emf, which is the 
line integral of the electric field around any closed path, equals the rate of change 
of magnetic flux through any surface bounded by that path. 

Equation 33.7 is the Ampère–Maxwell law, discussed in Section 33.1, and it 
describes the creation of a magnetic field by a changing electric field and by 
electric current: the line integral of the magnetic field around any closed path 
is the sum of m0 multiplied by the net current through that path and e0m0 mul-
tiplied by the rate of change of electric f lux through any surface bounded by  
that path.

Once the electric and magnetic fields are known at some point in space, the 
force acting on a particle of charge q can be calculated from the electric and mag-
netic versions of the particle in a field model:

 F
S

5 qE
S

1 qvS 3 B
S

 (33.8)

This relationship is called the Lorentz force law. (We saw this relationship earlier 
as Eq. 28.6.) Maxwell’s equations, together with this force law, completely describe 
all classical electromagnetic interactions in a vacuum.

In earlier chapters we looked at charge q and current I as sources of electric and 
magnetic fields. Now, let’s imagine a region of space that contains no charges and 
no currents. Under these conditions, Maxwell’s equations become

Gauss’s law 

Gauss’s law in magnetism 

Faraday’s law 

Ampère–Maxwell law 

Lorentz force law 
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 $ E
S  

? d A
S

5 0  (33.9)

 $ B
S  

? d A
S

5 0  (33.10)

 $ E
S  

? d s
S

5 2 

d FB

dt
 (33.11)

 $ B
S  

? d sS 5 e0m0 
dFE

dt
 (33.12)

Notice the symmetry of Maxwell’s equations in charge-free, current-free 
space. Equations 33.9 and 33.10 are of the same form. Furthermore, Equations 
33.11 and 33.12 are symmetric in that the line integrals of E

S
 and B

S
 around a 

closed path are related to the rate of change of magnetic flux and electric flux, 
respectively. These equations suggest that electric and magnetic fields can exist 
in charge-free, current-free space! They do that by regenerating each other as 
described by the last two equations. Equation 33.11 tells that a time variation 
in a B -field generates an E -field. And Equation 33.12 tells us the reverse also 
happens.

In the next section, we show that Equations 33.11 and 33.12 can be combined 
to obtain a wave equation for both the electric field and the magnetic field. In 
empty space, where q 5 0 and I 5 0, the solution to these two equations shows 
that the speed at which electromagnetic waves travel equals the measured speed 
of light. This result led Maxwell to predict that light waves are a form of electro-
magnetic radiation.

Hertz performed experiments that verified Maxwell’s prediction. The exper-
imental apparatus Hertz used to generate and detect electromagnetic waves is 
shown schematically in Figure 33.4. An induction coil is connected to a trans-
mitter made up of two spherical electrodes separated by a narrow gap. The 
coil provides short voltage surges to the electrodes, making one positive and 
the other negative. A spark is generated between the spheres when the electric 
field near either electrode surpasses the dielectric strength for air (3 3 106 V/m;  
see Table 25.1). Free electrons in a strong electric field are accelerated and gain 
enough energy to ionize any molecules they strike. This ionization provides more 
electrons, which can accelerate and cause further ionizations. As the air in the 
gap is ionized, it becomes a much better conductor and the discharge between 
the electrodes exhibits an oscillatory behavior at a very high frequency. From 
an electric-circuit viewpoint, this experimental apparatus is equivalent to an  
LC circuit in which the inductance is that of the coil and the capacitance is due to 
the spherical electrodes.

Because L and C are small in Hertz’s apparatus, the frequency of oscillation 
is high, on the order of 100 MHz. (Recall from Eq. 31.22 that v 5 1yÏLC  for 
an LC circuit.) Electromagnetic waves are radiated at this frequency as a result 
of the oscillation of free charges in the transmitter circuit. Hertz was able to 
detect these waves by resonance using a single loop of wire with its own spark 
gap (the receiver). Such a receiver loop, placed several meters from the trans-
mitter, has its own effective inductance, capacitance, and natural frequency of 
oscillation. In Hertz’s experiment, sparks were induced across the gap of the 
receiving electrodes when the receiver’s frequency was adjusted to match that 
of the transmitter. In this way, Hertz demonstrated that the oscillating current 
induced in the receiver was produced by electromagnetic waves radiated by the 
transmitter. His experiment is analogous to the mechanical phenomenon in 
which a tuning fork responds to acoustic vibrations from an identical tuning 
fork that is oscillating nearby.

Transmitter

Receiver

Induction
coil

�q
�

q
�

The receiver is a nearby loop 
of wire containing a second 
spark gap.

The transmitter consists of two 
spherical electrodes connected to 
an induction coil, which provides 
short voltage surges to the 
spheres, setting up oscillations in 
the discharge between the 
electrodes. 

Figure 33.4  Schematic diagram 
of Hertz’s apparatus for generating 
and detecting electromagnetic 
waves.
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878 Chapter 33 Electromagnetic Waves

In addition, Hertz showed in a series of experiments that the radiation gen-
erated by his spark-gap device exhibited the wave properties of interference,  
diffraction, reflection, refraction, and polarization, which are all properties exhib-
ited by light as we shall see in Part 5. Therefore, it became evident that the radio-
frequency waves Hertz was generating had properties similar to those of light waves 
and that they differed only in frequency and wavelength. Perhaps his most convinc-
ing experiment was the measurement of the speed of this radiation. Waves of known 
frequency were reflected from a metal sheet and created a standing-wave interfer-
ence pattern whose nodal points could be detected. The measured distance between 
the nodal points enabled determination of the wavelength l. Using the relationship 
v 5 lf (Eq. 16.12) from the traveling wave model, Hertz found that v was close to  
3 3 108 m/s, the known speed c of visible light.

We’ve argued that electric and magnetic fields can support each other in free 
space, and Hertz’s experiments verified the existence of electromagnetic waves. 
But where does the electromagnetic wave come from in the first place? Station-
ary charges and steady currents cannot produce electromagnetic waves. If the cur-
rent in a wire changes with time, however, the wire emits electromagnetic waves. 
The fundamental mechanism responsible for this radiation is the acceleration of a 
charged particle. Whenever a charged particle accelerates, energy is transferred 
away from the particle by electromagnetic radiation. Let’s now investigate the 
properties of those waves.

   33.3    Plane Electromagnetic Waves
The properties of electromagnetic waves can be deduced from Maxwell’s equa-
tions. One approach to deriving these properties is to solve the second-order differ-
ential equation obtained from Equations 33.11 and 33.12. A rigorous mathematical 
treatment of that sort is beyond the scope of this text. To circumvent this problem, 
let’s assume the vectors for the electric field and magnetic field in an electromag-
netic wave have a specific space–time behavior that is simple but consistent with  
Maxwell equations.

To understand the prediction of electromagnetic waves more fully, let’s focus our  
attention on an electromagnetic wave that travels in the x direction (the direction of 
propagation). Figure 30.15 shows us that the electric field generated by a changing 
magnetic field is perpendicular to the magnetic field. Figure 33.2 shows a changing 
electric field as an effective current, which would generate circular magnetic field 
lines around the electric field lines. Therefore, the magnetic field generated by a 
changing electric field is perpendicular to the electric field. Following on these 
suggestions of perpendicularity, let us design a simple electromagnetic wave for 
which the electric field E

S
 is in the y direction and the magnetic field B

S
 is in the z 

direction as shown in Figure 33.5. Furthermore, let’s assume the field magnitudes 
E and B depend on x and t only, not on the y or z coordinate.

Figure 33.5 shows field vectors for a wave propagating along the x axis, as sug-
gested by the vector cS, with magnitude c, the speed of light. Imagine a source in 
the yz plane that emits a large number of such waves from all positions in the plane, 
not just the origin, with all waves traveling in the x direction. If we define a ray as in 
Section 16.8 as the line along which the wave travels, all rays for these waves are 
parallel. This entire collection of waves is often called a plane wave. 

To generate the prediction of plane electromagnetic waves, we start with  
Faraday’s law, Equation 33.11, which describes an electric field generated by a 
changing magnetic field. To apply this equation to the wave in Figure 33.5, consider 
a rectangle of width dx and height , lying in the xy plane as shown in Figure 33.6. 
Let’s first evaluate the line integral of E

S  
? d sS around this rectangle in the coun-

terclockwise direction at an instant of time when the wave is passing through the 
rectangle. The contributions from the top and bottom of the rectangle are zero 

Heinrich Rudolf Hertz
German Physicist (1857–1894)
Hertz made his most important discovery 
of electromagnetic waves in 1887. After 
finding that the speed of an electro-
magnetic wave was the same as that 
of light, Hertz showed that electromag-
netic waves, like light waves, could be 
reflected, refracted, and diffracted. The 
hertz, equal to one complete vibration or 
cycle per second, is named after him.
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Pitfall PRevention 33.1
What Is “a” Wave? What do we 
mean by a single wave? The word 
wave represents both the emission 
from a single point (“wave radiated 
from any position in the yz plane” 
in the text) and the collection of 
waves from all points on the source 
(“plane wave” in the text). You 
should be able to use this term 
in both ways and understand its 
meaning from the context.
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cS

Figure 33.5 Electric and mag-
netic fields of an electromagnetic 
wave traveling at velocity cS in the 
positive x direction. The field 
vectors are shown at one instant of 
time and at one position in space. 
These fields depend on x and t.
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    33.3 Plane Electromagnetic Waves 879

because E
S

 is perpendicular to d sS for these paths. We can express the electric field 
on the right side of the rectangle as

E sx 1 dxd < E sxd 1
dE
dx

 *
t constant

dx 5 E sxd 1
−E
−x

 dx

where E(x) is the field on the left side of the rectangle at this instant.2 Therefore, 
the line integral over this rectangle is approximately

 $ E
S  

? d sS 5 3E sxd 1
−E
−x

dx4/ 2 fE sxdg/ < /S−E
−xD dx (33.13)

Because the magnetic field is in the z direction, the magnetic flux through the 
rectangle of area ,dx is approximately FB 5 B,dx (assuming dx is very small com-
pared with the wavelength of the wave). Taking the time derivative of the magnetic  
flux gives

 
d FB

dt
5 / dx 

dB
dt

 *
x constant

 5 / dx 
−B
−t

 (33.14)

Substituting Equations 33.13 and 33.14 into Equation 33.11 gives

 /S−E
−xD dx 5 2/dx 

−B
−t

 

 
−E
−x

5 2 

−B
−t

 (33.15)

In a similar manner, we can derive a second equation by starting with Maxwell’s fourth 
equation in empty space (Eq. 33.12), which describes a magnetic field generated  
by a changing electric field. In this case, the line integral of B

S  
? d sS is evaluated 

around a rectangle lying in the xz plane and having width dx and length , as in 
Figure 33.7. Noting that the magnitude of the magnetic field changes from B(x) 
to B(x 1 dx) over the width dx and that the direction for taking the line integral is 

dx

�

y

xz

B
S

E(x � dx)
S

E(x )
S

According to Equation 33.15, 
this spatial variation in E gives 
rise to a time-varying magnetic 
field along the z direction.

S

Figure 33.6  At an instant when a 
plane wave moving in the positive x 
direction passes through a rectan gular 
path of width dx lying in the xy plane, 
the electric field in the y direction  
varies from E

S
sxd to E

S
sx 1 dxd.

dx

z

y

x

�

According to Equation 33.18, this 
spatial variation in B gives rise to 
a time-varying electric field along 
the y direction.

B(x �dx)
S

B(x)
S

E
S

S

Figure 33.7  At an instant when a 
plane wave passes through a rect-
angular path of width dx lying in 
the xz plane, the magnetic field in 
the z direction varies from B

S
sxd to 

B
S

sx 1 dxd.

2Because dE/dx in this equation is expressed as the change in E with x at a given instant t, dE/dx is equivalent to the 
partial derivative −E/−x. Likewise, dB/dt means the change in B with time at a particular position x; therefore, in 
Equation 33.14, we can replace dB/dt with −B/−t.
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880 Chapter 33 Electromagnetic Waves

counterclockwise when viewed from above in Figure 33.7, the line integral over this 
rectangle is found to be approximately

 $ B
S  

? d sS 5 fBsxdg/ 2 3B sxd 1
−B
−x

 dx4/ < 2/S−B
−xD dx (33.16)

The electric flux through the rectangle is FE 5 E,dx, which, when differentiated 
with respect to time, gives

 
−FE

−t
5 / dx 

−E
−t

 (33.17)

Substituting Equations 33.16 and 33.17 into Equation 33.12 gives

 2/S−B
−xD dx 5 m0 e0 / dx S−E

−tD 

 
−B
−x

5 2m0e0 
−E
−t

 (33.18)

Taking the derivative of Equation 33.15 with respect to x and combining the 
result with Equation 33.18 gives

 
−2E
−x 

2 5 2 

−

−x S−B
−tD 5 2 

−

−tS−B
−xD 5 2 

−

−t S2m0e0 
−E
−t D 

 
−2E
−x 

2 5 m0e0 
−2E
−t  

2  (33.19)

In the same manner, taking the derivative of Equation 33.18 with respect to x and 
combining it with Equation 33.15 gives

 
−2B
−x 

2 5 m0e0 
−2B
−t  

2  (33.20)

Equations 33.19 and 33.20 both have the form of the linear wave equation, Equa-
tion 16.27 from Section 16.5. In that equation, the coefficient of the time derivative 
is the inverse of the wave speed. Calling this speed c for light, we see that

 c 5
1

Ïm0e0

 (33.21)

Let’s evaluate this speed numerically:

 c 5
1

Ïs4p 3 1027 T ? myAds8.854 19 3 10212 C2yN ? m2d
 

 5 2.997 92 3 108 m/s

This speed is precisely the same as the experimentally measured speed of light in 
empty space! We are led to believe (correctly) that light is an electromagnetic wave.

The simplest solution to Equations 33.19 and 33.20 is a sinusoidal wave for which 
the field magnitudes E and B vary with x and t according to the expressions

 E 5 Emax cos (kx 2 vt) (33.22)

 B 5 Bmax cos (kx 2 vt) (33.23)

where Emax and Bmax are the maximum values of the fields. The angular wave num-
ber is k 5 2p/l, where l is the wavelength. The angular frequency is v 5 2pf, where 
f  is the wave frequency. According to the traveling wave model of Section 16.2, the 
ratio v/k equals the speed of an electromagnetic wave, c:

 
v

k
5

2pf

2pyl
5 lf 5 c 

Speed of electromagnetic 
waves

Sinusoidal electric and 
magnetic fields
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    33.3 Plane Electromagnetic Waves 881

where we have used Equation 16.12, v 5 c 5 lf, which relates the speed, frequency, 
and wavelength of a sinusoidal wave. Figure 33.8 is a pictorial representation, at 
one instant, of a sinusoidal electromagnetic wave moving in the positive x direction 
based on Equations 33.22 and 33.23. Such a wave, in which the electric and mag-
netic fields are restricted to being parallel to a pair of perpendicular axes, is said to 
be a linearly polarized wave.

We can generate other mathematical representations of the traveling wave 
model for electromagnetic waves. Taking partial derivatives of Equations 33.22 
(with respect to x) and 33.23 (with respect to t) gives

 
−E
−x

5 2kEmax sin skx 2 vtd 

 
−B
−t

5 vBmax sin skx 2 vtd 

Substituting these results into Equation 33.15 shows that, at any instant,

 kEmax 5 vBmax 

 
Emax

Bmax

5
v

k
5 c 

Using these results together with Equations 33.22 and 33.23 gives

 
Emax

Bmax

5
E
B

5 c  (33.24)

That is, at every instant, the ratio of the magnitude of the electric field to the mag-
nitude of the magnetic field in an electromagnetic wave equals the speed of light.

Q uiCk Quiz 33.2  What is the phase difference between the sinusoidal oscilla-
tions of the electric and magnetic fields in Figure 33.8? (a) 180° (b) 90° (c) 0  
(d) impossible to determine

Q uiCk Quiz 33.3  An electromagnetic wave propagates in the negative y direc-
tion. The electric field at a point in space is momentarily oriented in the posi-
tive x direction. In which direction is the magnetic field at that point momen-
tarily oriented? (a) the negative x direction (b) the positive y direction (c) the 
positive z direction (d) the negative z direction

z

y

x

B
S

E
S

cS

Figure 33.8 A sinusoidal electro-
magnetic wave moves in the posi-
tive x direction with a speed c.

Pitfall PRevention 33.2
E
S

 Stronger than B
S

? Because 
the value of c is so large, some 
students incorrectly interpret 
Equation 33.24 as meaning that 
the electric field is much stronger 
than the magnetic field. Electric 
and magnetic fields are measured 
in different units, however, so they 
cannot be directly compared. In 
Section 33.4, we find that the elec-
tric and magnetic fields contrib-
ute equally to the wave’s energy. 

 Example 33.2   An Electromagnetic Wave

A sinusoidal electromagnetic wave of frequency 40.0 MHz travels in free space in the x 
direction as in Figure 33.9.

(A) Determine the wavelength and period of the wave.

S O L U T I O N

Conceptualize  Imagine the wave in Figure 33.9 moving to the right along the x axis, with 
the electric and magnetic fields oscillating in phase.

Categorize  We use the mathematical representation of the traveling wave model for elec-
tromagnetic waves.

Analyze

Solve Equation 16.12 to find the wavelength  l 5
c
f

5
3.00 3 108 mys
40.0 3 106 Hz

5 7.50 m  
of the wave:

Find the period T of the wave as the inverse  T 5
1
f

5
1

40.0 3 106 Hz
5 2.50 3 1028 s  

of the frequency:

continued

x

y

z

B
S

ˆE � 750j N/C 
S

cS

Figure 33.9  (Example 33.2) At 
some instant, a plane electromag-
netic wave moving in the x direction 
has a maximum electric field of  
750 N/C in the positive y direction.
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882 Chapter 33 Electromagnetic Waves

33.2 c o n t i n u e d

(B)  At some point and at some instant, the electric field has its maximum value of 750 N/C and is directed along the y axis. 
Calculate the magnitude and direction of the magnetic field at this position and time.

S O L U T I O N

Use Equation 33.24 to find the magnitude of the magnetic field: Bmax 5
E max

c
5

750 NyC
3.00 3 108 mys

5 2.50 3 1026 T

Because E
S

 and B
S

 must be perpendicular to each other and perpendicular to the direction of wave propagation (x in this 
case), we conclude that B

S
 is in the z direction.

Finalize Notice that the wavelength is several meters. This is relatively long for an electromagnetic wave. As we will see in 
Section 33.7, this wave belongs to the radio range of frequencies.

   33.4    Energy Carried by Electromagnetic Waves
In our discussion of the nonisolated system model for energy in Section 8.1, we 
identified electromagnetic radiation as one method of energy transfer across the 
boundary of a system. The amount of energy transferred by electromagnetic waves 
is symbolized as T ER in Equation 8.2. The rate of transfer of energy by an elec-
tromagnetic wave is described by a vector S

S
, called the Poynting vector, which is 

defined by the expression

 S
S

;
1
m0

 E
S

3 B
S

 (33.25)

From the definition of the vector product (Section 11.1), we see that S
S

 is in the 
direction of the propagation of the wave (Fig. 33.10). The units for S

S
 can be found 

by dimensional analysis (Section 1.3):

f S
S

g 5
fE

S
gfB

S
g

fm0g
5

sNyCdsTd
T ? myA

5
N ? m
m2 ? s

5
J

m2 ? s
5

W
m2

The magnitude of the Poynting vector represents the intensity, the rate at which 
energy passes through a unit surface area perpendicular to the direction of wave 
propagation. Therefore, the magnitude of S

S
 represents power per unit area. 

As an example, let’s evaluate the magnitude of S
S

 for a plane electromagnetic 
wave where uE

S
3 B

S
u 5 EB. In this case,

 S 5
EB
m0

 (33.26)

Because B 5 E/c, we can also express this result as

 S 5
E 2

m0c
5

cB 2

m0
 

These equations for S apply at any instant of time and represent the instantaneous 
rate at which energy is passing through a unit area in terms of the instantaneous 
values of E and B.

What is of greater interest for a sinusoidal plane electromagnetic wave is the 
time average of S over one or more cycles, which is called the wave intensity I. (We 
discussed the intensity of sound waves in Chapter 16.) When this average is taken, 
we obtain an expression involving the time average of cos2 (kx 2 vt), which equals 12. 
Hence, the average value of S (in other words, the intensity of the wave) is

 I 5 S avg 5
Emax Bmax

2m0

5
E 2

max

2m0c
5

cB 2
max

2m0

 (33.27)

Poynting vector 

Wave intensity  

Pitfall PRevention 33.3
An Instantaneous Value The 
Poynting vector given by Equa-
tion 33.25 is time dependent. Its 
magnitude varies in time, reach-
ing a maximum value at the same 
instant the magnitudes of E

S
 and 

B
S

 do. The average rate of energy 
transfer is given by Equation 33.27.

Pitfall PRevention 33.4
Irradiance In this discussion, 
intensity is defined in the same 
way as in Chapter 16 (as power per 
unit area). In the optics industry, 
however, power per unit area is 
called the irradiance. Radiant 
intensity is defined as the power 
in watts per solid angle (measured 
in steradians).
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    33.4 Energy Carried by Electromagnetic Waves 883

Recall that the energy per unit volume associated with an electric field, which is 
the instantaneous energy density uE, is given by Equation 25.15:

 uE 5 1
2 e0E 2 (33.28)

Also recall that the instantaneous energy density uB associated with a magnetic 
field is given by Equation 31.14:

 uB 5
B 2

2m0

 (33.29)

Because E and B vary with time for an electromagnetic wave, the energy densities 
also vary with time. Using the relationships B 5 E/c and c 5 1yÏm0e0, the expres-
sion for uB becomes

 uB 5
sEycd2

2m0

5
m0e0

2m0

 E 2 5 1
2e0E 2 5 uE (33.30)

That is, the instantaneous energy density associated with the magnetic field of an 
electromagnetic wave equals the instantaneous energy density associated with the 
electric field. Hence, in a given volume, the energy is equally shared by the two fields.

The total instantaneous energy density u is equal to the sum of the energy den-
sities associated with the electric and magnetic fields:

 u 5 uE 1 uB 5 2uE 5 2uB 5 e0E 2 5
B 2

m0
 (33.31)

When this total instantaneous energy density is averaged over one or more cycles 
of an electromagnetic wave, we again obtain a factor of 1

2. Hence, from Equation 
33.31, for any electro magnetic wave, the total average energy per unit volume is

 uavg 5 e0sE
2davg 5 1

2e0E 2
max 5

B 2
max

2m0

 (33.32)

Comparing this result with Equation 33.27 for the average value of S, we see that

 I 5 S avg 5 cu avg (33.33)

Therefore, the intensity of an electromagnetic wave equals the average energy den-
sity multiplied by the speed of light.

The Sun delivers about 103 W/m2 of energy to the Earth’s surface via electro-
magnetic radiation which represents the intensity, or the average magnitude of the 
Poynting vector, for solar radiation. Let’s calculate the total power that is incident 
on the roof of a home. The roof’s dimensions are 8.00 m 3 20.0 m and we assume 
the radiation is incident normal to the roof. Because intensity represents power per 
unit area, we obtain

 Pavg 5 S avgA 5 s1 000 Wym2ds8.00 m 3 20.0 md 5 1.60 3 105 W 

This power is large compared with the power requirements of a typical home. 
If this power could be absorbed and made available to electrical devices, it would 
provide more than enough energy for the average home. Solar energy is not easily 
harnessed, however, and the prospects for large-scale conversion are not as bright 
as may appear from this calculation. For example, the efficiency of conversion from 
solar energy is typically 12–18% for photovoltaic cells, reducing the available power 
by an order of magnitude. Other considerations reduce the power even further. 
Depending on location, the radiation is most likely not incident normal to the roof 
and, even if it is, this situation exists for only a short time near the middle of the 
day. No energy is available for about half of each day during the nighttime hours, 
and cloudy days further reduce the available energy. Finally, while energy is arriv-
ing at a large rate during the middle of the day, some of it must be stored for later 

  Total instantaneous energy 
density of an electromagnetic 
wave

  Average energy density of an 
electromagnetic wave

B
S

E
S

cS

y

z x

S
S

Figure 33.10 The Poynting vec-
tor S

S
 for a plane electromagnetic 

wave is along the direction of wave 
propagation.
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884 Chapter 33 Electromagnetic Waves

use, requiring batteries or other storage devices. Despite these difficulties, conver-
sion of homes to solar operation can be cost-effective, and many homeowners are 
making the conversion.

 Example 33.3   Fields on the Page

Estimate the maximum magnitudes of the electric and magnetic fields of the light that is incident on this page because of 
the visible light coming from your incandescent desk lamp. Treat the lightbulb as a point source of electromagnetic radia-
tion that is 5% efficient at transforming energy coming in by electrical transmission to energy leaving by visible light.

S O L U T I O N

Conceptualize  The filament in your incandescent lightbulb emits electromagnetic radiation. The brighter the light, the 
larger the magnitudes of the electric and magnetic fields.

Categorize  Because the lightbulb is to be treated as a point source, it emits equally in all directions, so the outgoing electro-
magnetic radiation can be modeled as a spherical wave.

Analyze  Recall from Equation 16.40 that the intensity I of a sound wave a distance r from a point source is I 5 Pavg /4p r2, 
where Pavg is the average power output of the source and 4pr2 is the area of a sphere of radius r centered on the source. This 
expression is also valid for electromagnetic waves.

Set this expression for I equal to the intensity of  I 5
Pavg

4pr 2 5
E 2

max

2m0c
 

an electromagnetic wave given by Equation 33.27:

Solve for the electric field magnitude: E max 5 Îm0c Pavg

2pr 2

Let’s make some assumptions about numbers to enter in this equation. The visible light output of a 60-W lightbulb operating 
at 5% efficiency is approximately 3.0 W by visible light. (The remaining energy transfers out of the lightbulb by thermal con-
duction and invisible radiation.) A reasonable distance from the lightbulb to the page might be 0.30 m.

Substitute these values: E max 5 Îs4p 3 1027 T ? myAds3.00 3 108 mysds3.0 Wd
2ps0.30 md2

 5 45 Vym

Use Equation 33.24 to find the magnetic field  B max 5
E max

c
5

45 Vym
3.00 3 108 mys

5 1.5 3 1027 T  
magnitude:

Finalize  This value of the magnetic field magnitude is two orders of magnitude smaller than the Earth’s magnetic field.

   33.5    Momentum and Radiation Pressure
Electromagnetic waves transport linear momentum as well as energy. As this 
momentum is absorbed by some surface, pressure is exerted on the surface. There-
fore, the surface is a nonisolated system for momentum. In this discussion, let’s 
assume the electromagnetic wave strikes the surface at normal incidence and trans-
ports a total energy TER to the surface in a time interval Dt. Maxwell showed that if 
the surface absorbs all the incident energy TER in this time interval (as does a black 
body, introduced in Section 19.6), the total momentum pS transported to the sur-
face has a magnitude

 p 5
TER

c
  (complete absorption) (33.34)

The pressure P exerted on the surface is defined as force per unit area F/A, which 
when combined with Newton’s second law gives

 P 5
F
A

5
1
A

  
dp

dt
 

Momentum transported to a  
perfectly absorbing surface
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    33.5 Momentum and Radiation Pressure 885

Substituting Equation 33.34 into this expression for pressure P gives

 P 5
1
A  

d p

dt
5

1
A

  
d
dt STER

c D 5
1
c
  

sdTERydtd
A

 

We recognize (dTER/dt)/A as the rate at which energy is arriving at the surface per 
unit area, which is the magnitude of the Poynting vector. Therefore, the radiation 
pressure P exerted on the perfectly absorbing surface is

 P 5
S
c
  (complete absorption) (33.35)

If the surface is a perfect reflector (such as a mirror) and incidence is normal, 
the momentum transported to the surface in a time interval Dt is twice that given 
by Equation 33.34. That is, the momentum transferred to the surface by the incom-
ing light is p 5 TER/c and that transferred by the reflected light is also p 5 TER/c. 
Therefore,

 p 5
2TER

c
  (complete reflection) (33.36)

The radiation pressure exerted on a perfectly reflecting surface for normal inci-
dence of the wave is

 P 5
2S
c

  (complete reflection) (33.37)

For a surface that is neither a perfect absorber nor a perfect reflector, we can write 
the pressure as

 P 5 s1 1 f d 

S
c
 (33.38)

where f  is the fraction of the incident light that is reflected from the surface.
Although radiation pressures are very small (about 5 3 1026 N/m2 for direct sun-

light), solar sailing is a low-cost means of sending spacecraft to the planets. Large sheets 
experience radiation pressure from sunlight and are used in much the way canvas 
sheets are used on earthbound sailboats. In 2010, the Japan Aerospace Exploration 
Agency (JAXA) launched the first spacecraft to use solar sailing as its primary pro-
pulsion, IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun). This 
spacecraft completed its planned mission and is now in orbit around the Sun, sending 
back data when it is close enough to the Sun for the solar panels to provide power.

Q uiCk Quiz 33.4  To maximize the radiation pressure on the sails of a space-
craft using solar sailing, should the sheets be (a) very black to absorb as much 
sunlight as possible or (b) very shiny to reflect as much sunlight as possible?

   Radiation pressure exerted on 
a perfectly absorbing surface

  Radiation pressure exerted on 
a perfectly reflecting surface

Pitfall PRevention 33.5
So Many p’s We have p for 
momentum and P for pressure, 
and they are both related to P for 
power! Be sure to keep all these 
symbols straight.

 Conceptual Example 33.4    Sweeping the Solar System

A great amount of dust exists in interplanetary space. Although in theory these dust particles can vary in size from molecu-
lar size to a much larger size, very little of the dust in our solar system is smaller than about 0.2 mm. Why?

S O L U T I O N

The dust particles are subject to two significant forces: the gravitational force that draws them toward the Sun and the radia-
tion-pressure force that pushes them away from the Sun. The gravitational force is proportional to the cube of the radius of a 
spherical dust particle because it is proportional to the mass and therefore to the volume 4pr 3/3 of the particle. The radiation 
pressure is proportional to the square of the radius because it depends on the planar cross section of the particle. For large 
particles, the gravitational force is greater than the force from radiation pressure. For particles having radii less than about 
0.2 mm, the radiation-pressure force is greater than the gravitational force. As a result, these particles are swept out of our 
solar system by sunlight.
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886 Chapter 33 Electromagnetic Waves

 Example 33.5    Pressure from a Laser Pointer

When giving presentations, many people use a laser pointer to direct the attention of the audience to information on a 
screen. If a 3.0-mW pointer creates a spot on a screen that is 2.0 mm in diameter, determine the radiation pressure on  
a screen that reflects 70% of the light that strikes it. The power 3.0 mW is a time-averaged value.

S O L U T I O N

Conceptualize  Imagine the waves striking the screen and exerting a radiation pressure on it. The pressure should not be very 
large. Note that the radiation from a laser  is very different from that due to a point source. The point source sends out radia-
tion uniformly in all directions, while a laser concentrates the radiation into a narrow beam in a single direction.

Categorize  This problem involves a calculation of radiation pressure for a surface that is neither a perfect absorber nor a 
perfect reflector.

Analyze  We begin by determining the magnitude of the beam’s Poynting vector.

Divide the time-averaged power delivered  S avg 5
sPower davg

A
5

sPower davg

pr 2 5
3.0 3 1023 W

pS2.0 3 1023 m
2 D2

5 955 Wym2 
via the electromagnetic wave by the cross- 
sectional area of the beam:

Use Equation 33.38 to find the pressure  Pavg 5 s1 1 f d 

S avg

c
 

on the surface:    

5 s1 1 0.70d 

955 Wym2

3.0 3 108 mys
5 5.4 3 1026 Nym2

Finalize  The pressure has an extremely small value, as expected. (Recall from Section 14.2 that atmospheric pressure is 
approximately 105 N/m2.) Consider the magnitude of the Poynting vector, Savg 5 955 W/m2. It is about the same as the intensity 
of sunlight at the Earth’s surface. For this reason, it is not safe to shine the beam of a laser pointer into a person’s eyes, which 
may be more dangerous than looking directly at the Sun.

W H A T  I F ? What if the laser pointer is moved twice as 
far away from the screen? Does that affect the radiation 
pressure on the screen?

Answer  Because a laser beam is popularly represented as 
a beam of light with constant cross section, you might think 
that the intensity of radiation, and therefore the radiation 
pressure, is independent of distance from the screen. A 
laser beam, however, does not have a constant cross section 
at all distances from the source; rather, there is a small but  

measurable divergence of the beam. If the laser is moved far-
ther away from the screen, the area of illumination on the 
screen increases, decreasing the intensity. In turn, the radia-
tion pressure is reduced.
 In addition, the doubled distance from the screen results 
in more loss of energy from the beam due to scattering from 
air molecules and dust particles as the light travels from the 
laser to the screen. This energy loss further reduces the radi-
ation pressure on the screen.

   33.6    Production of Electromagnetic  
Waves by an Antenna
We mentioned in Section 33.2 that the source of electromagnetic waves is accel-
erated charges. Let’s investigate details of that process in the emission of radia-
tion from charges in an antenna. Consider first a half-wave antenna. In this 
arrangement, two conducting rods are connected to a source of alternating volt-
age (such as an LC oscillator) as shown in Figure 33.11. The length of each rod 
is equal to one-quarter the wavelength of the radiation emitted when the oscilla-
tor operates at frequency f. The oscillator forces charges to accelerate back and 
forth between the two rods. Figure 33.11 shows the configuration of the electric 
and magnetic fields at some instant when the current is upward. The separation 
of charges in the upper and lower portions of the antenna make the electric field 
lines resemble those of an electric dipole. (As a result, this type of antenna is some-
times called a dipole antenna.) Because these charges are continuously oscillating 
between the two rods, the antenna can be approximated by an oscillating electric 
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dipole. The current representing the movement of charges between the ends of 
the antenna produces magnetic field lines forming concentric circles around the 
antenna that are perpendicular to the electric field lines at all points. The mag-
netic field is zero at all points along the axis of the antenna. Furthermore, E

S
 and  

B
S

 are 90° out of phase in time; for example, the current is zero when the charges at 
the outer ends of the rods are at a maximum.

At the two points where the magnetic field is shown in Figure 33.11, the Poynting 
vector S

S
 is directed radially outward, indicating that energy is flowing away from 

the antenna at this instant. At later times, the fields and the Poynting vector reverse 
direction as the current alternates. Because E

S
 and B

S
 are 90° out of phase at points 

near the dipole, the net energy flow is zero. From this fact, you might conclude 
(incorrectly) that no energy is radiated by the dipole.

Energy is indeed radiated, however. Because the dipole fields fall off as 1/r3 (as 
shown in Example 22.6 for the electric field of a static dipole), they are negligible at 
great distances from the antenna. At these great distances, something else causes a 
type of radiation different from that close to the antenna. The source of this radi-
ation is the continuous induction of an electric field by the time-varying magnetic 
field and the induction of a magnetic field by the time-varying electric field, pre-
dicted by Equations 33.11 and 33.12. The electric and magnetic fields produced in 
this manner are in phase with each other and vary as 1/r. The result is an outward 
flow of energy at all times.

The angular dependence of the radiation intensity produced by a dipole antenna 
is shown in Figure 33.12. Notice that the intensity and the power radiated are a maxi-
mum in a plane that is perpendicular to the antenna and passing through its midpoint. 
Furthermore, the power radiated is zero along the antenna’s axis. A mathematical  
solution to Maxwell’s equations for the dipole antenna shows that the intensity of 
the radiation varies as (sin2 u)/r 2, where u is measured from the axis of the antenna.

Electromagnetic waves can also induce currents in a receiving antenna. The 
response of a dipole receiving antenna at a given position is a maximum when the 
antenna axis is parallel to the electric field at that point and zero when the axis is 
perpendicular to the electric field.

Q uiCk Quiz 33.5  If the antenna in Figure 33.11 represents the source of  
a distant radio station, what would be the best orientation for your portable 
radio antenna located to the right of the figure? (a) up-down along the page 
(b) left-right along the page (c) perpendicular to the page

   33.7    The Spectrum of Electromagnetic Waves
The various types of electromagnetic waves are listed in Figure 33.13 (page 888), 
which shows the electromagnetic spectrum. Notice the wide ranges of frequencies 
and wavelengths. No sharp dividing point exists between one type of wave and the 
next. Remember that all forms of the various types of radiation are produced by 
the same phenomenon: acceleration of electric charges. The names given to the 
types of waves are simply a convenient way to describe the region of the spectrum 
in which they lie.

As noted in the discussion of Equation 8.2, energy can be transferred by elec-
tromagnetic waves; this transfer is represented by the term TER in the equation. 
We will see in future chapters that the energy carried by electromagnetic waves 
is proportional to the frequency. In Figure 33.13, therefore, the axis of increasing 
frequency can also be considered as an axis of increasing energy.

Radio waves, whose wavelengths range from more than 104 m to about 0.1 m, 
are the result of charges accelerating through conducting wires or in antennas. 
They are generated by such electronic devices as LC oscillators and are used in 
radio and television communication systems.
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The electric field lines 
resemble those of an electric 
dipole (shown in Fig. 22.17).

Figure 33.11  A half-wave 
antenna consists of two metal rods 
connected to an alternating volt-
age source. This diagram shows E

S
 

and B
S

 at an arbitrary instant when 
the current is upward.

u

y

x

S
S

The distance from the origin to 
a point on the edge of the tan 
shape is proportional to the 
magnitude of the Poynting 
vector and the intensity of 
radiation in that direction.

Figure 33.12  Angular dependence 
of the intensity of radiation produced 
by an oscillating electric dipole.
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888 Chapter 33 Electromagnetic Waves

Microwaves have wavelengths ranging from approximately 0.3 m to 1024 m and 
are also generated by electronic devices. Because of their short wavelengths, they 
are well suited for radar systems and for studying the atomic and molecular prop-
erties of matter. Microwave ovens are an interesting domestic application of these 
waves. It has been suggested that solar energy could be harnessed by beaming 
microwaves to the Earth from a solar collector in space.

Infrared waves have wavelengths ranging from approximately 1023 m to the 
longest wavelength of visible light, 7 3 1027 m. These waves, produced by mole-
cules and room-temperature objects, are readily absorbed by most materials. The 
infrared (IR) energy absorbed by a substance appears as internal energy because 
the energy agitates the object’s atoms, increasing their vibrational or translational 
motion, which results in a temperature increase. Infrared radiation has practical 
and scientific applications in many areas, including physical therapy, IR photogra-
phy, and vibrational spectroscopy.

Visible light, the most familiar form of electromagnetic waves, is the part of the 
electromagnetic spectrum the human eye can detect. Light is produced by the rear-
rangement of electrons in atoms and molecules. The various wavelengths of visible 
light, which correspond to different colors, range from red (l < 7 3 1027 m) to vio-
let (l < 4 3 1027 m). The sensitivity of the human eye is a function of wavelength, 
being a maximum at a wavelength of about 5.5 3 1027 m. With that in mind, why 
do you suppose tennis balls often have a yellow-green color? Table 33.1 provides 
approximate correspondences between the wavelength of visible light and the color 
assigned to it by humans. Light is the basis of the science of optics and optical 
instruments, to be discussed in Chapters 34 through 37.

Ultraviolet waves cover wavelengths ranging from approximately 4 3 1027 m 
to 6 3 10210 m. The Sun is an important source of ultraviolet (UV) light, which is 
the main cause of sunburn. Recall from the beginning of this section that increas-
ing frequency correlates with increasing energy. For UV light and the next two 
categories, x-rays and gamma rays, the energy is high enough for the radiation to  

 table 33.1  Approximate 
Correspondence Between 
Wavelengths of Visible Light 
and Color
Wavelength Color
Range (nm) Description

 400–430 Violet
 430–485 Blue
 485–560 Green
 560–590 Yellow
 590–625 Orange
 625–700 Red

Note: The wavelength ranges here are 
approximate. Different people will 
describe colors differently.

Figure 33.13  The electromag-
netic spectrum.

Wavelength

1 pm

1 nm

1 mm

1 cm

1 m

1 km

Long wave

AM

TV, FM

Microwaves

Infrared

Visible light

Ultraviolet

X-rays

Gamma rays

Frequency, Hz

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

Radio waves

1 mm

Violet
Blue
Green
Yellow

Orange

Red

�400 nm

�700 nm

The visible light 
spectrum is 
expanded to show 
details of the colors.

Adjacent wave types 
exhibit some overlap 
of frequencies.

Pitfall PRevention 33.6
“Heat Rays” Infrared rays are often 
called “heat rays,” but this termi-
nology is a misnomer. Although 
infrared radiation is used to raise or 
maintain temperature as in the case 
of keeping food warm with “heat 
lamps” at a fast-food restaurant, all 
wavelengths of electromagnetic radi-
ation carry energy that can cause the 
temperature of a system to increase. 
As an example, consider a potato 
baking in your microwave oven.
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penetrate into the skin. Sunscreen lotions are transparent to visible light but absorb 
most UV light. The higher a sunscreen’s solar protection factor, or SPF, the greater 
the percentage of UV light absorbed. Ultraviolet rays have also been implicated in 
the formation of cataracts, a clouding of the lens inside the eye. Sunglasses that 
block UV light are critical, as noted in Figure 33.14.

Most of the UV light from the Sun is absorbed by ozone (O3) molecules in the 
Earth’s upper atmosphere, in a layer called the stratosphere. This ozone shield converts 
lethal high-energy UV radiation to IR radiation, which in turn warms the stratosphere.

X-rays have wavelengths in the range from approximately 1028 m to 10212 m. The 
most common source of x-rays is the stopping of high-energy electrons upon bom-
barding a metal target. X-rays are used as a diagnostic tool in medicine and as a 
treatment for certain forms of cancer. Because x-rays can damage or destroy living 
tissues and organisms, care must be taken to avoid unnecessary exposure or over-
exposure. X-rays are also used in the study of crystal structure because x-ray wave-
lengths are comparable to the atomic separation distances in solids (about 0.1 nm).

Gamma rays are electromagnetic waves emitted by radioactive nuclei and during 
certain nuclear reactions. High-energy gamma rays are a component of cosmic rays 
that enter the Earth’s atmosphere from space. They have wavelengths ranging from 
approximately 10210 m to less than 10214 m. Gamma rays are highly penetrating 
and produce serious damage when absorbed by living tissues. Consequently, those 
working near such dangerous radiation must be protected with heavily absorbing 
materials such as thick layers of lead.

So what’s going on with your Wi-Fi signal in the opening storyline? A Wi-Fi signal 
is a radio signal, often at 2.4 or 5 GHz. Therefore, in Figure 33.13, we see that Wi-Fi 
signals lie in the microwave region, near the upper end of the long vertical arrow 
representing the range of radio waves. Is it a surprise that your Wi-Fi signal goes 
through the walls of your home? No, not if you think about radio signals coming 
from outside your home to old-time portable radios, or television signals arriving at 
old-time indoor antennas. Why does the Wi-Fi signal strength fall off as your walk 
away from your house? This is just an example of Equation 16.40; the intensity falls 
off as the square of the distance from the source. In fact, the Wi-Fi symbol on the 
phone in the chapter-opening photograph suggests that effect: a point source is 
sending out spherical waves that spread out in space.

Q uiCk Quiz 33.6  In many kitchens, a microwave oven is used to cook food. 
The frequency of the microwaves is on the order of 1010 Hz. Are the wavelengths 
of these microwaves on the order of (a) kilometers, (b) meters, (c) centimeters, 
or (d) micrometers?

Q uiCk Quiz 33.7  A radio wave of frequency on the order of 105 Hz is used to 
carry a sound wave with a frequency on the order of 103 Hz. Is the wavelength of 
this radio wave on the order of (a) kilometers, (b) meters, (c) centimeters, or  
(d) micrometers?

Figure 33.14 Wearing sunglasses 
that do not block ultraviolet (UV) 
light is worse for your eyes than 
wearing no sunglasses at all. The 
lenses of any sunglasses absorb 
some visible light, thereby causing 
the wearer’s pupils to dilate. If 
the glasses do not also block UV 
light, more damage may be done 
to the lens of the eye because of 
the dilated pupils. If you wear no 
sunglasses at all, your pupils are 
contracted, you squint, and much 
less UV light enters your eyes. 
High-quality sunglasses block 
nearly all the eye-damaging  
UV light.
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Summary
 › Definitions

In a region of space in which there is a changing electric field, there is a displacement 
current defined as

 Id ; e0

dFE

dt
 (33.1)

where e0 is the permittivity of free space (see Section 22.3) and FE 5 e E
S  

? dA
S

 is the 
electric flux.

The rate at which energy passes 
through a unit area by electromagnetic 
radiation is described by the Poynting 
vector S

S
, where

 S
S

;
1

m0

 E
S

3 B
S

 (33.25)

continued
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890 Chapter 33 Electromagnetic Waves

 › Concepts and Principles

When used with the Lorentz force law, F
S

5 qE
S

1 q vS 3 B
S

, Maxwell’s equations describe all electromagnetic phenomena:

 $ E
S  

? dA
S

5
q

e0

 (33.4) $ E
S  

? d sS 5 2 

dFB

dt
 (33.6)

 $ B
S  

? dA
S

5 0 (33.5) $ B
S  

? d sS 5 m0I 1 e0m0 
dFE

dt
 (33.7)

Electromagnetic waves, which are predicted by Maxwell’s equa-
tions, have the following properties and are described by the 
following mathematical representations of the traveling wave 
model for electromagnetic waves.

● The electric field and the magnetic field each satisfy a 
wave equation. These two wave equations, which can be 
obtained from Maxwell’s third and fourth equations, are

 
−2E
−x2 5 m0e0 

−2E
−t2  (33.19)

 
−2B
−x2 5 m0e0 

−2B
−t2  (33.20)

● The waves travel through a vacuum with the speed of  
light c, where

 c 5
1

Ïm0e0

 (33.21)

● Numerically, the speed of electromagnetic waves in a 
vacuum is 3.00 3 108 m/s.

● The electric and magnetic fields are perpendicular to 
each other and perpendicular to the direction of wave 
propagation.

● The instantaneous magnitudes of E
S

 and B
S

 in an electro-
magnetic wave are related by the expression

 
E
B

5 c (33.24)

● Electromagnetic waves carry energy.
● Electromagnetic waves carry momentum.

Because electromagnetic waves carry momentum, they 
exert pressure on surfaces. If an electromagnetic wave 
whose Poynting vector is S

S
 is completely absorbed by a 

surface upon which it is normally incident, the radiation 
pressure on that surface is

 P 5
S
c
 scomplete absorptiond (33.35)

If the surface totally reflects a normally incident wave, 
the pressure is doubled.

The electric and magnetic fields of a sinusoidal plane electromag-
netic wave propagating in the positive x direction can be written as

 E 5 Emax cos (kx 2 vt ) (33.22)

 B 5 Bmax cos (kx 2 vt ) (33.23)

where k is the angular wave number and v is the angular frequency 
of the wave. These equations represent special solutions to the wave 
equations for E and B. 

The average value of the Poynting vector for a plane electromagnetic wave has a 
magnitude

 S avg 5
E max Bmax

2m0

5
E 2

max

2m0c
5

cB 2
max

2m0

 (33.27)

The intensity of a sinusoidal plane electromagnetic wave equals the average value 
of the Poynting vector taken over one or more cycles.

The electromagnetic spectrum includes 
waves covering a broad range of wave-
lengths, from long radio waves at more than 
104 m to gamma rays at less than 10214 m.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working for NASA and have joined the team investi-
gating the concept of solar sailing. (a) Your supervisor has 
asked your team to determine the minimum area of a perfectly 
reflecting solar sail that will be necessary to keep a 15 000-kg  
solar spacecraft moving away from the gravitational attrac-
tion of the Sun, which has a power output of 3.85 3 1026 W,  
and then make a presentation on your results. (b) After your 

team presents your results and your co-workers are shocked 
at the size of the sail needed, your supervisor asks you, “But 
the needed area of the sail can be smaller as we move far-
ther from the Sun, right, because the gravitational force will 
decrease?” How do you respond? 

2. ACTIVITy  Planets orbiting stars other than the Sun are 
called exoplanets. Your group has found the table below, 
which lists data on some exoplanets that have been discov-
ered, in order of the year of discovery.
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Suppose that the evolution of life like ours on Earth will 
occur for a surface temperature (without accounting for an 
atmosphere) between 250 K and 320 K and for accelerations 
due to gravity at the surface of the planet between 5.00 m/s2  
and 15.0 m/s2. How many of the planets above are candi-
dates for the evolution of life like ours? Assume that all 
planets reflect 30.0% of the light incident on them. The 
power output PSun of the Sun is 3.85 3 1026 W.

 3. Your group has been hired as expert witnesses for an 
astronaut team that, after returning to Earth, is being 
reprimanded by the military for losing a very expensive, 
high-powered laser weapon that was to be tested from an 
orbital position. Here’s the story: The team was watching 
their fellow astronaut take a space walk to move the laser 
to an orbital position away from the International Space 
Station (ISS) when an accident occurred. While everyone 
else was safely enclosed within the ISS, she was on her space 
walk, 10.0 m away from the entrance to the ISS, at rest with 
respect to the station. Her maneuvering unit had failed and 

she was not attached with a tether. Her total mass, including 
spacesuit and all gear, is 250 kg. This total includes the laser 
of mass 103 kg, which puts out a parallel beam of light of 
power 9.50 3 104 W. She was told by radio to aim the laser 
away from the ISS and turn it on, so it would act as a photon 
rocket, propelling her toward the station. She answered 
back, suggesting an alternative plan: she could just throw 
the laser in a direction away from the station, which would 
cause her to move toward the station. She estimated that she 
could throw the laser at a speed of 0.200 m/s relative to the 
station. The team discussed the options and decided to have 
her throw the laser. Prepare an argument that can hopefully 
support the astronaut team, arguing that using the laser as a 
photon rocket would have required too much time because 
she only had 1.00 h of oxygen left in her life support system, 
and that throwing the laser was the only option available 
to keep her alive. Divide up the work between two halves of 
your group and have one half work on the laser-throwing 
possibility and the other on the photon rocket possibility.

Planet
Mass M  
(MEarth)

Radius R  
(REarth)

Orbital Radius a  
(AU)

Luminosity Lstar  
of Star (PSun)

Year of  
Discovery

GJ 436b 22.3 4.17 0.028 9 0.025 2004

GJ 674b 12.7 12.4 0.039 0.016 2007

Gliese 581c 5.40 1.50 0.073 0.013 2007

HAT-P-11b 26.2 4.63 0.053 0.26 2009

GJ 3470b 13.9 3.14 0.035 6 0.029 2012

Kepler-42b 2.86 0.768 0.011 6 0.002 4 2012

Kepler-42c 1.91 0.713 0.006 0 0.002 4 2012

Kepler-42d 0.955 0.209 0.015 4 0.002 4 2012

Kepler-138b 21.3 0.571 0.074 6 0.060 2014

HD 219134b 3.82 1.57 0.038 5 0.28 2015

Kepler-452b 2.86 1.50 1.05 1.2 2015

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtion 33.1  Displacement Current and the General  
Form of Ampère’s Law

1. A 0.200-A current is charging a capacitor that has circular 
plates 10.0 cm in radius. If the plate separation is 4.00 mm, 
(a) what is the time rate of increase of electric field between 
the plates? (b) What is the magnetic field between the plates 
5.00 cm from the center?

SeCtion 33.2  Maxwell’s Equations and Hertz’s Discoveries

2. A very long, thin rod carries electric charge with the linear 
density 35.0 nC/m. It lies along the x axis and moves in the x 
direction at a speed of 1.50 3 107 m/s. (a) Find the electric 
field the rod creates at the point (x 5 0, y 5 20.0 cm, z 5 0). 
(b) Find the magnetic field it creates at the same point. (c) 
Find the force exerted on an electron at this point, moving 
with a velocity of s2.40 3 108di

⁄
 m/s.

3. A proton moves through a region containing a uniform 
electric field given by E

S
5 50.0 j

⁄
 V/m and a uniform 

magnetic field B
S

5 s0.200 i
⁄

1 0.300 j
⁄

1 0.400 k
⁄

d T. Deter-
mine the acceleration of the proton when it has a velocity 
vS 5 200 i

⁄
 mys.

SeCtion 33.3  Plane Electromagnetic Waves

Note: Assume the medium is vacuum unless specified 
otherwise.

4. A diathermy machine, used in physiotherapy, generates elec-
tromagnetic radiation that gives the effect of “deep heat” when 
absorbed in tissue. One assigned frequency for diathermy is 
27.33 MHz. What is the wavelength of this radiation?

5. The distance to the North Star, Polaris, is approximately 
6.44 3 1018 m. (a) If Polaris were to burn out today, how 
many years from now would we see it disappear? (b) What 
time interval is required for sunlight to reach the Earth? 
(c) What time interval is required for a microwave signal to 
travel from the Earth to the Moon and back?

V

T

 Problems 891
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892 Chapter 33 Electromagnetic Waves

6. A radar pulse returns to the transmitter–receiver after a 
total travel time of 4.00 3 1024 s. How far away is the object 
that reflected the wave?

7. The speed of an electromagnetic wave traveling in a trans-
parent nonmagnetic substance is v 5 1yÏkm0e0, where k 
is the dielectric constant of the substance. Determine the 
speed of light in water, which has a dielectric constant of 
1.78 at optical frequencies.

8. You are working for SETI, the Search for Extraterrestrial 
Intelligence. One day, you receive a radio communication 
from an alien intelligence. Although you cannot understand 
their language, they have included some photos from an I 
Love Lucy episode. The photos allow you to determine that it 
is the episode in which Lucy makes a television commercial 
on Vitameatavegamin. This episode first aired on CBS on 
May 5, 1952. Before running to your supervisor to tell him 
the news, you quickly determine how far away in light-years 
the alien civilization is.

9. Review. A microwave oven is powered by a magnetron, an 
electronic device that generates electromagnetic waves of 
frequency 2.45 GHz. The microwaves enter the oven and are 
reflected by the walls. The standing-wave pattern produced 
in the oven can cook food unevenly, with hot spots in the 
food at antinodes and cool spots at nodes, so a turntable is 
often used to rotate the food and distribute the energy. If a 
microwave oven intended for use with a turntable is instead 
used with a cooking dish in a fixed position, the antinodes 
can appear as burn marks on foods such as carrot strips or 
cheese. The separation distance between the burns is mea-
sured to be 6 cm 6 5%. From these data, calculate the speed 
of the microwaves.

10. Verify by substitution that the following equations are solu-
tions to Equations 33.19 and 33.20, respectively:

E 5 Emax cos (kx 2 vt)

B 5 Bmax cos (kx 2 vt)

11. Why is the following situation impossible? An electromagnetic 
wave travels through empty space with electric and mag-
netic fields described by

E 5 9.00 3 103 cos [(9.00 3 106)x 2 (3.00 3 1015)t]

B 5 3.00 3 1025 cos [(9.00 3 106)x 2 (3.00 3 1015)t]

where all numerical values and variables are in SI units.

SeCtion 33.4  Energy Carried by Electromagnetic Waves

12. At what distance from the Sun is the intensity of sunlight 
three times the value at the Earth? (The average Earth–Sun 
separation is 1.496 3 1011 m.)

13. If the intensity of sunlight at the Earth’s surface under a 
fairly clear sky is 1 000 W/m2, how much electromagnetic 
energy per cubic meter is contained in sunlight?

14. The power of sunlight reaching each square meter of the 
Earth’s surface on a clear day in the tropics is close to 1 000 W.  
On a winter day in Manitoba, the power concentration 
of sunlight can be 100 W/m2. Many human activities are 
described by a power per unit area on the order of 102 W/m2  
or less. (a) Consider, for example, a family of four paying $66  
to the electric company every 30 days for 600 kWh of energy 
carried by electrical transmission to their house, which has 

floor dimensions of 13.0 m by 9.50 m. Compute the power 
per unit area used by the family. (b) Consider a car 2.10 m 
wide and 4.90 m long traveling at 55.0 mi/h using gasoline 
having “heat of combustion” 44.0 MJ/kg with fuel economy 
25.0 mi/gal. One gallon of gasoline has a mass of 2.54 kg. 
Find the power per unit area used by the car. (c) Explain 
why direct use of solar energy is not practical for running 
a conventional automobile. (d) What are some uses of solar 
energy that are more practical?

15. High-power lasers in factories are used to cut through cloth 
and metal (Fig. P33.15). One such laser has a beam diame-
ter of 1.00 mm and generates an electric field having an 
amplitude of 0.700 MV/m at the target. Find (a) the ampli-
tude of the magnetic field produced, (b) the intensity of the 
laser, and (c) the power delivered by the laser.

16. Review. Model the electromagnetic wave in a microwave 
oven as a plane traveling wave moving to the left, with an 
intensity of 25.0 kW/m2. An oven contains two cubical con-
tainers of small mass, each full of water. One has an edge 
length of 6.00 cm, and the other, 12.0 cm. Energy falls 
perpendicularly on one face of each container. The water 
in the smaller container absorbs 70.0% of the energy that 
falls on it. The water in the larger container absorbs 91.0%. 
That is, the fraction 0.300 of the incoming microwave 
energy passes through a 6.00-cm thickness of water, and the 
fraction (0.300)(0.300) 5 0.090 passes through a 12.0-cm  
thickness. Assume a negligible amount of energy leaves 
either container by heat. Find the temperature change of 
the water in each container over a time interval of 480 s.

17. You are serving as an expert witness for the city council of a 
community. The council is exploring the concept of providing 
the electrical needs of the community by building a facility 
with photovoltaic cells to convert sunlight to electric potential 
energy. But they are facing resistance from members of the 
community, who claim that there is not enough open land in 
the community to build such a facility. The opposition is build-
ing toward a lawsuit, which the city council wants to avoid. The 
community requires 1.00 MW of power, and the best photovol-
taic cells on the market at the time have an efficiency of 30.0%. 
In your community, an average intensity of sunlight during the 
day is 1 000 W/m2. The council members have no idea how 
much land is needed, so they have asked you to estimate the 
area of land that must be found to construct this facility.

18. Assuming the antenna of a 10.0-kW radio station radiates 
spherical electromagnetic waves, (a) compute the maximum  
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value of the magnetic field 5.00 km from the antenna and 
(b) state how this value compares with the surface magnetic 
field of the Earth.

19. At what distance from a 100-W electromagnetic wave point 
source does Emax 5 15.0 V/m?

20. At one location on the Earth, the rms value of the magnetic 
field caused by solar radiation is 1.80 mT. From this value, 
calculate (a) the rms electric field due to solar radiation,  
(b) the average energy density of the solar component of 
electromagnetic radiation at this location, and (c) the aver-
age magnitude of the Poynting vector for the Sun’s radiation.

SeCtion 33.5  Momentum and Radiation Pressure

21. A 25.0-mW laser beam of diameter 2.00 mm is reflected at 
normal incidence by a perfectly reflecting mirror. Calculate 
the radiation pressure on the mirror.

22. The intensity of sunlight at the Earth’s distance from the 
Sun is 1 370 W/m2. Assume the Earth absorbs all the sun-
light incident upon it. (a) Find the total force the Sun exerts 
on the Earth due to radiation pressure. (b) Explain how this 
force compares with the Sun’s gravitational attraction.

23. A 15.0-mW helium–neon laser emits a beam of circular 
cross section with a diameter of 2.00 mm. (a) Find the max-
imum electric field in the beam. (b) What total energy is 
contained in a 1.00-m length of the beam? (c) Find the 
momentum carried by a 1.00-m length of the beam.

24. A helium–neon laser emits a beam of circular cross section 
with a radius r and a power P. (a) Find the maximum elec-
tric field in the beam. (b) What total energy is contained in 
a length , of the beam? (c) Find the momentum carried by 
a length , of the beam.

25. A plane electromagnetic wave of intensity 6.00 W/m2, moving  
in the x direction, strikes a small perfectly reflecting pocket 
mirror, of area 40.0 cm2, held in the y z plane. (a) What 
momentum does the wave transfer to the mirror each second? 
(b) Find the force the wave exerts on the mirror. (c) Explain 
the relationship between the answers to parts (a) and (b).

26. Assume the intensity of solar radiation incident on the 
upper atmosphere of the Earth is 1 370 W/m2 and use data 
from Table 13.2 as necessary. Determine (a) the intensity of 
solar radiation incident on Mars, (b) the total power inci-
dent on Mars, and (c) the radiation force that acts on that 
planet if it absorbs nearly all the light. (d) State how this 
force compares with the gravitational attraction exerted by 
the Sun on Mars. (e) Compare the ratio of the gravitational 
force to the light-pressure force exerted on the Earth and 
the ratio of these forces exerted on Mars, found in part (d).

SeCtion 33.6  Production of Electromagnetic Waves  
by an Antenna

27. Extremely low-frequency (ELF) waves that can penetrate 
the oceans are the only practical means of communicating 
with distant submarines. (a) Calculate the length of a quar-
ter-wavelength antenna for a transmitter generating ELF 
waves of frequency 75.0 Hz into air. (b) How practical is this 
means of communication?

28. A large, flat sheet carries a uniformly distributed electric 
current with current per unit width Js. This current creates 

a magnetic field on both sides of the sheet, parallel to the 
sheet and perpendicular to the current, with magnitude 
B 5 1

2 m0 Js. If the current is in the y direction and oscillates 
in time according to

Jmax scos vt d j
⁄

5 Jmax fcos s2vt dg j
⁄

the sheet radiates an electromagnetic wave. Figure P33.28 
shows such a wave emitted from one point on the sheet cho-
sen to be the origin. Such electromagnetic waves are emitted 
from all points on the sheet. The magnetic field of the wave 
to the right of the sheet is described by the wave function

B
S

5 1
2 m0 Jmax fcos skx 2 vt dg k

⁄

(a) Find the wave function for the electric field of the wave to 
the right of the sheet. (b) Find the Poynting vector as a func-
tion of x and t. (c) Find the intensity of the wave. (d) What If? 
If the sheet is to emit radiation in each direction (normal to 
the plane of the sheet) with intensity 570 W/m2, what maxi-
mum value of sinusoidal current density is required?

29. Review. Accelerating charges radiate electromagnetic 
waves. Calculate the wavelength of radiation produced by a 
proton in a cyclotron with a magnetic field of 0.350 T.

30. Review. Accelerating charges radiate electromagnetic waves. 
Calculate the wavelength of radiation produced by a proton 
of mass mp moving in a circular path perpendicular to a mag-
netic field of magnitude B.

SeCtion 33.7  The Spectrum of Electromagnetic Waves

31. Compute an order-of-magnitude estimate for the frequency 
of an electromagnetic wave with wavelength equal to (a) your 
height and (b) the thickness of a sheet of paper. How is each 
wave classified on the electromagnetic spectrum?

32. An important news announcement is transmitted by radio 
waves to people sitting next to their radios 100 km from the 
station and by sound waves to people sitting across the news-
room 3.00 m from the newscaster. Taking the speed of sound 
in air to be 343 m/s, who receives the news first? Explain.

additional PRobleMS

33. Assume the intensity of solar radiation incident on the 
cloud tops of the Earth is 1 370 W/m2. (a) Taking the aver-
age Earth–Sun separation to be 1.496 3 1011 m, calculate 
the total power radiated by the Sun. Determine the max-
imum values of (b) the electric field and (c) the magnetic 
field in the sunlight at the Earth’s location.

34. Classify waves with frequencies of 2 Hz, 2 kHz, 2 MHz,  
2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the  
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894 Chapter 33 Electromagnetic Waves

electromagnetic spectrum. Classify waves with wavelengths 
of 2 km, 2 m, 2 mm, 2 mm, 2 nm, 2 pm, 2 fm, and 2 am.

35. The eye is most sensitive to light having a frequency of  
5.45 3 1014 Hz, which is in the green-yellow region of the 
visible electromagnetic spectrum. What is the wavelength of 
this light?

36. Write expressions for the electric and magnetic fields of a 
sinusoidal plane electromagnetic wave having an electric 
field amplitude of 300 V/m and a frequency of 3.00 GHz 
and traveling in the positive x direction.

37. You are working as a radio technician. One day, you set 
up a standing wave pattern with radio waves between two 
metal sheets 2.00 m apart. You cannot achieve a standing 
wave pattern with any smaller distances between the sheets. 
From this information, you determine the frequency of the  
radio waves.

38. One goal of the Russian space program is to illuminate dark 
northern cities with sunlight reflected to the Earth from a 
200-m diameter mirrored surface in orbit. Several smaller 
prototypes have already been constructed and put into 
orbit. (a) Assume that sunlight with intensity 1 370 W/m2  
falls on the mirror nearly perpendicularly and that the atmo-
sphere of the Earth allows 74.6% of the energy of sunlight to 
pass though it in clear weather. What is the power received 
by a city when the space mirror is reflecting light to it?  
(b) The plan is for the reflected sunlight to cover a circle of 
diameter 8.00 km. What is the intensity of light (the aver-
age magnitude of the Poynting vector) received by the city? 
(c) This intensity is what percentage of the vertical compo-
nent of sunlight at St. Petersburg in January, when the sun 
reaches an angle of 7.00° above the horizon at noon?

39. The intensity of solar radiation at the top of the Earth’s 
atmosphere is 1 370 W/m2. Assuming 60% of the incoming 
solar energy reaches the Earth’s surface and you absorb 50%  
of the incident energy, make an order-of-magnitude esti-
mate of the amount of solar energy you absorb if you sun-
bathe for 60 minutes.

40. The Earth reflects approximately 38.0% of the incident sun-
light from its clouds and surface. (a) Given that the intensity 
of solar radiation at the top of the atmosphere is 1 370 W/m2,  
find the radiation pressure on the Earth, in pascals, at the 
location where the Sun is straight overhead. (b) State how 
this quantity compares with normal atmospheric pressure at 
the Earth’s surface, which is 101 kPa.

41. Consider a small, spherical particle of radius r located in 
space a distance R 5 3.75 3 1011 m from the Sun. Assume 
the particle has a perfectly absorbing surface and a mass 
density of r 5 1.50 g/cm3. Use S 5 214 W/m2 as the value 
of the solar intensity at the location of the particle. Calcu-
late the value of r for which the particle is in equilibrium 
between the gravitational force and the force exerted by 
solar radiation.

42. Consider a small, spherical particle of radius r located in 
space a distance R  from the Sun, of mass MS. Assume the par-
ticle has a perfectly absorbing surface and a mass density r.  
The value of the solar intensity at the particle’s location is S. 
Calculate the value of r for which the particle is in equilib-
rium between the gravitational force and the force exerted 
by solar radiation. Your answer should be in terms of S, R, r, 
and other constants.

43. Review. A 1.00-m-diameter circular mirror focuses the 
Sun’s rays onto a circular absorbing plate 2.00 cm in radius, 
which holds a can containing 1.00 L of water at 20.0°C. (a) If 
the solar intensity is 1.00 kW/m2, what is the intensity on the 
absorbing plate? At the plate, what are the maximum mag-
nitudes of the fields (b) E

S
 and (c) B

S
? (d) If 40.0% of the 

energy is absorbed, what time interval is required to bring 
the water to its boiling point?

44. (a) A stationary charged particle at the origin creates an 
electric flux of 487 N ? m2/C through any closed surface sur-
rounding the charge. Find the electric field it creates in the 
empty space around it as a function of radial distance r away 
from the particle. (b) A small source at the origin emits an 
electromagnetic wave with a single frequency into vacuum, 
equally in all directions, with power 25.0 W. Find the elec-
tric field amplitude as a function of radial distance away 
from the source. (c) At what distance is the amplitude of 
the electric field in the wave equal to 3.00 MV/m, represent-
ing the dielectric strength of air? (d) As the distance from 
the source doubles, what happens to the field amplitude?  
(e) State how the behavior shown in part (d) compares with 
the behavior of the field in part (a).

45. Review. (a) A homeowner has a solar water heater installed  
on the roof of his house (Fig. P33.45). The heater is a f lat, 
closed box with excellent thermal insulation. Its interior is 
painted black, and its front face is made of insulating 
glass. Its emissivity for visible light is 0.900, and its emissiv-
ity for infrared light is 0.700. Light from the noontime 
Sun is incident perpendicular to the glass with an inten-
sity of 1 000 W/m2, and no water enters or leaves the box. 
Find the steady-state temperature of the box’s interior.  
(b) What If? The homeowner builds an identical box with 
no water tubes. It lies f lat on the ground in front of the 
house. He uses it as a cold frame, where he plants seeds in 
early spring. Assuming the same noontime Sun is at an 
elevation angle of 50.0°, find the steady-state temperature 
of the interior of the box when its ventilation slots are  
tightly closed.

46. You may wish to review Sections 16.4 and 16.8 on the trans-
port of energy by string waves and sound. Figure P33.46 is a 
graphical representation of an electromagnetic wave mov-
ing in the x direction. We wish to find an expression for the 
intensity of this wave by means of a different process from 
that by which Equation 33.27 was generated. (a) Sketch a 
graph of the electric field in this wave at the instant t 5 0,  
letting your flat paper represent the xy plane. (b) Compute 
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the energy density uE in the electric field as a function  
of x at the instant t 5 0. (c) Compute the energy density 
in the magnetic field uB as a function of x at that instant.  
(d) Find the total energy density u as a function of x, 
expressed in terms of only the electric field amplitude. 
(e) The energy in a “shoebox” of length l and frontal area 
A is E

l
5 el

0 uA dx. (The symbol E
l
 for energy in a wave-

length imitates the notation of Section 16.4.) Perform the 
integration to compute the amount of this energy in terms 
of A, l, Emax, and universal constants. (f) We may think of 
the energy transport by the whole wave as a series of these 
shoeboxes going past as if carried on a conveyor belt. Each 
shoebox passes by a point in a time interval defined as the 
period T 5 1/f of the wave. Find the power the wave car-
ries through area A. (g) The intensity of the wave is the 
power per unit area through which the wave passes. Com-
pute this intensity in terms of Emax and universal constants.  
(h) Explain how your result compares with that given in 
Equation 33.27.

47. You are working at NASA, in a division that is studying 
the possibility of rotating small spacecraft using radiation 
pressure from the Sun. You have built a scale model of a 
spacecraft as shown in Figure P33.47. The central body is a  
spherical shell with mass m 5 0.500 kg and radius R 5 15.0 cm.  
The thin rod extending from each side of the sphere is of 
mass mr 5 50.0 g and of total length , 5 1.00 m. At each 
end of the rod are circular plates of mass mp 5 10.0 g and 
radius rp 5 2.00 cm, with the center of each plate located at 
the end of the rod. One plate is perfectly reflecting and the  
other is perfectly absorbing. The initial configuration of 
this model is that it is at rest, mounted on a vertical axle 
with very low friction. To begin the simulation, you expose 
the model to sunlight of intensity Is 5 1 000 W/m2, directed 
perpendicularly to the plates, for a time interval of Dt 5 
2.00 min. The sunlight is then removed from the model. 
Determine the angular velocity v with which the model 
now rotates about the axle.

48. The electromagnetic power radiated by a nonrelativistic 
particle with charge q moving with acceleration a is

P 5
q 2a 2

6pe0c
3

where e0 is the permittivity of free space (also called the 
permittivity of vacuum) and c is the speed of light in vac-
uum. (a) Show that the right side of this equation has units 
of watts. An electron is placed in a constant electric field of 
magnitude 100 N/C. Determine (b) the acceleration of the 
electron and (c) the electromagnetic power radiated by this 
electron. (d) What If? If a proton is placed in a cyclotron 
with a radius of 0.500 m and a magnetic field of magnitude 
0.350 T, what electromagnetic power does this proton radi-
ate just before leaving the cyclotron?

49. Review. A 5.50-kg black cat and her four black kittens, each 
with mass 0.800 kg, sleep snuggled together on a mat on a 
cool night, with their bodies forming a hemisphere. Assume 
the hemisphere has a surface temperature of 31.0°C, an 
emissivity of 0.970, and a uniform density of 990 kg/m3. Find  
(a) the radius of the hemisphere, (b) the area of its curved sur-
face, (c) the radiated power emitted by the cats at their curved 
surface, and (d) the intensity of radiation at this surface. You 
may think of the emitted electromagnetic wave as having a sin-
gle predominant frequency. Find (e) the amplitude of the elec-
tric field in the electromagnetic wave just outside the surface 
of the cozy pile and (f) the amplitude of the magnetic field. 
(g) What If? The next night, the kittens all sleep alone, curling 
up into separate hemispheres like their mother. Find the total 
radiated power of the family. (For simplicity, ignore the cats’ 
absorption of radiation from the environment.)

CHallenge PRobleMS

 50. Review. In the absence of cable input or a satellite dish, a tele-
vision set can use a dipole-receiving antenna for VHF chan-
nels and a loop antenna for UHF channels. The VHF antenna 
consisted of two straight metal rods that were often called 
“rabbit ears.” The UHF antenna produces an emf from the 
changing magnetic flux through the loop. The television sta-
tion broadcasts a signal with a frequency f, and the signal has 
an electric field amplitude Emax and a magnetic field ampli-
tude Bmax at the location of the receiving antenna. (a) Using 
Faraday’s law, derive an expression for the amplitude of the 
emf that appears in a single-turn, circular loop antenna with 
a radius r that is small compared with the wavelength of the 
wave. (b) If the electric field in the signal points vertically, 
what orientation of the loop gives the best reception?

 51. A plane electromagnetic wave varies sinusoidally at 
90.0 MHz as it travels through vacuum along the positive x 
direction. The peak value of the electric field is 2.00 mV/m, 
and it is directed along the positive y direction. Find (a) the 
wavelength, (b) the period, and (c) the maximum value 
of the magnetic field. (d) Write expressions in SI units for 
the space and time variations of the electric field and of 
the magnetic field. Include both numerical values and unit 
vectors to indicate directions. (e) Find the average power 
per unit area this wave carries through space. (f) Find the 
average energy density in the radiation (in joules per cubic 
meter). (g) What radiation pressure would this wave exert 
upon a perfectly reflecting surface at normal incidence?
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P a r t  5

Light and Optics
The light rays coming from the 
leaves in the background of this 
scene did not form a focused 
image in the camera that took 
this photograph. Consequently, 
the background appears very 
blurry. Light rays passing though 
the raindrop, however, have 
been altered so as to form a 
focused image of the background 
leaves for the camera. The 
optical principles we study in 
this part of the book will explain 
phenomena such as this one. 
(Don Hammond Photography )

Light is basic to almost all life on the Earth. For example, plants 
convert the energy transferred by sunlight to chemical energy through 
photosynthesis. In addition, light is the principal means by which we are 
able to transmit and receive information to and from objects around us 
and throughout the Universe. Light is a form of electromagnetic radiation 
and represents energy transfer from the source to the observer. It is rep-
resented by TER in Equation 8.2.

Many phenomena in our everyday life depend on the properties of 
light. When you watch a television or view photos on a computer moni-
tor, you are seeing millions of colors formed from combinations of only 
three colors that are physically on the screen: red, blue, and green. The 
blue color of the daytime sky is a result of the optical phenomenon of 
scattering of light by air molecules, as are the red and orange colors of 
sunrises and sunsets. You see your image in your bathroom mirror in 
the morning or the images of other cars in your rearview mirror when 
you are driving. These images result from reflection of light. If you wear 
glasses or contact lenses, you are depending on refraction of light for 
clear vision. The colors of a rainbow result from dispersion of light as it 
passes through raindrops hovering in the sky after a rainstorm. If you 
have ever seen the colored circles of the glory surrounding the shadow 
of your airplane on clouds as you fly above them, you are seeing an 
effect that results from interference of light. The phenomena mentioned 
here have been studied by scientists and are well understood.

In the introduction to Chapter 34, we briefly discuss the dual nature of 
light. In some cases, it is best to model light as a stream of particles; in 
others, a wave model works better. Chapters 34 through 37 concentrate 
on those aspects of light that are best understood through the wave 
model of light. In Part 6, we will investigate the particle nature of light. ■
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the Nature of Light and the 
Principles of ray Optics

34.1 The Nature of Light

34.2 The Ray Approximation 
in Ray Optics

34.3 Analysis Model: Wave 
Under Reflection

34.4 Analysis Model: Wave 
Under Refraction

34.5 Huygens’s Principle

34.6 Dispersion

34.7 Total Internal 
Reflection

Storyline In the previous chapter, you took a walk outside your 
home to investigate the signal strength of your home Wi-Fi system. You are 
now standing on the sidewalk contemplating your results. You glance over at 
your shadow on the dewdrop-encrusted grass. You see a bright glow around the 
shadow of your head. Startled by this effect, you look upward and see a rainbow 
in the sky. And there are some faint pastel-colored bands below the main rain-
bow, as in the photo above. You think that all these effects must have something 
to do with the Sun behind you, so you turn to look up at the Sun. You are startled 
to see two bright areas in the sky far off to either side of the Sun. You then look 
down the street and see what appears to be a puddle of water in the street. But 
the street is dry where you are standing. You walk down to where the puddle 
was seen. The roadway is dry there, too! What’s going on? What’s causing all 
these effects?

ConneCtionS In the previous chapter, we introduced the notion of electro-
magnetic waves. In these next few chapters on optics, we will focus on light as 
our representative electromagnetic wave, because we have everyday experience 
with light. This first chapter on optics begins by discussing the nature of light and 
early methods for measuring the speed of light. Next, we study the fundamental 
phenomena of geometric optics: reflection of light from a surface and refraction 
as the light crosses the boundary between two media. We also study the disper-
sion of light as it refracts into materials, resulting in visual displays such as the 
rainbow. Finally, we investigate the phenomenon of total internal reflection, which 
is the basis for the operation of optical fibers and the technology of fiber optics. 
These investigations will set up what we need to form optical images using 

34
This photograph of a 

rainbow shows the range 
of colors from red on 

the top to violet on the 
bottom. The appearance 

of the rainbow depends on 
three optical phenomena 
discussed in this chapter: 
reflection, refraction, and 

dispersion. The faint pastel-
colored bows beneath the 

main rainbow are called 
supernumerary bows. They 
are formed by interference 

between rays of light leaving 
raindrops below those 

causing the main rainbow. 
(John W. Jewett Jr)
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    34.1 The Nature of Light 899

mirrors and lenses in Chapter 35. As we continue through our investigations into 
the behavior of light in these next few chapters, we will be setting ourselves up 
for our studies in Part 6, where much of quantum physics deals with the interac-
tion between light and matter.

   34.1    The Nature of Light
Before the beginning of the 19th century, light was considered to be a stream of 
particles that either was emitted by the object being viewed or emanated from the 
eyes of the viewer. Newton, the chief architect of the particle model of light, held 
that particles were emitted from a light source and that these particles stimulated 
the sense of sight upon entering the eye. Using this idea, he was able to explain 
reflection and refraction.

Most scientists accepted Newton’s particle model. During Newton’s lifetime, 
however, another model was proposed, one that argued that light might be some 
sort of wave motion. In 1678, Dutch physicist and astronomer Christiaan Huygens 
showed that a wave model of light could also explain reflection and refraction.

In 1801, Thomas Young (1773–1829) provided the first clear experimental demon-
stration of the wave nature of light. Young showed that under appropriate con-
ditions light rays interfere with one another according to the waves in interfer-
ence model, just like mechanical waves (Chapter 17). Such behavior could not be 
explained at that time by a particle model because there was no conceivable way 
in which two or more particles could come together and cancel one another. Addi-
tional developments during the 19th century led to the general acceptance of the 
wave model of light, the most important resulting from the work of Maxwell, who 
in 1873 asserted that light was a form of high-frequency electromagnetic wave. As 
discussed in Chapter 33, Hertz provided experimental confirmation of Maxwell’s 
theory in 1887 by producing and detecting electromagnetic waves.

These results represented convincing information that light has a wave nature, 
and scientists accepted the wave nature of light. Surprisingly, in the early twentieth 
century, new experiments indicated that light also has a particle nature! The parti-
cles of light are called photons.

We will explore the wave nature of light in these next few chapters on optics and 
delay the study of the particle nature of light until Chapter 39. Let’s begin by look-
ing at how the speed of light was measured historically.

Light travels at such a high speed (to three digits, c 5 3.00 3 108 m/s) that early 
attempts to measure its speed were unsuccessful. Galileo attempted to measure the 
speed of light by positioning two observers in towers separated by approximately 
10 km. Each observer carried a shuttered lantern. One observer would open his 
shutter first, and then the other would open his shutter at the moment he saw the 
light from the first lantern. Galileo reasoned that by knowing the transit time of 
the light beams from one lantern to the other and the distance between the two 
lanterns, he could obtain the speed. His results were inconclusive. Today, we realize 
(as Galileo concluded) that it is impossible to measure the speed of light in this 
manner because the transit time for the light is so much less than the reaction time 
of the observers in opening the shutters. Let’s look at two later methods that were 
more successful.

Roemer’s Method
In 1675, Danish astronomer Ole Roemer (1644–1710) made observations that led 
to the first successful estimate of the speed of light. Roemer’s technique involved 
astronomical observations of Io, one of the moons of Jupiter. Io has a period of rev-
olution around Jupiter of approximately 42.5 h. The period is measured by observ-
ing eclipses of Io as it revolves about Jupiter.

Christiaan Huygens
Dutch Physicist and Astronomer 
(1629–1695)
Huygens is best known for his con-
tributions to the fields of optics and 
dynamics. To Huygens, light was a type 
of vibratory motion, spreading out and 
producing the sensation of light when 
impinging on the eye. On the basis of this 
theory, he deduced the laws of reflection 
and refraction and explained the phe-
nomenon of double refraction.
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900 Chapter 34 The Nature of Light and the Principles of Ray Optics

An observer using the orbital motion of Io as a clock would expect the orbit to 
have a constant period. After collecting data for more than a year, however, Roemer 
observed a systematic variation in Io’s period. He found that the eclipses were later 
than average when the Earth was in a position in its orbit like E1 in Figure 34.1 on 
the opposite side of the Sun from Jupiter and far from it, and earlier than average 
when the Earth was on the same side of the Sun as Jupiter and closer to it as at posi-
tion E2. Roemer attributed this variation in the observed period to the extra time 
interval required for the light representing the eclipse to travel across the diameter 
of the Earth’s orbit.

Using Roemer’s data, Huygens estimated the lower limit for the speed of light 
to be approximately 2.3 3 108 m/s. This experiment is important historically 
because it demonstrated that light does have a finite speed and gave an estimate of 
this speed.

Fizeau’s Method
The first successful method for measuring the speed of light by means of purely ter-
restrial techniques was developed in 1849 by French physicist Armand H. L. Fizeau 
(1819–1896). Figure 34.2 represents a simplified diagram of Fizeau’s apparatus. 
The basic procedure is to measure the total time interval during which light travels 
from some point to a distant mirror and back. If d is the distance between the light 
source and the mirror and if the time interval for one round trip is Dt, the speed of 
light is c 5 2d/Dt.

To measure the transit time, Fizeau used a rotating toothed wheel, which con-
verts a continuous beam of light into a series of light pulses. Therefore, the wheel 
acts as the light source and defines one end of the distance d. The observer looks 
through the teeth and determines whether or not the reflected light is observable. 
For example, if the pulse traveling toward the mirror and passing the opening at 
point A in Figure 34.2 should reflect from the mirror and return to the wheel at the 
instant tooth B had rotated into position to cover the return path, the pulse would 
not reach the observer. At a greater rate of rotation, the opening at point C could 
move into position to allow the reflected pulse to reach the observer. Knowing the 
distance d, the number of teeth in the wheel, and the angular speed of the wheel, 
Fizeau arrived at a value of 3.1 3 108 m/s. Similar measurements made by subse-
quent investigators yielded more precise values for c, which led to the currently 
accepted value of 2.997 924 58 3 108 m/s.

A

B
C

Mirror

d

Toothed
wheel

Figure 34.2  Fizeau’s method for 
measuring the speed of light using 
a rotating toothed wheel. The 
light source is considered to be at 
the location of the wheel; there-
fore, the distance d is known.

E1

Jupiter

Sun

E2

Io

When Earth is far from Jupiter 
like at position E1, the eclipses of 
Io appear late. When Earth is at 
positions like E2, the eclipses 
appear early.

Figure 34.1  Roemer’s method 
for measuring the speed of light 
(drawing not to scale).

 Example 34.1    Measuring the Speed of Light with Fizeau’s Wheel

Assume Fizeau’s wheel has 360 teeth and rotates at 55.0 rev/s when a pulse of light passing through opening A in Fig-
ure 34.2 passes through opening C on its return. If the distance to the mirror is 7 500 m, what is the speed of light?

S O L U T I O N

Conceptualize Imagine a pulse of light passing through opening A in Figure 34.2 and reflecting from the mirror. By the time 
the pulse arrives back at the wheel, tooth B has passed by, and opening C has rotated into the position previously occupied by 
opening A.

Categorize The wheel is a rigid object rotating at constant angular speed. We model the pulse of light as a particle under 
constant speed.

Analyze The wheel has 360 teeth, so it must have 360 openings. Therefore, because the light passes through opening A and 
reflects back through the opening immediately adjacent to A, the wheel must rotate through an angular displacement of  
1

360 rev in the time interval during which the light pulse makes its round trip.

From the particle under constant speed model, find the  c 5
2d
Dt

5
2dv

Du
 

speed of the pulse of light, and use Equation 10.2 to  
substitute for the time interval for the pulse’s round trip:
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    34.2 The Ray Approximation in Ray Optics 901

   34.2    The Ray Approximation in Ray Optics
The field of ray optics (sometimes called geometric optics) involves the study of 
the propagation of light. Ray optics assumes light travels in a fixed direction in 
a straight line as it passes through a uniform medium and changes its direction 
when it meets the surface of a different medium or if the optical properties of the 
medium are nonuniform in either space or time. In our study of ray optics here 
and in Chapter 35, we use what is called the ray approximation. To understand this 
approximation, first recall that the rays of a given wave are straight lines perpen-
dicular to the wave fronts as illustrated in Figure 34.3 for a plane wave. In the ray 
approximation, a wave moving through a uniform medium travels in a straight line 
in the direction of its rays.

If the wave meets a barrier in which there is a circular opening whose diameter 
is much larger than the wavelength as in Figure 34.4a, the wave emerging from the 
opening continues to move in a straight line (apart from some small edge effects); 
hence, the ray approximation is valid. If the diameter of the opening is on the 
order of the wavelength as in Figure 34.4b, the waves spread out from the opening 
in all directions. This effect, called diffraction, will be studied in Chapter 37. Finally, 
if the opening is much smaller than the wavelength, the waves to the right of the 
barrier can be approximated as if there is a point source at the opening as shown 
in Fig. 34.4c.

Similar effects are seen when waves encounter an opaque object of dimension d. 
In that case, when l ,, d, the object casts a sharp shadow.

The ray approximation and the assumption that l ,, d are used in this chapter 
and in Chapter 35, both of which deal with ray optics. This approximation is very 
good for the study of mirrors, lenses, prisms, and associated optical instruments 
such as telescopes, cameras, and eyeglasses. When we study interference, diffrac-
tion, and polarization in Chapters 36 and 37, we will need to look more closely at 
the wave characteristics of light.

34.1 c o n t i n u e d

Substitute numerical values: c 5
2s7 500 mds55.0 revysd

1
360 rev

5  2.97 3 108 mys

Finalize This result is very close to the actual value of the speed of light.

Rays

Wave fronts 

The rays, which always point in 
the direction of the wave 
propagation, are straight lines 
perpendicular to the wave fronts.

Figure 34.3  A plane wave propa-
gating to the right.

d

l ,, d l .. d

a b c

l � d

When l ,, d, the rays continue 
in a straight-line path and the 
ray approximation remains valid.

When l � d, the rays 
spread out after passing 
through the opening.

When l .. d, the opening 
behaves as a point source 
emitting spherical waves.

Figure 34.4 A plane wave of 
wavelength l is incident on a bar-
rier in which there is an opening 
of diameter d.
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   34.3    Analysis Model: Wave Under Reflection
We introduced the concept of reflection of waves in a discussion of waves on strings 
in Section 17.3. As with waves on strings, when a light ray traveling in one medium 
encounters a boundary with another medium, part of the incident light is reflected. For 
waves on a one-dimensional string, the reflected wave must necessarily be restricted to 
a direction along the string. For light waves free to travel in three- dimensional space, 
no such restriction applies and the reflected light waves can be in directions different 
from the direction of the incident waves. Figure 34.5a shows several rays of a beam of 
light incident on a smooth, mirror-like, reflecting surface. The reflected rays are par-
allel to one another as indicated in the figure. The direction of a reflected ray is in the 
plane perpendicular to the reflecting surface that contains the incident ray. Reflec-
tion of light from such a smooth surface is called specular reflection. If the reflecting 
surface is rough as in Figure 34.5b, the surface reflects the rays not as a parallel set but 
in various directions. Reflection from any rough surface is known as diffuse reflec-
tion. A surface behaves as a smooth surface as long as the surface variations are much 
smaller than the wavelength of the incident light. Your bathroom mirror exhibits spec-
ular reflection, whereas light reflecting from this page experiences diffuse reflection.

The difference between these two kinds of reflection explains why it is more 
difficult to see while driving on a rainy night than on a dry night. If the road is wet, 
the smooth surface of the water specularly reflects most of your headlight beams 
away from your car (and perhaps into the eyes of oncoming drivers). When the road 
is dry, its rough surface diffusely reflects part of your headlight beam back toward 
you, allowing you to see the road more clearly. In this book, we restrict our study to 
specular reflection and use the term reflection to mean specular reflection.

Consider a light ray traveling in air and incident at an angle on a flat, smooth 
surface as shown in Figure 34.6. The incident and reflected rays make angles u1 and 
u91, respectively, where the angles are measured between the normal and the rays. 
(The normal is a line drawn perpendicular to the surface at the point where the 
incident ray strikes the surface.) Experiments and theory show that the angle of 
reflection equals the angle of incidence:

 u91 5 u1 (34.1)

This relationship is called the law of reflection. Because reflection of waves from 
an interface between two media is a common phenomenon, we identify an analysis 
model for this situation: the wave under reflection. Equation 34.1 is the mathemat-
ical representation of this model.

Law of reflection 
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Figure 34.5  Schematic represen-
tation of (a) specular reflection, 
where the reflected rays are all 
parallel to one another, and 
(b) diffuse reflection, where the 
reflected rays travel in random 
directions. (c) and (d) Photo-
graphs of specular and diffuse 
reflection using laser light.

u1

Incident
ray

Normal

Reflected
ray

The incident ray, the reflected 
ray, and the normal all lie in 
the same plane, and u� � u1.1

u�1

Figure 34.6 The wave under 
reflection model.

PItFall PReventIon 34.1
Subscript Notation The subscript 
1 refers to parameters for the 
light in the initial medium. When 
light travels from one medium 
to another, we use the subscript 
2 for the parameters associated 
with the light in the new medium. 
In this discussion, the light stays 
in the same medium, so we only 
have to use the subscript 1.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    34.3 Analysis Model: Wave Under Reflection 903

Q uICk QuIz 34.1  In the movies, you sometimes see an actor looking in a mir-
ror and you can see his face in the mirror. It can be said with certainty that dur-
ing the filming of such a scene, the actor sees in the mirror: (a) his face (b) your 
face (c) the director’s face (d) the movie camera (e) impossible to determine

 Example 34.2    The Double-Reflected Light Ray

Two mirrors make an angle of 1208 with each other as 
illustrated in Figure 34.7a. A ray is incident on mirror M1 
at an angle of 658 to the normal. Find the direction of the 
ray after it is reflected from mirror M2.

S O L U T I O N

Conceptualize Figure 34.7a helps conceptualize this situa-
tion. The incoming ray reflects from the first mirror, and the 
reflected ray is directed toward the second mirror. There-
fore, there is a second reflection from the second mirror.

Categorize Because the interactions with both mirrors are 
simple reflections, we apply the wave under reflection model 
and some geometry.

Analyze From the law of reflection, the first reflected ray 
makes an angle of 658 with the normal.

Find the angle the first reflected ray makes with the horizontal: d 5 908 2 658 5 258

From the triangle made by the first reflected ray and the two  g 5 1808 2 258 2 1208 5 358 
mirrors, find the angle the reflected ray makes with M2:

Find the angle the first reflected ray makes with the normal to M2: uM2
 5 908 2 358 5 558

From the law of reflection, find the angle the second reflected  u9M2
 5 uM2

 5  558 
ray makes with the normal to M2:

Finalize Let’s explore variations in the angle between the mirrors as follows.

W H A T  I f ?  Notice that the angle between the incident and reflected rays at Mirror M1 is 658 1 658 5 1308. Therefore, 
the angle by which the direction of the light ray changes from its original direction is 1808 2 1308 5 508. Similarly, for the 
reflection at mirror M2, the change of direction is 708. Therefore, the overall change in direction of the light ray for two 
reflections is 508 1 708 5 1208. Interesting! This angle is the same as that between the mirrors! What if the angle between the 
mirrors is changed? Is the overall change in the direction of the light ray always equal to the angle between the mirrors?

Answer Making a general statement based on one data point or one observation is always a dangerous practice! Let’s investi-
gate the change in direction for a general situation. Figure 34.7b shows the mirrors at an arbitrary angle f and the incoming 
light ray striking the mirror at an arbitrary angle u with respect to the normal to the mirror surface. In accordance with the law 
of reflection and the sum of the interior angles of a triangle, the angle g is given by g 5 1808 2 (908 2 u) 2 f 5 908 1 u 2 f.

Consider the triangle highlighted in yellow in Figure 34.7b  a 1 2g 1 2(908 2 u) 5 1808   S   a 5 2(u 2 g) 
and determine a:

Notice from Figure 34.7b that the overall change in direction  b 5 1808 2 a 5 1808 2 2(u 2 g) 
of the light ray from its original direction is angle b. Use the  

 5 1808 2 2[u 2 (908 1 u  2 f)] 5 3608 2 2f
 

geometry in the figure to solve for b:

Notice that b is not equal to f. For f 5 1208, we obtain b 5 1208, which happens to be the same as the mirror angle; that is true 
only for this special angle between the mirrors, however. For example, if f 5 908, we obtain b 5 1808. In that case, the light is 
reflected straight back to its origin.

a b

f

b
a

g
g

g

uM2

u
u

d

uM2
�

65�65� 120�

90� � u

90� � uM1

M2

Figure 34.7  (Example 34.2) (a) Mirrors M1 and M2 make an 
angle of 1208 with each other. (b) The geometry for an arbitrary 
mirror angle.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



904 Chapter 34 The Nature of Light and the Principles of Ray Optics

If the angle between two mirrors is 908, the reflected beam returns to the source 
parallel to its original path as discussed in the What If? section of the preceding 
example. This phenomenon, called retroreflection, has many practical applications. 
If a third mirror is placed perpendicular to the first two so that the three form 
the corner of a cube, the retroreflection phenomenon works in three dimensions. 
In 1969, a panel of many small reflectors was placed on the Moon by the Apollo 11 
astronauts (Fig. 34.8a). A laser beam from the Earth is reflected directly back on 
itself, and its transit time is measured. This information is used to determine the 
distance to the Moon with an uncertainty of 15 cm. (Imagine how difficult it would 
be to align a regular flat mirror on the Moon so that the reflected laser beam would 
hit a particular location on the Earth!) A more everyday application is found in 
automobile taillights. Part of the plastic making up the taillight is formed into many 
tiny cube corners (Fig. 34.8b) so that headlight beams from cars approaching from 
the rear are reflected back to the drivers. Instead of cube corners, small spherical 
bumps are sometimes used (Fig. 34.8c). Tiny clear spheres are used in a coating 
material found on many road signs. Due to retroreflection from these spheres, the 
stop sign in Figure 34.8d appears much brighter than it would if it were simply a 
flat, shiny surface. Retroreflectors are also used for reflective panels on running 
shoes and running clothing to allow joggers to be seen at night.

Another practical application of the law of reflection is the digital projection of 
movies, television shows, and computer presentations. A digital projector uses an 
optical semiconductor chip called a digital micromirror device. This device contains an 
array of tiny mirrors (Fig. 34.9a) that can be individually tilted by means of signals to 
an address electrode underneath the edge of the mirror. Each mirror corresponds 

a b

This panel on the Moon 
reflects a laser beam directly 
back to its source on the Earth.

An automobile taillight has 
small retroreflectors to ensure 
that headlight beams are 
reflected back toward the car 
that sent them.

A light ray hitting a transparent 
sphere at the proper position is 
retroreflected.

dc

This stop sign appears to glow 
in headlight beams because its 
surface is covered with a layer 
of many tiny retroreflecting 
spheres.
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Figure 34.8  Applications of retroreflection.
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a

The mirror on the left is “on,” 
and the one on the right is “off.”

b

This leg of an ant gives a scale 
for the size of the mirrors.

Figure 34.9  (a) An array of 
mirrors on the surface of a digital 
micro mirror device. Each mirror 
has an area of approximately  
16 mm2. (b) A close-up view of  
two single micromirrors.
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to a pixel in the projected image. When the pixel corresponding to a given mirror is to 
be bright, the mirror is in the “on” position and is oriented so as to reflect light from a 
source illuminating the array to the screen (Fig. 34.9b). When the pixel for this mirror 
is to be dark, the mirror is “off” and is tilted so that the light is reflected away from 
the screen. The brightness of the pixel is determined by the total time interval during 
which the mirror is in the “on” position during the display of one image.

Digital movie projectors use three micromirror devices, one for each of the 
primary colors red, blue, and green, so that movies can be displayed with up to 
35 trillion colors. Because information is stored as binary data, a digital movie does 
not degrade with time as does film. Furthermore, because the movie is entirely in 
the form of computer software, it can be delivered to theaters by means of satellites, 
optical discs, or optical fiber networks.

analysIs Model Wave Under Reflection

Imagine a wave (electromagnetic 
or mechanical) traveling through 
space and striking a flat surface 
at an angle u1 with respect to 
the normal to the surface. The 
wave will reflect from the surface 
in a direction described by the 
law of reflection—the angle of 
reflection u91 equals the angle of 
incidence u1:

 u91 5 u1 (34.1)

Examples: 

 ● Sound waves from an orchestra reflect from a bandshell 
out to the audience.

 ● A mirror is used to deflect a laser beam in a laser 
light show.

 ● Your bathroom mirror reflects light from your  
face back to you to form an image of your face 
(Chapter 35).

 ● X-rays reflected from a crystalline material create an 
optical pattern that can be used to understand the 
structure of the solid (Chapter 37).

u�
u1

1

   34.4    Analysis Model: Wave Under Refraction
In addition to the phenomenon of reflection discussed for waves on 
strings in Section 17.3, we also found that some of the energy of the inci-
dent wave transmits into the new medium. For example, consider Fig-
ures 17.11 and 17.12, in which a pulse on a string approaching a junction 
with another string both reflects from and transmits past the junction 
and into the second string. Similarly, when a ray of light traveling through 
a transparent medium encounters a boundary leading into another trans-
parent medium as shown in Figure 34.10, part of the energy is reflected 
and part enters the second medium. As with reflection, the direction 
of the transmitted wave exhibits an interesting behavior because of the 
three-dimensional nature of the light waves. The ray that enters the sec-
ond medium changes its direction of propagation at the boundary, bend-
ing toward or away from the normal, and is said to be refracted. The inci-
dent ray, the reflected ray, and the refracted ray all lie in the same plane. 
The angle of refraction, u2 in Figure 34.10a, depends on the properties of 
the two media and on the angle of incidence u1 through the relationship

 
sin u2

sin u1

5
v2

v1

 (34.2)

where v1 is the speed of light in the first medium and v2 is the speed of 
light in the second medium. We have stated this equation without proof, 
but it will be derived in Section 34.5.

Q uICk QuIz 34.2  If beam ➀ is the incoming beam in Figure 34.10b,  
which of the other four red lines are reflected beams and which are  
refracted beams?
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B

Incident
ray

Normal Reflected
ray

Refracted
ray

u1

v1

v2
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All rays and the normal lie in the 
same plane, and the refracted 
ray is bent toward the normal 
because v2 � v1.
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Figure 34.10 (a) The wave under refrac-
tion model. (b) Light incident on the Lucite 
block refracts both when it enters the block 
and when it leaves the block.
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906 Chapter 34 The Nature of Light and the Principles of Ray Optics

The path of a light ray through a refracting surface is reversible. For example, 
the ray shown in Figure 34.10a travels from point A to point B. If the ray originated 
at B, it would travel upward to the point of incidence at the surface, bend away from 
the normal, and then reach point A. The reflected ray would point downward and 
to the left in the glass.

From Equation 34.2, we can infer that when light moves from a material in which 
its speed is high to a material in which its speed is lower as shown in Figure 34.11a, 
the angle of refraction u2 is less than the angle of incidence u1 and the ray is bent 
toward the normal. If the ray moves from a material in which light moves slowly to 
a material in which it moves more rapidly as illustrated in Figure 34.11b, then u2 is 
greater than u1 and the ray is bent away from the normal.

A mechanical analog of refraction is shown in Figure 34.12. When the left end 
of the rolling barrel reaches the grass, it slows down, whereas the right end remains 
on the concrete and moves at its original speed. This difference in speeds causes 
the barrel to pivot, which changes the direction of travel.

The behavior of light as it passes from air into another substance and then 
re-emerges into air is often a source of confusion to students. When light travels 
in air, its speed is 3.00 3 108 m/s, but this speed is reduced to approximately  
2 3 108 m/s when the light enters a block of glass. When the light re-emerges into 
air, its speed instantaneously increases to its original value of 3.00 3 108 m/s. This 
effect is far different from what happens, for example, when a bullet is fired through 
a block of wood. In that case, the speed of the bullet decreases as it moves through 
the wood because some of its original energy is used to tear apart the wood fibers. 
When the bullet enters the air once again, it emerges at a speed lower than it had 
when it entered the wood, consistent with its reduced kinetic energy.

But light is a wave. Its speed in air is always the same. Therefore, when the light 
leaves the block and enters the air, it must travel at the speed with which it entered. 
Similar to the reduced energy of the bullet, the light also has less energy: it is less 
intense. The outgoing beam of light will appear dimmer than the incident beam. 
Some of the energy has been absorbed within the glass.

Index of Refraction
In general, the speed of light in any material is less than its speed in vacuum. In 
fact, light travels at its maximum speed c in vacuum. It is convenient to define the index 
of refraction n of a medium to be the ratio

 n ;
speed of light in vacuum

speed of light in a medium
;

c
v

 (34.3)

This definition shows that the index of refraction is a dimensionless number 
greater than unity because v is always less than c. Furthermore, n is equal to unity 
for vacuum. The indices of refraction for various substances are listed in Table 34.1. 
Because the value of n for air is so close to 1, we will use n 5 1 for air in this chapter.

Index of refraction 

a b

Glass
Air

v2

v1

Glass
Air

v1
v2

u2

Normal Normal
When the light beam 
moves from air into 
glass, the light slows 
down upon entering the 
glass and its path is bent 
toward the normal.

When the beam 
moves from glass 
into air, the light 
speeds up upon 
entering the air 
and its path is 
bent away from 
the normal.

u1

u2 � u1

v2 � v1

u1

u2 � u1

v2 � v1

u2

Figure 34.11 The refraction of 
light as it (a) moves from air into 
glass and (b) moves from glass 
into air.

Concrete

Grass

This end slows first; as a 
result, the barrel turns.

v1

v2

v2 � v1

Figure 34.12 Overhead view of a 
barrel rolling from concrete onto 
grass.
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    34.4 Analysis Model: Wave Under Refraction 907

As light travels from one medium to another, its frequency does not change but 
its wavelength does. To see why that is true, consider Figure 34.13. Waves pass an 
observer at point A in medium 1 with a certain frequency and are incident on the 
boundary between medium 1 and medium 2. The frequency with which the waves 
pass an observer at point B in medium 2 must equal the frequency at which they 
pass point A. If that were not the case, energy would be piling up or disappearing 
at the boundary. Because there is no mechanism for that to occur, the frequency 
must be a constant as a light ray passes from one medium into another. Therefore, 
because the relationship v 5 lf (Eq. 16.12) from the traveling wave model must be 
valid in both media and because f1 5 f2 5 f, we see that

 v1 5 l1  f    and    v2 5 l2  f (34.4)

Because v1 ? v2, it follows that l1 ? l2 as shown in Figure 34.13.
We can obtain a relationship between index of refraction and wavelength by 

dividing the first Equation 34.4 by the second and then using Equation 34.3:

 
l1

l2

5
v1

v2

5
cyn 1

cyn 2

5
n 2

n1

 (34.5)

This expression gives

l1n1 5 l2n2

If medium 1 is vacuum or air, then n1 5 1. Hence, it follows from Equation 34.5 that 
the index of refraction of any medium can be expressed as the ratio

 n 5
l

ln

 (34.6)

where l is the wavelength of light in vacuum and ln is the wavelength of light in the 
medium whose index of refraction is n. From Equation 34.6, we see that because  
n . 1, ln , l. We see the shortening of the wavelength in Figure 34.13.

We are now in a position to express Equation 34.2 in an alternative form. Replac-
ing the v2/v1 term in Equation 34.2 with n1/n2 from Equation 34.5 gives

 n1 sin u1 5 n2 sin u2 (34.7)

The experimental discovery of this relationship is usually credited to Willebrord 
Snell (1591–1626) and it is therefore known as Snell’s law of refraction. (There is 
some evidence that the law was developed centuries earlier in the Middle East.) 

  Snell’s law of refraction

1
2

A

B
l2

l1

v1

v2

c 
n2 � v2

As a wave moves between 
the media, its wavelength 
changes but its frequency 
remains constant.

c 
n1 � v1

Figure 34.13  A wave travels from 
medium 1 to medium 2, in which 
it moves with lower speed.

 table 34.1  Indices of Refraction

 Index of  Index of
Substance Refraction Substance Refraction

Solids at 208C  Liquids at 208C
Cubic zirconia 2.20 Benzene 1.501
Diamond (C) 2.419 Carbon disulfide 1.628
Fluorite (CaF2) 1.434 Carbon tetrachloride 1.461
Fused quartz (SiO2) 1.458 Ethyl alcohol 1.361
Gallium phosphide 3.50 Glycerin 1.473
Glass, crown 1.52 Water 1.333
Glass, flint 1.66
Ice (H2O) 1.309 Gases at 08C, 1 atm
Polystyrene 1.49 Air 1.000 293
Sodium chloride (NaCl) 1.544 Carbon dioxide 1.000 45

Note: All values are for light having a wavelength of 589 nm in vacuum.

PItFall PReventIon 34.2
An Inverse Relationship The 
index of refraction is inversely 
proportional to the wave speed. 
As the wave speed v decreases, the 
index of refraction n increases. 
Therefore, the higher the index of 
refraction of a material, the more 
it slows down light from its speed in 
vacuum. The more the light slows 
down, the more u2 differs from u1 
in Equation 34.7.
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908 Chapter 34 The Nature of Light and the Principles of Ray Optics

We shall examine this equation further in Section 34.5. Refraction of waves at 
an interface between two media is a common phenomenon, so we identify an 
analysis model for this situation: the wave under refraction. Equation 34.7 is the 
mathematical representation of this model for electromagnetic radiation. Other 
waves, such as seismic waves and sound waves, also exhibit refraction according to 
this model, and the mathematical representation of the model for these waves is 
Equation 34.2.

Q uICk QuIz 34.3  Light passes from a material with index of refraction 1.3 
into one with index of refraction 1.2. Compared to the incident ray, what hap-
pens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. 
(c) It bends away from the normal.

PItFall PReventIon 34.3
n Is Not an Integer Here The 
symbol n has been used several 
times as an integer, such as in 
Chapter 17 to indicate the stand-
ing wave mode on a string or in an 
air column. The index of refrac-
tion n is not an integer.

analysIs Model Wave Under Refraction

Imagine a wave (electromagnetic 
or mechanical) traveling through 
space and striking a flat surface at an 
angle u1 with respect to the normal 
to the surface. Some of the energy 
of the wave refracts into the medium 
below the surface in a direction u2 
described by the law of refraction—

 
sin u2

sin u1

5
v2

v1

 (34.2)

where v1 and v2 are the speeds of the wave in medium 1 and 
medium 2, respectively. 

For light waves, Snell’s law of refraction states that

 n1 sin u1 5 n2 sin u2 (34.7)

where n1 and n2 are the indices of refraction in the two media.

Examples: 

 ● Sound waves moving upward from the shore of  
a lake refract in warmer layers of air higher above  
the lake and travel downward to a listener in a  
boat, making sounds from the shore louder than 
expected.

 ● Light from the sky approaches a hot roadway at a  
grazing angle and refracts upward so as to miss the 
roadway and enter a driver’s eye, giving the illusion  
of a pool of water on the distant roadway.

 ● Light is sent over long distances in an optical fiber  
because of a difference in index of refraction  
between the fiber and the surrounding material  
(Section 34.7).

 ● A magnifying glass forms an enlarged image of a  
postage stamp due to refraction of light through  
the lens (Chapter 35).

u2

u1

n1
n2

 Example 34.3    Angle of Refraction for Glass

A light ray of wavelength 589 nm traveling through air is incident on a smooth, flat slab of crown glass at an angle of 30.08 
to the normal.

(A) Find the angle of refraction.

S O L U T I O N

Conceptualize Study Figure 34.11a, which illustrates the refraction process occurring in this problem. We expect that u2 , u1 
because the speed of light is lower in the glass.

Categorize This is a typical problem in which we apply the wave under refraction model.

Analyze Rearrange Snell’s law of refraction to find sin u2: sin u2 5
n 1

n 2

  sin u1

Solve for u2: u2 5 sin21 Sn 1

n 2

  sin u1D
Substitute indices of refraction from Table 34.1 and the  u2 5 sin21 S1.00

1.52
  sin 30.08D 5  19.28 

incident angle:
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    34.4 Analysis Model: Wave Under Refraction 909

34.3 c o n t i n u e d

(B) Find the speed of this light once it enters the glass.

S O L U T I O N

Solve Equation 34.3 for the speed of light in the glass: v 5
c
n

Substitute numerical values: v 5
3.00 3 108 mys

1.52
5  1.97 3 108 mys

(C) What is the wavelength of this light in the glass?

S O L U T I O N

Use Equation 34.6 to find the wavelength in the glass: ln 5
l

n
5

589 nm
1.52

5  388 nm

Finalize In part (A), note that u2 , u1, consistent with the slower speed of the light found in part (B). In part (C), we see that 
the wavelength of the light is shorter in the glass than in the air.

 Example 34.4    Light Passing Through a Slab

A light beam passes from medium 1 to medium 2, with the latter medium being a thick 
slab of material whose index of refraction is n2 (Fig. 34.14). Show that the beam emerg-
ing into medium 1 from the other side is parallel to the incident beam.

S O L U T I O N

Conceptualize Follow the path of the light beam as it 
enters and exits the slab of material in Figure 34.14, 
where we have assumed that n2 . n1. The ray bends 
toward the normal upon entering and away from the 
normal upon leaving.

Categorize Like Example 34.3, this is another typical problem in which we apply the wave under refraction model.

Analyze Apply Snell’s law of refraction to the upper surface: (1)   sin u2 5
n 1

n 2

  sin u1

Apply Snell’s law to the lower surface: (2)   sin u3 5
n 2

n 1

  sin u2

Substitute Equation (1) into Equation (2): sin u3 5
n 2

n 1
Sn 1

n 2

  sin u1 D 5 sin u1

Finalize Therefore, u3 5 u1 and the slab does not alter the direction of the beam. It does, however, offset the beam parallel to 
itself by the distance d shown in Figure 34.14.

W H A T  I f ? What if the thickness t of the slab is doubled? Does the offset distance d also double?

Answer Consider the region of the light path within the slab in Figure 34.14. The distance a is the common hypotenuse of 
the red and yellow right triangles.

Find an expression for a from the yellow triangle: a 5
t

cos u2

Find an expression for d from the red triangle: d 5 a sin g 5 a sin (u1 2 u2)

Combine these equations: d 5
t

cos u2

  sin su1 2 u2d

For a given incident angle u1, the refracted angle u2 is determined solely by the index of refraction, so the offset distance d is 
proportional to t. If the thickness doubles, so does the offset distance.

t
a

n1

n1

n2

d

g

u3

u2 u2

u1

Figure 34.14  (Example 34.4) The 
dashed line drawn parallel to the 
ray coming out the bottom of the 
slab represents the path the light 
would take were the slab not there.
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910 Chapter 34 The Nature of Light and the Principles of Ray Optics

In Example 34.4, the light passes through a slab of material with parallel sides. 
What happens when light strikes a prism with nonparallel sides as shown in Fig-
ure 34.15? In this case, the outgoing ray does not propagate in the same direction 
as the incoming ray. A ray of single-wavelength light incident on the prism from the 
left emerges at angle d from its original direction of travel. This angle d is called the 
angle of deviation. The apex angle F of the prism, shown in the figure, is defined 
as the angle between the surface at which the light enters the prism and the second 
surface that the light encounters.

�
d

The apex angle � is the angle 
between the sides of the prism 
through which the light enters 
and leaves.

Figure 34.15  A prism 
refracts a single-wavelength 
light ray through an angle 
of deviation d.

 Example 34.5    Measuring n Using a Prism

Although we do not prove it here, the minimum angle of deviation dmin for a prism 
occurs when the angle of incidence u1 is such that the refracted ray inside the prism 
makes the same angle with the normal to the two prism faces1 as shown in Fig-
ure 34.16. Obtain an expression for the index of refraction of the prism material in 
terms of the minimum angle of deviation and the apex angle F.

S O L U T I O N

Conceptualize Study Figure 34.16 carefully and be sure you understand why the light 
ray comes out of the prism traveling in a different direction.

Categorize In this example, light enters a material through one surface and leaves the 
material at another surface. Let’s apply the wave under refraction model to the light pass-
ing through the prism.

Analyze Consider the geometry in Figure 34.16, where we have used symmetry to label several angles. The reproduction of 
the angle F/2 at the location of the incoming light ray shows that u2 5 F/2. The theorem that an exterior angle of any triangle 
equals the sum of the two opposite interior angles shows that dmin 5 2a. The geometry also shows that u1 5 u2 1 a.

Combine these three geometric results: u1 5 u2 1 a 5
F

2
1

dmin 

2
5

F 1 dmin

2

Apply the wave under refraction model at the left surface  s1.00d sin u1 5 n sin u2   S   n 5
sin u1

sin u2

 
and solve for n:

Substitute for the incident and refracted angles: n 5  

sin SF 1 dmin

2 D
sin sFy2d

 (34.8)

Finalize Knowing the apex angle F of the prism and measuring dmin, you can calculate the index of refraction of the prism 
material. Furthermore, a hollow prism can be used to determine the values of n for various liquids filling the prism.

2 dmin

a a
u1

u2

�

u2
u1

2
�

Figure 34.16  (Example 34.5) A 
light ray passing through a prism at 
the minimum angle of deviation dmin.

1 The details of this proof are available in texts on optics.
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    34.5 Huygens’s Principle 911

   34.5    Huygens’s Principle
The laws of reflection and refraction were stated earlier in this chapter without proof. 
In this section, we develop these laws by using a geometric method proposed by 
Huygens in 1678. Huygens’s principle is a geometric construction for using knowledge 
of an earlier wave front to determine the position of a new wave front at some instant:

All points on a given wave front are taken as point sources for the produc-
tion of spherical secondary waves, called wavelets, that propagate outward 
through a medium with speeds characteristic of waves in that medium. After 
some time interval has passed, the new position of the wave front is the sur-
face tangent to the wavelets.

First, consider a plane wave moving through free space as shown in Figure 34.17a. 
At t 5 0, the wave front is indicated by the plane labeled AA9 and oriented per-
pendicular to the page. The wave moves to the right in the plane of the page. In 
Huygens’s construction, each point on this wave front is considered a point source 
for spherical wavelets. For clarity, only three point sources on AA9 are shown as 
black dots. With these sources for the wavelets, we draw circular arcs, each of radius 
c Dt, where c is the speed of light in vacuum and Dt is some time interval during 
which the wave propagates. The surface drawn tangent to these wavelets is the 
plane BB9, which is the wave front at a later time, and is parallel to AA9. In a simi-
lar manner, Figure 34.17b shows Huygens’s construction for a spherical wave using 
four sources on the original wavefront.

Huygens’s Principle applied to Reflection and Refraction
We now derive the laws of reflection and refraction, using Huygens’s principle.

For the law of reflection, refer to Figure 34.18. The line AB represents a plane 
wave front of the incident light just as ray 1 strikes the surface. At this instant, the 
wave at A sends out a Huygens wavelet (appearing at a later time as the light brown 
circular arc passing through D); the reflected light makes an angle g9 with the sur-
face. At the same time, the wave at B emits a Huygens wavelet (the light brown 
circular arc passing through C) with the incident light making an angle g with the 
surface. Figure 34.18 shows these wavelets after a time interval Dt, after which ray 2 
strikes the surface. Because both rays 1 and 2 move with the same speed, we must 
have AD 5 BC 5 c Dt.

PItFall PReventIon 34.4
Of What Use Is Huygens’s Princi-
ple? At this point, the importance 
of Huygens’s principle may not be 
evident. Predicting the position of 
a future wave front may not seem 
to be very critical. We will use 
Huygens’s principle here to gen-
erate the laws of reflection and 
refraction and in later chapters to 
explain additional wave phenom-
ena for light.

Old wave
front 

New wave
front 

A B

Old wave
front 

New wave
front 

A� B� 

c �t

c �t

a b

The new wave front is drawn tangent to 
the circular wavelets radiating from the 
point sources on the original wave front.

Figure 34.17  Huygens’s construction for (a) a plane wave 
propagating to the right and (b) a spherical wave propagating 
from a point source.

A C

B D

1

2

gg�

u1

This wavelet was 
sent out by wave 
1 from point A.

This wavelet 
was sent out at 
the same time 
by wave 2 
from point B.

u�1

Figure 34.18  Huygens’s con-
struction for proving the law of 
reflection.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



912 Chapter 34 The Nature of Light and the Principles of Ray Optics

The remainder of our analysis depends on geometry. Notice that the two trian-
gles ABC and ADC are congruent because they have the same hypotenuse AC and 
because AD 5 BC. Figure 34.18 shows that

cos g 5
BC
AC
 and cos g9 5

AD
AC

where g 5 908 2 u1 and g9 5 908 2 u91. Because AD 5 BC,

cos g 5 cos g9

Therefore,

g 5 g9

908 2 u1 5 908 2 u91

and

u1 5 u91

which is the law of reflection.
Now let’s use Huygens’s principle to derive Snell’s law of refraction. We focus our 

attention on the instant ray 1 strikes the surface and the subsequent time interval 
until ray 2 strikes the surface as in Figure 34.19. During this time interval, the wave 
at A sends out a Huygens wavelet (the light brown arc passing through D) and the 
light refracts into the material, making an angle u2 with the normal to the surface. 
In the same time interval, the wave at B sends out a Huygens wavelet (the light 
brown arc passing through C) and the light continues to propagate in the same 
direction. Because these two wavelets travel through different media, the radii of 
the wavelets are different. The radius of the wavelet from A is AD 5 v2 Dt, where v2 
is the wave speed in the second medium. The radius of the wavelet from B is BC 5 
v1 Dt, where v1 is the wave speed in the original medium.

From triangles ABC and ADC, we find that

sin u1 5
BC
AC

5
v1 Dt

AC
  and sin u2 5

AD
AC

5
v2 Dt

AC

Dividing the first equation by the second gives

sin u1

sin u2

5
v1

v2

which is Equation 34.2. From Equation 34.3, we know that v1 5 c/n1 and v2 5 c/n2. 
Therefore,

sin u1

sin u2

5
cyn 1

cyn 2

5
n 2

n1

and

n1 sin u1 5 n2 sin u2

which is Snell’s law of refraction, Equation 34.7.

   34.6    Dispersion
An important property of the index of refraction n is that, for a given material, 
the index varies with the wavelength of the light passing through the material as 
Figure 34.20 shows. This behavior is called dispersion. Because n is a function of 
wavelength, Snell’s law of refraction indicates that light of different wavelengths is 
refracted at different angles when incident on a material.

1.52

1.50

1.48

1.46

400 500 600 700

n

l (nm)

Acrylic

Crown glass

Fused quartz

1.54

Figure 34.20  Variation of index 
of refraction with vacuum wave-
length for three materials.
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1 from point A.

This wavelet 
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by wave 2 
from point B.

u2

Figure 34.19  Huygens’s con-
struction for proving Snell’s law 
of refraction. 
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    34.6 Dispersion 913

Figure 34.20 shows that the index of refraction generally decreases with increas-
ing wavelength. For example, violet light refracts more than red light does when 
passing into a material.

Now suppose a beam of white light (a combination of all visible wavelengths) 
is incident on a prism as illustrated in Figure 34.21. The angle of deviation d  
(Fig. 34.15) depends on the index of refraction n, so, in turn, the angle depends 
on wavelength. The rays that emerge spread out in a series of colors known as the 
visible spectrum. These colors, in order of decreasing wavelength, are red, orange, 
yellow, green, blue, and violet. Newton showed that each color has a particular angle 
of deviation and that the colors can be recombined to form the original white light.

The dispersion of light into a spectrum is demonstrated most vividly in nature by 
the formation of a rainbow, which is often seen by an observer positioned between 
the Sun and a rain shower. To understand how a rainbow is formed, consider Fig-
ure 34.22. We will need to apply both the wave under reflection and wave under 
refraction models. A ray of sunlight (which is white light) strikes a drop of water 
in the atmosphere and is refracted and reflected as follows. It is first refracted at 
the front surface of the drop, with the violet light deviating the most and the red 
light the least. At the back surface of the drop, the light is reflected and returns to 
the front surface, where it again undergoes refraction as it moves from water into 
air. The rays leave the drop such that the angle between the incident white light 
and the most intense returning violet ray is 408 and the angle between the incident 
white light and the most intense returning red ray is 428. This small angular differ-
ence between the returning rays causes us to see a colored bow.

Now suppose an observer is viewing a rainbow as shown in Figure 34.23. If a rain-
drop high in the sky is being observed, the most intense red light returning from the 
drop reaches the observer because it is deviated the least; the most intense violet light 
from this drop, however, passes over the observer because it is deviated the most. 
Hence, the observer sees red light coming from this drop. Similarly, a drop lower in 
the sky directs the most intense violet light toward the observer and appears violet 
to the observer. (The most intense red light from this drop passes below the observ-
er’s eye and is not seen.) The most intense light from other colors of the spectrum 
reaches the observer from raindrops lying between these two extreme positions.

Figure 34.24 (page 914) shows a double rainbow. The secondary rainbow is fainter 
than the primary rainbow, and the colors are reversed. The secondary rainbow 
arises from light that makes two reflections from the interior surface before exiting  
the raindrop. In the laboratory, rainbows have been observed in which the light 

The colors in the refracted beam 
are separated because dispersion 
in the prism causes different 
wavelengths of light to be 
refracted through different angles.

Figure 34.21  White light enters a 
glass prism at the upper left. 
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through larger angles 
than the red light.
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Figure 34.22 Path of sunlight 
through a spherical raindrop. 
Light following this path contrib-
utes to the visible rainbow.

White
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The highest-intensity light 
traveling from higher raindrops 
toward the eyes of the observer 
is red, whereas the most intense 
light from lower drops is violet.

R

R

V

V

Figure 34.23  The formation of a 
rainbow seen by an observer stand-
ing with the Sun behind his back.

PItFall PReventIon 34.5
A Rainbow of Many Light Rays  
Pictorial representations such as 
Figure 34.22 are subject to mis-
interpretation. The figure shows 
one ray of light entering the rain-
drop and undergoing reflection 
and refraction, exiting the rain-
drop in a range of 408 to 428 from 
the entering ray. This illustration 
might be interpreted incorrectly 
as meaning that all light entering 
the raindrop exits in this small 
range of angles. In reality, light 
enters the raindrop at all positions 
on its surface and exits the rain-
drop over a much larger range of 
angles, from 08 to 428. A careful 
analysis of the reflection and 
refraction from the spherical rain-
drop shows that the range of 408 
to 428 is where the  highest-intensity 
light exits the raindrop.
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914 Chapter 34 The Nature of Light and the Principles of Ray Optics

makes more than 30 reflections before exiting the water drop. Because each reflec-
tion involves some loss of light due to refraction of part of the incident light out of 
the water drop, the intensity of these higher-order rainbows is small compared with 
that of the primary rainbow.

We are now in a position to explain all of the optical phenomena that you observe 
in the opening storyline. When you glance at your shadow on the dew-encrusted 
grass, you are observing Heiligenschein. This effect is due to retroreflection from 
the spherical dewdrops. When you turn and view the rainbow, you are seeing the 
phenomenon just discussed in this section. The pastel-colored bands below the 
rainbow are due to interference, to be discussed in Chapter 36. Turning to the Sun, 
you see the bright areas, at about a 228 angle on either side of the Sun. These are 
called Sun dogs, and are due to refraction of sunlight through hexagonal-shaped 
crystals of ice suspended in a horizontal orientation in the atmosphere. If the crys-
tals are longer, they will be in a variety of orientations, and you will see a full halo 
around the Sun. When you look at the hot, black roadway, you see puddles in the 
distance. The absorbed sunlight warms the air above the surface and changes its 
index of refraction. Light coming from the sky at a shallow angle toward you along 
the roadway experiences continuous refraction, and actually misses the roadway, 
curving back upward to enter your eye. As a result, you see an image of the sky on 
the roadway, making it look wet. This is a common mirage.

Q uICk QuIz 34.4  In photography, lenses in a camera use refraction to form an 
image on a light-sensitive surface. Ideally, you want all the colors in the light from 
the object being photographed to be refracted by the same amount. Of the materi-
als shown in Figure 34.20, which would you choose for a single- element camera 
lens? (a) crown glass (b) acrylic (c) fused quartz (d) impossible to determine

   34.7    Total Internal Reflection
An interesting effect called total internal reflection can occur when light is 
directed from a medium having a given index of refraction toward one having a 
lower index of refraction. Consider Figure 34.25a, in which a light ray travels in 

Figure 34.24  This photograph 
of a rainbow shows a distinct sec-
ondary rainbow with the colors 
reversed. 
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Figure 34.25 (a) Rays travel 
from a medium of index of refrac-
tion n1 into a medium of index  
of refraction n2, where n2 , n1.  
(b) Ray 4 is singled out.

As the angle of incidence u1 increases, 
the angle of refraction u2  increases 
until u2 is 90� (ray 4). The dashed line 
indicates that no energy actually 
propagates in this direction.

The angle of incidence producing 
an angle of refraction equal to 90� 

is the critical angle uc . For angles 
greater than uc, all the energy of the 
incident light is reflected.  

For even larger angles of 
incidence, total internal 
reflection occurs (ray 5).
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    34.7 Total Internal Reflection 915

medium 1 and meets the boundary between medium 1 and medium 2, where n1 
is greater than n2. In the figure, labels 1 through 5 indicate various possible direc-
tions of the ray consistent with the wave under refraction model. The refracted rays 
are bent away from the normal because n1 is greater than n2. As u1 is increased, u2 
also become larger and the refracted ray bends away from the normal so much that 
it approaches a direction parallel to the interface. At some particular angle of inci-
dence uc, called the critical angle, the refracted light ray reaches this condition and 
is indeed parallel to the boundary so that u2 5 908 (see ray 4 in Fig. 34.25a and the 
dashed ray in Fig. 34.25b). For angles of incidence greater than uc, the ray cannot 
escape from the material and is entirely reflected at the boundary as shown by ray 
5 in Figure 34.25a.

We can use Snell’s law of refraction to find the critical angle. When u1 5 uc, u2 5 
908 and Equation 34.7 gives

n1 sin uc 5 n2 sin 908 5 n2

 sin uc 5
n 2

n 1

  sfor n 1 . n 2d (34.9)

This equation can be used only when n1 is greater than n2. That is, total internal 
reflection occurs only when light is directed from a medium of a given index of 
refraction toward a medium of lower index of refraction. If n1 were less than n2, 
Equation 34.9 would give sin uc . 1, which is a meaningless result because the sine 
of an angle can never be greater than unity.

The critical angle for total internal reflection is small when n1 is considerably 
greater than n2. For example, the critical angle for a diamond in air is 248. Any 
ray inside the diamond that approaches the surface at an angle greater than 248 
is completely reflected back into the crystal. This property, combined with proper 
faceting, causes diamonds to sparkle. The angles of the facets are cut so that light 
is “caught” inside the crystal through multiple internal reflections. These multiple 
reflections give the light a long path through the medium, and substantial disper-
sion of colors occurs. By the time the light exits through the top surface of the 
crystal, the rays associated with different colors have been fairly widely separated 
from one another.

Cubic zirconia also has a high index of refraction and can be made to sparkle 
very much like a diamond. If a suspect jewel is immersed in corn syrup, the differ-
ence in n for the cubic zirconia and that for the corn syrup is small and the critical 
angle is therefore great. Hence, more rays escape sooner; as a result, the sparkle 
completely disappears. A real diamond does not lose all its sparkle when placed in 
corn syrup.

Q uICk QuIz 34.5  In Figure 34.26, five light rays enter a glass prism from the 
left. (i) How many of these rays undergo total internal reflection at the slanted 
surface of the prism? (a) one (b) two (c) three (d) four (e) five (ii) Suppose 
the prism in Figure 34.26 can be rotated in the plane of the paper. For all five 
rays to experience total internal reflection from the slanted surface, should the 
prism be rotated (a) clockwise or (b) counterclockwise?

  Critical angle for total  
internal reflection

Figure 34.26  (Quick Quiz 34.5) 
Five nonparallel light rays enter a 
glass prism from the left.
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 Example 34.6    A View from the Fish’s Eye

Find the critical angle for an air–water boundary. (Assume the index of refraction of water is 1.33.)

S O L U T I O N

Conceptualize Study Figure 34.25 to understand the concept of total internal reflection and the significance of the 
critical angle.

continued
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916 Chapter 34 The Nature of Light and the Principles of Ray Optics

34.6 c o n t i n u e d

Categorize We use concepts developed in this section, so we categorize this example as a substitution problem.

Apply Equation 34.9 to the air–water interface: sin uc 5
n 2

n 1

5
1.00
1.33

5 0.752

uc 5  48.88

W H A T  I f ?  What if a fish in a still pond looks upward toward the water’s surface at different angles relative to the surface 
as in Figure 34.27? What does it see?

Answer Because the path of a light ray is reversible, light traveling from medium 2 into 
medium 1 in Figure 34.25a follows the paths shown, but in the opposite direction. A fish look-
ing upward toward the water surface as in Figure 34.27 can see out of the water if it looks 
toward the surface at an angle less than the critical angle. Therefore, when the fish’s line 
of vision makes an angle of u 5 408 with the normal to the surface, for example, light from 
above the water reaches the fish’s eye. At u 5 48.88, the critical angle for water, the light has 
to skim along the water’s surface before being refracted to the fish’s eye; at this angle, the 
fish can, in principle, see the entire shore of the pond. At angles greater than the critical 
angle, the light reaching the fish comes by means of total internal reflection at the surface of 
light originating in the water. Therefore, at u 5 608, the fish sees a reflection of the bottom 
of the pond.

u

Figure 34.27  (Example 34.6) 
What If? A fish looks upward 
toward the water surface.

optical Fibers
Another interesting application of total internal reflection is the use of glass or 
transparent plastic rods to “pipe” light from one place to another. As indicated 
in Figure 34.28, light is confined to traveling within a rod, even around curves, 
as the result of successive total internal reflections. Such a light pipe is f lexible 
if thin fibers are used rather than thick rods. A flexible light pipe is called an 
optical fiber. If a bundle of parallel fibers is used to construct an optical trans-
mission line, images can be transferred from one point to another. Part of the 
2009 Nobel Prize in Physics was awarded to Charles K. Kao (b. 1933) for his 
discovery of how to transmit light signals over long distances through thin glass 
fibers. This discovery has led to the development of a sizable industry known as 
fiber optics.

A practical optical fiber consists of a transparent core surrounded by a clad-
ding, a material that has a lower index of refraction than the core. The com-
bination may be surrounded by a plastic jacket to prevent mechanical damage. 
Figure  34.29 shows a cutaway view of this construction. Because the index of 
refraction of the cladding is less than that of the core, light traveling in the core 
experiences total internal reflection if it arrives at the interface between the core 
and the cladding at an angle of incidence that exceeds the critical angle. In this 
case, light “bounces” along the core of the optical fiber, losing very little of its 
intensity as it travels.

Any loss in intensity in an optical fiber is essentially due to reflections from the 
two ends and absorption by the fiber material. Optical fiber devices are particularly 
useful for viewing an object at an inaccessible location. For example, physicians 
often use such devices to examine internal organs of the body or to perform sur-
gery without making large incisions. Optical fiber cables are replacing copper wir-
ing and coaxial cables for telecommunications because the fibers can carry a much 
greater volume of telephone calls or other forms of communication than electrical 
wires can.

Figure 34.30a shows a bundle of optical fibers gathered into an optical cable 
that can be used to carry communication signals. Many computers and other elec-
tronic equipment now have optical ports as well as electrical ports for transferring 
information (Figure 34.30b).

Figure 34.28  Light travels in a 
curved transparent rod by multi-
ple internal reflections.

Glass or
plastic core

Cladding

Jacket

Figure 34.29  The construction 
of an optical fiber. Light travels in 
the core, which is surrounded by a 
cladding and a protective jacket.
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summary
 › Definition

The index of refraction n of a medium is defined by the ratio

 n ;
c
v

 (34.3)

where c is the speed of light in vacuum and v is the speed of light in the medium.

 › Concepts and Principles

In geometric optics, we use the 
ray approximation, in which a 
wave travels through a uniform 
medium in straight lines in the 
direction of the rays.

Total internal reflection occurs when light travels from a medium of high index of refraction 
to one of lower index of refraction. The critical angle uc for which total internal reflection 
occurs at an interface is given by

 sin uc 5
n 2

n 1

 sfor n 1 . n 2d (34.9)

 › Analysis Models for Problem Solving

Wave Under Reflection. The law of 
reflection states that for a light ray (or 
other type of wave) incident on a smooth 
surface, the angle of reflection u91 equals 
the angle of incidence u1:

 u91 5 u1 (34.1)

u�
u1

1

Wave Under Refraction.  A wave crossing a boundary as 
it travels from medium 1 to medium 2 is refracted. The 
angle of refraction u2 is related to the incident angle u1 by 
the relationship

 
sin u2

sin u1

5
v2

v1

 (34.2)

where v1 and v2 are the speeds of the wave in medium 1 and medium 2, respectively. 
The incident ray, the reflected ray, the refracted ray, and the normal to the surface 
all lie in the same plane.

For light waves, Snell’s law of refraction states that

 n1 sin u1 5 n2 sin u2 (34.7)

where n1 and n2 are the indices of refraction in the two media.

u2

u1

n1
n2

Figure 34.30 (a) Strands of 
glass optical fibers are used to 
carry voice, video, and data sig-
nals in telecommunication net-
works. (b) A technician works 
on optical fiber connections in 
a computer networking system.a b
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918 Chapter 34 The Nature of Light and the Principles of Ray Optics

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Discuss the following situation in your group: Three sheets 
of plastic have unknown indices of refraction. They are 
placed on top of each other two at a time and a laser beam 
is directed onto the sheets from above. In all three cases, 
the laser beam is adjusted so that it strikes the interface 
between the top sheet and the bottom sheet (not between 
the air and the top sheet) at an angle of 26.58 with the nor-
mal. (i) Sheet 1 is placed on top of sheet 2. The refracted 
beam inside sheet 2 makes an angle of 31.78 with the nor-
mal. (ii) Sheet 3 is placed on top of sheet 2. The refracted 
beam inside sheet 2 makes an angle of 36.78 with the nor-
mal. (iii) Sheet 1 is placed on top of sheet 3. The refracted 
beam inside sheet 3 makes an angle of 23.18 with the nor-
mal. Now generate a consensus answer in your group: Do 
you now have enough information to find the index of 
refraction for each sheet?

2. ACTIVITy  Your group has been assigned to learn about 
Claudius Ptolemy (100–170) and analyze his early results on 
the refraction of light. In his book, Optics, which survives in 

an Arabic translation and a Latin translation of the Arabic, 
Ptolemy includes a table of incident angles and refracted 
angles for light entering water. This is the earliest surviv-
ing set of data of this type. There is some controversy about 
whether the data truly is experimental or if it is generated 
mathematically, but either way, having refractive data from 
the second century is remarkable. Ptolemy’s data are shown 
in the following table.

Angle of Incidence (8) Angle of Refraction (8)

10.0  8
20.0 15.5
30.0 22.5
40.0 29
50.0 35
60.0 40.5
70.0 45.5
80.0 50

What is the index of refraction of water according to 
Ptolemy’s data?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

seCtIon 34.1 The Nature of Light

1. In an experiment to measure the speed of light using the 
apparatus of Armand H. L. Fizeau (see Fig. 34.2), the dis-
tance between light source and mirror was 11.45 km and 
the wheel had 720 notches. The experimentally determined 
value of c was 2.998 3 108 m/s when the outgoing light 
passed through one notch and then returned through the 
next notch. Calculate the minimum angular speed of the 
wheel for this experiment.

2. The Apollo 11 astronauts set up a panel of efficient cor-
ner-cube retroreflectors on the Moon’s surface (Fig. 34.8a). 
The speed of light can be found by measuring the time 
interval required for a laser beam to travel from the Earth, 
reflect from the panel, and return to the Earth. Assume this 
interval is measured to be 2.51 s at a station where the Moon 
is at the zenith and take the center-to-center distance from 
the Earth to the Moon to be equal to 3.84 3 108 m. (a) What 
is the measured speed of light? (b) Explain whether it is nec-
essary to consider the sizes of the Earth and the Moon in 
your calculation.

3. As a result of his observations, Ole Roemer concluded that 
eclipses of Io by Jupiter were delayed by 22 min during a 
six-month period as the Earth moved from the point in 
its orbit where it is closest to Jupiter to the diametrically 
opposite point where it is farthest from Jupiter. Using the 
value 1.50 3 108 km as the average radius of the Earth’s 
orbit around the Sun, calculate the speed of light from 
these data.

seCtIon 34.3 Analysis Model: Wave Under Reflection

4. A dance hall is built without pillars and with a horizontal 
ceiling 7.20 m above the floor. A mirror is fastened flat 
against one section of the ceiling. Following an earthquake, 
the mirror is in place and unbroken. An engineer makes a 
quick check of whether the ceiling is sagging by directing a 
vertical beam of laser light up at the mirror and observing 
its reflection on the floor. (a) Show that if the mirror has 
rotated to make an angle f with the horizontal, the normal 
to the mirror makes an angle f with the vertical. (b) Show 
that the reflected laser light makes an angle 2f with the 
vertical. (c) Assume the reflected laser light makes a spot on 
the floor 1.40 cm away from the point vertically below the 
laser. Find the angle f.

5. You are working for an optical research company during a 
summer break. Part of the apparatus in one particular exper-
iment is shown in Figure 34.7b. In fact, the experimenter 
used this textbook to set up this part of the experiment, and 
also used the result in the What If? section to determine the 
angular change in direction of the light beam:

b 5 3608 2 2f (1)

The experimenter is constantly grumbling that the mea-
suring device to determine the angle f on the inside of the 
mirrors is constantly getting in the way of the light beam 
and making his life difficult. You quickly draw Figure P34.5 
and then say, “Then why don’t you use the measuring device 
to measure the angle d outside the mirror, and then your 
device won’t get in the way of the light?”

The experimenter, who has never thought of this, tries to 
save face and says to you, “Well, Smarty, then tell me how angle 
b depends on angle d!” You provide him the answer quickly.

T

CR
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6. The reflecting surfaces of two intersecting flat mirrors 
are at an angle u (08 , u , 908) as shown in Figure P34.6. 
For a light ray that strikes the horizontal mirror, show that 
the emerging ray will intersect the incident ray at an angle 
b 5 1808 2 2u.

7. The two mirrors illustrated in 
Figure P34.7 meet at a right 
angle. The beam of light in the 
vertical plane indicated by the 
dashed lines strikes mirror 1 
as shown. (a) Determine the 
distance the reflected light 
beam travels before striking 
mirror 2. (b) In what direction 
does the light beam travel after 
being reflected from mirror 2?

8. Two flat, rectangular mirrors, 
both perpendicular to a horizontal sheet of paper, are set 
edge to edge with their reflecting surfaces perpendicu-
lar to each other. (a) A light ray in the plane of the paper 
strikes one of the mirrors at an arbitrary angle of incidence 
u1. Prove that the final direction of the ray, after reflection 
from both mirrors, is opposite its initial direction. (b) What 
If? Now assume the paper is replaced with a third flat mir-
ror, touching edges with the other two and perpendicular 
to both, creating a corner-cube retroreflector (Fig. 34.8a). A  
ray of light is incident from any direction within the octant 
of space bounded by the reflecting surfaces. Argue that the 
ray will reflect once from each mirror and that its final direc-
tion will be opposite its original direction. The Apollo  11 
astronauts placed a panel of corner-cube retroreflectors on 
the Moon. Analysis of timing data taken with it reveals that 
the radius of the Moon’s orbit is increasing at the rate of 
3.8 cm/yr as it loses kinetic energy because of tidal friction.

seCtIon 34.4 Analysis Model: Wave Under Refraction

Notes: You may look up indices of refraction in Table 34.1. 
Unless indicated otherwise, assume the medium surrounding 
a piece of material is air with n 5 1.000 293.

9. Find the speed of light in (a) flint glass, (b) water, and 
(c) cubic zirconia.

10. A ray of light strikes a flat block of glass (n 5 1.50) of thick-
ness 2.00 cm at an angle of 30.08 with the normal. Trace the 
light beam through the glass and find the angles of inci-
dence and refraction at each surface.

11. A ray of light travels  
from air into another 
medium, making an 
angle of u1 5 45.08 with 
the normal as in Figure 
P34.11. Find the angle of 
refraction u2 if the sec-
ond medium is (a) fused 
quartz, (b) carbon disul-
fide, and (c) water.

12. A plane sound wave in air at 208C, with wavelength 589 mm, 
is incident on a smooth surface of water at 258C at an angle 
of incidence of 13.08. Determine (a) the angle of refraction 
for the sound wave and (b) the wavelength of the sound in 
water. A narrow beam of sodium yellow light, with wave-
length 589 nm in vacuum, is incident from air onto a smooth 
water surface at an angle of incidence of 13.08. Determine 
(c) the angle of refraction and (d) the wavelength of the 
light in water. (e) Compare and contrast the behavior of the 
sound and light waves in this problem.

13. A laser beam is incident at an angle of 30.08 from the ver-
tical onto a solution of corn syrup in water. The beam is 
refracted to 19.248 from the vertical. (a) What is the index of 
refraction of the corn syrup solution? Assume that the light 
is red, with vacuum wavelength 632.8 nm. Find its (b) wave-
length, (c) frequency, and (d) speed in the solution.

14. A ray of light strikes the midpoint of one face of an equi-
angular (608–608–608) glass prism (n 5 1.5) at an angle of 
incidence of 308. (a) Trace the path of the light ray through 
the glass and find the angles of incidence and refraction at 
each surface. (b) If a small fraction of light is also reflected 
at each surface, what are the angles of reflection at the 
surfaces?

15. When you look through a window, by what time interval 
is the light you see delayed by having to go through glass 
instead of air? Make an order-of-magnitude estimate on 
the basis of data you specify. By how many wavelengths is it 
delayed?

16. Light passes from air into flint glass at a nonzero angle of 
incidence. (a) Is it possible for the component of its velocity 
perpendicular to the interface to remain constant? Explain 
your answer. (b) What If? Can the component of velocity 
parallel to the interface remain constant during refraction? 
Explain your answer.

17. You have just installed a new bathroom in your home. Your 
shower doors have frosted glass to provide privacy for the 
person using the shower. The frosted surface is on the out-
side of the shower door, facing the rest of the bathroom. 
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920 Chapter 34 The Nature of Light and the Principles of Ray Optics

The frosting is done by acid etching the surface so that light 
incident on the rough surface is scattered in all directions. 
Proud of your new bathroom, you take a photo of it with 
your smartphone. You notice in the photograph that you 
can see a reflection of the flash in the shower doors and 
the reflection is surrounded by a halo of light. Curious, you 
turn on a laser pointer and aim it at the shower door. Look-
ing closely at the reflection, you again see a halo that con-
sists of a dark area surrounding the reflection of the pointer 
and then an area of brightness outside this dark ring. You 
grab a micrometer and a ruler and measure the thickness of 
the glass to be 6.35 mm and the inner radius of the bright 
halo to be 10.7 mm. From these measurements, you deter-
mine the index of refraction of the glass.

18. A triangular glass prism with apex angle 60.08 has an index 
of refraction of 1.50. (a) Show that if its angle of incidence 
on the first surface is u1 5 48.68, light will pass symmetri-
cally through the prism as shown in Figure 34.16. (b) Find 
the angle of deviation dmin for u1 5 48.68. (c) What If? Find 
the angle of deviation if the angle of incidence on the first 
surface is 45.68. (d) Find the angle of deviation if u1 5 51.68.

19. You are working at your university swimming center. The 
athletic department decides that it would like to install a flag 
pole of height 10.0 m at the south end of one of the outdoor 
pools, which lies along a north–south axis. The pool is 3.00 m 
deep and the flag pole is to be installed 4.00 m from the south 
edge of the pool, midway along the length of the south edge. 
(a) Your supervisor knows of your expertise in physics and 
asks you to determine the distance of the shadow of the tip of 
the flag pole on the bottom of the pool from the south wall 
of the pool on a summer day when the Sun appears directly 
south and at an angle of 65.08 above the horizon. (b) Your 
supervisor also asks if there is any time during the year that 
the flag pole will not cast a shadow along the bottom of the 
pool when the Sun is due south. The highest the Sun reaches 
in the sky at this location is 68.58 at the summer solstice.

20. A person looking into an empty container is able to see the far 
edge of the container’s bottom as shown in Figure P34.20a. 
The height of the container is h, and its width is d. When the 
container is completely filled with a fluid of index of refrac-
tion n and viewed from the same angle, the person can see 
the center of a coin at the middle of the container’s bottom as 
shown in Figure P34.20b. (a) Show that the ratio h/d is given by

 
h
d

5În2 2 1
4 2 n2

(b) Assuming the container has a width of 8.00 cm and is 
filled with water, use the expression above to find the height 
of the container. (c) For what range of values of n will the 
center of the coin not be visible for any values of h and d?

21. Figure P34.21 shows a 
light ray incident on a 
series of slabs having 
different refractive indi-
ces, where n1 , n2 ,  
n3 , n4. Notice that the 
path of the ray steadily 
bends toward the nor-
mal. If the variation 
in n were continuous, 
the path would form a 
smooth curve. Use this idea and a ray diagram to explain 
why you can see the Sun at sunset after it has fallen below 
the horizon.

22. A submarine is 300 m horizontally from the shore of a fresh-
water lake and 100 m beneath the surface of the water. A 
laser beam is sent from the submarine so that the beam 
strikes the surface of the water 210 m from the shore. A 
building stands on the shore, and the laser beam hits a tar-
get at the top of the building. The goal is to find the height 
of the target above sea level. (a) Draw a diagram of the sit-
uation, identifying the two triangles that are important in 
finding the solution. (b) Find the angle of incidence of the 
beam striking the water–air interface. (c) Find the angle of 
refraction. (d) What angle does the refracted beam make 
with the horizontal? (e) Find the height of the target above 
sea level.

23. A beam of light both reflects and 
refracts at the surface between 
air and glass as shown in Figure 
P34.23. If the refractive index of 
the glass is ng, find the angle of 
incidence u1 in the air that would 
result in the reflected ray and the 
refracted ray being perpendicular 
to each other.

seCtIon 34.6 Dispersion

24. A light beam containing red and violet wavelengths is inci-
dent on a slab of quartz at an angle of incidence of 50.08. 
The index of refraction of quartz is 1.455 at 600 nm (red 
light), and its index of refraction is 1.468 at 410 nm (vio-
let light). Find the dispersion of the slab, which is defined 
as the difference in the angles of refraction for the two 
wavelengths.

25. The index of refraction for violet light in silica flint glass is 
nV , and that for red light is nR. What is the angular spread of 
visible light passing through a prism of apex angle F if the 
angle of incidence is u? See Figure P34.25.
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26. The speed of a water wave is described by v 5 Ïgd , where d is 
the water depth, assumed to be small compared to the wave-
length. Because their speed changes, water waves refract 
when moving into a region of different depth. (a) Sketch a 
map of an ocean beach on the eastern side of a landmass. 
Show contour lines of constant depth under water, assuming 
a reasonably uniform slope. (b) Suppose waves approach the 
coast from a storm far away to the north–northeast. Demon-
strate that the waves move nearly perpendicular to the 
shoreline when they reach the beach. (c) Sketch a map of a 
coastline with alternating bays and headlands as suggested 
in Figure P34.26. Again make a reasonable guess about the 
shape of contour lines of constant depth. (d) Suppose waves 
approach the coast, carrying energy with uniform density 
along originally straight wave fronts. Show that the energy 
reaching the coast is concentrated at the headlands and has 
lower intensity in the bays.

seCtIon 34.7 Total Internal Reflection

27. For 589-nm light, calculate the critical angle for the follow-
ing materials surrounded by air: (a) cubic zirconia, (b) flint 
glass, and (c) ice.

28. Consider a light ray traveling between air and a diamond 
cut in the shape shown in Figure P34.28. (a) Find the crit-
ical angle for total internal reflection for light in the dia-
mond incident on the interface between the diamond and 
the outside air. (b) Consider the light ray incident normally 
on the top surface of the diamond as shown in Figure 
P34.28. Show that the light traveling toward point P in the 
diamond is totally reflected. What If? Suppose the diamond 
is immersed in water. (c) What is the critical angle at the dia-
mond–water interface? (d) When the diamond is immersed 
in water, does the light ray entering the top surface in Fig-
ure P34.28 undergo total internal reflection at P? Explain. 
(e) If the light ray entering the diamond remains vertical 
as shown in Figure P34.28, which way should the diamond 

in the water be rotated about an axis perpendicular to the 
page through O so that light will exit the diamond at P? (f) 
At what angle of rotation in part (e) will light first exit the 
diamond at point P?

29. A room contains air in which the speed of sound is 343 m/s. 
The walls of the room are made of concrete in which the 
speed of sound is 1 850 m/s. (a) Find the critical angle for 
total internal reflection of sound at the concrete–air bound-
ary. (b) In which medium must the sound be initially trav-
eling if it is to undergo total internal reflection? (c) “A bare 
concrete wall is a highly efficient mirror for sound.” Give 
evidence for or against this statement.

30. Around 1968, Richard A. Thorud, 
an engineer at The Toro Company, 
invented a gasoline gauge for small 
engines diagrammed in Figure P34.30. 
The gauge has no moving parts. It con-
sists of a flat slab of transparent plastic 
fitting vertically into a slot in the cap on 
the gas tank. None of the plastic has a 
reflective coating. The plastic projects 
from the horizontal top down nearly to 
the bottom of the opaque tank. Its lower 
edge is cut with facets making angles of 
458 with the horizontal. A lawn mower operator looks down 
from above and sees a boundary between bright and dark 
on the gauge. The location of the boundary, across the 
width of the plastic, indicates the quantity of gasoline in 
the tank. (a) Explain how the gauge works. (b) Explain the 
design requirements, if any, for the index of refraction of 
the plastic.

31. An optical fiber has an index of 
refraction n and diameter d. It is sur-
rounded by vacuum. Light is sent into 
the fiber along its axis as shown in Fig-
ure P34.31. (a) Find the smallest out-
side radius Rmin permitted for a bend 
in the fiber if no light is to escape. 
(b) What If? What result does part (a) 
predict as d approaches zero? Is this 
behavior reasonable? Explain. (c) As n 
increases? (d) As n approaches 1? (e) Evaluate Rmin assum-
ing the fiber diameter is 100 mm and its index of refraction 
is 1.40.

addItIonal PRobleMs

32. Consider a horizontal interface between air above and 
glass of index of refraction 1.55 below. (a) Draw a light ray 
incident from the air at angle of incidence 30.08. Deter-
mine the angles of the reflected and refracted rays and 
show them on the diagram. (b) What If? Now suppose 
the light ray is incident from the glass at an angle of 30.08. 
Determine the angles of the reflected and refracted rays 
and show all three rays on a new diagram. (c) For rays inci-
dent from the air onto the air–glass surface, determine 
and tabulate the angles of reflection and refraction for all 
the angles of incidence at 10.08 intervals from 08 to 90.08. 
(d) Do the same for light rays coming up to the interface 
through the glass.

33. How many times will the incident beam in Figure  P34.33 
(page 922) be reflected by each of the parallel mirrors?
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922 Chapter 34 The Nature of Light and the Principles of Ray Optics

34. Consider a beam of light from the 
left entering a prism of apex angle 
F as shown in Figure P34.34. Two 
angles of incidence, u1 and u3, are 
shown as well as two angles of 
refraction, u2 and u4. Show that 
F 5 u2 1 u3.

35. Why is the following situation impossible? While at the bottom 
of a calm freshwater lake, a scuba diver sees the Sun at an 
apparent angle of 38.08 above the horizontal.

36. Why is the following situation impossible? A laser beam strikes 
one end of a slab of material of length L 5 42.0 cm and 
thickness t 5 3.10 mm as shown in Figure P34.36 (not to 
scale). It enters the material at the center of the left end, 
striking it at an angle of incidence of u 5 50.08. The index of 
refraction of the slab is n 5 1.48. The light makes 85 inter-
nal reflections from the top and bottom of the slab before 
exiting at the other end.

37. When light is incident normally on the interface between 
two transparent optical media, the intensity of the reflected 
light is given by the expression 

S 19 5 Sn 2 2 n1

n 2 1 n1
D2

S 1

In this equation, S1 represents the average magnitude of the 
Poynting vector in the incident light (the incident intensity), 
S19 is the reflected intensity, and n1 and n2 are the refractive 
indices of the two media. (a) What fraction of the incident 
intensity is reflected for 589-nm light normally incident on 
an interface between air and crown glass? (b) Does it matter 
in part (a) whether the light is in the air or in the glass as it 
strikes the interface?

38. Refer to Problem 37 for its description of the reflected 
intensity of light normally incident on an interface between 
two transparent media. (a) For light normally incident on 
an interface between vacuum and a transparent medium of 
index n, show that the intensity S2 of the transmitted light 
is given by S2/S1 = 4n/(n 1 1)2. (b) Light travels perpen-
dicularly through a diamond slab, surrounded by air, with 

parallel surfaces of entry and exit. Apply the transmission 
fraction in part (a) to find the approximate overall trans-
mission through the slab of diamond, as a percentage. 
Ignore light reflected back and forth within the slab.

39. A light ray enters the atmosphere of the Earth and descends 
vertically to the surface a distance h 5 100 km below. The 
index of refraction where the light enters the atmosphere 
is 1.00, and it increases linearly with distance to have the 
value n 5 1.000 293 at the Earth’s surface. (a)  Over what 
time interval does the light traverse this path? (b) By what 
percentage is the time interval larger than that required in 
the absence of the Earth’s atmosphere?

40. A light ray enters the atmosphere of a planet and descends 
vertically to the surface a distance h below. The index of 
refraction where the light enters the atmosphere is 1.00, 
and it increases linearly with distance to have the value 
n at the planet surface. (a) Over what time interval does 
the light traverse this path? (b) By what fraction is the 
time interval larger than that required in the absence of 
an atmosphere?

41. A light ray of wavelength 589 nm 
is incident at an angle u on the top 
surface of a block of polystyrene as 
shown in Figure P34.41. (a) Find 
the maximum value of u for which 
the refracted ray undergoes total 
internal reflection at the point P 
located at the left vertical face of 
the block. What If? Repeat the cal-
culation for the case in which the 
polystyrene block is immersed in (b) water and (c) carbon 
disulfide. Explain your answers.

42. One technique for mea-
suring the apex angle of 
a prism is shown in Fig-
ure P34.42. Two parallel 
rays of light are directed 
onto the apex of the 
prism so that the rays 
reflect from opposite 
faces of the prism. The 
angular separation g of 
the two reflected rays 
can be measured. Show 
that F 5 1

2 g.

43. A material having an index of refraction n is surrounded by 
vacuum and is in the shape of a quarter circle of radius R 
(Fig. P34.43). A light ray parallel to the base of the material 
is incident from the left at a distance L above the base and 
emerges from the material at the angle u. Determine an 
expression for u in terms of n, R, and L.
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44. Review. A mirror is often “silvered” with aluminum. By 
adjusting the thickness of the metallic film, one can make 
a sheet of glass into a mirror that reflects anything between 
3% and 98% of the incident light, transmitting the rest. 
Prove that it is impossible to construct a “one-way mirror” 
that would reflect 90% of the electromagnetic waves inci-
dent from one side and reflect 10% of those incident from 
the other side. Suggestion: Use Clausius’s statement of the 
second law of thermodynamics.

45. Figure P34.45 shows the path of a light beam through sev-
eral slabs with different indices of refraction. (a) If u1 5 
30.08, what is the angle u2 of the emerging beam? (b) What 
must the incident angle u1 be to have total internal reflec-
tion at the surface between the medium with n 5 1.20 and 
the medium with n 5 1.00?

46. As sunlight enters the Earth’s atmosphere, it changes direc-
tion due to the small difference between the speeds of 
light in vacuum and in air. The duration of an optical day is 
defined as the time interval between the instant when the 
top of the rising Sun is just visible above the horizon and 
the instant when the top of the Sun just disappears below 
the horizontal plane. The duration of the geometric day is 
defined as the time interval between the instant a mathe-
matically straight line between an observer and the top of 
the Sun just clears the horizon and the instant this line 
just dips below the horizon. (a) Explain which is longer, 
an optical day or a geometric day. (b) Find the difference 
between these two time intervals. Model the Earth’s atmo-
sphere as uniform, with index of refraction 1.000 293, a 
sharply defined upper surface, and depth 8 614 m. Assume 
the observer is at the Earth’s equator so that the appar-
ent path of the rising and setting Sun is perpendicular to 
the horizon.

47. A ray of light passes from air into water. For its deviation 
angle d 5 uu1 2 u2u to be 10.08, what must its angle of inci-
dence be?

48. In your work for an optical research company, you are 
asked to consider the triangular shaped prism shown 
in Figure P34.48. Light enters the left slanted side of the 
prism from air at normal incidence, reflects from the top 
surface by total internal reflection, and then refracts out 
of the right slanted surface. (a) Your supervisor asks you to 
determine the range of angles over which visible light exits 
the right slanted surface due to dispersion in the material. 
(b) An actual physical prism of the shape in Figure P34.48 
is then made from cubic zirconia with a 5 608 and g 5 308, 
and it doesn’t work as planned. Explain to your supervisor 
why not. 

49. A. H. Pfund’s method for measuring the index of refrac-
tion of glass is illustrated in Figure P34.49. One face of a 
slab of thickness t is painted white, and a small hole scraped 
clear at point P serves as a source of diverging rays when the 
slab is illuminated from below. Ray PBB9 strikes the clear 
surface at the critical angle and is totally reflected, as are 
rays such as PCC9. Rays such as PAA9 emerge from the clear 
surface. On the painted surface, there appears a dark circle 
of diameter d surrounded by an illuminated region, or halo. 
(a) Derive an equation for n in terms of the measured quan-
tities d and t. (b) What is the diameter of the dark circle if 
n 5 1.52 for a slab 0.600 cm thick? (c) If white light is used, 
dispersion causes the critical angle to depend on color. Is 
the inner edge of the white halo tinged with red light or 
with violet light? Explain.

50. Figure P34.50 shows a top view of a 
square enclosure. The inner surfaces 
are plane mirrors. A ray of light enters 
a small hole in the center of one mirror. 
(a) At what angle u must the ray enter 
if it exits through the hole after being 
reflected once by each of the other three 
mirrors? (b) What If? Are there other val-
ues of u for which the ray can exit after 
multiple reflections? If so, sketch one of 
the ray’s paths.

51. The walls of an ancient shrine are perpendicular to the four 
cardinal compass directions. On the first day of spring, light 
from the rising Sun enters a rectangular window in the east-
ern wall. The light traverses 2.37 m horizontally to shine 
perpendicularly on the wall opposite the window. A tourist 
observes the patch of light moving across this western wall. 
(a) With what speed does the illuminated rectangle move? 
(b) The tourist holds a small, square mirror flat against the 
western wall at one corner of the rectangle of light. The 
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924 Chapter 34 The Nature of Light and the Principles of Ray Optics

mirror reflects light back to a spot on the eastern wall close 
beside the window. With what speed does the smaller square 
of light move across that wall? (c) Seen from a latitude of 
40.08 north, the rising Sun moves through the sky along a 
line making a 50.08 angle with the southeastern horizon. In 
what direction does the rectangular patch of light on the 
western wall of the shrine move? (d) In what direction does 
the smaller square of light on the eastern wall move?

CHallenge PRobleMs

52. Why is the following situation impossible? The perpendicular 
distance of a lightbulb from a large plane mirror is twice the 
perpendicular distance of a person from the mirror. Light 
from the lightbulb reaches the person by two paths: (1) it 
travels to the mirror and reflects from the mirror to the per-
son, and (2) it travels directly to the person without reflect-
ing off the mirror. The total distance traveled by the light in 
the first case is 3.10 times the distance traveled by the light 
in the second case.

53. Figure P34.53 shows an 
overhead view of a room of 
square floor area and side 
L. At the center of the room 
is a mirror set in a vertical 
plane and rotating on a ver-
tical shaft at angular speed v 
about an axis coming out of 
the page. A bright red laser 
beam enters from the cen-
ter point on one wall of the 
room and strikes the mirror. 
As the mirror rotates, the 
reflected laser beam creates a red spot sweeping across the 
walls of the room. (a) When the spot of light on the wall is 
at distance x from point O, what is its speed? (b) What value 
of x corresponds to the minimum value for the speed? (c) 
What is the minimum value for the speed? (d) What is the 
maximum speed of the spot on the wall? (e) In what time 
interval does the spot change from its minimum to its max-
imum speed?

54. Pierre de Fermat (1601–1665) showed that whenever light 
travels from one point to another, its actual path is the path 
that requires the smallest time interval. This statement 
is known as Fermat’s principle. The simplest example is for 
light propagating in a homogeneous medium. It moves in a 
straight line because a straight line is the shortest distance 
between two points. Derive Snell’s law of refraction from 
Fermat’s principle. Proceed as follows. In Figure P34.54, 
a light ray travels from point P in medium 1 to point Q in 

medium 2. The two points are, respectively, at perpendicu-
lar distances a and b from the interface. The displacement 
from P to Q has the component d parallel to the interface, 
and we let x represent the coordinate of the point where the 
ray enters the second medium. Let t 5 0 be the instant the 
light starts from P. (a) Show that the time at which the light 
arrives at Q is

t 5
r1

v1

1
r2

v2

5
n 1Ïa 2 1 x2

c
1

n 2Ïb 2 1 sd 2 xd2

c

(b) To obtain the value of x for which t has its minimum 
value, differentiate t with respect to x and set the derivative 
equal to zero. Show that the result implies

n1x

Ïa 2 1 x2
5

n 2sd 2 xd

Ïb 2 1 sd 2 xd2

(c) Show that this expression in turn gives Snell’s law,

n1 sin u1 5 n2 sin u2

55. Refer to Problem 54 for the statement of Fermat’s principle 
of least time. Derive the law of reflection (Eq. 34.1) from 
Fermat’s principle.

56. Suppose a luminous sphere of radius R1 (such as the Sun) 
is surrounded by a uniform atmosphere of radius R2 . R1 
and index of refraction n. When the sphere is viewed from a 
location far away in vacuum, what is its apparent radius (a) 
when R2 . nR1 and (b) when R2 , nR1?

57. This problem builds upon the results of Problems 37 and 
38. Light travels perpendicularly through a diamond slab, 
surrounded by air, with parallel surfaces of entry and exit. 
The intensity of the transmitted light is what fraction of the 
incident intensity? Include the effects of light reflected back 
and forth inside the slab.
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Storyline While thinking about what might be coming up in this 
new chapter, you notice a magnifying glass in your desk drawer. You take it out 
of the drawer; this device might be useful for your study of image formation! 
In a pitch-dark room, you turn on your smartphone and lay it down on a table, 
counter, or desk so that the display is upward. You hold the magnifying glass lens 
horizontally a few inches above the display. You notice when the lens is at a cer-
tain position above the display a clear image of the display forms on the ceiling. 
You measure the distance between the display and the lens. You then move to a 
room with a window and hold the lens of the magnifying glass vertically near the 
wall of the room opposite the window. As you move the lens back and forth, you 
notice that a clear image of the window and the building across the street forms 
when the lens is at a certain distance from the wall. You measure the distance 
between the wall and the lens. You notice that this horizontal distance from the 
wall is very similar to the vertical distance between your smartphone and the lens 
in the first experiment! You find that the distances are similar but not quite equal. 
Should they be the same?

A smartphone display 
and a magnifying glass 
can be used to perform 
simple optics experiments. 
(iStockphoto.com/alexsl)

35.1 Images Formed by  
Flat Mirrors

35.2 Images Formed by 
Spherical Mirrors

35.3 Images Formed by 
Refraction

35.4 Images Formed by  
Thin Lenses

35.5 Lens Aberrations

35.6 Optical Instruments

Image Formation 35
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926 Chapter 35 Image Formation

ConneCtions In this chapter, we apply the laws of reflection and refrac-
tion from Chapter 34 in order to investigate the images that result when light rays 
encounter flat or curved surfaces between two media. We can design mirrors and 
lenses to form images with desired characteristics. In this study, we continue to use 
the ray approximation and assume light travels in straight lines. We first study the 
geometry of images formed by mirrors and lenses, and then determine techniques 
for locating an image and predicting its size. Then we investigate how to combine 
these elements into several useful optical instruments such as microscopes and 
telescopes. The control of light with reflecting and refracting optical instruments is 
critical to research that allows us to understand the material in upcoming chapters.

   35.1    Images Formed by Flat Mirrors
Image formation by mirrors can be understood through the behavior of light rays 
as described by the wave under reflection analysis model. Let’s begin with an image 
you see every day: your face in the bathroom mirror. This image is formed by the 
simplest possible mirror, the flat mirror. Consider a point source of light placed 
at O in Figure 35.1, a distance p in front of a flat mirror. In the figure, the mirror 
surface is the dark blue edge. The lighter blue band represents the structural sup-
port for the mirrored surface, such as a piece of glass on which a silvered reflecting 
surface is deposited. The mirror is perpendicular to the page, so we see the inter-
section of the mirror with the page. The distance p is called the object distance, 
the name anticipating that we will place objects in front of mirrors and study their 
images. Diverging light rays leave the source and are reflected from the mirror, 
obeying the law of reflection. Upon reflection, the rays continue to diverge. The 
dashed lines in Figure 35.1 are backward extensions of the diverging rays back to a 
point of intersection at I. The diverging rays appear to the viewer to originate at the 
point I behind the mirror. Point I, which is a distance q behind the mirror, is called 
the image of the object at O. The distance q is called the image distance. Regard-
less of the system under study, images can always be located by extending diverging 
rays back to a point at which they intersect. 

Images are located either at a point from which rays of light actually diverge, or at 
a point from which they appear to diverge, as in Figure 35.1. This difference allows 
us to classify images as real or virtual. A real image is formed when all light rays pass 
through and diverge from the image point; a virtual image is formed when most 
if not all of the light rays do not pass through the image point but only appear to 
diverge from that point. The image formed by the mirror in Figure 35.1 is virtual. 
No light rays from the object exist behind the mirror, at the location of the image, 
so the light rays in front of the mirror only seem to be diverging from I. The image 
of an object seen in a flat mirror is always virtual. Real images can be displayed on 
a screen (as at a movie theater), but virtual images cannot be displayed on a screen. 
We shall see an example of a real image in Section 35.2.

Figure 35.1 shows the image of a point object. We can use the simple geometry in 
Figure 35.2 to examine the properties of the images of extended objects formed by 
flat mirrors. The gray arrow is the object. The image of the bottom of the arrow 
is located behind the mirror at distance q, just like the point object in Figure 35.1. 
Even though there are an infinite number of choices of other points on the object 
and directions in which light rays could leave those points, we need to choose only 
two rays leaving the top of the arrow at point P to determine where the image is 
formed. The red ray starts at P, follows a path perpendicular to the mirror to Q , 
and reflects back on itself. The blue ray follows the oblique path PR and reflects as 
shown in Figure 35.2 according to the law of reflection. An observer in front of the 
mirror would extend the two reflected rays back to the point at which they appear 
to have originated, which is point P 9 behind the mirror. A continuation of this 

The image point I is located 
behind the mirror a distance 
q from the mirror. The image 
is virtual.

Mirror

p q

O I

Mirroro

Figure 35.1  An image formed by 
reflection from a flat mirror.

Because the triangles PQR 
and P'QR are congruent, 
| p | � | q | and h � h�.                     
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Figure 35.2 A geometric con-
struction that is used to locate the 
image of an object placed in front 
of a flat mirror.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    35.1 Images Formed by Flat Mirrors 927

process for points other than P on the object would result in a virtual image (rep-
resented by a pink arrow) of the entire object behind the mirror. Because triangles 
PQR and P 9QR are congruent, PQ 5 P 9Q , so |p | 5 |q |. (We use absolute value signs 
here because we will find that q is negative for this type of image.) Therefore, the 
image formed of an object placed in front of a flat mirror is as far behind the mir-
ror as the object is in front of the mirror.

The geometry in Figure 35.2 also reveals that the object height h equals the 
image height h9. Let us define lateral magnification M of an image as follows:

 M 5
image height

object height
5

h9

h
 (35.1)

This general definition of the lateral magnification for an image from any type of 
mirror is also valid for images formed by lenses, which we study in Section 35.4. 
For a flat mirror, M 5 11 for any image because h 9 5 h. The positive value of the 
magnification signifies that the image is upright. (By upright we mean that if the 
object arrow points upward as in Figure 35.2, so does the image arrow.)

A flat mirror produces an image that has an apparent left–right reversal. You can 
see this reversal by standing in front of a mirror and raising your right hand as 
shown in Figure 35.3. The image you see raises its left hand. Likewise, your hair 
appears to be parted on the side opposite your real part, and a mole on your right 
cheek appears to be on your left cheek.

This reversal is not actually a left–right reversal. Imagine, for example, lying on 
your left side on the floor with your body parallel to the mirror surface. Now your 
head is on the left and your feet are on the right. If you shake your feet, the image 
does not shake its head! If you raise your right hand, however, the image again 
raises its left hand. Therefore, the mirror again appears to produce a left–right 
reversal but in the up–down direction!

The reversal is actually a front–back reversal, caused by the light rays going for-
ward toward the mirror and then reflecting back from it. An interesting exercise is 
to stand in front of a mirror while holding an overhead transparency in front of you 
so that you can read the writing on the transparency. You will also be able to read 
the writing on the image of the transparency. You may have had a similar experi-
ence if you have attached a transparent decal with words on it to the rear window 
of your car. If the decal can be read from outside the car, you can also read it when 
looking into your rearview mirror from inside the car.

Q uick Quiz 35.1  You are standing approximately 2 m away from a mirror. 
The mirror has water spots on its surface. True or False: It is possible for you to 
see the water spots and your image both in focus at the same time.

 Conceptual Example 35.1    Multiple Images Formed by Two Mirrors

Two flat mirrors are perpendicular to each other as in Figure 35.4, and an object is 
placed at point O. In this situation, multiple images are formed. Locate the positions of 
these images.

S O L U T I O N

The image of the object is at I 1 in mirror 1 (green 
rays) and at I 2 in mirror 2 (red rays). In addition, a 
third image is formed at I 3 (blue rays). To form this 
image at I 3, the rays reflect twice, once from each 
mirror, after leaving the object at O. This third 
image can be considered as the image of I 1 in mirror 2, as indicated by the dashed lines leaving I 1 toward the upper right. 
That is, the image at I 1 serves as the object for I 3. It is also possible to show that I 3 is the image of I 2 in mirror 1.

Mirror 2 

Mirror 1 

I1 I3

O I2

Figure 35.4  (Conceptual Example 35.1) 
When an object is placed in front of two 
mutually perpendicular mirrors as shown, 
three images are formed. Follow the 
 different-colored light rays to understand 
the formation of each image.

The thumb is on the left side of 
both real hands and on the left 
side of the image. That the thumb 
is not on the right side of the 
image indicates that there is no 
left-to-right reversal.

Figure 35.3  The image in the 
mirror of a person’s right hand 
is reversed front to back, which 
makes the right hand appear to be 
a left hand.
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928 Chapter 35 Image Formation

   35.2    Images Formed by Spherical Mirrors
In the preceding section, we considered images formed by flat mirrors. Now we 
study images formed by curved mirrors. Although a variety of curvatures are pos-
sible, we will restrict our investigation to spherical mirrors. As its name implies, a 
spherical mirror has the shape of a section of a sphere.

concave Mirrors
We first consider reflection of light from the inner, concave surface of a spherical 
mirror as shown in Figure 35.6. The curved line in the figure represents the inter-
section of the bowl-shaped section of a sphere with the page. We can determine all 
of the properties of images formed by spherical mirrors by considering only rays in 
the plane of the page. The solid, curved dark blue line is the reflecting surface of 
the mirror. This type of reflecting surface is called a concave mirror. Figure 35.6a 
shows that the mirror has a radius of curvature R, and its center of curvature is 
point C. Point V is the center of the spherical section, and a line through C and V is 
called the principal axis of the mirror.

 Conceptual Example 35.2    The Tilting Rearview Mirror

Many rearview mirrors in cars have a day setting and a night 
setting. The night setting greatly diminishes the intensity of the 
image so that lights from trailing vehicles do not temporarily 
blind the driver. How does such a mirror work?

S O L U T I O N

Figure 35.5 shows a cross-sectional view of a rearview mirror for 
each setting. The unit consists of a reflective coating on the back 
of a wedge of glass. In the day setting (Fig. 35.5a), the light from an 
object behind the car strikes the glass wedge at point 1. Most of the 
light enters the wedge, refracting as it crosses the front surface, and 
reflects from the back surface at 2 to return to the front surface 
at 3, where it is refracted again as it re-enters the air as ray B (for 
bright). In addition, a small portion of the light is reflected at the 
front surface of the glass at 1 as indicated by ray D (for dim).
 This dim reflected light is responsible for the image observed 
when the mirror is in the night setting (Fig. 35.5b). In that case, the 
wedge is rotated so that the path followed by the bright light (ray B) does not lead to the eye. Instead, the dim light reflected 
from the front surface of the wedge travels to the eye, and the brightness of trailing headlights does not become a hazard.

B

D

Incident
light

B

D
1

3
2

Incident
light

Reflecting
side of mirror

a b

Day setting Night setting

D

Inciden
ight

en

DDDDDB

D
Incide
light

B

D
den
t

Figure 35.5  (Conceptual Example 35.2) Cross-sectional 
views of a rearview mirror.

Mirror

C V

Center of
curvature R

Principal
axis

Mirror

Local
normal
to surface

I

C

O

a b

If the rays diverge from 
O at small angles, they 
all reflect through the 
same image point I.

Figure 35.6  (a) A concave mirror 
of radius R. The center of curva-
ture C is located on the principal 
axis. (b) A point object placed at 
O in front of a concave spherical 
mirror of radius R, where O is any 
point on the principal axis farther 
than R from the mirror surface, 
forms a real image at I.
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    35.2 Images Formed by Spherical Mirrors 929

Now consider a point source of light placed at point O in Figure 35.6b, where O 
is any point on the principal axis to the left of C. Two diverging light rays that origi-
nate at O are shown. After reflecting from the mirror, obeying the law of reflection 
from the wave under reflection analysis model, these rays converge and cross at the 
image point I. They then continue to diverge from I as if an object were there. An 
observer to the left of O would see the light rays diverging from I. As a result, the 
image at point I is real.

In this section, we shall consider only rays that diverge from the object and make 
a small angle with the principal axis. Such rays are called paraxial rays. All paraxial 
rays reflect through the image point. Rays that are far from the principal axis such 
as those shown in Figure 35.7 converge to other points on the principal axis, produc-
ing a blurred image. This effect, called spherical aberration, is present to some extent 
for any spherical mirror and is discussed in Section 35.5.

If the object distance p and radius of curvature R are known, we can use Fig-
ure 35.8 to calculate the image distance q. By convention, these distances are mea-
sured from point V. Figure 35.8 shows two rays leaving the tip of the object. The 
red ray passes through the center of curvature C of the mirror, hitting the mir-
ror perpendicular to the mirror surface and reflecting back on itself. The blue 
ray strikes the mirror at its center (point V) and reflects as shown, obeying the law  
of reflection. The image of the tip of the arrow is located at the point where these 
two rays intersect. From the large, red right triangle in Figure 35.8, we see that 
tan u 5 h/p, and from the yellow right triangle, we see that tan u 5 2h9/q. The  
negative sign is introduced because the image is inverted, so h9 is taken to be neg-
ative. Therefore, from Equation 35.1 and these results, we find that the magnifica-
tion of the image is

 M 5
h9

h
5 2 

q

p
 (35.2)

Also notice from the green right triangle in Figure 35.8 and the smaller red right 
triangle that

tan a 5
2h9

R 2 q
 and tan a 5

h
p 2 R

from which it follows that

 
h9

h
5 2 

R 2 q

p 2 R
 (35.3)

Comparing Equations 35.2 and 35.3 gives

R 2 q

p 2 R
5

q

p

The reflected rays intersect 
at different points on the 
principal axis.

Figure 35.7  A spherical concave 
mirror exhibits spherical aberra-
tion when light rays make large 
angles with the principal axis.
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Principal
axis

O
u
u

a
a

q

The real image lies at the 
location at which the 
reflected rays cross.

Figure 35.8  The image formed 
by a spherical concave mirror 
when the object O lies outside 
the center of curvature C. This 
geometric construction is used to 
derive Equation 35.6.

Pitfall Prevention 35.1
Magnification Does Not Neces-
sarily Imply Enlargement For opti-
cal elements other than flat mir-
rors, the magnification defined in 
Equation 35.2 can result in a num-
ber with a magnitude larger or 
smaller than 1. Therefore, despite 
the cultural usage of the word 
magnification to mean enlargement, 
the image could be smaller than 
the object.
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930 Chapter 35 Image Formation

Simple algebra reduces this expression to

 
1
p

1
1
q

5
2
R

 (35.4)

which is called the mirror equation. We present a modified version of this equation 
shortly.

If the object is very far from the mirror—that is, if p is so much greater than R 
that p can be said to approach infinity—then the light rays reaching the mirror 
from the object are parallel. Figure 35.9a shows the results of parallel rays in the 
laboratory. The rays reflect from the mirror and pass through a single point called 
the focal point F. Figure 35.9b shows a geometric construction for parallel rays 
striking the mirror. From the law of reflection, we see that the focal point must lie 
between the mirror surface and the center of curvature C of the mirror. If we let p 
approach infinity in Equation 35.4, we see that q < R/2. For parallel rays, the image 
point must be the focal point. Therefore, we see that the focal point is located a 
distance from the mirror called the focal length f, and

 f 5
R
2

 (35.5)

Figure 35.10 shows a practical application of the situation in Figure 35.9. Parallel 
microwaves carrying television signals from a satellite far above the Earth’s surface  
strike the curved surface of the antenna and are focused at a receiver placed at the 
focal point of the surface.

Combining Equations 35.4 and 35.5, the mirror equation can now be expressed 
in terms of the focal length:

 
1
p

1
1
q

5
1
f

 (35.6)

Notice from Equation 35.5 that the focal length of a mirror depends only on the 
curvature of the mirror and not on the material from which the mirror is made 
because the formation of the image results from rays reflected from the surface 
of the material. The situation is different for lenses; in that case, the light actually 
passes through the material and the focal length depends on the type of material 
from which the lens is made. (See Section 35.4.)

convex Mirrors
Figure 35.11 shows the formation of an image by a convex mirror, that is, one 
silvered so that light is reflected from the outer, convex surface. It is sometimes 

Focal length for a mirror 

Mirror equation  

a

R

f

FC

When the object is very far 
away, the image distance 
q � R �2 � f, where f is the 
focal length of the mirror.

b

Figure 35.9  (a) Light rays from 
an object far to the left are par-
allel as they arrive at the mirror. 
Upon reflection, they all pass 
through the focal point. (b) The 
focal length f is half the radius of 
curvature of the mirror.

Figure 35.10  A satellite-dish 
antenna is a concave reflector 
for television signals from a sat-
ellite in orbit around the Earth. 
Because the satellite is so far away, 
the signals are carried by micro-
waves that are parallel when they 
arrive at the dish. These waves 
reflect from the dish and are 
focused on the receiver.
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    35.2 Images Formed by Spherical Mirrors 931

called a diverging mirror because the rays from any point on an object diverge 
after reflection as though they were coming from some point behind the mirror. 
The image in Figure 35.11 is virtual because the reflected rays only appear to orig-
inate at the image point as indicated by the dashed lines. Furthermore, the image 
is always upright and smaller than the object. This type of mirror is often used in 
stores to foil shoplifters. A single mirror can be used to survey a large field of view 
because it forms a smaller, upright image of the interior of the store.

We do not derive any equations for convex spherical mirrors because Equations 
35.2, 35.4, and 35.6 can be used for either concave or convex mirrors if we adhere 
to a strict sign convention. We will refer to the region in which light rays originate 
and move toward the mirror as the front side of the mirror and the other side as the 
back side. For example, in Figures 35.8 and 35.11, the side to the left of the mirrors is 
the front side and the side to the right of the mirrors is the back side. Figure 35.12 
states the sign conventions for object and image distances for any type of mirror, 
and Table 35.1 summarizes the sign conventions for all quantities. One entry in the 
table, a virtual object, is formally introduced in Section 35.4.

ray Diagrams for Mirrors
In Figures 35.2, 35.8, and 35.11, we have located an image using two rays: a red 
one hitting the mirror perpendicular to the surface and reflecting straight back, 
and a blue ray striking the mirror at the principal axis and obeying the law of 
reflection. If we wanted to draw a precision diagram to locate the image position 
carefully, we would need a protractor to make the sure the incident and reflected 
angles at the principal axis are the same for the blue ray. Our new knowledge of 
the focal point, however, makes things easier. Let’s  investigate the building of ray 
diagrams that are accurate but do not require a protractor. These pictorial repre-
sentations reveal the nature of the image and can be used to check results calcu-
lated from the mathematical representation using the mirror and magnification 
equations. To draw a ray diagram, you must know the position of the object and the 
locations of the mirror’s focal point and center of curvature. You then draw three 
rays from the top of the object to locate the image as shown by the examples in  

p
q

Front

O F CI

Back

The image formed by the 
object is virtual, upright, 
and behind the mirror.

Figure 35.11  Formation of 
an image by a spherical convex 
mirror.

Pitfall Prevention 35.2
The Focal Point Is Not the Focus 
Point The focal point is usually not 
the point at which the light rays 
focus to form an image. The focal 
point is determined solely by the 
curvature of the mirror; it does 
not depend on the location of the 
object. In general, an image forms 
at a point different from the focal 
point of a mirror (or a lens), as in 
Figure 35.8, where the focal point 
is to the right of the image posi-
tion. The only exception is when 
the object is located infinitely far 
away from the mirror.

 table 35.1  Sign Conventions for Mirrors

Quantity  Positive When . . .  Negative When . . .

Object location (p) object is in front of mirror object is in back of mirror
  (real object).  (virtual object). 
Image location (q) image is in front of mirror image is in back of mirror
  (real image).  (virtual image).
Image height (h9) image is upright. image is inverted.
Focal length ( f ) and radius (R) mirror is concave. mirror is convex.
Magnification (M) image is upright. image is inverted.

Front, or
real, side

Reflected light

Back, or
virtual, side

No lightIncident light

Flat, convex, or concave
mirrored surface

p and q positive p and q negative

Figure 35.12  Signs of p and q for 
all types of mirrors.

Pitfall Prevention 35.3
Watch Your Signs Success in 
working mirror problems (as well 
as problems involving refracting 
surfaces and thin lenses) is largely 
determined by proper sign choices 
when substituting into the equa-
tions. The best way to success is to 
work a multitude of problems on 
your own.
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932 Chapter 35 Image Formation

Figure 35.13 Ray diagrams 
for spherical mirrors along with 
corresponding photographs of 
the images of bottles. (a) In this 
photograph, both the object and 
the image are in front of the mir-
ror, so you would need to focus 
your eyes on points in front of 
the mirror to see the object and 
image clearly. (b), (c) In these 
photographs, the object is in 
front of the mirror, but you would 
need to focus your eyes on a point 
behind the mirror to see the 
image clearly.

1

2

3 C F O I

CFO I

1

2
3

Front Back

Front Back

Front Back

a

b

c

When the object is located between the 
focal point and a concave mirror surface, 
the image is virtual, upright, and enlarged.

When the object is in front of a convex 
mirror, the image is virtual, upright, 
and reduced in size.

FC
O

I
Principal axis

1

2

3

When the object is located so that the center of 
curvature lies between the object and a concave 
mirror surface, the image is real, inverted, and 
reduced in size.

Figure 35.13. We will keep the red ray from our earlier diagrams and add two new 
rays. For concave mirrors (see Figs. 35.13a and 35.13b), draw the following three 
rays, noting the colors indicated in Figure 35.13:

 ● Ray 1 (blue) is drawn from the top of the object parallel to the principal axis 
and is reflected through the focal point F.
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    35.2 Images Formed by Spherical Mirrors 933

 ● Ray 2 (green) is drawn from the top of the object through the focal point 
(or as if coming from the focal point if p , f ) and is reflected parallel to 
the principal axis.

 ● Ray 3 (red) is drawn from the top of the object through the center of curvature 
C (or as if coming from the center C if p , 2f ) and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves 
as a check of the construction. The image point obtained in this fashion must 
always agree with the value of q calculated from the mirror equation. With concave 
mirrors, notice what happens as the object is moved closer to the mirror. The real, 
inverted image in Figure 35.13a moves to the left and becomes larger as the object 
approaches the center of curvature C. When the object is at C, a distance p 5 2f 
from the mirror, Equation 35.6 shows that q 5 2f: the image is located at the loca-
tion of the object, with a magnification of 21. As the object continues to move from 
the center of curvature toward the focal point, the image grows larger (|M| . 1) and 
moves to the left. When the object is at the focal point, the image is infinitely far 
to the left. When the object lies between the focal point and the mirror surface as 
shown in Figure 35.13b, however, the image is to the right, behind the object, and 
virtual, upright, and enlarged. This latter situation applies when you use a shaving 
mirror or a makeup mirror, both of which are concave. Your face is closer to the 
mirror than the focal point, and you see an upright, enlarged image of your face.

For convex mirrors (see Fig. 35.13c), draw the following three rays:

 ● Ray 1 (blue) is drawn from the top of the object parallel to the principal axis 
and is reflected away from the focal point F.

 ● Ray 2 (green) is drawn from the top of the object toward the focal point on 
the back side of the mirror and is reflected parallel to the principal axis.

 ● Ray 3 (red) is drawn from the top of the object toward the center of curva-
ture C on the back side of the mirror and is reflected back on itself.

In a convex mirror, the image of an object is always virtual, upright, and reduced 
in size as shown in Figure 35.13c. In this case, as the object distance decreases, the 
virtual image increases in size and moves away from the focal point toward the mir-
ror as the object approaches the mirror. You should construct other diagrams to 
verify how image position varies with object position.

Q uick Quiz 35.2  You wish to start a fire by reflecting sunlight from a mirror 
onto some paper under a pile of wood. Which would be the best choice for the 
type of mirror? (a) flat (b) concave (c) convex

Q uick Quiz 35.3  Consider the image in the mirror in Figure 35.14. Based on 
the appearance of this image, would you conclude that (a) the mirror is concave 
and the image is real, (b) the mirror is concave and the image is virtual, (c) the  
mirror is convex and the image is real, or (d) the mirror is convex and the 
image is virtual?

Figure 35.14  (Quick Quiz 35.3) 
What type of mirror is shown here?

 Example 35.3   The Image Formed by a Concave Mirror

A spherical mirror has a focal length of 110.0 cm.

(A)  Locate and describe the image for an object distance of 25.0 cm.

S O L U T I O N

Conceptualize  Because the focal length of the mirror is positive, it is a concave mirror (see Table 35.1). We expect the possi-
bilities of both real and virtual images. continued

Pitfall Prevention 35.4
Choose a Small Number of Rays  
A huge number of light rays leave 
each point on an object (and pass 
through each point on an image). 
In a ray diagram, which displays 
the characteristics of the image, 
we choose only a few rays that fol-
low simply stated rules. Locating 
the image by calculation comple-
ments the diagram.

N
AS

A
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934 Chapter 35 Image Formation

35.3 c o n t i n u e d

Categorize Because the object distance in this part of the problem is larger than the focal length, we expect the image to be 
real. This situation is analogous to that in Figure 35.13a.

Analyze  Find the image distance by using Equation 35.6: 
1
q

5
1
f

2
1
p

   S    q 5
f p

p 2 f
 (35.7)

Substitute numerical values: q 5
(10.0 cm)(25.0 cm)
25.0 cm 2 10.0 cm

5 16.7 cm

Find the magnification of the image from Equation 35.2: M 5 2 

q

p
5 2 

16.7 cm
25.0 cm

5 20.667

Finalize  The absolute value of M is less than unity, so the image is smaller than the object, and the negative sign for M tells us 
that the image is inverted. Because q is positive, the image is located on the front side of the mirror and is real. Look into the 
bowl of a shiny spoon or stand far away from a shaving mirror to see this image.

(B)  Locate and describe the image for an object distance of 5.00 cm.

S O L U T I O N

Categorize  Because the object distance is smaller than the focal length, we expect the image to be virtual. This situation is 
analogous to that in Figure 35.13b.

Analyze  Find the image distance by using Equation 35.7: q 5
f p

p 2 f

Substitute numerical values: q 5
(10.0 cm)(5.0 cm)
5.0 cm 2 10.0 cm

5 210.0 cm

Find the magnification of the image from Equation 35.2: M 5 2 

q

p
5 2S210.0 cm

5.00 cm D 5 12.00

Finalize  The image is twice as large as the object, and the positive sign for M indicates that the image is upright (see  
Fig. 35.13b). The negative value of the image distance tells us that the image is virtual, as expected. Put your face close to a 
shaving mirror to see this type of image.

 W H A T  I F ? Suppose you set up the bottle and mirror apparatus illustrated in Figure 35.13a and described here in part 
(A). While adjusting the apparatus, you accidentally bump the bottle and it begins to slide toward the mirror at speed vp. How 
fast does the image of the bottle move?

Answer  Begin with Equation 35.7: q 5
fp

p 2 f

Differentiate this equation with respect to  (1)   vq 5
dq

dt
5

d
dt S fp

p 2 f D5 2 

f 2

sp 2 f d2  
dp

dt
5 2 

f 2vp

sp 2 f d2 
time to find the velocity of the image:

Substitute numerical values from part (A): vq 5 2 

s10.0 cmd2 vp

s25.0 cm 2 10.0 cmd2 5 20.444vp

Therefore, the speed of the image is less than that of the object in this case.
We can see two interesting behaviors of the function for vq in Equation (1). First, the velocity is negative regardless of 

the value of p or f. Therefore, if the object moves toward the mirror, the image moves toward the left in Figure 35.13 with-
out regard for the side of the focal point at which the object is located or whether the mirror is concave or convex. Second, 
in the limit of p S 0, the velocity vq approaches 2vp . As the object moves very close to the mirror, the mirror looks like a 
plane mirror, the image is as far behind the mirror as the object is in front, and both the object and the image move with 
the same speed.
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    35.3 Images Formed by Refraction 935

 Example 35.4    The Image Formed by a Convex Mirror

An automobile sideview mirror on the passenger 
side as shown in Figure 35.15 shows an image of a 
truck located 50.0 m from the mirror. The focal 
length of the mirror is 20.60 m.

(A)  Find the position of the image of the truck.

S O L U T I O N

Conceptualize  This situation is depicted in Figure 35.13c.

Categorize  Because the mirror is convex, we expect it to form an upright, reduced, virtual image for any object position.

Analyze  Find the image distance by using Equation 35.7: q 5
f p

p 2 f
5

(20.60 cm)(50.0 cm)
50.0 cm 2 (20.60 cm)

5 20.59 cm

(B)  Find the magnification of the image.

S O L U T I O N

Analyze  Use Equation 35.2: M 5 2 

q

p
5 2S20.59 m

50.0 m D 5 10.012

Finalize  The negative value of q in part (A) indicates that the image is virtual, or behind the mirror, as shown in Fig-
ure 35.13c. The magnification in part (B) indicates that the image is much smaller than the truck and is upright because 
M is positive. The image is reduced in size, so the truck appears to be farther away than it actually is. Because of the 
image’s small size, these mirrors often carry the inscription, “Objects in this mirror are closer than they appear.” Look 
into your passenger-side rearview mirror or the back side of a shiny spoon to see an image of this type.

Figure 35.15  (Example 35.4) An 
approaching truck is seen in a convex 
mirror on the passenger side of an 
automobile. Notice that the image of 
the truck is in focus, but the frame 
of the mirror is not, which demon-
strates that the image is not at the 
same location as the mirror surface.

   35.3    Images Formed by Refraction
In this section, we describe how images are formed when light rays follow the 
wave under refraction model at the boundary between two materials. Consider 
two transparent media having indices of refraction n 1 and n 2, where the bound-
ary between the two media is a spherical surface of radius R as in Figure 35.16. 
The object at O is in the medium for which the index of refraction is n 1. Let’s 
consider the paraxial rays leaving O. Figure 35.16 is the refraction analog to the 
reflections from the mirror in Figure 35.6b.

Q uick Quiz 35.4  In Figure 35.16, what happens to the image point I as the 
object point O is moved from very far to the left to very close to the refracting 
surface? (a) It is always to the right of the surface. (b) It is always to the left of 
the surface. (c) It starts off to the left, and at some position of O, I moves to the 
right of the surface. (d) It starts off to the right, and at some position of O, I 
moves to the left of the surface.

Figure 35.17 (page 936) shows a single ray leaving point O and refracting to point 
I. Snell’s law of refraction in the wave under refraction model applied to this ray gives

n 1 sin u1 5 n 2 sin u2

Because u1 and u2 are assumed to be small, we can use the small-angle approxima-
tion sin u < u (with angles in radians) and write Snell’s law as

n1u1 5 n 2u2

n1 � n2

O I

n2n1 R

p q

Rays making small angles with the 
principal axis diverge from a point 
object at O and are refracted 
through the image point I.

Figure 35.16  An image formed 
by refraction at a spherical surface.
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936 Chapter 35 Image Formation

We know that an exterior angle of any triangle equals the sum of the two opposite 
interior angles, so applying this rule to triangles OPC and PIC in Figure 35.17 gives

u1 5 a 1 b

b 5 u2 1 g

Combining all three expressions and eliminating u1 and u2 gives

 n1a 1 n 2g 5 (n 2 2 n 1)b (35.8)

Figure 35.17 shows three right triangles that have a common vertical leg of length d. 
For paraxial rays (unlike the relatively large-angle ray shown in Fig. 35.17), the hor-
izontal legs of these triangles are approximately p for the triangle containing angle 
a, R for the triangle containing angle b, and q for the triangle containing angle g. 
In the small-angle approximation, tan u < u, so we can write the approximate rela-
tionships from these triangles as follows:

tan a < a <
d
p

  tan b < b <
d
R

  tan g < g <
d
q

Substituting these expressions into Equation 35.8 and dividing through by d gives

 
n1

p
1

n 2

q
5

n 2 2 n1

R
 (35.9)

For a fixed object distance p, the image distance q is independent of the angle the ray 
makes with the axis. This result tells us that all paraxial rays focus at the same point I. 
The magnification of an image due to a refracting surface is given by (see Problem 20)

 M 5 2 

n1q

n2p
 (35.10)

As with mirrors, we must use a sign convention to apply Equation 35.9 to a vari-
ety of cases. We define the side of the surface in which light rays originate as the 
front side. The other side is called the back side. In contrast with mirrors, where 
real images are formed in front of the reflecting surface, real images are formed by 
refraction of light rays to the back of the surface. This is consistent with the facts 
that mirrors reflect light back to the same side, while transparent materials allow 
light to pass through to the other side. Because of the difference in location of real 
images, the refraction sign conventions for q and R are opposite the reflection sign 
conventions. For example, q and R are both positive in Figure 35.17. The sign con-
ventions for spherical refracting surfaces are summarized in Table 35.2.

We derived Equation 35.9 from an assumption that n1 , n2 in Figure 35.17. This 
assumption is not necessary, however. Equation 35.9 is valid regardless of which 
index of refraction is greater.

For a concave mirror, we found that both real and virtual images can be formed, 
depending on the location of the object relative to the focal point. Figures 35.13a 

Relation between object and 
image distance for a 

refracting surface

n2n1

p q

O

P

R

C

d

a

I

b g

u2

u1

Figure 35.17  Geometry used to 
derive Equation 35.9, assuming  
n1 , n 2.
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    35.3 Images Formed by Refraction 937

and 35.13b show these possibilities. We find that we can create both real and virtual 
images with a refracting surface, also. Figure 35.18 shows these two possibilities 
for a refracting surface surrounded by a medium of index n1. These two types of 
images can be created by placing the object at different positions relative to the 
surface. The value for p that determines whether an image is real or virtual can be 
found by letting q S ` in Equation 35.9. Solving for p, we find

p 5
n1

n2 2 n1

R

When the object is at this distance from the surface, the image is infinitely far away. 
If the object is moved farther from the mirror than this position, the image is real 
as in Figure 35.18a. If the object is moved closer to the surface than this distance, 
the image is virtual as in Figure 35.18b.

Now consider placing an object inside a material of index n1 and looking at the 
image from a material of index n2, where n1 . n2. Equation 35.9 gives us

q 5
pR

11 2
n1

n2
2p 2

n1

n2

R

For the condition n1 . n2, the value of q is always negative. Therefore, the image 
is always virtual. This is analogous to all images being virtual for a convex mirror, 
as in Figure 35.13c. See Figure 35.19 and Examples 35.6 and 35.7 for situations in 
which the object is inside a material.

flat refracting Surfaces
If a refracting surface is flat, then R is infinite and Equation 35.9 reduces to

n1

p
5 2 

n 2

q

 q 5 2 

n 2

n1

 p (35.11)

From this expression, we see that the sign of q is opposite that of p. Therefore, 
according to Table 35.2, the image formed by a flat refracting surface is on the 
same side of the surface as the object as illustrated in Figure 35.19 for the situation 
in which the object is in the medium of index n1 and n1 is greater than n2. In this 
case, a virtual image is formed between the object and the surface. If n1 is less than 
n2, the rays on the back side diverge from one another at smaller angles than those 
in Figure 35.19. As a result, the virtual image is formed to the left of the object.

Q uick Quiz 35.5  In Figure 35.19, what happens to the image point I as the object 
point O moves toward the right-hand surface of the material of index of refraction 
n1? (a) It always remains between O and the surface, arriving at the surface just as O 
does. (b) It moves toward the surface more slowly than O so that eventually O passes 
I. (c) It approaches the surface and then moves to the right of the surface.

Figure 35.18  A refracting surface 
can create a (a) real image or a  
(b) virtual image.

q

O
C

I

n1 n2

p

a

The image due to the surface is 
real, so I is to the right of the 
surface.

q

O
C

I n1 n2

p

b

The image due to the surface is 
virtual, so I is to the left of the 
surface.

p

q

I

O

  

The image is virtual and on 
the same side of the surface 
as the object.

n1 � n2
n1 n2

Figure 35.19 The image formed 
by a flat refracting surface. All rays 
are assumed to be paraxial.

 table 35.2  Sign Conventions for Refracting Surfaces

Quantity  Positive When . . .  Negative When . . .

Object location (p) object is in front of surface object is in back of surface
  (real object).  (virtual object).

Image location (q) image is in back of surface image is in front of surface
  (real image).  (virtual image).

Image height (h9) image is upright. image is inverted.

Radius (R) center of curvature is center of curvature is
  in back of surface.  in front of surface.
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938 Chapter 35 Image Formation

 Conceptual Example 35.5    Let’s Go Scuba Diving!

Objects viewed under water with the naked eye appear blurred and out of focus. A scuba diver using a mask, however, has 
a clear view of underwater objects. Explain how that works, using the information that the indices of refraction of the cor-
nea, water, and air are 1.376, 1.333, and 1.000 29, respectively.

S O L U T I O N

Because the cornea and water have almost identical indices of refraction, very little refraction occurs when a person under 
water views objects with the naked eye. In this case, light rays from an object focus behind the retina, resulting in a blurred 
image. When a mask is used, however, the air space between the eye and the mask surface provides the normal amount of 
refraction at the eye–air interface; consequently, the light from the object focuses on the retina.

 Example 35.6     Gaze into the Crystal Ball

A set of coins is embedded in a spherical plastic paper-
weight having a radius of 3.0 cm. The index of refraction 
of the plastic is n1 5 1.50. One coin is located 2.0 cm 
from the edge of the sphere (Fig. 35.20). Find the posi-
tion of the image of the coin.

S O L U T I O N

Conceptualize  Because n1 . n2, where n2 5 1.00 is the 
index of refraction for air, the rays originating from the coin in Figure 35.20 are refracted away from the normal at the surface 
and diverge outward. Extending the outgoing rays backward shows an image point within the sphere.

Categorize  Because the light rays originate in one material and then pass through a curved surface into another material, 
this example involves an image formed by refraction.

Analyze  Apply Equation 35.9, noting from Table 35.2  
n 2

q
5

n 2 2 n1

R
2

n1

p
 

that R is negative:

Substitute numerical values and solve for q : 
1
q

5
1.00 2 1.50

23.0 cm
2

1.50
2.0 cm

 q 5 21.7 cm

Finalize  The negative sign for q indicates that the image is in front of the surface; in other words, it is in the same medium as 
the object as shown in Figure 35.20. Therefore, the image must be virtual. (See Table 35.2.) The coin appears to be closer to 
the paperweight surface than it actually is.

3.0 cm

2.0 cm

q

n2n1

n1 � n2

Figure 35.20  (Example 35.6) 
Light rays from a coin embed-
ded in a plastic sphere form a 
virtual image between the sur-
face of the object and the sphere 
surface. Because the object is 
inside the sphere, the front of 
the refracting surface is the  
interior of the sphere.

 Example 35.7     The One That Got Away

A small fish is swimming at a depth d below the surface of a pond (Fig. 35.21).

(A)  What is the apparent depth of the fish as viewed from directly overhead?

S O L U T I O N

Conceptualize  Because n1 . n 2, where n 2 5 1.00 is the index of refraction for air, the 
rays originating from the fish in Figure 35.21 are refracted away from the normal at the 
surface and diverge outward. Extending the outgoing rays backward shows an image 
point under the water.

Categorize  Because the refracting surface is flat, R is infinite. Hence, we can use Equa-
tion 35.11 to determine the location of the image with p 5 d.

d

n2 � 1.00

n1 � 1.33
q

Figure 35.21  (Example 35.7) The 
apparent depth q of the fish is less 
than the true depth d. All rays are 
assumed to be paraxial.
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35.7 c o n t i n u e d

Analyze  Use the indices of refraction given in  q 5 2 

n 2

n1

 p 5 2 

1.00
1.33

 d 5 20.752d  
Figure 35.21 in Equation 35.11:

Finalize  Because q is negative, the image is virtual as indicated by the dashed lines in Figure 35.21. The apparent depth is 
approximately three-fourths the actual depth. Any source of light underwater appears to be closer to the surface. Therefore, 
considering the light leaving the bottom of a stream, all streams appear to have a depth that is about three-fourths their  
actual depth.

(B)  If your face is a distance d above the water surface, at what apparent distance above the surface does the fish see  
your face?

S O L U T I O N

Conceptualize  Imagine light rays leaving your face and moving downward toward the water. Upon entering the water, they 
will refract toward the normal. Draw a ray diagram and show that your face appears to the fish to be higher than it actually is.

Categorize  Because the refracting surface is flat, R is infinite. Hence, we can use Equation 35.11 to determine the location of 
the image with p 5 d.

Analyze  Use Equation 35.11 to find the image distance: q 5 2 

n 2

n1

 p 5 2 

1.33
1.00

 d 5 21.33d

Finalize  The negative sign for q indicates that the image is in the medium from which the light originated, which is the air 
above the water.

W H A T  I F ?  What if you look more carefully at the fish and measure its apparent height from its upper fin to its lower fin? 
Is the apparent height h9 of the fish different from the actual height h?

Answer  Because all points on the fish appear to be fractionally closer to the observer, we expect the height to be smaller. Let 
the distance d in Figure 35.21 be measured to the top fin and let the distance to the bottom fin be d 1 h. Then the images of 
the top and bottom of the fish are located at

 q top 5 20.752d

 qbottom 5 20.752(d 1 h)

The apparent height h9 of the fish is

h9 5 q top 2 qbottom 5 20.752d 2 [20.752(d 1 h)] 5 0.752h

Hence, the fish appears to be approximately three-fourths its actual height.

   35.4    Images Formed by Thin Lenses
Lenses are commonly used to form images by refraction in optical instruments 
such as cameras, telescopes, and microscopes. Let’s use what we just learned about 
images formed by refracting surfaces to help locate the image formed by a lens. 
Light passing through a lens experiences refraction at two surfaces. The develop-
ment we shall follow is based on the notion that the image formed by one refracting 
surface serves as the object for the second surface. We shall analyze a thick lens first 
and then let the thickness of the lens shrink to approximately zero.

Consider Figure 35.18 and imagine that the right side of the material does not 
continue indefinitely, but ends in another curved surface. Then we have a refract-
ing material with two spherical surfaces with radii of curvature R1 and R 2, sepa-
rated by a distance t as in Figure 35.22 (page 940). (Notice that R 1 is the radius of 
curvature of the lens surface the light from the object reaches first and R 2 is the 
radius of curvature of the other surface of the lens.)

Figure 35.22 shows the real and virtual images formed by the first surface, as we 
saw previously in Figure 35.18. Using Equation 35.9 and assuming n1 5 1 because 
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940 Chapter 35 Image Formation

the lens is surrounded by air, we find that the image I1 formed by surface 1 satisfies 
the equation

 
1
p 1

1
n
q1

5
n 2 1

R 1

 (35.12)

where q1 is the position of the image formed by surface 1. If the image formed by 
surface 1 is real (Fig. 35.22a), then q1 is positive; it is negative if the image is virtual 
(Fig. 35.22b).

Now let’s apply Equation 35.9 to surface 2, taking n1 5 n and n 2 5 1. (We make 
this switch in index because the light rays approaching surface 2 are in the material 
of the lens, and this material has index n.) Taking p2 as the object distance for sur-
face 2 and q 2 as the image distance gives

 
n
p 2

1
1
q2

5
1 2 n

R 2

 (35.13)

We now introduce mathematically that the image formed by the first surface acts 
as the object for the second surface. If the image from surface 1 is real as in Figure 
35.22a, we see that the physical distance p2 is q1 2 t. But I1 serves as a virtual object 
for the second surface, because it is to the right of the surface. To express p2 as an 
object distance for optical purposes, it must be negative (Table 35.2). Therefore, for 
optical purposes, we must have p2 5 2q1 1 t. If the image from surface 1 is virtual 
as in Figure 35.22b, we see that p2 5 2q1 1 t, where we have used 2q1 because q1 is 
negative for a virtual object. Therefore, regardless of the type of image from sur-
face 1, the same equation describes the location of the object for surface 2 based 
on our sign convention. For a thin lens (one whose thickness is small compared with 
the radii of curvature), we can neglect t. In this approximation, p2 5 2q1 for either 
type of image from surface 1. Hence, Equation 35.13 becomes

 2 

n
q1

1
1
q2

5
1 2 n

R 2

 (35.14)

Adding Equations 35.12 and 35.14 gives

 
1
p1

1
1
q2

5 sn 2 1dS 1
R1

2
1

R 2
D (35.15)

For a thin lens, p1 is the position p of the object and q2 is the position q of the final 
image as in Figure 35.23. Hence, we can write Equation 35.15 as

 
1
p

1
1
q

5 sn 2 1dS 1
R1

2
1

R 2
D (35.16)

This expression relates the image distance q of the image formed by a thin lens 
to the object distance p and to the lens properties (index of refraction and radii 
of curvature). It is valid only for paraxial rays and only when the lens thickness is 
much less than R 1 and R 2.

The focal length f of a thin lens is the image distance that corresponds to an 
infinite object distance, just as with mirrors. Letting p approach ` and q approach f 
in Equation 35.16, we see that the inverse of the focal length for a thin lens is

 
1
f

5 sn 2 1dS 1
R 1

2
1

R 2
D (35.17)

This relationship is called the lens-makers’ equation because it can be used to 
determine the values of R 1 and R 2 needed for a given index of refraction and a 
desired focal length f. Conversely, if the index of refraction and the radii of curva-
ture of a lens are given, this equation can be used to find the focal length. If the 
lens is immersed in something other than air, this same equation can be used, with 

Lens-makers’ equation  

Figure 35.22  To locate the 
image formed by a lens, we use 
the virtual image at I 1 formed 
by surface 1 as the object for the 
image formed by surface 2. The 
point C 1 is the center of curvature 
of surface 1.

t
p1

q1

p2
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C1
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R1
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n1 � 1
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p1 p2

C1

R2
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t
O

n

I1

a

Surface 1

R1

n1 � 1

O

I

R1
R2

F2

F1

qp

Figure 35.23  Simplified geom-
etry for a thin lens. The dots 
labeled F1 and F2 are focal points.
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    35.4 Images Formed by Thin Lenses 941

n interpreted as the ratio of the index of refraction of the lens material to that of 
the surrounding fluid.

Using Equation 35.17, we can write Equation 35.16 in a form identical to Equa-
tion 35.6 for mirrors:

 
1
p

1
1
q

5
1
f

 (35.18)

This equation, called the thin lens equation, can be used to relate the image dis-
tance and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two focal 
points, one for light rays passing through in one direction and one for rays passing 
through in the other direction. These two focal points are illustrated in Figure 35.24 
for a plano-convex lens (a converging lens) and a plano-concave lens (a diverging lens).

Figure 35.25 is useful for obtaining the signs of p and q, and Table 35.3 gives the 
sign conventions for thin lenses. These sign conventions are the same as those for 
refracting surfaces (see Table 35.2).

Various lens shapes are shown in Figure 35.26 (page 942). Notice that a converg-
ing lens is thicker at the center than at the edge, whereas a diverging lens is thinner 
at the center than at the edge.

The magnifying glass used in the experiments described in the opening story-
line is acting as a thin lens to form real images. In Think–Pair–Share Problem 35.3, 
you will have a chance to perform these experiments and answer the question at 
the end of the storyline.

Magnification of images
Consider a thin lens through which light rays from an object pass. As with mirrors  
(Eq. 35.2), a geometric construction shows that the lateral magnification of the image is

 M 5
h9

h
5 2 

q

p
 (35.19)

Pitfall Prevention 35.5
A Lens Has Two Focal Points  
but Only One Focal Length A lens 
has a focal point on each side, 
front and back. There is only 
one focal length, however; each 
of the two focal points is located 
the same distance from the lens 
(Fig. 35.24). As a result, the lens 
forms an image of an object at 
the same point if it is turned 
around. In practice, that might 
not happen because real lenses 
are not infinitesimally thin.

a b

f f f f

F1 F2 F2F1 F2 F2F1F1

Figure 35.24  Parallel light rays 
pass through (a) a converging lens 
and (b) a diverging lens. The focal 
length is the same for light rays 
passing through a given lens in 
either direction. Both focal points 
F1 and F2 are the same distance 
from the lens.

Front, or 
virtual, side

Incident light

Back, or
real, side

p negative
q positive

p positive
q negative

Refracted light

Converging or 
diverging lens

Figure 35.25  A diagram for 
obtaining the signs of p and q for 
a thin lens. (This diagram also 
applies to a refracting surface.)

 table 35.3  Sign Conventions for Thin Lenses

Quantity Positive When . . . Negative When . . .

Object location (p) object is in front of lens object is in back of lens
  (real object).  (virtual object).
Image location (q) image is in back of lens image is in front of lens
  (real image).  (virtual image).
Image height (h9) image is upright. image is inverted.
R1 and R 2 center of curvature is in back center of curvature is in front
  of lens.  of lens.
Focal length ( f ) a converging lens. a diverging lens.

 Thin lens equation 
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942 Chapter 35 Image Formation

From this expression, it follows that when M is positive, the image is upright and on 
the same side of the lens as the object. When M is negative, the image is inverted 
and on the side of the lens opposite the object.

ray Diagrams for thin lenses
As for mirrors, ray diagrams are convenient for locating the images formed by thin 
lenses or systems of lenses. They also help clarify our sign conventions. Figure 35.27  
shows such diagrams for three single-lens situations. In Figures 35.23 and 35.24, 
we showed the path of light rays refracting at both surfaces of the lens. Because we 
model lenses to have zero thickness, and because we know the importance of the 
focal point of a lens, in future diagrams we will show the light ray simply refracting 
at the center of the lens as shown in Figure 35.27.

To locate the image of a converging lens (Figs. 35.27a and 35.27b), the following 
three rays are drawn from the top of the object, noting the colors indicated in 
Figure 35.27:

 ● Ray 1 (blue) is drawn parallel to the principal axis. After being refracted by 
the lens, this ray passes through the focal point on the back side of the lens.

 ● Ray 2 (green) is drawn through the focal point on the front side of the lens 
(or as if coming from the focal point if p , f) and emerges from the lens par-
allel to the principal axis.

 ● Ray 3 (red) is drawn through the center of the lens and continues in a 
straight line.

To locate the image of a diverging lens (Fig. 35.27c), the following three rays are 
drawn from the top of the object:

 ● Ray 1 (blue) is drawn parallel to the principal axis. After being refracted by 
the lens, this ray emerges directed away from the focal point on the front side 
of the lens.

 ● Ray 2 (green) is drawn in the direction toward the focal point on the back 
side of the lens and emerges from the lens parallel to the principal axis.

 ● Ray 3 (red) is drawn through the center of the lens and continues in a 
straight line.

For the converging lens in Figure 35.27a, where the object is to the left of the 
focal point (p . f ), the image is real and inverted and the lens acts like a video 
projector. When the object is between the focal point and the lens (p , f ) as in 
Figure 35.27b, the image is virtual and upright. In that case, the lens acts as a mag-
nifying glass, which we study in more detail in Section 35.6. For a diverging lens 

Plano-
convex

Convex-
concave

Biconvex

Biconcave Convex-
concave

Plano-
concave

a

b

Figure 35.26  Various lens 
shapes. (a) Converging lenses 
have a positive focal length and 
are thickest at the middle.  
(b) Diverging lenses have a  
negative focal length and are 
thickest at the edges.
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When the object is in front of and outside 
the focal point of a converging lens, the 
image is real, inverted, and on the back side 
of the lens.

When the object is between the 
focal point and a converging lens, 
the image is virtual, upright, larger 
than the object, and on the front 
side of the lens.

When an object is anywhere in 
front of a diverging lens, the image 
is virtual, upright, smaller than the 
object, and on the front side of the 
lens.

Figure 35.27 Ray diagrams for locating the image formed by a thin lens.
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(Fig. 35.27c), the image is always virtual and upright, regardless of where the object 
is placed, like the image in a door peephole. These geometric constructions are 
reasonably accurate only if the distance between the rays and the principal axis is 
much less than the radii of the lens surfaces.

Refraction occurs only at the surfaces of the lens. The uniform material inside 
the lens simply propagates the light, but does not affect the direction in which it 
travels. A certain lens design takes advantage of this behavior to produce the Fresnel 
lens, a powerful lens without great thickness. Because only the surface curvature is 
important in the refracting qualities of the lens, material in the middle of a Fresnel 
lens is removed as shown in the cross sections of lenses in Figure 35.28. Because the 
edges of the curved segments cause some distortion, Fresnel lenses are generally 
used only in situations in which image quality is less important than reduction of 
weight. A classroom overhead projector often uses a Fresnel lens; the circular edges 
between segments of the lens can be seen by looking closely at the light projected 
onto a screen.

Q uick Quiz 35.6  What is the focal length of a pane of window glass? (a) zero  
(b) infinity (c) the thickness of the glass (d) impossible to determine

Figure 35.28  A side view of the construction of a Fresnel lens. (a) The thick lens refracts a light ray 
as shown. (b) Lens material in the bulk of the lens is cut away, leaving only the material close to the 
curved surface. (c) The small pieces of remaining material are moved to the left to form a flat surface 
on the left of the Fresnel lens with ridges on the right surface. From a front view, these ridges would 
be circular in shape. This new lens refracts light in the same way as the lens in (a). (d) A Fresnel lens 
used in a lighthouse shows several segments with the ridges discussed in (c).

a c db

 Example 35.8   Images Formed by a Converging Lens

A converging lens has a focal length of 10.0 cm.

(A)  An object is placed 30.0 cm from the lens. Construct a ray 
diagram, find the image distance, and describe the image.

S O L U T I O N

Conceptualize  Because the lens is converging, the focal 
length is positive (see Table 35.3). We expect the possibilities 
of both real and virtual images.

Categorize  Because the object 
distance is larger than the focal 
length, we expect the image 
to be real. The ray diagram 
for this situation is shown in 
Fi gure 35.29a.

Analyze  Because Equation 35.18 for lenses is identical to  q 5
f p

p 2 f
5

(10.0 cm)(30.0 cm)
30.0 cm 2 10.0 cm

5 115.0 cm  
Equation 35.6 for mirrors, we can use Equation 35.7  
for lenses: continued

a b

O F1

F2 I

15.0 cm

30.0 cm

10.0 cm

O F2I, F1 

10.0 cm
5.00 cm

10.0 cm

The object is farther from the 
lens than the focal point.

The object is closer to 
the lens than the focal 
point.

Figure 35.29  (Example 35.8) 
An image is formed by a 
converging lens.
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944 Chapter 35 Image Formation

35.8 c o n t i n u e d

Find the magnification of the image from Equation 35.19: M 5 2 

q

p
5 2 

15.0 cm
30.0 cm

5 20.500

Finalize  The positive sign for the image distance tells us that the image is indeed real and on the back side of the lens. The 
magnification of the image tells us that the image is reduced in height by one half, and the negative sign for M tells us that the 
image is inverted.

(B)  An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

S O L U T I O N

Categorize  Because the object distance is smaller than the focal length, we expect the image to be virtual. The ray diagram 
for this situation is shown in Figure 35.29b.

Analyze  Find the image distance by using Equation 35.7: q 5
f p

p 2 f
5

(10.0 cm)(5.00 cm)
5.00 cm 2 10.0 cm

5 210.0 cm

Find the magnification of the image from Equation 35.19: M 5 2 

q

p
5 2S210.0  cm

5.00 cm D 5 12.00

Finalize  The negative image distance tells us that the image is virtual and formed on the side of the lens from which the 
light is incident, the front side. The image is enlarged, and the positive sign for M tells us that the image is upright.

W H A T  I F ? What if the object moves right up to the lens surface so that p S 0? Where is the image?

Answer  In this case, because p ,, R, where R is either of the radii of the surfaces of the lens, the curvature of the lens can be 
ignored. The lens should appear to have the same effect as a flat piece of material, which suggests that the image is just on the 
front side of the lens, at q 5 0. This conclusion can be verified mathematically by rearranging the thin lens equation:

1
q

5
1
f

2
1
p

If we let p S 0, the second term on the right becomes very large compared with the first and we can neglect 1/f. The equation 
becomes

1
q

5 2 

1
p

   S   q 5 2p 5 0

Therefore, q is on the front side of the lens (because it has the opposite sign as p) and right at the lens surface.

 Example 35.9     Images Formed by a Diverging Lens

A diverging lens has a focal length of 10.0 cm.

(A)  An object is placed 15.0 cm from the lens. Construct 
a ray diagram, find the image distance, and describe the 
image.

S O L U T I O N

Conceptualize  Because the lens is diverging, the focal length 
is negative (see Table 35.3). The ray diagram for this situation 
is shown in Figure 35.30a.

Categorize  Because the lens is 
diverging, we expect it to form 
an upright, reduced, virtual 
image for any object position.

Analyze  Find the image distance by using Equation 35.7: q 5
f p

p 2 f
5

(210.0 cm)(15.0 cm)
15.0 cm 2 (210.0 cm)

5 26.00 cm

a b

IOF1

5.00 cm

3.33 cm

F2
IO F1

15.0 cm

10.0 cm

6.00
cm

F2

10.0 cm

The object is farther from the 
lens than the focal point.
The object is farther from the 
lens than the focal point.

The object is closer to the 
lens than the focal point.

Figure 35.30  (Example 35.9) 
An image is formed by a 
diverging lens.
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    35.4 Images Formed by Thin Lenses 945

35.9 c o n t i n u e d

Find the magnification of the image from Equation 35.19: M 5 2 

q

p
5 2S26.00 cm

15.0 cm D 5 10.400

Finalize  This result confirms that the image is virtual, smaller than the object, and upright.

(B) An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

S O L U T I O N

The ray diagram for this situation is shown in Figure 35.30b.

Analyze  Find the image distance by using Equation 35.7: q 5
f p

p 2 f
5

(210.0 cm)(5.00 cm)
5.00 cm 2 (210.0 cm)

5 23.33 cm

Find the magnification of the image from Equation 35.19: M 5 2S23.33 cm
5.00 cm D 5 10.667

Finalize  For both object positions, the image position is negative and the magnification is a positive number smaller than 1, 
which confirms that the image is virtual, smaller than the object, and upright.

combinations of thin lenses
If two thin lenses separated by a distance d are used to form an image, the system 
can be treated in the following manner. First, the image formed by the first lens is 
located as if the second lens were not present. Then a ray diagram is drawn for the 
second lens, with the image formed by the first lens now serving as the object for 
the second lens. The second image formed is the final image of the system. If the 
image formed by the first lens lies on the back side of the second lens, that image 
is treated as a virtual object for the second lens (that is, in the thin lens equation, 
p is negative). The same procedure can be extended to a system of three or more 
lenses. Because the magnification due to the second lens is performed on the mag-
nified image due to the first lens, the overall magnification of the image due to the 
combination of lenses is the product of the individual magnifications:

 M 5 M 1M 2 (35.20)

This equation can be used for combinations of any optical elements such as a lens 
and a mirror. For more than two optical elements, the magnifications due to all 
elements are multiplied together.

 Example 35.10   Where Is the Final Image?

Two thin converging lenses of focal lengths f1 5 10.0 cm and 
f2 5 20.0 cm are separated by d 5 20.0 cm as illustrated in 
Figure 35.31. An object is placed 30.0 cm to the left of lens 1. 
Find the position and the magnification of the final image.

S O L U T I O N

Conceptualize  Imagine light rays passing through the first lens 
and forming a real image (because p . f ) in the absence of a sec-
ond lens. Figure 35.31 shows these light rays forming the inverted 
image I 1. Once the light rays converge to the image point, they 
do not stop. They continue through the image point and interact 
with the second lens. The rays leaving the image point behave in 
the same way as the rays leaving an object. Therefore, the image 
of the first lens serves as the object of the second lens.

continued

O1

Lens 1 Lens 2

20.0 cm

6.67 cm
15.0 cm10.0 cm

30.0 cm

I1I2

Figure 35.31 (Example 35.10) A combination of two converging 
lenses. The ray diagram shows the location of the final image (I 2) 
due to the combination of lenses. The black dots are the focal 
points of lens 1, and the red dots are the focal points of lens 2. 
Notice that the green ray for lens 1 becomes the blue ray for 
lens 2. Also, because the focal point for lens 2 is at the center of 
lens 1, the red ray for lens 1 becomes the green ray for lens 2.
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35.10 c o n t i n u e d

Categorize  We categorize this problem as one in which the thin lens equation is applied in a stepwise fashion to the two lenses.

Analyze  Find the location of the image formed by lens 1  q1 5
f1p1

p1 2 f1

5
(10.0 cm)(30.0 cm)
30.0 cm 2 10.0 cm

5 115.0 cm  
from the thin lens equation:

Find the magnification of the image from Equation 35.19: M1 5 2 

q1

p 1

5 2 

15.0 cm
30.0 cm

5 20.500

The image formed by this lens acts as the object for the second lens. Therefore, the object distance for the second lens is  
p2 5 d 2 q1 5 20.0 cm 2 15.0 cm 5 5.00 cm.

Find the location of the image formed by lens 2 from the  q2 5
f2p2

p2 2 f2

5
(20.0 cm)(5.00 cm)
5.00 cm 2 20.0 cm

5 26.67 cm  
thin lens equation:

Find the magnification of the image from Equation 35.19: M2 5 2 

q2

p 2

5 2 

s26.67 cmd
5.00 cm

5 11.33

Find the overall magnification of the system from Equation 35.20: M 5 M1M2 5 (20.500)(1.33) 5 20.667

Finalize  The negative sign on the overall magnification indicates that the final image is inverted with respect to the initial 
object. Because the absolute value of the magnification is less than 1, the final image is smaller than the object. 

 Because q2 is negative, the final image is on the front, or left, side of lens 2. These conclusions are consistent with the ray dia-
gram in Figure 35.31.

Let’s consider the special case of a system of two lenses of focal lengths f1 and f2 in 
contact with each other, so that d goes to zero. If p1 5 p is the object distance for the 
combination, application of the thin lens equation (Eq. 35.18) to the first lens gives

1
p

1
1
q1

5
1
f1

where q1 is the image distance for the first lens. Treating this image as the object 
for the second lens, we see that the object distance for the second lens must be  
p2 5 2q1. (The distances are the same because the lenses are in contact and assumed 
to be infinitesimally thin. The object distance is negative because the object is  
virtual if the image from the first lens is real.) Therefore, for the second lens,

1
p 2

1
1
q2

5
1
f2

   S   2 

1
q1

1
1
q

5
1
f2

where q 5 q 2 is the final image distance from the second lens, which is the image 
distance for the combination. Adding the equations for the two lenses eliminates 
q1 and gives

1
p

1
1
q

5
1
f1

1
1
f2

If the combination is replaced with a single lens that forms an image at the same loca-
tion, its focal length must be related to the individual focal lengths by the expression

 
1
f

5
1
f1

1
1
f2

 (35.21)

Therefore, two thin lenses in contact with each other are equivalent to a single thin 
lens having a focal length given by Equation 35.21.

Focal length for a  
combination of two thin  

lenses in contact

W H A T  I F ? Suppose you want to create an upright 
image with this system of two lenses. How must the second 
lens be moved?

Answer  Because the object is farther from the first lens 
than the focal length of that lens, the first image is inverted. 
Consequently, the second lens must invert the image once 

again so that the final image is upright. An inverted image 
is only formed by a converging lens if the object is outside 
the focal point. Therefore, the image formed by the first 
lens must be to the left of the focal point of the second lens 
in Figure 35.31. To make that happen, you must move the 
second lens at least as far away from the first lens as the sum 
q1 1 f2 5 15.0 cm 1 20.0 cm 5 35.0 cm.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    35.6 Optical Instruments 947

   35.5    Lens Aberrations
Our analysis of mirrors and lenses assumes rays make small angles with the principal 
axis and the lenses are thin. In this simple model, all rays leaving a point source focus 
at a single point, producing a sharp image. Clearly, that is not always true. When the 
approximations used in this analysis do not hold, imperfect images are formed.

A precise analysis of image formation requires tracing each ray, using Snell’s law 
at each refracting surface and the law of reflection at each reflecting surface. This 
procedure shows that the rays from a point object do not focus at a single point, 
with the result that the image is blurred. The departures of actual images from the 
ideal predicted by our simplified model are called aberrations.

Spherical aberration
Spherical aberration occurs because the focal points of rays far from the principal 
axis of a spherical lens (or mirror) are different from the focal points of rays of 
the same wavelength passing near the axis. Figure 35.32 illustrates spherical aber-
ration for parallel rays passing through a converging lens. Rays passing through 
points near the center of the lens are imaged farther from the lens than rays pass-
ing through points near the edges. Figure 35.7 earlier in the chapter shows spher-
ical aberration for light rays leaving a point object and striking a spherical mirror.

Many cameras have an adjustable aperture to control light intensity and reduce 
spherical aberration. (An aperture is an opening that controls the amount of light 
passing through the lens.) Sharper images are produced as the aperture size is 
reduced; with a small aperture, only the central portion of the lens is exposed to 
the light and therefore a greater percentage of the rays are paraxial. At the same 
time, however, less light passes through the lens. To compensate for this lower light 
intensity, a longer exposure time is used.

In the case of mirrors, spherical aberration can be minimized through the use 
of a parabolic reflecting surface rather than a spherical surface. Parabolic surfaces 
are not used often, however, because those with high-quality optics are very expen-
sive to make. Parallel light rays incident on a parabolic surface focus at a common 
point, regardless of their distance from the principal axis. Parabolic reflecting sur-
faces are used in many astronomical telescopes to enhance image quality.

chromatic aberration
In Chapter 34, we described dispersion, whereby a material’s index of refraction 
varies with wavelength. Because of this phenomenon, violet rays are refracted 
more than red rays when white light passes through a lens (Fig. 35.33). The fig-
ure shows that the focal length of a lens is greater for red light than for violet 
light. Other wavelengths (not shown in Fig. 35.33) have focal points intermedi-
ate between those of red and violet, which causes a blurred image and is called 
chromatic aberration.

Chromatic aberration for a diverging lens also results in a shorter focal length 
for violet light than for red light, but on the front side of the lens. Chromatic aber-
ration can be greatly reduced by combining a converging lens made of one type of 
glass and a diverging lens made of another type of glass.

   35.6    Optical Instruments
the camera
The photographic camera is a simple optical instrument whose essential features 
are shown in Figure 35.34. It consists of a light-tight chamber, a converging lens 
that produces a real image, and a light-sensitive component behind the lens on 
which the image is formed.

Rays of different wavelengths 
focus at different points.

Violet
Red

Red
Violet

FV

FR

Figure 35.33  Chromatic aberra-
tion caused by a converging lens.

The refracted rays intersect 
at different points on the 
principal axis.

Figure 35.32  Spherical aberra-
tion caused by a converging lens. 
Does a diverging lens cause spher-
ical aberration?

CCD

q

Image

Lens

Shutter

Aperture
p

Figure 35.34  Cross-sectional 
view of a simple digital camera. 
The CCD is the light-sensitive 
component of the camera. In a 
nondigital camera, the light from 
the lens falls onto photographic 
film. In reality, p .. q.
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948 Chapter 35 Image Formation

The image in a digital camera is formed on a charge-coupled device (CCD), which 
digitizes the image, turning it into binary code. (A CCD is described in Section 39.2.) 
The digital information is then stored on a memory chip for playback on the cam-
era’s display screen, or it can be downloaded to a computer. Film cameras are similar 
to digital cameras except that the light forms an image on light-sensitive film rather 
than on a CCD. The film must then be chemically processed to produce the image 
on paper. In the discussion that follows, we assume the camera is digital.

A camera is focused by varying the distance between the lens and the CCD. For 
proper focusing—which is necessary for the formation of sharp images—the lens-to-
CCD distance depends on the object distance as well as the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened for 
selected time intervals, called exposure times. You can photograph moving objects by 
using short exposure times or photograph dark scenes (with low light levels) by using 
long exposure times. If this adjustment were not available, it would be impossible  
to take stop-action photographs. For example, a rapidly moving vehicle could move 
enough in the time interval during which the shutter is open to produce a blurred 
image. Another major cause of blurred images is the movement of the camera 
while the shutter is open. To prevent such movement, either short exposure times 
or a tripod should be used, even for stationary objects. Typical shutter speeds (that 
is, exposure times) are 1

30 s, 1
60 s, 1

125 s, and 1
250 s. In practice, stationary objects are 

normally shot with an intermediate shutter speed of 1
60 s.

the eye
Like a camera, a normal eye focuses light and produces a sharp image. The mech-
anisms by which the eye controls the amount of light admitted and adjusts to pro-
duce correctly focused images, however, are far more complex, intricate, and effec-
tive than those in even the most sophisticated camera. In all respects, the eye is a 
physiological wonder.

Figure 35.35 shows the basic parts of the human eye. Light entering the eye 
passes through a transparent structure called the cornea (Fig. 35.36), behind which 
are a clear liquid (the aqueous humor), a variable aperture (the pupil, which is an 
opening in the iris), and the crystalline lens. Most of the refraction occurs at the 
outer surface of the eye, where the cornea is covered with a film of tears. Relatively 
little refraction occurs in the crystalline lens because the aqueous humor in con-
tact with the lens has an average index of refraction close to that of the lens. The 
iris, which is the colored portion of the eye, is a muscular diaphragm that controls 
pupil size. The iris regulates the amount of light entering the eye by dilating, or 
opening, the pupil in low-light conditions and contracting, or closing, the pupil in 
high-light conditions.

Figure 35.35  Important 
parts of the eye.

Retina

Fovea
Optic disk
(blind spot)

Optic
nerve

Choroid

Iris

Lens
Pupil

Cornea

Aqueous
humor

Ciliary
muscle

Vitreous humor

Sclera

Figure 35.36  The cornea is the 
curved outer surface of the eye.©
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The cornea–lens system focuses light onto the back surface of the eye, the retina, 
which consists of millions of sensitive receptors called rods and cones. When stimu-
lated by light, these receptors send impulses via the optic nerve to the brain, where 
an image is perceived. By this process, a distinct image of an object is observed 
when the image falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline 
lens through a process called accommodation. The lens adjustments take place so 
swiftly that we are not even aware of the change. Accommodation is limited in that 
objects very close to the eye produce blurred images. The near point is the closest 
distance for which the lens can accommodate to focus light on the retina. This 
distance usually increases with age and has an average value of 25 cm. At age 10, 
the near point of the eye is typically approximately 18 cm. It increases to approx-
imately 25 cm at age 20, to 50 cm at age 40, and to 500 cm or greater at age 60. 
The far point of the eye represents the greatest distance for which the lens of the 
relaxed eye can focus light on the retina. A person with normal vision can see very 
distant objects and therefore has a far point that can be approximated as infinity.

The retina is covered with two types of light-sensitive cells, called rods and cones. 
The rods are not sensitive to color but are more light sensitive than the cones. The 
rods are responsible for scotopic vision, or dark-adapted vision. Rods are spread 
throughout the retina and allow good peripheral vision for all light levels and 
motion detection in the dark. The cones are concentrated in the fovea. These cells 
are sensitive to different wavelengths of light. The three categories of these cells are 
called red, green, and blue cones because of the peaks of the color ranges to which 
they respond (Fig. 35.37). If the red and green cones are stimulated simultaneously 
(as would be the case if yellow light were shining on them), the brain interprets 
what is seen as yellow. If all three types of cones are stimulated by the separate col-
ors red, blue, and green, white light is seen. If all three types of cones are stimulated 
by light that contains all colors, such as sunlight, again white light is seen.

Televisions and computer monitors take advantage of this visual illusion by hav-
ing only red, green, and blue dots on the screen. With specific combinations of 
brightness in these three primary colors, our eyes can be made to see any color in 
the rainbow. Therefore, the yellow lemon you see in a television commercial is not 
actually yellow, it is red and green! The paper on which this page is printed is made 
of tiny, matted, translucent fibers that scatter light in all directions, and the resul-
tant mixture of colors appears white to the eye. Snow, clouds, and white hair are 
not actually white. In fact, there is no such thing as a white pigment. The appear-
ance of these things is a consequence of the scattering of light containing all colors, 
which we interpret as white.

When the eye suffers a mismatch between the focusing range of the lens–cornea 
system and the length of the eye, with the result that light rays from a near object 
reach the retina before they converge to form an image as shown in Figure 35.38a, 
the condition is known as farsightedness (or hyperopia). A farsighted person can 

R
el

at
iv

e
se

ns
iti

vi
ty 420 nm

534 nm

564 nm

Wavelength

Figure 35.37  Approximate color 
sensitivity of the three types of 
cones in the retina.

a b

When a farsighted eye looks at an object 
located between the near point and the eye, 
the image point is behind the retina, 
resulting in blurred vision.

A converging lens causes the 
image to focus on the retina, 
correcting the vision.

Converging lens

Object

Near
point

Near
point

Object Figure 35.38  (a) An uncor-
rected farsighted eye. (b) A 
farsighted eye corrected with a 
converging lens.
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950 Chapter 35 Image Formation

usually see faraway objects clearly but not nearby objects. Although the near point 
of a normal eye is approximately 25 cm, the near point of a farsighted person is 
much farther away. The refracting power in the cornea and lens is insufficient to 
focus the light from all but distant objects satisfactorily. The condition can be cor-
rected by placing a converging lens in front of the eye as shown in Figure 35.38b. 
The lens refracts the incoming rays more toward the principal axis before entering 
the eye, allowing them to converge and focus on the retina.

A person with nearsightedness (or myopia), another mismatch condition, can 
focus on nearby objects but not on faraway objects. The far point of the nearsighted 
eye is not infinity and may be less than 1 m. The maximum focal length of the near-
sighted eye is insufficient to produce a sharp image on the retina, and rays from a 
distant object converge to a focus in front of the retina. They then continue past 
that point, diverging before they finally reach the retina and causing blurred vision 
(Fig. 35.39a). Nearsightedness can be corrected with a diverging lens as shown in 
Figure 35.39b. The lens refracts the rays away from the principal axis before they 
enter the eye, allowing them to focus on the retina.

A number of people have difficulties with color blindness. Some individuals are 
dichromats, meaning that they only have functioning cones for two of the three 
colors in Figure 35.37. Another type of color blindness occurs in people who are 
anomalous trichromats. For these individuals, the range of sensitivity of, most often, 
red- and green-sensitive cones has shifted so that there is more overlap between 
the red and green curves in Figure 35.37. This makes it difficult to distinguish red  
and green.

A new type of glasses offers some relief for anomalous trichromats. The glasses 
are designed to filter out the wavelength regions in which the curves in Fig-
ure 35.37 are crossing, allowing the individual to see three distinct wavelength 
regions. Many people trying these new glasses report remarkable improvement in 
their perception of colors.

Optometrists and ophthalmologists usually prescribe lenses1 measured in 
diopters: the power P of a lens in diopters equals the inverse of the focal length 
in meters: P 5 1/f. For example, a converging lens of focal length 120 cm has a 
power of 15.0 diopters, and a diverging lens of focal length 240 cm has a power of 
22.5 diopters.

Q uick Quiz 35.7  Two campers wish to start a fire during the day. One 
camper is nearsighted, and one is farsighted. Whose glasses should be used to 
focus the Sun’s rays onto some paper to start the fire? (a) either camper (b) the 
nearsighted camper (c) the farsighted camper

1The word lens comes from lentil, the name of an Italian legume. (You may have eaten lentil soup.) Early eyeglasses 
were called “glass lentils” because the biconvex shape of their lenses resembled the shape of a lentil. The first lenses 
for farsightedness and presbyopia appeared around 1280; concave eyeglasses for correcting nearsightedness did not 
appear until more than 100 years later.

a b

When a nearsighted eye looks at an object 
located beyond the eye’s far point, the 
image point is in front of the retina, 
resulting in blurred vision.

A diverging lens causes the 
image to focus on the retina, 
correcting the vision.

Diverging
lens

Far point Far pointObject Object

Figure 35.39  (a) An 
uncorrected nearsighted 
eye. (b) A nearsighted 
eye corrected with a 
diverging lens.
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the Simple Magnifier
The simple magnifier, or magnifying glass, consists of a single converging lens. 
This device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye as illustrated in 
Figure 35.40. The size of the image formed at the retina depends on the angle u 
subtended by the object at the eye. As the object moves closer to the eye, u increases 
and a larger image is observed. An average normal human eye, however, cannot 
focus on an object closer than about 25 cm, the near point (Fig. 35.41a). Therefore, 
u is maximum at the near point.

To further increase the apparent angular size of an object, a converging lens can 
be placed in front of the eye as in Figure 35.41b, with the object located at point 
O, immediately inside the focal point of the lens. At this location, the lens forms a 
virtual, upright, enlarged image. We define angular magnification m as the ratio 
of the angle subtended by an object with a lens in use (angle u in Fig. 35.41b) to the 
angle subtended by the object placed at the near point with no lens in use (angle u0 
in Fig. 35.41a):

 m ;
u

u0

 (35.22)

The angular magnification is a maximum when the image is at the near point of 
the eye, that is, when q 5 225 cm. The object distance corresponding to this image 
distance can be calculated from the thin lens equation:

1
p

1
1

225 cm
5

1
f

   S   p 5
25f

25 1 f

where f is the focal length of the magnifier in centimeters. If we make the 
small-angle approximations

 tan u0 < u0 <
h

25
 and tan u < u <

h
p

 (35.23)

Equation 35.22 becomes

mmax 5
u

u0

5
hyp

hy25
5

25
p

5
25

25fys25 1 f d

 mmax 5 1 1
25 cm

f
 (35.24)

Although the eye can focus on an image formed anywhere between the near 
point and infinity, it is most relaxed when the image is at infinity. For the image 
formed by the magnifying lens to appear at infinity, the object has to be at the focal 
point of the lens. In this case, Equations 35.23 become

u0 <
h

25
 and u <

h
f

and the magnification is

 mmin 5
u

u0

5
25 cm

f
 (35.25)

With a single lens, such as that shown in Figure 35.42, it is possible to obtain angu-
lar magnifications up to about 4 without serious aberrations. Magnifications up 
to about 20 can be achieved by using one or two additional lenses to correct for 
aberrations.

The size of the image formed 
on the retina depends on the 
angle u subtended at the eye.

p

u

Figure 35.40  An observer looks 
at an object at distance p.

a b

h

25 cm

h'

I
h

p
F O

u0
u

u

25 cm

a

h u0

25 cm

Figure 35.41  (a) An object 
placed at the near point of the eye 
(p 5 25 cm) subtends an angle 
u0 < h/25 cm at the eye. (b) An 
object placed near the focal point 
of a converging lens produces a 
magnified image that subtends an 
angle u < h9/25 cm at the eye.

Figure 35.42  A simple mag-
nifier, also called a magnifying 
glass, is used to view an enlarged 
image of a portion of a map.
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the compound Microscope
A simple magnifier provides only limited assistance in inspecting minute details 
of an object. Greater magnification can be achieved by combining two lenses in a 
device called a compound microscope shown in Figure 35.43a. It consists of one 
lens, the objective, that has a very short focal length fo , 1 cm and a second lens, the 
eyepiece, that has a focal length fe of a few centimeters. The two lenses are separated 
by a distance L that is much greater than either fo or fe . The object, which is placed 
just outside the focal point of the objective, forms a real, inverted image at I1, and 
this image is located at or close to the focal point of the eyepiece. The eyepiece, 
which serves as a simple magnifier, produces at I2 a virtual, enlarged image of I1. 
The lateral magnification M 1 of the first image is 2q1/p1. Notice from Figure 35.43a 
that q1 is approximately equal to L and that the object is very close to the focal point 
of the objective: p1 < fo. Therefore, the lateral magnification by the objective is

Mo < 2 

L
fo

The angular magnification by the eyepiece for an object (corresponding to the 
image at I1) placed at the focal point of the eyepiece is, from Equation 35.25,

me 5
25 cm

fe

The overall magnification of the image formed by a compound microscope is 
defined as the product of the lateral and angular magnifications:

  M 5 Mome 5 2 

L
fo
S25 cm

fe
D (35.26)

The negative sign indicates that the image is inverted.
The microscope has extended human vision to the point where we can view pre-

viously unknown details of incredibly small objects. The capabilities of this instru-
ment have steadily increased with improved techniques for precision grinding of 
lenses. A question often asked about microscopes is, “If one were extremely patient 
and careful, would it be possible to construct a microscope that would enable the 
human eye to see an atom?” The answer is no, as long as light is used to illuminate 
the object. For an object under an optical microscope (one that uses visible light) 
to be seen, the object must be at least as large as a wavelength of light. Because the 
diameter of any atom is many times smaller than the wavelengths of visible light, 
the mysteries of the atom must be probed using other types of “microscopes.”

Objective Eyepiece

L

O

Fo

fo

p1 q1

Fe I1I2

fe

a

The eyepiece lens forms
an image here.

The objective lens forms
an image here.

b

The three-objective turret 
allows the user to choose 
from several powers of 
magnification.

Figure 35.43 (a) Diagram 
of a compound microscope, 
which consists of an objec-
tive lens and an eyepiece 
lens. (b) A compound 
microscope.
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the telescope
Two fundamentally different types of telescopes exist; both are designed to aid in 
viewing distant objects such as the planets in our solar system. The first type, the 
refracting telescope, uses a combination of lenses to form an image.

Like the compound microscope, the refracting telescope shown in Figure 35.44a 
has an objective and an eyepiece. The two lenses are arranged so that the objective 
forms a real, inverted image of a distant object very near the focal point of the eye-
piece. Because the object is essentially at infinity, this point at which I1 forms is the 
focal point of the objective. The eyepiece then forms, at I2, an enlarged, inverted 
image of the image at I1. To provide the largest possible magnification, the image 
distance for the eyepiece is infinite. Therefore, the image due to the objective lens, 
which acts as the object for the eyepiece lens, must be located at the focal point of 
the eyepiece. Hence, the two lenses are separated by a distance fo 1 fe , which corre-
sponds to the length of the telescope tube.

The angular magnification of the telescope is given by u/uo, where uo is the angle 
subtended by the object at the objective and u is the angle subtended by the final 
image at the viewer’s eye. Consider Figure 35.44a, in which the object is a very great 
distance to the left of the figure. The angle uo (to the left of the objective) subtended 
by the object at the objective is the same as the angle (to the right of the objective) 
subtended by the first image at the objective. Therefore,

tan uo < uo < 2 

h9

fo

where the negative sign indicates that the image is inverted.
The angle u subtended by the final image at the eye is the same as the angle that 

a ray coming from the tip of I1 and traveling parallel to the principal axis makes 
with the principal axis after it passes through the lens. Therefore,

tan u < u <
h9

fe

We have not used a negative sign in this equation because the final image is not 
inverted; the object creating this final image I2 is I1, and both it and I2 point in 

Figure 35.44 (a) Lens arrange-
ment in a refracting telescope, 
with the object at infinity. (b) A 
refracting telescope.
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the same direction. Therefore, the angular magnification of the telescope can be 
expressed as

 m 5
u

uo

5
h9yfe

2h9yfo

5 2 

fo

fe

 (35.27)

This result shows that the angular magnification of a telescope equals the ratio of 
the objective focal length to the eyepiece focal length. The negative sign indicates 
that the image is inverted.

When you look through a telescope at such relatively nearby objects as the Moon 
and the planets, magnification is important. Individual stars in our galaxy, however, 
are so far away that they always appear as small points of light no matter how great 
the magnification. To gather as much light as possible, large research telescopes used 
to study very distant objects must have a large diameter. It is difficult and expensive 
to manufacture large lenses for refracting telescopes. Another difficulty with large 
lenses is that their weight leads to sagging, which is an additional source of aberration.

These problems associated with large lenses can be partially overcome by replac-
ing the objective with a concave mirror, which results in the second type of tele-
scope, the reflecting telescope. Because light is reflected from the mirror and does 
not pass through a lens, the mirror can have rigid supports on the back side. Such 
supports eliminate the problem of sagging.

Figure 35.45a shows the design for a typical reflecting telescope. The incoming 
light rays are reflected by a parabolic mirror at the base. These reflected rays con-
verge toward point A in the figure, where an image would be formed. Before this 
image is formed, however, a small, flat mirror M reflects the light toward an open-
ing in the tube’s side and it passes into an eyepiece. This particular design is said to 
have a Newtonian focus because Newton developed it. Figure 35.45b shows such a 
telescope. Notice that the light never passes through glass (except through the small 
eyepiece) in the reflecting telescope. As a result, problems associated with chro-
matic aberration are virtually eliminated. The reflecting telescope can be made even 
shorter by orienting the flat mirror so that it reflects the light back toward the objec-
tive mirror and the light enters an eyepiece in a hole in the middle of the mirror.

The largest reflecting telescopes in the world are at the Gran Telescopio Canarias 
in the Canary Islands, Spain, and at the Keck Observatory on Mauna Kea, Hawaii. The 
Hawaii site includes two telescopes with diameters of 10 m, each containing 36 hexago-
nally shaped, computer-controlled mirrors that work together to form a large reflecting 
surface. In addition, the two telescopes can work together to provide a telescope with 
an effective diameter of 85 m. In contrast, the largest refracting telescope in the world, 
at the Yerkes Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m.

Figure 35.46 shows a remarkable optical image from the Keck Observatory of a 
solar system around the star HR8799, located 129 light-years from the Earth. The 
planets labeled b, c, and d were seen in 2008 and the innermost planet, labeled e, 
was observed in December 2010. This photograph represents the first direct image 
of another solar system and was made possible by the adaptive optics technology 
used in the Keck Observatory.

a

Eyepiece

M

A

Parabolic
mirror

b

Figure 35.45  (a) A Newtonian-
focus reflecting telescope. (b) A 
reflecting telescope. This type of 
telescope is shorter than that in 
Figure 35.44b.

Figure 35.46 A direct optical 
image of a solar system around 
the star HR8799, developed at the 
Keck Observatory in Hawaii.
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 Think–Pair–Share 955

Summary
 › Definitions

The lateral magnification M of the image due to a mirror or 
lens is defined as the ratio of the image height h9 to the object 
height h. It is equal to the negative of the ratio of the image 
distance q to the object distance p:

 M ;
image height

object height
5

h9

h
5 2 

q

p
 (35.1, 35.2, 35.19)

The angular magnification m is the ratio of the angle sub-
tended by an object with a lens in use (angle u in Fig. 35.41b) to 
the angle subtended by the object placed at the near point with 
no lens in use (angle u0 in Fig. 35.41a):

 m ;
u

u0

 (35.22)

 › Concepts and Principles

In the paraxial ray approximation, the object distance p and 
image distance q for a spherical mirror of radius R are related 
by the mirror equation:

 
1
p

1
1
q

5
2
R

5
1
f

 (35.4, 35.6)

where f 5 R/2 is the focal length of the mirror.

The inverse of the focal length f of a thin lens surrounded by 
air is given by the lens-makers’ equation:

 
1
f

5 sn 2 1dS 1
R 1

2
1

R 2
D (35.17)

Converging lenses have positive focal lengths, and diverging 
lenses have negative focal lengths.

The maximum magnification of a single lens of focal length f used as a sim-
ple magnifier is

 mmax 5 1 1
25 cm

f
 (35.24)

The overall magnification of the image formed by a compound micro-
scope is

 M 5 2 

L
fo
S25 cm

fe
D (35.26)

where fo and fe are the focal lengths of the objective and eyepiece lenses, 
respectively, and L is the distance between the lenses.

An image can be formed by refraction from a spherical sur-
face of radius R. The object and image distances for refraction 
from such a surface are related by

 
n1

p
1

n 2

q
5

n 2 2 n1

R
 (35.9)

where the light is incident in the medium for which the index 
of refraction is n1 and is refracted in the medium for which 
the index of refraction is n 2.

For a thin lens, and in the paraxial ray approximation, the 
object and image distances are related by the thin lens 
equation:

 
1
p

1
1
q

5
1
f
 (35.18)

The angular magnification of a refracting tele-
scope can be expressed as

 m 5 2 

fo

fe

 (35.27)

where fo and fe are the focal lengths of the objec-
tive and eyepiece lenses, respectively. The angu-
lar magnification of a reflecting telescope is 
given by the same expression where fo is the focal 
length of the objective mirror.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. ACTIvITY  In Figure 35.19, estimate the value of n1 if air sur-
rounds the material.

2. Your group is training to become optician’s assistants. The 
optician who is training you wants you to design a device 
that will create two images at the same position in space, 

one upright and the other inverted. When the patient looks 
into the device, he or she will see both images and remark 
on their relative color, shape, and brightness. This will 
allow the optician to reach some conclusions about differ-
ences in vision between the upper and lower parts of the 
retina. Figure TP35.2 (page 956) shows the optical system,  
along with the single object and two images. The optician 
has a lens with a focal length of f lens 5 10.0 cm. He wants 
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the magnification of the two images to each have an absolute 
value of M 5 1.50. (a) He asks you to determine the distance 
plens that the object must be placed from the lens. (b) He also 

asks you to determine the focal length of the mirror that he 
needs, given that he has a housing in which he can mount 
the mirror at a distance of d 5 40.0 cm from the lens. Work 
in your group to discuss and provide these quantities.

3. ACTIvITY  With your group, perform the activity with the 
magnifying glass described in the opening storyline of the 
chapter. Carefully measure the two distances indicated 
in the description of the activity. From your understand-
ing of the material in the chapter, construct an argument 
to explain why the two distances should be similar, but not 
equal. From the activity with the smartphone display, can 
you calculate some representative distance in the first activ-
ity that should be the same as the distance measured in the 
second activity?

Object

Mirror Lens
Images

Figure TP35.2
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 35.1  Images Formed by Flat Mirrors

1. (a) Does your bathroom mirror show you older or younger 
than you actually are? (b) Compute an order-of-magnitude 
estimate for the age difference based on data you specify.

2. Two flat mirrors have their reflecting surfaces facing each 
other, with the edge of one mirror in contact with an edge 
of the other, so that the angle between the mirrors is a. 
When an object is placed between the mirrors, a number 
of images are formed. In general, if the angle a is such that  
na 5 360°, where n is an integer, the number of images 
formed is n 2 1. Graphically, find all the image positions for 
the case n 5 6 when a point object is between the mirrors 
(but not on the angle bisector).

3. A periscope (Fig. P35.3) is useful for viewing objects that 
cannot be seen directly. It can be used in submarines and 
when watching golf matches or parades from behind a 
crowd of people. Suppose the object is a distance p1 from 
the upper mirror and the centers of the two flat mirrors are 
separated by a distance h. (a) What is the distance of the 
final image from the lower mirror? (b) Is the final image 
real or virtual? (c) Is it upright or inverted? (d) What is its 
magnification? (e) Does it appear to be left–right reversed?

p1

h

Figure P35.3

4. Two plane mirrors stand facing each other, 3.00 m apart, 
and a woman stands between them. The woman looks at 
one of the mirrors from a distance of 1.00 m and holds 
her left arm out to the side of her body with the palm of 
her hand facing the closer mirror. (a) What is the appar-
ent position of the closest image of her left hand, measured 

perpendicularly from the surface of the mirror in front of 
her? (b) Does it show the palm of her hand or the back of 
her hand? (c) What is the position of the next closest image? 
(d) Does it show the palm of her hand or the back of her 
hand? (e) What is the position of the third closest image? (f) 
Does it show the palm of her hand or the back of her hand? 
(g) Which of the images are real and which are virtual?

Section 35.2  Images Formed by Spherical Mirrors

5. An object is placed 50.0 cm from a concave spherical mirror 
with focal length of magnitude 20.0 cm. (a) Find the location 
of the image. (b) What is the magnification of the image? 
(c) Is the image real or virtual? (d) Is the image upright or 
inverted?

6. An object is placed 20.0 cm from a concave spherical mirror 
having a focal length of magnitude 40.0 cm. (a) Use graph 
paper to construct an accurate ray diagram for this situation. 
(b) From your ray diagram, determine the location of the 
image. (c) What is the magnification of the image? (d) Check 
your answers to parts (b) and (c) using the mirror equation.

7. An object of height 2.00 cm is placed 30.0 cm from a con-
vex spherical mirror of focal length of magnitude 10.0 cm. 
(a) Find the location of the image. (b) Indicate whether the 
image is upright or inverted. (c) Determine the height of 
the image.

8. Why is the following situation impossible? At a blind corner in 
an outdoor shopping mall, a convex mirror is mounted so 
pedestrians can see around the corner before arriving there 
and bumping into someone traveling in the perpendicular 
direction. The installers of the mirror failed to take into 
account the position of the Sun, and the mirror focuses the 
Sun’s rays on a nearby bush and sets it on fire.

9. A large hall in a museum has a niche in one wall. On the floor 
plan, the niche appears as a semicircular indentation of radius 
2.50 m. A tourist stands on the centerline of the niche, 2.00 m 
out from its deepest point, and whispers “Hello.” Where is the 
sound concentrated after reflection from the niche?

10. A concave spherical mirror has a radius of curvature of mag-
nitude 24.0 cm. (a) Determine the object position for which 
the resulting image is upright and larger than the object by 
a factor of 3.00. (b) Draw a ray diagram to determine the 
position of the image. (c) Is the image real or virtual?
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11. An object 10.0 cm tall is placed at the zero mark of a meter-
stick. A spherical mirror located at some point on the meter-
stick creates an image of the object that is upright, 4.00 cm 
tall, and located at the 42.0-cm mark of the meterstick. (a) 
Is the mirror convex or concave? (b) Where is the mirror? 
(c) What is the mirror’s focal length?

12. You are training to become an optician’s assistant. One day, 
you are learning how to fit a contact lens to a patient’s eye. 
You make a measurement with a keratometer, which is used to 
measure the curvature of the eye’s front surface, the cornea. 
This instrument places an illuminated object of known size 
at a known distance p from the cornea. The cornea reflects 
some light from the object, forming an image of the object. 
The magnification M of the image is measured by using a 
small viewing telescope that allows comparison of the image 
formed by the cornea with a second calibrated image pro-
jected into the field of view by a prism arrangement. As part 
of your training, the optician has required that you do not 
use the automatic calculator associated with the machine, but 
must perform the calculations yourself. You must determine 
the radius of curvature R of the cornea for the measurements 
you make for the patient: p 5 30.0 cm and M 5 0.013 0.

13. A certain Christmas tree ornament is a silver sphere having 
a diameter of 8.50 cm. (a) If the size of an image created 
by reflection in the ornament is three-fourths the reflected 
object’s actual size, determine the object’s location. (b) Use 
a principal-ray diagram to determine whether the image is 
upright or inverted.

14. Review. A ball is dropped at t 5 0 from rest 3.00 m directly 
above the vertex of a concave spherical mirror that has a 
radius of curvature of magnitude 1.00 m and lies in a hori-
zontal plane. (a) Describe the motion of the ball’s image in 
the mirror. (b) At what instant or instants do the ball and its 
image coincide?

15. You unconsciously estimate the distance to an object from 
the angle it subtends in your field of view. This angle u in 
radians is related to the linear height of the object h and to 
the distance d by u 5 h/d. Assume you are driving a car and 
another car, 1.50 m high, is 24.0 m behind you. (a) Suppose 
your car has a flat passenger-side rearview mirror, 1.55 m 
from your eyes. How far from your eyes is the image of the 
car following you? (b) What angle does the image subtend 
in your field of view? (c) What If? Now suppose your car 
has a convex rearview mirror with a radius of curvature of 
magnitude 2.00 m (as suggested in Fig. 35.15). How far from 
your eyes is the image of the car behind you? (d) What angle 
does the image subtend at your eyes? (e) Based on its angu-
lar size, how far away does the following car appear to be?

16. A convex spherical mirror has a focal length of magnitude 
8.00 cm. (a) What is the location of an object for which the 
magnitude of the image distance is one-third the magni-
tude of the object distance? (b) Find the magnification of 
the image and (c) state whether it is upright or inverted.

Section 35.3  Images Formed by Refraction

17. One end of a long glass rod (n 5 1.50) is formed into a 
convex surface with a radius of curvature of magnitude 
6.00 cm. An object is located in air along the axis of the rod. 
Find the image positions corresponding to object distances 
of (a) 20.0 cm, (b) 10.0 cm, and (c) 3.00 cm from the convex 
end of the rod.

18. The magnification of the image formed by a refracting sur-
face is given by

M 5 2 

n1q

n 2 p

 where n1, n 2, p, and q are defined as they are for Fig-
ure  35.17 and Equation 35.9. A paperweight is made of a 
solid glass hemisphere with index of refraction 1.50. The 
radius of the circular cross section is 4.00 cm. The hemi-
sphere is placed on its flat surface, with the center directly 
over a 2.50-mm-long line drawn on a sheet of paper. What is 
the length of this line as seen by someone looking vertically 
down on the hemisphere?

19. As shown in Figure P35.19, Ben and Jacob check out an aquar-
ium that has a curved front made of plastic with uniform 
thickness and a radius of curvature of magnitude R 5 2.25 m. 
(a) Locate the images of fish that are located (i) 5.00 cm and 
(ii) 25.0 cm from the front wall of the aquarium. (b) Find the 
magnification of images (i) and (ii) from the previous part. 
(See Problem 18 to find an expression for the magnification 
of an image formed by a refracting surface.) (c) Explain why 
you don’t need to know the refractive index of the plastic to 
solve this problem. (d) If this aquarium were very long from 
front to back, could the image of a fish ever be farther from 
the front surface than the fish itself is? (e) If not, explain why 
not. If so, give an example and find the magnification.

Figure P35.19

20. Figure P35.20 (page 958) shows a curved surface separating 
a material with index of refraction n1 from a material with 
index n2. The surface forms an image I of object O. The ray 
shown in red passes through the surface along a radial line. 
Its angles of incidence and refraction are both zero, so its 
direction does not change at the surface. For the ray shown 
in blue, the direction changes according to Snell’s law, n1 
sin u1 5 n2 sin u2. For paraxial rays, we assume u1 and u2 are 
small, so we may write n1 tan u1 5 n2 tan u2. The magnification 
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958 Chapter 35 Image Formation

is defined as M 5 h9/h. Prove that the magnification is given 
by M 5 2n1q/n 2p.

21. To dress up your dorm room, you have purchased a perfectly 
spherical glass fishbowl to place on the windowsill. After plac-
ing the sand, decorations, and water in the bowl of diameter 
40.0 cm, you transfer a single tropical fish from a plastic bag 
into the bowl. As you watch the fish, your roommate comes 
home. He watches the fish also and notices that the apparent 
size of the fish changes as it swims around in the bowl. (a) He 
is not taking a physics course, so he asks you to tell him the 
range of magnifications of the fish as it swims along a line from 
the back of the bowl along a line passing through the center of 
the bowl directly toward the observer. (b) Your roommate also 
asks you if the fish might be baked if it swims through a point 
at which the rays of the Sun focus at some point as they pass 
through the curved sides of the bowl. Should you worry about 
your fish being baked? Ignore the effect of the thin glass walls 
of the bowl; take only the water into consideration.

22. You are working for a solar energy company. Your supervisor 
has asked you to investigate a new idea that has been pro-
posed for a solar collector. A large sphere of glass focuses 
light on photocells, as shown in Figure P35.22. The photo-
cells are moved by electronics along the curved track to the 
right of the sphere. Your supervisor would like to build a 
prototype of a material with index of refraction n, but needs 
for you to calculate the position at which the Sun’s rays focus 
and, therefore, to find where to locate the curved track.

Section 35.4  Images Formed by Thin Lenses

23. An object located 32.0 cm in front of a lens forms an image 
on a screen 8.00 cm behind the lens. (a) Find the focal 

length of the lens. (b) Determine the magnification. (c) Is 
the lens converging or diverging?

24. An object’s distance from a converging lens is 5.00 times 
the focal length. (a) Determine the location of the image. 
Express the answer as a fraction of the focal length. (b) Find 
the magnification of the image and indicate whether it is (c) 
upright or inverted and (d) real or virtual.

25. A contact lens is made of plastic with an index of refrac-
tion of 1.50. The lens has an outer radius of curva-
ture of 12.00  cm and an inner radius of curvature of  
12.50 cm. What is the focal length of the lens?

26. A converging lens has a focal length of 10.0 cm. Con-
struct accurate ray diagrams for object distances of  
(i) 20.0  cm and (ii) 5.00 cm. (a) From your ray diagrams, 
determine the location of each image. (b) Is the image real 
or virtual? (c) Is the image upright or inverted? (d) What is 
the magnification of the image? (e) Compare your results 
with the values found algebraically. (f) Comment on diffi-
culties in constructing the graph that could lead to differ-
ences between the graphical and algebraic answers.

27. A converging lens has a focal length of 10.0 cm. Locate the 
object if a real image is located at a distance from the lens of 
(a) 20.0 cm and (b) 50.0 cm. What If? Redo the calculations 
if the images are virtual and located at a distance from the 
lens of (c) 20.0 cm and (d) 50.0 cm.

28. Suppose an object has thickness dp so that it extends from 
object distance p to p 1 dp. (a) Prove that the thickness dq of 
its image is given by (2q2/p2)dp. (b) The longitudinal mag-
nification of the object is M long 5 dq/dp. How is the longitu-
dinal magnification related to the lateral magnification M?

29. An object is placed 10.0 cm from a diverging lens of focal 
length 210.0 cm. (a) Find the location of the image. (b) Find 
the magnification of the image. (c) Comment on the differ-
ence between this situation and placing an object 10.0 cm 
from a converging lens of focal length 10.0 cm.

30. In Figure P35.30, a thin converging lens of focal length 
14.0  cm forms an image of the square abcd, which is hc  5  
hb 5 10.0 cm high and lies between distances of pd 5 20.0 cm 
and pa 5 30.0 cm from the lens. Let a9, b9, c9, and d9 represent 
the respective corners 
of the image. Let qa rep-
resent the image distance 
for points a9 and b9, qd 
represent the image dis-
tance for points c9 and 
d9, h9b represent the dis-
tance from point b9 to the 
axis, and h9c represent the 
height of c9. (a)  Find qa , 
qd , h9b, and h9c. (b) Make 
a sketch of the image.  
(c) The area of the object is 100 cm2. By carrying out the 
following steps, you will evaluate the area of the image. Let 
q represent the image distance of any point between a9 and 
d9, for which the object distance is p. Let h9 represent the dis-
tance from the axis to the point at the edge of the image 
between b9 and c9 at image distance q. Demonstrate that

|h9| 5 10.0qS 1
14.0
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 where h9 and q are in centimeters. (d) Explain why the geo-
metric area of the image is given by

#
qd

qa

uh9udq

 (e) Carry out the integration to find the area of the image.

31. You are working for an electronics company that makes 
devices for the home. Your supervisor has given you an 
assignment to help design the projection mechanism for a 
projection alarm clock. In this type of clock, a projection 
system is mounted on the body of the clock, as shown in 
Figure P35.31a, where the projection system is the silver cyl-
inder, of radius R 5 3.25 cm, mounted on the left side of 
the clock. A converging lens is mounted on the edge of the 
cylinder. Inside the cylinder, a small digital display of the 
time in red characters can be moved from the center of the 
cylinder outward radially toward the lens. The red light of 
the digital display can be seen in the lens in Figure P35.31a. 
As a result, an image of the time is projected in red onto 
the ceiling or wall of a darkened room (Fig. P35.31b). The 
range of distances for focused images of the digital display 
is from 0.500 m to 4.00 m, measured from the center of the 
cylinder. For the smallest value of the range, the digital dis-
play is at the center of the cylinder. You must determine for 
your supervisor the following parameters for the design of 
the projection system: (a) the focal length of the lens and 
(b) the distance of the digital display from the center of the 
cylinder for the largest value of the range.

32. Why is the following situation impossible? An illuminated object 
is placed a distance d 5 2.00 m from a screen. By placing 
a converging lens of focal length f 5 60.0 cm at two loca-
tions between the object and the screen, a sharp, real image 
of the object can be formed on the screen. In one location 
of the lens, the image is larger than the object, and in the 
other, the image is smaller.

Section 35.5  Lens Aberrations

33. Two rays traveling parallel to the principal axis strike a 
large plano-convex lens having a refractive index of 1.60 
(Fig. P35.33). If the convex face is spherical, a ray near 
the edge does not pass through the focal point (spherical 
aberration occurs). Assume this face has a radius of curva-
ture of R 5 20.0 cm and the two rays are at distances h1 5 
0.500 cm and h2 5 12.0 cm from the principal axis. Find 
the difference Dx in the positions where each crosses the 
principal axis.

C

R

h2

h1

x�

Figure P35.33

Section 35.6  Optical Instruments

34. Josh cannot see objects clearly beyond 25.0 cm (his far point). 
If he has no astigmatism and contact lenses are prescribed 
for him, what (a) power and (b) type of lens are required to 
correct his vision?

35. Figure 35.34 diagrams a cross section of a camera. It has 
a single lens of focal length 65.0 mm, which is to form an 
image on the CCD at the back of the camera. Suppose the 
position of the lens has been adjusted to focus the image of 
a distant object. How far and in what direction must the lens 
be moved to form a sharp image of an object that is 2.00 m 
away?

36. The refracting telescope at the Yerkes Observatory has 
a 1.00-m diameter objective lens of focal length 20.0 m.  
Assume it is used with an eyepiece of focal length  
2.50 cm. (a) Determine the magnification of Mars as seen 
through this telescope. (b) Are the Martian polar caps right 
side up or upside down?

37. The distance between the eyepiece and the objective lens in a 
certain compound microscope is 23.0 cm. The focal length of 
the eyepiece is 2.50 cm and that of the objective is 0.400 cm. 
What is the overall magnification of the microscope?

38. What are (a) the maximum angular magnification that may 
be viewed clearly by the human eye with a magnifying glass 
having a focal length of 10 cm, and (b) the angular magni-
fication of the image from this lens when the eye is relaxed?

39. A patient has a near point of 45.0 cm and far point of  
85.0 cm. (a) Can a single pair of glasses correct the patient’s 
vision? Explain the patient’s options. (b) Calculate the 
power lens needed to correct the near point so that the 
patient can see objects 25.0 cm away. Neglect the eye–lens 
distance. (c) Calculate the power lens needed to correct the 
patient’s far point, again neglecting the eye–lens distance.

40. The intensity I of the light reaching the CCD in a camera 
is proportional to the area of the lens. Because this area is 
proportional to the square of the diameter D, it follows that 
I is also proportional to D2. Because the area of the image 
is proportional to q2 and q < f  (when p .. f , so p can be 
approximated as infinite), we conclude that the intensity 
is also proportional to 1/f      2  and therefore that I ~ D2/f    2. 
The ratio f/D is called the f-number of a lens. Therefore, I ~  
1/(f-number)2. The f-number is often given as a description 
of the lens’s “speed.” The lower the f-number, the wider the 
aperture and the higher the rate at which energy from the 
light exposes the CCD; therefore, a lens with a low f-number 
is a “fast” lens. The conventional notation for an f-number 
is “ f/” followed by the actual number. For example, “ f/4” 
means an f-number of 4; it does not mean to divide f by 4! 
Suppose the lens of a digital camera has a focal length of 
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960 Chapter 35 Image Formation

55 mm and a speed of f/1.8. The correct exposure time for 
this speed under certain conditions is known to be 1

500 s. (a) 
Determine the diameter of the lens. (b) Calculate the cor-
rect exposure time if the f-number is changed to f/4 under 
the same lighting conditions.

41. A certain child’s near point is 10.0 cm; her far point (with 
eyes relaxed) is 125 cm. Each eye lens is 2.00 cm from the 
retina. (a) Between what limits, measured in diopters, does 
the power of this lens–cornea combination vary? (b) Calcu-
late the power of the eyeglass lens the child should use for 
relaxed distance vision. Is the lens converging or diverging?

42. Astronomers often take photographs with the objective lens 
or mirror of a telescope alone, without an eyepiece. (a) Show 
that the image size h9 for such a telescope is given by h9 5  
fh/( f 2 p), where f is the objective focal length, h is the object 
size, and p is the object distance. (b) What If? Simplify the 
expression in part (a) for the case in which the object dis-
tance is much greater than objective focal length. (c) The 
“wingspan” of the International Space Station is 108.6 m, the 
overall width of its solar panel configuration. When the sta-
tion is orbiting at an altitude of 407 km, find the width of the 
image formed by a telescope objective of focal length 4.00 m.

43. A simple model of the human eye ignores its lens entirely. 
Most of what the eye does to light happens at the outer sur-
face of the transparent cornea. Assume that this surface has 
a radius of curvature of 6.00 mm and that the eyeball con-
tains just one fluid with a refractive index of 1.40. Prove that 
a very distant object will be imaged on the retina, 21.0 mm 
behind the cornea. Describe the image.

aDDitional ProbleMS

44. A real object is located at the zero end of a meterstick. 
A large concave spherical mirror at the 100-cm end 
of the meterstick forms an image of the object at the  
70.0-cm position. A small convex spherical mirror placed 
at the 20.0-cm position forms a final image at the 10.0-cm 
point. What is the radius of curvature of the convex mirror?

45. The distance between an object and its upright image 
is 20.0  cm. If the magnification is 0.500, what is the focal 
length of the lens being used to form the image?

46. The distance between an object and its upright image is d. If 
the magnification is M, what is the focal length of the lens 
being used to form the image?

47. Andy decides to use an old pair of eyeglasses to make some 
optical instruments. He knows that the near point in his left 
eye is 50.0 cm and the near point in his right eye is 100 cm. 
(a) What is the maximum angular magnification he can 
produce in a telescope? (b) If he places the lenses 10.0 cm 
apart, what is the maximum overall magnification he can 
produce in a microscope? Hint: Go back to basics and use 
the thin lens equation to solve part (b).

48. Two converging lenses having focal lengths of f1 5 10.0 cm 
and f2 5 20.0 cm are placed a distance d 5 50.0 cm apart 
as shown in Figure P35.48. The image due to light passing 
through both lenses is to be located between the lenses at the 
position x 5 31.0 cm indicated. (a) At what value of p should 
the object be positioned to the left of the first lens? (b) What is  
the magnification of the final image? (c) Is the final image 
upright or inverted? (d) Is the final image real or virtual?

f2 f1
Final image
position

Object

p x
d

Figure P35.48

49. Two lenses made of kinds of glass having different indices 
of refraction n1 and n 2 are cemented together to form an 
optical doublet. Optical doublets are often used to correct 
chromatic aberrations in optical devices. The first lens of a 
certain doublet has index of refraction n1, one flat side, and 
one concave side with a radius of curvature of magnitude R. 
The second lens has index of refraction n 2 and two convex 
sides with radii of curvature also of magnitude R. Show that 
the doublet can be modeled as a single thin lens with a focal 
length described by

1
f

5
2n2 2 n1 2 1

R

50. An object is originally at the xi 5 0 cm position of a meter-
stick located on the x axis. A converging lens of focal length 
26.0 cm is fixed at the position 32.0 cm. Then we gradually 
slide the object to the position xf 5 12.0 cm. (a) Find the 
location x9 of the object’s image as a function of the object 
position x. (b) Describe the pattern of the image’s motion 
with reference to a graph or a table of values. (c) As the 
object moves 12.0 cm to the right, how far does the image 
move? (d) In what direction or directions?

51. An object is placed 12.0 cm to the left of a diverging lens 
of focal length 26.00 cm. A converging lens of focal length 
12.0 cm is placed a distance d to the right of the diverging 
lens. Find the distance d so that the final image is infinitely 
far away to the right.

52. An object is placed a distance p to the left of a diverging 
lens of focal length f1. A converging lens of focal length f2 is 
placed a distance d to the right of the diverging lens. Find 
the distance d so that the final image is infinitely far away 
to the right.

53. In a darkened room, a burning candle is placed 1.50 m from 
a white wall. A lens is placed between the candle and the wall 
at a location that causes a larger, inverted image to form on 
the wall. When the lens is in this position, the object distance 
is p1. When the lens is moved 90.0 cm toward the wall, another 
image of the candle is formed on the wall. From this infor-
mation, we wish to find p1 and the focal length of the lens.  
(a) From the lens equation for the first position of the lens, 
write an equation relating the focal length f of the lens to 
the object distance p1, with no other variables in the equa-
tion. (b) From the lens equation for the second position of 
the lens, write another equation relating the focal length f 
of the lens to the object distance p1. (c) Solve the equations 
in parts (a) and (b) simultaneously to find p1. (d) Use the 
value in part (c) to find the focal length f of the lens.
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54. In many applications, it is necessary to expand or decrease 
the diameter of a beam of parallel rays of light, which can be 
accomplished by using a converging lens and a diverging lens 
in combination. Suppose you have a converging lens of focal 
length 21.0 cm and a diverging lens of focal length 212.0 cm. 
(a) How can you arrange these lenses to increase the diame-
ter of a beam of parallel rays? (b) By what factor will the diam-
eter increase?

55. Why is the following situation impossible? Consider the lens–mirror 
combination shown in Figure P35.55. The lens has a focal 
length of fL 5 0.200 m, and the mirror has a focal length of 
fM 5 0.500 m. The lens and mirror are placed a distance d 5 
1.30 m apart, and an object is placed at p 5 0.300 m from the 
lens. By moving a screen to various positions to the left of the 
lens, a student finds two dif ferent positions of the screen that 
produce a sharp image of the object. One of these positions 
corresponds to light leaving the object and traveling to the 
left through the lens. The other position corresponds to light 
traveling to the right from the object, reflecting from the mir-
ror and then passing through the lens.

fL fM

d
p

Figure P35.55 Problems 55 and 57.

challenge ProbleMS

 56. A zoom lens system is a combination of lenses that produces 
a variable magnification of a fixed object as it maintains a 
fixed image position. The magnification is varied by mov-
ing one or more lenses along the axis. Multiple lenses are 
used in practice, but the effect of zooming in on an object 
can be demonstrated with a simple two-lens system. An 
object, two converging lenses, and a screen are mounted on 
an optical bench. Lens 1, which is to the right of the object, 
has a focal length of f1 5 5.00 cm, and lens 2, which is to 
the right of the first lens, has a focal length of f2 5 10.0 cm. 
The screen is to the right of lens 2. Initially, an object is sit-
uated at a distance of 7.50 cm to the left of lens 1, and the 
image formed on the screen has a magnification of 11.00. 
(a) Find the distance between the object and the screen. (b) 
Both lenses are now moved along their common axis while 
the object and the screen maintain fixed positions until the 
image formed on the screen has a magnification of 13.00. 
Find the displacement of each lens from its initial position 

in part (a). (c) Can the lenses be displaced in more than  
one way?

 57. Consider the lens–mirror arrangement shown in Fig-
ure P35.55. There are two final image positions to the left of 
the lens of focal length fL. One image position is due to light 
traveling from the object to the left and passing through 
the lens. The other image position is due to light traveling 
to the right from the object, reflecting from the mirror of 
focal length fM and then passing through the lens. For a 
given object position p between the lens and the mirror and 
measured with respect to the lens, there are two separation 
distances d between the lens and mirror that will cause the 
two images described above to be at the same location. Find 
both positions.

 58. A floating strawberry illusion is achieved with two par-
abolic mirrors, each having a focal length 7.50 cm, facing 
each other as shown in Figure P35.58. If a strawberry is 
placed on the lower mirror, an image of the strawberry is 
formed at the small opening at the center of the top mirror, 
7.50 cm above the lowest point of the bottom mirror. The 
position of the eye in Figure P35.58a corresponds to the 
view of the apparatus in Figure P35.58b. Consider the light 
path marked A. Notice that this light path is blocked by the 
upper mirror so that the strawberry itself is not directly 
observable. The light path marked B corresponds to the eye 
viewing the image of the strawberry that is formed at the 
opening at the top of the apparatus. (a) Show that the final 
image is formed at that location and describe its character-
istics. (b) A very startling effect is to shine a flashlight beam 
on this image. Even at a glancing angle, the incoming light 
beam is seemingly reflected from the image! Explain.

a

b

Strawberry

A

BImage of
strawberry

Small
opening

Figure P35.58
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Wave Optics36

36.1 Young’s Double-Slit 
Experiment

36.2 Analysis Model: Waves  
in Interference

36.3 Intensity Distribution 
of the Double-Slit 
Interference Pattern

36.4 Change of Phase Due  
to Reflection

36.5 Interference in 
Thin Films

36.6 The Michelson 
Interferometer

Storyline Time to take a break from studying physics and just 
chill out on your back patio! You are lying in your chaise lounge and enjoying the 
nice spring day. Suddenly, a hummingbird flies in, doesn’t notice you, and lands 
just a few feet away. You hold still and watch quietly, amazed at the beautiful 
colors on the feathers of the bird, which seem to glisten. Then you notice, as the 
bird turns a bit, that the colors shift in their intensity and hue. You think, “Wait 
a minute! Why would that happen?” And then, in direct contradiction to your 
efforts to take a break from physics, you think, “Could there be some physics 
behind the appearance of the colors in this bird’s feathers?” The startled bird flies 
away in fear as you reach for your smartphone and fire up the Internet.

ConneCtions In Chapter 35, we studied light rays passing through a lens 
or reflecting from a mirror to describe the formation of images. This discussion 
completed our study of ray optics. In this chapter and in Chapter 37, we are con-
cerned with wave optics, sometimes called physical optics, the study of interfer-
ence, diffraction, and polarization of light. We studied interference of sound waves 
in Chapter 17 and will look at the comparable effect for light in this chapter. We 
introduced the phenomenon of diffraction for light waves in Section 34.2. We did 
not discuss polarization in Chapter 17 because sound waves cannot be polarized. 
Light waves can be polarized, however, and we shall study that phenomenon in 
Chapter 37. These three phenomena cannot be adequately explained with the ray 
optics used in Chapters 34 and 35 because they depend on the fact that light is 
wavelike in nature. The discussion of interference leads to the historical develop-
ment of the Michelson interferometer, one of the tools used to investigate relativity, 
leading in turn to the development of modern physics, which begins in Chapter 38.

The colors in many of a 
hummingbird’s feathers  
are not due to pigment.  

What do you think is the 
origin of these colors?  

(Dec Hogan/Shutterstock)
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    36.1 Young’s Double-Slit Experiment 963

   36.1    Young’s Double-Slit Experiment
In Chapter 17, we studied the waves in interference model and found that the 
superposition of two mechanical waves can be constructive or destructive. In con-
structive interference, the amplitude of the resultant wave is greater than that of 
either individual wave, whereas in destructive interference, the resultant amplitude 
is less than that of the larger wave. Light waves also interfere with one another. 
Fundamentally, all interference associated with light waves arises when the electro-
magnetic fields that constitute the individual waves combine.

Interference in light waves from two sources was first demonstrated by Thomas 
Young in 1801. A schematic diagram of the apparatus Young used is shown in Fig-
ure 36.1a. Plane light waves arrive at a barrier that contains two slits S1 and S2. The 
long dimension of the slits is perpendicular to the page in Figure 36.1a. The light 
rays from the two slits are in phase as they leave the slits. The light from S1 and S2 
produces on a viewing screen a visible pattern of bright and dark parallel bands 
called fringes (Fig. 36.1b). When the light from S1 and that from S2 both arrive at 
a point on the screen such that constructive interference occurs at that location, a 
bright fringe appears. When the light from the two slits combines destructively at 
any location on the screen, a dark fringe results.

Figure 36.2 (page 964) shows some of the ways in which two waves can combine 
at the screen. In Figure 36.2a, the two waves strike the screen at the central point O. 
Because both waves travel the same distance, they arrive at O in phase. As a result, 
constructive interference occurs at this location and a bright fringe is observed. 
In Figure 36.2b, the two waves also start in phase, but here the lower wave has to 
travel one wavelength farther than the upper wave to reach point P. Because the 
lower wave falls behind the upper one by exactly one wavelength, they still arrive 
in phase at P and a second bright fringe appears at this location. At point R in 
Figure 36.2c, however, between points O and P, the lower wave has fallen half a 
wavelength behind the upper wave and a crest of the upper wave overlaps a trough 

Figure 36.1 (a) Schematic 
diagram of Young’s double-slit 
experiment. Slits S1 and S2 behave 
as coherent sources of light waves 
that produce an interference pat-
tern on the viewing screen (draw-
ing not to scale). (b) A simulation 
of an enlargement of the center 
of a fringe pattern formed on the 
viewing screen.
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The waves add constructively 
at the red dots and 
destructively at the black dots.

A region marked “max” in 
corresponds to a bright fringe in      . 
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b
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964 Chapter 36 Wave Optics

of the lower wave, giving rise to destructive interference at point R. A dark fringe is 
therefore observed at this location.

If two lightbulbs are placed side by side so that light from both bulbs combines, 
no interference effects are observed because the light waves from one bulb are 
emitted independently of those from the other bulb. The emissions from the two 
lightbulbs do not maintain a constant phase relationship with each other over time. 
Light waves from an ordinary source such as a lightbulb undergo random phase 
changes in time intervals of less than a nanosecond. Therefore, the conditions for 
constructive interference, destructive interference, or some intermediate state are 
maintained only for such short time intervals. Because the eye cannot follow such 
rapid changes, no interference effects are observed. Such light sources are said to 
be incoherent.

To observe interference of waves from two sources, the following conditions 
must be met:

 ● The sources must be coherent; that is, they must maintain a constant phase 
with respect to each other.

 ● The sources should be monochromatic; that is, they should be of a single 
wavelength.

As an example, single-frequency sound waves emitted by two side-by-side loud-
speakers driven by a single amplifier can interfere with each other because the two 
speakers are coherent. In other words, they respond to the amplifier in the same 
way at the same time.

A common method for producing two coherent light sources is to use a 
monochromatic source to illuminate a barrier containing two small openings, 
usually in the shape of slits, as in the case of Young’s experiment illustrated in 
Figure 36.1. The light emerging from the two slits is coherent because a single 
source produces the original light beam and the two slits serve only to sepa-
rate the original beam into two parts (which, after all, is what is done to the 
sound signal from two side-by-side loudspeakers). Any random change in the 
light emitted by the source occurs in both beams at the same time. As a result, 
interference effects can be observed when the light from the two slits arrives at a 
viewing screen.

If the light traveled only in its original direction after passing through the slits 
as shown in Figure 36.3a, the waves would not overlap and no interference pattern 
would be seen. Instead, as we have discussed with regard to Figure 34.4, the waves 
spread out from the slits as shown in Figure 36.3b. In other words, the light deviates 
from a straight-line path and enters the region that would otherwise be shadowed. 
As noted in Section 34.2, this divergence of light from its initial line of travel is 
called diffraction.

b

Constructive 
interference also 
occurs at point P.

Bright
fringe

S1

S2

O

P

c

Destructive interference occurs 
at point R when the two waves 
combine because the lower 
wave falls one-half a wavelength 
behind the upper wave.

Dark
fringe

P

R

O

S1

S2

a

Constructive interference 
occurs at point O when 
the waves combine.

Bright
fringe

S1

S2

O

 Viewing screen
Figure 36.2  Waves leave the slits 
and combine at various points on 
the viewing screen. (All figures 
not to scale.)

a

b

Light passing through 
narrow slits diffracts.

Light passing through 
narrow slits does not 
behave this way.

Figure 36.3  (a) If light waves 
did not spread out after passing 
through the slits, no interference 
would occur. (b) The light waves 
from the two slits overlap as they 
spread out, filling what we expect 
to be shadowed regions with 
light and producing interference 
fringes on a screen placed to the 
right of the slits.
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   36.2    Analysis Model: Waves in Interference
We discussed the superposition principle for waves on strings in Section 17.1, lead-
ing to a one-dimensional version of the waves in interference analysis model. In 
Example 17.1 we briefly discussed a two-dimensional interference phenomenon for 
sound from two loudspeakers. In walking from point O to point P in Figure 17.5, 
the listener experienced a maximum in sound intensity at O and a minimum at 
P. This experience is exactly analogous to an observer looking at point O in Fig-
ure 36.2 and seeing a bright fringe and then sweeping his eyes upward to point R , 
where there is a minimum in light intensity.

Let’s look in more detail at the two-dimensional nature of Young’s experiment 
with the help of Figure 36.4. The viewing screen is located a perpendicular dis-
tance L from the barrier containing two slits, S1 and S2 (Fig. 36.4a). These slits are 
separated by a distance d, and the source is monochromatic. To reach any arbitrary 
point P in the upper half of the screen, a wave from the lower slit must travel farther 
than a wave from the upper slit. The extra distance traveled from the lower slit is 
the path difference d (Greek letter delta). If we assume the rays labeled r1 and r2 
are parallel (Fig. 36.5b), which is approximately true if L is much greater than d, 
then d is given by

 d 5 r2 2 r1 5 d sin u (36.1)

The value of d determines whether the two waves are in phase when they arrive at 
point P. If d is either zero or some integer multiple of the wavelength, the two waves 
are in phase at point P and constructive interference results. Therefore, the condi-
tion for bright fringes, or constructive interference, at point P is

 d sin ubright 5 ml  m 5 0, 61, 62, . . . (36.2)

The number m is called the order number. For constructive interference, the order 
number is the same as the number of wavelengths that represents the path differ-
ence between the waves from the two slits. The central bright fringe at ubright 5 0 is 
called the zeroth-order maximum. The first maximum on either side, where m 5 61, is 
called the first-order maximum, and so forth.

When d is an odd multiple of l/2, the two waves arriving at point P are 1808 out 
of phase and give rise to destructive interference. Therefore, the condition for dark 
fringes, or destructive interference, at point P is

 d sin udark 5 sm 1 1
2dl  m 5 0, 61, 62, Á  (36.3)

  Condition for constructive  
interference

  Condition for destructive  
interference

a b

When we assume r1 is 
parallel to r2, the path 
difference between the two 
rays is r2 � r1 � d sin u.

d � r2 � r1 � d sin u  

S1

S2

d

r2

r1

d

S1

S2 d

Q

L
Viewing screen

P

O

y

r1

r2
u u u

Figure 36.4  (a) Geometric 
construction for describing 
Young’s double-slit experiment 
(not to scale). (b) The slits are 
represented as sources, and the 
outgoing light rays are assumed to 
be parallel as they travel to P. To 
achieve that in practice, it is essen-
tial that L .. d.
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966 Chapter 36 Wave Optics

These equations provide the angular positions of the fringes. It is also useful to 
obtain expressions for the linear positions measured along the screen from O to P. 
From the triangle OPQ in Figure 36.4a, we see that

 tan u 5
y

L
 (36.4)

Using this result, the linear positions of bright and dark fringes are given by

 ybright 5 L tan ubright (36.5)

 ydark 5 L tan udark (36.6)

where ubright and udark are given by Equations 36.2 and 36.3.
When the angles to the fringes are small, the positions of the fringes are linear 

near the center of the pattern. That can be verified by noting that for small angles, 
tan u < sin u, so Equation 36.5 gives the positions of the bright fringes as ybright 5  
L sin ubright. Incorporating Equation 36.2 gives

 ybright 5 L 
ml

d
 ssmall anglesd (36.7)

This result shows that ybright is linear in the order number m, so the fringes are 
equally spaced for small angles. Similarly, for dark fringes,

 ydark 5 L 
sm 1 1

2dl
d

 ssmall anglesd (36.8)

As demonstrated in Example 36.1, Young’s double-slit experiment provides a 
method for measuring the wavelength of light. In fact, Young used this technique 
to do precisely that. In addition, his experiment gave the wave model of light a 
great deal of credibility. It was inconceivable that particles of light coming through 
the slits could cancel one another in a way that would explain the dark fringes.

The principles discussed in this section are the basis of the waves in interference 
analysis model. This model was applied to mechanical waves in one dimension in 
Chapter 17. Here we see the details of applying this model in three dimensions to light.

Q uick Quiz 36.1  Which of the following causes the fringes in a two-slit inter-
ference pattern to move farther apart? (a) decreasing the wavelength of the light 
(b) decreasing the screen distance L (c) decreasing the slit spacing d (d) immers-
ing the entire apparatus in water

AnAlysis Model Waves in Interference

Imagine a broad beam of light that illuminates a double slit in an otherwise 
opaque material. An interference pattern of bright and dark fringes is created on 
a distant screen. The condition for bright fringes (constructive interference) is

 d sin ubright 5 ml    m 5 0, 61, 62, . . . (36.2)

The condition for dark fringes (destructive interference) is

 d sin udark 5 sm 1 1
2dl m 5 0, 61, 62, Á  (36.3)

The number m is called the order number of the fringe.

Examples: 

 ● a thin film of oil on top of water shows swirls of color (Section 36.5)
 ● x-rays passing through a crystalline solid combine to form a Laue pattern (Chapter 37)
 ● a Michelson interferometer (Section 36.6) is used to search for the ether representing the medium through which light 

travels (Chapter 38)
 ● electrons exhibit interference just like light waves when they pass through a double slit (Chapter 39)

u

d sin u
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 Example 36.1    Measuring the Wavelength of a Light Source

A viewing screen is separated from a double slit by 4.80 m. The distance between the two slits is 0.030 0 mm. Monochro-
matic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 
4.50 cm from the center line on the screen.

(A) Determine the wavelength of the light.

S o l u T I o n

Conceptualize Study Figure 36.4 to be sure you understand the phenomenon of interference of light waves. The distance of 
4.50 cm is y in Figure 36.4. Because L .. y, the angles for the fringes are small.

Categorize This problem is a simple application of the waves in interference model.

Analyze
Solve Equation 36.8 for the wavelength and substitute  l 5

ydarkd

sm 1 1
2dL

5
s4.50 3 1022 mds3.00 3 1025 md

s0 1 1
2ds4.80 md

 
numerical values, taking m 5 0 for the first dark fringe:

5 5.62 3 1027 m 5  562 nm

(B) Calculate the distance between adjacent bright fringes.

S o l u T I o n

Find the distance between adjacent bright fringes from  ym 1 1 2 ym 5 L 
sm 1 1dl

d
2 L 

ml

d
 

Equation 36.7 and the results of part (A):

5 L 
l

d
5 4.80 m S5.62 3 1027 m

3.00 3 1025 mD
5 9.00 3 1022 m 5  9.00 cm

Finalize For practice, find the wavelength of the sound in Example 17.1 using the procedure in part (A) of this example.

 Example 36.2    Separating Double-Slit Fringes of Two Wavelengths

A light source emits visible light of two wavelengths: l 5 430 nm and l9 5 510 nm. The source is used in a double-slit inter-
ference experiment in which L 5 1.50 m and d 5 0.025 0 mm. Find the separation distance between the third-order bright 
fringes for the two wavelengths.

S o l u T I o n

Conceptualize In Figure 36.4a, imagine light of two wavelengths incident on the slits and forming two interference patterns 
on the screen. At some points, the fringes of the two colors might overlap, but at most points, they will not.

Categorize This problem is an application of the mathematical representation of the waves in interference analysis model.

Analyze
Use Equation 36.7 to find the fringe positions corresponding  Dy 5 y9bright 2 y bright 5 L 

ml9

d
2 L 

ml

d
5

Lm
d

sl9 2 ld 
to these two wavelengths and subtract them:

Substitute numerical values: Dy 5
s1.50 mds3d

0.025 0 3 1023 m
s510 3 1029 m 2 430 3 1029 md

5 0.014 4 m 5  1.44 cm

Finalize Let’s explore further details of the interference pattern in the following What If?

W h A T  I F ?  What if we examine the entire interference pattern due to the two wavelengths and look for overlapping 
fringes? Are there any locations on the screen where the bright fringes from the two wavelengths overlap exactly?

continued
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36.2 c o n t i n u e d

Answer Find such a location by setting the location of  L 
ml

d
5 L 

m9l9

d
   S   

m9

m
5

l

l9
 

any bright fringe due to l equal to one due to l9, using  
Equation 36.7:

Substitute the wavelengths: 
m9

m
5

430 nm
510 nm

5
43
51

Therefore, the 51st fringe of the 430-nm light overlaps with the 43rd fringe of the 510-nm light.

Use Equation 36.7 to find the value of y for these fringes: y 5 s1.50 md351s430 3 1029 md
0.025 0 3 1023 m4 5 1.32 m

This value of y is comparable to L, so the small-angle approximation used for Equation 36.7 is not valid. This conclusion sug-
gests we should not expect Equation 36.7 to give us the correct result. If you use Equation 36.5, you can show that the bright 
fringes do indeed overlap when the same condition, m9/m 5 l/l9, is met (see Problem 30). Therefore, the 51st fringe of the 
430-nm light does overlap with the 43rd fringe of the 510-nm light, but not at the location of 1.32 m. You are asked to find the 
correct location as part of Problem 30.

   36.3    Intensity Distribution of the Double-Slit 
Interference Pattern
Notice that the edges of the bright fringes in Figure 36.1b are not sharp; rather, 
there is a gradual change from bright to dark. So far, we have discussed the loca-
tions of only the centers of the bright and dark fringes on a distant screen. Let’s 
now direct our attention to the distribution of light intensity associated with the 
double-slit interference pattern.

Using an analysis of the electric fields of the light from the two slits, we can show 
(Problem 16) that the intensity of light on the screen in Figure 36.4 is given by

 I 5 Imax cos2 Spd sin u
l

D (36.9)

Alternatively, because sin u < y/L for small values of u in Figure 36.4, we can write 
Equation 36.9 in the form

 I 5 Imax cos2 Spd
lL

 yD ssmall anglesd (36.10)

Constructive interference, which produces light intensity maxima, occurs when 
the quantity pdy/lL is an integral multiple of p, corresponding to y 5 Lm l/d, where 
m is the order number. This result is consistent with Equation 36.7.

A plot of light intensity versus d sin u using Equation 36.9 is given in Figure 36.5 
and compared to a photograph of the interference pattern. Figure 36.6 shows sim-
ilar plots of light intensity versus d sin u for light passing through multiple slits. In 
this case, the pattern contains primary and secondary maxima. For three slits, the 
primary maxima are nine times more intense than the secondary maxima as mea-
sured by the height of the curve because the intensity varies as E 2 (see Eq. 33.27). 
For N  slits, the intensity of the primary maxima is N 2 times greater than that for 
the secondary maxima. As the number of slits increases, the primary maxima 
increase in intensity and become narrower, while the secondary maxima decrease 
in intensity relative to the primary maxima. Figure 36.6 also shows that as the num-
ber of slits increases, the number of secondary maxima also increases. In fact, the 
number of secondary maxima is always N 2 2, where N is the number of slits. In 
Section 37.4, we shall investigate the pattern for a very large number of slits in a 
device called a diffraction grating.
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Q uick Quiz 36.2  Using Figure 36.6 as a model, sketch the interference pattern 
from six slits.

   36.4    Change of Phase Due to Reflection
Young’s method for producing two coherent light sources involves illuminating a 
pair of slits with a single source. Another simple, yet ingenious, arrangement for 
producing an interference pattern with a single light source is known as Lloyd’s 
mirror1 (Fig. 36.7). A point light source S is placed close to a mirror, and a viewing 
screen is positioned some distance away and perpendicular to the mirror. Light 
waves can reach point P on the screen either directly from S to P (red) or by the 
path involving reflection from the mirror (blue). The reflected ray can be treated 
as a ray originating from a virtual source S9. As a result, we can think of this arrange-
ment as a double-slit source where the distance d between sources S and S9 in Fig-
ure 36.7 is analogous to length d in Figure 36.4. Hence, at observation points far 
from the source (L .. d), we expect waves from S and S9 to form an interference 
pattern exactly like the one formed by two real coherent sources. An interference 
pattern is indeed observed. The positions of the dark and bright fringes, however, 
are reversed relative to the pattern created by two real coherent sources (Young’s 
experiment). Such a reversal can only occur if the coherent sources S and S9 differ 
in phase by 1808.

To illustrate further, consider point P9, the point where the mirror intersects the 
screen. This point is equidistant from sources S and S9. If path difference alone were 
responsible for the phase difference, we would see a bright fringe at P9 (because the 
path difference is zero for this point), corresponding to the central bright fringe of 
the two-slit interference pattern. Instead, a dark fringe is observed at P9. We there-
fore conclude that a 1808 phase change must be produced by reflection from the 

N � 2 
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Primary maximum

Secondary maximum

I
Imax

d sin u
�2l 2ll

For any value of N, the decrease in 
intensity in maxima to the left and 
right of the central maximum, 
indicated by the blue dashed arcs, 
is due to diffraction patterns from 
the individual slits, which are 
discussed in Chapter 37.
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N � 5
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�l

Figure 36.6  Multiple-slit interference patterns. As N, the number of slits, is 
increased, the primary maxima (the tallest peaks in each graph) become narrower 
but remain fixed in position and the number of secondary maxima increases.

Figure 36.5  Light intensity versus d sin u for a 
double-slit interference pattern when the screen is 
far from the two slits (L .. d).
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An interference pattern is 
produced on the screen as a result 
of the combination of the direct 
ray (red) and the reflected ray 
(blue).

Virtual
source S�
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Viewing
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Figure 36.7  Lloyd’s mirror. The 
reflected ray undergoes a phase 
change of 1808.

1Developed in 1834 by Humphrey Lloyd (1800–1881), Professor of Natural and Experimental Philosophy, Trinity 
College, Dublin.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



970 Chapter 36 Wave Optics

mirror. In general, an electromagnetic wave undergoes a phase change of 1808 
upon reflection from a medium that has a higher index of refraction than the one 
in which the wave is traveling.

It is useful to draw an analogy between reflected light waves and the reflections 
of a transverse pulse on a stretched string (Section 17.3). The reflected pulse on 
a string undergoes a phase change of 1808 when reflected from the boundary of 
a denser string or a rigid support, but no phase change occurs when the pulse is 
reflected from the boundary of a less dense string or a freely supported end. Simi-
larly, an electromagnetic wave undergoes a 1808 phase change when reflected from 
a boundary leading to an optically denser medium (defined as a medium with a 
higher index of refraction), but no phase change occurs when the wave is reflected 
from a boundary leading to a less dense medium. These rules, summarized in Fig-
ure 36.8, can be deduced from Maxwell’s equations, but the treatment is beyond 
the scope of this text.

   36.5    Interference in Thin Films
Interference effects are commonly observed in thin films, such as thin layers of oil 
on water or the thin surface of a soap bubble as shown in Figure 36.9. The varied 
colors observed when white light is incident on such films result from the interfer-
ence of waves reflected from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n. The wavelength 
of light ln in the film (see Section 34.4) is

ln 5
l

n

where l is the wavelength of the light in free space and n is the index of refraction 
of the film material. Let’s assume light rays traveling in air are nearly normal to the 
two surfaces of the film as shown in Figure 36.10.

Reflected ray 1, which is reflected from the upper surface (A) in Figure 36.10, 
undergoes a phase change of 1808 with respect to the incident wave. Reflected ray 2, 
which is reflected from the lower film surface (B), undergoes no phase change 
because it is reflected from a medium (air) that has a lower index of refraction. 
Therefore, ray 1 is 1808 out of phase with ray 2, which is equivalent to a path differ-
ence of ln /2. We must also consider, however, that ray 2 travels an extra distance 2t 
before the waves recombine in the air above surface A. (Remember that we are con-
sidering light rays that are close to normal to the surface. If the rays are not close to 
normal, the path difference is larger than 2t.) If 2t 5 ln /2, rays 1 and 2 recombine 
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Figure 36.8  Comparisons of reflections of light waves and waves on strings.
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in phase and the result is constructive interference. In general, the condition for 
constructive interference in thin films is2

 2t 5 sm 1 1
2dln m 5 0, 1, 2, Á  (36.11)

This condition takes into account two factors: (1) the difference in path length for 
the two rays (the term mln  ) and (2) the 1808 phase change upon reflection (the 
term 12 ln ). Because ln 5 l/n, we can write Equation 36.11 as

 2nt 5 sm 1 1
2dl m 5 0, 1, 2, Á  (36.12)

If the extra distance 2t traveled by ray 2 corresponds to a multiple of ln, the two 
waves combine out of phase and the result is destructive interference. The general 
equation for destructive interference in thin films is

 2nt 5 ml    m 5 0, 1, 2, . . .  (36.13)

The foregoing conditions for constructive and destructive interference are valid 
when the medium above the top surface of the film is the same as the medium 
below the bottom surface or, if there are different media above and below the film, 
the index of refraction of both is less than n. If the film is placed between two 
different media, one with n , nfilm and the other with n . nfilm, the conditions for 
constructive and destructive interference are reversed. In that case, either there is 
a phase change of 1808 for both ray 1 reflecting from surface A and ray 2 reflecting 
from surface B or there is no phase change for either ray; hence, the net change in 
relative phase due to the reflections is zero. See Example 36.4 for a practical appli-
cation of this effect.

Rays 3 and 4 in Figure 36.10 lead to interference effects in the light transmitted 
through the thin film. The analysis of these effects is similar to that of the reflected 
light. You are asked to explore the transmitted light in Problems 22 and 25.

Q uick Quiz 36.3  One microscope slide is placed on top of another with their 
left edges in contact and a human hair under the right edge of the upper slide. As 
a result, a wedge of air exists between the slides. An interference pattern results 
when monochromatic light is incident on the wedge. What is at the left edges of 
the slides? (a) a dark fringe (b) a bright fringe (c) impossible to determine

newton’s Rings
Another method for observing interference in light waves is to place a plano-convex 
lens on top of a flat glass surface as shown in Figure 36.11a. With this arrangement, 
the air film between the glass surfaces varies in thickness from zero at the point of 
contact to some nonzero value at point P. If the radius of curvature R of the lens is 

2The full interference effect in a thin film requires an analysis of an infinite number of reflections back and forth 
between the top and bottom surfaces of the film. We focus here only on a single reflection from the bottom of the 
film, which provides the largest contribution to the interference effect.

PiTfAll PRevenTion 36.1
Be Careful with Thin Films Be 
sure to include both effects—path 
length and phase change—when 
analyzing an interference pattern 
resulting from a thin film. The 
possible phase change is a new fea-
ture we did not need to consider 
for  double-slit interference. Also 
think carefully about the material 
on either side of the film. If there 
are different materials on either 
side of the film, you may have a 
situation in which there is a 1808 
phase change at both surfaces or at 
neither surface.
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Figure 36.11  (a) The combina-
tion of rays reflected from the flat 
plate and the curved lens surface 
gives rise to an interference pat-
tern known as Newton’s rings.  
(b) Photograph of Newton’s rings.
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972 Chapter 36 Wave Optics

much greater than the distance r and the system is viewed from above, a pattern of 
light and dark rings is observed as shown in Figure 36.11b. These circular fringes, 
discovered by Newton, are called Newton’s rings.

One important use of Newton’s rings is in the testing of optical lenses. A circular 
pattern like that pictured in Figure 36.11b is obtained only when the lens is ground 
to a perfectly symmetric curvature. Variations from such symmetry produce a pat-
tern with fringes that vary from a smooth, circular shape. These variations indicate 
how the lens must be reground and repolished to remove imperfections.

So what is going on with the colors from the hummingbird feathers in the open-
ing storyline? The iridescence that makes the brilliant colors that often appear on 
the bird’s throat and belly is due to an interference effect caused by light reflecting 
from microstructures in the feathers. The colors will vary with the viewing angle. 
Other organisms exhibiting iridescence include peacocks, Morpho butterflies, and 
some types of beetles and seashells.

PRoBLEM-SoLvIng STRATEgY  Thin-Film Interference

The following features should be kept in mind when working thin-film interference problems.

1. Conceptualize. Think about what is going on physically in the problem. Identify the 
light source and the location of the observer.

2. Categorize. Confirm that you should use the techniques for thin-film interference by 
identifying the thin film causing the interference.

3. Analyze. The type of interference that occurs is determined by the phase relationship 
between the portion of the wave reflected at the upper surface of the film and the por-
tion reflected at the lower surface. Phase differences between the two portions of the 
wave have two causes: differences in the distances traveled by the two portions and phase 
changes occurring on reflection. Both causes must be considered when determining 
which type of interference occurs. If the media above and below the film both have index 
of refraction larger than that of the film or if both indices are smaller, use Equation 36.12 
for constructive interference and Equation 36.13 for destructive interference. If the film 
is located between two different media, one with n , nfilm and the other with n . nfilm, 
reverse these two equations for constructive and destructive interference.

4. Finalize. Inspect your final results to see if they make sense physically and are of an 
appropriate size.

 Example 36.3    Interference in a Soap Film

Calculate the minimum thickness of a soap-bubble film that results in constructive interference in the reflected light if the 
film is illuminated with light whose wavelength in free space is l 5 600 nm. The index of refraction of the soap film is 1.33.

S o l u T I o n

Conceptualize Imagine that the film in Figure 36.10 is soap, with air on both sides.

Categorize We determine the result using an equation from this section, so we categorize this example as a substitution problem.

The minimum film thickness for constructive interference  t 5
s0 1 1

2dl
2n

5
l

4n
5

s600 nmd
4s1.33d

5  113 nm 
in the reflected light corresponds to m 5 0 in Equation 36.12.  
Solve this equation for t and substitute numerical values:

W h A T  I F ? What if the film is twice as thick? Does this situation produce constructive interference?

Answer Using Equation 36.12, we can solve for the thicknesses at which constructive interference occurs:

t 5 sm 1 1
2d 

l

2n
5 s2m 1 1d 

l

4n
 m 5 0, 1, 2, Á

The allowed values of m show that constructive interference occurs for odd multiples of the thickness corresponding to  
m 5 0, t 5 113 nm. Therefore, constructive interference does not occur for a film that is twice as thick.
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    36.6 The Michelson Interferometer 973

   36.6    The Michelson Interferometer
The interferometer, invented by American physicist A. A. Michelson (1852–1931), 
splits a light beam into two parts and then recombines the parts to form an inter-
ference pattern. The device can be used to measure wavelengths or other lengths 
with great precision because a large and precisely measurable displacement of one 
of the mirrors is related to an exactly countable number of wavelengths of light.

A schematic diagram of the interferometer is shown in Figure 36.13 (page 974). 
A ray of light from a monochromatic source is split into two rays by mirror M0, 
which is inclined at 458 to the incident light beam. Mirror M0, called a beam splitter, 
transmits half the light incident on it and reflects the rest. One ray is reflected 
from M0 to the right toward mirror M1, and the second ray is transmitted vertically 
through M0 toward mirror M2. Hence, the two rays travel separate paths L1 and L2. 
After reflecting from M1 and M2, the two rays eventually recombine at M0 to pro-
duce an interference pattern, which can be viewed through a telescope.

 Example 36.4    nonreflective Coatings for Solar Cells

Solar cells—devices that generate electricity when exposed to sunlight—are often coated with a transparent, thin film of 
silicon monoxide (SiO, n 5 1.45) to minimize reflective losses from the surface. Suppose a silicon solar cell (n 5 3.5) is 
coated with a thin film of silicon monoxide for this purpose (Fig. 36.12a). Determine the minimum film thickness that 
produces the least reflection at a wavelength of 550 nm, near the center of the visible spectrum.

S o l u T I o n

Conceptualize Figure 36.12a helps us visualize the 
path of the rays in the SiO film that result in interfer-
ence in the reflected light.

Categorize Based on the geometry of the SiO layer, 
we categorize this example as a thin-film interference 
problem.

Analyze The reflected light is a minimum when rays 
1 and 2 in Figure 36.12a meet the condition of destruc-
tive interference. In this situation, both rays undergo 
a 1808 phase change upon reflection: ray 1 from the 
upper SiO surface and ray 2 from the lower SiO sur-
face. The net change in phase due to reflection is 
therefore zero, and the condition for a reflection min-
imum requires a path difference of ln/2, where ln is 
the wavelength of the light in SiO. Hence, 2nt 5 l/2, 
where l is the wavelength in air and n is the index of 
refraction of SiO.

Solve the equation 2nt 5 l/2 for t and substitute  t 5
l

4n
5

550 nm
4s1.45d

5  94.8 nm 
numerical values:

Finalize A typical uncoated solar cell has reflective losses as high as 30%, but a coating of SiO can reduce this value to about 
10%. This significant decrease in reflective losses increases the cell’s efficiency because less reflection means that more sun-
light enters the silicon to create charge carriers in the cell. No coating can ever be made perfectly nonreflecting because the 
required thickness is wavelength-dependent and the incident light covers a wide range of wavelengths.

Glass lenses used in cameras and other optical instruments are usually coated with a transparent thin film to reduce or 
eliminate unwanted reflection and to enhance the transmission of light through the lenses. The camera lens in Figure 36.12b 
has several coatings (of different thicknesses) to minimize reflection of light waves having wavelengths near the center of the 
visible spectrum. As a result, the small amount of light that is reflected by the lens has a greater proportion of the far ends of 
the spectrum and often appears reddish violet.
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Figure 36.12  (Example 36.4) (a) Reflective losses from a silicon solar 
cell are minimized by coating the surface of the cell with a thin film of 
silicon monoxide. (b) The reflected light from a coated camera lens often 
has a reddish-violet appearance.
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974 Chapter 36 Wave Optics

The interference condition for the two rays is determined by the difference 
in their path length. When the two mirrors are exactly perpendicular to each 
other, the interference pattern is a target pattern of bright and dark circular 
fringes. As M1 is moved, the fringe pattern collapses or expands, depending on 
the direction in which M1 is moved. For example, if a dark circle appears at the 
center of the target pattern (corresponding to destructive interference) and M1 
is then moved a distance l/4 toward M0, the path difference changes by l/2. 
What was a dark circle at the center now becomes a bright circle. As M1 is moved 
an additional distance l/4 toward M0, the bright circle becomes a dark circle 
again. Therefore, the fringe pattern shifts by one-half fringe each time M1 is 
moved a distance l/4. The wavelength of light is then measured by counting 
the number of fringe shifts for a given displacement of M1. If the wavelength is 
accurately known, mirror displacements can be measured to within a fraction of 
the wavelength.

We will see an important historical use of the Michelson interferometer in our 
discussion of relativity in Chapter 38. Modern uses include the following two appli-
cations, Fourier transform infrared spectroscopy and the laser interferometer 
 gravitational-wave observatory.

fourier Transform infrared spectroscopy
Spectroscopy is the study of the wavelength distribution of radiation from a sam-
ple that can be used to identify the characteristics of atoms or molecules in the 
sample. Infrared spectroscopy is particularly important to organic chemists when 
analyzing organic molecules. Traditional spectroscopy involves the use of an opti-
cal element, such as a prism (Section 34.4) or a diffraction grating (Section 37.4), 
either of which spreads out various wavelengths in a complex optical signal from 
the sample into different angles. In this way, the various wavelengths of radiation 
and their intensities in the signal can be determined. These types of devices are 
limited in their resolution and effectiveness because they must be scanned through 
the various angular deviations of the radiation.

The technique of Fourier transform infrared (FTIR) spectroscopy is used to cre-
ate a higher-resolution spectrum in a time interval of 1 second that may have 
required 30 minutes with a standard spectrometer. In this technique, the radi-
ation from a sample enters a Michelson interferometer. The movable mirror is 
swept through the zero-path-difference condition, and the intensity of radiation 
at the viewing position is recorded. The result is a complex set of data relating 
light intensity as a function of mirror position, called an interferogram. Because 
there is a relationship between mirror position and light intensity for a given 

Figure 36.13 Diagram of the 
Michelson interferometer.

The path difference between 
the two rays is varied with the 
adjustable mirror M1.

A single ray of light is 
split into two rays by 
mirror M0, which is 
called a beam splitter.

M0

M2

M1

Light
source

Telescope

As M1 is moved, an 
interference 
pattern changes in 
the field of view.

L2

L1
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    36.6 The Michelson Interferometer 975

wavelength, the interferogram contains information about all wavelengths in 
the signal.

In Section 17.8, we discussed Fourier analysis of a waveform. The waveform 
is a function that contains information about all the individual frequency com-
ponents that make up the waveform.3 Equation 17.14 shows how the waveform is 
generated from the individual frequency components. Similarly, the interfero-
gram can be analyzed by computer, in a process called a Fourier transform, to 
provide all the wavelength components. This information is the same as that 
generated by traditional spectroscopy, but the resolution of FTIR spectroscopy 
is much higher.

laser interferometer Gravitational-Wave observatory
Einstein’s general theory of relativity (Section 38.9) predicts the existence of gravi-
tational waves. These waves propagate from the site of any gravitational disturbance, 
which could be periodic and predictable, such as the rotation of a double star 
around a center of mass, or unpredictable, such as the supernova explosion of a 
massive star.

In Einstein’s theory, gravitation is equivalent to a distortion of space. Therefore, 
a gravitational disturbance causes an additional distortion that propagates through 
space in a manner similar to mechanical or electromagnetic waves. When grav-
itational waves from a disturbance pass by the Earth, they create a distortion of 
the local space. The laser interferometer gravitational-wave observatory (LIGO) 
apparatus is designed to detect this distortion. The apparatus employs a Michel-
son interferometer that uses laser beams with an effective path length of several 
kilometers. At the end of an arm of the interferometer, a mirror is mounted on a 
massive pendulum. When a gravitational wave passes by, the pendulum and the 
attached mirror move and the interference pattern due to the laser beams from the 
two arms changes.

Two sites for interferometers have been developed in the United States—in 
Richland, Washington, and in Livingston, Louisiana—to allow coincidence studies 
of gravitational waves. Figure 36.14 shows the Washington site. The two arms of the 
Michelson interferometer are evident in the photograph. 

Despite the difficulties in detecting the very weak gravitational waves, the excit-
ing announcement was made on 11 February 2016 that both the Washington and 
Louisiana sites had detected a gravitational wave on 14 September 2015. Analysis 
showed that the wave came from two massive black holes over 1 billion light-years 
away rotating around each other rapidly and then merging. Three solar masses 
of their combined mass was radiated away as gravitational waves. Estimates show 
that the peak power output of the event was about 50 times the power of the entire 
observable universe. Additional black-hole collisions were announced by LIGO in 
June 2016 and June 2017.
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Figure 36.14  The Laser Interfer-
ometer Gravitational-Wave Obser-
vatory (LIGO) near Richland, 
Washington. Notice the two per-
pendicular arms of the Michelson 
interferometer.

3In acoustics, it is common to talk about the components of a complex signal in terms of frequency. In optics, it is 
more common to identify the components by wavelength.
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summary
 › Concepts and Principles

Interference in light waves occurs 
whenever two or more waves over-
lap at a given point. An inter-
ference pattern is observed if 
(1)  the sources are coherent and 
(2) the sources have identical 
wavelengths.

The intensity at a point in a double-slit interference pattern is

 I 5 I max cos2 Spd sin u
l

D (36.9)

where Imax is the maximum intensity on the screen and the expression represents the 
time average.

A wave traveling from a medium 
of index of refraction n1 toward a 
medium of index of refraction n2 
undergoes a 1808 phase change 
upon reflection when n2 . n1 and 
undergoes no phase change when 
n2 , n1.

The condition for constructive interference in a film of thickness t and index of refraction 
n surrounded by air is

 2nt 5 sm 1 1
2dl m 5 0, 1, 2, Á  (36.12)

where l is the wavelength of the light in free space.
 Similarly, the condition for destructive interference in a thin film surrounded by air is

 2nt 5 ml    m 5 0, 1, 2, . . . (36.13)

 › Analysis Models for Problem Solving

Waves in Interference. Young’s double-slit experiment serves as a proto-
type for interference phenomena involving electromagnetic radiation. In 
this experiment, two slits separated by a distance d are illuminated by a sin-
gle-wavelength light source. The condition for bright fringes (constructive 
interference) is

 d sin ubright 5 ml    m 5 0, 61, 62, . . . (36.2)

The condition for dark fringes (destructive interference) is

 d sin udark 5 sm 1 1
2dl m 5 0, 61, 62, Á  (36.3)

The number m is called the order number of the fringe.

u

d sin u

Think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your group is studying the instrument landing system used to 
guide aircraft to safe landings at some airports when the 
visibility is poor. It turns out that Young’s double-slit exper-
iment is used in this system. A pilot is trying to align her 
plane with a runway as suggested in Figure TP36.1. Two 
radio antennas (the black dots in the figure) are positioned 
adjacent to the runway, separated by a distance d 5 40.0 m. 
The antennas broadcast unmodulated coherent radio waves 
at 30.0 MHz. The red lines in Figure TP36.1 represent paths 
along which maxima in the interference pattern of the 
radio waves exist. (a) Find the wavelength of these waves. 
The pilot “locks onto” the strong signal radiated along an 
interference maximum and steers the plane to keep the 
received signal strong. If she has found the central maxi-
mum, the plane will have precisely the correct heading to 
land when it reaches the runway, as exhibited by plane A 

in Figure TP36.1. (b) What If? Suppose the plane is flying 
along the first side maximum instead as is the case for plane 
B in the figure. How far to the side of the runway center-
line will the plane be when it is 2.00 km from the antennas, 

A 

B

d

Figure TP36.1
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measured along its direction of travel? (c) It is possible to 
tell the pilot that she is on the wrong maximum by sending 
out a second signal from each antenna and equipping the 
aircraft with a two-channel receiver. The ratio of the second 
frequency to that of the first must not be the ratio of small 
integers (such as 3

4). Explain how this two-frequency system 
would work and why it would not necessarily work if the fre-
quencies were related by an integer ratio.

2. Your group is working in an optoelectronics laboratory. 
Your supervisor has given you the following technical task. 
A sheet of transparent plastic having an index of refraction 
n and thickness t is placed between the upper slit and the 
screen in an orientation such that the light passes through 
the plastic perpendicularly to its surfaces as shown in Fig-
ure TP36.2. When this is done, the central maximum of the 
interference pattern moves upward on the screen by a dis-
tance y9. Your supervisor asks your group to investigate this 

situation and determine an expression for the distance y9 in 
terms of d, L, n, and t.

3. ACTIvITY  Your team is working for a chemical company. 
Your supervisor asks you to perform an experiment to mea-
sure the evaporation rate dV/dt of ethanol in mL/s. The 
physical setup is as follows. A sample of ethanol fills a shal-
low glass dish of radius r 5 5.00 cm. A laser of wavelength 
632.8 nm is placed above the dish, with the beam directed 
downward so that the laser beam strikes the surface of the 
ethanol at near-normal incidence. Next to the laser is a 
detector system that generates a graph of the intensity of 
the reflected light as a function of time, as shown in Fig-
ure  TP36.3. The thin layer of ethanol acts as a thin film, 
so that the intensity of reflected light varies in time due to 
interference effects as the thickness of the layer decreases 
due to evaporation. The index of refraction of ethanol 
is 1.361.

m � 0

Viewing screen

Plastic
sheet

L

d

y�

u

d

Figure TP36.2

I

t (min)
0 0.5 1 1.5 2 2.5 3 3.5

Figure TP36.3

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

secTion 36.2 Analysis Model: Waves in Interference

Problems 1, 4, and 6 and online problems 17.2 and 17.4 in 
Chapter 17 can be assigned with this section.

1. Two slits are separated by 0.320 mm. A beam of 500-nm  
light strikes the slits, producing an interference pattern. 
Determine the number of maxima observed in the angular 
range 230.08 , u , 30.08.

2. Why is the following situation impossible? Two narrow slits are 
separated by 8.00 mm in a piece of metal. A beam of micro-
waves strikes the metal perpendicularly, passes through 
the two slits, and then proceeds toward a wall some dis-
tance away. You know that the wavelength of the radiation 
is 1.00 cm 65%, but you wish to measure it more precisely. 
Moving a microwave detector along the wall to study the 
interference pattern, you measure the position of the m 5 1 
bright fringe, which leads to a successful measurement of 
the wavelength of the radiation.

3. A laser beam is incident on two slits with a separation of 
0.200 mm, and a screen is placed 5.00 m from the slits. An 
interference pattern appears on the screen. If the angle 
from the center fringe to the first bright fringe to the side is 
0.1818, what is the wavelength of the laser light?

4. In a Young’s double-slit experiment, two parallel slits with a 
slit separation of 0.100 mm are illuminated by light of wave-
length 589 nm, and the interference pattern is observed on 
a screen located 4.00 m from the slits. (a) What is the differ-
ence in path lengths from each of the slits to the location of 
the center of a third-order bright fringe on the screen? (b) 
What is the difference in path lengths from the two slits to 
the location of the center of the third dark fringe away from 
the center of the pattern?

5. Light of wavelength 620 nm falls on a double slit, and the 
first bright fringe of the interference pattern is seen at 
an angle of 15.08 with the horizontal. Find the separation 
between the slits.

6. Light with wavelength 442 nm passes through a double-slit 
system that has a slit separation d 5 0.400 mm. Determine 
how far away a screen must be placed so that dark fringes 
appear directly opposite both slits, with only one bright 
fringe between them.

7. A student holds a laser that emits light of wavelength 
632.8 nm. The laser beam passes through a pair of slits sep-
arated by 0.300 mm, in a glass plate attached to the front of 
the laser. The beam then falls perpendicularly on a screen, 
creating an interference pattern on it. The student begins 
to walk directly toward the screen at 3.00 m/s. The central 
maximum on the screen is stationary. Find the speed of the 
50th-order maxima on the screen.

 Problems 977
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8. A student holds a laser that emits light of wavelength l. The 
laser beam passes through a pair of slits separated by a dis-
tance d, in a glass plate attached to the front of the laser. 
The beam then falls perpendicularly on a screen, creating 
an interference pattern on it. The student begins to walk 
directly toward the screen at speed v. The central maximum 
on the screen is stationary. Find the speed of the mth-order 
maxima on the screen, where m can be very large.

9. Coherent light rays of wavelength l strike a pair of slits sepa-
rated by distance d at an angle u1 with respect to the normal 
to the plane containing the slits as shown in Figure P36.9. 
The rays leaving the slits make an angle u2 with respect to 
the normal, and an interference maximum is formed by 
those rays on a screen that is a great distance from the slits. 
Show that the angle u2 is given by

u2 5 sin21 Ssin u1 2
ml

d D
where m is an integer.

10. In Figure P36.10 (not to scale), let L 5 1.20 m and d 5 
0.120  mm and assume the slit system is illuminated with 
monochromatic 500-nm light. Calculate the phase differ-
ence between the two wave fronts arriving at P when (a) u 5 
0.5008 and (b) y 5 5.00 mm. (c) What is the value of u for 
which the phase difference is 0.333 rad? (d) What is the 
value of u for which the path difference is l/4?

11. You are working in an optical research laboratory. One of 
your projects involves the use of a double slit through which 
you pass orange laser light of wavelength 590 nm. Unfortu-
nately, because of budget cuts, there are a lot of research-
ers in the same room, with lots of equipment stuffed in the 
room, and, in particular, lots of laser beams flying around 
the room. One day, you find that a second laser beam of 
unknown origin and different color is entering your dou-
ble slit along with your orange beam and you are seeing an 

interference pattern that is the sum of those due to the two 
beams. You notice that the combined pattern is pretty much 
a mess, but wait! The m 5 3 maximum of your orange laser 
beam pattern is pure; there is absolutely no mixture of the 
other color at that point. From this fact, you determine the 
wavelength of the offending laser light so that you can fig-
ure out which other researcher to ask to modify the aiming 
of his laser.

12. You are operating a new radio telescope that has been 
installed on a tall cliff facing the ocean. You begin the test-
ing of the telescope by facing the antenna toward the ocean, 
setting its receiving wavelength to 125 m, and sweeping its 
direction slowly from horizontal to straight up in the sky. 
Each sweep takes about an hour. When you review the data, 
you notice that the antenna received no signals when aimed 
at a certain angle above the horizontal. You continue to take 
data beginning at the same time each night and discover 
that the angle at which no signals are detected varies from 
night to night. Over a full month, the angle at which no sig-
nals are detected varies from 24.58 to 25.78. You finally fig-
ure out that the loss of signal is due to destructive interfer-
ence caused by the reflection of radio waves from the ocean 
surface, and the monthly variation is due to the changes 
caused by ocean tides. You inform the local oceanographic 
institute that you have a novel method of measuring tides. 
To verify your results, the institute asks for the variation in 
the heights of the tides during the previous month.

13. In the double-slit arrangement of Figure P36.13, d  5 
0.150  mm, L 5 140 cm, l 5 643 nm, and y 5 1.80 cm. 
(a) What is the path difference d for the rays from the two 
slits arriving at P? (b) Express this path difference in terms 
of l. (c) Does P correspond to a maximum, a minimum, or 
an intermediate condition? Give evidence for your answer.

14. Monochromatic light of wavelength l is incident on a pair 
of slits separated by 2.40 3 1024 m and forms an interfer-
ence pattern on a screen placed 1.80 m from the slits. The 
first-order bright fringe is at a position ybright 5 4.52  mm 
measured from the center of the central maximum. From 
this information, we wish to predict where the fringe for  
n 5 50 would be located. (a) Assuming the fringes are laid 
out linearly along the screen, find the position of the n 5 
50 fringe by multiplying the position of the n 5 1 fringe by 
50.0. (b) Find the tangent of the angle the first-order bright 
fringe makes with respect to the line extending from the 
point midway between the slits to the center of the central 
maximum. (c) Using the result of part (b) and Equation 36.2,  
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calculate the wavelength of the light. (d) Compute the 
angle for the 50th-order bright fringe from Equation 36.2. 
(e) Find the position of the 50th-order bright fringe on the 
screen from Equation 36.5. (f) Comment on the agreement 
between the answers to parts (a) and (e).

secTion 36.3 Intensity Distribution of the Double-Slit 
Interference Pattern

15. Show that the two waves with wave functions given by E1 5 
6.00 sin (100pt) and E2 5 8.00 sin (100pt 1 p/2) add to give 
a wave with the wave function ER sin (100pt 1 f). Find the 
required values for ER and f.

16. Show that the distribution of intensity in a double-slit pat-
tern is given by Equation 36.9. Begin by assuming that the 
total magnitude of the electric field at point P on the screen 
in Figure 36.4 is the superposition of two waves, with elec-
tric field magnitudes

E1 5 E0 sin vt         E2 5 E0 sin (vt 1 f)

The phase angle f in E2 is due to the extra path length trav-
eled by the lower beam in Figure 36.4. Recall from Equation 
33.27 that the intensity of light is proportional to the square 
of the amplitude of the electric field. In addition, the appar-
ent intensity of the pattern is the time-averaged intensity 
of the electromagnetic wave. You will need to evaluate the 
integral of the square of the sine function over one period. 
Refer to Figure 32.5 for an easy way to perform this evalua-
tion. You will also need the trigonometric identity

sin A 1 sin B 5 2 sin1A 1 B
2 2 cos1A 2 B

2 2
17. Green light (l 5 546 nm) illuminates a pair of narrow, par-

allel slits separated by 0.250 mm. Make a graph of I/Imax as 
a function of u for the interference pattern observed on a 
screen 1.20 m away from the plane of the parallel slits. Let u 
range over the interval from 20.38 to 10.38.

18. Monochromatic coherent light of amplitude E0 and angular 
frequency v passes through three parallel slits, each sepa-
rated by a distance d from its neighbor. (a) Show that the 
time-averaged intensity as a function of the angle u is

I sud 5 I max 31 1 2 cos S2pd sin u
l

D42

(b) Explain how this expression describes both the primary 
and the secondary maxima. (c) Determine the ratio of the 
intensities of the primary and secondary maxima. Hint: See 
Problem 16.

secTion 36.5 Interference in Thin Films

19. A material having an index of refraction of 1.30 is used as 
an antireflective coating on a piece of glass (n 5 1.50). What 
should the minimum thickness of this film be to minimize 
reflection of 500-nm light?

20. A soap bubble (n 5 1.33) floating in air has the shape of 
a spherical shell with a wall thickness of 120 nm. (a) What 
is the wavelength of the visible light that is most strongly 
reflected? (b) Explain how a bubble of different thickness 
could also strongly reflect light of this same wavelength. 
(c)  Find the two smallest film thicknesses larger than 
120  nm that can produce strongly reflected light of the 
same wavelength.

21. A film of MgF2 (n 5 1.38) having thickness 1.00 3 1025 cm 
is used to coat a camera lens. (a) What are the three lon-
gest wavelengths that are intensified in the reflected light? 
(b) Are any of these wavelengths in the visible spectrum?

22. An oil film (n 5 1.45) floating on water is illuminated by 
white light at normal incidence. The film is 280 nm thick. 
Find (a) the wavelength and color of the light in the visible 
spectrum most strongly reflected and (b) the wavelength 
and color of the light in the spectrum most strongly trans-
mitted. Explain your reasoning.

23. When a liquid is introduced into the air space between the 
lens and the plate in a Newton’s-rings apparatus, the diame-
ter of the tenth ring changes from 1.50 to 1.31 cm. Find the 
index of refraction of the liquid.

24. You are working as an expert witness for an attorney who is 
suing a shipping company. The company operates ships that 
carry crude oil across the oceans. One ship suffered an oil 
spill, in which the spilled oil spreads out into a slick, forming 
a thin film that floats on the ocean surface. The legal issue 
is whether or not the ship spilled more or less than a volume 
of 10.0 m3 of oil into the ocean. You are reading documents 
that describe the oil slick on the ocean surface. In one doc-
ument, you find out that reflection tests were performed 
on the oil slick. These tests showed that the ocean surface 
showed a maximum of interference for 500-nm light over a 
circular area of radius 4.25 km surrounding the location at 
which the spill occurred. At distances farther from the loca-
tion, the ocean surface showed no constructive interference, 
indicating that no oil was present. The type of oil involved 
has an index of refraction of n 5 1.25. Determine for the 
attorney the minimum amount of oil that was spilled.

25. Astronomers observe the chromosphere of the Sun with a fil-
ter that passes the red hydrogen spectral line of wavelength 
656.3 nm, called the H

a
 line. The filter consists of a transpar-

ent dielectric of thickness d held between two partially alumi-
nized glass plates. The filter is held at a constant temperature. 
(a) Find the minimum value of d that produces maximum 
transmission of perpendicular H

a
 light if the dielectric has 

an index of refraction of 1.378. (b) What If? If the tempera-
ture of the filter increases above the normal value, increasing 
its thickness, what happens to the transmitted wavelength? 
(c) The dielectric will also pass what near-visible wavelength? 
One of the glass plates is colored red to absorb this light.

26. A lens made of glass (ng 5 1.52) is coated with a thin film of 
MgF2 (ns 5 1.38) of thickness t. Visible light is incident nor-
mally on the coated lens as in Figure P36.26. (a) For what 
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980 Chapter 36 Wave Optics

minimum value of t will the reflected light of wavelength 
540 nm (in air) be missing? (b) Are there other values of 
t that will minimize the reflected light at this wavelength? 
Explain.

secTion 36.6 The Michelson Interferometer

27. Mirror M1 in Figure 36.13 is moved through a displacement 
DL. During this displacement, 250 fringe reversals (forma-
tion of successive dark or bright bands) are counted. The 
light being used has a wavelength of 632.8  nm. Calculate 
the displacement DL.

AddiTionAl PRobleMs

28. Radio transmitter A operating at 60.0 MHz is 10.0 m from 
another similar transmitter B that is 1808 out of phase with 
A. How far must an observer move from A toward B along 
the line connecting the two transmitters to reach the near-
est point where the two beams are in phase?

29. In an experiment similar to that of Example 36.1, green light 
with wavelength 560 nm, sent through a pair of slits 30.0 mm 
apart, produces bright fringes 2.24 cm apart on a screen 
1.20 m away. If the apparatus is now submerged in a tank 
containing a sugar solution with index of refraction 1.38, 
calculate the fringe separation for this same arrangement.

30. In the What If? section of Example 36.2, it was claimed that 
overlapping fringes in a two-slit interference pattern for two 
different wavelengths obey the following relationship even 
for large values of the angle u:

m9

m
5

l

l9

(a) Prove this assertion. (b) Using the data in Example 
36.2, find the nonzero value of y on the screen at which the 
fringes from the two wavelengths first coincide.

31. Two coherent waves, coming from sources at different loca-
tions, move along the x axis. Their wave functions are

E 1 5 860 sin 32px1

650
2 924pt 1

p

64
and

E 2 5 860 sin 32px2

650
2 924pt 1

p

84
where E1 and E2 are in volts per meter, x1 and x2 are in nano-
meters, and t is in picoseconds. When the two waves are 
superposed, determine the relationship between x1 and x2 
that produces constructive interference.

32. Raise your hand and hold it flat. Think of the space between 
your index finger and your middle finger as one slit and 
think of the space between middle finger and ring finger as 
a second slit. (a) Consider the interference resulting from 
sending coherent visible light perpendicularly through this 
pair of openings. Compute an order-of-magnitude estimate 
for the angle between adjacent zones of constructive inter-
ference. (b) To make the angles in the interference pattern 
easy to measure with a plastic protractor, you should use an 
electromagnetic wave with frequency of what order of mag-
nitude? (c) How is this wave classified on the electromag-
netic spectrum?

33. In a Young’s double-slit experiment using light of wave-
length l, a thin piece of Plexiglas having index of refraction 
n covers one of the slits. If the center point on the screen is 
a dark spot instead of a bright spot, what is the minimum 
thickness of the Plexiglas?

34. Review. A flat piece of glass is held stationary and horizon-
tal above the highly polished, flat top end of a 10.0-cm-long 
vertical metal rod that has its lower end rigidly fixed. The 
thin film of air between the rod and glass is observed to be 
bright by reflected light when it is illuminated by light of 
wavelength 500 nm. As the temperature is slowly increased 
by 25.08C, the film changes from bright to dark and back to 
bright 200 times. What is the coefficient of linear expansion 
of the metal?

35. Figure P36.35 shows a radio-wave transmitter and a receiver 
separated by a distance d 5 50.0 m and both a distance 
h 5 35.0 m above the ground. The receiver can receive sig-
nals both directly from the transmitter and indirectly from 
signals that reflect from the ground. Assume the ground is 
level between the transmitter and receiver and a 1808 phase 
shift occurs upon reflection. Determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.

36. Figure P36.35 shows a radio-wave transmitter and a receiver 
separated by a distance d and both a distance h above the 
ground. The receiver can receive signals both directly from 
the transmitter and indirectly from signals that reflect 
from the ground. Assume the ground is level between the 
transmitter and receiver and a 1808 phase shift occurs upon 
reflection. Determine the longest wavelengths that interfere 
(a) constructively and (b) destructively.

37. In a Newton’s-rings experiment, a plano-convex glass  
(n 5 1.52) lens having radius r 5 5.00 cm is placed on a 
flat plate as shown in Figure P36.37. When light of wave-
length l 5 650 nm is incident normally, 55 bright rings are 
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observed, with the last one precisely on the edge of the lens. 
(a) What is the radius R of curvature of the convex surface 
of the lens? (b) What is the focal length of the lens?

38. Measurements are made of the intensity distribution within 
the central bright fringe in a Young’s interference pattern 
(see Fig. 36.5). At a particular value of y, it is found that  
I/Imax 5 0.810 when 600-nm light is used. What wavelength 
of light should be used to reduce the relative intensity at the 
same location to 64.0% of the maximum intensity?

39. A plano-concave lens having index of refraction 1.50 is 
placed on a flat glass plate as shown in Figure P36.39. Its 
curved surface, with radius of curvature 8.00 m, is on the 
bottom. The lens is illuminated from above with yellow 
sodium light of wavelength 589 nm, and a series of concen-
tric bright and dark rings is observed by reflection. The 
interference pattern has a dark spot at the center that is sur-
rounded by 50 dark rings, the largest of which is at the outer 
edge of the lens. (a) What is the thickness of the air layer 
at the center of the interference pattern? (b) Calculate the 
radius of the outermost dark ring. (c) Find the focal length 
of the lens.

40. Why is the following situation impossible? A piece of transpar-
ent material having an index of refraction n 5 1.50 is cut 
into the shape of a wedge as shown in Figure P36.40. Both 
the top and bottom surfaces of the wedge are in contact 
with air. Monochromatic light of wavelength l 5 632.8 nm 
is normally incident from above, and the wedge is viewed 
from above. Let h 5 1.00 mm represent the height of the 
wedge and , 5 0.500 m its length. A thin-film interference 
pattern appears in the wedge due to reflection from the top 
and bottom surfaces. You have been given the task of count-
ing the number of bright fringes that appear in the entire 
length , of the wedge. You find this task tedious, and your 
concentration is broken by a noisy distraction after accu-
rately counting 5 000 bright fringes.

41. Interference fringes are produced using Lloyd’s mirror 
and a source S of wavelength l 5 606 nm as shown in Fig-
ure P36.41. Fringes separated by Dy 5 1.20 mm are formed 
on a screen a distance L 5 2.00 m from the source. Find the 
vertical distance h of the source above the reflecting surface.

42. A plano-convex lens has index of refraction n. The curved 
side of the lens has radius of curvature R and rests on a flat 
glass surface of the same index of refraction, with a film of 
index nfilm between them, as shown in Figure P36.42. The 
lens is illuminated from above by light of wavelength l. 
Show that the dark Newton’s rings have radii given approx-
imately by

r < ÎmlR
n film

where r ,, R and m is an integer.

43. You are working for an electronics company that designs 
and manufactures digital drives and players. Your supervi-
sor wishes to evaluate the feasibility of using shorter-wave-
length lasers than those used in Blu-ray Discs (405 nm) to 
try to begin a new video revolution with Ultraviolet-ray discs. 
Figure P36.43 shows the general idea behind digital reading 
of CDs, DVDs, and Blu-ray Discs. The information is coded 
digitally in a plastic substrate of index of refraction 1.78 
(green in Figure P36.43). Figure P36.43 shows areas called 
flats, which are undisturbed portions of the substrate, and 
pits, which are depressions in the substrate that represent 
the digital information. The surface of the substrate is 
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982 Chapter 36 Wave Optics

covered with a protective reflective coating (gray in Figure 
P36.43) to protect the surface from scratches. As the disc 
rotates, the laser beam, shown in violet coming in from 
below the disc, passes over a track of flats and pits. When 
there is a change from a flat to a pit or vice versa, part of the 
laser beam reflects from the flat and part from the pit, as 
shown in the figure. The depth of the pit is designed so that 
the reflections of the two halves of the laser beam from the 
flat and pit undergo destructive interference. Your supervi-
sor wishes to use a laser with a vacuum wavelength of 200 
nm. The optimal pit depth is as small as possible, but not 
less than the manufacturing limitation of 0.1 mm. He asks 
you to determine the minimum appropriate pit depth for an 
Ultraviolet-ray disc.

44. The quantity nt in Equations 36.12 and 36.13 is called the 
optical path length corresponding to the geometrical distance 
t and is analogous to the quantity d in Equation 36.1, the 
path difference. The optical path length is proportional to 
n because a larger index of refraction shortens the wave-
length, so more cycles of a wave fit into a particular geomet-
rical distance. (a) Assume a mixture of corn syrup and water 
is prepared in a tank, with its index of refraction n increas-
ing uniformly from 1.33 at y 5 20.0 cm at the top to 1.90 at 
y 5 0. Write the index of refraction n(y) as a function of y. 
(b) Compute the optical path length corresponding to the 
20.0-cm height of the tank by calculating

#
20 cm

0
 nsyddy

(c) Suppose a narrow beam of light is directed into the mix-
ture at a nonzero angle with respect to the normal to the 
surface of the mixture. Qualitatively describe its path.

45. Astronomers observe a 60.0-MHz radio source both directly 
and by reflection from the sea as shown in Figure P36.45. If 
the receiving dish is 20.0 m above sea level, what is the angle 
of the radio source above the horizon at first maximum?

chAllenGe PRobleMs

46. A plano-convex lens having a radius of curvature of r 5 
4.00  m is placed on a concave glass surface whose radius 
of curvature is R 5 12.0 m as shown in Figure P36.46. 

Assuming 500-nm light is incident normal to the flat 
surface of the lens, determine the radius of the 100th 
bright ring.

47. Our discussion of the techniques for determining construc-
tive and destructive interference by reflection from a thin 
film in air has been confined to rays striking the film at 
nearly normal incidence. What If? Assume a ray is incident 
at an angle of 30.08 (relative to the normal) on a film with 
index of refraction 1.38 surrounded by vacuum. Calculate 
the minimum thickness for constructive interference of 
sodium light with a wavelength of 590 nm.

48. The condition for constructive interference by reflection 
from a thin film in air as developed in Section 36.5 assumes 
nearly normal incidence. What If? Suppose the light is inci-
dent on the film at a nonzero angle u1 (relative to the nor-
mal). The index of refraction of the film is n, and the film 
is surrounded by vacuum. Find the condition for construc-
tive interference that relates the thickness t of the film, the 
index of refraction n of the film, the wavelength l of the 
light, and the angle of incidence u1.

49. Both sides of a uniform film that has index of refraction 
n and thickness d are in contact with air. For normal inci-
dence of light, an intensity minimum is observed in the 
reflected light at l2 and an intensity maximum is observed 
at l1, where l1 . l2. (a) Assuming no intensity minima are 
observed between l1 and l2, find an expression for the inte-
ger m in Equations 36.12 and 36.13 in terms of the wave-
lengths l1 and l2. (b) Assuming n 5 1.40, l1 5 500 nm, and 
l2 5 370 nm, determine the best estimate for the thickness 
of the film.

50. Slit 1 of a double-slit is wider than slit 2 so that the light from 
slit 1 has an amplitude exactly 3 times that of the light from 
slit 2. Show that Equation 36.9 is replaced by the following 
equation for this situation:

I 5 I
 max 31 1 3 cos2 1pd sin u

l 24
Begin by assuming that the total magnitude of the electric 
field at point P on the screen in Figure 36.4 is the superposi-
tion of two waves, with electric field magnitudes

E1 5 3E0 sin vt          E2 5 E0 sin (vt 1 f)

The phase angle f in E2 is due to the extra path length 
traveled by the lower beam in Figure 36.4. You will need to 
evaluate the integral of the square of the sine function over 
one period. Refer to Figure 32.5 for an easy way to perform 
this evaluation. You might find the following trigonometric 
identities helpful:

 sin A 1  sin B 5 2 sin 1A 1 B
2 2 cos 1A 2 B

2 2
 sin (A 1 B) 5  sin A cos B 1 cos A sin B

 cos A 5 2 cos2 1A
 22 2 1
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Storyline You are in a football stadium, watching the marching 
band doing their pre-game performance. As the band marches toward your posi-
tion, you enjoy the rich, well-blended music. Then the band turns around and 
marches away from you, and you say, “Wait a minute!” You can still hear the clar-
inets and saxophones, but the trumpets and trombones have become very quiet. 
Why does that happen? You are determined to keep your mind on football today, 
so you set that phenomenon aside. You sit back in your seat and, while waiting 
for the game to start, you put on your polarized sunglasses. You try to ignore the 
nagging question in your mind about why sunglasses should be polarized. The 
fact that it must have something to do with physics creeps into your mind, and 
you pull out a pencil and a piece of paper. The football game begins, but you are 
drawing diagrams of waves.

ConneCtions In Chapter 34, we briefly introduced the notion of diffrac-
tion, a phenomenon that occurs when waves pass through an aperture or past 
an edge. In Chapter 36, we began our investigation into physical optics, in which 
we study the particular phenomena that occur due to the wave nature of light. 
Diffraction was important to the understanding of interference from double slits 
in that chapter. In this chapter, we will extend those discussions and expand our 
understanding of diffraction. We will also study the interesting phenomenon of 
polarization, which is important for light waves, but impossible for sound waves. 
In our discussion of quantum physics in Chapter 39, we will need the understand-
ing of diffraction, because we find that particles will also diffract and interfere 
when they pass through apertures!

37.1 Introduction to 
Diffraction Patterns

37.2 Diffraction Patterns 
from Narrow Slits

37.3 Resolution of  
Single-Slit and  
Circular Apertures

37.4 The Diffraction Grating

37.5 Diffraction of X-Rays  
by Crystals

37.6 Polarization of Light 
Waves

Diffraction Patterns and Polarization 37

Listen carefully to the sound of the brass instruments next time you see a marching band. 
Compare how they sound when they are facing you to how they sound when facing away.  
(Mark Herreid/Shutterstock)
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984 Chapter 37 Diffraction Patterns and Polarization

   37.1    Introduction to Diffraction Patterns
In Sections 34.2 and 36.1, we discussed that light of wavelength comparable 
to or larger than the width of a slit in a barrier spreads out in all directions 
beyond the barrier upon passing through the slit. This phenomenon is called 
diffraction. Other waves, such as sound waves and water waves, also have this 
property of spreading when passing through apertures or by sharp edges.

Based on this spreading of light as it passes through an opening, you might 
expect that the light passing through a small opening would simply result in 
a broad region of light on a screen. We find something more interesting, how-
ever. A diffraction pattern consisting of light and dark areas is observed, like 
that shown in Figure 37.1, and somewhat similar to the interference patterns 
discussed earlier. The pattern consists of a broad, intense central band (called 

the central maximum) flanked by a series of narrower, less intense additional 
bands (called side maxima or secondary maxima) and a series of intervening dark 
bands (or minima). Figure 37.2 shows a diffraction pattern associated with light 
passing by the edge of an object. Again we see bright and dark fringes, which is 
reminiscent of an interference pattern.

The wave–particle controversy about the nature of light, described at the begin-
ning of Chapter 34, continued, even after Thomas Young’s interference experiment 
in 1801. In 1818, a competition was established by the French Academy of Science to 
establish the true nature of light. One of the supporters of ray optics, Simeon Poisson, 
argued that if a new wave theory of light proposed by Augustin Fresnel for the compe-
tition were valid, a central bright spot should be observed in the shadow of a circular 
object illuminated by a point source of light. Light arriving at all points around the 
edge of the object would diffract inward into the shadow region (as well as outward to 
points outside the shadow). Because the center is equidistant from all points on the 
edge, the light from all points would interfere constructively there, causing a bright 
spot. Poisson considered this possibility to be absurd, because, in the particle theory, 
the particles of light would be blocked by the object. Furthermore, such a bright spot 
had never been observed. Dominique-François-Jean Arago, who was the head of the 
committee for the competition, performed the experiment suggested by Poisson and, 
much to Poisson’s astonishment, observed the bright spot at the center of the shadow!

Figure 37.3 shows a modern version of this experiment using a penny and a laser. 
The bright spot is visible at the center of the shadow of the penny. In addition, we 
see several circular fringes extending outward from the edge of the shadow.

Figure 37.3  Diffraction pattern 
created by the illumination of a 
penny with a laser, with the penny 
positioned midway between the 
screen and laser.

Notice the bright spot at 
the center.
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Figure 37.2  Light from a small source passes by the edge of an 
opaque object and continues on to a screen. A diffraction pattern 
consisting of bright and dark fringes appears on the screen in the 
region above the edge of the object.

Figure 37.1  The diffraction pattern 
that appears on a screen when light 
passes through a narrow vertical slit. 
The pattern consists of a broad cen-
tral fringe and a series of less intense 
and narrower side fringes.
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    37.2 Diffraction Patterns from Narrow Slits 985

   37.2    Diffraction Patterns from Narrow Slits
We understand an interference pattern produced by the interference of light from 
two separate slits. But how do we obtain a similar pattern of light and dark fringes 
from a single slit? Let’s consider light passing through a narrow opening modeled 
as a slit and projected onto a screen that is far away. (This situation can also be 
achieved experimentally by using a converging lens to focus the parallel rays on 
a nearby screen.) In this model, the pattern on the screen is called a Fraunhofer 
diffraction pattern.1

Figure 37.4a shows light entering a single slit from the left and diffracting as it 
propagates toward a screen. Figure 37.4b shows the fringe structure of a Fraun-
hofer diffraction pattern. A bright fringe is observed along the axis at u 5 0, with 
alternating dark and bright fringes on each side of the central bright fringe.

Until now, we have assumed slits are point sources of light. In this section, we 
abandon that assumption and see how the finite width of slits is the basis for under-
standing Fraunhofer diffraction. We can explain some important features of this 
phenomenon by examining waves coming from various portions of the slit as shown 
in Figure 37.5. According to Huygens’s principle, each portion of the slit acts as a 
source of light waves. Hence, light from one portion of the slit can interfere with 
light from another portion, and the resultant light intensity on a viewing screen 
depends on the direction u. Based on this analysis, we recognize that a diffraction 
pattern is actually an interference pattern in which the different sources of light are 
different portions of the single slit! Therefore, the diffraction patterns we discuss 
in this chapter are applications of the waves in interference analysis model.

To analyze the diffraction pattern, let’s divide the slit into two halves as shown 
in Figure 37.5. Keeping in mind that all the waves are in phase as they leave the 
slit, consider rays 1 and 3. As these two rays travel toward a viewing screen far to 
the right of the figure, ray 1 travels farther than ray 3 by an amount equal to the 
path difference (a/2) sin u, where a is the width of the slit. Similarly, the path  

1If the screen is brought close to the slit (and no lens is used), the pattern is a Fresnel diffraction pattern. The Fresnel 
pattern is more difficult to analyze, so we shall restrict our discussion to Fraunhofer diffraction.

Figure 37.4 (a) Geometry for analyzing the 
Fraunhofer diffraction pattern of a single slit. 
(Drawing not to scale.) (b) Simulation of a  
single-slit Fraunhofer diffraction pattern.

Slit

min

min

min

min

max

max

max

Incoming
wave Viewing screen

u

The pattern consists of a wide central 
bright fringe flanked by much weaker 
and narrower maxima alternating 
with dark fringes.

a b

L

Each portion of the slit acts as 
a point source of light waves.

a

a/2

a/2

2

3

2

5

4

1

u

The path difference between 
rays 1 and 3, rays 2 and 4, or 
rays 3 and 5 is (a/ 2) sin u.

sin u
a 

Figure 37.5  Paths of light rays 
that encounter a narrow slit of 
width a and diffract toward a 
screen in the direction described 
by angle u (not to scale).

Pitfall Prevention 37.1
Diffraction Versus Diffraction 
Pattern Diffraction refers to the 
general behavior of waves spread-
ing out as they pass through a slit. 
We used diffraction in explaining 
the existence of an interference 
pattern in Chapter 36. A diffraction 
pattern is actually a misnomer, but 
is deeply entrenched in the lan-
guage of physics. The diffraction 
pattern seen on a screen when a 
single slit is illuminated is actually 
another interference pattern. The 
interference is between parts of 
the incident light illuminating dif-
ferent regions of the slit.
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986 Chapter 37 Diffraction Patterns and Polarization

difference between rays 2 and 4 is also (a/2) sin u, as is that between rays 3 and 5. 
If this path difference is exactly half a wavelength (corresponding to a phase dif-
ference of 180°), the pairs of waves cancel each other and destructive interference 
results. This cancellation occurs for any two rays that originate at points separated 
by half the slit width because the phase difference between two such points is 180°. 
Therefore, waves from the upper half of the slit interfere destructively with waves 
from the lower half when

a
2

 sin u 5  
l

2

or, if we consider waves at angle u both above the dashed line in Figure 37.5 and 
below,

sin u 5  6
l

a

Dividing the slit into four equal parts and using similar reasoning, we find that 
the viewing screen is also dark when

a
4

  sin u 5 6
l

2
 S sin u 5  62 

l

a

Likewise, dividing the slit into six equal parts shows that darkness occurs on the 
screen when

a
6

  sin u 5 6
l

2
 S sin u 5 63 

l

a

Therefore, the general condition for destructive interference is

 sin udark 5 m 
l

a
  m 5 61, 62, 63, . . .  (37.1)

This equation gives the values of udark for which the diffraction pattern has zero 
light intensity, that is, when a dark fringe is formed. The general features of the 
intensity distribution are shown in Figure 37.4. A broad, central bright fringe is 
flanked by much weaker bright fringes alternating with dark fringes. The various 
dark fringes occur at the values of udark that satisfy Equation 37.1. Notice that Equa-
tion 37.1 provides the location of the dark fringes in the single-slit pattern, unlike 
Equation 36.2, which provides locations for the bright fringes in a two-slit pattern. 
There is no equation for bright fringes in a single-slit pattern; each bright-fringe 
peak lies approximately halfway between its bordering dark-fringe minima. The 
central bright maximum is twice as wide as the secondary maxima. There is no cen-
tral dark fringe, represented by the absence of m 5 0 in Equation 37.1.

Q uick Quiz 37.1  Suppose the slit width in Figure 37.4 is made half as wide. 
Does the central bright fringe (a) become wider, (b) remain the same, or (c) 
become narrower?

Condition for destructive 
interference for a single slit

 Example 37.1   Where Are the Dark Fringes?

Light of wavelength 580 nm is incident on a slit having a width of 0.300 mm. The viewing screen is 2.00 m from the slit. Find 
the width of the central bright fringe.

S O L U T I O N

Conceptualize Based on the problem statement, we imagine a single-slit diffraction pattern similar to that in Figure 37.4.

Categorize We categorize this example as a straightforward application of our discussion of single-slit diffraction patterns, 
which comes from the waves in interference analysis model.

Pitfall Prevention 37.2 
Similar Equation Warning!  
Equation 37.1 has exactly the same 
form as Equation 36.2, with d, the 
slit separation, used in Equation 
36.2 and a, the slit width, used in 
Equation 37.1. Equation 37.2, how-
ever, describes the bright regions 
in a two -slit interference pattern, 
whereas Equation 37.1 describes 
the dark regions in a single -slit  
diffraction pattern.
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37.1 c o n t i n u e d

Analyze Evaluate Equation 37.1 for the two dark  sin udark 5  6
l

a
 

fringes that flank the central bright fringe, which  
correspond to m 5 61:

Let y represent the vertical position along the viewing screen in Figure 37.4a, measured from the point on the screen directly 
behind the slit. Then, tan udark 5 y1/L, where the subscript 1 refers to the first dark fringe. Because udark is very small, we can 
use the approximation sin udark < tan udark; therefore, y1 5 L sin udark.

The width of the central bright fringe is  2uy 1u 5 2uL sin udarku 5 2*6L 
l

a * 5 2L 
l

a
5 2s2.00 md

580 3 1029 m
0.300 3 1023 m

 
twice the absolute value of y1:    

5 7.73 3 1023 m 5 7.73 mm

Finalize Notice that this value is much greater than the width of the slit. Let’s explore below what happens if we change the 
slit width.

W H A T  I F ?  What if the slit width is increased by an order of magnitude to 3.00 mm? What happens to the diffraction 
pattern?

Answer Based on Equation 37.1, we expect that the angles at which the dark bands appear will decrease as a increases. 
Therefore, the diffraction pattern narrows.

Repeat the calculation with  2uy 1u 5 2L 
l

a
5 2s2.00 md 

580 3 1029 m
3.00 3 1023 m

5 7.73 3 1024 m 5 0.773 mm  
the larger slit width:

Notice that this result is smaller than the width of the slit. In general, for large values of a, the various maxima and minima are 
so closely spaced that only a large, central bright area resembling the geometric image of the slit is observed. This concept is 
very important in the performance of optical instruments such as telescopes.

intensity of Single-Slit Diffraction Patterns
Analysis of the intensity variation in a diffraction pattern from a single slit of width 
a shows that the intensity is given by

 I 5 Imax3sin spa sin uyld
pa sin uyl 42

 (37.2)

where Imax is the intensity at u 5 0 (the central maximum) and l is the wavelength 
of light used to illuminate the slit.

Figure 37.6a represents a plot of the intensity in the single-slit pattern as given 
by Equation 37.2, and Figure 37.6b is a simulation of a single-slit Fraunhofer  

  Intensity of a single-slit 
Fraunhofer diffraction pattern

Figure 37.6  (a) A plot of light 
intensity I versus (p/l)a sin u for 
the single-slit Fraunhofer diffrac-
tion pattern. (b) Simulation of a 
single-slit Fraunhofer diffraction 
pattern.

Imax

�3p�2p �p 2p 3p

I

a sin u
p

p

l

a

b

A minimum in the curve in  a  
corresponds to a dark fringe in  b .

a
b
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988 Chapter 37 Diffraction Patterns and Polarization

diffraction pattern. Notice that most of the light intensity is concentrated in the 
central bright fringe.

intensity of two-Slit Diffraction Patterns
When more than one slit is present, we must consider not only diffraction patterns 
due to the individual slits but also the interference patterns due to the waves com-
ing from different slits. Notice the curved dashed lines in Figure 36.6 in Chapter 36,  
which indicate a decrease in intensity of the interference maxima as u increases. 
This decrease is due to a diffraction pattern. The interference patterns in that fig-
ure are located entirely within the central bright fringe of the diffraction pattern, 
so the only hint of the diffraction pattern we see is the falloff in intensity toward 
the outside of the pattern. To determine the effects of both two-slit interference 
and a single-slit diffraction pattern from each slit from a wider viewpoint than that 
in Figure 36.6, we combine Equations 36.9 and 37.2:

 I 5 Imax cos2  Spd sin u
l

 D3sin spa sin uyld
pa sin uyl 42

 (37.3)

Although this expression looks complicated, it merely represents the single-slit dif-
fraction pattern (the factor in square brackets) acting as an “envelope” for a two-
slit interference pattern (the cosine-squared factor) as shown in Figure 37.7. The 
dashed blue curve in Figure 37.7 represents the factor in square brackets in Equa-
tion 37.3. The cosine-squared factor by itself would give a series of peaks all with the 
same height as the highest peak of the red-brown curve in Figure 37.7. Because of 
the effect of the square-bracket factor, however, these peaks vary in height as shown.

   37.3    Resolution of Single-Slit and Circular Apertures
The ability of optical systems such as telescopes to distinguish between closely 
spaced objects is limited because of the wave nature of light. To understand this 
limitation, consider Figure 37.8, which shows two light sources far from a narrow 
slit of width a. The sources can be two noncoherent point sources S1 and S2; for 
example, they could be two distant stars. If no interference occurred between light 

�3p �2p 2p 3p�p p

The diffraction pattern acts 
as an “envelope” (the blue 
dashed curve) that controls 
the intensity of the regularly 
spaced interference maxima.

I

Diffraction
minima

Interference
fringes

a sin u
l

p

Figure 37.7 The combined 
effects of two-slit and single-slit 
interference. This pattern is  
produced when 650-nm light 
waves pass through two 3.0-mm 
slits that are 18 mm apart.
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    37.3 Resolution of Single-Slit and Circular Apertures 989

passing through different parts of the slit, two distinct bright spots (or images) 
would be observed on the viewing screen at the points where the straight blue lines 
in Figure 37.8 strike the screen. Because of interference, however, each source is 
imaged as a bright central region flanked by weaker bright and dark fringes, a dif-
fraction pattern. What is observed on the screen is the sum of two diffraction pat-
terns: one from S1 and the other from S2.

If the two sources are far enough apart to keep their central maxima from over-
lapping as in Figure 37.8a, their images can be distinguished and are said to be 
resolved. If the sources are close together as in Figure 37.8b, however, the two central 
maxima overlap and the images are not resolved. To determine whether two images 
are resolved, the following condition is often used:

When the central maximum of one image falls on the first minimum of another 
image, the images are said to be just resolved. This limiting condition of resolu-
tion is known as Rayleigh’s criterion.

From Rayleigh’s criterion, we can determine the minimum angular separation 
umin subtended by the sources at the slit in Figure 37.8 for which the images are just 
resolved. Equation 37.1 indicates that the first minimum in a single-slit diffraction 
pattern occurs at the angle for which

 sin u 5
l

a
 (37.4)

where a is the width of the slit. According to Rayleigh’s criterion, this expres-
sion gives the smallest angular separation for which the two images are resolved. 
Because l ,, a in most situations, sin u is small and we can use the approximation 
sin u < u. Therefore, the limiting angle of resolution for a slit of width a is

 umin 5
l

a
 (37.5)

where umin is expressed in radians. Hence, the angle subtended by the two sources 
at the slit must be greater than l/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction 
pattern of a circular aperture as shown in the photographs of Figure 37.9 consists 
of a central circular bright disk surrounded by progressively fainter bright and dark 
rings. Figure 37.9 shows diffraction patterns for three situations in which light from 

a

Slit Viewing screen

u

The angle subtended by the 
sources at the slit is large 
enough for the diffraction 
patterns to be distinguishable.

S1

S2

b

Slit Viewing screen

u

The angle subtended by the 
sources is so small that their 
diffraction patterns overlap, and 
the images are not well resolved.

S1

S2

Figure 37.8  Two point sources 
far from a narrow slit each pro-
duce a diffraction pattern. (a) The 
sources are separated by a large 
angle. (b) The sources are sepa-
rated by a small angle. (Notice that 
the angles are greatly exaggerated. 
The drawing is not to scale.)

a b c

The sources are 
far apart, and 
the patterns are 
well resolved.

The sources are 
so close together 
that the patterns 
are not resolved.

The sources are closer together 
such that the angular separation 
satisfies Rayleigh’s criterion, and 
the patterns are just resolved.

Figure 37.9  Individual diffraction pat-
terns of two point sources (solid curves) 
and the resultant patterns (dashed curves) 
for various angular separations of the 
sources as the light passes through a cir-
cular aperture. In each case, the dashed 
curve is the sum of the two solid curves.
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990 Chapter 37 Diffraction Patterns and Polarization

two point sources passes through a circular aperture. When the sources are far 
apart, their images are well resolved (Fig. 37.9a). When the angular separation of 
the sources satisfies Rayleigh’s criterion, the images are just resolved (Fig. 37.9b). 
Finally, when the sources are close together, the images are said to be unresolved 
(Fig. 37.9c) and the pattern looks like that of a single source.

Analysis shows that the limiting angle of resolution of the circular aperture is

 umin 5 1.22 
l

D
 (37.6)

where D is the diameter of the aperture. This expression is similar to Equation 37.5 
except for the factor 1.22, which arises from a mathematical analysis of diffraction 
from the circular aperture.

Diffraction from circular apertures explains the question about the marching 
band in the opening storyline. While we have focused on light waves, sound waves 
also diffract when passing through apertures. In a brass instrument such as a trum-
pet or a trombone, the sound exits the flared bell at the end of the instrument. This 
is a relatively large opening, especially for high audio frequencies, so there is only 
a small amount of diffraction; much of the sound is directed forward in a concen-
trated beam directed in front of the marcher. On the other hand, the sound from 
woodwinds such as clarinets and saxophones exits the tone holes along the side of 
the instrument; almost nothing comes out the bell. The tone holes are small, so 
there is significant diffraction. What’s more, the column of the instrument is gen-
erally held vertically, so that there is diffracted sound in all directions, including 
backward from the marcher. When the brass players turn around and march away 
from you, however, very little of their sound is directed behind them.

Q uick Quiz 37.2  Cat’s eyes have pupils that can be modeled as vertical slits. 
At night, would cats be more successful in resolving (a) headlights on a distant 
car or (b) vertically separated lights on the mast of a distant boat?

Q uick Quiz 37.3  Suppose you are observing a binary star with a telescope and 
are having difficulty resolving the two stars. You decide to use a colored filter to 
maximize the resolution. (A filter of a given color transmits only that color of 
light.) What color filter should you choose? (a) blue (b) green (c) yellow (d) red

Limiting angle of resolution  
for a circular aperture

 Example 37.2   Resolution of the Eye

Light of wavelength 500 nm, near the center of the visible spectrum, enters a human eye. Although pupil diameter varies 
from person to person, let’s estimate a daytime diameter of 2 mm.

(A)  Estimate the limiting angle of resolution for this eye, assuming its resolution is limited only by diffraction.

S O L U T I O N

Conceptualize Identify the pupil of the eye as the aperture through which the light travels. Light passing through this small 
aperture causes diffraction patterns to occur on the retina.

Categorize We determine the result using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 37.6, taking l 5 500 nm and D 5 2 mm: umin 5 1.22 
l

D
5 1.22 S5.00 3 1027 m

2 3 1023 m D
 5 3 3 1024 rad  < 1 min of arc

where a minute of arc is 1/60 of a degree.

(B)  Determine the minimum separation distance d between two 
point sources that the eye can distinguish if the point sources are 
a distance L 5 25 cm from the observer (Fig. 37.10). L

d

S1

S2 uminFigure 37.10  (Example 
38.2) Two point sources 
separated by a distance d 
as observed by the eye.
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37.2 c o n t i n u e d

S O L U T I O N

Noting that umin is small, find d: sin umin < umin <
d
L

   S   d 5 Lumin

Substitute numerical values: d 5 (25 cm)(3 3 1024 rad) 5 8 3 1023 cm

This result is approximately equal to the thickness of a human hair.

W H A T  I F ? What if you saw someone at the other end of the field at a football stadium? Could you recognize them?

Answer A typical feature of someone’s face might be of a size 3.0 cm, or even less. The face, if it is across the football field, 
is at least 120 yards , 120 m away. Therefore, the feature subtends an angle of 0.030 m/120 m 5 2.5 3 1024 rad. This is on 
the order of the limiting resolution of the eye found in part (A), so it is not likely that you would be able to recognize the  
person’s face.

 Example 37.3    Resolution of a Telescope

Each of the two telescopes at the Keck Observatory on the dormant Mauna Kea volcano in Hawaii has an effective diameter 
of 10 m. What is its limiting angle of resolution for 600-nm light?

S O L U T I O N

Conceptualize Identify the aperture through which the light travels as the opening of the telescope. Light passing through 
this aperture causes diffraction patterns to occur in the final image.

Categorize We determine the result using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 37.6, taking l 5 6.00 3 1027 m and  umin 5 1.22 
l

D
5 1.22 S6.00 3 1027 m

10 m D 
D 5 10 m:    

5 7.3 3 1028 rad  < 0.015 s of arc

where a second of arc is 1/60 of a minute = (1/60)2 of a degree. Any two stars that subtend an angle greater than or equal to 
this value are resolved (if atmospheric conditions are ideal).

W H A T  I F ? What if we consider radio telescopes? They are much larger in diameter than optical telescopes, but do they 
have better angular resolutions than optical telescopes? For example, the radio telescope at Arecibo, Puerto Rico, has a 
diameter of 305 m and is designed to detect radio waves of 0.75-m wavelength. How does its resolution compare with that of 
one of the Keck telescopes?

Answer The increase in diameter might suggest that radio telescopes would have better resolution than a Keck telescope, but 
Equation 37.6 shows that umin depends on both diameter and wavelength. Calculating the minimum angle of resolution for the 
radio telescope, we find

umin 5 1.22 
l

D
5 1.22S0.75 m

305 mD
5 3.0 3 1023 rad < 10 min of arc

This limiting angle of resolution is measured in minutes of arc rather than the seconds of arc for the optical telescope. There-
fore, the change in wavelength more than compensates for the increase in diameter. The limiting angle of resolution for the 
Arecibo radio telescope is more than 40 000 times larger (that is, worse) than the Keck minimum.

An Earth-based telescope such as the one discussed in Example 37.3 can never 
reach its diffraction limit because the limiting angle of resolution is always set by 
atmospheric blurring at optical wavelengths. This seeing limit is usually about  
1 s of arc and is never smaller than about 0.1 s of arc. The atmospheric blurring is 
caused by variations in index of refraction with temperature variations in the air.  
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992 Chapter 37 Diffraction Patterns and Polarization

This blurring is one reason for the superiority of photographs from orbiting tele-
scopes, which view celestial objects from a position above the atmosphere.

As an example of the effects of atmospheric blurring, consider telescopic images 
of Pluto and its moon, Charon. Figure 37.11a, an image taken in 1978, represents 
the discovery of Charon. In this photograph, taken from an Earth-based telescope, 
atmospheric turbulence causes the image of Charon to appear only as a bump on 
the edge of Pluto. In comparison, Figure 37.11b shows a photograph taken from the 
Hubble Space Telescope. Without the problems of atmospheric turbulence, Pluto 
and its moon are clearly resolved.

The distortion from atmospheric blurring can be reduced with the process of 
adaptive optics. This technique combines computer analysis with additional opti-
cal elements to improve the image. With adaptive optics, the resolution of the 
Keck telescope is improved from 1 second of arc to 30–60 milliseconds of arc, 
about a factor of 20 improvement. The image in Figure 35.46 is made possible by 
adaptive optics.

   37.4    The Diffraction Grating
The diffraction grating, a useful device for analyzing light sources, consists of a 
large number of equally spaced parallel slits. A transmission grating can be made 
by cutting parallel grooves on a glass plate with a precision ruling machine. The 
spaces between the grooves are transparent to the light and hence act as sepa-
rate slits. A reflection grating can be made by cutting parallel grooves on the sur-
face of a reflective material. The reflection of light from the spaces between the 
grooves is specular, and the reflection from the grooves cut into the material is 
diffuse. Therefore, the spaces between the grooves act as parallel sources of 
reflected light like the slits in a transmission grating. Current technology can pro-
duce gratings that have very small slit spacings. Gratings are often labeled with 
the number of grooves per unit length, which is the inverse of the slit spacing 
d. For example, a typical grating ruled with 5 000 grooves/cm has a slit spacing  
d 5 (1/5 000) cm 5 2.00 3 1024 cm.

A section of a diffraction grating is illustrated in Figure 37.12. A plane wave is 
incident from the left, normal to the plane of the grating. The pattern observed 
on the screen far to the right of the grating is the result of the combined effects 
of interference and diffraction. Each slit produces diffraction, and the diffracted 
beams interfere with one another to produce the final pattern.

The waves from all slits are in phase as they leave the slits. For an arbitrary direc-
tion u measured from the horizontal, however, the waves must travel different path 
lengths before reaching the screen. Notice in Figure 37.12 that the path difference 
d between rays from any two adjacent slits is equal to d sin u. If this path differ-
ence equals one wavelength or some integral multiple of a wavelength, waves from 

Figure 37.11  (a) The photograph 
on which Charon, the moon of 
Pluto, was discovered in 1978. 
From an Earth-based telescope, 
atmospheric blurring results in 
Charon appearing only as a subtle 
bump on the edge of Pluto. (b) A 
Hubble Space Telescope photo of 
Pluto and Charon, clearly resolv-
ing the two objects.
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Pitfall Prevention 37.3
A Diffraction Grating Is an Inter-
ference Grating As with diffraction 
pattern, diffraction grating is a mis-
nomer, but is deeply entrenched 
in the language of physics. The 
diffraction grating depends on 
diffraction in the same way as the 
double slit, spreading the light so 
that light from different slits can 
interfere. It would be more correct 
to call it an interference grating, but 
diffraction grating is the name in use.
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all slits are in phase at the screen and a bright fringe is observed. Therefore, the 
condition for maxima in the interference pattern at the angle ubright is identical to 
Equation 36.2:

 d sin ubright 5 ml    m 5 0, 61, 62, 63, . . .  (37.7)

We can use this expression to calculate the wavelength if we know the grating 
spacing d and the angle ubright. If the incident radiation contains several wave-
lengths, the mth-order maximum for each wavelength occurs at a specific angle. All 
wavelengths are seen at u 5 0, corresponding to m 5 0, the zeroth-order maximum. 
The first-order maximum (m 5 1) is observed at an angle that satisfies the relation-
ship sin ubright 5 l/d, the second-order maximum (m 5 2) is observed at a larger 
angle ubright, and so on. For the small values of d typical in a diffraction grating, the 
angles ubright are large, as we see in Example 37.5.

The intensity distribution for a diffraction grating obtained with the use of a 
monochromatic source is shown in Figure 37.13. Notice the sharpness of the 
principal maxima and the broadness of the dark areas compared with the broad 
bright fringes characteristic of the two-slit interference pattern (see Fig. 36.5). You 
should also review Figure 36.6, which shows that the width of the intensity maxima 
decreases as the number of slits increases. Because the principal maxima are so 
sharp, they are much brighter than two-slit interference maxima.

Q uick Quiz 37.4  Ultraviolet light of wavelength 350 nm is incident on a 
diffraction grating with slit spacing d and forms an interference pattern on a 
screen a distance L away. The angular positions ubright of the interference max-
ima are large. The locations of the bright fringes are marked on the screen. 
Now red light of wavelength 700 nm is used with a diffraction grating to form 
another diffraction pattern on the screen. Will the bright fringes of this pattern 
be located at the marks on the screen if (a) the screen is moved to a distance 2L 
from the grating, (b) the screen is moved to a distance L/2 from the grating, 
(c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced 
with one of slit spacing d/2, or (e) nothing is changed?

d

P

Incoming plane
wave of light

First-order
maximum
(m � 1)

First-order
maximum
(m � �1)

Central or
zeroth-order
maximum
(m � 0)

Diffraction
grating

P

u u

d � d sin u

Figure 37.12  Side view of a dif-
fraction grating. The slit separa-
tion is d, and the path difference 
between adjacent slits is d sin u.
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Figure 37.13 Intensity versus  
sin u for a diffraction grating.  
The zeroth-, first-, and sec-
ond-order maxima are shown.

 Conceptual Example 37.4    A DVD Is a Diffraction Grating

Light reflected from the surface of a video disc is multicolored as shown in Figure 37.14 (page 994). The colors and their 
intensities depend on the orientation of the DVD relative to the eye and relative to the light source. Explain how that works.

continued
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37.4 c o n t i n u e d

S O L U T I O N

The surface of a DVD has a spiral grooved track 
(with adjacent grooves having a separation on the 
order of 1 mm). Therefore, the surface acts as a 
reflection grating. The light reflecting from the 
regions between these closely spaced grooves inter-
feres constructively only in certain directions that 
depend on the wavelength and the direction of the 
incident light. Any section of the DVD serves as a 
diffraction grating for white light, sending differ-
ent colors in different directions. The different col-
ors you see upon viewing one section change when 
the light source, the DVD, or you change position. 
This change in position causes the angle of incidence or the angle of the diffracted light to be altered. Problem 23 describes 
an experiment that you can perform, in which a laser pointer is used to view individual maxima in the diffraction pattern 
from a DVD.
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Figure 37.14  (Conceptual 
Example 37.4) A video disc 
observed under white light. The 
colors observed in the reflected 
light and their intensities depend 
on the orientation of the DVD  
relative to the eye and relative  
to the light source.

 Example 37.5    The Orders of a Diffraction Grating

Monochromatic light from a helium–neon laser (l 5 632.8 nm) is incident normally on a diffraction grating containing 
6 000 grooves per centimeter. Find the angles at which the first- and second-order maxima are observed.

S O L U T I O N

Conceptualize Study Figure 37.12 and imagine that the light coming from the left originates from the helium–neon laser. 
Let’s evaluate the possible values of the angle u for constructive interference.

Categorize We determine results using equations developed in this section, so we categorize this example as a substitution 
problem.

Calculate the slit separation as the inverse of the number  d 5
1

6 000
 cm 5 1.667 3 1024 cm 5 1 667 nm 

of grooves per centimeter:

Solve Equation 37.7 for u for an arbitrary value of m  um 5 sin211m l

d 2 5 sin211632.8 nm
1 667 nm

 m2 5 sin21s0.379 6md 
and substitute numerical values for the first-order  
maximum (m 5 1) to find u1: u1 5 sin21fs0.379 6ds1dg 5  22.318

Repeat for the second-order maximum (m 5 2): u2 5 sin21fs0.379 6ds2dg 5 49.398

W H A T  I F ? What if you looked for the third-order maximum? Would you find it?

Answer For m 5 3, we find u3 5 sin21 (1.139). Because sin u cannot exceed unity, this result does not represent a realistic 
solution. Hence, only zeroth-, first-, and second-order maxima can be observed for this situation.

applications of Diffraction Gratings
A schematic drawing of a simple apparatus used to measure angles in a diffraction 
pattern is shown in Figure 37.15. This apparatus is a diffraction grating spectrometer. 
The light to be analyzed passes through a slit, and a collimated beam of light is 
incident on the grating. The diffracted light leaves the grating at angles that satisfy 
Equation 37.7, and a telescope is used to view the image of the slit. The wavelength 
can be determined by measuring the precise angles at which the images of the slit 
appear for the various orders.

The spectrometer is a useful tool in atomic spectroscopy, in which the light 
from an atom is analyzed to find the wavelength components. These wavelength  
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components can be used to identify the atom. We shall investigate atomic spectra 
in Chapter 41 of the extended version of this text.

Another interesting application of diffraction gratings is holography, the pro-
duction of three-dimensional images of objects. The physics of holography was 
developed by Dennis Gabor (1900–1979) in 1948 and resulted in the Nobel Prize in  
Physics for Gabor in 1971. The requirement of coherent light for holography 
delayed the realization of holographic images from Gabor’s work until the devel-
opment of lasers in the 1960s. Figure 37.16 shows the same hologram viewed 
from two different positions and the three-dimensional character of its image. 
Notice in particular the difference in the view through the magnifying glass in  
Figures 37.16a and 37.16b.

Figure 37.17 shows how a hologram is made. Light from the laser is split into two 
parts by a half-silvered mirror at B. One part of the beam reflects off the object to 
be photographed and strikes an ordinary photographic film. The other half of the 
beam is diverged by lens L2, reflects from mirrors M1 and M2, and finally strikes 
the film. The two beams overlap to form an extremely complicated interference  

Telescope
Slit

Source

Grating

Collimator

u

Figure 37.15 Diagram of a  
diffraction grating spectrometer.

ba

Figure 37.16  In this hologram, 
a circuit board is shown from 
two different views. Notice the 
difference in the appearance of 
the measuring tape and the view 
through the magnifying lens in 
(a) and (b).

Ph
ot

o 
by

 R
on

al
d 

R.
 E

ric
ks

on
; h

ol
og

ra
m

 b
y 

N
ic

kl
au

s 
Ph

ill
ip

s

M2

Film

L1
B

L2

M1

These light rays travel 
to the film without 
striking the object.

These light rays strike 
the object and then 
travel to the film.

Laser

Figure 37.17  Experimental 
arrangement for producing a 
hologram.
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pattern on the film. Such an interference pattern can be produced only if the 
phase relationship of the two waves is constant throughout the exposure of the 
film. This condition is met by illuminating the scene with light coming through a 
pinhole or with coherent laser radiation. The hologram records not only the inten-
sity of the light scattered from the object (as in a conventional photograph), but 
also the phase difference between the reference beam and the beam scattered from 
the object. Because of this phase difference, an interference pattern is formed that 
produces an image in which all three-dimensional information available from the 
perspective of any point on the hologram is preserved.

In a normal photographic image, a lens is used to focus the image so that each 
point on the object corresponds to a single point on the photograph. Notice that 
there is no lens used in Figure 37.17 to focus the light onto the film. Therefore, 
light from each point on the object reaches all points on the film. As a result, 
each region of the photographic film on which the hologram is recorded contains 
information about all illuminated points on the object, which leads to a remark-
able result: if a small section of the hologram is cut from the film, the complete 
image can be formed from the small piece! (The quality of the image is reduced, 
but the entire image is present.)

Holograms are finding a number of applications. You may have a hologram on 
your credit card. This special type of hologram is called a rainbow hologram and is 
designed to be viewed in reflected white light.

   37.5    Diffraction of X-Rays by Crystals
In principle, the wavelength of any electromagnetic wave can be determined if a 
grating of the proper spacing (on the order of l) is available. X-rays, discovered by 
Wilhelm Roentgen (1845–1923) in 1895, are electromagnetic waves of very short 
wavelength (on the order of 0.1 nm). It would be impossible to construct a grating 
having such a small spacing by the cutting process described at the beginning of 
Section 37.4. The atomic spacing in a solid is known to be about 0.1 nm, however. 
In 1913, Max von Laue (1879–1960) suggested that the regular array of atoms in a 
crystal could act as a three-dimensional diffraction grating for x-rays. Subsequent 
experiments confirmed this prediction. The diffraction patterns from crystals are 
complex because of the three-dimensional nature of the crystal structure. Never-
theless, x-ray diffraction has proved to be an invaluable technique for elucidating 
these structures and for understanding the structure of matter.

Figure 37.18 shows one experimental arrangement for observing x-ray diffrac-
tion from a crystal. A collimated beam of monochromatic x-rays is incident on a 
crystal. The diffracted beams are very intense in certain directions, correspond-
ing to constructive interference from waves reflected from layers of atoms in the 
crystal. The diffracted beams, which can be detected by a photographic film, form 
an array of spots known as a Laue pattern as in Figure 37.19a. One can deduce the 
crystalline structure by analyzing the positions and intensities of the various spots 

Photographic
film 

Crystal

X-ray beam

X-ray
source

Figure 37.18  Schematic diagram 
of the technique used to observe 
the diffraction of x-rays by a crys-
tal. The array of spots formed on 
the film is called a Laue pattern.
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    37.5 Diffraction of X-Rays by Crystals 997

in the pattern. Figure 37.19b shows a Laue pattern from a crystalline enzyme, using 
a wide range of wavelengths so that a swirling pattern results.

The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in 
Figure 37.20. Each unit cell (the geometric solid that repeats throughout the crys-
tal) is a cube having an edge length a. A careful examination of the NaCl struc-
ture shows that the ions lie in discrete planes (the shaded areas in Fig. 37.20). Now 
suppose an incident x-ray beam makes an angle u with one of the planes as in  
Figure 37.21. The beam can be reflected from both the upper plane and the lower 
one, but the beam reflected from the lower plane travels farther than the beam 
reflected from the upper plane. The effective path difference is 2d sin u. The two 
beams reinforce each other (constructive interference) when this path differ-
ence equals some integer multiple of l. The same is true for reflection from the 
entire family of parallel planes. Hence, the condition for constructive interference  
(maxima in the reflected beam) is

 2d sin u 5 ml    m 5 1, 2, 3, . . . (37.8)

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first 
derived the relationship. If the wavelength and diffraction angle are measured, 
Equation 37.8 can be used to calculate the spacing between atomic planes.

 Bragg’s law
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Figure 37.19  (a) A Laue pattern 
of a single crystal of the mineral 
beryl (beryllium aluminum  
silicate). Each dot represents a 
point of constructive interference.  
(b) A Laue pattern of the enzyme 
Rubisco, produced with a wide-
band x-ray spectrum. This enzyme 
is present in plants and takes part 
in the process of photosynthesis.  
The Laue pattern is used to 
determine the crystal structure  
of Rubisco.

The blue spheres represent 
Cl� ions, and the red spheres 
represent Na� ions.

a

Figure 37.20  Crystalline struc- 
ture of sodium chloride (NaCl).  
The length of the cube edge is  
a 5 0.562 737 nm.

The incident beam can 
reflect from different 
planes of atoms.

Incident
beam

Upper
plane

Lower
plane

d

d sin u 

u u

u

Reflected
beam

Figure 37.21  A two-dimensional description of the 
reflection of an x-ray beam from two parallel crystalline 
planes separated by a distance d. The beam reflected 
from the lower plane travels farther than the beam 
reflected from the upper plane by a distance 2d sin u.

Pitfall Prevention 37.4
Different Angles Notice in Fig-
ure 37.21 that the angle u is mea-
sured from the reflecting surface 
rather than from the normal as in 
the case of the law of reflection in 
Chapter 34. With slits and diffrac-
tion gratings, we also measured 
the angle u from the normal 
to the array of slits. Because of 
historical tradition, the angle  
is measured differently in  
Bragg diffraction, so interpret  
Equation 37.8 with care.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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   37.6    Polarization of Light Waves
In Chapter 33, we described the transverse nature of light and all other electromag-
netic waves. Polarization, discussed in this section, is firm evidence of this trans-
verse nature.

An ordinary beam of light consists of a large number of individual waves emitted 
by the atoms of the light source. Each atom produces a wave having some particular 
orien ta  tion of the electric field vector E

S
, corresponding to the direction of atomic 

vibration. The direction of polarization of each individual wave is defined to be the 
direction in which the electric field is vibrating. For the individual wave shown in 
Figure 37.22, this direction happens to lie along the y axis. Now imagine all the indi-
vidual waves that leave the light source in a beam of light directed along the x axis. 
Each individual electromagnetic wave will have an E

S
 vector parallel to the yz plane, 

but this vector could be at any possible angle with respect to the y axis. Because all 
directions of vibration from a wave source are possible, the resultant electromagnetic 
wave is a superposition of waves vibrating in many different directions. The result is 
an unpolarized light beam, represented in Figure 37.23a. The direction of wave prop-
agation in this figure is perpendicular to the page. The arrows show a few possible  
directions of the electric field vectors for the individual waves making up the resul-
tant beam. At any given point and at some instant of time, all these individual elec-
tric field vectors add to give one resultant electric field vector.

A beam of light is said to be linearly polarized if the resultant electric field E
S

  
vibrates in the same direction at all times at a particular point as shown in Fig-
ure 37.23b. (Sometimes, such a wave is described as plane-polarized, or simply polar-
ized.) The plane formed by E

S
 and the direction of propagation is called the plane 

of polarization of the wave. If the wave in Figure 37.22 represents the resultant of all 
individual waves, the plane of polarization is the xy plane.

A linearly polarized beam can be obtained from an unpolarized beam by remov-
ing all waves from the beam except those whose electric field vectors oscillate in 
a single plane. We now discuss four processes for producing polarized light from 
unpolarized light.

Polarization by Selective absorption
The most common technique for producing polarized light is to use a material that 
transmits waves whose electric fields vibrate in a plane parallel to a certain direc-
tion and that absorbs waves whose electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which he called Polar-
oid, that polarizes light through selective absorption. This material is fabricated in 
thin sheets of long-chain hydrocarbons. The sheets are stretched during manufac-
ture so that the long-chain molecules align. After a sheet is dipped into a solution 
containing iodine, the molecules become good electrical conductors. Conduction 
takes place primarily along the hydrocarbon chains because electrons can move 
easily only along the chains. If light whose electric field vector is parallel to the 
chains is incident on the material, the electric field accelerates electrons along the 
chains and energy is absorbed from the radiation. Therefore, the light does not 
pass through the material. Light whose electric field vector is perpendicular to the 
chains passes through the material because electrons cannot move from one mol-
ecule to the next. As a result, when unpolarized light is incident on the material, 
the exiting light is polarized in a direction perpendicular to the molecular chains.

It is common to refer to the direction perpendicular to the molecular chains 
as the transmission axis. In an ideal polarizer, all light with E

S
 parallel to the trans-

mission axis is transmitted and all light with E
S

 perpendicular to the transmission 
axis is absorbed.

Figure 37.24 represents an unpolarized light beam incident on a first polarizing 
sheet, called the polarizer. Because the transmission axis is oriented vertically in 
the figure, the light transmitted through this sheet is polarized vertically. A second  
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Figure 37.22  Schematic dia-
gram of an electromagnetic wave 
propagating at velocity cS in the 
x direction. The electric field 
vibrates in the xy plane, and the 
magnetic field vibrates in the  
xz plane.

a b

The red dot signifies the 
velocity vector for the wave 
coming out of the page.

E
S

E
S

Figure 37.23  (a) A represen-
tation of an unpolarized light 
beam viewed along the direction 
of propagation. The transverse 
electric field can vibrate in any 
direction in the plane of the page 
with equal probability. (b) A lin-
early polarized light beam with 
the electric field vibrating in the 
vertical direction.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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polarizing sheet, called the analyzer, intercepts the beam. In Figure 37.24, the ana-
lyzer transmission axis is set at an angle u to the polarizer axis. We call the electric 
field vector of the first transmitted beam E

S
0. The component of E

S
0 perpendicular to 

the analyzer axis is completely absorbed. The component of E
S

0 parallel to the ana-
lyzer axis, which is transmitted through the analyzer, is E0 cos u. Because the intensity 
of the transmitted beam varies as the square of its magnitude, we conclude that the 
intensity I of the (polarized) beam transmitted through the analyzer varies as

 I 5 Imax cos2 u (37.9)

where Imax is the intensity of the polarized beam incident on the analyzer. This 
expression, known as Malus’s law,2 applies to any two polarizing materials whose 
transmission axes are at an angle u to each other. This expression shows that the 
intensity of the transmitted beam is maximum when the transmission axes are par-
allel (u 5 0 or 180°) and is zero (complete absorption by the analyzer) when the 
transmission axes are perpendicular to each other. This variation in transmitted 
intensity through a pair of polarizing sheets is illustrated in Figure 37.25. Because 
the average value of cos2 u is 12, the intensity of initially unpolarized light is reduced 
by a factor of one-half as the light passes through a single ideal polarizer.

Polarization by reflection
When an unpolarized light beam is reflected from a surface, the polarization of 
the reflected light depends on the angle of incidence. If the angle of incidence is 
0°, the reflected beam is unpolarized. For other angles of incidence, the reflected 
light is polarized to some extent, and for one particular angle of incidence, the 

 Malus’s law

Transmission
axis

u

The polarizer polarizes 
the incident light along 
its transmission axis.

The analyzer allows 
the component of the 
light parallel to its axis 
to pass through.

Unpolarized
light

Polarized
light

E0
S

Figure 37.24 Two polarizing 
sheets whose transmission axes 
make an angle u with each other. 
Only a fraction of the polarized 
light incident on the analyzer is 
transmitted through it.

Figure 37.25  The intensity of 
light transmitted through two 
polarizers depends on the relative 
orientation of their transmission 
axes. The red arrows indicate the 
transmission axes of the polarizers.

The transmitted light has 
maximum intensity when 
the transmission axes are 
aligned with each other.

a b c

The transmitted light has 
lesser intensity when the 
transmission axes are at an 
angle of 45� with each other.

The transmitted light 
intensity is a minimum when 
the transmission axes are 
perpendicular to each other.
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2Named after its discoverer, E. L. Malus (1775–1812), a French mathematician and physicist. Malus discovered that 
reflected light was polarized by viewing it through a calcite (CaCO3) crystal.
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reflected light is completely polarized. Let’s now investigate reflection at that  
special angle.

Suppose an unpolarized light beam is incident on a surface as in Figure 37.26a. 
The electric field vector for each individual wave can be resolved into two com-
ponents: one parallel to the surface (and perpendicular to the page in Fig. 37.26, 
represented by the dots) and the other (represented by the orange arrows) perpen-
dicular both to the first component and to the direction of propagation. Therefore, 
the polarization of the entire beam can be described by two electric field compo-
nents in these directions. It is found that the parallel component represented by the 
dots reflects more strongly than the other component represented by the arrows, 
resulting in a partially polarized reflected beam. Furthermore, the refracted beam 
is also partially polarized.

Now suppose the angle of incidence u1 is varied until the angle between the 
reflected and refracted beams is 90° as in Figure 37.26b. At this particular angle 
of incidence, the reflected beam is completely polarized (with its electric field vec-
tor parallel to the surface) and the refracted beam is still only partially polarized. 
The angle of incidence at which this polarization occurs is called the polarizing  
angle up.

We can obtain an expression relating the polarizing angle to the index of 
refraction of the reflecting substance by using Figure 37.26b. From this figure, we 
see that up 1 90° 1 u2 5 180°; therefore, u2 5 90° 2 up. Using Snell’s law of refrac-
tion (Eq. 34.7) gives

n 2

n1

5
sin u1

sin u2

5
sin up

sin u2

Because sin u2 5 sin (90° 2 up) 5 cos up, we can write this expression as n 2/n1 5 
sin up /cos up , which means that

 tan up 5
n 2

n1

 (37.10)

This expression is called Brewster’s law, and the polarizing angle up is sometimes 
called Brewster’s angle, after its discoverer, David Brewster (1781–1868), a Scottish 
physicist and mathematician. Because n varies with wavelength for a given sub-
stance, Brewster’s angle is also a function of wavelength.

Brewster’s law 

a b

The dots represent electric 
field oscillations parallel to 
the reflecting surface and 
perpendicular to the page.

The arrows represent 
electric field oscillations 
perpendicular to those 
represented by the dots.

u1

90�

Incident
beam

Reflected
beam

Incident
beam Reflected

beamu1

u2

n2

n1
n2

n1

Refracted
beam

Refracted
beam

Electrons at the surface 
oscillating in the direction of 
the reflected ray (perpendicular 
to the dots and parallel to the 
blue arrow) send no energy in 
this direction.

u2

up
up

Figure 37.26  (a) When unpolar-
ized light is incident on a reflect-
ing surface, the reflected and 
refracted beams are partially 
polarized. (b) The reflected beam 
is completely polarized when the 
angle of incidence equals the 
polarizing angle up , which satisfies 
Equation 37.10. At this incident 
angle, the reflected and refracted 
rays are perpendicular to  
each other.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    37.6 Polarization of Light Waves 1001

We can understand polarization by reflection by imagining that the electric field 
in the incident light sets electrons at the surface of the material in Figure 37.26b 
into oscillation. The component directions of oscillation are (1) parallel to the 
arrows shown on the refracted beam of light and therefore parallel to the reflected 
beam and (2) perpendicular to the page. The oscillating electrons act as dipole 
antennas radiating light with a polarization parallel to the direction of oscillation. 
Consult Figure 33.12, which shows the pattern of radiation from a dipole antenna. 
Notice that there is no radiation at an angle of u 5 0, that is, along the oscillation 
direction of the antenna. Therefore, for the oscillations in direction 1, there is no 
radiation in the direction along the reflected ray. For oscillations in direction 2, 
the electrons radiate light with a polarization perpendicular to the page. There-
fore, the light reflected from the surface at this angle is completely polarized paral-
lel to the surface.

Polarization by reflection is a common phenomenon. Sunlight reflected from 
water, glass, and snow is partially polarized. If the surface is horizontal, the electric 
field vector of the reflected light has a strong horizontal component. Sunglasses 
made of polarizing material reduce the glare of reflected light. This is the answer 
to your nagging question in the storyline. The transmission axes of such lenses 
are oriented vertically so that they absorb the strong horizontal component of the 
reflected light. If you rotate sunglasses through 90°, they are not as effective at 
blocking the glare from shiny horizontal surfaces.

Polarization by Double refraction
Solids can be classified on the basis of internal structure. Those in which the atoms are 
arranged in a specific order are called crystalline; the NaCl structure of Figure 37.20 
is one example of a crystalline solid. Those solids in which the atoms are distributed 
randomly are called amorphous. When light travels through an amorphous material 
such as glass, it travels with a speed that is the same in all directions. That is, glass 
has a single index of refraction. In certain crystalline materials such as calcite and 
quartz, however, the speed of light is not the same in all directions. In these materi-
als, the speed of light depends on the direction of propagation relative to the planes 
of the crystal structure and on the plane of polarization of the light. Such materials 
are characterized by two indices of refraction. Hence, they are often referred to as  
double-refracting or  birefringent materials.

When unpolarized light enters a birefringent material, it may split into an 
 ordinary (O) ray and an extraordinary (E) ray. These two rays have mutually per-
pendicular polarizations and travel at different speeds through the material. The 
two speeds correspond to two indices of refraction, nO for the ordinary ray and nE 
for the extraordinary ray.

There is one direction, however, called the optic axis, along which the ordinary 
and extraordinary rays have the same speed. If light enters a birefringent material 
from an arbitrary direction, the different indices of refraction will cause the two 
polarized rays to split and travel in different directions as shown in Figure 37.27.

The index of refraction nO for the ordinary ray is the same in all directions. If one 
could place a point source of light inside the crystal as in Figure 37.28, the ordinary 
waves would spread out from the source as spheres. The index of refraction nE varies 
with the direction of propagation. A point source sends out an extraordinary wave 
having wave fronts that are elliptical in cross section. The difference in speed for the 
two rays is a maximum in the direction perpendicular to the optic axis. For exam-
ple, in calcite, nO 5 1.658 at a wavelength of 589.3 nm and nE varies from 1.658 along 
the optic axis to 1.486 perpendicular to the optic axis. Values for nO and the extreme 
value of nE for various double-refracting crystals are given in Table 37.1 (page 1002).

If you place a calcite crystal on a sheet of paper and then look through the crys-
tal at any writing on the paper, you would see two images as shown in Figure 37.29. 
As can be seen from Figure 37.27, these two images correspond to one formed by 
the ordinary ray and one formed by the extraordinary ray. If the two images are 

These two rays are polarized 
in mutually perpendicular 
directions.

Unpolarized
light

E ray

O ray

Calcite

Figure 37.27  Unpolarized light 
incident at an arbitrary direction 
on a calcite crystal splits into an 
ordinary (O) ray and an extraordi-
nary (E) ray (not to scale).

The E and O rays propagate 
with the same velocity along 
the optic axis.

E

OS

Optic axis

Figure 37.28  A point source S 
inside a double-refracting crystal 
produces a spherical wave front 
corresponding to the ordinary (O) 
ray and an elliptical wave front 
corresponding to the extraordi-
nary (E) ray.

Figure 37.29  A calcite crystal pro-
duces a double image because it is 
a birefringent (double-refracting)  
material.
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viewed through a sheet of rotating polarizing glass, they alternately appear and 
disappear because the ordinary and extraordinary rays are plane-polarized along 
mutually perpendicular directions.

Polarization by Scattering
When light is incident on any material, the electrons in the material can absorb and 
reradiate part of the light. Such absorption and reradiation of light by electrons in 
the gas molecules that make up air is what causes sunlight reaching an observer on 
the Earth to be partially polarized. You can observe this effect—called scattering—
by looking directly up at the sky through a pair of sunglasses whose lenses are made 
of polarizing material. Less light passes through at certain orientations of the lenses 
than at others.

Figure 37.30 illustrates how sunlight becomes polarized when it is scattered. The 
phenomenon is similar to that creating completely polarized light upon reflection 
from a surface at Brewster’s angle. An unpolarized beam of sunlight traveling in 
the horizontal direction (parallel to the ground) strikes a molecule of one of the 
gases that make up air, setting the electrons of the molecule into vibration. These 
vibrating charges act like the vibrating charges in an antenna. The horizontal com-
ponent of the electric field vector in the incident wave results in a horizontal com-
ponent of the vibration of the charges, and the vertical component of the vector 
results in a vertical component of vibration. If the observer in Figure 37.30 is look-
ing in a direction perpendicular to the original direction of propagation of the 
light, the vertical oscillations of the charges send no radiation toward the observer 
(See Fig. 33.12.). Therefore, the observer sees light that is completely polarized in 
the horizontal direction as indicated by the orange arrows. If the observer looks in 
other directions, the light is partially polarized in the horizontal direction.

Variations in the color of scattered light in the atmosphere can be understood as 
follows. When light of various wavelengths l is incident on gas molecules of diameter 
d, where d ,, l, the relative intensity of the scattered light varies as 1/l4. The condi-
tion d ,, l is satisfied for scattering from oxygen (O2) and nitrogen (N2) molecules in 
the atmosphere, whose diameters are about 0.2 nm. Hence, short wavelengths (violet  
light) are scattered more efficiently than long wavelengths (red light). Therefore, 
when sunlight is scattered by gas molecules in the air, the short-wavelength radiation 
(violet) is scattered more intensely than the long-wavelength radiation (red).

When you look up into the sky in a direction that is not toward the Sun, you see 
the scattered light, which is predominantly violet. Your eyes, however, are not very 
sensitive to violet light. Light of the next color in the spectrum, blue, is scattered 
with less intensity than violet, but your eyes are far more sensitive to blue light than 
to violet light. Hence, you see a blue sky. If you look toward the west at sunset (or 
toward the east at sunrise), you are looking in a direction toward the Sun and are 
seeing light that has passed through a large distance of air. Most of the blue light 
has been scattered by the air between you and the Sun. The light that survives this 
trip through the air to you has had much of its blue component scattered and is 
therefore heavily weighted toward the red end of the spectrum; as a result, you see 
the red and orange colors of sunset (or sunrise).

 table 37.1   Indices of Refraction for Some Double-Refracting 
Crystals at a Wavelength of 589.3 nm
Crystal nO nE nO/nE

Calcite (CaCO3) 1.658 1.486 1.116
Quartz (SiO2) 1.544 1.553 0.994
Sodium nitrate (NaNO3) 1.587 1.336 1.188
Sodium sulfite (NaSO3) 1.565 1.515 1.033
Zinc chloride (ZnCl2) 1.687 1.713 0.985
Zinc sulfide (ZnS) 2.356 2.378 0.991

Unpolarized
light Air

molecule

The scattered light traveling 
perpendicular to the incident 
light is plane-polarized because 
the vertical vibrations of the 
charges in the air molecule send 
no light in this direction.

Figure 37.30  The scattering 
of unpolarized sunlight by air 
molecules.
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Q uick Quiz 37.5  A polarizer for microwaves can be made as a grid of parallel 
metal wires approximately 1 cm apart. Is the electric field vector for microwaves 
transmitted through this polarizer (a) parallel or (b) perpendicular to the metal 
wires?

Q uick Quiz 37.6  You are walking down a long hallway that has many light 
fixtures in the ceiling and a very shiny, newly waxed floor. When looking at  
the floor, you see reflections of every light fixture. Now you put on sunglasses 
that are polarized. Some of the reflections of the light fixtures can no longer  
be seen. (Try it!) Are the reflections that disappear those (a) nearest to you,  
(b) farthest from you, or (c) at an intermediate distance from you?

Summary
 › Concepts and Principles

Diffraction is the deviation of 
light from a straight-line path 
when the light passes through 
an aperture or around an obsta-
cle. Diffraction is due to the wave 
nature of light.

Rayleigh’s criterion, which is a limiting condition of resolu-
tion, states that two images formed by an aperture are just 
distinguishable if the central maximum of the diffraction  
pattern for one image falls on the first minimum of the dif-
fraction pattern for the other image. The limiting angle of res-
olution for a slit of width a is umin 5 l/a, and the limiting angle 
of resolution for a circular aperture of diameter D is given by  
umin 5 1.22l/D.

When polarized light of intensity 
Imax is emitted by a polarizer and 
then is incident on an analyzer, 
the light transmitted through the 
analyzer has an intensity equal to  
Imax cos2 u, where u is the angle 
between the polarizer and analyzer 
transmission axes.

The Fraunhofer diffraction pattern produced by a single slit of width a on a distant screen 
consists of a central bright fringe and alternating bright and dark fringes of much lower 
intensities. The angles udark at which the diffraction pattern has zero intensity, correspond-
ing to destructive interference, are given by

 sin udark 5 m 
l

a
 m 5 61, 62, 63, . . . (37.1)

A diffraction grating consists of a large number of equally 
spaced, identical slits. The condition for intensity maxima in 
the interference pattern of a diffraction grating for normal 
incidence is

 d sin ubright 5 m  l    m 5 0, 61, 62, 63, . . . (37.7)

where d is the spacing between adjacent slits and m is the order 
number of the intensity maximum.

In general, reflected light is partially polarized. Reflected light, however, is completely 
polarized when the angle of incidence is such that the angle between the reflected and 
refracted beams is 90°. This angle of incidence, called the polarizing angle up, satisfies 
Brewster’s law:

 tan up 5
n 2

n1

 (37.10)

where n1 is the index of refraction of the medium in which the light initially travels and n2 
is the index of refraction of the reflecting medium.

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your team is working in an optical research laboratory. 
Part of the apparatus you are working on involves polarized 
beams of light. Your supervisor wants to rotate the plane of 
polarization of one polarized beam by 45.0°. She can do that 
by inserting a single polarizer at 45.0° to the plane of polar-
ization of the original beam, but, according to Malus’s law, 
she then loses 50% of the intensity of the light. She gives you 
the task of designing a stack of polarizers, each with its axis 
at the same angle with the axis of the previous polarizer, 

that will rotate the plane of polarization of the beam with-
out losing more than 10.0% of the intensity of the original 
beam. She wants to know by quitting time tonight (a) how 
many polarizers she needs in the stack and (b) the angle 
between adjacent polarizers.

2. ACTIVITy  A beam of unpolarized light is directed through 
a stack of three polarizers. The first polarizer is at an angle 
u1 with respect to a reference direction that is defined as 0°. 
The third polarizer is at an angle u3 with respect to the refer-
ence direction. The angle u2 of the second polarizer starts at 
the reference direction 0° and is rotated through 180°. The 
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graph in Figure TP37.2 shows the behavior of the intensity 
of the light passing through the stack of polarizers as a func-
tion of the direction of the second polarizer. (a) Discuss this 
situation in your group and find the angles that the first and 
third polarizers make with respect to the reference direc-
tion. (b) Can you determine which of the angles in part (a) 
corresponds to the first polarizer and which to the third?

3. ACTIVITy  Your group is performing an experiment in 
which light of wavelength 632.8 nm illuminates a single slit, 
and a diffraction pattern is formed on a screen 1.00 m from 
the slit. You record relative intensity as a function of dis-
tance from the central maximum and generate the data in 
the following table. (a) Plot the data in the table. (b) From 
your plot, determine the width a of the single slit.

Position Relative to 
Central Maximum (mm)

 
Relative Intensity

0 1.00
 0.8 0.95
 1.6 0.80
 3.2 0.39
 4.8 0.079
 6.5 0.003
 8.1 0.036
 9.7 0.043
11.3 0.013
12.9 0.000 3
14.5 0.012
16.1 0.015
17.7 0.004 4
19.3 0.000 3
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Figure TP37.2

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 37.2  Diffraction Patterns from Narrow Slits

1. Helium–neon laser light (l 5 632.8 nm) is sent through a 
0.300-mm-wide single slit. What is the width of the central 
maximum on a screen 1.00 m from the slit?

2. From Equation 37.2, find an expression for the sine of the 
angles at which the minimum intensity occurs in a single-slit 
diffraction pattern. Compare the result to Equation 37.1.

3. Light of wavelength 540 nm passes through a slit of width 
0.200 mm. (a) The width of the central maximum on a 
screen is 8.10 mm. How far is the screen from the slit? 
(b) Determine the width of the first bright fringe to the side 
of the central maximum.

4. In Figure 37.7, show mathematically how many interference 
maxima are enclosed by the central diffraction maximum in 
the pattern. Notice that the diagram is generated by using  
650-nm light to illuminate two 3.0-mm slits separated by 18 mm.

5. Assume light of wavelength 650 nm passes through two 
slits 3.00 mm wide, with their centers 9.00 mm apart. 

Make a sketch of the combined diffraction and inter-
ference pattern in the form of a graph of intensity 
versus f 5 (pa sin u)/l. You may use Figure 37.7 as a  
starting point.

6. What If? Suppose light strikes a 
single slit of width a at an angle 
b from the perpendicular direc-
tion as shown in Figure P37.6. 
Show that Equation 37.1, the 
condition for destructive inter-
ference, must be modified to 
read

  sin udark 5 m 
l

a
 2 sin b  

 m 5 61, 62, 63, . . .

7. A diffraction pattern is formed 
on a screen 120 cm away from a 
0.400-mm-wide slit. Monochro-
matic 546.1-nm light is used. Calculate the fractional inten-
sity I/Imax at a point on the screen 4.10 mm from the center of 
the principal maximum.

V

T

a
ub

Figure P37.6
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8. Coherent light of wavelength 501.5 nm is sent through two 
parallel slits in an opaque material. Each slit is 0.700  mm 
wide. Their centers are 2.80 mm apart. The light then falls on 
a semicylindrical screen, with its axis at the midline between 
the slits. We would like to describe the appearance of the 
pattern of light visible on the screen. (a) Find the direction 
for each two-slit interference maximum on the screen as 
an angle away from the bisector of the line joining the slits. 
(b) How many angles are there that represent two-slit inter-
ference maxima? (c) Find the direction for each single-slit 
interference minimum on the screen as an angle away from 
the bisector of the line joining the slits. (d) How many angles 
are there that represent single-slit interference minima?  
(e) How many of the angles in part (d) are identical to those 
in part (a)? (f) How many bright fringes are visible on the 
screen? (g) If the intensity of the central fringe is Imax, what is 
the intensity of the last fringe visible on the screen?

Section 37.3  Resolution of Single-Slit and Circular Apertures

Note: In text problems 11, 15, and 16, and online-only problem 
37.9, you may use the Rayleigh criterion for the limiting angle 
of resolution of an eye. The standard may be overly optimistic 
for human vision.

9. The objective lens of a certain refracting telescope has a diam-
eter of 58.0 cm. The telescope is mounted in a satellite that 
orbits the Earth at an altitude of 270 km to view objects on the 
Earth’s surface. Assuming an average wavelength of 500 nm,  
find the minimum distance between two objects on the 
ground if their images are to be resolved by this lens.

10. Yellow light of wavelength 589 nm is used to view an object 
under a microscope. The objective lens diameter is 9.00 mm.  
(a) What is the limiting angle of resolution? (b) Suppose it 
is possible to use visible light of any wavelength. What color 
should you choose to give the smallest possible angle of res-
olution, and what is this angle? (c) Suppose water fills the 
space between the object and the objective. What effect 
does this change have on the resolving power when 589-nm 
light is used?

11. What is the approximate size of the smallest object on the 
Earth that astronauts can resolve by eye when they are orbit-
ing 250 km above the Earth? Assume l 5 500 nm and a 
pupil diameter of 5.00 mm.

12. A helium–neon laser emits light that has a wavelength of 
632.8 nm. The circular aperture through which the beam 
emerges has a diameter of 0.500 cm. Estimate the diameter 
of the beam 10.0 km from the laser.

13. To increase the resolving power of a microscope, the object 
and the objective are immersed in oil (n 5 1.5). If the limit-
ing angle of resolution without the oil is 0.60 mrad, what is 
the limiting angle of resolution with the oil? Hint: The oil 
changes the wavelength of the light.

14. You are working for a new assistant professor in astronomy 
who is interested in exoplanets. One day, a scientific rumor 
begins circulating that there is a Jupiter-sized planet around 
Alpha Centauri, 4.28 light-years away. Your professor has 
access to viewing privileges for the Hubble Space Tele-
scope (aperture diameter 2.4 m, 100 nm to 2 400 nm), the 
Hale Telescope on Palomar Mountain in California (aper-
ture diameter 5.08 m, visible light), the Keck Telescope on 
Mauna Lea, Hawaii (aperture diameter 10.0 m, visible light), 

and the Arecibo Radio Telescope in Puerto Rico (aperture 
diameter 305 m, 75-cm radio waves). He asks you to advise 
him as soon as possible as to which telescope he should 
request time on in order to resolve an image of the planet.

15. Impressionist painter Georges Seurat created paintings 
with an enormous number of dots of pure pigment, each 
of which was approximately 2.00 mm in diameter. The idea 
was to have colors such as red and green next to each other 
to form a scintillating canvas, such as in his masterpiece, A 
Sunday Afternoon on the Island of La Grande Jatte (Fig. P37.15). 
Assume l 5 500 nm and a pupil diameter of 5.00  mm. 
Beyond what distance would a viewer be unable to discern 
individual dots on the canvas?

16. Narrow, parallel, glowing gas-filled tubes in a variety of col-
ors form block letters to spell out the name of a nightclub. 
Adjacent tubes are all 2.80 cm apart. The tubes forming 
one letter are filled with neon and radiate predominantly 
red light with a wavelength of 640 nm. For another letter, 
the tubes emit predominantly blue light at 440 nm. The 
pupil of a dark-adapted viewer’s eye is 5.20 mm in diameter.  
(a) Which color is easier to resolve? State how you decide. 
(b) If she is in a certain range of distances away, the viewer 
can resolve the separate tubes of one color but not the 
other. The viewer’s distance must be in what range for her 
to resolve the tubes of only one of these two colors?

Section 37.4  The Diffraction Grating

Note: In the following problems, assume the light is incident 
normally on the gratings.

17. Consider an array of parallel wires with uniform spacing of 
1.30 cm between centers. In air at 20.0°C, ultrasound with a 
frequency of 37.2 kHz from a distant source is incident per-
pendicular to the array. (a) Find the number of directions 
on the other side of the array in which there is a maximum 
of intensity. (b) Find the angle for each of these directions 
relative to the direction of the incident beam.

18. Three discrete spectral lines occur at angles of 10.1°, 13.7°, 
and 14.8° in the first-order spectrum of a grating spectrom-
eter. (a) If the grating has 3 660 slits/cm, what are the wave-
lengths of the light? (b) At what angles are these lines found 
in the second-order spectrum?

19. A grating with 250 grooves/mm is used with an incandes-
cent light source. Assume the visible spectrum to range in 
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wavelength from 400 nm to 700 nm. In how many orders 
can one see (a) the entire visible spectrum and (b) the 
short-wavelength region of the visible spectrum?

20. Show that whenever white light is passed through a diffrac-
tion grating of any spacing size, the violet end of the spec-
trum in the third order on a screen always overlaps the red 
end of the spectrum in the second order.

21. Light from an argon laser strikes a diffraction grating that 
has 5 310 grooves per centimeter. The central and first-
order principal maxima are separated by 0.488 m on a wall 
1.72 m from the grating. Determine the wavelength of the 
laser light.

22. A wide beam of laser light with a wavelength of 632.8 nm is 
directed through several narrow parallel slits, separated by 
1.20 mm, and falls on a sheet of photographic film 1.40 m  
away. The exposure time is chosen so that the film stays 
unexposed everywhere except at the central region of each 
bright fringe. (a) Find the distance between these interfer-
ence maxima. The film is printed as a transparency; it is 
opaque everywhere except at the exposed lines. Next, the 
same beam of laser light is directed through the transpar-
ency and allowed to fall on a screen 1.40 m beyond. (b) 
Argue that several narrow, parallel, bright regions, sepa-
rated by 1.20 mm, appear on the screen as real images of the 
original slits. (A similar train of thought, at a soccer game, 
led Dennis Gabor to invent holography.)

23. You are working as a demonstration assistant for a physics 
professor. For an upcoming lecture on diffraction gratings, 
he wishes to perform a demonstration where he shines a laser 
pointer at normal incidence onto the recorded surface of a 
DVD that is laying flat on the demonstration table. (a) He 
asks you to determine how many additional maxima beyond 
the normal reflection (which will be blocked by his hand 
holding the laser pointer) will be projected onto the ceiling 
or walls of the room if he uses a laser pointer with a wave-
length of 632.8 nm. (b) He also asks you if he can show more 
maxima by using a laser pointer of another visible color. The 
tracks of pits on a DVD are separated by 0.800 mm.

Section 37.5  Diffraction of X-Rays by Crystals

24. Monochromatic x-rays (l 5 0.166 nm) from a nickel target 
are incident on a potassium chloride (KCl) crystal surface. 
The spacing between planes of atoms in KCl is 0.314 nm. 
At what angle (relative to the surface) should the beam be 
directed for a second-order maximum to be observed?

25. The first-order diffraction maximum is observed at 12.6° 
for a crystal having a spacing between planes of atoms of 
0.250 nm. (a) What wavelength x-ray is used to observe this 
first-order pattern? (b) How many orders can be observed 
for this crystal at this wavelength?

26. You are performing research in an x-ray diffraction laboratory. 
In one of your experiments, you wish to study x-ray diffraction 
from a crystal of NaCl using x-rays of wavelength 0.136 nm. 
(a) For how many angles do you expect to detect a diffraction 
maximum from the crystal if your x-rays are reflecting from 
the shaded planes in Figure 37.20? (b) In another experiment, 
the crystal is rotated so that the reflections of x-rays arise from 
parallel planes of sodium and chlorine ions. Figure P37.26 
shows portions of these planes containing atoms within the 
unit cell. Imagine extending these portions outward to form 

large planes, one with only sodium ions and the other with 
only chlorine ions. Considering these planes, for how many 
angles do you expect to detect a diffraction maximum from 
the crystal using the same x-rays?

Section 37.6  Polarization of Light Waves

Online-Only Problem 33.25 can be assigned with this section.

27. Two handheld radio transceivers with dipole antennas are 
separated by a large fixed distance. If the transmitting 
antenna is vertical, what fraction of the maximum received 
power will appear in the receiving antenna when it is inclined 
from the vertical by (a) 15.0°, (b) 45.0°, and (c) 90.0°?

28. Why is the following situation impossible? A technician is mea-
suring the index of refraction of a solid material by observ-
ing the polarization of light reflected from its surface. She 
notices that when a light beam is projected from air onto the 
material surface, the reflected light is totally polarized par-
allel to the surface when the incident angle is 41.0°.

29. The critical angle for total internal reflection for sapphire 
surrounded by air is 34.4°. Calculate the polarizing angle 
for sapphire.

30. For a particular transparent medium surrounded by air, find 
the polarizing angle up in terms of the critical angle for total 
internal reflection uc.

31. You are working in a laser laboratory, assisting with an 
experiment involving gas lasers. Your supervisor explains 
that the ends of the glass tube containing the lasing gas are 
sealed with Brewster windows. Figure P37.31 shows such a win-
dow at one end of a glass laser tube. The laser light reflected 
from the first surface is shown as the dashed line in the fig-
ure, and is completely polarized parallel to the plane of the  
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surface (perpendicular to the page). The light that transmits 
into the Brewster window and then out the opposite side is 
partially polarized parallel to the page. (a) Your supervisor 
asks you to determine the angle u that a Brewster window 
made from ZnSe (n 5 2.67) must make with the horizon-
tal for these conditions to be satisfied. The index of refrac-
tion of the gas in the tube is 1.00. (b) After you report your 
angle to your supervisor, he says that he has seen a possible  
problem—what about the reflection at the second surface, 
as the beam leaves the Brewster window? He is afraid that 
some of the desired polarization of the beam (parallel to 
the page) will be lost at that surface. Convince him that he 
does not need to worry about that issue.

32. An unpolarized beam of light is incident on a stack of ideal 
polarizing filters. The axis of the first filter is perpendicular 
to the axis of the last filter in the stack. Find the fraction 
by which the transmitted beam’s intensity is reduced in the 
three following cases. (a) Three filters are in the stack, each 
with its transmission axis at 45.0° relative to the preceding 
filter. (b) Four filters are in the stack, each with its transmis-
sion axis at 30.0° relative to the preceding filter. (c) Seven fil-
ters are in the stack, each with its transmission axis at 15.0° 
relative to the preceding filter. (d) Comment on comparing 
the answers to parts (a), (b), and (c).

aDDitional ProblemS

33. In a single-slit diffraction pattern, assuming each side maxi-
mum is halfway between the adjacent minima, find the ratio 
of the intensity of (a) the first-order side maximum and (b) 
the second-order side maximum to the intensity of the cen-
tral maximum.

34. Laser light with a wavelength of 632.8 nm is directed 
through one slit or two slits and allowed to fall on a screen 
2.60 m beyond. Figure P37.34 shows the pattern on the 
screen, with a centimeter ruler below it. (a) Did the light 
pass through one slit or two slits? Explain how you can 
determine the answer. (b) If one slit, find its width. If two 
slits, find the distance between their centers.

35. In water of uniform depth, a wide pier is supported on 
pilings in several parallel rows 2.80 m apart. Ocean waves 
of uniform wavelength roll in, moving in a direction that 
makes an angle of 80.0° with the rows of pilings. Find 
the three longest wavelengths of waves that are strongly 
reflected by the pilings.

36. Two motorcycles separated laterally by 2.30 m are approach-
ing an observer wearing night-vision goggles sensitive to 
infrared light of wavelength 885 nm. (a) Assume the light 
propagates through perfectly steady and uniform air. What 
aperture diameter is required if the motorcycles’ headlights 
are to be resolved at a distance of 12.0 km? (b) Comment on 
how realistic the assumption in part (a) is.

37.  The Very Large Array (VLA) is a set of 27 radio telescope 
dishes in Catron and Socorro counties, New Mexico  
(Fig. P37.37). The antennas can be moved apart on rail-
road tracks, and their combined signals give the resolving 
power of a synthetic aperture 36.0 km in diameter. (a) If 
the detectors are tuned to a frequency of 1.40 GHz, what 
is the angular resolution of the VLA? (b) Clouds of inter-
stellar hydrogen radiate at the frequency used in part (a). 
What must be the separation distance of two clouds at the 
center of the galaxy, 26 000 light-years away, if they are to 
be resolved? (c) What If? As the telescope looks up, a cir-
cling hawk looks down. Assume the hawk is most sensitive 
to green light having a wavelength of 500 nm and has a 
pupil of diameter 12.0 mm. Find the angular resolution of 
the hawk’s eye. (d) A mouse is on the ground 30.0 m below. 
By what distance must the mouse’s whiskers be separated if 
the hawk can resolve them?

38. Two wavelengths l and l 1 Dl (with Dl ,, l) are incident 
on a diffraction grating. Show that the angular separation 
between the spectral lines in the mth-order spectrum is

Du 5
Dl

Ïsdymd2 2 l2

where d is the slit spacing and m is the order number.

39. Review. A beam of 541-nm light is incident on a diffraction 
grating that has 400 grooves/mm. (a) Determine the angle 
of the second-order ray. (b) What If? If the entire appa-
ratus is immersed in water, what is the new second-order 
angle of diffraction? (c) Show that the two diffracted 
rays of parts (a) and (b) are related through the law of 
refraction.

40. Why is the following situation impossible? A technician is send-
ing laser light of wavelength 632.8 nm through a pair of slits 
separated by 30.0 mm. Each slit is of width 2.00 mm. The 
screen on which he projects the pattern is not wide enough, 
so light from the m 5 15 interference maximum misses the 
edge of the screen and passes into the next lab station, star-
tling a coworker.

41. Light in air strikes a water surface at the polarizing angle. The 
part of the beam refracted into the water strikes a submerged 
slab of material with refractive index n 5 1.62 as shown in Fig-
ure P37.41 (page 1008). The light reflected from the upper 
surface of the slab is completely polarized. Find the angle u 
between the water surface and the surface of the slab.

5 6 7 8 9 10 11 12 13
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1008 Chapter 37 Diffraction Patterns and Polarization

42. Light in air (assume n 5 1) strikes the surface of a liquid of 
index of refraction n

,
 at the polarizing angle. The part of the 

beam refracted into the liquid strikes a submerged slab of 
material with refractive index n as shown in Figure P37.41. 
The light reflected from the upper surface of the slab is com-
pletely polarized. Find the angle u between the water surface 
and the surface of the slab as a function of n and n

,
.

43. A pinhole camera has a small circular aperture of diameter 
D. Light from distant objects passes through the aperture 
into an otherwise dark box, falling on a screen located a dis-
tance L away. If D is too large, the display on the screen will 
be fuzzy because a bright point in the field of view will send 
light onto a circle of diameter slightly larger than D. On the 
other hand, if D is too small, diffraction will blur the display 
on the screen. The screen shows a reasonably sharp image if 
the diameter of the central disk of the diffraction pattern, 
specified by Equation 37.6, is equal to D at the screen. (a) 
Show that for monochromatic light with plane wave fronts 
and L .. D, the condition for a sharp view is fulfilled if  
D 2 5 2.44lL. (b) Find the optimum pinhole diameter for 
500-nm light projected onto a screen 15.0 cm away.

44. Iridescent peacock feathers are shown in Figure P37.44a. 
The surface of  one microscopic barbule is composed of 
transparent keratin that supports rods of dark brown mel-
anin in a regular lattice, represented in Figure P37.44b. 
(Your fingernails are made of keratin, and melanin is the 
dark pigment giving color to human skin.) In a portion of 
the feather that can appear turquoise (blue-green), assume 
the melanin rods are uniformly separated by 0.25 mm, 
with air between them. (a) Explain how this structure can 
appear turquoise when it contains no blue or green pig-
ment. (b) Explain how it can also appear violet if light falls 
on it in a different direction. (c) Explain how it can present 
different colors to your two eyes simultaneously, which is a 
characteristic of iridescence. (d) A compact disc can appear 
to be any color of the rainbow. Explain why the portion of 
the feather in Figure P37.44b cannot appear yellow or red. 
(e) What could be different about the array of melanin rods 
in a portion of the feather that does appear to be red?

45. The scale of a map is a number of kilometers per centime-
ter specifying the distance on the ground that any distance 
on the map represents. The scale of a spectrum is its disper-
sion, a number of nanometers per centimeter, specifying the 
change in wavelength that a distance across the spectrum 
represents. You must know the dispersion if you want to com-
pare one spectrum with another or make a measurement 
of, for example, a Doppler shift. Let y represent the position 
relative to the center of a diffraction pattern projected onto 
a flat screen at distance L by a diffraction grating with slit 
spacing d. The dispersion is dl/dy. (a) Prove that the disper-
sion is given by

dl

dy
5

L2d
msL2 1 y 2d3y2

(b) A light with a mean wavelength of 550 nm is analyzed 
with a grating having 8 000 rulings/cm and projected onto 
a screen 2.40 m away. Calculate the dispersion in first order.

46. (a) Light traveling in a medium of index of refraction n1  
is incident at an angle u on the surface of a medium of  
index n2. The angle between reflected and refracted rays is 
b. Show that

tan u 5
n 2 sin b

n1 2 n 2 cos b

(b) What If? Show that this expression for tan u reduces to 
Brewster’s law when b 5 90°.

47. The intensity of light in a diffraction pattern of a single slit 
is described by the equation

I 5 I max 
sin2 f

f2

where f 5 (pa sin u)/l. The central maximum is at f 5 0, 
and the side maxima are approximately at f 5 sm 1 1

2dp for 
m 5 1, 2, 3, . . . . Determine more precisely (a) the location 
of the first side maximum, where m 5 1, and (b) the loca-
tion of the second side maximum. Suggestion: Observe in Fig-
ure 37.6a that the graph of intensity versus f has a horizon-
tal tangent at maxima and also at minima.

48. How much diffraction spreading does a light beam undergo? 
One quantitative answer is the full width at half maximum of 
the central maximum of the single-slit Fraunhofer diffrac-
tion pattern. You can evaluate this angle of spreading in 
this problem. (a) In Equation 37.2, define f 5 pa sin u/l 
and show that at the point where I 5 0.5Imax we must have 
f 5 Ï2 sin f. (b) Let y1 5 sin f and y 2 5 fyÏ2 . Plot y1 and 
y 2 on the same set of axes over a range from f 5 1 rad to  
f 5 p/2 rad. Determine f from the point of intersection of 
the two curves. (c) Then show that if the fraction l/a is not 
large, the angular full width at half maximum of the central 
diffraction maximum is u 5 0.885l/a. (d) What If? Another 
method to solve the transcendental equation f 5 Ï2 sin f 
in part (a) is to guess a first value of f, use a computer or 
calculator to see how nearly it fits, and continue to update 
your estimate until the equation balances. How many steps 
(iterations) does this process take?

49. Two closely spaced wavelengths of light are incident on a dif-
fraction grating. (a) Starting with Equation 37.7, show that 
the angular dispersion of the grating is given by

du

dl
5

m
d cos u

p
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(b) A square grating 2.00 cm on each side containing 8 000 
equally spaced slits is used to analyze the spectrum of 
mercury. Two closely spaced lines emitted by this element 
have wavelengths of 579.065 nm and 576.959 nm. What is 
the angular separation of these two wavelengths in the sec-
ond-order spectrum?

challenGe ProblemS

 50. A spy satellite can consist of a large-diameter concave mir-
ror forming an image on a digital-camera detector and 
sending the picture to a ground receiver by radio waves. 
In effect, it is an astronomical telescope in orbit, looking 
down instead of up. (a) Can a spy satellite read a license 
plate? (b) Can it read the date on a dime? Argue for your 
answers by making an order-of-magnitude calculation, 
specifying the data you estimate.

 51. Figure P37.51a is a three-dimensional sketch of a birefrin-
gent crystal. The dotted lines illustrate how a thin, parallel-
faced slab of material could be cut from the larger specimen 
with the crystal’s optic axis parallel to the faces of the plate. 
A section cut from the crystal in this manner is known as a 
retardation plate. When a beam of light is incident on the plate 
perpendicular to the direction of the optic axis as shown in 
Figure  P37.51b, the O ray and the E ray travel along a sin-
gle straight line, but with different speeds. The figure shows  
the wave fronts for the two rays. (a) Let the thickness of the 
plate be d. Show that the phase difference between the O ray 
and the E ray after traveling the thickness of the plate is

u 5
2pd

l
unO 2 n Eu

where l is the wavelength in air. (b) In a particular case, the 
incident light has a wavelength of 550 nm. Find the mini-
mum value of d for a quartz plate for which u 5 p/2. Such a 
plate is called a quarter-wave plate. Use values of nO and nE  
from Table 37.1.

 52. In Figure P37.52, suppose the transmission axes of the left 
and right polarizing disks are perpendicular to each other. 
Also, let the center disk be rotated on the common axis with 
an angular speed v. Show that if unpolarized light is inci-
dent on the left disk with an intensity Imax, the intensity of 
the beam emerging from the right disk is

I 5 1
16I maxs1 2 cos 4vtd

This result means that the intensity of the emerging beam is 
modulated at a rate four times the rate of rotation of the 
center disk. Suggestion: Use the trigonometric identities  
cos2 u 5 1

2s1 1 cos 2ud and sin2 u 5 1
2s1 2 cos 2ud.

 53. Consider a light wave passing through a slit and propagating 
toward a distant screen. Figure P37.53 shows the intensity 
variation for the pattern on the screen. Give a mathematical 
argument that more than 90% of the transmitted energy is 
in the central maximum of the diffraction pattern. Sugges-
tion: You are not expected to calculate the precise percent-
age, but explain the steps of your reasoning. You may use 
the identification

1
12 1

1
32 1

1
52 1  . . . 5

p2

8
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P a r t  6

Modern Physics
The Compact Muon Solenoid 
(CMS) Detector is part of the 
Large Hadron Collider at the 
European Laboratory for Particle 
Physics operated by CERN. It 
is one of several detectors that 
search for elementary particles. 
For a sense of scale, the green 
structure to the left of the 
detector and extending to the 
top is five stories high. (CERN)

At the end of the 19th century, many scientists believed they 
had learned most of what there was to know about physics. Kinematics 
and dynamics, universal gravitation, principles of electricity and magne-
tism, the laws of thermodynamics and kinetic theory, and the principles of 
optics were highly successful in explaining a variety of phenomena. Thus 
far in this book, we have studied these ideas and have found that we can 
describe physical phenomena with separate sets of analysis models based 
on simplification models, many based on particles and others on waves.

At the turn of the 20th century, however, a major revolution shook the 
world of physics. In 1900, Max Planck provided the basic ideas that led 
to the formulation of the quantum theory, and in 1905, Albert Einstein 
formulated his special theory of relativity. Both theories were to have a 
profound effect on our understanding of nature. 

Relativity tells us that concepts of kinematics and dynamics are not as 
we thought when we consider speeds close to that of light. One of the 
most startling results from quantum theory tells us that such entities as 
electrons (particles) and light (waves) have both particle-like and wave-
like properties!

In Chapter 38, we shall introduce the special theory of relativity. 
Although the predictions of this theory often violate our common sense, 
the theory correctly describes the results of experiments involving 
speeds near the speed of light. The extended version of this textbook, 
Physics for Scientists and Engineers with Modern Physics, covers the 
basic concepts of quantum mechanics and their application to atomic 
and molecular physics, condensed matter physics, nuclear physics, 
particle physics, and cosmology.

Even though the physics that was developed during the 20th century has 
led to a multitude of important technological achievements, the story is still 
incomplete. Discoveries will continue to evolve during our lifetimes. ■
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relativity

38.1 The Principle of 
Galilean Relativity

38.2 The Michelson–Morley 
Experiment

38.3 Einstein’s Principle 
of Relativity

38.4 Consequences of the 
Special Theory of 
Relativity

38.5 The Lorentz 
Transformation 
Equations

38.6 The Lorentz Velocity 
Transformation 
Equations

38.7 Relativistic Linear 
Momentum

38.8 Relativistic Energy

38.9 The General Theory 
of Relativity

Storyline You are excited to be beginning your study of modern 
physics. While looking ahead in Chapter 38, you see a discussion of the twin 
paradox, where one twin stays on Earth and the other travels to a distant star and 
then back home at near the speed of light. When the traveling twin arrives back 
home, their ages are different! You dream about performing this experiment and 
testing the results. Of course, you want to be the traveling twin, so that you can 
visit another star! You would need to be paid for your services, so that you could 
support yourself once you return to Earth. This gets you thinking. To record your 
daily work shifts and document what your salary should be, should you take your 
timecard along with you and punch in for work daily, or should you leave your 
timecard at home and have your boss punch in for you each day?

ConneCtions Our everyday experiences and observations involve objects 
that move at speeds much less than the speed of light. Newtonian mechanics 
was formulated by observing and describing the motion of such objects, and this 
formalism is very successful in describing a wide range of phenomena that occur 
at low speeds. Nonetheless, it fails to describe properly the motion of objects 
whose speeds approach that of light. Although Albert Einstein made many 
other important contributions to science, the special theory of relativity alone 
represents one of the greatest intellectual achievements of all time. With this 
theory, experimental observations can be correctly predicted over the range of 
speeds from v 5 0 to speeds approaching the speed of light. This chapter gives 
an introduction to the special theory of relativity, with emphasis on some of its 
predictions. In addition to its well-known and essential role in theoretical physics, 
the special theory of relativity has practical applications, including the design of 

38

In this chapter, we discuss the twin paradox, a standard example of the effects of relativity. 
Maybe these young twin sisters will be the first to test it out! It looks like they are already 
discussing it! (eukukulka/Shutterstock)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    38.1 The Principle of Galilean Relativity 1013

nuclear power plants and modern global positioning system (GPS) units. These 
devices, and others we see in upcoming chapters, depend on relativistic princi-
ples for proper design and operation.

   38.1    The Principle of Galilean Relativity
In Section 4.6, we studied observations made from different frames of reference. 
In Chapter 5, we discussed that an inertial frame of reference is one in which an 
object is observed to have no acceleration when no forces act on it. Furthermore, 
any frame moving with constant velocity with respect to an inertial frame must also 
be an inertial frame.

There is no absolute inertial reference frame. Therefore, the laws describing a 
phenomenon as determined by an observer in a vehicle moving with uniform veloc-
ity relative to an inertial reference frame must be identical to the laws determined 
by an observer in a vehicle that is stationary relative to the same frame. The formal 
statement of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.   Principle of Galilean relativity

It is important to point out that this statement says that the laws are the same, not 
the results of an experiment. Let’s consider an observation that illustrates the equiv-
alence of the laws of mechanics in different inertial frames. The pickup truck in 
Figure 38.1a moves with a constant velocity with respect to the ground. If a pas-
senger in the truck throws a ball straight up and if air resistance is neglected, the 
passenger observes that the ball moves upward in a vertical path and then falls back 
into the observer’s hand. The motion of the ball appears to be precisely the same as 
if the ball were thrown while the truck were at rest. The law of universal gravitation 
and the equations of motion under constant acceleration are obeyed whether the 
truck is at rest or in uniform motion.

Now consider an observer on the ground as in Figure 38.1b. Both observers 
agree on the laws of physics: the observer in the truck throws a ball straight up, and 
it rises and falls back into his hand according to the particle under constant accel-
eration model. Do the observers agree, however, on the path of the ball thrown by 
the observer in the truck? The observer on the ground sees the path of the ball as a 
parabola as illustrated in Figure 38.1b, whereas, as mentioned earlier, the observer 
in the truck sees the ball move in a vertical path. Furthermore, according to the 
observer on the ground, the ball has a horizontal component of velocity equal to 
the velocity of the truck, and the horizontal motion of the ball is described by the 
particle under constant velocity model. Although the two observers disagree on 
certain aspects of the situation, they agree on the validity of Newton’s laws and on the 

Figure 38.1  Two observers watch 
the path of a thrown ball and 
obtain different results.a b

The observer in the moving truck 
sees the ball travel in a vertical 
path when thrown upward.

The Earth-based observer sees
the ball’s path as a parabola.
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1014 Chapter 38 Relativity

results of applying appropriate analysis models that we have learned. This agree-
ment implies that no mechanical experiment can detect any difference between 
the two inertial frames. The only thing that can be detected is the relative motion 
of one frame with respect to the other.

Q uick Quiz 38.1  Which observer in Figure 38.1 sees the ball’s correct path? 
(a) the observer in the truck  (b) the observer on the ground  (c) both observers

Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.

Consider two inertial frames S and S9 (Fig. 38.2). The S frame is the one in 
which the first observer in the previous paragraph resides. The S9 frame, in which 
the second observer resides, moves with a constant velocity vS 5 v i

⁄
 along the com-

mon x and x9 axes, where vS is measured relative to S. We assume the origins of S 
and S9 coincide at t 5 0 and an event occurs at point P in space at some instant of 
time. For simplicity, we show the observer O in the S frame and the observer O9 in 
the S9 frame as blue dots at the origins of their coordinate frames in Figure 38.2, 
but that is not necessary: either observer could be at any fixed location in his or 
her frame. Observer O describes the event with space–time coordinates (x, y, z, t), 
whereas observer O9 in S9 uses the coordinates (x9, y9, z9, t9) to describe the same 
event. Model the origin of S9 as a particle under constant velocity relative to the 
origin of S. As we see from the geometry in Figure 38.2 and the particle under 
constant velocity model, the relationships among these various coordinates can 
be written

 x9 5 x 2 vt   y9 5 y   z9 5 z   t9 5 t (38.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-
sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light, as we shall see.

Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in Figure 38.2 in a time interval dt as measured by an observer in S. It 
follows from Equation 38.1 that the corresponding displacement dx9 measured by 
an observer in S9 is dx9 5 dx 2 v dt. Because dt 5 dt9, we find that

dx9

dt9
5

dx
dt

2 v

or

 u9x 5 ux 2 v 

where ux and u9x are the x components of the velocity of the particle measured by 
observers in S and S9, respectively. (We use the symbol u rather than v for particle 
velocity because v is already used for the relative velocity of two reference frames.) 
We write the previous equation in vector form and solve it for the speed of the par-
ticle as seen by the observer in the unprimed frame:

 uSx 5 uS9x 1 vS (38.2)

Galilean space–time 
transformation equations

y

O

y�

x�

x
vt

P (event)

S�S

x
O�

x�

vS

Figure 38.2  An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity 
vS relative to S.

Pitfall Prevention 38.1
The Relationship Between the 
S and S9 Frames Many of the 
mathematical representations in 
this chapter are true only for the 
specified relationship between the 
S and S9 frames. The x and x9 axes 
coincide, except their origins are 
different. The y and y9 axes (and 
the z and z9 axes) are parallel, but 
they only coincide at one instant 
due to the time-varying position 
of the origin of S9 with respect to 
that of S. We choose the time t 5 0 
to be the instant at which the ori-
gins of the two coordinate systems 
coincide. If the S9 frame is moving 
in the positive x direction relative 
to S, then v is positive; otherwise, 
it is negative.

Galilean velocity  
transformation equation 
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    38.1 The Principle of Galilean Relativity 1015

Equation 38.2 is the Galilean velocity transformation equation and is identical to 
Equation 4.30. It is consistent with our intuitive notion of time and space as well as 
with our discussions in Section 4.6. As we shall soon see, however, it leads to serious 
contradictions when applied to electromagnetic waves.

Q uick Quiz 38.2  A baseball pitcher with a 90-mi/h fastball throws a ball 
while standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in 
the same direction as that of the velocity of the train. If you apply the Galilean 
velocity transformation equation to this situation, is the speed of the ball 
relative to the Earth (a) 90 mi/h, (b) 110 mi/h, (c) 20 mi/h, (d) 200 mi/h, or 
(e) impossible to determine?

the Speed of light
It is quite natural to ask whether the principle of Galilean relativity also applies 
to electricity, magnetism, and optics. Experiments indicate that the answer is no. 
Recall from Chapter 33 that Maxwell showed that the speed of light in free space 
is c 5 3.00 3 108 m/s. Physicists of the late 1800s thought light waves move through 
a medium filling the universe and called the ether. According to this model, the 
speed of light is measured to be c only in a special, absolute frame at rest with 
respect to the ether. The Galilean velocity transformation equation was expected to 
hold for observations of light made by an observer in any frame moving at speed v 
relative to the absolute ether frame.

Because the existence of a preferred, absolute ether frame would show that light 
is similar to other classical waves that require a medium and that Newtonian ideas 
of an absolute frame are true, considerable importance was attached to establishing 
the existence of the ether frame. Starting in about 1880, scientists decided to use 
the Earth as the moving frame in an attempt to improve their chances of detecting 
these small changes in the speed of light.

Observers fixed on the Earth can take the view that they are stationary and that 
the absolute ether frame containing the medium for light propagation moves past 
them with speed v. In Equation 38.2, the observed entity that is moving is light, so 
let uS9x 5 cS, where the primed frame is attached to the ether. Then the speed of light 
as measured by an observer on Earth, the unprimed frame, is uSx 5 cS 1 vS, where vS 
is the velocity of the ether with respect to the Earth. Determining the speed of light 
under these circumstances is similar to determining the speed of an aircraft trav-
eling in a moving air current, or wind; consequently, we speak of an “ether wind” 
blowing through our apparatus fixed to the Earth.

A direct method for detecting an ether wind would use an apparatus fixed to the 
Earth to measure the ether wind’s influence on the speed of light. If v is the speed 
of the ether relative to the Earth, light should have its maximum speed c 1 v when 
propagating downwind as in Figure 38.3a. Likewise, the speed of light should have 
its minimum value c 2 v when the light is propagating upwind as in Figure 38.3b 
and an intermediate value (c2 2 v2)1/2 when the light is directed such that it travels 
perpendicular to the ether wind as in Figure 38.3c. In this latter case, the vector cS 
must be aimed upstream so that the resultant velocity is perpendicular to the wind, 
like the boat in Figure 4.22b. If the Sun is assumed to be at rest in the ether, the 
velocity of the ether wind would be equal to the orbital velocity of the Earth around 
the Sun, which has a magnitude of approximately 30 km/s or 3 3 104 m/s. Because 
c 5 3 3 108 m/s, it is necessary to detect a change in speed of approximately 1 part 
in 104 for measurements in the upwind or downwind directions. Although such 
a change is experimentally measurable, all attempts to detect such changes and 
establish the existence of the ether wind (and hence the absolute frame) proved 
futile! We shall discuss the classic experimental search for the ether in Section 38.2.

The principle of Galilean relativity refers only to the laws of mechanics. If it is 
assumed the laws of electricity and magnetism are the same in all inertial frames, a 
paradox concerning the speed of light immediately arises. That can be understood 

vS

� vSc � c � vS� �

� vSc � c � vS� �

cS

vS

 

cS

The speed of light is c � v in 
the downwind direction.

The speed of light is c � v in 
the upwind direction.

cS Magnitude: c 
2 � v 

2 

The speed of light is
   c 

2 � v 
2  in the 

direction perpendicular 
to the wind.

a

b

c

vS

Figure 38.3  If the velocity of the 
ether wind relative to the Earth is 
vS and the velocity of light relative 
to the ether is cS, the speed of 
light relative to the Earth depends 
on the direction of the Earth’s 
velocity.
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by recognizing that Maxwell’s equations imply that the speed of light always has the 
fixed value 3.00 3 108 m/s in all inertial frames, a result in direct contradiction to 
what is expected based on the Galilean velocity transformation equation. Accord-
ing to Galilean relativity, the speed of light should not be the same in all inertial 
frames.

To resolve this contradiction in theories, we must conclude that either (1) the 
laws of electricity and magnetism are not the same in all inertial frames or (2) the 
Galilean velocity transformation equation is incorrect. If we assume the first alter-
native, a preferred reference frame in which the speed of light has the value c must 
exist and the measured speed must be greater or less than this value in any other 
reference frame, in accordance with the Galilean velocity transformation equation. 
If we assume the second alternative, we must abandon the notions of absolute time 
and absolute length that form the basis of the Galilean space–time transformation 
equations.

   38.2    The Michelson–Morley Experiment
The most famous experiment designed to detect small changes in the speed of light 
was first performed in 1881 by A. A. Michelson (see Section 36.6) and later repeated 
under various conditions by Michelson and Edward W. Morley (1838–1923). As we 
shall see, the outcome of the experiment contradicted the ether hypothesis.

The experiment was designed to determine the velocity of the Earth relative to 
that of the hypothetical ether. The experimental tool used was the Michelson inter-
ferometer, which was discussed in Section 36.6 and is shown again in Figure 38.4. 
Arm 2 is aligned along the direction of the Earth’s motion through space. The 
Earth moving through the ether at speed v is equivalent to the ether flowing past 
the Earth in the opposite direction with speed v. This ether wind blowing in the 
direction opposite the direction of the Earth’s motion should cause the speed of 
light measured in the Earth frame to be c 1 v as the light approaches mirror M2 
and c 2 v after reflection, where c is the speed of light in the ether frame.

The two light beams reflect from M1 and M2 and recombine, and an interference 
pattern is formed as discussed in Section 36.6. The interference pattern is then 
observed while the interferometer is rotated through an angle of 90°. This rotation 
interchanges the speed of the ether wind between the arms of the interferometer. 
The rotation should cause the fringe pattern to shift slightly but measurably. Mea-
surements failed, however, to show any change in the interference pattern! The 
Michelson–Morley experiment was repeated at different times of the year when the 
ether wind was expected to change direction and magnitude, but the results were 
always the same: no fringe shift of the magnitude required was ever observed.1

The negative results of the Michelson–Morley experiment not only contradicted 
the ether hypothesis, but also showed that it is impossible to measure the absolute 
velocity of the Earth with respect to the ether frame. Einstein, however, offered a 
postulate for his special theory of relativity that places quite a different interpreta-
tion on these null results. In later years, when more was known about the nature 
of light, the idea of an ether that permeates all of space was abandoned. Light is 
now understood to be an electromagnetic wave, which requires no medium for its 
propagation. As a result, the idea of an ether in which these waves travel became 
unnecessary.

Many efforts were made to explain the null results of the Michelson–Morley 
experiment and to save the ether frame concept and the Galilean velocity trans-
formation equation for light. All proposals resulting from these efforts have been 

1From an Earth-based observer’s point of view, changes in the Earth’s speed and direction of motion in the course 
of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether were zero at some 
time, six months later the speed of the Earth would be 60 km/s with respect to the ether and as a result a fringe shift 
should be noticed. No shift has ever been observed, however.

According to the ether wind 
theory, the speed of light should 
be c � v as the beam approaches 
mirror M2 and c � v after 
reflection.

M0 M2

M1

Arm 1

Arm 2

Ether wind

Telescope

Light
source

vS

Figure 38.4 A Michelson inter-
ferometer is used in an attempt to 
detect the ether wind.
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    38.2 The Michelson–Morley Experiment 1017

shown to be wrong. No experiment in the history of physics received such valiant 
efforts to explain the absence of an expected result as did the Michelson–Morley 
experiment. The stage was set for Einstein, who solved the problem in 1905 with his 
special theory of relativity.

Details of the Michelson–Morley experiment
To understand the outcome of the Michelson–Morley experiment, let’s assume the 
two arms of the interferometer in Figure 38.4 are of equal length L. We shall ana-
lyze the situation as if there were an ether wind because that is what Michelson and 
Morley expected to find. As noted above, the speed of the light beam along arm 2 
should be c 1 v as the beam approaches M2 and c 2 v after the beam is reflected. 
We model a pulse of light as a particle under constant speed. Therefore, the time 
interval for travel to the right for the pulse is Dt 5 L/(c 1 v) and the time interval 
for travel to the left is Dt 5 L/(c 2 v). The total time interval for the round trip 
along arm 2 is

Dt arm 2 5
L

c 1 v
1

L
c 2 v

5
2Lc

c 2 2 v2 5
2L
c S1 2

v 2

c 2D21

Now consider the light beam traveling along arm 1, perpendicular to the ether 
wind. Because the speed of the beam relative to the Earth is (c2 2 v2)1/2 in this 
case (see Fig. 38.3c), the time interval for travel for each half of the trip is Dt 5  
L/(c2 2 v2)1/2 and the total time interval for the round trip is

Dt arm 1 5
2L

sc 2 2 v2d1y2 5
2L
c S1 2

v2

c 2D21y2

The time difference Dt between the horizontal round trip (arm 2) and the vertical 
round trip (arm 1) is

Dt 5 Dt arm 2 2 Dt arm 1 5
2L
c 3S1 2

v2

c 2D21

2 S1 2
v2

c 2D21y24
Because v2/c2 ,, 1, we can simplify this expression by using the following binomial 
expansion after dropping all terms higher than second order:

(1 2 x)n < 1 2 nx    (for x ,, 1)

In our case, x 5 v 2/c 2, and we find that

 Dt 5 Dt arm 2 2 Dt arm 1 <
Lv2

c 3  (38.3)

This time difference between the two instants at which the reflected beams 
arrive at the viewing telescope gives rise to a phase difference between the beams, 
producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane so that the two beams exchange 
roles. This rotation results in a time difference twice that given by Equation 38.3. 
Therefore, the path difference that corresponds to this time difference is

Dd 5 c s2 Dtd 5
2Lv2

c 2

Because a change in path length of one wavelength corresponds to a shift of one 
fringe, the corresponding fringe shift is equal to this path difference divided by the 
wavelength of the light:

 Shift 5
2Lv2

lc 2  (38.4)
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In the experiments by Michelson and Morley, each light beam was reflected by 
mirrors many times to give an effective path length L of approximately 11 m. Using 
this value, taking v to be equal to 3.0 3 104 m/s (the speed of the Earth around the 
Sun), and using 500 nm for the wavelength of the light, we expect a fringe shift of

Shift 5
2s11 mds3.0 3 104 mysd2

s5.0 3 1027 mds3.0 3 108 mysd2 5 0.44

The instrument used by Michelson and Morley could detect shifts as small as 0.01 
fringe, but it detected no shift whatsoever in the fringe pattern! The experiment 
has been repeated many times since by different scientists under a wide variety 
of conditions, and no fringe shift has ever been detected. Therefore, it was con-
cluded that the motion of the Earth with respect to the postulated ether cannot 
be detected.

   38.3    Einstein’s Principle of Relativity
In the previous section, we noted the impossibility of measuring the speed of the 
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed 
these difficulties and at the same time completely altered our notion of space and 
time.2 He based his special theory of relativity on two postulates:

1. The principle of relativity: The laws of physics must be the same in all 
inertial reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has 
the same value, c 5 3.00 3 108 m/s, in all inertial frames, regardless of 
the velocity of the observer or the velocity of the source emitting the light.

The first postulate asserts that all the laws of physics—those dealing with 
mechanics, electricity and magnetism, optics, thermodynamics, and so on—are the 
same in all reference frames moving with constant velocity relative to one another. 
This postulate is a generalization of the principle of Galilean relativity, which refers 
only to the laws of mechanics. From an experimental point of view, Einstein’s prin-
ciple of relativity means that any kind of experiment (measuring the speed of light, 
for example) performed in a laboratory at rest must give the same result when per-
formed in a laboratory moving at a constant velocity with respect to the first one. 
Hence, no preferred inertial reference frame exists, and it is impossible to detect 
absolute motion.

Note that postulate 2 is required by postulate 1: if the speed of light were not the 
same in all inertial frames, measurements of different speeds would make it possi-
ble to distinguish between inertial frames. As a result, a preferred, absolute frame 
could be identified, in contradiction to postulate 1.

Although the Michelson–Morley experiment was performed before Einstein 
published his work on relativity, it is not clear whether or not Einstein was aware 
of the details of the experiment. Nonetheless, the null result of the experiment 
can be readily understood within the framework of Einstein’s theory. According to 
his principle of relativity, the premises of the Michelson–Morley experiment were 
incorrect. In the process of trying to explain the expected results, we stated that 
when light traveled with the ether wind, its speed was c 1 v, in accordance with the 
Galilean velocity transformation equation. If the state of motion of the observer 
or of the source has no influence on the value found for the speed of light, how-
ever, one always measures the value to be c. Likewise, the light makes the return 

2A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English translation of this 
article and other publications by Einstein, see the book by H. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The 
Principle of Relativity (New York: Dover, 1958).

albert einstein
German-American Physicist 
(1879–1955)
Einstein, one of the greatest physicists 
of all time, was born in Ulm, Germany. In 
1905, at age 26, he published four scien-
tific papers that revolutionized physics. 
Two of these papers were concerned 
with what is now considered his most 
important contribution: the special the-
ory of relativity.

In 1916, Einstein published his work 
on the general theory of relativity in 
Annalen der Physik. The most dramatic 
prediction of this theory is the degree to 
which light is deflected by a gravitational 
field. Measurements made by astrono-
mers on bright stars in the vicinity of the 
eclipsed Sun in 1919 confirmed Einstein’s 
prediction, and Einstein became a world 
celebrity as a result. Einstein was deeply 
disturbed by the development of quan-
tum mechanics in the 1920s despite his 
own role as a scientific revolutionary. 
In particular, he could never accept the 
probabilistic view of events in nature 
that is a central feature of quantum 
theory. The last few decades of his life 
were devoted to an unsuccessful search 
for a unified theory that would combine 
gravitation and electromagnetism.
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    38.4 Consequences of the Special Theory of Relativity  1019

trip after reflection from the mirror at speed c, not at speed c 2 v. Therefore, the 
motion of the Earth does not influence the interference pattern observed in the 
 Michelson–Morley experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative motion 
is unimportant when measuring the speed of light. At the same time, we must alter 
our commonsense notion of space and time and be prepared for some surprising 
consequences. As you read the pages ahead, keep in mind that our commonsense 
ideas are based on a lifetime of everyday experiences and not on observations of 
objects moving at hundreds of thousands of kilometers per second. Therefore, 
these results may seem strange, but that is only because we have no experience 
with them.

   38.4    Consequences of the Special Theory  
of Relativity
As we examine some of the consequences of relativity in this section, we restrict our 
discussion to the concepts of simultaneity, time intervals, and lengths. All three of 
these are quite different in relativistic mechanics from what they are in Newtonian 
mechanics. 

Simultaneity and the relativity of time
A basic premise of Newtonian mechanics is that a universal time scale exists that is 
the same for all observers. Newton and his followers took simultaneity for granted. 
In his special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A box-
car moves with uniform velocity, and two bolts of lightning strike its ends as illus-
trated in Figure 38.5a, leaving marks on the boxcar and on the ground. The marks 
on the boxcar are labeled A9 and B9, and those on the ground are labeled A and B. 
An observer O9 moving with the boxcar is midway between A9 and B9, and a ground 
observer O is midway between A and B. The events recorded by the observers are 
the striking of the boxcar by the two lightning bolts.

The light signals emitted from A and B at the instant at which the two bolts 
strike later reach observer O at the same time as indicated in Figure 38.5b. This 
observer realizes that the signals traveled at the same speed over equal distances 
and so concludes that the events at A and B occurred simultaneously. Now consider 
the same events as viewed by observer O9. By the time the signals have reached 
observer O, observer O9 has moved as indicated in Figure 38.5b. Therefore, the 
signal from B9 has already swept past O9, but the signal from A9 has not yet reached 
O9. In other words, O9 sees the signal from B9 before seeing the signal from A9. 

vS vS

The events appear to be 
simultaneous to the stationary 
observer O who is standing 
midway between A and B.

The events do not appear to be 
simultaneous to observer O�, 
who claims that the front of the 
car is struck before the rear.

A� B�

OA B

O�
A� B�

OA B

O�

a b

Figure 38.5  (a) Two lightning 
bolts strike the ends of a moving 
boxcar. (b) At a later time, the 
leftward-traveling light signal has 
already passed O9, but the right-
ward-traveling signal has not yet 
reached O9.
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1020 Chapter 38 Relativity

According to Einstein, the two observers must find that light travels at the same speed. 
Therefore, observer O9 concludes that one lightning bolt strikes the front of the 
boxcar before the other one strikes the back.

This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

time Dilation
To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Figure 38.6a. A mirror is fixed to the ceiling 
of the vehicle, and observer O9 at rest in the frame attached to the vehicle holds a 
flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse 
of light directed toward the mirror (event 1), and at some later time after reflecting 
from the mirror, the pulse arrives back at the flashlight (event 2). Observer O9 car-
ries a clock and uses it to measure the time interval Dtp between these two events. 
(The subscript p stands for proper, as we shall see in a moment.) We model the pulse 
of light as a particle under constant speed. Because the light pulse has a speed c, 
the time interval required for the pulse to travel from O9 to the mirror and back is

 Dtp 5
distance traveled

speed
5

2d
c

 (38.5)

Now consider the same pair of events as viewed by observer O in a second frame at 
rest with respect to the ground as shown in Figure 38.6b. According to this observer, 
the mirror and the flashlight are moving to the right with a speed v, and as a result, 
the sequence of events differs significantly. By the time the light from the flashlight 

Pitfall Prevention 38.2
Who’s Right? You might wonder 
which observer in Figure 38.5 
is correct concerning the two 
lightning strikes. Both are correct 
because the principle of relativity 
states that there is no preferred iner-
tial frame of reference. Although the 
two observers reach different con-
clusions, both are correct in their 
own reference frame because 
the concept of simultaneity is 
not absolute. That, in fact, is the 
central point of relativity: any uni-
formly moving frame of reference 
can be used to describe events 
and do physics.

a

Observer O � 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v ∆t

c

v �t
2

b

c �t
2

O � O � O � O �

x �

y �

Mirror

Figure 38.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at 
rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror 
and O9 move with a speed v and the light pulse follows a diagonal path. (c) The right triangle for cal-
culating the relationship between Dt and Dtp.
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reaches the mirror, the mirror has moved to the right a distance v Dt/2, where Dt is 
the time interval required for the light to travel from O9 to the mirror and back to O9 
as measured by O. Observer O concludes that because of the motion of the vehicle, 
if the light is to hit the mirror, it must leave the flashlight at an angle with respect 
to the vertical direction. Comparing Figure 38.6a with Figure 38.6b, we see that the 
light must travel farther in part (b) than in part (a). (Notice that neither observer 
“knows” that he or she is moving. Each is at rest in his or her own inertial frame.)

According to the second postulate of the special theory of relativity, both observ-
ers must measure c for the speed of light. Because the light travels farther accord-
ing to O, the time interval Dt measured by O is longer than the time interval Dtp 
measured by O9. To obtain a relationship between these two time intervals, let’s use 
the right triangle shown in Figure 38.6c. The Pythagorean theorem gives

Sc Dt
2 D2

5 Sv Dt
2 D2

1 d2

Solving for Dt gives

 Dt 5
2d

Ïc 2 2 v2
5

2d

c Î1 2
v2

c2

 (38.6)

Because Dtp 5 2d/c, we can express this result as

 Dt 5
Dtp

Î1 2
v2

c 2

5 g Dtp (38.7)

where

 g 5
1

Î1 2
v2

c 2

 (38.8)

Because g is always greater than unity, Equation 38.7 shows that the time interval 
Dt measured by an observer moving with respect to a clock is longer than the time 
interval Dtp measured by an observer at rest with respect to the clock. This effect is 
known as time dilation.

Time dilation is not observed in our everyday lives, which can be understood by 
considering the factor g. This factor deviates significantly from a value of 1 only for 
very high speeds as shown in Figure 38.7 and Table 38.1. All of us, including astro-
nauts, have spent our lives between the first two entries in Table 38.1 and at a point 
on the horizontal axis of the graph in Figure 38.7 that is, based on the scale of the 
figure, contained within the thickness of the line used to represent the vertical 

  Time dilation

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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5

1 v (108 m/s)

g

Figure 38.7  Graph of g versus v. 
As the speed approaches that of 
light, g increases rapidly.

 table 38.1  Approximate 
Values for g at Various Speeds
v/c g

0 1
0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37
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axis. For a speed of 0.1c, which is far higher than any speed that humans have expe-
rienced, the value of g is 1.005. Therefore, there is a time dilation of only 0.5% at 
one-tenth the speed of light. 

The time interval Dtp in Equations 38.5 and 38.7 is called the proper time 
interval. (Einstein used the German term Eigenzeit, which means “own-time.”) In 
general, the proper time interval is the time interval between two events measured 
by an observer who sees the events occur at the same point in space.

If a clock is moving with respect to you, the time interval between ticks of the 
moving clock is observed by you to be longer than the time interval between ticks of 
an identical clock in your reference frame. Therefore, it is often said that a moving 
clock is measured to run more slowly than a clock in your reference frame by a fac-
tor g. We can generalize this result by stating that all physical processes, including 
mechanical, chemical, and biological ones, are measured to slow down when those 
processes occur in a frame moving with respect to the observer. For example, the 
heartbeat of an astronaut moving through space keeps time with a clock inside the 
spacecraft. Both the astronaut’s clock and heartbeat are measured to slow down rel-
ative to a clock back on the Earth (although the astronaut would have no sensation 
of life slowing down in the spacecraft).

Q uick Quiz 38.3  Suppose the observer O9 on the train in Figure 38.6 aims 
her flashlight at the far wall of the boxcar and turns it on and off, sending a 
pulse of light toward the far wall. Both O9 and O measure the time interval 
between when the pulse leaves the flashlight and when it hits the far wall. 
Which observer measures the proper time interval between these two events? 
(a) O9 (b) O (c) both observers (d) neither observer

Q uick Quiz 38.4  A crew on a spacecraft watches a movie that is two hours 
long. The spacecraft is moving at high speed through space. Does an Earth-
based observer watching the movie screen on the spacecraft through a powerful 
telescope measure the duration of the movie to be (a) longer than, (b) shorter 
than, or (c) equal to two hours?

An interesting example of time dilation involves the observation of muons, unsta-
ble elementary particles that have a charge equal to that of the electron and a mass 
207 times that of the electron. Muons can be produced by the collision of cosmic radi-
ation with atoms high in the atmosphere. Slow-moving muons in the laboratory have 
a lifetime that is measured to be the proper time interval Dtp 5 2.2 ms. Muons created 
by cosmic radiation move at speeds very close to that of light. Let’s choose a typical 
speed of 0.9997c. At this speed, we find that the distance the muon can travel during  
its 2.2-ms laboratory-measured lifetime is (0.9997)(3.0 3 108 m/s)(2.2 3 1026  s) 5 
6.6 3 102 m before they decay (Fig. 38.8a). Hence, they are unlikely to reach the 
surface of the Earth from high in the atmosphere where they are produced. Exper-
iments show, however, that a large number of muons do reach the surface. The phe-
nomenon of time dilation explains this effect. As measured by an observer on the 
Earth, the muons have a dilated lifetime equal to g Dtp. For example, for v 5 0.9997c, 
g < 41, and g Dtp < 90 ms. Hence, the average distance traveled by the muons in this 
time interval as measured by an observer on the Earth is approximately (0.9997)
(3.0 3 108 m/s)(90 3 1026 s) < 27 3 103 m as indicated in Figure 38.8b. This distance 
is larger than the typical height above the surface at which muons are produced, 
showing that they can reach the surface when time dilation is taken into account.

In 1976, at the laboratory of the European Council for Nuclear Research 
(CERN) in Geneva, muons injected into a large storage ring reached speeds of 
approximately 0.999 4c. Electrons produced by the decaying muons were detected 
by counters around the ring, enabling scientists to measure the decay rate and 
hence the muon lifetime. The lifetime of the moving muons was measured to be 
approximately 30 times as long as that of the stationary muon, in agreement with 
the prediction of relativity to within two parts in a thousand.

Pitfall Prevention 38.3
The Proper Time Interval It is 
very important in relativistic 
calculations to correctly identify 
the observer who measures the 
proper time interval. The proper 
time interval between two events 
is always the time interval mea-
sured by an observer for whom 
the two events take place at the 
same position.
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� 27 � 103 m

� 6.6 � 102 m

Muon is created Muon is created

Muon decays

Muon decays

Without relativistic considerations, according to 
an observer on the Earth, muons created in the 
atmosphere and traveling downward with a speed 
close to c travel only about 6.6 � 102 m before 
decaying with an average lifetime of 2.2 ms. 
Therefore, very few muons would reach the 
surface of the Earth.

With relativistic considerations, the muon’s 
lifetime is dilated according to an observer 
on the Earth. Hence, according to this 
observer, the muon can travel about
27 � 103 m before decaying. The result is 
many of them arriving at the surface.

a b

Figure 38.8  Travel of muons 
according to an Earth-based 
observer.

 Example 38.1    What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the reference frame of the pendulum. What is the period when mea-
sured by an observer moving at a speed of 0.960c relative to the pendulum?

S o L u T I o N

Conceptualize Let’s change frames of reference. Instead of the observer moving at 0.960c, we can take the equivalent point of 
view that the observer is at rest and the pendulum is moving at 0.960c past the stationary observer. Hence, the pendulum is an 
example of a clock moving at high speed with respect to an observer. Because the pendulum is at rest in the reference frame 
of the clock that measured its period, the 3.00-s period is the proper time interval, and the observer who sees the pendulum 
moving will measure a dilated time interval.

Categorize Based on the Conceptualize step, we can categorize this example as a substitution problem involving relativistic 
time dilation.

The proper time interval, measured in the rest frame of the pendulum, is Dtp 5 3.00 s.

Use Equation 38.7 to find the dilated time interval: Dt 5 g Dtp 5
1

Î1 2
s0.960cd2

c 2

 Dtp 5
1

Ï1 2 0.921 6
 Dtp

5 3.57(3.00 s) 5  10.7 s

This result shows that a moving pendulum is indeed measured to take longer to complete a period than a pendulum at rest 
does. The period increases by a factor of g 5 3.57.

W H A T  I F ? What if the speed of the observer increases by 4.00%? Does the dilated time interval increase by 4.00%?

Answer Based on the highly nonlinear behavior of g as a function of v in Figure 38.7, we would guess that the increase in Dt 
would be different from 4.00%.

Find the new speed if it increases by 4.00%: vnew 5 (1.040 0)(0.960c) 5 0.998 4c

Perform the time dilation calculation again: Dt 5 g Dtp 5
1

Î1 2
s0.998 4cd2

c 2

 Dtp 5
1

Ï1 2 0.996 8
 Dtp

5 17.68(3.00 s) 5 53.1 s

Therefore, the 4.00% increase in speed results in almost a 400% increase in the dilated time!
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 Example 38.2    How Long Was Your Trip?

Suppose you are driving your car on a business trip and are traveling at 30 m/s. Your boss, who is waiting at your destina-
tion, expects the trip to take 5.0 h. When you arrive late, your excuse is that the clock in your car registered the passage of 
5.0 h but that you were driving fast and so your clock ran more slowly than the clock in your boss’s office. If your car clock 
actually did indicate a 5.0-h trip, how much time passed on your boss’s clock, which was at rest on the Earth?

S o L u T I o N

Conceptualize The observer is your boss standing stationary on the Earth. The clock is in your car, moving at 30 m/s with 
respect to your boss.

Categorize The low speed of 30 m/s suggests we might categorize this problem as one in which we use classical concepts and 
equations. Based on the problem statement that the moving clock runs more slowly than a stationary clock, however, we cate-
gorize this problem as one involving time dilation.

Analyze The proper time interval, measured in the rest frame of the car, is Dtp 5 5.0 h.

Use Equation 38.8 to evaluate g: g 5
1

Î1 2
v2

c 2

5
1

Î1 2
s3.0 3 101 mysd2

s3.0 3 108 mysd2

5
1

Ï1 2 10214

If you try to determine this value on your calculator, you  g 5 s1 2 10214d21y2 < 1 1 1
2  
s10214d 5 1 1 5.0 3 10215 

will probably obtain g 5 1. Instead, perform a binomial  
expansion:

Use Equation 38.7 to find the dilated time interval  Dt 5 g Dtp 5 (1 1 5.0 3 10215)(5.0 h) 
measured by your boss:

5 5.0 h 1 2.5 3 10214 h 5  5.0 h 1 0.090 ns

Finalize Your boss’s clock would be only 0.090 ns ahead of your car clock. You might want to think of another excuse!

the twin Paradox
An intriguing consequence of time dilation is the twin paradox (Fig. 38.9). Con-
sider an experiment involving a set of twins named Speedo and Goslo. When they 
are 20 years old, Speedo, the more adventuresome of the two, sets out on an epic 
journey from the Earth to Planet X, located 20 light-years away. One light-year (ly) 
is the distance light travels through free space in 1 year. Furthermore, Speedo’s 
spacecraft is capable of reaching a speed of 0.95c relative to the inertial frame of his 
twin brother back home on the Earth. After reaching Planet X, Speedo becomes 

a

As Speedo (on the
left) leaves his brother
on Earth, both twins
are the same age.

b

When Speedo returns
from his journey, Goslo
(on the right) is much
older than Speedo.

a

As Speedo (on the
left) leaves his brother
on Earth, both twins
are the same age.

When Speedo returns
from his journey, Goslo

Figure 38.9  The twin paradox. 
Speedo takes a journey to a star 
20 light-years away and returns to 
the Earth.
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homesick and immediately returns to the Earth at the same speed 0.95c. Upon his 
return, Speedo is shocked to discover that Goslo has aged 42 years and is now 62 
years old. Speedo, on the other hand, has aged only 13 years.

The paradox is not that the twins have aged at different rates. Here is the appar-
ent paradox. From Goslo’s frame of reference, he was at rest while his brother trav-
eled at a high speed away from him and then came back. According to Speedo, 
however, he himself remained stationary while Goslo and the Earth raced away 
from him and then headed back. Therefore, we might expect Speedo to claim that 
Goslo ages more slowly than himself. The situation appears to be symmetrical from 
either twin’s point of view. Which twin actually ages more slowly?

The situation is actually not symmetrical. Consider a third observer moving at 
a constant speed relative to Goslo. According to the third observer, Goslo never 
changes inertial frames. Goslo’s speed relative to the third observer is always the 
same. The third observer notes, however, that Speedo accelerates during his jour-
ney when he speeds up from zero to a speed of 0.95c relative to Earth and then 
again when he slows down and starts moving back toward the Earth, changing refer-
ence frames in the process. From the third observer’s perspective, there is something 
very different about the motion of Goslo when compared to Speedo. Therefore, 
there is no paradox: only Goslo, who is always in a single inertial frame, can make 
correct predictions based on special relativity. Goslo finds that instead of aging 
42 years, Speedo ages only (1 2 v2/c2)1/2(42 years) 5 [1 2 (0.95)2]1/2 (42 years) 5 
13  years. Of these 13 years, Speedo spends 6.5 years traveling to Planet X and 
6.5 years returning.

So, in the opening storyline, who should you have punch your timecard if you 
are the traveling twin? You should definitely leave the timecard at home and have 
your boss punch it. More time will pass on Earth than for you, and you will end up 
much richer! You will have collected 42 years of pay, but you have only aged by 13 
years, so you will have many years left to spend your treasure!

length contraction
The measured distance between two points in space also depends on the frame of 
reference of the observer. The proper length Lp of an object is the length measured 
by an observer at rest relative to the object. The length of an object measured by some-
one in a reference frame that is moving with respect to the object is always less than 
the proper length. This effect is known as length contraction.

To understand length contraction, consider a spacecraft traveling with a speed v 
from one star to another. There are two observers: one on the Earth and the other in 
the spacecraft. The observer at rest on the Earth (and also assumed to be at rest with 
respect to the two stars) measures the distance between the stars to be the proper 
length Lp. According to this observer, the time interval required for the spacecraft 
to complete the voyage is given by the particle under constant velocity model as Dt 5  
Lp /v. The passages of the two stars by the spacecraft occur at the same position for 
the space traveler. Therefore, the space traveler measures the proper time inter-
val Dtp. Because of time dilation, the proper time interval is related to the Earth- 
measured time interval by Dtp 5 Dt/g. Because the space traveler reaches the sec-
ond star in the time Dtp, he or she concludes that the distance L between the stars is

L 5 v Dtp 5 v 
Dt
g

Because the proper length is Lp 5 v Dt, we see that

 L 5
Lp

g
5 Lp Î1 2

v2

c 2 (38.9)

where Ï1 2 v2yc 2 is a factor less than unity. If an object has a proper length Lp 
when it is measured by an observer at rest with respect to the object, its length  

 Length contraction

Pitfall Prevention 38.4
The Proper Length As with the 
proper time interval, it is very 
important in relativistic cal-
culations to correctly identify 
the observer who measures the 
proper length. The proper length 
between two points in space is 
always the length measured by 
an observer at rest with respect 
to the points. Often, the proper 
time interval and the proper 
length are not measured by the 
same observer.
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L when it moves with speed v in a direction parallel to its length is measured to be 
shorter according to Equation 38.9.

For example, suppose a meterstick moves past a stationary Earth-based observer 
with speed v as in Figure 38.10. The length of the meterstick as measured by an 
observer in a frame attached to the stick is the proper length Lp shown in Fig-
ure 38.10a. The length of the stick L measured by the Earth observer is shorter 
than Lp by the factor (1 2 v2/c2)1/2 as suggested in Figure 38.10b. Notice that length 
contraction takes place only along the direction of motion.

Length contraction can also be applied to the twin paradox. Speedo measures 
the distance to Planet X as L 5 Lp(1 2 v2/c2)1/2 5 (20 ly)[1 2 (0.95)2]1/2 5 6.2 ly. 
At a speed of 0.95c, this trip requires a time interval of (6.2 ly)/[(0.95)(1 ly/yr)] 5 
6.6 yr. Multiplying by 2 to include both the outgoing and return trips gives 13 years, 
as we found using time dilation.

The proper length and the proper time interval are defined differently. The 
proper length is measured by an observer for whom the endpoints of the length 
remain fixed in space. The proper time interval is measured by someone for whom 
the two events take place at the same position in space. As an example of this point, 
let’s return to the decaying muons moving at speeds close to the speed of light. An 
observer in the muon’s reference frame measures the proper lifetime, whereas an 
Earth-based observer measures the proper length (the distance between the cre-
ation point and the decay point in Fig. 38.8b). In the muon’s reference frame, there 
is no time dilation, but the distance of travel to the surface is shorter when mea-
sured in this frame. Likewise, in the Earth observer’s reference frame, there is time 
dilation, but the distance of travel is measured to be the proper length. Therefore, 
when calculations on the muon are performed in both frames, the outcome of the 
experiment in one frame is the same as the outcome in the other frame: more 
muons reach the surface than would be predicted without relativistic effects.

Q uick Quiz 38.5  You are packing for a trip to another star. During the jour-
ney, you will be traveling at 0.99c. You are trying to decide whether you should 
buy smaller sizes of your clothing because you will be thinner on your trip due 
to length contraction. You also plan to save money by reserving a smaller cabin 
to sleep in because you will be shorter when you lie down. Should you (a) buy 
smaller sizes of clothing, (b) reserve a smaller cabin, (c) do neither of these 
things, or (d) do both of these things?

Q uick Quiz 38.6  You are observing a spacecraft moving away from you. You 
measure it to be shorter than when it was at rest on the ground next to you. 
You also see a clock through the spacecraft window, and you observe that the 
passage of time on the clock is measured to be slower than that of the watch 
on your wrist. Compared with when the spacecraft was on the ground, what do 
you measure if the spacecraft turns around and comes toward you at the same 
speed? (a) The spacecraft is measured to be longer, and the clock runs faster. 
(b) The spacecraft is measured to be longer, and the clock runs slower. (c) The 
spacecraft is measured to be shorter, and the clock runs faster. (d) The space-
craft is measured to be shorter, and the clock runs slower.

Space–time Graphs
It is sometimes helpful to represent a physical situation with a space–time graph, in 
which ct is the ordinate and position x is the abscissa. The twin paradox is displayed 
in such a graph in Figure 38.11 from Goslo’s point of view. A path through space–
time is called a world-line. At the origin, the world-lines of Speedo (blue) and Goslo 
(green) coincide because the twins are in the same location at the same time. After 
Speedo leaves on his trip, his world-line diverges from that of his brother. Goslo’s 
world-line is vertical because he remains fixed in location with respect to the Earth. 
At Goslo and Speedo’s reunion, the two world-lines again come together. It would 

vS

A meterstick measured by an 
observer in a frame attached 
to the stick has its proper 
length Lp.

A meterstick measured by an 
observer in a frame in which 
the stick has a velocity relative 
to the frame is measured to be 
shorter than its proper length.

a

b

Lp

y�

O �
x�

L

y

O
x

Figure 38.10 The length of a 
meterstick is measured by two 
observers.

World-line of Speedo

World-line of 
light beam

World-line
of Goslo

ct

x

Figure 38.11  The twin para-
dox on a space–time graph. The 
twin who stays on the Earth has 
a world-line along the ct axis 
(green). The path of the travel-
ing twin through space–time is 
represented by a world-line that 
changes direction (blue). The 
red-brown lines are world-lines 
for light beams traveling in the 
positive x direction (on the right) 
or the negative x direction (on 
the left).
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be impossible for Speedo to have a world-line that crossed the path of a light beam 
that left the Earth when he did. To do so would require him to have a speed greater 
than c (which, as shown in Sections 38.6 and 38.7, is not possible).

World-lines for light beams are diagonal lines on space–time graphs, typically 
drawn at 45° to the right or left of vertical (assuming the x and ct axes have the same 
scales), depending on whether the light beam is traveling in the direction of increasing 
or decreasing x. All possible future events for Goslo and Speedo lie above the x axis 
and between the red-brown lines in Figure 38.11 because neither twin can travel faster 
than light. The only past events that Goslo and Speedo could have experienced occur 
between two similar 45° world-lines that approach the origin from below the x axis.

If Figure 38.11 is rotated about the ct axis, the red-brown lines sweep out a cone, 
called the light cone, which generalizes Figure 38.11 to two space dimensions. The y 
axis can be imagined coming out of the page. All future events for an observer at the 
origin must lie within the light cone. We can imagine another rotation that would 
generalize the light cone to three space dimensions to include z, but because of the 
requirement for four dimensions (three space dimensions and time), we cannot rep-
resent this situation in a two-dimensional drawing on paper or on a computer screen.

 Example 38.3    A Voyage to Sirius

An astronaut takes a trip to Sirius, which is located a distance of 8 light-years from the Earth. The astronaut measures the 
time of the one-way journey to be 6 years. If the spaceship moves at a constant speed of 0.8c, how can the 8-ly distance be 
reconciled with the 6-year trip time measured by the astronaut?

S o L u T I o N

Conceptualize An observer on the Earth measures light to require 8 years to travel between Sirius and the Earth. The astro-
naut measures a shorter time interval for his travel of only 6 years. Is the astronaut traveling faster than light?

Categorize Because the astronaut is measuring a length of space between the Earth and Sirius that is in motion with respect to 
her, we categorize this example as a length contraction problem. We also model the astronaut as a particle under constant velocity.

Analyze The distance of 8 ly represents the proper length from the Earth to Sirius measured by an observer on the Earth 
seeing both objects nearly at rest.

Calculate the contracted length measured by the  L 5
8 ly

g
5 s8 lydÎ1 2

v2

c 2 5 s8 lydÎ1 2
s0.8cd2

c 2 5 5 ly 
astronaut using Equation 38.9:

Use the particle under constant velocity model to find  Dt 5
L
v

5
5 ly

0.8c
5

5 ly

0.8s1 lyyyrd
5 6 yr 

the travel time measured on the astronaut’s clock:

Finalize Notice that we have used the value for the speed of light as c 5 1 ly/yr. The trip takes a time interval shorter than 8 
years for the astronaut because, to her, the distance between the Earth and Sirius is measured to be shorter.

W H A T  I F ?  What if this trip is observed with a very powerful telescope by a technician in Mission Control on the Earth? 
At what time will this technician see that the astronaut has arrived at Sirius?

Answer The time interval the technician measures for the astronaut to arrive is

Dt 5
L p

v
5

8 ly

0.8c
5 10 yr

For the technician to see the arrival, the light from the scene of the arrival must travel back to the Earth and enter the tele-
scope. This travel requires a time interval of

Dt 5
L p

v
5

8 ly

c
5 8 yr

Therefore, the technician sees the arrival after 10 yr 1 8 yr 5 18 yr. If the astronaut immediately turns around and comes back 
home, she arrives, according to the technician, 20 years after leaving, only 2 years after the technician saw her arrive! In addition, 
the astronaut would have aged by only 12 years.
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 Example 38.4    The Pole-in-the-Barn Paradox

The twin paradox, discussed earlier, is a classic “paradox” in relativity. Another classic “paradox” is as follows. Suppose a 
runner moving at 0.75c carries a horizontal pole 15 m long toward a barn that is 10 m long. The barn has front and rear 
doors that are initially open. An observer on the ground can instantly and simultaneously close and open the two doors 
by remote control. When the runner and the pole are inside the barn, the ground observer closes and then immediately 
opens both doors so that the runner and pole are momentarily captured inside the barn and then proceed to exit the 
barn from the back doorway. Do both the runner and the ground observer agree that the runner makes it safely through 
the barn?

S o L u T I o N

Conceptualize From your everyday experience, you would be surprised to see a 15-m pole fit inside a 10-m barn, but we are 
becoming used to surprising results in relativistic situations.

Categorize The pole is in motion with respect to the ground observer so that the observer measures its length to be con-
tracted, whereas the stationary barn has a proper length of 10 m. We categorize this example as a length contraction problem. 
The runner carrying the pole is modeled as a particle under constant velocity.

Analyze Use Equation 38.9 to find the contracted length  L pole 5 L pÎ1 2
v 2

c 2 5 s15 mdÏ1 2 s0.75d2 5 9.9 m 
of the pole according to the ground observer:

Therefore, the ground observer measures the pole to be slightly shorter than the barn and there is no problem with momen-
tarily capturing the pole inside it. The “paradox” arises when we consider the runner’s point of view.

Use Equation 38.9 to find the contracted length of the  L barn 5 L pÎ1 2
v2

c 2 5 s10 mdÏ1 2 s0.75d2 5 6.6 m 
barn according to the running observer:

Because the pole is in the rest frame of the runner, the runner mea-
sures it to have its proper length of 15 m. Now the situation looks 
even worse: How can a 15-m pole fit inside a 6.6-m barn? Although 
this question is the classic one that is often asked, it is not the ques-
tion we have asked because it is not the important one. We asked, 
“Does the runner make it safely through the barn?”

The resolution of the “paradox” lies in the relativity of simultane-
ity. The closing of the two doors is measured to be simultaneous by 
the ground observer. Because the doors are at different positions, 
however, they do not close simultaneously as measured by the run-
ner. Both doors are open as the pole enters the barn. The rear door 
closes first and then opens, allowing the leading end of the pole to 
exit. The front door of the barn remains open in the meantime and 
does not close until the trailing end of the pole passes by.

We can analyze this “paradox” using a space–time graph. Fig-
ure 38.12a is a space–time graph from the ground observer’s point 
of view. We choose x 5 0 as the position of the front doorway of 
the barn and t 5 0 as the instant at which the leading end of the 
pole is located at the front doorway of the barn. The world-lines for 
the two doorways of the barn are separated by 10 m and are ver-
tical because the barn is not moving relative to this observer. For 
the pole, we follow two tilted world-lines, one for each end of the 
moving pole. These world-lines are 9.9 m apart horizontally, which 
is the contracted length seen by the ground observer. As seen in Fig-
ure 38.12a, the pole is entirely within the barn at some time.

Figure 38.12b shows the space–time graph according to the run-
ner. Here, the world-lines for the pole are separated by 15 m and 
are vertical because the pole is at rest in the runner’s frame of ref-
erence. The barn is hurtling toward the runner, so the world-lines 
for the front and rear doorways of the barn are tilted to the left. 
The world-lines for the barn are separated by 6.6 m, the contracted 
length as seen by the runner. The leading end of the pole leaves the 
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doorway
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Figure 38.12  (Example 38.4) Space–time graphs for the 
pole-in-the-barn paradox (a) from the ground observer’s 
point of view and (b) from the runner’s point of view.
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38.4 c o n t i n u e d

rear doorway of the barn long before the trailing end of the pole enters the barn. Therefore, the closing and opening of the 
rear door occur before the closing of the front door.

From the ground observer’s point of view, use the particle  (1)   t 5
Dx
v

5
9.9 m
0.75c

5
13.2 m

c
 

under constant velocity model to find the time after t 5 0  
at which the trailing end of the pole enters the barn:

From the runner’s point of view, use the particle under  (2)   t 5
Dx
v

5
6.6 m
0.75c

5
8.8 m

c
 

constant velocity model to find the time at which the  
leading end of the pole leaves the barn:

Find the time at which the trailing end of the pole enters  (3)   t 5
Dx
v

5
15 m
0.75c

5
20 m

c
 

the front door of the barn:

Finalize From Equation (1), the pole should be completely inside the barn at a time corresponding to ct 5 13.2 m. So this is the 
time at which the doors quickly close and open. This situation is consistent with the point on the ct axis in Figure 38.12a where the 
pole is inside the barn. Now let’s move to the runner’s point of view. From Equation (2), the leading end of the pole leaves the barn 
at ct 5 8.8 m. The closing and re-opening of the rear doors occur just before this time. This situation is consistent with the point 
on the ct axis in Figure 38.12b where the rear doorway of the barn arrives at the leading end of the pole. Equation (3) gives ct 5  
20 m, which agrees with the instant shown in Figure 38.12b at which the front doorway of the barn arrives at the trailing end 
of the pole. The front doors close just after this time.

the relativistic Doppler effect
Another important consequence of time dilation is the shift in frequency observed 
for light emitted by atoms in motion as opposed to light emitted by atoms at rest. 
This phenomenon, known as the Doppler effect, was introduced in Chapter 16 as 
it pertains to sound waves. In the case of sound, the velocity vS of the source with 
respect to the medium of propagation (the air) can be distinguished from the veloc-
ity vO of the observer with respect to the medium. Light waves must be analyzed dif-
ferently, however, because they require no medium of propagation, and no method exists 
for distinguishing the velocity of a light source from the velocity of the observer. The 
only measurable velocity is the relative velocity v between the source and the observer.

If a light source and an observer approach each other with a relative speed v, the 
frequency f 9 measured by the observer is

 f 9 5
Ï1 1 vyc

Ï1 2 vyc
 f  (38.10)

where f is the frequency of the source measured in its rest frame. This relativistic 
Doppler shift equation, unlike the Doppler shift equation for sound, depends only 
on the relative speed v of the source and observer and holds for relative speeds as 
great as c. As you might expect, the equation predicts that f 9 . f when the source 
and observer approach each other (that is, when v is positive). Such a change to 
higher frequencies, or lower wavelengths, is called a blueshift. We obtain the expres-
sion for the case in which the source and observer recede from each other by sub-
stituting negative values for v in Equation 38.10. In this case, the shift is to lower 
frequencies, or longer wavelengths, and is described as a redshift.

The most spectacular and dramatic use of the relativistic Doppler effect is the 
measurement of shifts in the frequency of light emitted by a moving astronomical 
object such as a galaxy. Light emitted by atoms and normally found in the extreme 
violet region of the spectrum is shifted toward the red end of the spectrum for 
atoms in other galaxies, indicating that these galaxies are receding from us. Ameri-
can astronomer Edwin Hubble (1889–1953) performed extensive measurements of 
this redshift to confirm that most galaxies are moving away from us, indicating that 
the Universe is expanding (Chapter 44).
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   38.5    The Lorentz Transformation Equations
We looked at time intervals and lengths in Section 38.4. Let’s now look at observa-
tions of specific positions in space and instants of time made by different observers, 
with an eye toward replacing the Galilean transformation equations with some-
thing more general.

Suppose two events occur at points P and Q and are reported by two observers, 
one at rest in a frame S and another in a frame S9 that is moving to the right with 
speed v as in Figure 38.13. The observer in S reports the events with space–time 
coordinates denoted as (x, y, z, t), and the observer in S9 reports the same events 
using the coordinates denoted as (x9, y9, z9, t9). Equation 38.1 predicts that the dis-
tance between the two points P and Q in space at which the events occur does not 
depend on motion of the observer: Dx 5 Dx9. Because this prediction is contradic-
tory to the notion of length contraction, the Galilean transformation is not valid 
when v approaches the speed of light. In this section, we present the correct trans-
formation equations that apply for all speeds in the range 0 , v , c.

The equations that are valid for all speeds and that enable us to transform coor-
dinates from S to S9 are the Lorentz transformation equations:

 x9 5 gsx 2 vtd  y9 5 y  z9 5 z  t 9 5 gSt 2
v
c 2 xD (38.11)

These transformation equations were developed by Hendrik A. Lorentz (1853– 
1928) in 1890 in connection with electromagnetism. It was Einstein, however, who 
recognized their physical significance and took the bold step of interpreting them 
within the framework of the special theory of relativity.

Notice the difference between the Galilean and Lorentz time equations. In the 
Galilean case, t 5 t9. In the Lorentz case, however, the value for t9 assigned to an 
event by an observer O9 in the S9 frame in Figure 38.13 depends both on the time t 
and on the coordinate x as measured by an observer O in the S frame, which is con-
sistent with the notion that an event is characterized by four space–time coordinates 
(x, y, z, t). In other words, in relativity, space and time are not separate concepts but 
rather are closely interwoven with each other into something called spacetime.

If you wish to transform coordinates in the S9 frame to coordinates in the S 
frame, simply replace v by 2v and interchange the primed and unprimed coordi-
nates in Equation 38.11:

 x 5 gsx9 1 vt 9d  y 5 y9  z 5 z9  t 5 gSt 9 1
v
c2 x9D (38.12)

When v ,, c, the Lorentz transformation equations should reduce to the Galilean 
equations. As v approaches zero, v/c ,, 1; therefore, g S 1 and Equation 38.11 indeed 
reduces to the Galilean space–time transformation equations in Equation 38.1.

In many situations, we would like to know the difference in coordinates between 
two events or the time interval between two events as seen by observers O and O9. 
From Equations 38.11 and 38.12, we can express the differences between the four 
variables x, x9, t, and t9 in the form

 
Dx9 5 gsDx 2 v Dtd

Dt 9 5 gSDt 2
v
c 2 DxD  S   S   S9 (38.13)

  

Dx 5 gsDx9 1 v Dt 9d

Dt 5 gSDt 9 1
v
c 2 Dx9D  S9   S   S (38.14)

Lorentz transformation 
for S S S9

Inverse Lorentz 
transformation for S9 S S

6

6

y y� S�S

O
x�

P (event)

O�

Q (event)

vt
x

x� �x�
�x

vS

x

Figure 38.13  Events occur at 
points P and Q and are observed 
by an observer at rest in the S 
frame and another in the S9 
frame, which is moving to the 
right with a speed v.
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 Example 38.5    Simultaneity and Time Dilation Revisited

(A) Use the Lorentz transformation equations in difference form to show that simultaneity is not an absolute concept.

S o L u T I o N

Conceptualize Imagine two events that are simultaneous and separated in space as measured in the S9 frame such that Dt9 5 0  
and Dx9 ? 0. These measurements are made by an observer O9 who is moving with speed v relative to O.

Categorize The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

Analyze From the expression for Dt given in Equation 38.14,  Dt 5 gSDt9 1
v
c 2 Dx9D 5 gS0 1

v
c 2 Dx9D 5 g 

v
c 2 Dx9 

find the time interval Dt measured by observer O:

Finalize The time interval for the same two events as measured by O is nonzero, so the events do not appear to be simultane-
ous to O.

(B) Use the Lorentz transformation equations in difference form to show that a moving clock is measured to run more 
slowly than a clock that is at rest with respect to an observer.

S o L u T I o N

Conceptualize Imagine that observer O9 carries a clock that he uses to measure a time interval Dt9. He finds that two events 
occur at the same place in his reference frame (Dx9 5 0) but at different times (Dt9 ? 0). Observer O9 is moving with speed v 
relative to O.

Categorize The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

Analyze From the expression for Dt given in Equation 38.14,  Dt 5 gSDt9 1
v
c 2 Dx9D 5 g3Dt9 1

v
c 2 s0d4 5 g Dt9 

find the time interval Dt measured by observer O:

Finalize This result is the equation for time dilation found earlier (Eq. 38.7), where Dt9 5 Dtp is the proper time interval mea-
sured by the clock carried by observer O9. Therefore, O measures the moving clock to run slow. Notice that the two events must 
occur at the same location in S9 in order to reproduce Equation 38.7.

where Dx9 5 x92 2 x91 and Dt9 5 t92 2 t91 are the differences measured by observer O9 
and Dx 5 x2 2 x1 and Dt 5 t2 2 t1 are the differences measured by observer O. (We 
have not included the expressions for relating the y and z coordinates because they 
are unaffected by motion along the x direction.3)

3Although relative motion of the two frames along the x axis does not change the y and z coordinates of an object, it 
does change the y and z velocity components of an object moving in either frame as noted in Section 38.6.

   38.6    The Lorentz Velocity Transformation Equations
Now that we have modified Equation 38.1 to be correct relativistically, let’s see 
how to modify the Galilean velocity transformation in Equation 38.2. Suppose 
two observers in relative motion with respect to each other are both observing an 
object’s motion. Previously, we defined an event as occurring at an instant of time. 
Now let’s interpret the “event” as the object’s motion. We know that the Galilean 
velocity transformation (Eq. 38.2) is valid for low speeds. How do the observers’ 
measurements of the velocity of the object relate to each other if the speed of the 
object or the relative speed of the observers is close to that of light? Once again, S9 
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1032 Chapter 38 Relativity

is our frame moving at a speed v relative to S. Suppose an object has a velocity com-
ponent u9x measured in the S9 frame, where

 u9x 5
dx9

dt 9
 (38.15)

Using Equation 38.11, we have

dx9 5 g(dx 2 v dt)

dt 9 5 gSdt 2
v
c 2 dxD

Substituting these values into Equation 38.15 gives

u9x 5
dx 2 v dt

dt 2
v
c 2 dx

5

dx
dt

2 v

1 2
v
c 2  

dx
dt

The term dx/dt, however, is simply the velocity component ux of the object mea-
sured by an observer in S, so this expression becomes

 u9x 5
ux 2 v

1 2
uxv

c 2

 (38.16)

If the object has velocity components along the y and z axes, the components as 
measured by an observer in S9 are

 u9y 5
uy

gS1 2
uxv

c 2 D
 and u9z 5

uz

gS1 2
uxv

c 2 D
 (38.17)

Notice that u9y and u9z do not contain the parameter v in the numerator because 
the relative velocity is along the x axis.

When v is much smaller than c (the nonrelativistic case), the denominator of 
Equation 38.16 approaches unity and so u9x < ux 2 v, which is the Galilean velocity 
transformation equation. In another extreme, when ux 5 c, Equation 38.16 becomes

u9x 5
c 2 v

1 2
cv
c 2

5

cS1 2
v
cD

1 2
v
c

5 c

This result shows that a speed measured as c by an observer in S is also measured as 
c by an observer in S9, independent of the relative motion of S and S9. This conclu-
sion is consistent with Einstein’s second postulate in Section 38.3: the speed of light 
must be c relative to all inertial reference frames. Furthermore, we find that the 
speed of an object can never be measured as larger than c. That is, the speed of light is 
the ultimate speed. We shall return to this point later.

To obtain ux in terms of u9x, we replace v by 2v in Equation 38.16 and interchange 
the roles of ux and u9x:

 ux 5
u9x 1 v

1 1
u9x v

c 2

 (38.18)

Q uick Quiz 38.7  You are driving on a freeway at a relativistic speed. (i) Straight 
ahead of you, a technician standing on the ground turns on a searchlight and a 
beam of light moves exactly vertically upward as seen by the technician. As you 

Lorentz velocity trans- 
formation for S S S9

Pitfall Prevention 38.5
What Can the Observers Agree 
On? We have seen several mea-
surements that the two observers 
O and O9 do not agree on: (1) the  
time interval between events that 
take place in the same position in 
one of their frames, (2) the dis-
tance between two points that  
remain fixed in one of their 
frames, (3) the velocity compo-
nents of a moving particle, and  
(4) whether two events occurring 
at different locations in both 
frames are simultaneous or not. 
The two observers can agree on 
(1) their relative speed of motion 
v with respect to each other, 
(2) the speed c of any ray of light, 
and (3) the simultaneity of two 
events that take place at the same 
position and time in some frame.
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observe the beam of light, do you measure the magnitude of the vertical compo-
nent of its velocity as (a) equal to c, (b) greater than c, or (c) less than c? (ii) If the 
technician aims the searchlight directly at you instead of upward, do you measure 
the magnitude of the horizontal component of its velocity as (a) equal to c, (b) 
greater than c, or (c) less than c?

 Example 38.6    Relative Velocity of Two Spacecraft

Two spacecraft A and B are moving in opposite directions as shown in 
Figure 38.14. An observer on the Earth measures the speed of space-
craft A to be 0.750c and the speed of spacecraft B to be 0.850c. Find 
the velocity of spacecraft B as observed by the crew on spacecraft A.

S o L u T I o N

Conceptualize There are two observers, one (O) on the Earth and one 
(O9) on spacecraft A. The event is the motion of spacecraft B.

Categorize Because the problem asks to find an observed veloc-
ity, we categorize this example as one requiring the Lorentz velocity 
transformation.

Analyze The Earth-based observer at rest in the S frame makes two measurements, one of each spacecraft. We want to find the 
velocity of spacecraft B as measured by the crew on spacecraft A. Therefore, ux 5 20.850c. The velocity of spacecraft A is also the 
velocity of the observer at rest in spacecraft A (the S9 frame) relative to the observer at rest on the Earth. Therefore, v 5 0.750c.

Obtain the velocity u9x of spacecraft B relative to  u9x 5
ux 2 v

1 2
uxv

c 2

5
20.850c 2 0.750c

1 2
s20.850cds0.750cd

c 2

5  20.977c 
spacecraft A using Equation 38.16:

Finalize The negative sign indicates that spacecraft B is moving in the negative x direction as observed by the crew on 
spacecraft A. Is that consistent with your expectation from Figure 38.14? Notice that the speed is less than c. That is, an 
object whose speed is less than c in one frame of reference must have a speed less than c in any other frame. (Had you 
used the Galilean velocity transformation equation in this example, you would have found that u9x 5 ux 2 v 5 20.850c 2  
0.750c 5 21.60c, which is impossible. The Galilean transformation equation does not work in relativistic situations.)

W H A T  I F ? What if the two spacecraft pass each other? What is their relative speed now?

Answer The calculation using Equation 38.16 involves only the velocities of the two spacecraft and does not depend on their 
locations. After they pass each other, they have the same velocities, so the velocity of spacecraft B as observed by the crew 
on spacecraft A is the same, 20.977c. The only difference after they pass is that spacecraft B is receding from spacecraft A, 
whereas it was approaching spacecraft A before it passed.

S� (attached to A)y�

0.750c �0.850c

BA
x�

O�

S (attached
to the Earth)

y

x
O

Figure 38.14  (Example 38.6) Two spacecraft A and B 
move in opposite directions. The speed of spacecraft 
B relative to spacecraft A is less than c and is obtained 
from the relativistic velocity transformation equation.

 Example 38.7    Relativistic Leaders of the Pack

Two motorcycle pack leaders named Bethany and Keilah are racing at relativistic 
speeds along perpendicular paths as shown in Figure 38.15. How fast does Keilah 
recede as seen by Bethany over her right shoulder?

S o L u T I o N

Conceptualize The two observers are Bethany and the police officer in Figure 38.15. 
The event is the motion of Keilah. Figure 38.15 represents the situation as seen by the 
police officer at rest in frame S. Frame S9 moves along 
with Bethany.

Categorize Because the problem asks to find an 
observed velocity, we categorize this problem as one 
requiring the Lorentz velocity transformation. The 
motion takes place in two dimensions.

continued

Keilah
0.75c

x

y

Bethany

Police officer
at rest in S

�0.90c

Figure 38.15  (Example 
38.7) Bethany moves east 
with a speed 0.75c relative to 
the police officer, and Keilah 
travels south at a speed 0.90c 
relative to the officer.
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38.7 c o n t i n u e d

Analyze Identify the velocity components for Bethany  Bethany: vx 5 v 5 0.75c    vy 5 0 
and Keilah according to the police officer: Keilah: ux 5 0    uy 5 20.90c

Using Equations 38.16 and 38.17, calculate u9x and u9y  u9x 5
ux 2 v

1 2
uxv

c 2

5
0 2 0.75c

1 2
s0ds0.75cd

c 2

5 20.75c 
for Keilah as measured by Bethany: 

u9y 5
uy

gS1 2
uxv

c 2 D
5

Î1 2
s0.75cd2

c 2  s20.90cd

1 2
s0ds0.75cd

c 2

5 20.60c

Using the Pythagorean theorem, find the speed of  u9 5 Ïsu9xd
2 1 su9yd

2 5 Ïs20.75cd2 1 s20.60cd2 5  0.96c 
Keilah as measured by Bethany: 

Finalize This speed is less than c, as required by the special theory of relativity.

   38.7    Relativistic Linear Momentum
In the last few sections, we have investigated relativistic versions of kinematic vari-
ables: time, position, and velocity. Let us now move into the realm of dynamics 
and see what changes must be made to generalize the concepts of momentum and 
energy in relativity. We will find that we need new definitions of both of these quan-
tities. These generalized definitions should reduce to the classical (nonrelativistic) 
definitions for v ,, c.

First, recall from the isolated system model that when two particles (or objects 
that can be modeled as particles) collide, the total momentum of the isolated sys-
tem of the two particles remains constant. Suppose we observe this collision in a 
reference frame S and confirm that the momentum of the system is conserved. 
Now imagine that the momenta of the particles are measured by an observer in a 
second reference frame S9 moving with velocity vS relative to the first frame. Using 
the Lorentz velocity transformation equation and the classical definition of lin-
ear momentum, pS 5 muS (where uS is the velocity of a particle), we find that lin-
ear momentum of the system is not measured to be conserved by the observer in 
S9. Because the laws of physics are the same in all inertial frames, however, linear 
momentum of the system must be conserved in all frames. We have a contradiction. 
In view of this contradiction and assuming the Lorentz velocity transformation 
equation is correct, we must modify the definition of linear momentum so that the 
momentum of an isolated system is conserved for all observers. For any particle, 
the correct relativistic equation for linear momentum that satisfies this condition is

 pS ;
muS

Î1 2
u2

c 2

5 gmuS (38.19)

where m is the mass of the particle and uS is the velocity of the particle. When u 
is much less than c, g 5 (1 2 u2/c2)21/2 approaches unity and pS approaches muS. 
Therefore, the relativistic equation for pS reduces to the classical expression when u 
is much smaller than c, as it should.

The relativistic force F
S

 acting on a particle whose linear momentum is pS is 
defined as

 F
S

;
d pS

dt
 (38.20)

Definition of relativistic 
linear momentum
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where pS is given by Equation 38.19. This expression, which is the relativistic form of 
Newton’s second law, is reasonable because it preserves classical mechanics in the 
limit of low velocities and is consistent with conservation of linear momentum for 
an isolated system (F

S
ext 5 0) both relativistically and classically.

It is left as an end-of-chapter problem (Problem 54) to show that under rela-
tivistic conditions, the acceleration aS of a particle decreases under the action of  
a constant force, such that a ~ s1 2 u2yc 2d3y2. This proportionality shows that 
as the particle’s speed approaches c, the acceleration caused by any finite force 
approaches zero. Hence, it is impossible to accelerate a particle from rest to a speed 
u $ c. This argument reinforces that the speed of light is the ultimate speed, the 
speed limit of the Universe. It is the maximum possible speed for a particle with 
mass as well as for information transfer.

 Example 38.8    Linear Momentum of an Electron

An electron, which has a mass of 9.11 3 10231 kg, moves with a speed of 0.750c. Find the magnitude of its relativistic momen-
tum and compare this value with the momentum calculated from the classical expression.

S o L u T I o N

Conceptualize Imagine an electron moving with high speed. The electron carries momentum, but the magnitude of its 
momentum is not given by p 5 mu because the speed is relativistic.

Categorize We categorize this example as a substitution problem involving a relativistic equation.

Use Equation 38.19 with u 5 0.750c to find the  p 5
meu

Î1 2
u2

c 2

 
magnitude of the momentum:

p 5
s9.11 3 10231 kgds0.750ds3.00 3 108 mysd

Î1 2
s0.750cd2

c 2

5  3.10 3 10222 kg ? mys

The classical expression (used incorrectly here) gives pclassical 5 meu 5 2.05 3 10222 kg ? m/s. Hence, the correct relativistic 
result is 50% greater than the classical result!

   38.8    Relativistic Energy
We have seen that the definition of linear momentum requires generalization to 
make it compatible with Einstein’s postulates. This conclusion implies that the def-
inition of kinetic energy must most likely be modified also.

To derive the relativistic form of the work–kinetic energy theorem, imagine a 
particle moving in one dimension along the x axis. A force in the x direction causes 
the momentum of the particle to change according to Equation 38.20. In what fol-
lows, we assume the particle is accelerated from rest to some final speed u. The 
work done by the force F on the particle is

 W 5 #
x2

x1

 F dx 5 #
x2

x1

dp

dt
 dx (38.21)

To perform this integration and find the work done on the particle and the relativ-
istic kinetic energy as a function of u, we first evaluate dp/dt:

dp

dt
5

d
dt

 
mu

Î1 2
u2

c 2

5
m

S1 2
u2

c 2D3y2
 
du
dt
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Substituting this expression for dp/dt and dx 5 u dt into Equation 38.21 gives

W 5 #
t

0
 

m

S1 2
u2

c 2D3y2
  

du
dt

su dtd 5 m #
u

0
 

u

S1 2
u2

c 2D3y2
 du

where we use the limits 0 and u in the integral because the integration variable has 
been changed from t to u. Evaluating the integral gives

 W 5
mc 2

Î1 2
u2

c 2

2 mc2 (38.22)

Recall from Chapter 7 that the work done by a force acting on a system consist-
ing of a single particle equals the change in kinetic energy of the particle: W 5 
DK. Because we assumed the initial speed of the particle is zero, its initial kinetic 
energy is zero, so W 5 K 2 Ki 5 K 2 0 5 K. Therefore, the work W in Equation 
38.22 is equivalent to the relativistic kinetic energy K:

 K 5
mc 2

Î1 2
u2

c 2

2 mc 2 5 gmc 2 2 mc 2 5 sg 2 1dmc 2 (38.23)

This equation is routinely confirmed by experiments using high-energy particle 
accelerators.

At low speeds, where u/c ,, 1, Equation 38.23 should reduce to the classi-
cal expression K 5 1

2 
mu2. We can check that by using the binomial expansion 

s1 2 b2d21y2 < 1 1 1
2 b2 1 Á   for b ,, 1, where the higher-order powers of b are 

neglected in the expansion. (In treatments of relativity, b is a common symbol used 
to represent u/c or v/c.) In our case, b 5 u/c, so

g 5
1

Î1 2
u2

c 2

5 S1 2
u2

c 2D21y2

< 1 1 1
2 

u2

c 2

Substituting this result into Equation 38.23 gives

K < 3S1 1 1
2 

u2

c 2D 2 14mc 2 5 1
2 
mu2 sfor uyc ,, 1d

which is the classical expression for kinetic energy. A graph comparing the relativ-
istic and nonrelativistic expressions is given in Figure 38.16. In the relativistic case, 
the particle speed never exceeds c, regardless of the kinetic energy. The two curves 
are in good agreement when u ,, c.

The constant term mc2 in Equation 38.23, which is independent of the speed of 
the particle, is called the rest energy ER of the particle:

 ER 5 mc2 (38.24)

Equation 38.24 shows that mass is a form of energy, where c2 is simply a constant 
conversion factor. This expression also shows that a small mass corresponds 
to an enormous amount of energy, a concept fundamental to nuclear and 
elementary-particle physics.

Relativistic kinetic energy 

The relativistic 
calculation, 
using 
Equation 
38.23, shows 
correctly that 
u is always less 
than c.

K/mc 

2

0.5c 1.0c 1.5c 2.0c

0.5

0

1.0

1.5

2.0

u

The 
nonrelativistic 
calculation,
using K �   mu2, 
predicts a
parabolic curve 
and the speed
u grows without 
limit.

2
1

Figure 38.16  A graph compar-
ing relativistic and nonrelativistic 
kinetic energy of a moving parti-
cle. The energies are plotted as a 
function of particle speed u.
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The term gmc2 in Equation 38.23, which depends on the particle speed, is the 
sum of the kinetic and rest energies. It is called the total energy E:

Total energy 5 kinetic energy 1 rest energy

 E 5 K 1 mc2 (38.25)

or

 E 5
mc 2

Î1 2
u2

c 2

5 gmc 2 (38.26)

In many situations, the linear momentum or energy of a particle rather than its 
speed is measured. It is therefore useful to have an expression relating the total 
energy E to the relativistic linear momentum p, which is accomplished by using the 
expressions E 5 gmc2 and p 5 gmu. By squaring these equations and subtracting, we 
can eliminate u (Problem 36). The result, after some algebra, is4

 E 2 5 p2c2 1 (mc2)2 (38.27)

When the particle is at rest, p 5 0, so E 5 ER 5 mc2.
In Section 34.1, we discussed the fact that some early scientists believed in a par-

ticle nature of light. Since then, we have developed descriptions of the behavior of 
light using a wave theory. In Chapter 39, we will find that light indeed does have a 
particle nature! A particle of light has zero mass and is called a photon. For particles 
that have zero mass, such as photons, we set m 5 0 in Equation 38.27 and find that

 E 5 pc (38.28)

This equation is an exact expression relating total energy and linear momentum 
for photons, which always travel at the speed of light (in vacuum).

Finally, because the mass m of a particle is independent of its motion, m must 
have the same value in all reference frames. For this reason, m is often called the 
invariant mass. On the other hand, because the total energy and linear momen-
tum of a particle both depend on velocity, these quantities depend on the reference 
frame in which they are measured.

When dealing with subatomic particles, it is convenient to express their energy 
in electron volts (Section 24.1) because the particles are usually given this energy 
by acceleration through a potential difference. The conversion factor, as you recall 
from Equation 24.5, is

1 eV 5 1.602 3 10219 J

For example, the mass of an electron is 9.109 3 10231 kg. Hence, the rest energy of 
the electron is

mec
2 5 (9.109 3 10231 kg)(2.998 3 108 m/s)2 5 8.187 3 10214 J

5 (8.187 3 10214 J)(1 eV/1.602 3 10219 J) 5 0.511 MeV

Another way to represent this same idea is to express the mass in units of MeV/c2 by 
dividing both sides of the previous equation by c2:

me 5 0.511 
MeV

c 
2

  Total energy of a relativistic 
particle

  Energy–momentum relationship 
for a relativistic particle

  Energy-momentum relationship 
for a photon

4One way to remember this relationship is to draw a right triangle having a hypotenuse of length E and legs of 
lengths pc and mc2.

Pitfall Prevention 38.6
Watch Out for “Relativistic Mass”  
Some older treatments of relativ-
ity maintained the conservation 
of momentum principle at high 
speeds by using a model in which 
a particle’s mass increases with 
speed. You might still encounter 
this notion of “relativistic mass” 
in your outside reading, especially 
in older books. Be aware that 
this notion is no longer widely 
accepted; today, mass is consid-
ered as invariant, independent of 
speed. The mass of an object in 
all frames is considered to be the 
mass as measured by an observer 
at rest with respect to the object.
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 Example 38.9    The Energy of a Speedy Proton

(A) Find the rest energy of a proton in units of electron volts.

S o L u T I o N

Conceptualize Even if the proton is not moving, it has energy associated with its mass. If it moves, the proton possesses more 
energy, with the total energy being the sum of its rest energy and its kinetic energy.

Categorize The phrase “rest energy” suggests we must take a relativistic rather than a classical approach to this problem.

Analyze Use Equation 38.24 to find the rest energy: ER 5 mpc
2 5 (1.672 6 3 10227 kg)(2.998 3 108 m/s)2

5 s1.503 3 10210 JdS 1.00 MeV
1.602 3 10213 JD 5  938 MeV

(B) If the total energy of a proton is three times its rest energy, what is the speed of the proton?

S o L u T I o N

Use Equation 38.26 to relate the total energy of the  E 5 3mpc
2 5

mpc
2

Î1 2
u2

c 2

   S   3 5
1

Î1 2
u2

c 2

 
proton to the rest energy:

Solve for u: 1 2
u2

c 2 5 1
9   S   

u2

c 2 5 8
9

u 5
Ï8
3

 c 5 0.943c 5  2.83 3 108 mys

(C) Determine the kinetic energy of the proton in units of electron volts.

S o L u T I o N

Use Equation 38.25 to find the kinetic energy of  K 5 E 2 mpc
2 5 3mpc

2 2 mpc
2 5 2mpc

2 
the proton: 5 2(938 MeV) 5 1.88 3 103 MeV

(D) What is the proton’s momentum?

S o L u T I o N

Use Equation 38.27 to calculate the momentum: E 2 5 p2c2 1 (mpc
2)2 5 (3mpc

2)2

 p2c2 5 9(mpc
2)2 2 (mpc

2)2 5 8(mpc
2)2

 p 5 Ï8 
mpc

2

c
5 Ï8 

938 MeV
c

5  2.65 3 103 MeVyc

Finalize The unit of momentum in part (D) is written MeV/c, which is a common unit in particle physics. For comparison, you 
might want to solve this example using classical equations.

W H A T  I F ?  In classical physics, if the momentum of a particle doubles, the kinetic energy increases by a factor of 4. What 
happens to the kinetic energy of the proton in this example if its momentum doubles?

Answer Based on what we have seen so far in relativity, it is likely you would predict that its kinetic energy does not increase 
by a factor of 4.

Find the new doubled momentum: pnew 5 2SÏ8 
mpc

2

c D 5 4Ï2 
mpc

2

c

Q uick Quiz 38.8  The following pairs of energies—particle 1: E, 2E; particle 
2: E, 3E; particle 3: 2E, 4E—represent the rest energy and total energy of three 
different particles. Rank the particles from greatest to least according to their  
(a) mass, (b) kinetic energy, and (c) speed.
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    38.9 The General Theory of Relativity 1039

   38.9    The General Theory of Relativity
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property 
that represents a resistance to acceleration. We first discussed these two attributes 
for mass in Section 5.5. To designate these two attributes, we add subscripts g and i 
to the masses and write modified versions of Equations 5.6 and 5.2:

Gravitational property (Eq. 5.6):   Fg 5 mgg

Inertial property (Eq. 5.2):    o F 5 mia

The value for the gravitational constant G was chosen to make the magnitudes of 
mg and mi numerically equal. Regardless of how G is chosen, however, the strict pro-
portionality of mg and mi has been established experimentally to an extremely high 
degree: a few parts in 1012. Therefore, it appears that gravitational mass and inertial 
mass may indeed be exactly proportional.

Why, though? They seem to involve two entirely different concepts: a force of 
mutual gravitational attraction between two masses and the resistance of a single 
mass to being accelerated. This question, which puzzled Newton and many other 
physicists over the years, was answered by Einstein in 1916 when he published his 
theory of gravitation in Annalen der Physik, known as the general theory of relativity. 
Because it is a mathematically complex theory, we offer merely a hint of its elegance 
and insight.

In Einstein’s view, the dual behavior of mass was evidence for a very intimate and 
basic connection between the two behaviors. He pointed out that no mechanical 
experiment (such as dropping an object) could distinguish between the two situa-
tions illustrated in Figures 38.17a and 38.17b (page 1040). In Figure 38.17a, a person 
standing in an elevator on the surface of a planet feels pressed into the floor due to 
the gravitational force. If he releases his briefcase, he observes it moving toward the 
floor with acceleration gS 5 2g j

⁄
. In Figure 38.17b, the person is in an elevator in 

empty space accelerating upward with aSel 5 1g j
⁄
. The person feels pressed into the 

floor with the same force as in Figure 38.17a. If he releases his briefcase, he observes 
it moving toward the floor with acceleration g, exactly as in the previous situation. 
In Figure 38.17a, the person is at rest in an inertial frame in a gravitational field due 
to the planet. In Figure 38.17b, the person is in a noninertial frame accelerating in  
gravity-free space. Einstein’s claim is that these two situations are completely equivalent.

Einstein carried this idea further and proposed that no experiment, mechani-
cal or otherwise, could distinguish between the two situations. This extension to 
include all phenomena (not just mechanical ones) has interesting consequences. 
For example, suppose a light pulse is sent horizontally across the elevator as in 
Figure 38.17c, in which the elevator is accelerating upward in empty space. From 
the point of view of an observer in an inertial frame outside the elevator, the light 

38.9 c o n t i n u e d

Use this result in Equation 38.27 to find the new  E 2
new 5 p 2

newc2 1 (mpc
2)2 

total energy:

 E 2
new 5 S4Ï2 

mpc
2

c D2

c 2 1 smpc
2d2 5 33smpc

2d2

 E new 5 Ï33mpc
2 5 5.7mpc

2

Use Equation 38.25 to find the new kinetic energy: Knew 5 Enew 2 mpc
2 5 5.7mpc

2 2 mpc
2 5 4.7mpc

2

This value is a little more than twice the kinetic energy found in part (C), not four times. In general, the factor by which the 
kinetic energy increases if the momentum doubles depends on the initial momentum, but it approaches 4 as the momentum 
approaches zero. In this latter situation, classical physics correctly describes the situation.
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1040 Chapter 38 Relativity

travels in a straight line while the floor of the elevator accelerates upward. Accord-
ing to the observer on the elevator, however, the trajectory of the light pulse bends 
downward as the floor of the elevator (and the observer) accelerates upward. There-
fore, based on the equality of parts (a) and (b) of the figure, Einstein proposed that  
a beam of light should also be bent downward by a gravitational field as in Fig-
ure 38.17d. Experiments have verified the effect, although the bending is small. A 
laser aimed at the horizon falls less than 1 cm after traveling 6 000 km in Earth’s 
gravitational field. (No such bending is predicted in Newton’s theory of gravitation.)

Einstein’s general theory of relativity has two postulates:

 ● All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

 ● In the vicinity of any point, a gravitational field is equivalent to an acceler-
ated frame of reference in gravity-free space (the principle of equivalence).

One interesting effect predicted by the general theory is that time is altered by 
gravity. A clock in the presence of gravity runs slower than one located where grav-
ity is negligible. Consequently, the frequencies of radiation emitted by atoms in the 
presence of a strong gravitational field are redshifted to lower frequencies when com-
pared with the same emissions in the presence of a weak field. This gravitational 
redshift has been detected in spectral lines emitted by atoms in massive stars. It has 
also been verified on the Earth by comparing the frequencies of gamma rays emit-
ted from nuclei separated vertically by about 20 m.

The second postulate suggests a gravitational field may be “transformed away” 
at any point if we choose an appropriate accelerated frame of reference, a freely 
falling one. Einstein developed an ingenious method of describing the accelera-
tion necessary to make the gravitational field “disappear.” He specified a concept, 
the curvature of spacetime, that describes the gravitational effect at every point. In 
Section 38.5, it was mentioned that space and time are not separate concepts, but 
are interwoven. The model of spacetime describes the Universe as having four insep-
arable dimensions, with three representing our classical notion of space and the 
fourth related to time. The curvature of spacetime completely replaces Newton’s 

a b

vel � 0 S

ael � 0 S
vel � 0 S

ael � 0 S

ael � �gˆ  S
j

g � �g jS

The observer in the 
nonaccelerating elevator 
drops his briefcase, 
which he observes to 
move downward with 
acceleration g.

The observer in the 
accelerating elevator drops 
his briefcase, which he 
observes to move downward 
with acceleration g.

dc

ael � �gˆ   S
j

In an accelerating 
elevator, the observer 
sees a light beam bend 
downward.

Because of the equivalence 
in  a  and  b  ,  we expect a 
light ray to bend downward 
in a gravitational field.     

a b

ˆ g � �g jS ˆ

Figure 38.17  (a) The observer is at rest in an elevator in a uniform gravitational field gS 5 2g j
⁄
, 

directed downward. (b) The observer is in a region where gravity is negligible, but the elevator moves 
upward with an acceleration aSel 5 1g j

⁄
. According to Einstein, the frames of reference in (a) and 

(b) are equivalent in every way. No local experiment can distinguish any difference between the two 
frames. (c) An observer watches a beam of light in an accelerating elevator. (d) Einstein’s prediction 
of the behavior of a beam of light in a gravitational field.
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gravitational theory. According to Einstein, there is no such thing as a gravitational 
force. Rather, the presence of a mass causes a curvature of spacetime in the vicinity 
of the mass, and this curvature dictates the spacetime path that all freely moving 
objects must follow. Therefore, the notion of gravitational mass is not needed. An 
object follows a path according to its inertial mass in curved spacetime.

As an example of the effects of curved spacetime, imagine two travelers moving 
on parallel paths a few meters apart on the surface of the Earth and maintain-
ing an exact northward heading along two longitude lines. As they observe each 
other near the equator, they will claim that their paths are exactly parallel. As they 
approach the North Pole, however, they notice that they are moving closer together 
and will meet at the North Pole. Therefore, they claim that they moved along paral-
lel paths, but moved toward each other, as if there were an attractive force between them. 
The travelers make this conclusion based on their everyday experience of moving 
on flat surfaces. From our mental representation, however, we realize they are walk-
ing on a curved surface, and it is the geometry of the curved surface, rather than 
an attractive force, that causes them to converge. In a similar way, general rela-
tivity replaces the notion of forces with the movement of objects through curved 
spacetime.

One prediction of the general theory of relativity is that a light ray passing near 
the Sun should be deflected in the curved spacetime created by the Sun’s mass. 
This prediction was confirmed when astronomers detected the bending of starlight 
near the Sun during a total solar eclipse that occurred shortly after World War I 
(Fig. 38.18). When this discovery was announced, Einstein became an international 
celebrity.

If the concentration of mass becomes very great as is believed to occur when 
a large star exhausts its nuclear fuel and collapses to a very small volume, a black 
hole may form as discussed in Chapter 13. Here, the curvature of spacetime is so 
extreme that within a certain distance from the center of the black hole all matter 
and light become trapped as discussed in Section 13.6.

In his general 
theory of 
relativity, Einstein 
calculated that 
starlight just 
grazing the Sun’s 
surface should be 
deflected by an 
angle of 1.75 s of 
arc.

1.75"

Sun

Light from star
(actual
direction)

Apparent
direction to star

Deflected path of 
light from star

Earth
Figure 38.18  Deflection of 
starlight passing near the Sun. 
Because of this effect, the Sun or 
some other remote object can act 
as a gravitational lens.

Summary
 › Definitions

The relativistic expression for the linear momentum of a par-
ticle moving with a velocity uS is

 pS ;
m uS

Î1 2
u2

c 2

5 gm uS (38.19)

The relativistic force F
S

 acting on a particle whose linear 
momentum is pS is defined as

 F
S

;
d pS

dt
 (38.20)

continued

 Summary 1041
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1042 Chapter 38 Relativity

 › Concepts and Principles

The two basic postulates of the special theory 
of relativity are as follows:

 ● The laws of physics must be the same in 
all inertial reference frames.

 ● The speed of light in vacuum has the 
same value, c 5 3.00 3 108 m/s, in all iner-
tial frames, regardless of the velocity of 
the observer or the velocity of the source 
emitting the light.

Three consequences of the special theory of relativity are as follows:

 ● Events that are measured to be simultaneous for one observer are not 
necessarily measured to be simultaneous for another observer who is in 
motion relative to the first.

 ● Clocks in motion relative to an observer are measured to run slower by a 
factor g 5 (1 2 v2/c2)21/2. This phenomenon is known as time dilation.

 ● The lengths of objects in motion are measured to be shorter in the 
direction of motion by a factor 1/g 5 (1 2 v2/c2)1/2. This phenomenon 
is known as length contraction.

To satisfy the postulates of special relativity, the Galilean trans-
formation equations must be replaced by the Lorentz transfor-
mation equations:

 x9 5 gsx 2 vtd y9 5 y z9 5 z t 9 5 gSt 2
v
c 2 xD (38.11)

where g 5 (1 2 v2/c2)21/2 and the S9 frame moves in the x direc-
tion at speed v relative to the S frame.

The relativistic form of the Lorentz velocity transformation 
equation is

 u9x 5
ux 2 v

1 2
uxv

c 2

 (38.16)

where u9x is the x component of the velocity of an object as 
measured in the S9 frame and ux is its component as mea-
sured in the S frame.

The relativistic expression for the kinetic energy of a particle is

 K 5
mc 2

Î1 2
u2

c 2

2 mc 2 5 sg 2 1dmc 2 (38.23)

The constant term mc2 in Equation 
38.23 is called the rest energy ER of 
the particle:

 ER 5 mc 2 (38.24)

The total energy E of a particle is given by

 E 5
mc 2

Î1 2
u2

c 2

5 gmc 2 (38.26)

The relativistic linear momentum of a particle is related to 
its total energy through the equation

 E 2 5 p2c2 1 (mc2)2 (38.27)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your team is working on the detection of gravitational 
waves. The first detection of gravitational waves occurred in 
September 2015 and was announced in February 2016. Data 
from the detection indicated that two black holes of 29 and 
36 solar masses had combined to form a black hole of 62 
solar masses. The final collapse occurred in a time interval 
of 0.2 s, leading your team to claim that the power output of 
the collapse during that time interval was 50 times that of 
all the stars in the observable Universe. In June 2016, detec-
tion of a second combination of black holes was announced. 
In this case, black holes of 14.2 and 7.5 solar masses com-
bined into a black hole of 20.8 solar masses in 1.0 s. Work 
again with your team to determine the following: How many 
times greater is the power released in this second event com-
pared to that of all the stars in the observable Universe?

2. ACTIVITY  The neutrino was initially considered to have 
zero mass. If the neutrino were massless, then it would 
travel at the speed of light, regardless of energy. Later 
experiments, however, indicate that the neutrino has a 
very small rest energy and therefore a small but finite 
mass. One piece of evidence for neutrino mass comes from 
arrivals of neutrinos from a supernova explosion. Con-
sider the following data on arrival times at an Earth-based 
facility of two neutrinos from a supernova explosion. The 
supernova occurred in a star located 1.64 3 105 light-years 
from Earth.

Time of Arrival Neutrino Energy (MeV)

7:35:41.37 38
7:35:46.96 24

Discuss these data in your group and determine an estimate 
for the mass of the neutrino.
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Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 38.1 The Principle of Galilean Relativity

Problems 28–31, 33, and 45 in Chapter 4, and Online-Only 
Problems 4.23 and 4.24 can be assigned with this section.

1. In a laboratory frame of reference, an observer notes that 
Newton’s second law is valid. Assume forces and masses are 
measured to be the same in any reference frame for speeds 
small compared with the speed of light. (a) Show that Newton’s 
second law is also valid for an observer moving at a constant 
speed, small compared with the speed of light, relative to the  
laboratory frame. (b) Show that Newton’s second law is not 
valid in a reference frame moving past the laboratory frame 
with a constant acceleration.

2. A car of mass 2 000 kg moving with a speed of 20.0 m/s 
collides and locks together with a 1 500-kg car at rest at a 
stop sign. Show that momentum is conserved in a reference 
frame moving at 10.0 m/s in the direction of the moving car.

Section 38.4 Consequences of the Special Theory of Relativity

Problem 51 in Chapter 4 can be assigned with this section.

3. A meterstick moving at 0.900c relative to the Earth’s surface 
approaches an observer at rest with respect to the Earth’s 
surface. (a) What is the meterstick’s length as measured by 
the observer? (b) Qualitatively, how would the answer to 
part (a) change if the observer started running toward the 
meterstick?

4. A muon formed high in the Earth’s atmosphere is measured 
by an observer on the Earth’s surface to travel at speed v 5 
0.990c for a distance of 4.60 km before it decays into an elec-
tron, a neutrino, and an antineutrino (m2  S  e2 1 n 1 n). 
(a) For what time interval does the muon live as measured 
in its reference frame? (b) How far does the Earth travel as 
measured in the frame of the muon?

5. A deep-space vehicle moves away from the Earth with a 
speed of 0.800c. An astronaut on the vehicle measures a 
time interval of 3.00 s to rotate her body through 1.00 rev as 
she floats in the vehicle. What time interval is required for 
this rotation according to an observer on the Earth?

6. An astronaut is traveling in a space vehicle moving at 0.500c 
relative to the Earth. The astronaut measures her pulse rate 
at 75.0 beats per minute. Signals generated by the astro-
naut’s pulse are radioed to the Earth when the vehicle is 
moving in a direction perpendicular to the line that con-
nects the vehicle with an observer on the Earth. (a) What 
pulse rate does the Earth-based observer measure? (b) What 
If? What would be the pulse rate if the speed of the space 
vehicle were increased to 0.990c?

7. For what value of v does g 5 1.010 0? Observe that for speeds 
lower than this value, time dilation and length contraction 
are effects amounting to less than 1%.

8. You have been hired as an expert witness for an attorney 
who is representing a speeding driver. The driver of the car 

was given a ticket for running a red light at an intersection. 
According to the driver, who has taken some courses in phys-
ics, when he was looking at the red light as he approached 
the intersection, the Doppler shift made the light of wave-
length 650 nm appear to be green light of wavelength 
520 nm. Therefore, according to the driver, he should not 
be charged with running a red light because it appeared 
green to him. What advice do you give the attorney?

9. A spacecraft with a proper length of 300 m passes by an 
observer on the Earth. According to this observer, it takes 
0.750 ms for the spacecraft to pass a fixed point. Determine 
the speed of the spacecraft as measured by the Earth-based 
observer.

10. A spacecraft with a proper length of Lp passes by an observer 
on the Earth. According to this observer, it takes a time 
interval Dt for the spacecraft to pass a fixed point. Deter-
mine the speed of the object as measured by the Earth-
based observer.

11. A light source recedes from an observer with a speed vS that 
is small compared with c. (a) Show that the fractional shift 
in the measured wavelength is given by the approximate 
expression

Dl

l
<

vS

c

This phenomenon is known as the redshift because the vis-
ible light is shifted toward the red. (b) Spectroscopic mea-
surements of light at l 5 397 nm coming from a galaxy in 
Ursa Major reveal a redshift of 20.0 nm. What is the reces-
sional speed of the galaxy?

12. A cube of steel has a volume of 1.00 cm3 and mass 8.00 g 
when at rest on the Earth. If this cube is now given a speed 
u 5 0.900c, what is its density as measured by a stationary 
observer? Note that relativistic density is defined as ER/c2V.

13. Review. In 1963, astronaut Gordon Cooper orbited the 
Earth 22 times. The press stated that for each orbit, he aged 
two-millionths of a second less than he would have had he 
remained on the Earth. (a) Assuming Cooper was 160 km 
above the Earth in a circular orbit, determine the differ-
ence in elapsed time between someone on the Earth and 
the orbiting astronaut for the 22 orbits. You may use the 
approximation

 
1

Ï1 2 x
< 1 1

x
2

for small x. (b) Did the press report accurate information? 
Explain.

14. You have an assistantship with a math professor in a future 
world where space travel is common and spacecraft regu-
larly achieve near-light speeds. A spacecraft has taken off 
recently to carry individuals to colonize an Earth-like planet 
around a nearby star. Your professor, who remains on Earth, 
is teaching the students on the spacecraft via the future ver-
sion of distance learning. It is time for the students on the 
spacecraft to take a math exam. The professor wishes the stu-
dents to have a time interval Dtp 5 2.00 h to complete the 
exam, so just as the spacecraft passes Earth on its last trip 
around the Sun at its constant cruising speed of 0.960c, she  CR

T

CR
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1044 Chapter 38 Relativity

sends a signal to the proctor to have the students begin the 
exam. Knowing of your experience in physics courses, the 
professor asks you to determine the time interval through 
which she should wait before sending a radio signal to the 
departing spacecraft to tell the proctor to have the students 
stop working on the exam.

15. Police radar detects the speed of a car (Fig. P38.15) as fol-
lows. Microwaves of a precisely known frequency are broad-
cast toward the car. The moving car reflects the microwaves 
with a Doppler shift. The reflected waves are received and 
combined with an attenuated version of the transmitted 
wave. Beats occur between the two microwave signals. The 
beat frequency is measured. (a) For an electromagnetic 
wave reflected back to its source from a mirror approaching 
at speed v, show that the reflected wave has frequency

f 9 5
c 1 v
c 2 v

 f

where f  is the source frequency. (b) Noting that v is much less 
than c, show that the beat frequency can be written as fbeat 5 
2v/l. (c) What beat frequency is measured for a car speed 
of 30.0 m/s if the microwaves have frequency 10.0 GHz? (d) 
If the beat frequency measurement in part (c) is accurate to 
65.0 Hz, how accurate is the speed measurement?

Section 38.5 The Lorentz Transformation Equations

16. Shannon observes two light pulses to be emitted from the 
same location, but separated in time by 3.00 ms. Kimmie 
observes the emission of the same two pulses to be separated 
in time by 9.00 ms. (a) How fast is Kimmie moving relative to 
Shannon? (b) According to Kimmie, what is the separation 
in space of the two pulses?

17. A moving rod is observed 
to have a length of , 5 
2.00  m and to be oriented 
at an angle of u 5 30.0° 
with respect to the direction 
of motion as shown in Fig-
ure  P38.17. The rod has a 
speed of 0.995c. (a)  What is 
the proper length of the rod? 
(b)  What is the orientation 
angle in the proper frame?

18. A rod moving with a speed v along the horizontal direc-
tion is observed to have length , and to make an angle u 
with respect to the horizontal as shown in Figure P38.17.  
(a) Show that the length of the rod as measured by an observer 
at rest with respect to the rod is ,p 5 ,[1 2 (v2/c2) cos2 u]1/2.  
(b) Show that the angle up that the rod makes with the x axis 
according to an observer at rest with respect to the rod can 
be found from tan up 5 g tan u. These results show that the 
rod is observed to be both contracted and rotated. (Take 
the lower end of the rod to be at the origin of the coordi-
nate system in which the rod is at rest.)

19. A red light flashes at position xR 5 3.00 m and time  
tR 5 1.00 3 1029 s, and a blue light flashes at xB 5 5.00 m and 
tB 5 9.00 3 1029 s, all measured in the S reference frame. 
Reference frame S9 moves uniformly to the right and has 
its origin at the same point as S at t 5 t9 5 0. Both flashes 
are observed to occur at the same place in S9. (a) Find the 
relative speed between S and S9. (b) Find the location of the 
two flashes in frame S9. (c) At what time does the red flash 
occur in the S9 frame?

Section 38.6 The Lorentz Velocity Transformation Equations

20. You have been hired as an expert witness in the future by an 
attorney representing the driver of a spacecraft. The driver 
is accused of exceeding the galactic speed limit of 0.700c rel-
ative to the Earth while being chased by a galactic police 
spacecraft. The driver claims he is innocent, that his speed 
was well below that limit. You have been provided with the 
following data: the police spacecraft was traveling at 0.600c 
while chasing the driver and a technician on the police 
spacecraft measured the suspected spacecraft as traveling at 
0.300c relative to the police spacecraft. What advice should 
you give the attorney?

21. Figure P38.21 shows a jet of material (at the upper right) 
being ejected by galaxy M87 (at the lower left). Such jets are 
believed to be evidence of supermassive black holes at the 
center of a galaxy. Suppose two jets of material from the 
center of a galaxy are ejected in opposite directions. Both 
jets move at 0.750c relative to the galaxy center. Determine 
the speed of one jet relative to the other.

22. A spacecraft is launched from the surface of the Earth with 
a velocity of 0.600c at an angle of 50.0° above the horizon-
tal positive x axis. Another spacecraft is moving past with a 
velocity of 0.700c in the negative x direction. Determine the 
magnitude and direction of the velocity of the first space-
craft as measured by the pilot of the second spacecraft.
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Section 38.7 Relativistic Linear Momentum

23. Calculate the momentum of an electron moving with a 
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

24. Show that the speed of an object having momentum of mag-
nitude p and mass m is 

u 5
c

Ï1 1 smcypd2

25. (a) Calculate the classical momentum of a proton traveling 
at 0.990c, neglecting relativistic effects. (b) Repeat the cal-
culation while including relativistic effects. (c) Does it make 
sense to neglect relativity at such speeds?

26. The speed limit on a certain roadway is 90.0 km/h. Sup-
pose speeding fines are made proportional to the amount 
by which a vehicle’s momentum exceeds the momentum 
it would have when traveling at the speed limit. The fine 
for driving at 190 km/h (that is, 100 km/h over the speed 
limit) is $80.0. What, then, is the fine for traveling (a) at 
1 090 km/h? (b) At 1 000 000 090 km/h?

27. An unstable particle at rest spontaneously breaks into two 
fragments of unequal mass. The mass of the first fragment 
is 2.50 3 10228 kg, and that of the other is 1.67 3 10227 kg. If 
the lighter fragment has a speed of 0.893c after the breakup, 
what is the speed of the heavier fragment?

Section 38.8 Relativistic Energy

28. (a) Find the kinetic energy of a 78.0-kg spacecraft launched 
out of the solar system with speed 106 km/s by using the 
classical equation K 5 1

2  
mu2. (b) What If? Calculate its 

kinetic energy using the relativistic equation. (c)  Explain 
the result of comparing the answers of parts (a) and (b).

29. Determine the energy required to accelerate an electron 
from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

30. Show that for any object moving at less than one-tenth 
the speed of light, the relativistic kinetic energy agrees  
with the result of the classical equation K 5 1

2  
mu2 to within 

less than 1%. Therefore, for most purposes, the classical 
equation is sufficient to describe these objects.

31. Protons in an accelerator at the Fermi National Laboratory 
near Chicago are accelerated to a total energy that is 400 
times their rest energy. (a) What is the speed of these pro-
tons in terms of c? (b) What is their kinetic energy in MeV?

32. You are working for an alternative energy company. Your 
supervisor has an idea for a new energy source. He wants to 
build a matter-antimatter reactor that will convert the entire 
mass of the matter and antimatter into recoverable energy, 
with no waste. He has lofty ideas; he wants his reactor to 
provide energy to the entire world, replacing coal, fossil fuel, 
hydroelectric, wind, thermal, and nuclear energy sources in 
all countries. (a) He asks you to determine the masses of the 
supply of matter and antimatter that will need to be com-
bined to provide the world’s needs for one year. (b) He also 
asks you to determine how large the storage containers must 
be to hold a 5.0-yr supply of the matter and antimatter while 
it is waiting to be used in the reactor. The current energy 
consumption worldwide is about 4.0 3 1020 J per year, and 
the matter and antimatter will have approximately the den-
sity of aluminum, 2.70 g/cm3.

33. The total energy of a proton is twice its rest energy. Find the 
momentum of the proton in MeV/c units.

34. When 1.00 g of hydrogen combines with 8.00 g of oxygen, 
9.00 g of water is formed. During this chemical reaction, 
2.86 3 105 J of energy is released. (a) Is the mass of the water 
larger or smaller than the mass of the reactants? (b) What 
is the difference in mass? (c) Explain whether the change in 
mass is likely to be detectable.

35. The rest energy of an electron is 0.511 MeV. The rest energy 
of a proton is 938 MeV. Assume both particles have kinetic 
energies of 2.00 MeV. Find the speed of (a) the electron 
and (b) the proton. (c) By what factor does the speed of the 
electron exceed that of the proton? (d) Repeat the calcula-
tions in parts (a) through (c) assuming both particles have 
kinetic energies of 2 000 MeV.

36. Show that the energy–momentum relationship in Equation 
38.27, E 2 5 p2c2 1 (mc2)2, follows from the expressions E 5 
gmc2 and p 5 gmu.

37. Massive stars ending their lives in supernova explosions 
produce the nuclei of all the atoms in the bottom half of 
the periodic table by fusion of smaller nuclei. This problem 
roughly models that process. A particle of mass m 5 1.99 3 
10226 kg moving with a velocity uS 5 0.500c i

⁄
 collides head-on 

and sticks to a particle of mass m9 5 m/3 moving with the 
velocity uS 5 20.500c i

⁄
. What is the mass of the resulting 

particle?

38. Massive stars ending their lives in supernova explosions 
produce the nuclei of all the atoms in the bottom half of 
the periodic table by fusion of smaller nuclei. This prob-
lem roughly models that process. A particle of mass m mov-
ing along the x axis with a velocity component 1u collides 
head-on and sticks to a particle of mass m/3 moving along 
the x axis with the velocity component 2u. (a) What is the 
mass M of the resulting particle? (b)  Evaluate the expres-
sion from part (a) in the limit u S 0. (c) Explain whether 
the result agrees with what you should expect from nonre-
lativistic physics.

39. Consider a car moving at highway speed u. Is its actual 
kinetic energy larger or smaller than 1

2 mu2? Make an 
order-of-magnitude estimate of the amount by which its 
actual kinetic energy differs from 1

2 mu2. In your solution, 
state the quantities you take as data and the values you 
measure or estimate for them. You may find Appendix B.5 
useful.

40. An unstable particle with mass m 5 3.34 3 10227 kg is 
initially at rest. The particle decays into two fragments 
that fly off along the x axis with velocity components  
u1 5 0.987c and u2 5 20.868c. From this information, we 
wish to determine the masses of fragments 1 and 2. (a) Is 
the initial system of the unstable particle, which becomes 
the system of the two fragments, isolated or nonisolated? 
(b)  Based on your answer to part (a), what two analysis 
models are appropriate for this situation? (c) Find the val-
ues of g for the two fragments after the decay. (d) Using 
one of the analysis models in part (b), find a relation-
ship between the masses m1 and m2 of the fragments. (e) 
Using the second analysis model in part (b), find a second 
relationship between the masses m1 and m2. (f) Solve the 
relationships in parts (d) and (e) simultaneously for the 
masses m1 and m2.
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1046 Chapter 38 Relativity

Section 38.9 The General Theory of Relativity

41. Review. A global positioning system (GPS) satellite moves in 
a circular orbit with period 11 h 58 min. (a) Determine the 
radius of its orbit. (b) Determine its speed. (c) The nonmil-
itary GPS signal is broadcast at a frequency of 1 575.42 MHz 
in the reference frame of the satellite. When it is received 
on the Earth’s surface by a GPS receiver (Fig. P38.41), what 
is the fractional change in this frequency due to time dila-
tion as described by special relativity? (d) The gravitational 
“blueshift” of the frequency according to general relativ-
ity is a separate effect. It is called a blueshift to indicate a 
change to a higher frequency. The magnitude of that frac-
tional change is given by

Df

f
5

DUg

mc 2

where Ug is the change in gravitational potential energy of 
an object–Earth system when the object of mass m is moved 
between the two points where the signal is observed. Calcu-
late this fractional change in frequency due to the change 
in position of the satellite from the Earth’s surface to its 
orbital position. (e) What is the overall fractional change 
in frequency due to both time dilation and gravitational 
blueshift?

aDDitional ProbleMS

42. Why is the following situation impossible? On their 40th birth-
day, twins Speedo and Goslo say good-bye as Speedo takes 
off for a planet that is 50 ly away. He travels at a constant 
speed of 0.85c and immediately turns around and comes 
back to the Earth after arriving at the planet. Upon arriving 
back at the Earth, Speedo has a joyous reunion with Goslo.

43. An astronaut wishes to visit the Andromeda galaxy, making 
a one-way trip that will take 30.0 years in the spaceship’s 
frame of reference. Assume the galaxy is 2.00 million light-
years away and his speed is constant. (a) How fast must he 
travel relative to Earth? (b) What will be the kinetic energy 
of his spacecraft, which has mass of 1.00 3 106 kg? (c) What 
is the cost of this energy if it is purchased at a typical con-
sumer price for electric energy, 13.0¢ per kWh? The follow-
ing approximation will prove useful:

1

Ï1 1 x
< 1 2

x
2

 for x ,, 1

44. The equation

K 5 S 1

Ï1 2 u2yc 2
2 1Dmc 2

gives the kinetic energy of a particle moving at speed u. 
(a) Solve the equation for u. (b) From the equation for u, 
identify the minimum possible value of speed and the corre-
sponding kinetic energy. (c) Identify the maximum possible 
speed and the corresponding kinetic energy. (d) Differen-
tiate the equation for u with respect to time to obtain an 
equation describing the acceleration of a particle as a func-
tion of its kinetic energy and the power input to the particle. 
(e) Observe that for a nonrelativistic particle we have u 5 
(2K/m)1/2 and that differentiating this equation with respect 
to time gives a 5 P/(2mK )1/2. State the limiting form of the 
expression in part (d) at low energy. State how it compares 
with the nonrelativistic expression. (f)  State the limiting 
form of the expression in part (d) at high energy. (g) Con-
sider a particle with constant input power. Explain how the 
answer to part (f) helps account for the answer to part (c).

45. Consider the astronaut planning the trip to Andromeda 
in Problem 43. (a) To three significant figures, what is the 
value for g for the speed found in part (a) of Problem 43? 
(b) Just as the astronaut leaves on his constant-speed trip, 
a light beam is also sent in the direction of Andromeda. 
According to the Earth observer, how much later does the 
astronaut arrive at Andromeda after the arrival of the light 
beam?

46. The motion of a transparent medium influences the speed 
of light. This effect was first observed by Fizeau in 1851. 
Consider a light beam in water. The water moves with speed 
v in a horizontal pipe. Assume the light travels in the same 
direction as the water moves. The speed of light with respect 
to the water is c/n, where n 5 1.33 is the index of refraction 
of water. (a) Use the velocity transformation equation to 
show that the speed of the light measured in the laboratory 
frame is

u 5
c
n S1 1 nvyc

1 1 vyncD
(b) Show that for v ,, c, the expression from part (a) 
becomes, to a good approximation,

u <
c
n

1 v 2
v
n2

(c) Argue for or against the view that we should expect the 
result to be u 5 (c/n) 1 v according to the Galilean transfor-
mation and that the presence of the term 2v/n2 represents 
a relativistic effect appearing even at “nonrelativistic” 
speeds. (d) Evaluate u in the limit as the speed of the water 
approaches c.

47. An object disintegrates into two fragments. One frag-
ment has mass 1.00 MeV/c2 and momentum 1.75 MeV/c 
in the positive x direction, and the other has mass  
1.50 MeV/c2 and momentum 2.00 MeV/c in the positive y 
direction. Find (a) the mass and (b) the speed of the origi-
nal object.

48. Why is the following situation impossible? An experimenter is 
accelerating electrons for use in probing a material. She 
finds that when she accelerates them through a potential 
difference of 84.0 kV, the electrons have half the speed she 
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wishes. She quadruples the potential difference to 336 kV, 
and the electrons accelerated through this potential differ-
ence have her desired speed.

49. Review. Around the core of a nuclear reactor shielded by 
a large pool of water, Cerenkov radiation appears as a blue 
glow. (See Fig. P16.39 on page 448.) Cerenkov radiation 
occurs when a particle travels faster through a medium than 
the speed of light in that medium. It is the electromagnetic 
equivalent of a bow wave or a sonic boom. An electron is 
traveling through water at a speed 10.0% faster than the 
speed of light in water. Determine the electron’s (a) total 
energy, (b) kinetic energy, and (c) momentum. (d) Find the 
angle between the shock wave and the electron’s direction 
of motion.

50. (a) Prepare a graph of the relativistic kinetic energy and the 
classical kinetic energy, both as a function of speed, for an 
object with a mass of your choice. (b) At what speed does 
the classical kinetic energy underestimate the experimental 
value by 1%? (c) By 5%? (d) By 50%?

51. Imagine that the entire Sun, of mass MS, collapses to a 
sphere of radius Rg such that the work required to remove 
a small mass m from the surface would be equal to its rest 
energy mc2. This radius is called the gravitational radius for 
the Sun. (a) Use this approach to show that Rg 5 GMS  /c2. 
(b) Find a numerical value for Rg.

52. A 57Fe nucleus at rest emits a 14.0-keV photon. Use conser-
vation of energy and momentum to find the kinetic energy 
of the recoiling nucleus in electron volts. Use Mc2 5 8.60 3 
1029 J for the final state of the 57Fe nucleus.

challenGe ProbleMS

53. The creation and study of new and very massive elementary 
particles is an important part of contemporary physics. To 
create a particle of mass M requires an energy Mc2. With 
enough energy, an exotic particle can be created by allow-
ing a fast-moving proton to collide with a similar target 
particle. Consider a perfectly inelastic collision between 
two protons: an incident proton with mass mp, kinetic 
energy K, and momentum magnitude p joins with an origi-
nally stationary target proton to form a single product par-
ticle of mass M. Not all the kinetic energy of the incoming 
proton is available to create the product particle because 
conservation of momentum requires that the system as a 
whole still must have some kinetic energy after the colli-
sion. Therefore, only a fraction of the energy of the inci-
dent particle is available to create a new particle. (a) Show 

that the energy available to create a product particle is 
given by

Mc 2 5 2mpc 2Î11
K

2mpc 2

This result shows that when the kinetic energy K of the inci-
dent proton is large compared with its rest energy mpc

2, then 
M approaches (2mpK)1/2/c. Therefore, if the energy of the 
incoming proton is increased by a factor of 9, the mass you 
can create increases only by a factor of 3, not by a factor of 
9 as would be expected. (b) This problem can be alleviated 
by using colliding beams as is the case in most modern accel-
erators. Here the total momentum of a pair of interacting 
particles can be zero. The center of mass can be at rest after 
the collision, so, in principle, all the initial kinetic energy 
can be used for particle creation. Show that

Mc 2 5 2mc 2S1 1
K

mc 2D
where K is the kinetic energy of each of the two identical 
colliding particles. Here, if K .. mc2, we have M directly 
proportional to K as we would desire.

54. A particle with electric charge q moves along a straight 
line in a uniform electric field E

S
 with speed u. The  

electric force exerted on the charge is qE
S

. The velocity of 
the particle and the electric field are both in the x direc-
tion. (a) Show that the acceleration of the particle in the x 
direction is given by

a 5
du
dt

5
qE

m S1 2
u2

c 2D3y2

(b) Discuss the significance of the dependence of the accel-
eration on the speed. (c) What If? If the particle starts from 
rest at x 5 0 at t 5 0, how would you proceed to find the 
speed of the particle and its position at time t?

55. Suppose our Sun is about to explode. In an effort to escape, 
we depart in a spacecraft at v 5 0.800c and head toward the 
star Tau Ceti, 12.0 ly away. When we reach the midpoint of 
our journey from the Earth, we see our Sun explode, and, 
unfortunately, at the same instant, we see Tau Ceti explode 
as well. (a) In the spacecraft’s frame of reference, should we 
conclude that the two explosions occurred simultaneously? 
If not, which occurred first? (b) What If? In a frame of ref-
erence in which the Sun and Tau Ceti are at rest, did they 
explode simultaneously? If not, which exploded first?
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1048

Storyline It’s time to putter around in your garage again and try 
to get your mind off the constant physics questions that arise from your daily 
observations. You decide to clean up a box of old equipment in a corner and 
throw away things for which you can see no need. While going through the 
equipment, you come upon something you didn’t realize was there: an old vari-
able transformer. You can plug an electrical device into its output and then dial in 
whatever AC voltage you want to apply to it: 0–120 volts! You grab an old lamp, 
plug it into the transformer and screw an incandescent light bulb into the lamp. 
You set the transformer at its highest voltage and turn it on. The lamp lights. Now 
you slowly turn the transformer voltage down. The bulb stays lit, almost all the 
way down to zero volts. As the voltage drops, the light from the filament gets 
dimmer, but it also changes color! At high voltages, the light is yellow-white, but 
it becomes more orange as the voltage drops, as in the photo above. Why does 
that happen? You abandon your clean-up job in the garage and go into the house 
to read Chapter 39.

ConneCtions In Chapter 38, we discussed that Newtonian mechanics 
must be replaced by Einstein’s special theory of relativity when dealing with parti-
cle speeds comparable to the speed of light. For many other problems, however, 
neither relativity nor classical physics could provide agreement between theory 
and experiment. As physicists sought new ways to solve these puzzles, another 
revolution took place in physics between 1900 and 1930. A new theory called 
quantum mechanics was highly successful in explaining the behavior of parti-
cles of microscopic size. Like the special theory of relativity, the quantum theory 
requires a modification of our ideas concerning the physical world. Because an 
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Introduction to Quantum Physics

This lightbulb filament 
glows with an orange color. 

Why? Classical physics 
is unable to explain the 

experimentally observed 
wavelength distribution of 
electromagnetic radiation 

from a hot object. A theory 
proposed in 1900 and 

describing the radiation from 
such objects represents the 

dawn of quantum physics. 
(Steve Cole/Getty Images )
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   39.1 Blackbody Radiation and Planck’s Hypothesis 1049

extensive study of quantum theory is beyond the scope of this book, this chapter 
is simply an introduction to its underlying principles. But we will use these princi-
ples in our investigations throughout the rest of this book.

  39.1    Blackbody Radiation and Planck’s Hypothesis
Let’s begin by thinking about the glowing filament in the opening storyline. An 
object at any temperature emits electromagnetic waves in the form of thermal  
radiation from its surface as discussed in Section 19.6. The characteristics of this 
radiation depend on the temperature and properties of the object’s surface. Careful 
study shows that the radiation consists of a continuous distribution of wavelengths 
from all portions of the electromagnetic spectrum. If the object is at room temper-
ature, the wavelengths of thermal radiation are mainly in the infrared region and 
hence the radiation is not detected by the human eye. As the surface temperature 
of the object increases, the object eventually begins to glow visibly red, like the coils 
of a toaster. At sufficiently high temperatures, the glowing object appears white, as 
in the hot tungsten filament of an incandescent lightbulb.

From a classical viewpoint, thermal radiation originates from accelerated 
charged particles in the atoms near the surface of the object; those charged par-
ticles emit radiation much as small antennas do. The thermally agitated particles 
can have a distribution of energies, which accounts for the continuous spectrum of 
radiation emitted by the object. By the end of the 19th century, however, it became 
apparent that the classical theory of thermal radiation was inadequate. The basic 
problem was in understanding the observed distribution of wavelengths in the 
radiation emitted by a black body. As defined in Section 19.6, a black body is an 
ideal system that absorbs all radiation incident on it; there is no reflection at all 
from its surface. The electromagnetic radiation emitted by the black body is called  
blackbody radiation.

A good approximation of a black body is a small hole leading to the inside of 
a hollow object as shown in Figure 39.1. Any radiation incident on the hole from 
outside the cavity enters the hole and is reflected a number of times on the interior 
walls of the cavity; hence, the hole acts as a perfect absorber. The nature of the 
radiation leaving the cavity through the hole depends only on the temperature of 
the cavity walls and not on the material of which the walls are made. The spaces 
between lumps of hot charcoal (Fig. 39.2) emit light that is very much like black-
body radiation.

The radiation emitted by oscillators in the cavity walls in Figure 39.1 experiences 
boundary conditions and can be analyzed using the waves under boundary condi-
tions analysis model applied to a three-dimensional cavity. As the radiation reflects 
from the cavity’s walls, standing electromagnetic waves are established within the 
interior of the cavity. Many standing-wave modes are possible, and the distribution 
of the energy in the cavity among these modes determines the wavelength distribu-
tion of the radiation leaving the cavity through the hole.

The wavelength distribution of radiation from cavities was studied experimen-
tally in the late 19th century. Figure 39.3 (page 1050) shows how the intensity of 
blackbody radiation varies with temperature and wavelength as determined by 
these experiments. The following two consistent experimental findings were seen 
as especially significant:

1. The total power of the emitted radiation increases with temperature.  
We discussed this behavior briefly in Chapter 19, where we introduced  
Stefan’s law:

 P 5 sAeT 4  (39.1)

  where P is the power in watts radiated at all wavelengths from the  surface of 
an object, s 5 5.669 6 3 1028 W/m2 ? K4 is the Stefan–Boltzmann constant,  

 Stefan’s law

Figure 39.2  The glow emanating 
from the spaces between these 
hot charcoal briquettes is, to a 
close approximation, blackbody 
radiation. The color of the light 
depends only on the temperature 
of the briquettes.
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The opening to a cavity 
inside a hollow object is a 
good approximation of a 
black body: the hole acts as 
a perfect absorber.

Figure 39.1  A physical model of 
a black body.

PItfall PreventIon 39.1
Expect to Be Challenged If the 
discussions of quantum physics 
in this and subsequent chapters 
seem strange and confusing to 
you, it’s because your whole life 
experience has taken place in the 
macroscopic world, where quan-
tum effects are not immediately 
evident.
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1050 Chapter 39 Introduction to Quantum Physics

A is the surface area of the object in square meters, e is the emissivity of the 
surface, and T is the surface temperature in kelvins. For a black body, the 
emissivity is e 5 1 exactly.

2. The peak of the wavelength distribution shifts to shorter wavelengths as 
the temperature increases. This behavior is described by the following rela-
tionship, called Wien’s displacement law:

 lmax T 5 2.898 3 1023 m ? K  (39.2)

  where lmax is the wavelength at which the curve peaks and T is the absolute 
temperature of the surface of the object emitting the radiation. The wave-
length at the curve’s peak is inversely proportional to the absolute tempera-
ture; that is, as the temperature increases, the peak is “displaced” to shorter 
wavelengths (Fig. 39.3).

These experimental results are consistent with the behavior of the filament 
in our opening storyline. At room temperature, the filament does not appear to 
glow because the peak is in the infrared region of the electromagnetic spectrum. 
When full voltage is applied to the filament, its temperature is on the order of  
3 000 K. Most of the radiation from the filament is in the infrared, but, as can be 
seen from the middle curve in Figure 39.3, a significant amount of visible radiation 
at all wavelengths is emitted, giving a yellowish-white result. When the voltage is 
dropped, the filament operates at a lower temperature. It becomes dimmer, due to 
Stefan’s law, and the peak in the distribution moves to the right in Figure 39.3. As 
can be seen from the lowest curve at 2 000 K, the visible radiation is mostly from 
the red end of the spectrum, giving the filament an appearance of an orange glow.

Q uIck QuIz 39.1  Figure 39.4 shows two stars in the constellation Orion. 
Betelgeuse appears to glow red, whereas Rigel looks blue in color. Which star 
has a higher surface temperature? (a) Betelgeuse (b) Rigel (c) both the same 
(d) impossible to determine

A successful theory for blackbody radiation must predict the shape of the curves 
in Figure 39.3, the temperature dependence expressed in Stefan’s law, and the shift 
of the peak with temperature described by Wien’s displacement law. Early attempts 
to use classical ideas to explain the shapes of the curves in Figure 39.3 failed.

Let’s consider one of these early attempts. To describe the distribution of energy 
from a black body, we define I(l,T) dl to be the intensity, or power per unit area, 
emitted in the wavelength interval dl. The result of a calculation based on a classi-
cal theory of blackbody radiation known as the Rayleigh–Jeans law is

 I s l,T d 5
2pck BT 

l4  (39.3)

where kB is Boltzmann’s constant. The black body is modeled as the hole leading 
into a cavity (Fig. 39.1), resulting in many modes of oscillation of the electromag-
netic field caused by accelerated charges in the cavity walls and the emission of 
electromagnetic waves at all wavelengths. In the classical theory used to derive 
Equation 39.3, the average energy for each wavelength of the standing-wave modes 
is assumed to be proportional to kBT, based on the theorem of equipartition of 
energy discussed in Section 20.1.

An experimental plot of the blackbody radiation spectrum, together with the 
theoretical prediction of the Rayleigh–Jeans law, is shown in Figure 39.5. At long 
wavelengths, the Rayleigh–Jeans law is in reasonable agreement with experimental 
data, but at short wavelengths, major disagreement is apparent.

As l approaches zero, the function I(l,T) given by Equation 39.3 approaches 
infinity. Hence, according to classical theory, not only should short wavelengths 
predominate in a blackbody spectrum, but also the energy emitted by any black 
body should become infinite in the limit of zero wavelength. In contrast to this 
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Figure 39.3 Intensity of black-
body radiation versus wavelength 
at three temperatures. The visible 
range of wavelengths is between 
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Figure 39.4  (Quick Quiz 39.1) 
Which star is hotter, Betelgeuse 
or Rigel?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



   39.1 Blackbody Radiation and Planck’s Hypothesis 1051

prediction, the experimental data plotted in Figure 39.5 show that as l approaches 
zero, I(l,T) also approaches zero. This mismatch of theory and experiment was so 
disconcerting that scientists called it the ultraviolet catastrophe. (This “catastrophe”—
infinite energy—occurs as the wavelength approaches zero; the word ultraviolet  
was applied because ultraviolet wavelengths are short.)

In 1900, Max Planck developed a theory of blackbody radiation that leads to an 
equation for I(l,T) that is in complete agreement with experimental results at all 
wavelengths. In discussing this theory, we use the outline of properties of structural 
models introduced in Chapter 20:

1. Physical components: 
  Planck assumed the cavity radiation came from atomic oscillators in the 

cavity walls in Figure 39.1, just as in the Rayleigh–Jeans approach.
2. Behavior of the components: 

  This part of the model is entirely different from the Rayleigh–Jeans 
approach:
(a) The energy of an oscillator can have only certain discrete values En:

 En 5 nhf (39.4)
    where n is a positive integer called a quantum number,1 f is the oscil-

lator’s frequency, and h is a parameter Planck introduced that is now 
called Planck’s constant. Because the energy of each oscillator can have 
only discrete values given by Equation 39.4, we say the energy is quan-
tized. Each discrete energy value corresponds to a different quantum 
state, represented by the quantum number n. When the oscillator is in 
the n 5 1 quantum state, its energy is hf; when it is in the n 5 2 quan-
tum state, its energy is 2hf; and so on.

(b) The oscillators emit or absorb energy when making a transition from 
one quantum state to another. The entire energy difference between the 
initial and final states in the transition is emitted or absorbed as a single 
quantum of radiation. If the transition is from one state to a lower adja-
cent state—say, from the n 5 3 state to the n 5 2 state—Equation 39.4 
shows that the amount of energy emitted by the oscillator and carried by 
the quantum of radiation is

 E 5 hf  (39.5)

According to property 2(b), an oscillator emits or absorbs energy only when it 
changes quantum states. If it remains in one quantum state, no energy is absorbed 
or emitted. Figure 39.6 is an energy-level diagram showing the quantized energy 
levels and allowed transitions proposed by Planck. This important semigraph-
ical representation is used often in quantum physics.2 The vertical axis is linear 
in energy, and the allowed energy levels are represented as horizontal lines. The 
quantized system can have only the energies represented by the horizontal lines.

The key point in Planck’s theory is the radical assumption of quantized energy 
states. This development—a clear deviation from classical physics—marked the 
birth of the quantum theory.

In the Rayleigh–Jeans model, the average energy associated with a particular 
wavelength of standing waves in the cavity is the same for all wavelengths and is 
proportional to kBT. Planck used the same classical ideas as in the Rayleigh–Jeans 
model to arrive at the energy density as a product of constants and the average 
energy for a given wavelength, but the average energy is not given by the equipar-
tition theorem. A wave’s average energy is the average energy difference between 
levels of the oscillator, weighted according to the probability of the wave being emitted. This 
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Figure 39.5  Comparison of 
experimental results and the 
curve predicted by the Rayleigh–
Jeans law for the distribution of 
blackbody radiation.

1A quantum number is generally an integer (although half-integer quantum numbers can occur) that describes an 
allowed state of a system, such as the values of n describing the normal modes of oscillation of a string fixed at both 
ends, as discussed in Section 17.4.
2We first saw an energy-level diagram in Section 20.3.
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1052 Chapter 39 Introduction to Quantum Physics

weighting is based on the occupation of higher-energy states as described by the 
Boltzmann distribution law, which was discussed in Section 20.5. According to this 
law, the probability of a state being occupied is proportional to the factor e2E/kBT, 
where E is the energy of the state.

At low frequencies (long wavelengths), according to property 2(a), the energy lev-
els are separated by small gaps of size hf (Eq. 39.5) and are close together as on the 
right in Figure 39.7. Many of the energy states are excited because the Boltzmann 
factor e2E/kBT is relatively large for these states. Therefore, there are many contribu-
tions to the outgoing radiation, although each contribution has very low energy. 
Now, consider high-frequency radiation, that is, radiation with short wavelength. 
For this radiation, hf in Equation 39.5 is large and the allowed energies are very 
far apart as on the left in Figure 39.7. The probability of thermal agitation exciting 
these high energy levels is small because of the small value of the Boltzmann factor 
for large values of E. At high frequencies, the low probability of excitation results 
in very little contribution to the total energy, even though each quantum is of large 
energy. This low probability “turns the curve over” and brings it down to zero again 
at short wavelengths.

Using this approach, Planck generated a theoretical expression for the wave-
length distribution that agreed remarkably well with the experimental curves in 
Figure 39.3:

 Isl,T d 5
2phc 2

l5se hcylkBT 2 1d
 (39.6)

This function includes the parameter h, which Planck adjusted so that his curve 
matched the experimental data at all wavelengths. The value of this parameter is 
found to be independent of the material of which the black body is made and inde-
pendent of the temperature; it is a fundamental constant of nature. The value of h, 
Planck’s constant, is

 h 5 6.626 3 10234 J ? s (39.7)

Planck’s wavelength 
distribution function

Planck’s constant 

PItfall PreventIon 39.2
n Is Again an Integer In the preced-
ing chapters on optics, we used the 
symbol n for the index of refrac-
tion, which was not an integer. 
Here we are again using n as we did 
in Chapter 17 to indicate the stand-
ing-wave mode on a string or in an 
air column. In quantum physics, n 
is often used as an integer quantum 
number to identify a particular 
quantum state of a system.
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Figure 39.7 In Planck’s model, the average energy associated with a given wave-
length is the product of the energy of a transition and a factor related to the proba-
bility of the transition occurring. 

Max Planck
German Physicist (1858–1947)
Planck introduced the concept of 
“quantum of action” (Planck’s constant, 
h) in an attempt to explain the spectral 
distribution of blackbody radiation, 
which laid the foundations for quantum 
theory. In 1918, he was awarded the 
Nobel Prize in Physics for this discovery 
of the quantized nature of energy.
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   39.1 Blackbody Radiation and Planck’s Hypothesis 1053

At long wavelengths, Equation 39.6 reduces to the Rayleigh–Jeans expression, Equa-
tion 39.3 (see Problem 10), and at short wavelengths, it predicts an exponential  
decrease in I(l,T ) with decreasing wavelength, in agreement with experimental 
results.

When Planck presented his theory, most scientists (including Planck!) did not 
consider the quantum concept to be realistic. They believed it was a mathematical 
trick that happened to predict the correct results. Hence, Planck and others con-
tinued to search for a more “rational” explanation of blackbody radiation. Subse-
quent developments, however, showed that a theory based on the quantum concept 
(rather than on classical concepts) had to be used to explain not only blackbody 
radiation but also a number of other phenomena at the atomic level.

In 1905, Einstein rederived Planck’s results by assuming the oscillations of the 
electromagnetic field were themselves quantized. In other words, he proposed that 
quantization is a fundamental property of light and other electromagnetic radi-
ation, which led to the concept of photons as shall be discussed in Section 39.2. 
Critical to the success of the quantum or photon theory was the relation between 
energy and frequency (Eq. 39.5), which classical theory completely failed to predict.

You may have had your body temperature measured at the doctor’s office by an ear 
thermometer, which can read your temperature very quickly (Fig. 39.8). In a fraction 
of a second, this type of thermometer measures the amount of infrared radiation 
emitted by the eardrum. It then converts the amount of radiation into a tempera-
ture reading. This thermometer is very sensitive because temperature is raised to the 
fourth power in Stefan’s law (Eq. 39.1). Suppose you have a fever 1°C above normal. 
Because absolute temperatures are found by adding 273 to Celsius temperatures, the 
ratio of your fever temperature to normal body temperature of 37°C is

Tfever

Tnormal

5
388C 1 2738C
378C 1 2738C

5 1.003 2

which is only a 0.32% increase in temperature. The increase in radiated power, 
however, is proportional to the fourth power of temperature, so

Pfever

Pnormal

5 S388C 1 2738C
378C 1 2738CD4

5 1.013

The result is a 1.3% increase in radiated power, which is easily measured by modern 
infrared radiation sensors.

 Example 39.1    Thermal Radiation from Different Objects

(A)  Find the peak wavelength of the blackbody radiation emitted by the human body when the skin temperature  
is 35°C.

S O L U T I O N

Conceptualize Thermal radiation is emitted from the surface of any object. The peak wavelength is related to the surface 
temperature through Wien’s displacement law (Eq. 39.2).

Categorize We evaluate results using an equation developed in this section, so we categorize this example as a substitution 
problem.

Solve Equation 39.2 for lmax: (1)   lmax 5
2.898 3 1023 m ? K

T

Substitute the surface temperature in kelvins: lmax 5
2.898 3 1023 m ? K

s273 1 35d K
5 9.41 mm

This radiation is in the infrared region of the spectrum and is invisible to the human eye. Some animals (pit vipers, for 
instance) are able to detect radiation of this wavelength and therefore can locate warm-blooded prey even in the dark.

continued

Figure 39.8  An ear thermome-
ter measures a patient’s temper-
ature by detecting the intensity 
of infrared radiation leaving the 
eardrum.
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39.1 c o n t i n u e d

(B)  Find the peak wavelength of the blackbody radiation emitted by the tungsten filament of an incandescent lightbulb, 
which operates at 2 000 K.

S O L U T I O N

Substitute the filament temperature into Equation (1): lmax 5
2.898 3 1023 m ? K

2 000 K
5 1.45 mm

This radiation is also in the infrared, meaning that most of the energy emitted by an incandescent lightbulb is not visible to us.

(C)  Find the peak wavelength of the blackbody radiation emitted by the Sun, which has a surface temperature of approxi-
mately 5 800 K.

S O L U T I O N

Substitute the surface temperature into Equation (1): lmax 5
2.898 3 1023 m ? K

5 800 K
5 0.500 mm 5   500 nm

This radiation is near the center of the visible spectrum, near the color of a yellow-green tennis ball. Because it is the most 
prevalent color in sunlight, our eyes have evolved to be most sensitive to light of approximately this wavelength.

 Example 39.2    The Quantized Oscillator

A 2.00-kg block is attached to a massless spring that has a force constant of k 5 25.0 N/m. The spring is stretched 0.400 m 
from its equilibrium position and released from rest.

(A)  Find the total energy of the system and the frequency of oscillation according to classical calculations.

S O L U T I O N

Conceptualize We understand the details of the block’s motion from our study of simple harmonic motion in Chapter 15. 
Review that material if you need to.

Categorize The phrase “according to classical calculations” tells us to categorize this part of the problem as a classical analy-
sis of the oscillator. We model the block as a particle in simple harmonic motion.

Analyze Based on the way the block is set into motion, its amplitude is 0.400 m.

Evaluate the total energy of the block–spring system  E 5 1
2kA2 5 1

2s25.0 Nymds0.400 md2 5 2.00 J  
using Equation 15.21:

Evaluate the frequency of oscillation from  f 5
1

2p Î k
m

5
1

2p Î25.0 Nym
2.00 kg

5 0.563 Hz  
Equation 15.14:

(B)  Assuming the energy of the oscillator is quantized, find the quantum number n for the system oscillating with this 
amplitude.

S O L U T I O N

Categorize This part of the problem is categorized as a quantum analysis of the oscillator. We model the block–spring system 
as a Planck oscillator.

Analyze Solve Equation 39.4 for the quantum number n: n 5
En

h f

Substitute numerical values: n 5
2.00 J

s6.626 3 10234 J ? sds0.563 Hzd
5 5.36 3 1033

Finalize Notice that 5.36 3 1033 is a very large quantum number, which is typical for macroscopic systems. Changes between 
quantum states for the oscillator are explored next.

W H A T  I F ?  Suppose the oscillator makes a transition from the n 5 5.36 3 1033 state to the state corresponding to  
n 5 5.36 3 1033 2 1. By how much does the energy of the oscillator change in this one-quantum change?
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  39.2    The Photoelectric Effect
Blackbody radiation was the first phenomenon to be explained with a quantum 
model. In the latter part of the 19th century, at the same time that data were taken 
on thermal radiation, experiments showed that light incident on certain metal-
lic surfaces causes electrons to be emitted from those surfaces. This phenom-
enon is known as the photoelectric effect, and the emitted electrons are called 
photoelectrons.3

Figure 39.9 is a diagram of an apparatus for studying the photoelectric effect. An 
evacuated glass or quartz tube contains a metallic plate E (the emitter) connected 
to the negative terminal of a battery and another metallic plate C (the collector) 
that is connected to the positive terminal of the battery. When the tube is kept in 
the dark, the ammeter reads zero, indicating no current in the circuit. However, 
when plate E is illuminated by light having an appropriate wavelength, a current 
is detected by the ammeter, indicating a flow of charges across the gap between 
plates E and C. This current arises from photoelectrons emitted from plate E and 
collected at plate C.

Figure 39.10 is a plot of photoelectric current versus potential difference DV 
applied between plates E and C for two light intensities. At large values of DV, the 
current reaches a maximum value; all the electrons emitted from E are collected 
at C, and the current cannot increase further. In addition, the maximum cur-
rent increases as the intensity of the incident light increases, as you might expect, 
because more electrons are ejected by the higher-intensity light. Finally, when DV is 
negative—that is, when the battery in the circuit is reversed to make plate E positive 
and plate C negative—the current drops because many of the photoelectrons emit-
ted from E are repelled by the now negative plate C. In this situation, only those 

39.2 c o n t i n u e d

Answer From Equation 39.5 and the result to part (A), the energy carried away due to the transition between states differing 
in n by 1 is

E 5 hf 5 s6.626 3 10234 J ? sds0.563 Hzd 5 3.73 3 10234 J

This energy change due to a one-quantum change is fractionally equal to 3.73 3 10234 J/2.00 J, or on the order of one part 
in 1034! It is such a small fraction of the total energy of the oscillator that it cannot be detected. Therefore, even though the 
energy of a macroscopic block–spring system is quantized and does indeed decrease by small quantum jumps, our senses 
perceive the decrease as continuous. Quantum effects become important and detectable only on the submicroscopic level of 
atoms and molecules.
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When light strikes plate E (the 
emitter), photoelectrons are 
ejected from the plate. 

Variable power
supply

Electrons moving from 
plate E to plate C (the 
collector) constitute a 
current in the circuit.

Figure 39.9 A circuit diagram 
for studying the photoelectric 
effect. 

3Photoelectrons are not different from other electrons. They are given this name solely because of their ejection 
from a metal by light in the photoelectric effect.

High intensity

Low intensity

Applied
voltage

CurrentAt voltages 
equal to or 
more negative 
than ��Vs,  the 
current is zero.

The current increases with 
intensity but reaches a 
saturation level for large 
values of �V.

��Vs

Figure 39.10 Photoelectric cur-
rent versus applied potential dif-
ference for two light intensities. 
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photoelectrons having a kinetic energy greater than e|DV  | reach plate C, where e is 
the magnitude of the charge on the electron. When DV is equal to or more negative 
than 2DVs, where DVs is the stopping potential, no photoelectrons reach C and the 
current is zero.

Let’s model the combination of the electric field between the plates and an elec-
tron ejected from plate E as an isolated system. Suppose this electron stops just 
as it reaches plate C. Because the system is isolated, the appropriate reduction of 
Equation 8.2 is

DK 1 DUE 5 0

where the initial configuration is at the instant the electron leaves the metal with 
kinetic energy Ki and the final configuration is when the electron stops just before 
touching plate C. If we define the electric potential energy of the system in the ini-
tial configuration to be zero, we have

(0 2 Ki) 1 [(q )(DV ) 2 0] 5 0   S    Ki 5 q  DV  5 2e DV

Now suppose the potential difference DV is increased in the negative direction just 
until the current is zero at DV  5 2DVs. In this case, the electron that stops immedi-
ately before reaching plate C has the maximum possible kinetic energy upon leav-
ing the metal surface. The previous equation can then be written as

 Kmax 5 e DVs (39.8)

This equation allows us to measure Kmax experimentally by determining the magni-
tude of the voltage DVs at which the current drops to zero.

Several features of the photoelectric effect are listed below. For each feature, we 
compare the predictions made by a classical approach, using the wave model for 
light, with the experimental results.

1. Dependence of photoelectron kinetic energy on light intensity

  Classical prediction: Electrons should absorb energy continuously from 
the electromagnetic waves. As the light intensity incident on a metal is 
increased, energy should be transferred into the metal at a higher rate  
and the electrons should be ejected with more kinetic energy. According 
to Equation 39.8, then, the stopping potential should increase in magni-
tude with increasing light intensity.

  Experimental result: The maximum kinetic energy of photoelectrons is inde-
pendent of light intensity as shown in Figure 39.10 with both curves falling to 
zero at the same negative voltage.

2. Time interval between incidence of light and ejection of photoelectrons
  Classical prediction: At low light intensities, a measurable time interval should 

pass between the instant the light is turned on and the time an electron is 
ejected from the metal. This time interval is required for the electron to 
absorb the incident radiation before it acquires enough energy to escape 
from the metal.

  Experimental result: Electrons are emitted from the surface of the metal 
almost instantaneously (less than 1029 s after the surface is illuminated), even 
at very low light intensities.

3. Dependence of ejection of electrons on light frequency
  Classical prediction: Electrons should be ejected from the metal at any inci-

dent light frequency, as long as the light intensity is high enough, because 
energy is transferred to the metal regardless of the incident light frequency.

  Experimental result: No electrons are emitted if the incident light frequency 
falls below some cutoff frequency fc , whose value is characteristic of the 
material being illuminated. No electrons are ejected below this cutoff fre-
quency regardless of the light intensity.
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4. Dependence of photoelectron kinetic energy on light frequency
  Classical prediction: There should be no relationship between the frequency 

of the light and the electron kinetic energy. The kinetic energy should be 
related to the intensity of the light.

  Experimental result: The maximum kinetic energy of the photoelectrons 
increases with increasing light frequency.

For these features, experimental results contradict all four classical predictions. 
A successful explanation of the photoelectric effect was given by Einstein in 1905, 
the same year he published his special theory of relativity. As part of a general 
paper on electromagnetic radiation, for which he received a Nobel Prize in Physics 
in 1921, Einstein extended Planck’s concept of quantization to electromagnetic 
waves as mentioned in Section 39.1. Einstein assumed light (or any other elec-
tromagnetic wave) of frequency f from any source can be considered a stream of 
quanta. Today we call these quanta photons. Each photon has an energy E given 
by Equation 39.5, E 5 hf, and each moves in a vacuum at the speed of light c, where 
c 5 3.00 3 108 m/s.

Q uIck QuIz 39.2  While standing outdoors one evening, you are exposed 
to the following four types of electromagnetic radiation: yellow light from a 
sodium street lamp, radio waves from an AM radio station, radio waves from an 
FM radio station, and microwaves from an antenna of a communications system. 
Rank these types of waves in terms of photon energy from highest to lowest.

Let us organize Einstein’s model for the photoelectric effect using the properties 
of structural models: 

1. Physical components: 
  We imagine the system to consist of two physical components: (1) an elec-

tron that is to be ejected by an incoming photon and (2) the remainder of 
the metal.

 2. Behavior of the components: 
  (a)  In Einstein’s model, a photon of the incident light gives all its energy 

hf to a single electron in the metal. Therefore, the absorption of energy 
by the electrons is not a continuous process as envisioned in the wave 
model, but rather a discontinuous process in which energy is delivered 
to the electrons in bundles. The energy transfer is accomplished via a 
one-photon/one-electron event.4

  (b)  We can describe the time evolution of the system by applying the non-
isolated system model for energy over a time interval that includes the 
absorption of one photon and the ejection of the corresponding electron. 
The system has two types of energy: the  potential energy of the metal–
electron system and the kinetic energy of the ejected electron. Therefore, 
we can write the conservation of energy equation (Eq. 8.2) as

 DK 1 DUE 5 TER (39.9)

    The energy transfer into the system is that of the photon, TER 5 hf.  
During the process, the kinetic energy of the electron increases from 
zero to its final value, which we assume to be the maximum possible 
value Kmax. The potential energy of the system increases because the 
electron is pulled away from the metal to which it is attracted. We 
define the potential energy of the system when the electron is outside 
the metal as zero. The potential energy of the system when the electron 
is in the metal is UE 5 2f, where f is called the work function of the 

4In principle, two photons could combine to provide an electron with their combined energy. That is highly improb-
able, however, without the high intensity of radiation available from very strong lasers.
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metal. The work function represents the minimum energy with which 
an electron is bound in the metal and is on the order of a few electron 
volts. Table 39.1 lists selected values. Substituting these energies into 
Equation 39.9, we have

 (K max 2 0) 1 [0 2 (2f)] 5 hf 

 K max 1 f 5 hf (39.10)

    If the electron makes collisions with other electrons or metal ions as it is 
being ejected, some of the incoming energy is transferred to the metal 
and the electron is ejected with less kinetic energy than Kmax.

The prediction made by Einstein is an equation for the maximum kinetic energy 
of an ejected electron as a function of frequency of the illuminating radiation. This 
equation can be found by rearranging Equation 39.10:

 K max 5 h f 2 f  (39.11)

With Einstein’s structural model, one can explain the observed features of the 
photoelectric effect that cannot be understood using classical concepts:

1. Dependence of photoelectron kinetic energy on light intensity
  Equation 39.11 shows that K max is independent of the light intensity. 

The maximum kinetic energy of any one electron, which equals hf 2 f, 
depends only on the light frequency and the work function. If the light 
intensity is doubled, the number of photons arriving per unit time is 
doubled, which doubles the rate at which photoelectrons are emitted. 
The maximum kinetic energy of any one photoelectron, however, is 
unchanged.

2. Time interval between incidence of light and ejection of photoelectrons
  Near-instantaneous emission of electrons is consistent with the photon 

model of light. The incident energy appears in small packets, and there is a 
one-to-one interaction between photons and electrons. If the incident light 
has very low intensity, there are very few photons arriving per unit time 
interval; each photon, however, can have sufficient energy to eject an elec-
tron immediately.

3. Dependence of ejection of electrons on light frequency
  Because the photon must have energy greater than the work function f  

to eject an electron, the photoelectric effect cannot be observed below a 
certain cutoff frequency. If the energy of an incoming photon does not 
 satisfy this requirement, an electron cannot be ejected from the surface, 
even though many photons per unit time are incident on the metal in a  
very intense light beam.

4. Dependence of photoelectron kinetic energy on light frequency
  A photon of higher frequency carries more energy and therefore ejects a pho-

toelectron with more kinetic energy than does a photon of lower frequency 
as described by Equation 39.11.

Einstein’s model predicts a linear relationship (Eq. 39.11) between the maxi-
mum electron kinetic energy Kmax and the light frequency f. Experimental obser-
vation of a linear relationship between Kmax and f would be a final confirmation of 
Einstein’s theory. Indeed, such a linear relationship was observed experimentally 
within a few years of Einstein’s theory and is sketched in Figure 39.11. The slope of 
the lines in such a plot is Planck’s constant h. The intercept on the horizontal axis 
gives the cutoff frequency below which no photoelectrons are emitted. By setting 
Kmax 5 0 in Equation 39.11, we determine that the cutoff frequency is related to the 

Photoelectric effect equation 

 table 39.1  Work Functions 
of Selected Metals
Metal f (eV)

Na 2.46
Al 4.08
Fe 4.50
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14

Note: Values are typical for metals 
listed. Actual values may vary 
depending on whether the metal is 
a single crystal or polycrystalline. 
Values may also depend on the face 
from which electrons are ejected 
from crystalline metals. Furthermore, 
different experimental procedures  
may produce differing values.
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work function through the relationship fc 5 f/h. The cutoff frequency corresponds 
to a cutoff wavelength lc, where

 lc 5
c
fc

5
c

fyh
5

h c
f

 (39.12)

and c is the speed of light. Wavelengths greater than lc incident on a material hav-
ing a work function f do not result in the emission of photoelectrons.

The combination hc in Equation 39.12 often occurs when relating a photon’s 
energy to its wavelength. A common shortcut when solving problems is to express 
this combination in useful units according to the following approximation:

hc 5 1 240 eV ? nm

One of the first practical uses of the photoelectric effect was as the detector in 
a camera’s light meter. Light reflected from the object to be photographed strikes 
a photoelectric surface in the meter, causing it to emit photoelectrons that then 
pass through a sensitive ammeter. The magnitude of the current in the ammeter 
depends on the light intensity.

The phototube, another early application of the photoelectric effect, acts much 
like a switch in an electric circuit. It produces a current in the circuit when light of 
sufficiently high frequency falls on a metal plate in the phototube, but produces no 
current in the dark. Phototubes were used in burglar alarms and in the detection 
of the soundtrack on motion picture film. Modern semiconductor devices have now 
replaced older devices based on the photoelectric effect.

Today, the photoelectric effect is used in the operation of photomultiplier tubes. 
Figure 39.12 shows the structure of such a device. A photon striking the photo-
cathode ejects an electron by means of the photoelectric effect. This electron 
accelerates across the potential difference between the photocathode and the first 
dynode, shown as being at 1200 V relative to the photocathode in Figure 39.12. This 
high-energy electron strikes the dynode and ejects several more electrons. The 
same process is repeated through a series of dynodes at ever higher potentials until 
an electrical pulse is produced as millions of electrons strike the last dynode. The 
tube is therefore called a multiplier: one photon at the input has resulted in millions 
of electrons at the output.

The photomultiplier tube is used in nuclear detectors to detect photons pro-
duced by the interaction of energetic charged particles or gamma rays with certain 
materials. It is also used in astronomy in a technique called photoelectric photometry. 

 Cutoff wavelength

Figure 39.11 A plot of Kmax for 
photoelectrons versus frequency 
of incident light in a typical photo-
electric effect experiment. 

Metal 1 Metal 2 Metal 3Kmax

f0

� 3

� 1

� 2

f

f

f

The data show a 
linear relationship 
between Kmax and f, 
with the slope the 
same for all metals.

Photons with frequency less than 
the cutoff frequency for a given 
metal do not have sufficient energy 
to eject an electron from the metal.

An incoming particle enters the 
scintillation crystal, where a 
collision results in a photon. The 
photon strikes the photocathode, 
which emits an electron by the 
photoelectric effect. 

Scintillation
crystal

Photocathode

0 V

�400 V

�800 V

�1 200 V

�1 600 V

�200 V

�600 V

�1 000 V

�1 400 V

Vacuum
Output
to counter

Figure 39.12  The multiplication of 
electrons in a photomultiplier tube.
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In that technique, the light collected by a telescope from a single star is allowed 
to fall on a photomultiplier tube for a time interval. The tube measures the total 
energy transferred by light during the time interval, which can then be converted 
to a luminosity of the star.

The photomultiplier tube is being replaced in many astronomical observa-
tions with a charge-coupled device (CCD), which is the same device used in a digi-
tal camera (Section 35.6). Half of the 2009 Nobel Prize in Physics was awarded 
to Willard S. Boyle (1924–2011) and George E. Smith (b. 1930) for their 1969 
invention of the charge-coupled device. In a CCD, an array of pixels is formed 
on the silicon surface of an integrated circuit (Section 42.7). When the surface 
is exposed to light from an astronomical scene through a telescope or a ter-
restrial scene through a digital camera, electrons generated by the photoelec-
tric effect are caught in “traps” beneath the surface. The number of electrons 
is related to the intensity of the light striking the surface. A signal processor 
measures the number of electrons associated with each pixel and converts this 
information into a digital code that a computer can use to reconstruct and dis-
play the scene.

Q uIck QuIz 39.3  Consider one of the curves in Figure 39.10. Suppose the 
intensity of the incident light is held fixed but its frequency is increased. Does 
the stopping potential in Figure 39.10 (a) remain fixed, (b) move to the right,  
or (c) move to the left?

Q uIck QuIz 39.4  Suppose classical physicists had the idea of plotting Kmax 
versus f as in Figure 39.11. Draw a graph of what the expected plot would look 
like, based on the wave model for light.

 Example 39.3    The Photoelectric Effect for Sodium

A sodium surface is illuminated with light having a wavelength of 300 nm. As indicated in Table 39.1, the work function for 
sodium metal is 2.46 eV.

(A) Find the maximum kinetic energy of the ejected photoelectrons.

S O L U T I O N

Conceptualize Imagine a photon striking the metal surface and ejecting an electron. The electron with the maximum energy 
is one near the surface that experiences no interactions with other particles in the metal that would reduce its energy on its 
way out of the metal.

Categorize We evaluate the results using equations developed in this section, so we categorize this example as a  sub -
stitution problem.

Find the energy of each photon in the illuminating light  E 5 hf 5
hc
l

 
beam from Equation 39.5:

From Equation 39.11, find the maximum kinetic energy  Kmax 5
hc
l

2 f 5
1 240 eV ? nm

300 nm
2 2.46 eV 5 1.67 eV  

of an electron:

(B)  Find the cutoff wavelength lc for sodium.

S O L U T I O N

Calculate lc using Equation 39.12: lc 5
hc
f

5
1 240 eV ? nm

2.46 eV
5 504 nm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



   39.3 The Compton Effect 1061

  39.3    The Compton Effect
The interpretation of the photoelectric effect in terms of photons interacting with 
electrons in the metal target turned out to be the first of several mechanisms in 
which photons interact with matter. In this section, we study another such interac-
tion, the Compton effect, in which the photon interacts with electrons in a target 
nucleus. In Chapter 41, we show that the observed atomic spectra of gases are 
due to the emission or absorption of photons by the atoms of the gas and extend 
Planck’s hypothesis to describe the allowed energy transitions and corresponding 
photon energies and wavelengths. Finally, in Section 44.2, we explore the produc-
tion of particles of matter and antimatter due to the collisions of photons with 
one another or with heavy nuclei in a process called pair production. Both black-
body radiation and the photoelectric effect are experiments whose theoretical 
explanation involves quantum concepts and depend on the same parameter h. It’s 
beginning to look like it is not a trick as Planck suspected! Let’s look now at the  
Compton effect.

In 1919, Einstein concluded that a photon of energy E travels in a single direc-
tion and carries a momentum p 5 E/c 5 hf/c (see Eqs. 38.28 and 39.5). In 1923, 
Arthur Holly Compton (1892–1962) and Peter Debye (1884–1966) independently 
carried Einstein’s idea of photon momentum further.

Prior to 1922, Compton and his coworkers had accumulated evidence showing 
that the classical wave theory of light failed to explain the scattering of x-rays from 
electrons. According to classical theory, electromagnetic waves of frequency f inci-
dent on electrons should have two effects: (1) radiation pressure (see Section 33.5)  
should cause the electrons to accelerate in the direction of propagation of the 
waves, and (2) the oscillating electric field of the incident radiation should set 
the electrons into oscillation at the apparent frequency f 9, where f 9 is the fre-
quency in the frame of the moving electrons. This apparent frequency is differ-
ent from the frequency f of the incident radiation because of the Doppler effect  
(see Section 38.4). Each electron first absorbs radiation as a moving particle and 
then reradiates as a moving particle, thereby exhibiting two Doppler shifts in the 
frequency of radiation.

Because different electrons move at different speeds after the interaction, 
depending on the amount of energy absorbed from the electromagnetic waves, the 
scattered wave frequency at a given angle to the incoming radiation should show a 
distribution of Doppler-shifted values. Contrary to this prediction, Compton’s exper-
iments showed that at a given angle only one frequency of radiation is observed.

How do we explain this disagreement between theory and experiment? Comp-
ton and his coworkers explained these results by treating photons not as waves but 
rather as point-like particles having energy hf and momentum hf/c and by assuming 
the energy and momentum of the isolated system of the colliding photon–electron 
pair are conserved. Compton adopted a particle model for something that was well 
known as a wave, and today this scattering phenomenon is known as the Compton  
effect. Figure 39.13 shows the quantum picture of the collision between an indi-
vidual x-ray photon of frequency f 0 and an electron. In the quantum model, the 
electron is scattered through an angle f with respect to this direction as in a  
billiard-ball type of collision. (The symbol f used here is an angle and is not to be 
confused with the work function, which was discussed in the preceding section.) 
Compare Figure 39.13 with the two-dimensional collision shown in Figure 9.12.

Figure 39.14 (page 1062) is a schematic diagram of the apparatus used by Compton. 
The x-rays, scattered from a carbon target, were diffracted by a rotating crystal spec-
trometer, and the intensity was measured with an ionization chamber that generated a 
current proportional to the intensity. The incident beam consisted of monochromatic 
x-rays of wavelength l0 5 0.071 nm. The experimental intensity-versus- wavelength 
plots observed by Compton for four scattering angles (corresponding to u in Fig. 39.13)  

arthur Holly compton
American Physicist (1892–1962)
Compton was born in Wooster, Ohio, and 
attended Wooster College and Princeton 
University. He became the director of the 
laboratory at the University of Chicago, 
where experimental work concerned 
with sustained nuclear chain reactions 
was conducted. This work was of central 
importance to the construction of the 
first nuclear weapon. His discovery of 
the Compton effect led to his sharing 
of the 1927 Nobel Prize in Physics with 
Charles Wilson.
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The electron recoils just as if 
struck by a classical particle, 
revealing the particle-like 
nature of the photon.

Figure 39.13  The quantum model 
for x-ray scattering from an electron. 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1062 Chapter 39 Introduction to Quantum Physics

are shown in Figure 39.15. The graphs for the three nonzero angles show two peaks, 
one at l0 and one at l9 . l0. The shifted peak at l9 is caused by the scattering of 
x-rays from free electrons, which was predicted by Compton to depend on scatter-
ing angle as

 l9 2 l0 5
h

mec
s1 2 cos ud   (39.13)

where me is the mass of the electron. This expression is known as the Compton 
shift equation and correctly describes the positions of the peaks in Figure 39.15. 
The factor h/mec, called the Compton wavelength of the electron, has a currently 
accepted value of

 lC 5
h

mec
5 0.002 43 nm (39.14) 

We can apply an energy argument to see why the wavelength of the photon 
increases in Compton scattering. Energy is transferred from the incoming pho-
ton to the electron in the process. Because E 5 hf, the frequency of the scattered 
photon decreases, and because l 5 c/f, its wavelength increases. As the scattering 
angle increases, more energy is transferred from the incident photon to the elec-
tron. As a result, the energy of the scattered photon decreases with increasing 
scattering angle.

The unshifted peak at l0 in Figure 39.15 is caused by x-rays scattered from elec-
trons tightly bound to the target atoms. This unshifted peak also is predicted by 
Equation 39.13 if the electron mass is replaced with the mass of a carbon atom, 
which is approximately 23 000 times the mass of the electron. Therefore, there is a 
wavelength shift for scattering from an electron bound to an atom, but it is so small 
that it was undetectable in Compton’s experiment.

Compton’s measurements were in excellent agreement with the predictions of 
Equation 39.13. We now have seen three experiments requiring a quantum expla-
nation to bring theory in agreement with experimental results. The results of the 
Compton experiment were the first to convince many physicists of the fundamental 
validity of quantum theory.

Q uIck QuIz 39.5  For any given scattering angle u, Equation 39.13 gives the 
same value for the Compton shift for any wavelength. Keeping that in mind, for 
which of the following types of radiation is the fractional shift in wavelength at 
a given scattering angle the largest? (a) radio waves (b) microwaves (c) visible 
light (d) x-rays

Compton shift equation 

The target scatters 
x-rays from the source 
through an angle u. 

X-ray
source

Ionization
chamber

Crystal 
spectrometer

Target

From Bragg’s law, the crystal 
spectrometer determines 
the wavelength of the 
scattered radiation by 
measuring the angle a. 

u

a

l0

l�

Figure 39.14  Schematic diagram 
of Compton’s apparatus.
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Compton scattering at u 5 0°, 45°, 
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  39.4    The Nature of Electromagnetic Waves
In Section 34.1, we introduced the notion of competing models of light: particles 
and waves. Let’s expand on that earlier discussion. Phenomena such as the photo-
electric effect and the Compton effect offer ironclad evidence that when light (or 
other forms of electromagnetic radiation) and matter interact, the light behaves 
as if it were composed of particles having energy hf and momentum h/l. How can 
light be considered a photon (in other words, a particle) when we know it is a wave? 
On the one hand, we describe light in terms of photons having energy and momen-
tum, as in Sections 39.1 to 39.3. On the other hand, light and other electromag-
netic waves exhibit interference and diffraction effects as described in Chapters 36 
and 37, which are consistent only with a wave interpretation.

Which model is correct? Is light a wave or a particle? The answer depends on the 
phenomenon being observed. Some experiments can be explained either better or 
solely with the photon model, whereas others are explained either better or solely 
with the wave model. We must accept both models and admit that the true nature of 
light is not describable in terms of any single classical picture. The same light beam 
that can eject photoelectrons from a metal (meaning that the beam consists of pho-
tons) can also be diffracted by a grating (meaning that the beam is a wave). In other 
words, the particle model and the wave model of light complement each other.

The success of the particle model of light in explaining the photoelectric effect 
and the Compton effect raises many other questions. If light is a particle, what is 
the meaning of the “frequency” and “wavelength” of the particle? Is light simul-
taneously a wave and a particle? Although photons have no rest energy (a nonob-
servable quantity because a photon cannot be at rest), is there a simple expression 
for the effective mass of a moving photon? If photons have effective mass, do they 
experience gravitational attraction? What is the spatial extent of a photon, and how 
does an electron absorb or scatter one photon? Some of these questions can be 
answered, but others demand a view of atomic processes that is too pictorial and 
literal. Many of them stem from classical analogies such as colliding billiard balls 
and ocean waves breaking on a seashore. Quantum mechanics gives light a more 
flexible nature by treating the particle model and the wave model of light as both 

 Example 39.4     Compton Scattering at 458

X-rays of wavelength l0 5 0.200 000 nm are scattered from a block of material. The scattered x-rays are observed at an 
angle of 45.0° to the incident beam. Calculate their wavelength.

S O L U T I O N

Conceptualize Imagine the process in Figure 39.13, with the photon scattered at 45° to its original direction.

Categorize We evaluate the result using an equation developed in this section, so we categorize this example as a substitution 
problem.

Solve Equation 39.13 for the wavelength of the  (1)   l9 5 l0 1
h s1 2 cos ud

mec
 

scattered x-ray:

Substitute numerical values: l9 5 0.200 000 3 1029 m 1
s6.626 3 10234 J ? sds1 2 cos 45.08d
s9.11 3 10231 kgds3.00 3 108 mysd

    5 0.200 000 3 1029 m 1 7.10 3 10213 m 5 0.200 710 nm

W H A T  I F ? What if the detector is moved so that scattered x-rays are detected at an angle larger than 45°? Does the 
wavelength of the scattered x-rays increase or decrease as the angle u increases?

Answer In Equation (1), if the angle u increases, cos u decreases. Consequently, the factor (1 2 cos u) increases. Therefore, 
the scattered wavelength increases.
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necessary and complementary. Neither model can be used exclusively to describe 
all properties of light. A complete understanding of the observed behavior of light 
can be attained only if the two models are combined in a complementary manner.

  39.5    The Wave Properties of Particles
Students introduced to the dual nature of light often find the concept difficult 
to accept. In the world around us, we are accustomed to regarding such things as 
baseballs solely as particles and other things such as sound waves solely as forms 
of wave motion. Every large-scale observation can be interpreted by considering 
either a wave explanation or a particle explanation, but in the world of photons and 
electrons, such distinctions are not as sharply drawn.

Even more disconcerting is that, under certain conditions, the things we unam-
biguously call “particles” exhibit wave characteristics! In his 1923 doctoral dis-
sertation, Louis de Broglie postulated that because photons have both wave and  
particle characteristics, perhaps all forms of matter have both properties. This highly 
revolutionary idea had no experimental confirmation at the time. According to  
de Broglie, electrons, just like light, have a dual particle–wave nature.

Combining Equations 38.28, 39.5, and 16.12, we find that the momentum of a 
photon can be expressed as

p 5
E
c

5
h f
c

5
h
l

This equation shows that the photon wavelength can be specified by its momen-
tum: l 5 h/p. De Broglie suggested that material particles of momentum p have 
a characteristic wavelength that is given by the same expression. Because the mag-
nitude of the momentum of a particle of mass m and speed u is p 5 mu, the de  
Broglie  wavelength of that particle is5

 l 5
h
p

5
h

mu
 (39.15)

Furthermore, in analogy with photons, de Broglie postulated that particles obey 
the Einstein relation E 5 hf, where E is the total energy of the particle. The fre-
quency of a particle is then

 f 5
E
h

 (39.16)

The dual nature of matter is apparent in Equations 39.15 and 39.16 because each 
contains both particle quantities (p and E) and wave quantities (l and f  ).

The problem of understanding the dual nature of matter and radiation is con-
ceptually difficult because the two models seem to contradict each other. This prob-
lem as it applies to light was discussed earlier. The principle of complementarity 
states that 

the wave and particle models of either matter or radiation complement each 
other.

Neither model can be used exclusively to describe matter or radiation adequately. 
Because humans tend to generate mental images based on their experiences 
from the everyday world, we use both descriptions in a complementary manner to 
explain any given set of data from the quantum world.

the Davisson–Germer experiment
De Broglie’s 1923 proposal that matter exhibits both wave and particle proper-
ties was regarded as pure speculation. If particles such as electrons had wave  

de Broglie wavelength 
of a particle

Frequency of a particle 

louis de broglie
French Physicist (1892–1987)
De Broglie was born in Dieppe, France. 
At the Sorbonne in Paris, he studied 
history in preparation for what he hoped 
would be a career in the diplomatic 
service. The world of science is lucky 
he changed his career path to become 
a theoretical physicist. De Broglie was 
awarded the Nobel Prize in Physics 
in 1929 for his prediction of the wave 
nature of electrons.
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5The de Broglie wavelength for a particle moving at any speed u is l 5 h/gmu, where g 5 [1 2 (u2/c2)]21/2.
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properties, under the correct conditions they should exhibit diffraction effects. 
Only three years later, C. J. Davisson (1881–1958) and L. H. Germer (1896–1971) 
succeeded in observing electron diffraction and measuring the wavelength of elec-
trons. Their important discovery provided the first experimental confirmation of 
the waves proposed by de Broglie.

Interestingly, the intent of the initial Davisson–Germer experiment was not to 
confirm the de Broglie hypothesis. In fact, their discovery was made by accident (as 
is often the case). The experiment involved the scattering of low-energy electrons 
(approximately 54 eV) from a nickel target in a vacuum. During one experiment, 
the nickel surface was badly oxidized because of an accidental break in the vacuum 
system. After the target was heated in a flowing stream of hydrogen to remove the 
oxide coating, electrons scattered by it exhibited intensity maxima and minima at 
specific angles. The experimenters finally realized that the nickel had formed large 
crystalline regions upon heating and that the regularly spaced planes of atoms in 
these regions served as a diffraction grating for electrons. (See the discussion of 
diffraction of x-rays by crystals in Section 37.5.)

Shortly thereafter, Davisson and Germer performed more extensive diffraction 
measurements on electrons scattered from single-crystal targets. Their results showed 
conclusively the wave nature of electrons and confirmed the de Broglie relationship  
p 5 h/l. In the same year, G. P. Thomson (1892–1975) of Scotland also observed 
electron diffraction patterns by passing electrons through very thin gold foils.  
Diffraction patterns were subsequently observed in the scattering of helium atoms, 
hydrogen atoms, and neutrons. Hence, the wave nature of particles has been estab-
lished in various ways.

Q uIck QuIz 39.6  An electron and a proton both moving at nonrelativistic 
speeds have the same de Broglie wavelength. Which of the following quantities are 
also the same for the two particles? (a) speed (b) kinetic energy (c) momentum  
(d) frequency

PItfall PreventIon 39.3
What’s Waving? If particles have 
wave properties, what’s waving? 
You are familiar with waves on 
strings, which are very concrete. 
Sound waves are more abstract, 
but you are likely comfortable 
with them. Electromagnetic waves 
are even more abstract, but at least 
they can be described in terms 
of physical variables: electric 
and magnetic fields. In contrast, 
waves associated with particles are 
completely abstract and cannot be 
associated with a physical variable. 
In Chapter 40, we describe the 
wave associated with a particle in 
terms of probability.

 Example 39.5    Wavelengths for Microscopic and Macroscopic Objects

(A)  Calculate the de Broglie wavelength for an electron (me 5 9.11 3 10231 kg) moving at 1.00 3 107 m/s.

S O L U T I O N

Conceptualize Imagine the electron moving through space. From a classical viewpoint, it is a particle under constant velocity. 
From the quantum viewpoint, the electron has a wavelength associated with it.

Categorize We evaluate the result using an equation developed in this section, so we categorize this example as a substitution 
problem.

Evaluate the de Broglie wavelength using  l 5
h

me u
5

6.626 3 10234 J ? s

s9.11 3 10231 kgds1.00 3 107 mysd
5 7.27 3 10211 m  

Equation 39.15:

The wave nature of this electron could be detected by diffraction techniques such as those in the Davisson–Germer 
experiment.

(B) A rock of mass 50 g is thrown with a speed of 40 m/s. What is its de Broglie wavelength?

S O L U T I O N

Evaluate the de Broglie wavelength using  l 5
h

mu
5

6.626 3 10234 J ? s

s50 3 1023 kgds40 mysd
5 3.3 3 10234 m  

Equation 39.15:

This wavelength is much smaller than any aperture through which the rock could possibly pass. Hence, we could not observe 
diffraction effects, and as a result, the wave properties of large-scale objects cannot be observed.
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the electron Microscope
A practical device that relies on the wave characteristics of electrons is the elec-
tron microscope. A transmission electron microscope (TEM), used for viewing 
flat, thin samples, is shown in Figure 39.16. In many respects, it is similar to 
an optical microscope; the electron microscope, however, has a much greater 
resolving power because it can accelerate electrons to very high kinetic energies, 
giving them very short wavelengths. No microscope can resolve details that are 
significantly smaller than the wavelength of the waves used to illuminate the 
object. The shorter wavelengths of electrons gives an electron microscope a res-
olution that can be 1 000 times better than that from the visible light used in 
optical microscopes. As a result, an electron microscope with ideal lenses would 
be able to distinguish details approximately 1 000 times smaller than those dis-
tinguished by an optical microscope. (Electromagnetic radiation of the same 
wavelength as the electrons in an electron microscope is in the x-ray region of 
the spectrum.)

The electron beam in an electron microscope is controlled by electrostatic or 
magnetic deflection, which acts on the electrons to focus the beam and form an 
image. Rather than examining the image through an eyepiece as in an optical 
microscope, the viewer looks at an image formed on a monitor or other type of 
display screen. Figure 39.17 shows the amazing detail available with a scanning elec-
tron microscope (SEM), which scans surface features, as opposed to the TEM, in 
which electrons pass through the sample.

Figure 39.16  (a) Diagram of a transmission electron microscope for viewing a thinly sectioned 
sample. The “lenses” that control the electron beam are magnetic deflection coils. (b) An electron 
microscope in use.
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  39.6    A New Model: The Quantum Particle
Because in the past we considered the particle and wave models to be dis-
tinct, with separate analysis models for each, the discussions presented 
in previous sections may be quite disturbing. The notion that both light 
and material particles have both particle and wave properties does not fit  
with this distinction. Experimental evidence shows, however, that this 
conclusion is exactly what we must accept. The recognition of this dual 
nature leads to a new simplification model, the quantum particle,  
which is a combination of the particle model introduced in Chapter 2 
and the wave model discussed in Chapter 16. In this new model, enti-
ties have both particle and wave characteristics, and we must choose one 
appropriate behavior—particle or wave—to understand a particular 
phenomenon.

In this section, we shall explore this model in a way that might make 
you more comfortable with this idea. We shall do so by demonstrating 
that an entity that exhibits properties of a particle can be constructed 
from waves.

Let’s first recall some characteristics of ideal particles and ideal waves. 
An ideal particle has zero size. Therefore, an essential feature of a par-
ticle is that it is localized in space. An ideal wave has a single frequency 
and is infinitely long as suggested by Figure 39.18a. Therefore, an ideal 
wave is unlocalized in space. A localized entity can be built from infinitely 
long waves as follows. Imagine drawing one wave along the x axis, with 
one of its crests located at x 5 0, as at the top of Figure 39.18b. Now 
draw a second wave, of the same amplitude but a different frequency, with one of 
its crests also at x 5 0. As a result of the superposition of these two waves, beats exist 
as the waves are alternately in phase and out of phase. (Beats were discussed in  
Section 17.7.) The bottom curve in Figure 39.18b shows the results of superposing 
these two waves.

Notice that we have already introduced some localization by superposing the 
two waves. A single wave has the same amplitude everywhere in space; no point 
in space is any different from any other point. By adding a second wave, however, 
there is something different about the in-phase points compared with the out-of-
phase points.

Now imagine that more and more waves are added to our original two, each 
new wave having a new frequency. Each new wave is added so that one of its crests 
is at x 5 0 with the result that all the waves add constructively at x 5 0. When we 
add a large number of waves, the probability of a positive value of a wave func-
tion at any point x Þ 0 is equal to the probability of a negative value, and there 
is destructive interference everywhere except near x 5 0, where all the crests are 
superposed. The result is shown in Figure 39.19. The small region of constructive 
interference is called a wave packet. This localized region of space is different 
from all other regions. We can identify the wave packet as a particle because it has 
the localized nature of a particle! The location of the wave packet corresponds to 
the particle’s position.

x

Wave 1:

Wave 2:

Superposition:

x

x

x

The regions of space at which 
there is constructive interference 
are different from those at which 
there is destructive interference.

a

b

Figure 39.18  (a) An idealized wave of an exact 
single frequency is the same throughout space 
and time. (b)  If two ideal waves with slightly 
different frequencies are combined, beats result 
(Section 17.7). 

x
Figure 39.19 If a large number 
of waves are combined, the result 
is a wave packet, which represents 
a particle.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1068 Chapter 39 Introduction to Quantum Physics

The localized nature of this entity is the only characteristic of a particle that was 
generated with this process. We have not addressed how the wave packet might 
achieve such particle characteristics as mass, electric charge, and spin. Therefore, 
you may not be completely convinced that we have built a particle. As further evi-
dence that the wave packet can represent the particle, let’s show that the wave 
packet has another characteristic of a particle.

To simplify the mathematical representation, we return to our combination of 
two waves. Consider two waves with equal amplitudes but different angular fre-
quencies v1 and v2. We can represent the waves mathematically as

y1 5 A cos (k1x 2 v1t)    and    y2 5 A cos (k2x 2 v2t)

where, as in Chapter 16, k 5 2p/l and v 5 2pf. Using the superposition principle, 
let’s add the waves:

y 5 y1 1 y2 5 A cos (k1x 2 v1t) 1 A cos (k2x 2 v2t)

It is convenient to write this expression in a form that uses the trigonometric 
identity

cos a 1 cos b 5 2 cos Sa 2 b
2 D cos Sa 1 b

2 D
Letting a 5 k1x 2 v1t and b 5 k2x 2 v2t gives

y 5 2A cos 3sk1x 2 v1td 2 sk 2x 2 v2td

2 4 cos 3sk1x 2 v1td 1 sk 2x 2 v2td

2 4
 y 5 32A cos SDk

2
 x 2

Dv

2
 tD4 cos Sk1 1 k 2

2
 x 2

v1 1 v2

2
 tD (39.17)

where Dk 5 k1 2 k2 and Dv 5 v1 2 v2. The second cosine factor represents a wave 
with a wave number and frequency that are equal to the averages of the values for 
the individual waves.

In Equation 39.17, the factor in square brackets represents the envelope of the 
wave as shown by the dashed curve in Figure 39.20. This factor also has the mathe-
matical form of a wave. This envelope of the combination can travel through space 
with a different speed than the individual waves. As an extreme example of this 
possibility, imagine combining two identical waves moving in opposite directions. 
The two waves move with the same speed, but the envelope has a speed of zero 
because we have built a standing wave, which we studied in Section 17.2.

For an individual wave, the speed is given by Equation 16.11,

 vphase 5
v

k
 (39.18)

This speed is called the phase speed because it is the rate of advance of a crest on 
a single wave, which is a point of fixed phase. Equation 39.18 can be interpreted as 

Phase speed of a wave  
in a wave packet

x

The envelope function 
is described by

–
2
k( x )2

ωt2A cos .� �

Figure 39.20 The beat pattern 
of Figure 39.18b, with an enve-
lope function (dashed curve) 
superimposed.
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follows: the phase speed of a wave is the ratio of the coefficient of the time variable 
t to the coefficient of the space variable x in the equation representing the wave,  
y 5 A cos (kx 2 vt).

The factor in brackets in Equation 39.17 is of the form of a wave, so it moves with 
a speed given by this same ratio:

vg 5
coefficient of time variable t

coefficient of space variable x
5

sDvy2d
sDky2d

5
Dv

Dk

The subscript g on the speed indicates that it is commonly called the group 
speed, or the speed of the wave packet (the group of waves) we have built. We 
have generated this expression for a simple addition of two waves. When a large 
number of waves are superposed to form a wave packet, this ratio becomes a 
derivative:

 vg 5
dv

dk
 (39.19)

Multiplying the numerator and the denominator by ", where " 5 h/2p 5 1.055 3 
10234 J ? s, gives

 vg 5
"dv

"dk
5

ds" vd
ds"kd

 (39.20)

Let’s look at the terms in the parentheses of Equation 39.20 separately. For the 
numerator,

" v 5
h

2p
s2pf d 5 h f 5 E

For the denominator,

" k 5
h

2p
S2p

l
D 5

h
l

5 p

Therefore, Equation 39.20 can be written as

 vg 5
ds" vd
ds"kd

5
dE
dp

 (39.21)

Because we are exploring the possibility that the envelope of the combined waves 
represents the particle, consider a free particle moving with a speed u that is 
small compared with the speed of light. The energy of the particle is its kinetic 
energy:

E 5 1
2mu2 5

p 2

2m

Differentiating this equation with respect to p gives

 vg 5
dE
dp

5
d
dp S p 2

2mD 5
1

2m
s2pd 5 u (39.22)

Therefore, the group speed of the wave packet is identical to the speed of the par-
ticle that it is modeled to represent, giving us further confidence that the wave 
packet is a reasonable way to build a particle.

Q uIck QuIz 39.7  As an analogy to wave packets, consider an “automobile 
packet” that occurs near the scene of an accident on a freeway. The phase speed 
is analogous to the speed of individual automobiles as they move through the 
backup caused by the accident. The group speed can be identified as the speed 
of the leading edge of the packet of cars. For the automobile packet, is the 
group speed (a) the same as the phase speed, (b) less than the phase speed, or 
(c) greater than the phase speed?

 Group speed of a wave packet
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  39.7    The Double-Slit Experiment Revisited
The fact that light and material particles have both wave and particle behavior is 
called the wave–particle duality. It is now a firmly accepted concept reinforced 
by experimental results, including those of the Davisson–Germer experiment. As 
with the postulates of special relativity, however, this concept often leads to clashes 
with familiar thought patterns we hold from everyday experience. Let’s challenge 
these ideas by saying, “Okay, if electrons have wave characteristics, show me elec-
trons in interference!”

That’s a great challenge! Let’s set up an experiment and see what happens. Con-
sider a parallel beam of mono-energetic electrons incident on a double slit as in 
Figure 39.21. Let’s assume the slit widths are small compared with the electron 
wavelength so that we need not worry about diffraction maxima and minima as 
discussed for light in Section 37.2. An electron detector screen is positioned far 
from the slits at a distance much greater than d, the separation distance of the slits.

We turn on the apparatus and wait for electron arrivals to accumulate at the 
screen. After a sufficiently long time interval, we find a wave interference pattern! 
If we measure the angles u at which the maximum intensity of electrons arrives 
at the detector screen in Figure 39.21, we find they are described by exactly the 
same equation as that for light, d sin u 5 ml (Eq. 36.2), where m is the order num-
ber and l is the electron wavelength. Therefore, the dual nature of the electron 
is clearly shown in this experiment: the electrons are detected as particles at a 
localized spot on the detector screen at some instant of time, but the probability of 
arrival at that spot is determined by finding the intensity of two interfering waves!

Now imagine that we lower the beam intensity so that one electron at a time 
arrives at the double slit. It is tempting to assume the electron goes through either 
slit 1 or slit 2. You might argue that there are no interference effects because there 
is not a second electron going through the other slit to interfere with the first. 
This assumption places too much emphasis on the particle model of the electron, 
however. The interference pattern is still observed if the time interval for the mea-
surement is sufficiently long for many electrons to pass one at a time through the 
slits and arrive at the detector screen! This situation is illustrated by the computer- 
simulated patterns in Figure 39.22 where the interference pattern becomes clearer 
as the number of electrons reaching the detector screen increases. Hence, our 
assumption that the electron is localized and goes through only one slit when both 
slits are open must be wrong (a painful conclusion!).

To interpret these results, we are forced to conclude that an electron interacts with 
both slits simultaneously. If you try to determine experimentally which slit the electron 
goes through, the act of measuring destroys the interference pattern. It is impossible 

Detector
screen

d

Electrons

u

u

The curve 
represents 
the number 
of electrons 
detected per 
unit time.

Figure 39.21  Electron interference. The slit separation d is much greater than the individual slit 
widths and much less than the distance between the slit and the detector screen.

After just 28 electrons, no 
regular pattern appears.

After 1 000 electrons, a pattern 
of fringes begins to appear.

Two-slit electron pattern
(many-electron result)

After 10 000 electrons, the 
pattern looks very much 
like the many-electron 
result shown in     .d

a

b

c

d

Figure 39.22 (a)–(c) Computer- 
simulated interference patterns for a 
small number of electrons incident on 
a double slit. (d) Computer simulation 
of a double-slit interference pattern 
produced by many electrons.
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to determine which slit the electron goes through. In effect, we can say only that the 
electron passes through both slits! The same arguments apply to photons.

If we restrict ourselves to a pure particle model, it is an uncomfortable notion 
that the electron can be present at both slits at once. From the quantum particle 
model, however, the particle can be considered to be built from waves that exist 
throughout space as discussed in Section 39.6. Therefore, the wave components 
of the electron are present at both slits at the same time, and this model leads to a 
more comfortable interpretation of this experiment.

  39.8    The Uncertainty Principle
Whenever one measures the position or velocity of a particle at any instant, exper-
imental uncertainties are built into the measurements. According to classical 
mechanics, there is no fundamental barrier to an ultimate refinement of the appa-
ratus or experimental procedures. In other words, it is possible, in principle, to 
make such measurements with arbitrarily small uncertainty. Quantum theory pre-
dicts, however, that it is fundamentally impossible to make simultaneous measure-
ments of a particle’s position and momentum with infinite accuracy.

In 1927, Werner Heisenberg (1901–1976) introduced this notion, which is now 
known as the Heisenberg uncertainty principle:

If a measurement of the position of a particle is made with uncertainty Dx  
and a simultaneous measurement of its x component of momentum is made 
with uncertainty Dpx, the product of the two uncertainties can never be 
smaller than "/2:

 Dx Dpx $
"

2
 (39.23)

That is, it is physically impossible to measure simultaneously the exact position and 
exact momentum of a particle. Heisenberg was careful to point out that the ines-
capable uncertainties Dx and Dpx do not arise from imperfections in practical mea-
suring instruments. Rather, the uncertainties arise from the quantum structure  
of matter.

To understand the uncertainty principle, imagine that a particle has a single wave-
length that is known exactly. According to the de Broglie relation, l 5 h/p, we would 
therefore know the momentum to be precisely p 5 h/l. In reality, a single-wavelength 
wave would exist throughout space. Any region along this wave is the same as any 
other region (Fig. 39.18a). Suppose we ask, Where is the particle this wave represents? 
No special location in space along the wave could be identified with the particle; all 
points along the wave are the same. Therefore, we have infinite uncertainty in the 
position of the particle, and we know nothing about its location. Perfect knowledge of 
the particle’s momentum has cost us all information about its location.

In comparison, now consider a particle whose momentum is uncertain so that it 
has a range of possible values of momentum. According to the de Broglie relation, 
the result is a range of wavelengths. Therefore, the particle is not represented by a 
single wavelength, but rather by a combination of wavelengths within this range. 
This combination forms a wave packet as we discussed in Section 39.6 and illus-
trated in Figure 39.19. If you were asked to determine the location of the particle, 
you could only say that it is somewhere in the region defined by the wave packet 
because there is a distinct difference between this region and the rest of space. 
Therefore, by losing some information about the momentum of the particle, we 
have gained information about its position.

If you were to lose all information about the momentum, you would be adding 
together waves of all possible wavelengths, resulting in a wave packet of zero length. 
Therefore, if you know nothing about the momentum, you know exactly where the 
particle is.

Werner Heisenberg
German Theoretical Physicist 
(1901–1976)
Heisenberg obtained his Ph.D. in 1923 
at the University of Munich. While other 
physicists tried to develop physical models 
of quantum phenomena, Heisenberg 
developed an abstract mathematical 
model called matrix mechanics. The 
more widely accepted physical models 
were shown to be equivalent to matrix 
mechanics. Heisenberg made many 
other significant contributions to physics, 
including his famous uncertainty principle 
for which he received a Nobel Prize 
in Physics in 1932, the prediction of 
two forms of molecular hydrogen, and 
theoretical models of the nucleus.
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The mathematical form of the uncertainty principle states that the product of 
the uncertainties in position and momentum is always larger than some minimum 
value. This value can be calculated from the types of arguments discussed above, 
and the result is the value of "/2 in Equation 39.23.

Another form of the uncertainty principle can be generated by imagining that 
the horizontal axis in Figure 39.19 is time rather than spatial position x, since a 
wave depends on both x and t. We can then make the same arguments in the time 
domain that were made about knowledge of wavelength and position. The corre-
sponding variables would be frequency and time. Because frequency is related to 
the energy of the particle by E 5 hf, the uncertainty principle in this form is

 DE Dt $
"

2
 (39.24)

The form of the uncertainty principle given in Equation 39.24 suggests that 
energy conservation can appear to be violated by an amount DE as long as it is only 
for a short time interval Dt consistent with that equation. We shall use this notion to 
estimate the rest energies of particles in Chapter 44.

Q uIck QuIz 39.8  A particle’s location is measured and specified as being 
exactly at x 5 0, with zero uncertainty in the x direction. How does that location 
affect the uncertainty of its velocity component in the y direction? (a) It does  
not affect it. (b) It makes it infinite. (c) It makes it zero.

PItfall PreventIon 39.4
The Uncertainty Principle Some 
students incorrectly interpret the 
uncertainty principle as meaning 
that a measurement interferes 
with the system. For example, 
if an electron is observed in a 
hypothetical experiment using an 
optical microscope, the photon 
used to see the electron collides 
with it and makes it move, giving 
it an uncertainty in momentum. 
This scenario does not represent 
the basis of the uncertainty prin-
ciple. The uncertainty principle is 
independent of the measurement 
process and is based on the wave 
nature of matter.

 Example 39.6     Locating an Electron

The speed of an electron is measured to be 5.00 3 103 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty in 
determining the position of this electron.

S O L U T I O N

Conceptualize The fractional value given for the accuracy of the electron’s speed can be interpreted as the fractional uncer-
tainty in its momentum. This uncertainty corresponds to a minimum uncertainty in the electron’s position through the uncer-
tainty principle.

Categorize We evaluate the result using concepts developed in this section, so we categorize this example as a substitution 
problem.

Assume the electron is moving along the  Dpx 5 m Dvx 5 mfvx 
x axis and find the uncertainty in px,  
letting f represent the accuracy of the  
measurement of its speed:

Solve Equation 39.23 for the uncertainty  Dx $
"

2 Dpx

5
"

2m fvx

5
1.055 3 10234 J ? s

2s9.11 3 10231 kgds0.000 030 0ds5.00 3 103 mysd
 

in the electron’s position and substitute  
numerical values:    5 3.86 3 1024 m 5 0.386 mm

 Example 39.7    The Line Width of Atomic Emissions

Atoms have quantized energy levels similar to those of Planck’s oscillators, although the energy levels of an atom are usu-
ally not evenly spaced. When an atom makes a transition between states separated in energy by DE, energy is emitted in the 
form of a photon of frequency f 5 DE/h. Although an excited atom can radiate at any time from t 5 0 to t 5 ,̀ the average 
time interval after excitation during which an atom radiates is called the lifetime t. If t 5 1.0 3 1028 s, use the uncertainty 
principle to compute the line width Df produced by this finite lifetime.

S O L U T I O N

Conceptualize The lifetime t given for the excited state can be interpreted as the uncertainty Dt in the time at which the 
transition occurs. This uncertainty corresponds to a minimum uncertainty in the frequency of the radiated photon through 
the uncertainty principle.
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39.7 c o n t i n u e d

Categorize We evaluate the result using concepts developed in this section, so we categorize this example as a  sub sti-
tution problem.

Use Equation 39.5 to relate the uncertainty in the  E 5 hf    S   DE 5 h Df    S   Df 5
DE
h

 
photon’s frequency to the uncertainty in its energy:

Use Equation 39.24 to substitute for the uncertainty  Df $
1
h

  
"

2 Dt
5

1
h

  
hy2p

2 Dt
5

1
4p Dt

5
1

4pt
 

in the photon’s energy, giving the minimum  
value of Df:

Substitute for the lifetime of the excited state: Df $
1

4ps1.0 3 1028 sd
5 8.0 3 106 Hz

W H A T  I F ? What if this same lifetime were associated with a transition that emits a radio wave rather than a visible light 
wave from an atom? Is the fractional line width Df/f  larger or smaller than for the visible light?

Answer Because we are assuming the same lifetime for both transitions, Df is independent of the frequency of radiation. 
Radio waves have lower frequencies than light waves, so the ratio Df/f  will be larger for the radio waves. Assuming a light-wave 
frequency f of 6.00 3 1014 Hz, the fractional line width is

Df

f
 5

8.0 3 106 Hz
6.00 3 1014 Hz

5 1.3 3 1028

This narrow fractional line width can be measured with a sensitive interferometer. Usually, however, temperature and pres-
sure effects overshadow the natural line width and broaden the line through mechanisms associated with the Doppler effect 
and collisions.
 Assuming a radio-wave frequency f of 94.7 3 106 Hz, the fractional line width is

Df

f
5

8.0 3 106 Hz
94.7 3 106 Hz

5 8.4 3 1022

Therefore, for the radio wave, this same absolute line width corresponds to a fractional line width of more than 8%.

Summary
 › Concepts and Principles

The characteristics of blackbody radi-
ation cannot be explained using clas-
sical concepts. Planck introduced the 
quantum concept and Planck’s constant 
h when he assumed atomic oscillators 
existing only in discrete energy states 
were responsible for this radiation.  
In Planck’s model, radiation is emitted 
in single quantized packets whenever an 
oscillator makes a transition between 
discrete energy states. The energy of a 
packet is

 E 5 hf (39.5)

where f is the frequency of the oscillator. 
Einstein successfully extended Planck’s 
quantum hypothesis to the standing 
waves of electromagnetic radiation in a 
cavity used in the blackbody radiation 
model.

The photoelectric effect is a process whereby electrons are ejected from a metal sur-
face when light is incident on that surface. In Einstein’s model, light is viewed as 
a stream of particles, or photons, each having energy E 5 hf, where h is Planck’s 
constant and f is the frequency. The maximum kinetic energy of the ejected photo-
electron is

 Kmax 5 hf 2 f (39.11)

where f is the work function of the metal.

X-rays are scattered at various angles by electrons in a target. In such a scattering 
event, a shift in wavelength is observed for the scattered x-rays, a phenomenon known 
as the Compton effect. Classical physics does not predict the correct behavior in this 
effect. If the x-ray is treated as a photon, conservation of energy and linear momen-
tum applied to the photon–electron collisions yields, for the Compton shift,

 l9 2 l0 5
h

mec
s1 2 cos ud (39.13)

where me is the mass of the electron, c is the speed of light, and u is the scattering 
angle.

continued
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Light has a dual nature in that it has both wave and 
particle characteristics. Some experiments can be 
explained either better or solely by the particle model, 
whereas others can be explained either better or solely 
by the wave model.

By combining a large number of waves, a single region of construc-
tive interference, called a wave packet, can be created. The wave 
packet carries the characteristic of localization like a particle does, 
but it has wave properties because it is built from waves. For an indi-
vidual wave in the wave packet, the phase speed is

 vphase 5
v

k
 (39.18)

For the wave packet as a whole, the group speed is

 vg 5
dv

dk
 (39.19)

For a wave packet representing a particle, the group speed can be 
shown to be the same as the speed of the particle.

Every object of mass m and momentum p 5 mu has wave properties, 
with a de Broglie wavelength given by

 l 5
h
p

5
h

mu
 (39.15)

The Heisenberg uncertainty principle states that if a 
measurement of the position of a particle is made with 
uncertainty Dx and a simultaneous measurement of its 
linear momentum is made with uncertainty Dpx, the prod-
uct of the two uncertainties is restricted to

 Dx Dpx $
"

2
 (39.23)

Another form of the uncertainty principle relates mea-
surements of energy and time:

 DE Dt $
"

2
 (39.24)

think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. The Earth receives energy from the Sun by visible radia-
tion. It also emits energy, primarily in the infrared, from 
its surface because the surface has a temperature. Assume 
that the emissivity for the Earth surface is e for all kinds 
of electromagnetic waves, and that it is the same over the 
entire surface of the Earth. At Earth’s distance RE from 
the Sun, the intensity of solar radiation is IS 5 1 370 W/m2.  
The Earth typically absorbs 70.0% of the solar radiation 
over its circular cross section pR 

2
E , the other 30.0% being 

reflected away by clouds and surface features. The Earth 
emits infrared radiation uniformly into space from its entire 
surface area 4pR 

2
E . Discuss in your group and respond to the 

following. (a) If e 5 1, and we ignore the effects of the Earth’s 
atmosphere, show that the equilibrium temperature of the 
surface of the Earth is 255 K. (b) Now, let e decrease below 1 
to model the effect of the atmosphere, since the atmosphere 
captures energy emitted from the ground so that it is not 
emitted into space. This capture process raises the surface 
temperature. At what value of e does your calculation provide 

the actual current average surface temperature of 288 K?  
(c) As a model for climate change, let e become even smaller. 
If e is 5.00% smaller than that found in part (b), what is the 
equilibrium temperature of the Earth’s surface?

2. ACTIvITy  Data to provide a graph such as Figure 39.11 
was taken by Robert Millikan and reported in 1916. Milli-
kan’s data on sodium appears in the table below. From this 
information, work in your group to prepare a graph like  
Figure 39.11 and find the estimated value of Planck’s con-
stant from the data.

Wavelength of Light  
Striking the Emitter (nm)

Stopping  
Potential (V)

546.1 0.53

433.9 1.08

404.7 1.27

365.0 1.66

312.6 2.20

253.5 3.11

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SectIon 39.1  Blackbody Radiation and Planck’s Hypothesis

1. Lightning produces a maximum air temperature on the 
order of 104 K, whereas a nuclear explosion produces a 
temperature on the order of 107 K. (a) Use Wien’s displace-
ment law to find the order of magnitude of the wavelength 
of the thermally produced photons radiated with greatest 
intensity by each of these sources. (b) Name the part of the 

electromagnetic spectrum where you would expect each to  
radiate most strongly.

2. Model the tungsten filament of a lightbulb as a black body 
at temperature 2 900 K. (a) Determine the wavelength of 
light it emits most strongly. (b) Explain why the answer to 
part (a) suggests that more energy from the lightbulb goes 
into infrared radiation than into visible light.

3. An FM radio transmitter has a power output of 150 kW and 
operates at a frequency of 99.7 MHz. How many photons per 
second does the transmitter emit?

V

T
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4.  Figure P39.4 shows 
the spectrum of light 
emitted by a firefly.  
(a) Determine the tem- 
perature of a black body 
that would emit radia-
tion peaked at the same 
wavelength. (b)  Based 
on your result, explain 
whether firefly radiation 
is blackbody radiation.

5. The radius of our Sun 
is 6.96 3 108 m, and its 
total power output is 
3.85 3 1026 W. (a) Assuming the Sun’s surface emits as a 
black body, calculate its surface temperature. (b) Using the 
result of part (a), find lmax for the Sun.

6. (i) Calculate the energy, in electron volts, of a photon whose 
frequency is (a) 620 THz, (b) 3.10 GHz, and (c) 46.0 MHz. 
(ii) Determine the corresponding wavelengths for the pho-
tons listed in part (i) and (iii) state the classification of each 
on the electromagnetic spectrum.

7. Review. This problem is about how strongly matter is cou-
pled to radiation, the subject with which quantum mechan-
ics began. For a simple model, consider a solid iron sphere 
2.00 cm in radius. Assume its temperature is always uniform 
throughout its volume. (a) Find the mass of the sphere.  
(b) Assume the sphere is at 20.0°C and has emissivity 0.860. 
Find the power with which it radiates electromagnetic waves. 
(c) If it were alone in the Universe, at what rate would the 
sphere’s temperature be changing? (d) Assume Wien’s law 
describes the sphere. Find the wavelength lmax of electro-
magnetic radiation it emits most strongly. Although it emits 
a spectrum of waves having all different wavelengths, assume 
its power output is carried by photons of wavelength lmax.  
Find (e) the energy of one photon and (f) the number of 
photons it emits each second.

8. Consider a black body of surface area 20.0 cm2 and temperature 
5 000 K. (a) How much power does it radiate? (b) At what wave-
length does it radiate most intensely? Find the spectral power 
per wavelength interval at (c) this wavelength and at wavelengths 
of (d) 1.00 nm (an x- or gamma ray), (e) 5.00 nm (ultraviolet 
light or an x-ray), (f) 400 nm (at the boundary between UV and 
visible light), (g) 700 nm (at the boundary between visible and 
infrared light), (h)  1.00 mm (infrared light or a microwave),  
and (i) 10.0 cm (a microwave or radio wave). ( j) Approximately 
how much power does the object radiate as visible light?

9. A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps 
pulse containing 3.00 J of energy, find (a) the physical 
length of the pulse as it travels through space and (b) the 
number of photons in it. (c) Assuming that the beam has a 
circular cross-section of 0.600 cm diameter, find the num-
ber of photons per cubic millimeter. 

10. Show that at long wavelengths, Planck’s radiation law  
(Eq. 39.6) reduces to the Rayleigh–Jeans law (Eq. 39.3).

SectIon 39.2  The Photoelectric Effect

11. Molybdenum has a work function of 4.20 eV. (a) Find the 
cutoff wavelength and cutoff frequency for the photoelectric 
effect. (b) What is the stopping potential if the incident 
light has a wavelength of 180 nm?

12. From the scattering of sunlight, J. J. Thomson calcu-
lated the classical radius of the electron as having the value 
2.82 3 10215 m. Sunlight with an intensity of 500 W/m2 
falls on a disk with this radius. Assume light is a classical 
wave and the light striking the disk is completely absorbed. 
(a)  Calculate the time interval required to accumulate 
1.00  eV of energy. (b) Explain how your result for part  
(a) compares with the observation that photoelectrons are 
emitted promptly (within 1029 s).

13. The work function for zinc is 4.31 eV. (a) Find the cutoff 
wavelength for zinc. (b) What is the lowest frequency of 
light incident on zinc that releases photoelectrons from its 
surface? (c) If photons of energy 5.50 eV are incident on 
zinc, what is the maximum kinetic energy of the ejected 
photoelectrons?

14. The work function for platinum is 6.35 eV. Ultraviolet 
light of wavelength 150 nm is incident on the clean sur-
face of a platinum sample. We wish to predict the stop-
ping voltage we will need for electrons ejected from the 
 surface. (a) What is the photon energy of the ultravio-
let light? (b) How do you know that these photons will 
eject electrons from platinum? (c) What is the max-
imum kinetic energy of the ejected photoelectrons?  
(d) What stopping voltage would be required to arrest the 
current of photoelectrons?

SectIon 39.3  The Compton Effect

15. A photon having wavelength l scatters off a free electron at 
A (Fig. P39.15), producing a second photon having wave-
length l9. This photon then scatters off another free elec-
tron at B, producing a third photon having wavelength l0 
and moving in a direction directly opposite the original 
photon as shown in the figure. Determine the value of  
Dl 5 l0 2 l.

16. X-rays with a wavelength of 120.0 pm undergo Compton scat-
tering. (a) Find the wavelengths of the photons scattered at 
angles of 30.0°, 60.0°, 90.0°, 120°, 150°, and 180°. (b) Find 
the energy of the scattered electron in each case. (c) Which 
of the scattering angles provides the electron with the great-
est energy? Explain whether you could answer this question 
without doing any calculations.

17. A 0.001 60-nm photon scatters from a free electron. For what 
(photon) scattering angle does the recoiling electron have 
kinetic energy equal to the energy of the scattered photon?

18. You are working in an x-ray laboratory. You have a source 
of x-rays with a wavelength of 0.115 nm. In the experiment 
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you are performing, you need x-rays with a slightly longer 
wavelength than this. You decide to use Compton scattering 
from electrons to increase the wavelength of the x-rays. For the 
experiment, you need to determine (a) at what angle x-rays 
with a wavelength 1.2% larger than those from your source will 
be scattered. (b) You also need to determine the longest possi-
ble wavelength you can achieve with Compton scattering.

19. A photon having energy E 0 5 0.880 MeV is scattered by a free 
electron initially at rest such that the scattering angle of the 
scattered electron is equal to that of the scattered photon as 
shown in Figure P39.19. (a) Determine the scattering angle 
of the photon and the electron. (b) Determine the energy 
and momentum of the scattered photon. (c) Determine the 
kinetic energy and momentum of the scattered electron.

20. A photon having energy E0 is scattered by a free electron 
initially at rest such that the scattering angle of the scat-
tered electron is equal to that of the scattered photon 
as shown in Figure P39.19. (a) Determine the angle u. 
(b) Determine the energy and momentum of the scattered 
photon. (c) Determine the kinetic energy and momentum 
of the scattered electron.

21. In a Compton scattering experiment, an x-ray photon scat-
ters through an angle of 17.4° from a free electron that is ini-
tially at rest. The electron recoils with a speed of 2 180 km/s. 
Calculate (a) the wavelength of the incident photon and  
(b) the angle through which the electron scatters.

22. In a Compton scattering experiment, a photon is scattered 
through an angle of 90.0° and the electron is set into motion 
in a direction at an angle of 20.0° to the original direction of 
the photon. (a) Explain how this information is sufficient to 
determine uniquely the wavelength of the scattered photon  
and (b) find this wavelength.

SectIon 39.4  The Nature of Electromagnetic Waves

23. An electromagnetic wave is called ionizing radiation if its 
photon energy is larger than, say, 10.0 eV so that a single 
photon has enough energy to break apart an atom. With ref-
erence to Figure P39.23, explain what region or regions of 

the electromagnetic spectrum fit this definition of ionizing 
radiation and what do not. (If you wish to consult a larger 
version of P39.23, see Fig. 33.13.)

24. Review. A helium–neon laser produces a beam of diameter 
1.75 mm, delivering 2.00 3 1018 photons/s. Each photon has 
a wavelength of 633 nm. Calculate the amplitudes of (a) the 
electric fields and (b) the magnetic fields inside the beam. 
(c) If the beam shines perpendicularly onto a perfectly 
reflecting surface, what force does it exert on the surface? 
(d) If the beam is absorbed by a block of ice at 0°C for 1.50 h,  
what mass of ice is melted?

SectIon 39.5  The Wave Properties of Particles

25. (a) Calculate the momentum of a photon whose wavelength 
is 4.00 3 1027 m. (b) Find the speed of an electron having 
the same momentum as the photon in part (a).

26. The resolving power of a microscope depends on the wave-
length used. If you wanted to “see” an atom, a wavelength of 
approximately 1.00 3 10211 m would be required. (a) If elec-
trons are used (in an electron microscope), what minimum 
kinetic energy is required for the electrons? (b) What If? If 
photons are used, what minimum photon energy is needed 
to obtain the required resolution?

27. Robert Hofstadter won the 1961 Nobel Prize in Physics for 
his pioneering work in studying the scattering of 20-GeV 
electrons from nuclei. (a) What is the g factor for an electron 
with total energy 20.0 GeV, defined by g 5 1yÏ1 2 u 2yc 2?  
(b) Find the momentum of the electron. (c) Find the wave-
length of the electron. (d) State how the wavelength com-
pares with the diameter of an atomic nucleus, typically on 
the order of 10214 m.

28. The nucleus of an atom is on the order of 10214 m in diam-
eter. For an electron to be confined to a nucleus, its de Bro-
glie wavelength would have to be on this order of magnitude 
or smaller. (a) What would be the kinetic energy of an elec-
tron confined to this region? (b) Make an order-of-magni-
tude estimate of the electric potential energy of a system of 
an electron inside an atomic nucleus. (c) Would you expect 
to find an electron in a nucleus? Explain.

29. You have achieved your dream of becoming a physics pro-
fessor, and have landed an assistant professorship at a small 
college. You have an upcoming lecture on the wave–particle 
duality. You would like to generate a demonstration in 
which you bombard a double slit of width d 5 50.0 mm with 
both electrons and red light of wavelength lred 5 632.8 nm, 
and have the students observe both interference patterns on 
a special screen that will display the arrival of both the light 
and the electrons. You need to determine the potential dif-
ference through which you must accelerate the electrons so 
that the fringe patterns of both the light and the electrons 
have exactly the same appearance.

30. (a) Show that the frequency f and wavelength l of a freely 
moving quantum particle with mass are related by the 
expression

Sf

c D2

5
1
l2 1

1
lC

2

where lC 5 h/mc is the Compton wavelength of the particle. 
(b) Is it ever possible for a particle having nonzero mass 
to have the same wavelength and frequency as a photon? 
Explain.
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31. Why is the following situation impossible? After learning about 
de Broglie’s hypothesis that material particles of momen-
tum p move as waves with wavelength l 5 h/p, an 80-kg 
student has grown concerned about being diffracted when 
passing through a doorway of width w 5 75 cm. Assume sig-
nificant diffraction occurs when the width of the diffraction 
aperture is less than ten times the wavelength of the wave 
being diffracted. Together with his classmates, the student  
performs precision experiments and finds that he does 
indeed experience measurable diffraction.

SectIon 39.6  A New Model: The Quantum Particle

32. Consider a freely moving quantum particle with mass  
m and speed u. Its energy is E 5 K 5 1

2mu2. (a) Determine the 
phase speed of the quantum wave representing the particle 
and (b) show that it is different from the speed at which the 
particle transports mass and energy.

33. For a free relativistic quantum particle moving with 
speed u, the total energy of the particle is E 5hf 5 "v 5  
Ïp 2c 2 1 m2c 4 and the momentum is p 5 hyl 5 "k 5 gmu.  
For the quantum wave representing the particle, the group 
speed is vg 5 dv/dk. Prove that the group speed of the wave is 
the same as the speed of the particle.

SectIon 39.7  The Double-Slit Experiment Revisited

34. You are working as a demonstration assistant for a physics 
professor. She wants to demonstrate to her students the 
buildup of the interference pattern for single electrons 
passing through a double slit, as shown in Figure 39.22. Her 
source of electrons will be a certain vacuum tube, in which 
electrons evaporate from a hot cathode at a slow, steady rate 
and accelerate from rest through a potential difference of 
45.0 V. After being accelerated, they travel through a field-
free and evacuated region before they pass through the 
double slits and fall on a screen to produce an interference 
pattern. To ensure that only one electron at a time is passing 
through the slits, she wants the electrons to be separated 
in space by d 5 1.00 cm (perpendicular to the barrier con-
taining the slits) as they approach the slit. She asks you to 
determine the maximum value for the beam current that 
will assure that only one electron at a time passes through 
the slits.

35. A modified oscilloscope is used to perform an electron 
interference experiment. Electrons are incident on a pair 
of narrow slits 0.060 0 mm apart. The bright bands in the 
interference pattern are separated by 0.400 mm on a screen 
20.0 cm from the slits. Determine the potential difference 
through which the electrons were accelerated to give this 
pattern.

SectIon 39.8  The Uncertainty Principle

36. You are performing research on quantum fluctuations 
in empty space. In one type of fluctuation, an electron–
positron pair (Section 44.2) appears in empty space. This 
process appears to violate the conservation of energy prin-
ciple, since the rest energy of the particles has been created 
from nothing. According to Equation 39.24, however, this 
violation of conservation of energy can exist as long as the 
particles annihilate with each other in a time interval con-
sistent with the energy–time version of the uncertainty prin-
ciple. You employ this principle to estimate how long the 
electron and positron can exist before annihilating.

37. The average lifetime of a muon is about 2 ms. Estimate the 
minimum uncertainty in the rest energy of a muon.

38. Why is the following situation impossible? An air rifle is used to 
shoot 1.00-g particles at a speed of vx 5 100 m/s. The rifle’s 
barrel has a diameter of 2.00 mm. The rifle is mounted on a 
perfectly rigid support so that it is fired in exactly the same 
way each time. Because of the uncertainty principle, how-
ever, after many firings, the diameter of the spray of pellets 
on a paper target is 1.00 cm.

39. Use the uncertainty principle to show that if an electron 
were confined inside an atomic nucleus of diameter on the 
order of 10214 m, it would have to be moving relativistically, 
whereas a proton confined to the same nucleus can be mov-
ing nonrelativistically.

aDDItIonal ProbleMS

40. A photon of initial energy E 0 undergoes Compton scatter-
ing at an angle u from a free electron (mass me) initially at 
rest. Derive the following relationship for the final energy 
E 9 of the scattered photon:

E9 5
E 0

1 1 S E 0

mec
2Ds1 2 cos ud

41. Figure P39.41 shows the stopping potential versus the inci-
dent photon frequency for the photoelectric effect for 
sodium. Use the graph to find (a) the work function of 
sodium, (b) the ratio h/e, and (c) the cutoff wavelength. 
The data are taken from R. A. Millikan, Physical Review 
7:362 (1916).

42. Derive the Compton shift equation, Equation 39.13, by 
applying conservation principles for energy and momentum 
to the collision shown in Figure 39.13. Assume that the elec-
tron is free and initially at rest.

43. A p0 meson (Section 44.3) is an unstable particle produced 
in high-energy particle collisions. Its rest energy is approx-
imately 135 MeV, and it exists for a lifetime of only 8.70 3 
10217  s before decaying into two gamma rays. Using the 
uncertainty principle, estimate the fractional uncertainty 
Dm/m in its mass determination.

44. Show that the ratio of the Compton wavelength lC to the de 
Broglie wavelength l 5 h/p for a relativistic electron is

lC

l
5 3S E

mec
2D2

2 141y2

where E is the total energy of the electron and me is its mass.
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45. Monochromatic ultraviolet light with intensity 550 W/m2 
is incident normally on the surface of a metal that has a 
work function of 3.44 eV. Photoelectrons are emitted with 
a maximum speed of 420 km/s. (a) Find the maximum 
possible rate of photoelectron emission from 1.00 cm2 of 
the surface by imagining that every photon produces one  
photoelectron. (b) Find the electric current density these 
electrons constitute. (c) How do you suppose the actual cur-
rent compares with this maximum possible current?

46. The neutron has a mass of 1.67 3 10227 kg. Neutrons emit-
ted in nuclear reactions can be slowed down by collisions 
with matter. They are referred to as thermal neutrons after 
they come into thermal equilibrium with the environment. 
The average kinetic energy s 

3
2k BT d of a thermal neutron is 

approximately 0.04 eV. (a) Calculate the de Broglie wave-
length of a neutron with a kinetic energy of 0.040 0 eV. 
(b) How does your answer compare with the characteristic 
atomic spacing in a crystal? (c) Explain whether you expect 
thermal neutrons to exhibit diffraction effects when scat-
tered by a crystal.

cHallenGe ProbleMS

 47. Review. A light source emitting radiation at frequency  
7.00 3 1014 Hz is incapable of ejecting photoelectrons from 
a certain metal. In an attempt to use this source to eject 
photoelectrons from the metal, the source is given a veloc-
ity toward the metal. (a) Explain how this procedure can 
produce photoelectrons. (b) When the speed of the light 
source is equal to 0.280c, photoelectrons just begin to be 
ejected from the metal. What is the work function of the 
metal? (c) When the speed of the light source is increased 
to 0.900c, determine the maximum kinetic energy of the 
photoelectrons.

 48. A woman on a ladder drops small pellets toward a point tar-
get on the floor. (a) Show that, according to the uncertainty 
principle, the average miss distance must be at least

Dxf 5 S2"

m D1y2S2H
g D1y4

where H is the initial height of each pellet above the floor 
and m is the mass of each pellet. Assume that the spread in 
impact points is given by Dxf 5 Dxi 1 (Dvx)t. (b) If H 5 2.00 m  
and m = 0.500 g, what is Dxf ?

 49. The total power per unit area radiated by a black body at a 
temperature T is the area under the I(l,T )-versus-l curve as 
shown in Figure 39.3. (a) Show that this power per unit area is

#
`

0
 I s l,T d d l 5 sT 4

where I(l,T ) is given by Planck’s radiation law and s is a 
constant independent of T. This result is known as Stefan’s 
law. (See Section 19.6.) To carry out the integration, you 
should make the change of variable x 5 hc/lkBT and use

#
`

0

x 

3 d x
e x 2 1

5
p4

15

(b) Show that the Stefan–Boltzmann constant s has the 
value

s 5
2p5k B

4

15c 2h3 5 5.67 3 1028 Wym2 ? K4

 50. Using conservation principles, prove that a photon cannot 
transfer all its energy to a free electron.

 51. (a) Derive Wien’s displacement law from Planck’s law.  
Proceed as follows. In Figure 39.3, notice that the wave-
length at which a black body radiates with greatest inten-
sity is the wavelength for which the graph of I(l,T ) versus 
l has a horizontal tangent. From Equation 39.6, evaluate 
the derivative dI/dl. Set it equal to zero. Solve the result-
ing transcendental equation numerically to prove that  
hc/lmaxkBT 5 4.965 . . . or lmaxT 5 hc/4.965kB. (b) Evaluate 
the constant as precisely as possible and compare it with 
Wien’s experimental value.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1079
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40.1 The Wave Function

40.2 Analysis Model: 
Quantum Particle 
Under Boundary 
Conditions

40.3 The Schrödinger 
Equation

40.4 A Particle in a Well 
of Finite Height

40.5 Tunneling Through 
a Potential Energy 
Barrier

40.6 Applications of 
Tunneling

40.7 The Simple Harmonic 
Oscillator

Storyline You are resting in your living room, trying to recover 
from the shocking developments in Chapter 39. The wave–particle duality is fas-
cinating to you. In particular, you find its application in the electron microscope 
particularly interesting. While reading about such a microscope, you see a com-
parison between images from an electron microscope and a scanning tunneling 
microscope. You say, “Wait a minute! What’s a scanning tunneling microscope?” 
You see the image above for this chapter and are amazed that the microscope 
can resolve layers of atoms. You tell yourself you need to learn more about the 
physics behind such a device. The best way to do that, of course, is to read 
Chapter 40!

ConneCtions In Chapter 39, we discussed early experiments that com-
bined classical concepts from many of the earlier chapters in this book with new 
quantum concepts. Once physicists were convinced that quantum behavior was 
real, a brand-new avenue was opened up for theoretical research, leading to the 
development of quantum mechanics. This an extremely successful theory for 
explaining the behavior of microscopic particles. In this chapter, we will see how 
the theory can be built from our new quantum concepts in combination with 
material on waves from Chapter 16 and the waves under boundary conditions 
model from Chapter 17. Once we have established this theory, it will become the 
basis for our understanding of atoms, molecules, nuclei, and elementary particles 
in the remaining chapters in this book.

   40.1    The Wave Function
In Chapter 39, we introduced some new and strange ideas. In particular, we con-
cluded on the basis of experimental evidence that both matter and electromagnetic 
radiation are sometimes best modeled as particles and sometimes as waves, depend-
ing on the phenomenon being observed. We investigated the notion of a wave 
packet to help us understand this dual nature. We can improve our understanding 

The surface of graphite as 
“viewed” with a scanning 
tunneling microscope. This 
type of microscope enables 
scientists to see details 
with a lateral resolution of 
about 0.2 nm and a vertical 
resolution of 0.001 nm. 
The contours seen here 
represent the ring-like 
arrangement of individual 
carbon atoms on the crystal 
surface. (Photo courtesy of 
Paul K. Hansma, University of 
California, Santa Barbara)
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of quantum physics further by making another connection between particles and 
waves using the notion of probability.

We begin by discussing electromagnetic radiation using the particle model. 
The probability per unit volume of finding a photon in a given region of space 
at an instant of time is proportional to the number of photons per unit volume at 
that time:

Probability

V
~

N
V

The number of photons per unit volume is proportional to the intensity of the 
radiation:

N
V

~ I

Now, let’s form a connection between the particle model and the wave model by 
recalling that the intensity of electromagnetic radiation is proportional to the 
square of the electric field amplitude E for the electromagnetic wave (Eq. 33.27):

I ~ E 2

Equating the beginning and the end of this series of proportionalities gives

 
Probability

V
~ E 2 (40.1)

Therefore, for electromagnetic radiation, the probability per unit volume of find-
ing a particle associated with this radiation (the photon) is proportional to the 
square of the amplitude of the associated electromagnetic wave.

Recognizing the wave–particle duality of both electromagnetic radiation and 
matter, we should suspect a parallel proportionality for a material particle: the 
probability per unit volume of finding the particle is proportional to the square of 
the amplitude of a wave representing the particle. In Chapter 39, we learned that 
there is a de Broglie wave associated with every particle. The amplitude of the de 
Broglie wave associated with a particle is not a measurable quantity because the 
wave function representing a particle is generally a complex function as we discuss 
below. In contrast, the electric field for an electromagnetic wave is a real function. 
The matter analog to Equation 40.1 relates the square of the amplitude of the wave 
to the probability per unit volume of finding the particle. Hence, the amplitude 
of the wave associated with the particle is called the probability amplitude, or 
the wave function, and it has the symbol C. For material particles, C would play the 
role of E in Equation 40.1.

In general, the wave function C is associated with a system and depends on the 
positions of all the particles in the system and on time; therefore, it can be writ-
ten Cs rS1, rS2, rS3, Á , rSj , Á , td, where rSj is the position vector of the jth particle in 
the system. Often, we are interested in the behavior of the system associated with 
changes in only one of its member particles, which we can identify as the jth particle. 
For many systems of interest, including all those we study in this text, the wave func-
tion C is mathematically separable in space and time and can be written as a prod-
uct of a space function c for our particle of interest and a complex time function:1

 Cs rS1, rS2, rS3, Á , rSj , Á , td 5 cs rSj 
de2ivt (40.2)

where v (5 2pf ) is the angular frequency of the wave function and i 5 Ï21.
For any system in which the potential energy is time-independent and depends 

only on the positions of particles within the system, the important information 

Space- and time-dependent  
wave function C

1The standard form of a complex number is a 1 ib. The notation e iu is equivalent to the standard form as follows:

e iu 5 cos u 1 i sin u

Therefore, the notation e2ivt in Equation 40.2 is equivalent to cos (2vt) 1 i sin (2vt) 5 cos vt 2 i sin vt.
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about the system is contained within the space part of the wave function. The time 
part is simply the factor e2ivt. Therefore, an understanding of c is the critical aspect 
of a given problem.

The wave function c is often complex-valued. The absolute square |c|2 5 c*c, 
where c* is the complex conjugate2 of c, is always real and positive and is propor-
tional to the probability per unit volume of finding a particle at a given point at 
some instant. The wave function contains within it all the information that can be 
known about the particle.

Although c cannot be measured, we can measure the real quantity |c|2, which 
can be interpreted as follows. If c represents a single particle, then |c|2—called the 
probability density—is the relative probability per unit volume that the particle will 
be found at any given point in the volume. This interpretation can also be stated in 
the following manner. If dV is a small volume element surrounding some point, the 
probability of finding the particle in that volume element is

 P(x, y, z) dV 5 |c|2 dV (40.3)

This probabilistic interpretation of the wave function was first suggested by Max 
Born (1882–1970) in 1928. In 1926, Erwin Schrödinger proposed a wave equation 
that describes the manner in which the wave function changes in space and time. 
The Schrödinger wave equation, which we shall examine in Section 40.3, represents a 
key element in the theory of quantum mechanics.

In Section 39.5, we found that the de Broglie equation relates the momentum of 
a particle to its wavelength through the relation p 5 h/l. If an ideal free particle 
has a precisely known momentum px, its wave function is an infinitely long sinusoi-
dal wave of wavelength l 5 h/px and the particle has equal probability of being at 
any point along the x axis (Fig. 39.18a). The wave function c for such a free particle 
moving along the x axis can be written as

 c(x) 5 Ae ikx (40.4)

where A is a constant amplitude and k 5 2p/l is the angular wave number (Eq. 
16.8) of the wave representing the particle.3

The concepts of quantum mechanics, strange as they sometimes may seem, 
developed from classical ideas. In fact, when the techniques of quantum mechanics 
are applied to macroscopic systems, the results are essentially identical to those of 
classical physics. This blending of the two approaches occurs when the de Broglie 
wavelength is small compared with the dimensions of the system. The situation is 
similar to the agreement between relativistic mechanics and classical mechanics 
when v ,, c.

Q uick Quiz 40.1  Consider the wave function for the free particle, Equation 40.4. 
At what value of x is the particle most likely to be found at a given time? (a) at x 5 0 
(b) at small nonzero values of x (c) at large values of x (d) anywhere along the x axis

One-Dimensional Wave Functions and Expectation Values
This section discusses only one-dimensional systems, where the particle must be 
located along the x axis, so the probability |c|2 dV in Equation 40.3 is modified to 
become |c|2 dx. The probability that the particle will be found in the infinitesimal 
interval dx around the point x is

 P(x) dx 5 |c|2 dx (40.5)

  Wave function for a free 
particle

PitFall PrEVEntiOn 40.1
The Wave Function Belongs  
to a System The common lan-
guage in quantum mechanics is 
to associate a wave function with 
a particle. The wave function, 
however, is determined by the 
particle and its interaction with 
its environment, so it more right-
fully belongs to a system. In many 
cases, the particle is the only part 
of the system that experiences a 
change, which is why the common 
language has developed. You will 
see examples in the future in 
which it is more proper to think 
of the system wave function rather 
than the particle wave function.

2For a complex number z 5 a 1 ib, the complex conjugate is found by changing i to 2i: z* 5 a 2 ib. The product of a 
complex number and its complex conjugate is always real and positive. That is, z*z 5 (a 2 ib)(a 1 ib) 5 a2 2 (ib)2 5 
a2 2 (i)2b2 5 a2 1 b2.
3For the free particle, the full wave function, based on Equation 40.2, is

C(x, t) 5 Aeikxe2ivt 5 Aei(kx2vt) 5 A[cos (kx 2 vt) 1 i sin (kx 2 vt)]

The real part of this wave function has the same form as the waves we added together to form wave packets in 
Section 39.6.
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Although it is not possible to specify the position of a particle with complete cer-
tainty, it is possible through |c|2 to specify the probability of observing it in a region 
surrounding a given point x. The probability of finding the particle in the arbitrary 
interval a # x # b is

 Pab 5 #
b

a
ucu2dx (40.6)

The probability Pab is the area under the curve of |c|2 versus x between the points 
x 5 a and x 5 b as in Figure 40.1.

Experimentally, there is a finite probability of finding a particle in an interval 
near some point at some instant. The value of that probability must lie between the 
limits 0 and 1. For example, if the probability is 0.30, there is a 30% chance of find-
ing the particle in the interval.

Because the particle must be somewhere along the x axis, the sum of the proba-
bilities over all values of x must be 1:

 #
`

2`

ucu2 dx 5 1 (40.7)

Any wave function satisfying Equation 40.7 is said to be normalized. Normalization 
is simply a statement that the particle exists at some point in space.

Once the wave function for a particle is known, it is possible to calculate the 
average position at which you would expect to find the particle after many measure-
ments. This average position is called the expectation value of x and is defined by 
the equation

 kxl ; #
`

2`

c*x c dx (40.8)

(Brackets, k. . .l, are used to denote expectation values.) Furthermore, one can find 
the expectation value of any function f(x) associated with the particle by using the 
following equation:4

 k f sxdl ; #
`

2`

c*f sxdc dx (40.9)

Normalization condition on c 

Expectation value  
for position x

Expectation value for  
a function f (x)

 Example 40.1    A Wave Function for a Particle

Consider a particle whose wave function is graphed in Figure 40.2 and is given by

c(x) 5 Ae2ax 2

(A) What is the value of A if this wave function is normalized?

S O l U T i O N

Conceptualize The particle is not a free particle because the wave function is not a sinu-
soidal function. Figure 40.2 indicates that the particle is constrained to remain close to 
x 5 0 at all times. Think of a physical system in which the particle always stays close to a 
given point. Examples of such systems are a block on a spring, a marble at the bottom of 

x
ba

⎪ψ⎪2c

The probability of a particle 
being in the interval a  � x � b 
is the area under the probability 
density curve from a to b.

Figure 40.1  An arbitrary proba-
bility density curve for a particle.

4Expectation values are analogous to “weighted averages,” in which each possible value of a function is multiplied 
by the probability of the occurrence of that value before summing over all possible values. We write the expectation 
value as #

`

2`
 c*f sxdc dx rather than #

`

2`
 f sxdc2 dx because f(x) may be represented by an operator (such as a derivative) 

rather than a simple multiplicative function in more advanced treatments of quantum mechanics. In these situa-
tions, the operator is applied only to c and not to c*.

0
x

(x)

(x)� Ae�ax2
c

c

Figure 40.2 (Example 40.1) A sym-
metric wave function for a particle, 
given by c(x) 5 Ae2ax2.
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40.1 c o n t i n u e d

a bowl, and the bob of a simple pendulum. While many wave functions are complex functions, this one happens to be real, so 
that c* 5 c.

Categorize Because the statement of the problem describes the wave nature of a particle, this example requires a quantum 
approach rather than a classical approach.

Analyze Apply the normalization condition,  #
`

2`

ucu2 dx 5 #
`

2`

sAe2ax 2d2 dx 5 A2 #
`

2`

e22ax 2 dx 5 1 
Equation 40.7, to the wave function:

Express the integral as the sum of two integrals: (1)   A2 #
`

2`

e22ax 2 dx 5 A2 S#`

0
e22ax 2 dx 1 #

0

2`

e22ax 2 dxD 5 1

Change the integration variable from x to 2x in  #
0

2`

e22ax 2 dx 5 #
0

`

e22a s2xd2 s2dxd 5 2#
0

`

e22ax 2 dx 
the second integral:

Reverse the order of the limits, which introduces  2#
0

`

e22ax 2 dx 5 #
`

0
e22ax 2 dx 

a negative sign:

Substitute this expression for the second integral  A2S#`

0
e22ax 2 dx 1 #

`

0
e22ax 2 dxD 5 1 

in Equation (1):

(2)   2A2 #
`

0
e22ax 2 dx 5 1

Evaluate the integral with the help of Table B.6  #
`

0
e22ax 2 dx 5 1

2 Î p

2a
 

in Appendix B:

Substitute this result into Equation (2) and solve  2A2 S1
2 Î p

2aD 5 1   S   A 5  S2a
p D1y4

 
for A:

(B) What is the expectation value of x for this particle?

S O l U T i O N

Evaluate the expectation value using Equation 40.8: kxl ; #
`

2`

c*x c dx 5 #
`

2`

sAe2ax 2dx sAe2ax 2d dx 

5 A2#
`

2`

 xe22ax 2dx

As in part (A), express the integral as a sum of two  (3)   kxl 5 A2S#`

0
xe22ax 2 dx 1 #

0

2`

xe22ax 2 dxD 
integrals:

Change the integration variable from x to 2x in the  #
0

2`

xe22ax 2 dx 5 #
0

`

2xe22a s2xd2 s2dxd 5 #
0

`

xe22ax 2 dx 
second integral:

Reverse the order of the limits, which introduces a  #
0

`

xe22ax 2 dx 5 2#
`

0
xe22ax 2 dx 

negative sign:

Substitute this expression for the second integral  kxl 5 A2S#`

0
xe22ax 2 dx 2#

`

0
xe22ax 2 dxD 5  0 

in Equation (3):

Finalize Given the symmetry of the wave function around x 5 0 in Figure 40.2, it is not surprising that the average position of 
the particle is at x 5 0. In Section 40.7, we show that the wave function studied in this example represents the lowest-energy 
state of the quantum harmonic oscillator.
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1084 Chapter 40 Quantum Mechanics

   40.2    Analysis Model: Quantum Particle Under 
Boundary Conditions 
In Chapter 17, we investigated the results of imposing boundary conditions on 
waves, both on strings and in air columns. We found that the imposition of bound-
ary conditions resulted in quantized frequencies at which the system could oscil-
late. Let’s look at the results of imposing boundary conditions on quantum par-
ticles. The free particle discussed in Section 40.1 has no boundary conditions; it 
can be anywhere in space. The particle in Example 40.1 is not a free particle. Fig-
ure 40.2 shows that the particle is always restricted to positions near x 5 0. In this 
section, we shall investigate the effects of imposing the simplest possible boundary 
conditions on a particle.

a Particle in a Box
Imagine that the free particle in Section 40.1 is moving along the x axis and we 
suddenly put a box around it, so that it is constrained to reflect elastically off 
the walls of the box, and move back and forth along the x axis. This is a real 
problem in physics, called the particle-in-a-box problem (even though the “box” is 
one-dimensional!). From a classical viewpoint, if a particle is bouncing elastically 
back and forth along the x axis between two impenetrable walls separated by a 
distance L as in the pictorial representation in Figure 40.3a, it can be modeled as 
a particle under constant speed. If the speed of the particle is u, the magnitude 
of its momentum mu remains constant as does its kinetic energy. (Recall that in 
Chapter 38 we used u for particle speed to distinguish it from v, the speed of a 
reference frame.) Classical physics places no restrictions on the values of a parti-
cle’s momentum and energy. The quantum-mechanical approach to this problem is 
quite different and requires that we find the appropriate wave function consistent 
with the conditions of the situation.

Because the walls are impenetrable, there is zero probability of finding the par-
ticle outside the box, so the wave function c(x) must be zero for x , 0 and x . L. 
To be a mathematically well-behaved function, c(x) must be continuous in space. 
There must be no discontinuous jumps in the value of the wave function at any 
point.5 Therefore, if c is zero outside the walls, it must also be zero at the walls; that 
is, c(0) 5 0 and c(L) 5 0. Only those wave functions that satisfy these boundary 
conditions are allowed.

Figure 40.3b, a graphical representation of the particle-in-a-box problem, shows 
the potential energy of the particle–environment system as a function of the posi-
tion of the particle. As long as the particle is inside the box, the potential energy 
of the system does not depend on the location of the particle and we can choose its 
constant value to be zero. Outside the box, we must ensure that the wave function is 
zero. We can do so by defining the system’s potential energy as infinitely large if the 
particle were outside the box. Therefore, the only way a particle could be outside 
the box is if the system has an infinite amount of energy, which is impossible.

The wave function for a particle in the box can be expressed as a real sinusoidal 
function:6

 csxd 5 A sin S2px
l
D (40.10)

where l is the de Broglie wavelength associated with the particle. This wave func-
tion must satisfy the boundary conditions at the walls. The boundary condition 

x
0

U

L

m

L

��

a

b

uS

This figure is a pictorial 
representation showing a particle 
of mass m and speed u 
bouncing between two 
impenetrable walls separated 
by a distance L.

This figure is a graphical 
representation showing the 
potential energy of the 
particle–box system.  The blue 
areas are classically forbidden.

Figure 40.3  (a) The particle in 
a box. (b) The potential energy 
function for the system.

5If the wave function were not continuous at a point, the derivative of the wave function at that point would be 
infinite. This result leads to difficulties in the Schrödinger equation, for which the wave function is a solution as 
discussed in Section 40.3.
6We shall show this result explicitly in Section 40.3.
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c(0) 5 0 is satisfied already because the sine function is zero when x 5 0. The 
boundary condition c(L) 5 0 gives

csLd 5 0 5 A sin S2pL
l
D

which can only be true if

 
2pL

l
5 np   S   l 5

2L
n

 (40.11)

where n 5 1, 2, 3, . . . . Therefore, only certain wavelengths for the particle are 
allowed! Each of the allowed wavelengths corresponds to a quantum state for the 
system, and n is the quantum number. Incorporating Equation 40.11 in Equation 
40.10 gives

 cnsx d 5 A sin S 2px
2LynD 5 A sin Snpx

L
 D (40.12)

Normalizing this wave function shows that A 5 Ï2yL. (See Problem 10.) There-
fore, the normalized wave function for the particle in a box is

 cnsxd 5Î2
L

  sin Snpx
L D (40.13)

Figures 40.4a and b are graphical representations of cn versus x and |cn|2 versus 
x for n 5 1, 2, and 3 for the particle in a box.7 Although a general wave function c 
can have positive and negative values, |c|2 is always positive. Because |c|2 represents 
a probability density, a negative value for |c|2 would be meaningless.

What we are discussing here might be starting to sound familiar to you. Com-
pare the three graphs in Figure 40.4a to the three parts of Figure 17.14. Compare 
Equation 40.11 to Equation 17.5. Much of what we are doing here is very similar to 
standing waves on strings.

Further inspection of Figure 40.4b shows that |c|2 is zero at the boundaries, satis-
fying our boundary conditions. In addition, |c|2 is zero at other points, depending 
on the value of n. For n 5 2, |c2|

2 5 0 at x 5 L/2; for n 5 3, |c3|
2 5 0 at x 5 L/3 and 

at x 5 2L/3. The number of zero points increases by one each time the quantum 
number increases by one.

  Wave functions for  
a particle in a box

  Normalized wave function  
for a particle in a box

0 L
x x

n � 1

n � 2

n � 3

2

1

3

0 L
n � 1

n � 2

n � 33
2

2
2

1�

� �

� �

�
2

����

c

c

c c

c

c

The wave functions cn 
for a particle in a box 
with n � 1, 2, and 3

The probability densities �cn�2  
for a particle in a box with 
n � 1, 2, and 3

a b

Figure 40.4 The first three 
allowed states for a particle con-
fined to a one- dimensional box. 
The states are shown superim-
posed on the potential energy 
function of Figure 40.3b. The 
wave functions and probability 
densities are plotted vertically 
from separate axes that are offset 
vertically for clarity. The positions 
of these axes on the potential 
energy function suggest the rela-
tive energies of the states.

7Note that n 5 0 is not allowed because, according to Equation 40.12, the wave function would be c 5 0, which is not 
a physically reasonable wave function. For example, it cannot be normalized because #

`

2`
 ucu2 dx 5 #

`

2`
 s0d dx 5 0, but 

Equation 40.7 tells us that this integral must equal 1.

PitFall PrEVEntiOn 40.2
Reminder: Energy Belongs  
to a System We often refer to 
the energy of a particle in com-
monly used language. As in Pitfall 
Prevention 40.1, we are actually 
describing the energy of the sys-
tem of the particle and whatever 
environment is establishing the 
impenetrable walls. For the par-
ticle in a box, the only type of 
energy is kinetic energy belonging 
to the particle, which is the origin 
of the common description.
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Because the wavelengths of the particle are restricted by the condition l 5 
2L/n, the magnitude of the momentum of the particle is also restricted to spe-
cific values, which can be found from the expression for the de Broglie wavelength, 
Equation 39.15:

p 5
h
l

5
h

2Lyn
5

nh
2L

We have chosen the potential energy of the system to be zero when the particle is 
inside the box. Therefore, the energy of the system is simply the kinetic energy of 
the particle and the allowed values are given by

En 5 1
2mu 2 5

p 2

2m
5

snhy2Ld2

2m

 En 5 S h2

8mL2Dn 2 n 5 1, 2, 3, Á  (40.14)

This expression shows that the energy of the particle is quantized. The lowest 
allowed energy corresponds to the ground state, which is the lowest energy state 
for any system. For the particle in a box, the ground state corresponds to n 5 1, for 
which E1 5 h2/8mL2. Because En 5 n2E1, the excited states corresponding to n 5 2, 
3, 4, . . . have energies given by 4E1, 9E1, 16E1, . . . .

Figure 40.5 is an energy-level diagram describing the energy values of the 
allowed states. Because the lowest energy of the particle in a box is not zero, then, 
according to quantum mechanics, the particle can never be at rest! The smallest 
energy it can have, corresponding to n 5 1, is called the ground-state energy. This 
result contradicts the classical viewpoint, in which E 5 0 is an acceptable state, as 
are all positive values of E.

Q uick Quiz 40.2  Consider an electron, a proton, and an alpha particle (a 
helium nucleus), each trapped separately in identical boxes. (i) Which particle 
corresponds to the highest ground-state energy? (a) the electron (b) the proton  
(c) the alpha particle (d) The ground-state energy is the same in all three cases. 
(ii) Which particle has the longest wavelength when the system is in the ground 
state? (a) the electron (b) the proton (c) the alpha particle (d) All three parti-
cles have the same wavelength.

Q uick Quiz 40.3  A particle is in a box of length L. Suddenly, the length  
of the box is increased to 2L. What happens to the energy levels shown in  
Figure 40.5? (a) nothing; they are unaffected. (b) They move farther apart.  
(c) They move closer together.

Quantized energies  
for a particle in a box

4

1

2

3

E4 � 16E1

E3 � 9E1

E2 � 4E1

E1
E � 0

n

E
N

E
R

G
Y

The ground-state energy, 
which is the lowest allowed 
energy, is E1 � h2/8mL2.

Figure 40.5 Energy-level dia-
gram for a particle confined to a 
one-dimensional box of length L. 

 Example 40.2    Microscopic and Macroscopic Particles in Boxes

(A) An electron is confined between two impenetrable walls 0.200 nm apart. Determine the energy levels for the states  
n 5 1, 2, and 3.

S O l U T i O N

Conceptualize In Figure 40.3a, imagine that the particle is an electron and the walls are very close together.

Categorize We evaluate the energy levels using an equation developed in this section, so we categorize this example as a sub-
stitution problem.

Use Equation 40.14 for the n 5 1 state: E 1 5
h2

8me L
2 s1d2 5

s6.626 3 10234 J ? sd2

8s9.11 3 10231 kgds2.00 3 10210 md2

5 1.51 3 10218 J 5  9.42 eV
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40.2 c o n t i n u e d

Using En 5 n2E1, find the energies of the n 5 2 and  E2 5 (2)2E1 5 4(9.42 eV) 5  37.7 eV 
n 5 3 states: E3 5 (3)2E1 5 9(9.42 eV) 5  84.8 eV

(B) Find the speed of the electron in the n 5 1 state.

S O l U T i O N

Solve the classical expression for kinetic energy for the  K 5 1
2meu

2   S   u 5Î2K
me

 
particle speed:

Recognize that the kinetic energy of the particle is equal  (1)   u 5Î2En

me

 
to the system energy and substitute En for K:

Substitute numerical values from part (A): u 5Î2s1.51 3 10218 Jd
9.11 3 10231 kg

 5  1.82 3 106 mys

Simply placing the electron in the box results in a minimum speed of the electron equal to 0.6% of the speed of light!

(C) A 0.500-kg baseball is confined between two rigid walls of a stadium that can be modeled as a box of length 100 m. 
Calculate the minimum speed of the baseball.

S O l U T i O N

Conceptualize In Figure 40.3a, imagine that the particle is a baseball and the walls are those of the stadium.

Categorize This part of the example is a substitution problem in which we apply a quantum approach to a macroscopic object.

Use Equation 40.14 for the n 5 1 state: E 1 5
h2

8mL2 s1d2 5
s6.626 3 10234 J ? sd2

8s0.500 kgds100 md2 5 1.10 3 10271 J

Use Equation (1) to find the speed: u 5Î2s1.10 3 10271 Jd
0.500 kg

5  6.63 3 10236 mys

This speed is so small that the object can be considered to be at rest, which is what one would expect for the minimum speed 
of a macroscopic object.

W H A T  i F ?  What if a sharp line drive is hit so that the baseball is moving with a speed of 150 m/s? What is the quantum 
number of the state in which the baseball now resides?

Answer We expect the quantum number to be very large because the baseball is a macroscopic object.

Evaluate the kinetic energy of the baseball: 1
2mu 2 5 1

2s0.500 kgds150 mysd2 5 5.62 3 103 J

From Equation 40.14, calculate the quantum  n 5Î8mL2En

h2 5Î8s0.500 kgds100 md2s5.62 3 103 Jd
s6.626 3 10234  J ? sd2 5 2.26 3 1037 

number n:

This result is a tremendously large quantum number. As the baseball pushes air out of the way, hits the ground, and rolls to 
a stop, it moves through more than 1037 quantum states. These states are so close together in energy that we cannot observe 
the transitions from one state to the next. Rather, we see what appears to be a smooth variation in the speed of the ball. The 
quantum nature of the universe is simply not evident in the motion of macroscopic objects.

 Example 40.3    The Expectation Values for the Particle in a Box

A particle of mass m is confined to a one-dimensional box between x 5 0 and x 5 L. Find the expectation value of the posi-
tion x of the particle in the state characterized by quantum number n.

S O l U T i O N

Conceptualize Figure 40.4b shows that the probability for the particle to be at a given location varies with position within the 
box. Can you predict what the expectation value of x will be from the symmetry of the wave functions?

continued
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40.3 c o n t i n u e d

Categorize The statement of the example categorizes the problem for us: we focus on a quantum particle in a box and on the 
calculation of its expectation value of x.

Analyze In Equation 40.8, the integration from 2` to ` reduces to the limits 0 to L because c 5 0 everywhere except in 
the box.

Substitute Equation 40.13 into Equation 40.8 to find the  kxl 5 #
`

2`

cn * x cn dx 5 #
L

0
x3Î2

L
 sin Snpx

L D42

 dx 
expectation value for x:

 5
2
L

 #
L

0
x sin2 Snpx

L D dx

Evaluate the integral by consulting an integral table or  kxl 5
2
L

 3x2

4
2

x sin S2 
npx

L D
4 

np

L

2

cos S2 
npx

L D
8Snp

L D2 4
L

0

 
by mathematical integration:8

 5
2
L 3L2

4 4 5  
L
2

Finalize This result shows that the expectation value of x is at the center of the box for all values of n, which you would expect 
from the symmetry of the square of the wave functions (the probability density) about the center (Fig. 40.4b).

The n 5 2 wave function in Figure 40.4b has a value of zero at the midpoint of the box. Can the expectation value of the 
particle be at a position at which the particle has zero probability of existing? Remember that the expectation value is the 
average position. Therefore, the particle is as likely to be found to the right of the midpoint as to the left, so its average position 
is at the midpoint even though its probability of being there is zero. As an analogy, consider a group of students for whom 
the average final examination score is 50%. There is no requirement that some student achieve a score of exactly 50% for the 
average of all students to be 50%.

Boundary conditions on Particles in General
The discussion of the particle in a box has some similarities with the discussion in 
Chapter 17 of standing waves on strings:

 ● Because the ends of the string must be nodes, the wave functions for allowed 
waves must be zero at the boundaries of the string. Because the particle in a 
box cannot exist outside the box, the allowed wave functions for the particle 
must be zero at the boundaries.

 ● The boundary conditions on the string waves lead to quantized wavelengths 
and frequencies of the waves. The boundary conditions on the wave function 
for the particle in a box lead to quantized wavelengths and frequencies of 
the particle.

In quantum mechanics, it is very common for particles to be subject to boundary 
conditions. We therefore introduce a new analysis model, the quantum particle 
under boundary conditions. In many ways, this model is similar to the waves under 
boundary conditions model studied in Section 17.4. 

The quantum particle under boundary conditions model differs in some ways 
from the waves under boundary conditions model:

 ● In most cases of quantum particles beyond the particle in a box, the wave 
function is not a simple sinusoidal function like the wave function for waves 
on strings. Furthermore, the wave function for a quantum particle may be a 
complex function.

 ● For a quantum particle, frequency is related to energy through E 5 hf, so the 
quantized frequencies lead to quantized energies.

8To integrate this function, first replace sin2 (npx/L) with 1
2 s1 2 cos 2npxyLd (refer to Table B.3 in Appendix B), 

which allows kxl to be expressed as two integrals. The second integral can then be evaluated by partial integration 
(Section B.7 in Appendix B).

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    40.3 The Schrödinger Equation 1089

 ● There may be no stationary “nodes” associated with the wave function of a 
quantum particle under boundary conditions. Systems more complicated than 
the particle in a box have more complicated wave functions, and some bound-
ary conditions may not lead to zeroes of the wave function at fixed points.

In general,

an interaction of a quantum particle with its environment represents one or 
more boundary conditions, and, if the interaction restricts the particle to a 
finite region of space, results in quantization of the energy of the system.

Boundary conditions on quantum wave functions are related to the coordinates 
describing the problem. For the particle in a box, the wave function must be zero at 
the ends of the box. In the case of a three-dimensional system such as the hydrogen 
atom we shall discuss in Chapter 41, the problem is best presented in spherical coor-
dinates. These coordinates, an extension of the plane polar coordinates introduced 
in Section 3.1, consist of a radial coordinate r and two angular coordinates. The 
generation of the wave function and application of the boundary conditions for 
the hydrogen atom are beyond the scope of this book. We shall, however, examine  
the behavior of some of the hydrogen-atom wave functions in Chapter 41.

Boundary conditions on wave functions that exist for all values of x require that 
the wave function approach zero as x S ` (so that the wave function can be normal-
ized) and remain finite as x S 0. One boundary condition on any angular parts of 
wave functions is that adding 2p radians to the angle must return the wave function 
to the same value because an addition of 2p results in the same angular position.

analYsis MODEl Quantum Particle Under Boundary Conditions

Imagine a particle described 
by quantum physics that 
is subject to one or more 
boundary conditions. If 
the particle is restricted to 
a finite region of space by 
the boundary conditions, 
the energy of the system is 
quantized. Associated with 
each quantized energy is a 
quantum state characterized 
by a wave function and a quantum number.

Examples: 

 ● An electron in a quantum dot cannot escape, quantizing 
the energies of the electron (Section 40.4).

 ● An electron in a hydrogen atom is restricted to stay near 
the nucleus of the atom, quantizing the energies of the 
atom (Chapter 41).

 ● Two atoms are bound to form a diatomic molecule, 
quantizing the energies of vibration and rotation of the 
molecule (Chapter 42).

 ● A proton is trapped in a nucleus, quantizing its energy 
levels (Chapter 43)

0 L
x

n � 1

n � 2

n � 3

2

1

3

��

c

c

c

   40.3    The Schrödinger Equation
In Section 16.5, we discussed a linear wave equation for mechanical waves, arising 
from Newton’s laws. In Section 33.3, we discussed a linear wave equation for elec-
tromagnetic radiation that follows from Maxwell’s equations. The waves associated 
with particles also satisfy a wave equation. The wave equation for material particles 
is different from that associated with photons because material particles have a 
nonzero rest energy. The appropriate wave equation was developed by Schrödinger 
in 1926. That development led to a standard approach for analyzing the behavior 
of a quantum system. The approach is to determine a solution to the Schrödinger 
equation and then apply the appropriate boundary conditions to the solution. This 
process yields the allowed wave functions and energy levels of the system under 
consideration. Proper manipulation of the wave function then enables one to cal-
culate all measurable features of the system.

  Fundamental concept of 
the quantum particle under 
boundary conditions model
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The Schrödinger equation as it applies to a particle of mass m confined to 
moving along the x axis and interacting with its environment through a potential 
energy function U(x) is

 2 

U2

2m
  

d 2c

dx 
2 1 Uc 5 Ec (40.15)

where E is a constant equal to the total energy of the system (the particle and 
its environment). Because this equation is independent of time, it is commonly 
referred to as the time-independent Schrödinger equation. (We shall not discuss 
the time-dependent Schrödinger equation in this book.)

The Schrödinger equation is consistent with the principle of conservation of 
mechanical energy for an isolated system with no nonconservative forces acting. 
Problem 31 shows, both for a free particle and a particle in a box, that the first 
term in the Schrödinger equation reduces to the kinetic energy of the particle 
multiplied by the wave function. Therefore, Equation 40.15 indicates that the total 
energy of the system is the sum of the kinetic energy and the potential energy and 
that the total energy is a constant: K 1 U 5 E 5 constant.

In principle, if the potential energy function U for a system is known, one can 
solve Equation 40.15 and obtain the wave functions and energies for the allowed 
states of the system. In addition, in many cases, the wave function c must sat-
isfy boundary conditions. Therefore, once we have a preliminary solution to the 
Schrödinger equation, we impose the following conditions to find the exact solu-
tion and the allowed energies:

 ● c must be normalizable. That is, Equation 40.7 must be satisfied.
 ● c must go to 0 as x S 6` and remain finite as x S 0.
 ● c must be continuous in x and be single-valued everywhere; solutions to 

Equation 40.15 in different regions must join smoothly at the boundaries 
between the regions.

 ● dc/dx must be finite, continuous, and single-valued everywhere for finite val-
ues of U. If dc/dx were not continuous, we would not be able to evaluate the 
second derivative d 2c/dx2 in Equation 40.15 at the point of discontinuity.

The task of solving the Schrödinger equation may be very difficult, depending on 
the form of the potential energy function. As it turns out, the Schrödinger equation 
is extremely successful in explaining the behavior of atomic and nuclear systems, 
whereas classical physics fails to explain this behavior. Furthermore, when quantum 
mechanics is applied to macroscopic objects, the results agree with classical physics.

the Particle in a Box revisited
To see how the quantum particle under boundary conditions model is applied 
to a problem, let’s return to our particle in a one-dimensional box of length L 
(see Fig. 40.3) and analyze it with the Schrödinger equation. Figure 40.3b is the 
potential-energy diagram that describes this problem. Potential-energy diagrams 
are a useful representation for understanding and solving problems with the 
Schrödinger equation.

Because of the shape of the curve in Figure 40.3b, the particle in a box is some-
times said to be in a square well,9 where a well is an upward-facing region of the 
curve in a potential-energy diagram. (A downward-facing region is called a barrier, 
which we investigate in Section 40.5.) Figure 40.3b shows an infinite square well.

In the region 0 , x , L, where U 5 0, we can express the Schrödinger equation 
in the form

 
d2c

dx2 5 2 

2mE
U2  c 5 2k2c (40.16)

Time-independent 
Schrödinger equation

Erwin schrödinger
Austrian Theoretical Physicist 
(1887–1961)
Schrödinger is best known as one of 
the creators of quantum mechanics. His 
approach to quantum mechanics was 
demonstrated to be mathematically 
equivalent to the more abstract matrix 
mechanics developed by Heisenberg. 
Schrödinger also produced important 
papers in the fields of statistical 
mechanics, color vision, and general 
relativity.
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PitFall PrEVEntiOn 40.3
Potential Wells A potential well 
such as that in Figure 40.3b is 
a graphical representation of 
energy, not a pictorial represen-
tation, so you would not see this 
shape if you were able to observe 
the situation. A particle moves 
only horizontally at a fixed vertical 
position in a potential-energy dia-
gram, representing the conserved 
energy of the system of the parti-
cle and its environment.

9It is called a square well even if it has a rectangular shape in a potential-energy diagram.
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where

 k 5
Ï2mE

U
 (40.17)

The solution to Equation 40.16 is a function c whose second derivative is the nega-
tive of the same function multiplied by a constant k2. Both the sine and cosine func-
tions satisfy this requirement. Therefore, the most general solution to the equation 
is a linear combination of both solutions:

c(x) 5 A sin kx 1 B cos kx

where A and B are constants that are determined by the boundary and normaliza-
tion conditions.

The first boundary condition on the wave function is that c(0) 5 0:

c(0) 5 A sin 0 1 B cos 0 5 0 1 B 5 0

which means that B 5 0. Therefore, our solution reduces to

c(x) 5 A sin kx

The second boundary condition, c(L) 5 0, when applied to the reduced solution gives

c(L) 5 A sin kL 5 0

This equation could be satisfied by setting A 5 0, but that would mean that c 5 0 
everywhere, which is not a valid wave function. The boundary condition is also 
satisfied if kL is an integral multiple of p, that is, if kL 5 np, where n is an integer. 
Substituting k 5 Ï2mEyU into this expression gives

kL 5
Ï2mE

U
 L 5 np

Each value of the integer n corresponds to a quantized energy that we call En. Solv-
ing for the allowed energies En gives

 En 5 S h2

8mL2Dn2 (40.18)

which are identical to the allowed energies in Equation 40.14.
Substituting the values of k in the wave function, the allowed wave functions 

cn(x) are given by

 cnsxd 5 A sin Snpx
L D (40.19)

which is the wave function (Eq. 40.12) used in our initial discussion of the particle 
in a box.

   40.4    A Particle in a Well of Finite Height 
Now consider a particle in a finite potential well, that is, a system having a potential 
energy that is zero when the particle is in the region 0 , x , L and a finite value 
U when the particle is outside this region as in Figure 40.6. Classically, if the total 
energy E of the system is less than U, the particle is permanently bound in the 
potential well. If the particle were outside the well, its kinetic energy would have to 
be negative, which is an impossibility. According to quantum mechanics, however, 
a finite probability exists that the particle can be found outside the well even if  
E , U. That is, the wave function c is generally nonzero outside the well—regions 
I and III in Figure 40.6—so the probability density |c|2 is also nonzero in these 
regions. Although this notion may be uncomfortable to accept, the uncertainty 

I

E

L

U

II III

0

x

If the total energy E of the 
particle–well system is less than U, 
the particle is trapped in the well.

Figure 40.6  Potential-energy 
diagram of a well of finite height 
U and length L. 
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principle indicates that the energy of the system is uncertain. This uncertainty 
allows the particle to be outside the well as long as the apparent violation of conser-
vation of energy does not exist in any measurable way.

In region II, where U 5 0, the allowed wave functions are again sinusoidal because 
they represent solutions of Equation 40.16. The boundary conditions, however,  
no longer require that c be zero at the ends of the well, as was the case with the 
infinite square well.

The Schrödinger equation for regions I and III may be written

 
d 2c

dx2 5
2msU 2 Ed

U2  c (40.20)

Because U . E, the coefficient of c on the right-hand side is necessarily positive. 
Therefore, we can express Equation 40.20 as

 
d 2c

dx2 5 C 2c (40.21)

where C 2 5 2msU 2 EdyU2 is a positive constant in regions I and III. As you can ver-
ify by substitution, the general solution of Equation 40.21 is

 c 5 AeCx 1 Be2Cx (40.22)

where A and B are constants.
We can use this general solution as a starting point for determining the appro-

priate solution for regions I and III. The solution must remain finite as x S 6 .̀ 
Therefore, in region I, where x , 0, the function c cannot contain the term Be2Cx. 
This requirement is handled by taking B 5 0 in this region to avoid an infinite 
value for c for large negative values of x. Likewise, in region III, where x . L, the 
function c cannot contain the term AeCx. This requirement is handled by taking  
A 5 0 in this region to avoid an infinite value for c for large positive x values. 
Hence, the solutions in regions I and III are

  cI 5 AeCx    for x , 0 (40.23)

 cIII 5 Be2Cx  for x . L (40.24)

In region II, the wave function is sinusoidal and has the general form

 cII(x) 5 F sin kx 1 G cos kx (40.25)

where F and G are constants.
These results show that the wave functions outside the potential well (where 

classical physics forbids the presence of the particle) decay exponentially with dis-
tance. At large negative x values, cI approaches zero; at large positive x values, cIII 
approaches zero. These functions, together with the sinusoidal solution in region II,  
are shown in Figure 40.7a for the first three energy states. In evaluating the com-
plete wave function, we impose the following boundary conditions:

 cI 5 cII  and  
dcI 

dx
5

dcII

dx
  at x 5 0 (40.26)

 cII 5 cIII  and   
dcII

dx
5

dcIII

dx
  at x 5 L (40.27)

These four boundary conditions and the normalization condition (Eq. 40.7) are 
sufficient to determine the four constants A, B, F, and G and the allowed values of 
the energy E. Figure 40.7b plots the probability densities for these states. In each 
case, the wave functions inside and outside the potential well join smoothly at the 
boundaries.

The notion of trapping particles in potential wells is used in the burgeoning 
field of nanotechnology, which refers to the design and application of devices 
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The wave functions cn for a 
particle in a potential well of 
finite height with n � 1, 2, and 3

The probability densities �cn�2 for 
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finite height with n � 1, 2, and 3
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Figure 40.7 The first three 
allowed states for a particle in a 
potential well of finite height. The 
states are shown superimposed on 
the potential energy function of 
Figure 40.6. The wave functions 
and probability densities are plot-
ted vertically from separate axes 
that are offset vertically for clarity. 
The positions of these axes on the 
potential energy function suggest 
the relative energies of the states.
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having dimensions ranging from 1 to 100 nm. The fabrication of these devices 
often involves manipulating single atoms or small groups of atoms to form very tiny 
structures or mechanisms.

One area of nanotechnology of interest to researchers is the quantum dot, a 
small region that is grown in a silicon crystal and acts as a potential well. This 
region can trap electrons into states with quantized energies. The wave functions 
for a particle in a quantum dot look similar to those in Figure 40.7a if L is on the 
order of nanometers. The storage of binary information using quantum dots is an 
active field of research. A simple binary scheme would involve associating a one 
with a quantum dot containing an electron and a zero with an empty dot. Other 
schemes involve cells of multiple dots such that arrangements of electrons among 
the dots correspond to ones and zeroes. Several research laboratories are study-
ing the properties and potential applications of quantum dots. One of the earliest 
applications is likely to be quantum dot displays for televisions. As of the printing 
of this book, some “QLED” televisions are being marketed, but the quantum dots 
are used as part of the backlighting for a normal liquid crystal display. Future tele-
visions will use the quantum dots as the actual light source.

   40.5    Tunneling Through a Potential Energy Barrier
Consider the potential energy function shown in Figure 40.8. In this situation, the 
potential energy has a constant value of U in the region of width L and is zero 
in all other regions.10 A potential energy function of this shape is called a square 
barrier, and U is called the barrier height. A very interesting and peculiar phe-
nomenon occurs when a moving particle encounters such a barrier of finite height 
and width. Suppose a particle of energy E , U is incident on the barrier from the 
left (Fig.  40.8). Classically, the particle is reflected by the barrier. If the particle 
were located in region II, its kinetic energy would be negative, which is not classi-
cally allowed. Consequently, region II and therefore region III are both classically 
forbidden to the particle incident from the left. According to quantum mechanics, 
however, all regions are accessible to the particle, regardless of its energy. (Although 
all regions are accessible, the probability of the particle being in a classically forbid-
den region is very low.) According to the uncertainty principle, the particle could 
be within the barrier as long as the time interval during which it is in the barrier 
is short and consistent with Equation 39.24. If the barrier is relatively narrow, this 
short time interval can allow the particle incident from the left to appear on the 
right side of the barrier.

Let’s approach this situation using a mathematical representation. The Schrö-
dinger equation has valid solutions in all three regions. The solutions in regions I 
and III are sinusoidal like Equation 40.19. In region II, the solution is exponential 
like Equation 40.22. Applying the boundary conditions that the wave functions in 
the three regions and their derivatives must join smoothly at the boundaries, a full 
solution, such as the one represented by the curve in Figure 40.8, can be found. 
Because the probability of locating the particle is proportional to |c|2, the proba-
bility of finding the particle beyond the barrier in region III is nonzero. This result 
is in complete disagreement with classical physics. The appearance of the particle 
to the far side of the barrier is conceptualized as the particle moving through the 
barrier from left to right, so it is called tunneling or barrier penetration.

The probability of tunneling can be described with a transmission coefficient T 
and a reflection coefficient R. The transmission coefficient represents the proba-
bility that the particle penetrates to the other side of the barrier, and the reflection 
coefficient is the probability that the particle is reflected by the barrier. Because 
the incident particle is either reflected or transmitted, we require that T 1 R 5 1. 
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The wave function is 
sinusoidal in regions I and 
III, but is exponentially 
decaying in region II.

Figure 40.8  Wave function c for 
a particle incident from the left on 
a barrier of height U and width L. 
The wave function is plotted ver-
tically from an axis positioned at 
the energy of the particle.

10It is common in physics to refer to L as the length of a well but the width of a barrier.

PitFall PrEVEntiOn 40.4
“Height” on an Energy Diagram  
The word height (as in barrier 
height) refers to an energy in 
discussions of barriers in poten-
tial-energy diagrams. For exam-
ple, we might say the height of 
the barrier is 10 eV. On the other 
hand, the barrier width refers to 
the traditional usage of such a 
word and is an actual physical 
length measurement between the 
locations of the two vertical sides 
of the barrier.
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An approximate expression for the transmission coefficient that is obtained in the 
case of T ,, 1 (a very wide barrier or a very high barrier, that is, U .. E) is

 T < e22CL (40.28)

where

 C 5
Ï2m sU 2 Ed

U
 (40.29)

This quantum model of barrier penetration and specifically Equation 40.28 show 
that T can be nonzero. That the phenomenon of tunneling is observed experimen-
tally provides further confidence in the principles of quantum physics.

Q uick Quiz 40.4  Which of the following changes would increase the proba-
bility of transmission of a particle through a potential barrier? (You may choose 
more than one answer.) (a) decreasing the width of the barrier (b) increasing 
the width of the barrier (c) decreasing the height of the barrier (d) increasing 
the height of the barrier (e) decreasing the kinetic energy of the incident parti-
cle (f) increasing the kinetic energy of the incident particle

 Example 40.4    Transmission Coefficient for an Electron

A 30-eV electron is incident on a square barrier of height 40 eV.

(A) What is the probability that the electron tunnels through the barrier if its width is 1.0 nm?

S O l U T i O N

Conceptualize Because the particle energy is smaller than the height of the potential barrier, we expect the electron to 
reflect from the barrier with a probability of 100% according to classical physics. Because of the tunneling phenomenon, how-
ever, there is a finite probability that the particle can appear on the other side of the barrier.

Categorize We evaluate the probability using an equation developed in this section, so we categorize this example as a substi-
tution problem.

Evaluate the quantity U 2 E that appears U 2 E 5 40 eV 2 30 eV 5 10 eV S1.6 3 10219 J

1 eV D 5 1.6 3 10218 J 
in Equation 40.29:

Evaluate the quantity 2CL using  s1d 2CL 5 2 
Ï2s9.11 3 10231 kgds1.6 3 10218 Jd

1.055 3 10234 J ? s
 s1.0 3 1029 md 5 32.4 

Equation 40.29:

From Equation 40.28, find the probability  T < e22CL 5 e232.4 5  8.5 3 10215 
of tunneling through the barrier:

(B) What is the probability that the electron tunnels through the barrier if its width is 0.10 nm?

S O l U T i O N

In this case, the width L in Equation (1) is one-tenth  2CL 5 (0.1)(32.4) 5 3.24 
as large, so evaluate the new value of 2CL:

From Equation 40.28, find the new probability of  T < e22CL 5 e23.24 5  0.039 
tunneling through the barrier:

In part (A), the electron has approximately 1 chance in 1014 of tunneling through the barrier. In part (B), however, the elec-
tron has a much higher probability (3.9%) of penetrating the barrier. Therefore, reducing the width of the barrier by only one 
order of magnitude increases the probability of tunneling by about 12 orders of magnitude!
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   40.6    Applications of Tunneling
As we have seen, tunneling is a quantum phenomenon, a manifestation of the wave 
nature of matter. Many examples exist (on the atomic and nuclear scales) for which 
tunneling is very important.

alpha Decay
One form of radioactive decay is the emission of alpha particles (the nuclei of 
helium atoms) by unstable, heavy nuclei (Chapter 43). To escape from the nucleus, 
an alpha particle must penetrate a barrier whose height is several times larger 
than the energy of the nucleus–alpha particle system as shown in Figure 40.9. The 
barrier results from a combination of the attractive nuclear force (discussed in 
Chapter  43) and the Coulomb repulsion (discussed in Chapter 22) between the 
alpha particle and the rest of the nucleus. Occasionally, an alpha particle tunnels 
through the barrier, which explains the basic mechanism for this type of decay and 
the large variations in the mean lifetimes of various radioactive nuclei.

nuclear Fusion
The basic reaction that powers the Sun and, indirectly, almost everything else in 
the solar system is fusion, which we shall study in Chapter 43. In one step of the 
process that occurs at the core of the Sun, protons must approach one another to 
within such a small distance that they fuse and form a deuterium nucleus. (See Sec-
tion 43.10.) According to classical physics, these protons cannot overcome and pen-
etrate the barrier caused by their mutual electrical repulsion. Quantum mechani-
cally, however, the protons are able to tunnel through the barrier and fuse together.

scanning tunneling Microscopes
The scanning tunneling microscope (STM), about which you asked in the opening 
storyline, enables scientists to obtain highly detailed images of surfaces at resolu-
tions comparable to the size of a single atom. The chapter-opening image, showing 
the surface of a piece of graphite, demonstrates what STMs can do. What makes 
this image so remarkable is that its resolution is approximately 0.2 nm. For an 
optical microscope, the resolution is limited by the wavelength of the light used to 
make the image. Therefore, an optical microscope has a resolution no better than 
200 nm, about half the wavelength of visible light, and so could never show the 
detail displayed in the image.

Scanning tunneling microscopes achieve such high resolution by using the basic 
idea shown in Figure 40.10. An electrically conducting probe with a very sharp tip 
is brought near the surface to be studied. The empty space between tip and surface 
represents the “barrier” we have been discussing, and the tip and surface are the 
two walls of the “potential well.” Because electrons obey quantum rules rather than 
Newtonian rules, they can “tunnel” across the barrier of empty space. If a voltage is 
applied between surface and tip, electrons in the atoms of the surface material can 
tunnel between surface and tip to produce a tunneling current. In this way, the tip 
samples the distribution of electrons immediately above the surface.

In the empty space between tip and surface, the electron wave function falls off 
exponentially (see region II in Fig. 40.8 and Example 40.4). For tip-to-surface dis-
tances z . 1 nm (that is, beyond a few atomic diameters), essentially no tunneling 
takes place. This exponential behavior causes the current of electrons tunneling 
from surface to tip to depend very strongly on z. By monitoring the tunneling cur-
rent as the tip is scanned over the surface, scientists obtain a sensitive measure of 
the topography of the electron distribution on the surface. The result of this scan 
is used to make images like that in the chapter-opening photo. In this way, the 
STM can measure the height of surface features to within 0.001 nm, approximately 
1/100 of an atomic diameter!

U(r)

� 30 MeV

E

0
r

� �40 MeV

The alpha particle can tunnel 
through the barrier and escape 
from the nucleus even though 
its energy is lower than the 
height of the well.

Figure 40.9  The potential well 
for an alpha particle in a nucleus. 
The alpha particle energy E is typ-
ically 3–7 MeV.

z

A

�

�

Figure 40.10  Schematic view of a 
scanning tunneling microscope. A 
scan of the tip over the sample can 
reveal surface contours down to 
the atomic level. An STM image is 
composed of a series of scans dis-
placed laterally from one another. 
(Based on a drawing from P. K. 
Hansma, V. B. Elings, O. Marti, 
and C. Bracker, Science 242:209, 
1988. © 1988 by the AAAS.)
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You can appreciate the sensitivity of STMs by examining the chapter-opening 
photo. Of the six carbon atoms in each ring, three appear lower than the other 
three. In fact, all six atoms are at the same height, but all have slightly different 
electron distributions. The three atoms that appear lower are bonded to other car-
bon atoms directly beneath them in the underlying atomic layer; as a result, their 
electron distributions, which are responsible for the bonding, extend downward 
beneath the surface. The atoms in the surface layer that appear higher do not lie 
directly over subsurface atoms and hence are not bonded to any underlying atoms. 
For these higher-appearing atoms, the electron distribution extends upward into 
the space above the surface. Because STMs map the topography of the electron dis-
tribution, this extra electron density makes these atoms appear higher in the image.

The STM has one serious limitation: Its operation depends on the electrical con-
ductivity of the sample and the tip. Unfortunately, most materials are not electri-
cally conductive at their surfaces. Even metals, which are usually excellent electrical 
conductors, are covered with nonconductive oxides. A newer microscope, the 
atomic force microscope, or AFM, overcomes this limitation.

   40.7    The Simple Harmonic Oscillator
In Figure 20.5c, we studied a vibrating diatomic molecule in terms of its contribu-
tion to molar specific heat. In Chapter 42, we will investigate molecular spectros-
copy, including the effects of vibrating diatomic molecules. Let’s make a connec-
tion to Chapter 20 and prepare for Chapter 42 by applying a quantum mechanical 
approach to an analysis model with which we are familiar: the particle in simple 
harmonic motion.

Consider a particle that is subject to a linear restoring force F 5 2kx, where k 
is a constant and x is the position of the particle relative to equilibrium (x 5 0). 
The classical description of such a situation is provided by the particle in simple 
harmonic motion analysis model, which was discussed in Chapter 15. The potential 
energy of the system is, from Equation 15.20, 

Us 5 1
2kx2 5 1

2mv2x2

where the angular frequency of vibration is v 5 Ïkym. Classically, if the particle 
is displaced from its equilibrium position and released, it oscillates between the 
points x 5 2A and x 5 A, where A is the amplitude of the motion. Furthermore, its 
total energy E is, from Equation 15.21,

E 5 K 1 Us 5 1
2kA2 5 1

2mv2A2

In the classical model, any value of E is allowed, including E 5 0, which is the total 
energy when the particle is at rest at x 5 0.

Let’s investigate how the simple harmonic oscillator is treated from a quantum 
point of view. The Schrödinger equation for this problem is obtained by substitut-
ing U 5 1

2mv2x2 into Equation 40.15:

 2 

U2

2m
  

d2c

dx2 1 1
2mv2x2c 5 E c (40.30)

The mathematical technique for solving this equation is beyond the level of this 
book; nonetheless, it is instructive to guess at a solution. We take as our guess the 
following wave function:

 c 5 Be2Cx 2 (40.31)

Substituting this function into Equation 40.30 shows that it is a satisfactory solution 
to the Schrödinger equation, provided that

C 5
mv

2U
 and E 5 1

2 Uv
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It turns out that the solution we have guessed corresponds to the ground state of 
the system, which has an energy 12 Uv. Because C 5 mvy2U, it follows from Equation 
40.31 that the wave function for this state is

 c 5 Be2sm vy2Udx 2 (40.32)

where B is a constant to be determined from the normalization condition. This 
result is but one solution to Equation 40.30. The remaining solutions that describe 
the excited states are more complicated, but all solutions include the exponential 
factor e2Cx2.

The energy levels of a harmonic oscillator are quantized as we would expect 
because the oscillating particle is bound to stay near x 5 0. The energy of a state 
having an arbitrary quantum number n is

 En 5 sn 1 1
2dUv     n 5 0, 1, 2, Á  (40.33)

The state n 5 0 corresponds to the ground state, whose energy is E0 5 1
2 Uv; the 

state n 5 1 corresponds to the first excited state, whose energy is E1 5 3
2 Uv; and so 

on. The energy-level diagram for this system is shown in Figure 40.11. The separa-
tions between adjacent levels are equal and given by

 DE 5 Uv 5 1 h
2p2s2pf d 5 hf  (40.34)

Notice that the energy levels for the harmonic oscillator in Figure 40.11 are 
equally spaced, just as Planck proposed for the oscillators in the walls of the cavity 
that was used in the model for blackbody radiation in Section 39.1. In fact, the 
spacing between levels is exactly the same as Planck’s spacing, as can be seen by com-
paring Equations 39.5 and 40.34! This represents another remarkable connection 
between a semiclassical approach, such as that by Planck, and the full quantum 
approach discussed here. Planck’s Equation 39.4 for the energy levels of the oscilla-
tors differs from Equation 40.33 only in the term 12 added to n. This additional term 
does not affect the energy emitted in a transition. 

  Wave function for the  
ground state of a simple  
harmonic oscillator

5
2E2 � – �ω

E3 � – �7
2 ω

E4 � – �9
2 ω

E5 � — �11
2 ω

U(x)

0
x

E � �
E1 � – �3

2

E0 � – �1
2

ω

ω

ω�

The levels are equally spaced, 
with separation        The ground-
state energy is E0 � – �1

2 ω
�ω.

.

Figure 40.11  Energy-level 
diagram for a simple harmonic 
oscillator, superimposed on the 
potential energy function.

 Example 40.5    Molar Specific Heat of Hydrogen Gas

In Figure 20.6 (Section 20.3), which shows the molar specific heat of hydrogen as a function of temperature, vibration does 
not contribute to the molar specific heat at room temperature. Explain why, modeling the hydrogen molecule as a simple 
harmonic oscillator. The effective spring constant for the bond in the hydrogen molecule is 573 N/m.

S O l U T i O N

Conceptualize Imagine the only mode of vibration available to a diatomic molecule. This mode (shown in Fig. 20.5c) consists 
of the two atoms always moving in opposite directions with equal speeds.

Categorize We categorize this example as a quantum harmonic oscillator problem, with the molecule modeled as a 
two-particle system.

Analyze The motion of the particles relative to the center of mass can be analyzed by considering the oscillation of a single 
particle with reduced mass m. (See Problem 30.)

Use the result of Problem 30 to evaluate the reduced  m 5
m1 m 2

m1 1 m 2

5
m 2

2m
5 1

2m 
mass of the hydrogen molecule, in which the masses  
of the two particles are the same:

Using Equation 40.34 and Equation 15.9, calculate the DE 5 Uv 5 U Î k
m

5 U Î k
1
2m

5 U Î2k
m

 
energy necessary to excite the molecule from its ground  
vibrational state to its first excited vibrational state:

continued
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40.5 c o n t i n u e d

Substitute numerical values, noting that m is the  DE 5 s1.055 3 10234 J ? sdÎ 2s573 Nymd
1.67 3 10227 kg

5 8.74 3 10220 J 
mass of a hydrogen atom:

Set this energy equal to 32k BT  from Equation 20.19 and  3
2k BT 5 DE  

find the temperature at which the average molecular  
translational kinetic energy is equal to that required    T 5 2

3SDE
k B
D 5 2

3S 8.74 3 10220 J

1.38 3 10223 JyKD 5 4.22 3 103 K 
to excite the first vibrational state of the molecule:

Finalize The temperature of the gas must be more than 4 000 K for the translational kinetic energy to be comparable to the 
energy required to excite the first vibrational state. This excitation energy must come from collisions between molecules, so if 
the molecules do not have sufficient translational kinetic energy, they cannot be excited to the first vibrational state and vibra-
tion does not contribute to the molar specific heat. Hence, the curve in Figure 20.6 does not rise to a value corresponding to 
the contribution of vibration until the hydrogen gas has been raised to thousands of kelvins.

Figure 20.6 shows that rotational energy levels must be more closely spaced in energy than vibrational levels because they 
are excited at a lower temperature than the vibrational levels. The translational energy levels are those of a particle in a 
three-dimensional box, where the box is the container holding the gas. These levels are given by an expression similar to 
Equation 40.14. Because the box is macroscopic in size, L is very large and the energy levels are very close together. In fact, 
they are so close together that translational energy levels are excited at the temperature at which liquid hydrogen becomes a 
gas shown in Figure 20.6.

summary
 › Definitions

The wave function C for a system is a mathematical function that can be written as a prod-
uct of a space function c for one particle of the system and a complex time function:

 Cs rS1, rS2, rS3, Á , rSj , Á , td 5 cs rSj de
2ivt (40.2)

where v (5 2pf) is the angular frequency of the wave function and i 5 Ï21. The wave 
function contains within it all the information that can be known about the particle.

The measured position x of a par-
ticle, averaged over many trials, is 
called the expectation value of x 
and is defined by

 kxl ; #
`

2`

c*x c dx (40.8)

 › Concepts and Principles 

In quantum mechanics, a particle in a system can be repre-
sented by a wave function c(x, y, z). The probability per unit 
volume (or probability density) that a particle will be found 
at a point is |c|2 5 c*c, where c* is the complex conjugate of 
c. If the particle is confined to moving along the x axis, the 
probability that it is located in an interval dx is |c|2 dx. Fur-
thermore, the sum of all these probabilities over all values of 
x must be 1:

 #
`

2`

ucu2 dx 5 1 (40.7)

This expression is called the normalization condition.

If a particle of mass m is confined to moving in a one-dimen-
sional box of length L whose walls are impenetrable, then c 
must be zero at the walls and outside the box. The wave func-
tions for this system are given by

 csxd 5 A sin Snpx
L D n 5 1, 2, 3, Á  (40.12)

where A is the maximum value of c. The allowed states of a 
particle in a box have quantized energies given by

 En 5 S h2

8mL2Dn2 n 5 1, 2, 3, Á  (40.14)

The wave function for a system must satisfy the Schrö dinger equation. The time-independent Schrödinger equation for a particle 
confined to moving along the x axis is

 2 

U2

2m
  

d 2c

dx2 1 U c 5 E c (40.15)

where U is the potential energy of the system and E is the total energy.
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 › Analysis Models for Problem Solving

Quantum Particle Under Boundary Conditions. An interaction of a quantum particle with its 
environment represents one or more boundary conditions. If the interaction restricts the par-
ticle to a finite region of space, the energy of the system is quantized. All wave functions must 
satisfy the following four boundary conditions: (1) c(x) must remain finite as x approaches 0, 
(2) c(x) must approach zero as x approaches 6 ,̀ (3) c(x) must be continuous for all values of x, 
and (4) dc/dx must be continuous for all finite values of U(x). If the solution to Equation 40.15 
is piecewise, conditions (3) and (4) must be applied at the boundaries between regions of x in 
which Equation 40.15 has been solved.

0 L
x

n � 1

n � 2

n � 3

2

1

3

��

c

c

c

think–Pair–share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. In Problem 14, we find that the particle in a box is not a 
good model for the electron in a hydrogen atom. As it turns 
out, the particle in a box is a reasonable first approximation 
for a model for the protons in the nucleus. Work with your 
group to show this as follows. Imagine a proton confined 
in an infinitely high square well of length 10.0 fm, a typi-
cal nuclear diameter. Assuming the proton makes a transi-
tion from the n 5 2 state to the ground state, calculate (a) 
the energy and (b) the wavelength of the emitted photon. 
(c) Identify the region of the electromagnetic spectrum to 
which this wavelength belongs.

2. ACTiViTy  Your group is investigating a quantum particle 
that is in the n 5 1 state of an infinitely deep square well 
with walls at x 5 0 and x 5 L. Let , be an arbitrary value of 
x between x 5 0 and x 5 L. (a) Find an expression for the 
probability, as a function of ,, that the particle will be found 
between x 5 0 and x 5 ,—that is, to the left of position ,. 
(b) Test your expression for the correct values of the proba-
bility at , 5 0, / 5 1

2L, and , 5 L. (c) Find the value of , for 
which the probability is four times as great that the particle 
is to the left of , than to the right of ,.

3. In Section 40.4, we discussed the wave functions for a parti-
cle in a finite well and boundary conditions on those wave 
functions. We did not discuss the energies of the particles 
trapped in such a well. That is because there is not an ana-
lytic solution to use to evaluate these energies. In this prob-
lem, we will explore a way to find the energies for a par-
ticular well. Work together as a group to carefully follow 
the logic expressed in the problem statement, and perform 
parts (a) through (h) below. Imagine an electron in a quan-
tum dot of depth U 5 10.0 eV and width L 5 0.500 nm. We 
will modify Figure 40.6 so as to put the center of the well 
at the origin. That will allow us to take advantage of some 
symmetries. Figure TP40.3 shows this geometry. We can 
modify the solutions and boundary conditions in Equations 
40.22–40.27 as follows:

cI 5 Ae 
Cx            for x , 2

L
2

cII 5 F sin kx 1 G cos kx         for 2
L
2

, x ,
L
2

cIII 5 Be2Cx            for x .
L
2

cI 5 cII       and       
dcI

dx
5

dcII

dx
       at x 5 2 

L
2

cII 5 cIII       and       
dcII

dx
5

dcIII

dx
       at x 5

L
2

We recognize that solutions will be either symmetric or 
antisymmetric around x 5 0. (See Figure 40.7a, where 
the wave functions are either symmetric or antisymmetric 
around L/2.) (a) Apply the four boundary conditions to 
find relationships among the constants A, B, C, and k. Show 
that symmetric solutions give A 5 B and

C 5 k tan 1kL
2 2

and that antisymmetric solutions give A 5 2B and 

C 5 2k cot 1kL
2 2

I

E
U

II III

x � � x � 0
2
L

x �
2
L

Figure TP40.3
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These last two equations are transcendental and cannot be 
solved analytically. Both k and C depend on the quantized 
energy values E of the electron (Eqs. 40.17 and 40.29), so we 
will need to follow a creative procedure to find those ener-
gies. (b) Define two new dimensionless variables a and b, 
each of which depends on E, such that

a 5
CL
2

            b 5
kL
2

Show that

a2 1 b2 5 r2

where

r 5
L
UÎmeU

2
 

(c) Show that the equations in part (a) can be expressed as

Ïr2 2 b2 5 b tan b
Ïr2 2 b2 5 2b cot b

(d) Only certain values of b will satisfy the equations in 
part (c). These quantized values of b, which we will call bE, 
will allow us to find the quantized values of the energy E. 
Show that

E 5
b 

2
E

r 
2 U

(e) Prepare a graph of the left side of the equations in part 
(c) versus b. The result, if the axes have the same scales, 
should be a circle of radius r, since a2 1 b2 5 r2. Add to the 
graph curves for the right sides of the equations in part (c) 
versus b. (f) Find the values of b for which the curves inter-
sect. (g) How many quantized energies are there for this 
well? (h) What are the quantized energies?

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

sEctiOn 40.1 The Wave Function

1. A free electron has a wave function

c(x) 5 Ae i(5.0031010
 x)

where x is in meters. Find its (a) de Broglie wavelength, 
(b) momentum, and (c) kinetic energy in electron volts.

2. The wave function for a particle is given by c(x) 5 Ae2|x|/a, 
where A and a are constants. (a) Sketch this function for val-
ues of x in the interval 23a , x , 3a. (b) Determine the 
value of A. (c) Find the probability that the particle will be 
found in the interval 2a , x , a.

3. The wave function for a quantum particle is

csxd 5Î a
psx 2 1 a 2d

for a . 0 and 2` , x , 1 .̀ Determine the probability that 
the particle is located somewhere between x 5 2a and x 5 1a.

sEctiOn 40.2 Analysis Model: Quantum Particle  
Under Boundary Conditions

4. Why is the following situation impossible? A proton is in an 
infinitely deep potential well of length 1.00 nm. It absorbs 
a microwave photon of wavelength 6.06 mm and is excited 
into the next available quantum state.

5. (a) Use the quantum-particle-in-a-box model to calculate 
the first three energy levels of a neutron trapped in an 
atomic nucleus of diameter 20.0 fm. (b) Explain whether the 
energy-level differences have a realistic order of magnitude.

6. A proton is confined to move in a one-dimensional box of 
length 0.200 nm. (a) Find the lowest possible energy of the 
proton. (b) What If? What is the lowest possible energy of an 
electron confined to the same box? (c) How do you account 
for the great difference in your results for parts (a) and (b)?

7. An electron is contained in a one-dimensional box of length 
0.100 nm. (a) Draw an energy-level diagram for the electron 
for levels up to n 5 4. (b) Photons are emitted by the elec-
tron making downward transitions that could eventually 
carry it from the n 5 4 state to the n 5 1 state. Find the 
wavelengths of all such photons.

8. A 4.00-g particle confined to a box of length L has a speed 
of 1.00 mm/s. (a) What is the classical kinetic energy of the 
particle? (b) If the energy of the first excited state (n 5 2) is 
equal to the kinetic energy found in part (a), what is the value 
of L? (c) Is the result found in part (b) realistic? Explain.

9. For a quantum particle of mass m in the ground state of 
a square well with length L and infinitely high walls, the 
uncertainty in position is Dx < L. (a) Use the uncertainty 
principle to estimate the uncertainty in its momentum. 
(b) Because the particle stays inside the box, its average 
momentum must be zero. Its average squared momentum 
is then kp 2l < sDpd2. Estimate the energy of the particle. (c) 
State how the result of part (b) compares with the actual 
ground-state energy.

10. The wave function for a quantum particle confined to mov-
ing in a one-dimensional box located between x 5 0 and  
x 5 L is

csxd 5 A sin Snpx
L D

Use the normalization condition on c to show that

A 5Î2
L

11. A quantum particle in an infinitely deep square well has a 
wave function given by

c2sxd 5Î2
L

 sin S2px
L D

for 0 # x # L and zero otherwise. (a) Determine the expec-
tation value of x. (b) Determine the probability of finding 

T

V
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the particle near 1
2L by calculating the probability that the 

particle lies in the range 0.490L # x # 0.510L. (c) What If? 
Determine the probability of finding the particle near 14L by 
calculating the probability that the particle lies in the range 
0.240L # x # 0.260L. (d) Argue that the result of part (a) 
does not contradict the results of parts (b) and (c).

12. An electron in an infinitely deep square well has a wave 
function that is given by

c3sxd 5Î2
L

 sin S3px
L D

for 0 # x # L and is zero otherwise. (a) What are the most 
probable positions of the electron? (b) Explain how you 
identify them.

13. A quantum particle in an infinitely deep square well has a 
wave function that is given by

c1sxd 5Î2
L

 sin Spx
L D

for 0 # x # L and is zero otherwise. (a) Determine the prob-
ability of finding the particle between x 5 0 and x 5 1

3L. 
(b) Use the result of this calculation and a symmetry argu-
ment to find the probability of finding the particle between 
x 5 1

3L and x 5 2
3L. Do not re-evaluate the integral.

14. While studying the particle in a box in this chapter, you 
come up with what you think is a brilliant idea. Suppose 
the electron in the hydrogen atom is modeled like a par-
ticle in a one-dimensional box! You look online and learn 
that the transition from the first excited state of hydrogen 
to the ground state emits a photon of wavelength 121.6 nm. 
(a)  From this information, you determine the size of the 
box in which the electron is trapped. (b) After being quite 
excited about your answer to part (a), because it is on the 
order of the size of an atom, you predict the wavelength of 
the transition from the second excited state of the particle 
in the box in part (a) to the ground state, and compare it to 
the corresponding wavelength in the hydrogen atom spec-
trum, 102.6 nm.

sEctiOn 40.3 The Schrödinger Equation

15. The wave function of a quantum particle of mass m is

c(x) 5 A cos (kx) 1 B sin (kx)

where A, B, and k are constants. (a) Assuming the particle is 
free (U 5 0), show that c(x) is a solution of the Schrödinger 
equation (Eq. 40.15). (b) Find the corresponding energy E 
of the particle.

16. Show that the wave function c 5 Ae i(kx2vt) is a solution to 
the Schrödinger equation (Eq. 40.15), where k 5 2p/l and 
U 5 0.

17. In a region of space, a quantum particle with zero total 
energy has a wave function

c(x) 5 Axe2x2/L2

(a) Find the potential energy U as a function of x. (b) Make 
a sketch of U(x) versus x.

18. Consider a quantum particle moving in a one- dimensional 
box for which the walls are at x 5 2L/2 and x 5 L/2. (a) 

Write the wave functions and probability densities for n 5 1, 
n 5 2, and n 5 3. (b) Sketch the wave functions and proba-
bility densities.

sEctiOn 40.4 A Particle in a Well of Finite Height

19. Sketch (a) the wave function c(x) and (b) the probability 
density |c(x)|2 for the n 5 4 state of a quantum particle in a 
finite potential well. (See Fig. 40.7.)

20. Suppose a quantum particle is in its ground state in a box 
that has infinitely high walls (see Fig. 40.4a). Now suppose 
the left-hand wall is suddenly lowered to a finite height and 
width. (a) Qualitatively sketch the wave function for the 
particle a short time later. (b) If the box has a length L, 
what is the wavelength of the wave that penetrates the left-
hand wall?

sEctiOn 40.5 Tunneling Through a Potential Energy Barrier

21. An electron having total energy E 5 4.50 eV approaches 
a rectangular energy barrier with U 5 5.00 eV and L 5 
950 pm as shown in Figure P40.21. Classically, the electron 
cannot pass through the barrier because E , U. Quan-
tum-mechanically, however, the probability of tunneling is 
not zero. (a) Calculate this probability, which is the trans-
mission coefficient. (b) To what value would the width L of 
the potential barrier have to be increased for the chance of 
an incident 4.50-eV electron tunneling through the barrier 
to be one in one million?

sEctiOn 40.6 Applications of Tunneling

22. The design criterion for a typical scanning tunneling micro-
scope (STM) specifies that it must be able to detect, on the 
sample below its tip, surface features that differ in height by 
only 0.002 00 nm. Assuming the electron transmission coef-
ficient is e22CL with C 5 10.0 nm21, what percentage change 
in electron transmission must the electronics of the STM be 
able to detect to achieve this resolution?

sEctiOn 40.7 The Simple Harmonic Oscillator

23. A quantum simple harmonic oscillator consists of an elec-
tron bound by a restoring force proportional to its position 
relative to a certain equilibrium point. The proportionality 
constant is 8.99 N/m. What is the longest wavelength of light 
that can excite the oscillator?

24. A quantum simple harmonic oscillator consists of a parti-
cle of mass m bound by a restoring force proportional to its 
position relative to a certain equilibrium point. The pro-
portionality constant is k. What is the longest wavelength of 
light that can excite the oscillator?
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1102 Chapter 40 Quantum Mechanics

25. (a) Normalize the wave function for the ground state of a 
simple harmonic oscillator. That is, apply Equation 40.7 
to Equation 40.32 and find the required value for the 
constant B in terms of m, v, and fundamental constants. 
(b) Determine the probability of finding the oscillator in 
a narrow interval 2d/2 , x , d/2 around its equilibrium 
position.

26. A one-dimensional harmonic oscillator wave function is

c 5 Axe2bx2

(a) Show that c satisfies Equation 40.30. (b) Find b and the 
total energy E. (c) Is this wave function for the ground state 
or for the first excited state?

27. The total energy of a particle–spring system in which the 
particle moves with simple harmonic motion along the 
x axis is

E 5
px

2

2m
1

kx2

2

where px is the momentum of the quantum particle and k 
is the spring constant. (a) Using the uncertainty principle, 
show that this expression can also be written as

E $  
px

2

2m
1

k U2

8px
2

(b) Show that the minimum energy of the harmonic oscil-
lator is

E min 5 K 1 U 5 1
4 U Î k

m
1

Uv

4
5

Uv

2

28. You are working as an assistant for a physics professor. For 
an upcoming lecture, he wants you to prepare a presenta-
tion slide showing the four lowest energies of an isotropic 
harmonic oscillator in three dimensions. He also wants 
you to indicate on the slide the degeneracies of the energy 
levels—that is, the number of unique sets of quantum num-
bers for the states that have the same energy. He explains 
that the three-dimensional oscillator wave function can be 
expressed as a simple product of the three wave functions 
of each one-dimensional oscillator. Because the oscillator is 
isotropic, the spring constant is the same in all three direc-
tions, so the energy of a state is 

E 5 (nx 1 ny 1 nz 1 3
2)Uv

where nx, ny, and nz are the quantum numbers associated 
with the one-dimensional oscillators in each dimension. 
The quantum numbers are independent of each other. As 
usual, the professor wants the slide prepared for this after-
noon’s lecture.

29. Show that Equation 40.32 is a solution of Equation 40.30 
with energy E 5 1

2 Uv.

30. Two particles with masses m1 and m2 are joined by a light 
spring of force constant k. They vibrate along a straight 
line with their center of mass fixed. (a) Show that the total 
energy

1
2m1u1

2 1 1
2m2u 2

2 1 1
2kx2

can be written as 1
2mu2 1 1

2kx2, where u 5 |u1| 1 |u2| is the 
relative speed of the particles and m 5 m1m2/(m1 1 m2) is the 
reduced mass of the system. This result demonstrates that 
the pair of freely vibrating particles can be precisely mod-
eled as a single particle vibrating on one end of a spring that 
has its other end fixed. (b) Differentiate the equation

1
2mu2 1 1

2kx2 5 constant

with respect to x. Proceed to show that the system executes 
simple harmonic motion. (c) Find its frequency.

aDDitiOnal PrOBlEMs

31. Prove that the first term in the Schrödinger equation, 
2sU2y2mdsd 2cydx2d, reduces to the kinetic energy of the 
quantum particle multiplied by the wave function (a) for 
a freely moving particle, with the wave function given by 
Equation 40.4, and (b) for a particle in a box, with the wave 
function given by Equation 40.13.

32. Prove that assuming n 5 0 for a quantum particle in an 
infinitely deep potential well leads to a violation of the 
uncertainty principle Dpx Dx $ Uy2.

33. Calculate the transmission probability for quantum-me-
chanical tunneling in each of the following cases. (a)  An 
electron with an energy deficit of U 2 E 5 0.010 0  eV is 
incident on a square barrier of width L 5 0.100 nm. (b) An 
electron with an energy deficit of 1.00 eV is incident on the 
same barrier. (c) An alpha particle (mass 6.64 3 10227 kg) 
with an energy deficit of 1.00 MeV is incident on a square 
barrier of width 1.00 fm. (d) An 8.00-kg bowling ball with 
an energy deficit of 1.00 J is incident on a square barrier of 
width 2.00 cm.

34. An electron in an infinitely deep potential well has a 
ground-state energy of 0.300 eV. (a) Show that the photon 
emitted in a transition from the n 5 3 state to the n 5 1 
state has a wavelength of 517 nm, which makes it green vis-
ible light. (b) Find the wavelength and the spectral region 
for each of the other five transitions that take place among 
the four lowest energy levels.

35. You are hanging a picture in your living room. The picture 
is of width ,, height h, and uniform density. You stretch a 
light wire tightly between eyelets located at the upper cor-
ners of the picture. You place the wire on a nail that you 
pounded into the wall, such that the nail is located at the 
exact center of the wire, and the picture hangs as shown in 
Figure P40.35a, with the two halves of the wire almost hor-
izontal because the wire is so tight. Unfortunately, the wire 
and the nail are almost friction-free, and with just the slight-
est vibration, such as that from closing a door, the picture 
slides into the configuration shown in Figure P40.35b. You 
realize that you have created a macroscopic two-state quan-
tized system! And the picture keeps falling from the upper 
state to the ground state! Determine the energy that you 
must transfer into the system to change it from the ground 
state to the higher state.
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36. A marble rolls back and forth across a shoebox at a constant 
speed of 0.8 m/s. Make an order-of-magnitude estimate of 
the probability of it escaping through the wall of the box 
by quantum tunneling. State the quantities you take as data 
and the values you measure or estimate for them.

37. An electron confined to a box absorbs a photon with wave-
length l. As a result, the electron makes a transition from 
the n 5 1 state to the n 5 3 state. (a) Find the length of the 
box. (b) What is the wavelength l9 of the photon emitted 
when the electron makes a transition from the n 5 3 state 
to the n 5 2 state?

38. For a quantum particle described by a wave function c(x), 
the expectation value of a physical quantity f(x) associated 
with the particle is defined by

k f sxdl ; #
`

2`

c*f sxdc dx

For a particle in an infinitely deep one-dimensional box 
extending from x 5 0 to x 5 L, show that

kx2l 5
L2

3
2

L2

2n2p2

39. A quantum particle of mass m is placed in a one- dimensional 
box of length L. Assume the box is so small that the 
particle’s motion is relativistic and K 5 p2/2m is not valid. 
(a) Derive an expression for the kinetic energy levels of the 
particle. (b) Assume the particle is an electron in a box of 
length L 5 1.00 3 10212 m. Find its lowest possible kinetic 
energy. (c) By what percent is the nonrelativistic equation in 
error? Suggestion: See Equation 38.23.

40. Why is the following situation impossible? A particle is in the 
ground state of an infinite square well of length L. A light 
source is adjusted so that the photons of wavelength l are 
absorbed by the particle as it makes a transition to the first 
excited state. An identical particle is in the ground state 
of a finite square well of length L. The light source sends 
photons of the same wavelength l toward this particle. The 
photons are not absorbed because the allowed energies of 
the finite square well are different from those of the infinite 
square well. To cause the photons to be absorbed, you 
move the light source at a high speed toward the particle in 
the finite square well. You are able to find a speed at which 
the Doppler-shifted photons are absorbed as the particle 
makes a transition to the first excited state.

41. You are working for a research laboratory, helping your 
supervisor on a new experiment in which particles of mass 
m, variable energy E, and nonrelativistic speeds are fired at 
a potential step of fixed height U. Figure P40.41 shows the 
potential step and an incoming particle. In Problem 45 you 
are asked to show that the reflection coefficient is

R 5
(k1 2 k2)

2

(k1 1 k2)
2

where R represents the probability of a particle being 
reflected from the step and 

k1 5
Ï2mE

U

k2 5
Ï2m(E 2 U )

U

Your supervisor asks you to determine (a) the energy E with 
which to fire the particles toward the step so that half of 
the incident particles reflect, and (b) the fraction to which 
the speed of the transmitted particles in (a) is reduced com-
pared to the incident particles.

42. An electron is confined to move in the xy plane in a rectan-
gle whose dimensions are Lx and Ly. That is, the electron is 
trapped in a two-dimensional potential well having lengths 
of Lx and Ly. In this situation, the allowed energies of the 
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Figure P40.41  
Problems 41 and 45.
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1104 Chapter 40 Quantum Mechanics

electron depend on two quantum numbers nx and ny and 
are given by

E 5
h 2

8me

 Snx
2

Lx
2 1

ny
2

L y
2D

Using this information, we wish to find the wavelength of a 
photon needed to excite the electron from the ground state 
to the second excited state, assuming Lx 5 Ly 5 L. (a) Using 
the assumption on the lengths, write an expression for the 
allowed energies of the electron in terms of the quantum 
numbers nx and ny. (b) What values of nx and ny correspond 
to the ground state? (c) Find the energy of the ground 
state. (d) What are the possible values of nx and ny for the 
first excited state, that is, the next-highest state in terms of 
energy? (e) What are the possible values of nx and ny for the 
second excited state? (f) Using the values in part (e), what 
is the energy of the second excited state? (g)  What is the 
energy difference between the ground state and the second 
excited state? (h) What is the wavelength of a photon that 
will cause the transition between the ground state and the 
second excited state?

43. A quantum particle has a wave function

csxd 5   Î2
a

 e2xya for x . 0

0 for x , 0

(a) Find and sketch the probability density. (b) Find the 
probability that the particle will be at any point where x , 0. 
(c) Show that c is normalized and then (d) find the proba-
bility of finding the particle between x 5 0 and x 5 a.

challEnGE PrOBlEMs

44. Consider a “crystal” consisting of two fixed ions of charge 
1e and two electrons as shown in Figure P40.44. (a) Taking 
into account all the pairs of interactions, find the potential 
energy of the system as a function of d. (b) Assuming the 
electrons to be restricted to a one-dimensional box of length 
3d, find the minimum kinetic energy of the two electrons. 
(c) Find the value of d for which the total energy is a mini-
mum. (d) State how this value of d compares with the spac-
ing of atoms in lithium, which has a density of 0.530 g/cm3  
and a molar mass of 6.94 g/mol.

45. Particles incident from the left in Figure P40.41 are con-
fronted with a step in potential energy. The step has a height 
U at x 5 0. The particles have energy E . U. Classically, all 
the particles would continue moving forward with reduced 
speed. According to quantum mechanics, however, a frac-
tion of the particles are reflected at the step. (a) Prove that 
the reflection coefficient R for this case is

R 5
sk 1 2 k 2d

2

sk 1 1 k 2d
2

where k1 5 2p/l1 and k2 5 2p/l2 are the wave numbers for 
the incident and transmitted particles, respectively. Pro-
ceed as follows. Show that the wave function c1 5 Ae ik1x 1 
Be2ik1x satisfies the Schrödinger equation in region 1, for 
x , 0. Here Aeik1x represents the incident beam and Be2ik1x 
represents the reflected particles. Show that c2 5 Ceik2x 
satisfies the Schrödinger equation in region 2, for x . 0. 
Impose the boundary conditions c1 5 c2 and dc1/dx 5 
dc2/dx, at x 5 0, to find the relationship between B and A. 
Then evaluate R 5 B2/A2. A particle that has kinetic energy 
E 5 7.00 eV is incident from a region where the potential 
energy is zero onto one where U 5 5.00 eV. Find (b) its 
probability of being reflected and (c) its probability of 
being transmitted.

46. An electron is represented by the time-independent wave 
function

csxd 5 5Ae2ax for x . 0
Ae1ax for x , 0

(a) Sketch the wave function as a function of x. (b) Sketch 
the probability density representing the likelihood that the 
electron is found between x and x 1 dx. (c) Only an infinite 
value of potential energy could produce the discontinuity 
in the derivative of the wave function at x 5 0. Aside from 
this feature, argue that c(x) can be a physically reasonable 
wave function. (d) Normalize the wave function. (e) Deter-
mine the probability of finding the electron somewhere in 
the range

2 

1
2a

 #  x #  
1

2a

47. The wave function

csxd 5 Bxe2smvy2U dx 2

is a solution to the simple harmonic oscillator problem. 
(a)  Find the energy of this state. (b) At what position are 
you least likely to find the particle? (c) At what positions are 
you most likely to find the particle? (d) Determine the value 
of B required to normalize the wave function. (e) What If? 
Determine the classical probability of finding the particle 
in an interval of small length d centered at the position 
x 5 2sUymvd1y2. (f) What is the actual probability of finding 
the particle in this interval?

48. (a) Find the normalization constant A for a wave function 
made up of the two lowest states of a quantum particle in a 
box extending from x 5 0 to x 5 L:

csxd 5 A 3sin Spx
L D1 4 sin S2px

L D4
(b) A particle is described in the space 2a # x # a by the 
wave function

csxd 5 A cos Spx
2aD1 B sin Spx

a D
Determine the relationship between the values of A and B 
required for normalization.

5

d d d

Figure P40.44
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Storyline Okay, it’s time to put physics aside and truly relax. You 
decide to spend some quiet time exploring online. You stumble across a story 
about combining candies and soft drink, resulting in an eruption of foam from the 
soft drink bottle. This sounds kind of fun, so you research further. You find that 
countries compete to enter the Guinness Book of Records by causing the simulta-
neous eruption of a large number of soda bottles. The photo above shows a com-
petition in Belgium in which 1 500 soft drink bottles erupted at the same time. You 
wonder why the foam is created in the bottle; it must be some kind of chemical 
reaction. But why do chemicals react in the first place? What is there about the 
atoms that causes them to undergo a chemical reaction when they are near each 
other? Uh-oh, you’re thinking about physics again. Time to read Chapter 41.

ConneCtions In Chapter 40, we introduced some basic concepts and 
techniques used in quantum mechanics along with their applications to various 
one-dimensional systems. In this chapter, we apply quantum mechanics to 
atomic systems. A large portion of the chapter is focused on the application of 
quantum mechanics to the study of the simplest atomic system, the hydrogen 
atom. The solutions of the  Schrödinger equation for some states of hydrogen are  
discussed, together with the quantum numbers used to characterize various 
allowed states. This understanding will allow us to analyze multielectron atoms 
and eventually to understand the reasons for the structure of the periodic table  
of the elements. By the end of the chapter, we will be able to understand the 
operation of a laser, and will be prepared to combine atoms into molecules and 
solids in Chapter 42.

41.1 Atomic Spectra of 
Gases

41.2 Early Models of  
the Atom

41.3 Bohr’s Model of the 
Hydrogen Atom

41.4 The Quantum Model  
of the Hydrogen Atom

41.5 The Wave Functions  
for Hydrogen

41.6 Physical Interpretation 
of the Quantum 
Numbers

41.7 The Exclusion Principle 
and the Periodic Table

41.8 More on Atomic 
Spectra: Visible and 
X-Ray

41.9 Spontaneous and 
Stimulated Transitions

41.10 Lasers

Atomic Physics 41

A candy/soft drink eruption event is held in Leuven, Belgium, in 2008. A large number of soda 
bottles erupts simultaneously. (AFP/Getty Images)
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1106 Chapter 41 Atomic Physics

   41.1    Atomic Spectra of Gases
As pointed out in Section 39.1, all objects emit thermal radiation characterized by a 
continuous distribution of wavelengths (Fig. 39.3), and we needed a quantum-based 
theory to describe the results. In sharp contrast to this continuous- distribution 
spectrum are the discrete wavelengths emitted in a line spectrum, observed when a 
low-pressure gas undergoes an electric discharge. (Electric discharge occurs when 
the gas is subject to a potential difference that creates an electric field greater than 
the dielectric strength of the gas.) Observation and analysis of these spectral lines 
is called emission spectroscopy.

When the light from a gas discharge is examined using a spectrometer (see 
Fig. 37.15), it is found to consist of a few bright lines of color on a generally dark 
background as shown in Figure 41.1a. Each colored line corresponds to a discrete 
wavelength of light emitted from the gas. The three spectra in Figure 41.1a show 
that the wavelengths contained in a given line spectrum are characteristic of the 
element emitting the light. The simplest line spectrum is that for atomic hydrogen, 
and we describe this spectrum in detail. Because no two elements have the same 
line spectrum, spectroscopy represents a practical and sensitive technique for iden-
tifying the elements present in unknown samples.

Another form of spectroscopy very useful in analyzing substances is absorption 
spectroscopy. An absorption spectrum is obtained by passing white light from a 
continuous source through a gas or a dilute solution of the element being ana-
lyzed. The absorption spectrum consists of a series of dark lines superimposed on 
the continuous spectrum of the light source as shown in Figure 41.1b for atomic 
hydrogen. The wavelengths of the absorption spectrum for a gas match precisely 
the wavelengths of the emission spectrum for that gas.

The absorption spectrum of an element has many practical applications. For 
example, the continuous spectrum of radiation emitted by the Sun must pass 
through the cooler gases of the solar atmosphere. The various absorption lines 
observed in the solar spectrum have been used to identify elements in the solar 
atmosphere. In early studies of the solar spectrum, experimenters found some lines 
that did not correspond to any known element. A new element had been discovered!  
The new element was named helium, after the Greek word for Sun, helios. Helium 
was subsequently isolated from subterranean gas on the Earth.

Using this technique, scientists have examined the light from stars other than 
our Sun and have never detected elements other than those present on the Earth. 
Absorption spectroscopy has also been useful in analyzing heavy-metal contamina-
tion of the food chain. For example, the first determination of high levels of mer-
cury in tuna was made with the use of atomic absorption spectroscopy.

Pitfall PreventiOn 41.1
Why Lines? The phrase “spectral 
lines” is often used when discuss-
ing the radiation from atoms. 
Lines are seen because the light 
passes through a long and very 
narrow slit before being separated 
by wavelength. You will see many 
references to these “lines” in both 
physics and chemistry.

400 500 600 700

H

400 500 600 700

Ne

Hg

H

(nm)l

a

b

Figure 41.1  (a) Emission line 
spectra for hydrogen, mercury, 
and neon. (b) The absorption 
spectrum for hydrogen. Notice 
that the dark absorption lines 
occur at the same wavelengths as 
the hydrogen emission lines in (a). 
(K. W. Whitten, R. E. Davis, M. L. 
Peck, and G. G. Stanley, General 
Chemistry, 7th ed., Belmont, CA, 
Brooks/Cole, 2004.)
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    41.2 Early Models of the Atom 1107

From 1860 to 1885, scientists accumulated a great deal of data on atomic emis-
sions using spectroscopic measurements. In 1885, a Swiss schoolteacher, Johann 
Jacob Balmer (1825–1898), found an empirical equation that correctly predicted 
the wavelengths of the red, green, blue-violet, and violet lines from hydrogen in 
Figure 41.1a. Figure 41.2 shows these and other lines (in the ultraviolet) in the 
emission spectrum of hydrogen. The four visible lines occur at the wavelengths 
656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm. The complete set of lines is called 
the Balmer series. The wavelengths of these lines can be described by the follow-
ing equation, which is a modification made by Johannes Rydberg (1854–1919) of  
Balmer’s original equation:

 
1
l

5 R HS 1
22 2

1
n2 D n 5 3, 4, 5, . . .  (41.1)

where R H is a constant now called the Rydberg constant with a value of  
1.097 373 2 3 107 m21. The integer values of n from 3 to 6 give the four visible lines 
from 656.3 nm (red) down to 410.2 nm (violet). Equation 41.1 also describes the 
ultraviolet spectral lines in the Balmer series if n is carried out beyond n 5 6. The 
series limit is the shortest wavelength in the series and corresponds to n S ,̀ with 
a wavelength of 4/RH 5 364.6 nm as in Figure 41.2. The measured spectral lines 
agree with the empirical equation, Equation 41.1, to within 0.1%.

Other lines in the spectrum of hydrogen were found in the infrared and ultravi-
olet regions of the spectrum following Balmer’s discovery. These spectra are called 
the Lyman, Paschen, and Brackett series after their discoverers. It was fascinat-
ing to find out that the wavelengths of the lines in these series can be calculated 
through the use of the following empirical equations, which are identical in form 
to Equation 41.1!

 
1
l

5 R HS 1
12 2

1
n2D n 5 2, 3, 4, . . .  (41.2)

 
1
l

5 R HS 1
32 2

1
n2D n 5 4, 5, 6, . . .  (41.3)

 
1
l

5 R HS 1
42 2

1
n2D n 5 5, 6, 7, . . .  (41.4)

No theoretical basis existed for these equations at the time; they simply worked, but 
nobody knew why. In Section 41.3, we shall discuss the remarkable achievement of 
a theory for the hydrogen atom that provided an explanation for these equations.

   41.2    Early Models of the Atom
Let’s begin our journey to understanding why Equations 41.1 to 41.4 work by investi-
gating various models of the atom. The model of the atom in the days of Newton was 
a tiny, hard, indestructible sphere. Although this model provided a good basis for 
the kinetic theory of gases (Chapter 20), new models had to be devised when experi-
ments revealed the electrical nature of atoms. In 1897, J. J. Thomson established the 
charge-to-mass ratio for electrons. (See Fig. 28.15 in Section 28.3.) A natural conclu-
sion was that the electron must be part of the substructure of an atom. The following 
year, Thomson suggested a model that describes the atom as a region in which pos-
itive charge is spread out continuously in space with electrons embedded through-
out the region, much like the seeds in a watermelon or raisins in thick pudding  
(Fig. 41.3, page 1108). The atom as a whole would then be electrically neutral.

In 1911, Ernest Rutherford (1871–1937) and his students Hans Geiger and  
Ernest Marsden performed a critical experiment that showed that Thomson’s 
model could not be correct. In this experiment, a beam of positively charged alpha 

 Lyman series

 Paschen series

 Brackett series

410.2 434.1

Ultraviolet
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The lines shown in color are in 
the visible range of wavelengths.

This line is the shortest wavelength 
line and is in the ultraviolet region 
of the electromagnetic spectrum.

Figure 41.2  The Balmer series 
of spectral lines for atomic hydro-
gen, with several lines marked 
with the wavelength in nanome-
ters. (The horizontal wavelength 
axis is not to scale.)

Joseph John thomson
English physicist (1856–1940)
The recipient of a Nobel Prize in Physics 
in 1906, Thomson is usually considered 
the discoverer of the electron. He 
opened up the field of subatomic particle 
physics with his extensive work on the 
deflection of cathode rays (electrons) in 
an electric field.
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particles (helium nuclei) was projected into a thin metallic foil such as the target in  
Figure 41.4a. Most of the particles passed through the foil as if it were empty space, 
but some of the results of the experiment were astounding. Many of the particles 
deflected from their original direction of travel were scattered through large angles. 
Some particles were even deflected backward, completely reversing their direction of 
travel! When Geiger informed Rutherford that some alpha particles were scattered 
backward, Rutherford wrote, “It was quite the most incredible event that has ever 
happened to me in my life. It was almost as incredible as if you fired a 15-inch [artil-
lery] shell at a piece of tissue paper and it came back and hit you.”

Such large deflections were not expected on the basis of Thomson’s model. Accord-
ing to that model, the positive charge of an atom in the foil is spread out over such 
a great volume (the entire atom) that there is no concentration of positive charge 
strong enough to cause any large-angle deflections of the positively charged alpha 
particles. Furthermore, the electrons are so much less massive than the alpha par-
ticles that they would not cause large-angle scattering either. Rutherford explained 
his astonishing results by developing a new atomic model, one that assumed the 
positive charge in the atom was concentrated in a region that was small relative to  
the size of the atom. He called this concentration of positive charge the nucleus of 
the atom. Any electrons belonging to the atom were assumed to be in the relatively 
large volume outside the nucleus. To explain why these electrons were not pulled into  
the nucleus by the attractive electric force, Rutherford modeled them as moving in 
orbits around the nucleus in the same manner as the planets orbit the Sun (Fig. 41.4b). 
For this reason, this model is often referred to as the planetary model of the atom.

While Rutherford’s model explained his experimental results, two basic diffi-
culties exist with the planetary model. As we saw in Section 41.1, an atom emits 
(and absorbs) certain characteristic frequencies of electromagnetic radiation and 
no others, but the Rutherford model cannot explain this phenomenon. A second 
difficulty is that Rutherford’s electrons are described by the particle in uniform cir-
cular motion model; they have a centripetal acceleration. According to Maxwell’s 
theory of electromagnetism, centripetally accelerated charges revolving with fre-
quency f should radiate electromagnetic waves of frequency f. Identifying the elec-
tron and the proton as a nonisolated system for energy, Equation 8.2 becomes 
DK 1 DUE 5 TER, where K is the kinetic energy of the electron, UE is the electric 
potential energy of the electron–nucleus system, and TER represents the outgoing 
electromagnetic radiation. As energy leaves the system, the radius of the electron’s 
orbit steadily decreases (Fig. 41.5). The system is an isolated system for angular 
momentum because there is no torque on the system. Therefore, as the electron 
moves closer to the nucleus, the angular speed of the electron will increase, just 
like the spinning skater in Figure 11.9 in Section 11.4. This process leads to an ever- 
increasing frequency of emitted radiation and an ultimate collapse of the atom as 
the electron plunges into the nucleus. We assume that atoms do not self-destruct, 
so this is a serious problem with the model!

The electrons 
are small 
negative 
charges at 
various 
locations 
within the 
atom.

The positive 
charge of the 
atom is 
distributed 
continuously in a 
spherical volume.

Figure 41.3  Thomson’s model of 
the atom.
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Figure 41.4  (a) Rutherford’s technique for observing the scattering of alpha particles from a thin 
foil target. The source is a naturally occurring radioactive substance, such as radium. (b) Rutherford’s 
planetary model of the atom.
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Because the accelerating 
electron radiates energy, the 
size of the orbit decreases 
until the electron falls into 
the nucleus.

Figure 41.5  The classical model 
of the nuclear atom predicts that 
the atom decays and collapses.
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   41.3    Bohr’s Model of the Hydrogen Atom
Given the situation described at the end of Section 41.2, the stage was set for Niels 
Bohr in 1913 when he presented a new model of the hydrogen atom that circum-
vented the difficulties of Rutherford’s planetary model. Bohr’s theory was histori-
cally important to the development of quantum physics, and it appeared to explain 
the spectral line series described by Equations 41.1 through 41.4. Although Bohr’s 
model is now considered obsolete and has been completely replaced by a probabilis-
tic quantum-mechanical theory, we can use the Bohr model to develop the notions 
of energy quantization and angular momentum quantization as applied to atomic-
sized systems.

Bohr combined ideas from Planck’s original quantum theory, Einstein’s concept 
of the photon, Rutherford’s planetary model of the atom, and Newtonian mechan-
ics to arrive at a semiclassical structural model based on some revolutionary ideas. 
The structural model of the Bohr theory as it applies to the hydrogen atom has the 
following assumptions:

1. Physical components:  
The electron moves in circular orbits around the proton under the influence 
of the electric force of attraction as shown in Figure 41.6. This structure is the 
same as in Rutherford’s planetary model.

2. Behavior of the components: 
(a) Only certain electron orbits are stable. When in one of these stationary 

states, as Bohr called them, the electron does not emit energy in the 
form of radiation, even though it is accelerating. Hence, the total energy 
of the atom remains constant and classical mechanics can be used to 
describe the electron’s motion. This behavior is completely at odds with 
classical physics and Figure 41.5.

(b) The atom emits radiation when the electron makes a transition from a 
more energetic initial stationary state to a lower-energy stationary state. 
This transition cannot be visualized or treated classically. In particu-
lar, the frequency f of the photon emitted in the transition is related 
to the change in the atom’s energy and is not equal to the frequency of 
the electron’s orbital motion. The frequency of the emitted radiation is 
found from the energy-conservation expression

 Ei 2 Ef 5 hf (41.5)

   where Ei is the energy of the initial state, Ef is the energy of the final 
state, and Ei . Ef . In addition, energy of an incident photon can be 
absorbed by the atom, but only if the photon has an energy that exactly 
matches the difference in energy between an allowed state of the atom 
and a higher-energy state. Upon absorption, the photon disappears and 
the atom makes a transition to the higher-energy state.

(c) The size of an allowed electron orbit is determined by a condition imposed 
on the electron’s orbital angular momentum: the allowed orbits are those 
for which the electron’s orbital angular momentum about the nucleus is 
quantized and equal to an integral multiple of " 5 h/2p,

 mevr 5 n" n 5 1, 2, 3, . . .  (41.6)

    where me is the electron mass, v is the electron’s speed in its orbit, and r 
is the orbital radius.

These assumptions are a bold mixture of established principles and completely 
new and untested ideas at the time. Assumption 1, from classical mechanics, treats 
the electron in orbit around the nucleus in the same way we treat a planet in a 
circular orbit around a star, using the particle in uniform circular motion anal-
ysis model. Assumption 2(a) was a radical new idea in 1913 that was completely 
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The orbiting electron is allowed 
to be only in specific orbits of 
discrete radii.

vS
F
S

Figure 41.6  Diagram represent-
ing Bohr’s model of the hydrogen 
atom. 

Niels Bohr
Danish Physicist (1885–1962)
Bohr was an active participant in the 
early development of quantum mechanics 
and provided much of its philosophical 
framework. During the 1920s and 1930s, 
he headed the Institute for Advanced 
Studies in Copenhagen. The institute was 
a magnet for many of the world’s best 
physicists and provided a forum for the 
exchange of ideas. Bohr was awarded the 
1922 Nobel Prize in Physics for his inves-
tigation of the structure of atoms and the 
radiation emanating from them. When 
Bohr visited the United States in 1939 to 
attend a scientific conference, he brought 
news that the fission of uranium had 
been observed by Hahn and Strassman in 
Berlin. The results were the foundations 
of the nuclear weapon developed in the 
United States during World War II. 
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at odds with the understanding of electromagnetism at the time. Bohr got rid of 
the problem illustrated in Figure 41.5 by simply stating that the accelerating elec-
tron doesn’t radiate! Assumption 2(b) represents the principle of conservation of 
energy as described by the nonisolated system model for energy. Assumption 2(c) is 
another new idea that had no basis in classical physics.

The electric potential energy of the system shown in Figure 41.6 is given by 
Equation 24.13, UE 5 keq1q2/r 5 2kee

2/r, where ke is the Coulomb constant and the 
negative sign arises from the charge 2e on the electron. Therefore, the total energy 
of the atom, which consists of the electron’s kinetic energy and the system’s poten-
tial energy, is

 E 5 K 1 UE 5 1
2mev

2 2 ke 
e 2

r
 (41.7)

The electron is modeled as a particle in uniform circular motion, so the electric 
force kee

2/r 2 exerted on the electron must equal the product of its mass and its cen-
tripetal acceleration (ac 5 v 2/r):

 
kee

2

r 2 5
mev

2

r
 S v2 5

kee
2

mer
 (41.8)

From Equation 41.8, we find that the kinetic energy of the electron is

K 5 1
2mev

2 5
kee

2

2r

Substituting this value of K into Equation 41.7 gives the following expression for 
the total energy of the atom:1

 E 5 2 
kee

2

2r
 (41.9)

Because the total energy is negative, which indicates a bound electron–proton sys-
tem, energy in the amount of kee

2/2r must be added to the atom to remove the elec-
tron and make the total energy of the system zero.

We can obtain an expression for r, the radius of the allowed orbits, by solving 
Equation 41.6 for v2 and equating it to Equation 41.8:

 v 2 5
n2"2

me
2  r 2 5

kee
2

mer
 S rn 5

n2"2

mekee
2  n 5 1, 2, 3, . . .  (41.10)

Equation 41.10 shows that the radii of the allowed orbits have discrete values: 
they are quantized. The result is based on the assumption that the electron can 
exist only in certain allowed orbits determined by the integer n (Bohr’s Assump-
tion 2(c)).

The orbit with the smallest radius, called the Bohr radius a0, corresponds to n 5 1  
and has the value

 a0 5
"2

mekee
2 5 0.052 9 nm (41.11)

Substituting Equation 41.11 into Equation 41.10 gives a general expression for the 
radius of any orbit in the hydrogen atom:

 rn 5 n2a0 5 n2(0.052 9 nm) n 5 1, 2, 3, . . . (41.12)

Bohr’s theory predicts a value for the radius of a hydrogen atom on the right 
order of magnitude, based on experimental measurements. This result was a strik-
ing triumph for Bohr’s theory. The first three Bohr orbits are shown to scale in 
Figure 41.7.

Bohr radius  

 Radii of Bohr orbits  
in hydrogen

9a0

4a0

� e

a0
� e

The electron is shown in the 
lowest-energy orbit, but it could 
be in any of the allowed orbits.

Figure 41.7  The first three cir-
cular orbits predicted by the Bohr 
model of the hydrogen atom.

1Compare Equation 41.9 with its gravitational counterpart, Equation 13.19.
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The quantization of orbit radii leads to energy quantization. Substituting  
rn 5 n2a0 into Equation 41.9 gives

 En 5 2 
kee

2

2a0
S 1

n2D    n 5 1, 2, 3, . . .  (41.13)

Substituting numerical values for the constants into this expression, we find that

 En 5 2 
13.606 eV

n 2     n 5 1, 2, 3, . . .  (41.14)

The atom can only exist in states with energies satisfying Equation 41.14. The low-
est allowed energy level, the ground state, has n 5 1 and energy E 1 5 213.606 eV. 
The next energy level, the first excited state, has n 5 2 and energy E 2 5 E1/22 5 
23.401 eV. Figure 41.8 is an energy-level diagram showing the energies of these dis-
crete energy states as horizontal lines and the corresponding quantum numbers n. 
The uppermost level corresponds to n 5 ` (or r 5 `) and E 5 0.

The particle-in-a-box energies (Eq. 40.14) increase as n2, so they become far-
ther apart in energy as n increases. On the other hand, the energies of the hydro-
gen atom (Eq. 41.14) are inversely proportional to n2, so their separation in energy 
becomes smaller as n increases. The separation between energy levels approaches 
zero as n approaches infinity and the energy approaches zero.

Zero energy represents the boundary between a bound system of an electron 
and a proton and an unbound system. If the energy of the atom is raised from that 
of the ground state to any energy larger than zero, the atom is ionized. The mini-
mum energy required to ionize the atom in its ground state is called the ionization 
energy. As can be seen from Figure 41.8, the ionization energy for hydrogen in 
the ground state, based on Bohr’s calculation, is 13.6 eV. This finding constituted 
another major achievement for the Bohr theory because the ionization energy for 
hydrogen had already been measured to be 13.6 eV.

Equations 41.5 and 41.13 can be used to calculate the frequency of the photon 
emitted when the electron makes a transition from an outer orbit to an inner orbit:

 f 5
Ei 2 Ef

h
5

kee
2

2a0hS 1
nf 

2 2
1

ni
2D  (41.15)

Because the quantity measured experimentally is wavelength, it is convenient to use 
c 5 f  l to express Equation 41.15 in terms of wavelength:

 
1
l

5
f
c

5
kee

2

2a0hc
 S 1

nf
2 2

1
ni

2D (41.16)

Remarkably, this expression, which is purely theoretical, is identical to the general 
form of the empirical relationships discovered by Balmer and Rydberg and given by 
Equations 41.1 to 41.4:

 
1
l

5 R HS 1
nf

2 2
1

ni
2D (41.17)

provided the constant kee
2/2a 0hc is equal to the experimentally determined 

Rydberg constant. Soon after Bohr demonstrated that these two quantities agree 
to within approximately 1%, this work was recognized as the crowning achievement 
of his new quantum theory of the hydrogen atom. Furthermore, Bohr showed that 
all the spectral series for hydrogen (Eqs. 41.1–41.4) have a natural interpretation 
in his theory. The different series correspond to transitions to different final states 
characterized by the quantum number nf . Figure 41.8 shows the origin of these 
spectral series as transitions between energy levels.

Bohr extended his model for hydrogen to other elements in which all but 
one electron had been removed. These systems have the same structure as the  

5
4
3

1

2
Balmer
series

Paschen
series

Lyman
series

�3.401

�1.512

�13.606

�0.850 4
�0.544 2

0.00
E (eV)

�
n

The colored arrows for the 
Balmer series indicate that 
this series results in the 
emission of visible light.
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Figure 41.8 An energy-level 
diagram for the hydrogen atom. 
Quantum numbers are given on 
the left, and energies (in electron 
volts) are given on the right. Ver-
tical arrows represent the four 
lowest-energy transitions for each 
of the spectral series shown.
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hydrogen atom except that the nuclear charge is larger. Ionized elements such as 
He1, Li21, and Be31 were suspected to exist in hot stellar atmospheres, where atomic 
collisions frequently have enough energy to completely remove one or more atomic 
electrons. Bohr showed that many mysterious lines observed in the spectra of the 
Sun and several other stars could not be due to hydrogen but were correctly pre-
dicted by his theory if attributed to singly ionized helium. In general, the number 
of protons in the nucleus of an atom is called the atomic number of the element 
and is given the symbol Z. To describe a single electron orbiting a fixed nucleus of 
charge 1Ze, Bohr’s theory gives

 rn 5 sn2d 
a0

Z
 (41.18)

 En 5 2 
kee

2

2a0
SZ 2

n2  D n 5 1, 2, 3, . . .  (41.19)

Although the Bohr theory was triumphant in its agreement with some experi-
mental results on the hydrogen atom, it suffered from some difficulties. One of the 
first indications that the Bohr theory needed to be modified arose when improved 
spectroscopic techniques were used to examine the spectral lines of hydrogen. It 
was found that many of the lines in the Balmer and other series were not single 
lines at all. Instead, each was a group of lines spaced very close together. An addi-
tional difficulty arose when it was observed that in some situations certain single 
spectral lines were split into three closely spaced lines when the atoms were placed 
in a strong magnetic field. Efforts to explain these and other deviations from the 
Bohr model led to modifications in the theory and ultimately to a replacement the-
ory that will be discussed in Section 41.4.

Bohr’s Correspondence Principle
You are probably still uncomfortable with Bohr’s assumptions. For example, why 
doesn’t the electron radiate—Assumption 2(a)? And Assumption 2(b)? Well, this is just 
Equation 8.2 for this situation. But where does Assumption 2(c) come from? In reality, 
the quantization of angular momentum arises from Bohr’s correspondence principle.2

In our study of relativity, we found that Newtonian mechanics is a special case of 
relativistic mechanics and is usable only for speeds much less than c. Similarly, in 
quantum mechanics, 

quantum physics agrees with classical physics when the difference between 
quantized levels becomes vanishingly small.

This principle, first set forth by Bohr, is called the correspondence principle.
For example, consider an electron orbiting the hydrogen atom with n . 10 000. 

For such large values of n, the energy differences between adjacent levels approach 
zero; therefore, the levels are nearly continuous. Consequently, the classical model 
is reasonably accurate in describing the system for large values of n. According to 
the classical picture, the frequency of the light emitted by the atom is equal to the 
frequency of revolution of the electron in its orbit about the nucleus. Calculations 
show that for n . 10 000, this frequency is different from that predicted by quan-
tum mechanics by less than 0.015%.

Q uiCk Quiz 41.1  A hydrogen atom is in its ground state. Incident on the atom 
is a photon having an energy of 10.5 eV. What is the result? (a) The atom is 
excited to a higher allowed state. (b) The atom is ionized. (c) The photon passes 
by the atom without interaction.

Pitfall PreventiOn 41.2
The Bohr Model Is Great, but . . .  
The Bohr model correctly predicts 
the ionization energy and general 
features of the spectrum for hydro-
gen, but it cannot account for the 
spectra of more complex atoms 
and is unable to predict many 
subtle spectral details of hydrogen 
and other simple atoms. Scattering 
experiments show that the electron 
in a hydrogen atom does not move 
in a flat circle around the nucleus. 
Instead, the atom is spherical. The 
ground-state angular momentum 
of the atom is zero and not ".

2 To see how assumption 2(c) arises from the correspondence principle, see J. W. Jewett Jr., Physics Begins with Another 
M . . . Mysteries, Magic, Myth, and Modern Physics (Boston: Allyn & Bacon, 1996), pp. 353–356.
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Q uiCk Quiz 41.2  A hydrogen atom makes a transition from the n 5 3 level to 
the n 5 2 level. It then makes a transition from the n 5 2 level to the n 5 1 level. 
Which transition results in emission of the longer-wavelength photon? (a) the 
first transition (b) the second transition (c) neither transition because the wave-
lengths are the same for both

 Example 41.1    Electronic Transitions in Hydrogen

(A)  The electron in a hydrogen atom makes a transition from a higher energy level to the ground level (n 5 1). Find the 
wavelength and frequency of the emitted photon if the higher level is n 5 2.

S O L U T I O N

Conceptualize  Imagine the electron in a circular orbit about the nucleus as in the Bohr model in Figure 41.6. When the 
electron makes a transition to a lower stationary state, it emits a photon with a given frequency and drops to a circular orbit of 
smaller radius.

Categorize  We evaluate the results using equations developed in this section, so we categorize this example as a  substitu-
tion problem.

Use Equation 41.17 to obtain l, with ni 5 2 and  
1
l

5 R HS 1
12 2

1
22D 5

3R H

4
 

nf 5 1:

  l 5
4

3R H

5
4

3s1.097 3 107 m21d
5 1.22 3 1027 m 5 122 nm

Use Equation 16.12 to find the frequency of the photon:     f 5
c
l

5
3.00 3 108 mys

1.22 3 1027 m
5 2.47 3 1015 Hz

This wavelength of 122 nm is in the ultraviolet region of the electromagnetic spectrum.

(B) Suppose the atom is initially in the higher level corresponding to n 5 5. What is the wavelength of the photon emitted 
when the atom drops from n 5 5 to n 5 1?

S O L U T I O N

Use Equation 41.17, this time with  
1
l

5 R HS 1
nf

2 2
1

ni
2D 5 R HS 1

12 2
1
52D 5 0.96R H 

ni 5 5 and nf 5 1:

Solve for l: l 5
1

0.96R H

5
1

s0.96ds1.097 3 107 m21d
5 9.50 3 1028 m 5 95.0 nm

This wavelength of 95.0 nm is deeper in the ultraviolet region of the spectrum than the photon in part (A).

(C) What is the radius of the electron orbit for a hydrogen atom for which n 5 5?

S O L U T I O N

Use Equation 41.12 to find the radius of the orbit: r5 5 (5)2(0.052 9 nm) 5 1.32 nm

(D)  How fast is the electron moving in a hydrogen atom for which n 5 5?

S O L U T I O N

Solve Equation 41.8 for the electron’s speed: v 5 Îke e 2

me r
5 Îs8.99 3 109 N ? m2yC2ds1.602 3 10219 Cd2

s9.11 3 10231 kgds1.32 3 1029 md

    5 4.38 3 105 mys

W H A T  I F ? What if radiation from the hydrogen atom in part (B) is treated classically? What is the wavelength of 
radiation emitted by the atom in the n 5 5 level?

Answer  Classically, the frequency of the emitted radiation is that of the rotation of the electron around the nucleus.
continued
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1114 Chapter 41 Atomic Physics

   41.4    The Quantum Model of the Hydrogen Atom
In the preceding section, we described how the Bohr model views the elec-
tron as a particle orbiting the nucleus in nonradiating, quantized energy lev-
els. This model combines both classical concepts (e.g., circular orbits of fixed 
radius) and quantum concepts (e.g., quantized energies and angular momenta). 
Although the model demonstrates excellent agreement with some experimen-
tal results, it cannot explain others. These difficulties are removed when a full 
quantum model involving the Schrödinger equation is used to describe the  
hydrogen atom.

The formal procedure for solving the problem of the hydrogen atom is to 
substitute the appropriate potential energy function into the Schrödinger equa-
tion, find solutions to the equation, and apply boundary conditions as we did 
for the particle in a box in Chapter 40. The potential energy function for the 
hydrogen atom is that due to the electrical interaction between the electron 
and the proton (see Section 24.3):

 UE srd 5 2ke 
e 2

r
 (41.20)

where k e is the Coulomb constant and r is the radial distance from the proton (situ-
ated at r 5 0) to the electron.

The mathematics for the hydrogen atom is more complicated than that for 
the particle in a box for two primary reasons: (1) the atom is three-dimensional, 
and (2) UE is not constant, but rather depends on the radial coordinate r. If the 
time-independent Schrödinger equation (Eq. 40.15) is extended to three-dimen-
sional rectangular coordinates, the result is

2 
"2

2m S−2c

−x2 1
−2c

−y2 1
−2c

−z2D 2 ke 

e 

2

r
c 5 Ec

Because r in this equation is a combination of x, y, and z, it is easier to solve this 
equation for the hydrogen atom if rectangular coordinates are converted to 
spherical polar coordinates, an extension of the plane polar coordinates introduced 
in Section 3.1. In spherical polar coordinates, a point in space is represented 
by the three variables r, u, and f, where r is the radial distance from the origin, 
r 5 Ïx2 1 y2 1 z2 . With the point represented at the end of a position vector rS 
as shown in Figure 41.9, the angular coordinate u specifies its angular position 
relative to the z axis. Once that position vector is projected onto the xy plane, the 

41.1 c o n t i n u e d

Calculate this frequency using the period defined in  f 5
1
T

5
v

2pr
 

Equation 4.22:

Substitute the radius and speed from parts (C) and (D):  f 5
v

2pr
5

4.38 3 105 mys
2ps1.32 3 1029 md

5 5.27 3 1013 Hz

Find the wavelength of the radiation from  l 5
c
f

5
3.00 3 108 mys
5.27 3 1013 Hz

5 5.70 3 1026 m 
Equation 16.12:

Notice that this value of the wavelength is two orders of magnitude different from that in part (B). The hydrogen atom 
must be treated quantum mechanically to give a wavelength matching experimental results. In Problem 48, we will inves-
tigate Rydberg atoms, which are hydrogen atoms in states with very large values of n. For these atoms, which are almost 
macroscopic in size, the classical and quantum predictions of the wavelength of a transition described by Dn 5 1 are  
very similar. 

z

y

P

x

f

u
rS 

Figure 41.9  A point P in space is 
located by means of a position vec-
tor rS. In Cartesian coordinates, 
the components of this vector are 
x, y, and z. In spherical polar coor-
dinates, the point is described by 
r, the distance from the origin; 
u, the angle between rS and the z 
axis; and f, the angle between the 
x axis and a projection of rS onto 
the xy plane.
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    41.4 The Quantum Model of the Hydrogen Atom 1115

angular coordinate f specifies the projection’s (and therefore the point’s) angular 
position relative to the x axis.

The conversion of the three-dimensional time-independent Schrödinger equa-
tion for c(x, y, z) to the equivalent form for c(r, u, f) is straightforward but very 
tedious, so we omit the details.3 In Chapter 40, we separated the time dependence 
from the space dependence in the general wave function C. In this case of the 
hydrogen atom, the three space variables in c(r, u, f) can be similarly separated by 
writing the wave function as a product of functions of each single variable:

c(r, u, f) 5 R(r)f(u)g(f)

In this way, Schrödinger’s equation, which is a three-dimensional partial differen-
tial equation, can be transformed into three separate ordinary differential equa-
tions: one for R(r), one for f(u), and one for g(f). Each of these functions is subject 
to boundary conditions. For example, R(r) must remain finite as r S 0 and r S `; 
furthermore, g(f) must have the same value as g(f 1 2p).

The potential energy function given in Equation 41.20 depends only on the 
radial coordinate r and not on either of the angular coordinates; therefore, it 
appears only in the equation for R(r). As a result, the equations for u and f are 
independent of the particular system and their solutions are valid for any system 
exhibiting rotation.

When the full set of boundary conditions is applied to all three functions, three 
different quantum numbers are found for each allowed state of the hydrogen atom, 
one for each of the separate differential equations. These quantum numbers are 
restricted to integer values and correspond to the three independent degrees of 
freedom (three space dimensions).

The first quantum number, associated with the radial function R(r) of the full 
wave function, is called the principal quantum number and is assigned the symbol n. 
The differential equation for R(r) leads to functions giving the probability of finding  
the electron at a certain radial distance from the nucleus. In Section 41.5, we will 
describe two of these radial wave functions. From the boundary conditions, the ener-
gies of the allowed states for the hydrogen atom are found to be related to n as follows:

 En 5 2 
kee

2

2a0

 S 1
n 2D 5 2 

13.606 eV
n2  n 5 1, 2, 3, . . .  (41.21)

This result is in exact agreement with that obtained in the Bohr theory (Eqs. 41.13 
and 41.14)! This agreement is remarkable because the Bohr theory and the full quan-
tum theory arrive at the result from completely different starting points.

The orbital quantum number, symbolized ,, comes from the differential equa-
tion for f(u) and is associated with the orbital angular momentum of the electron. 
The orbital magnetic quantum number m

,
 arises from the differential equation 

for g(f). Both , and m
,
 are integers. We will expand our discussion of these two 

quantum numbers in Section 41.6, where we also introduce a fourth (nonintegral) 
quantum number, resulting from a relativistic treatment of the hydrogen atom.

The application of boundary conditions on the three parts of the full wave func-
tion leads to important relationships among the three quantum numbers as well as 
certain restrictions on their values:

The values of n are integers that can range from 1 to .̀

Once n is set, the values of , are integers that can range from 0 to n 2 1.

Once , is set, the values of m
,
 are integers that can range from 2, to ,.

  Restrictions on the values 
of hydrogen-atom quantum 
numbers

  Allowed energies of the  
quantum hydrogen atom

3Descriptions of the solutions to the Schrödinger equation for the hydrogen atom are available in modern physics 
textbooks such as R. A. Serway, C. Moses, and C. A. Moyer, Modern Physics, 3rd ed. (Belmont, CA: Brooks/Cole, 2005).

Pitfall PreventiOn 41.3
Energy Depends on n Only for 
Hydrogen The implication in Equa-
tion 41.21 that the energy depends 
only on the quantum number n is 
true only for the hydrogen atom. 
For more complicated atoms, we 
will use the same quantum num-
bers developed here for hydrogen. 
The energy levels for these atoms 
depend primarily on n, but they 
also depend to a lesser degree on 
other quantum numbers.
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For example, if n 5 1, only , 5 0 and m
,
 5 0 are permitted. If n 5 2, then , 

may be 0 or 1; if , 5 0, then m
,
 5 0; but if , 5 1, then m

,
 may be 1, 0, or 21.  

Table 41.1 summarizes the rules for determining the allowed values of , and m
,
 for a  

given n.
For historical reasons, all states having the same principal quantum number 

are said to form a shell. Shells are identified by the letters K, L, M, . . . , which  
designate the states for which n 5 1, 2, 3, . . . . Likewise, all states having the same 
values of n and , are said to form a subshell. The letters4 s, p, d, f, g, h, . . . are used 
to designate the subshells for which , 5 0, 1, 2, 3, . . . . The state designated by 
3p, for example, has the quantum numbers n 5 3 and , 5 1; the 2s state has the 
quantum numbers n 5 2 and , 5 0. These notations are summarized in Tables 41.2  
and 41.3.

States that violate the rules given in Table 41.1 do not exist. (They do not satisfy 
the boundary conditions on the wave function.) For instance, the 2d state, which 
would have n 5 2 and , 5 2, cannot exist because the highest allowed value of , is  
n 2 1, which in this case is 1. Therefore, for n 5 2, the 2s and 2p states are allowed 
but 2d, 2f, . . . are not. For n 5 3, the allowed subshells are 3s, 3p, and 3d.

Q uiCk Quiz 41.3  How many possible subshells are there for the n 5 4 level of 
hydrogen? (a) 5 (b) 4 (c) 3 (d) 2 (e) 1

Q uiCk Quiz 41.4  When the principal quantum number is n 5 5, how many 
different values of (a) , and (b) m

,
 are possible?

4The first four of these letters come from early classifications of spectral lines: sharp, principal, diffuse, and funda-
mental. The remaining letters are in alphabetical order.

 taBle 41.1  Three Quantum Numbers for the Hydrogen Atom
Quantum  Allowed Number of
Number Name Values Allowed States

n Principal quantum  1, 2, 3, . . . Any number
  number 
, Orbital quantum  0, 1, 2, . . . , n 2 1 n
  number 
m

,
 Orbital magnetic  2,, 2, 1 1, . . . , 0, . . . , , 2 1, , 2, 1 1

  quantum number 

 taBle 41.2  Atomic Shell 
Notations
n Shell Symbol

1 K
2 L
3 M
4 N
5 O
6 P

 Example 41.2    The n 5 2 Level of Hydrogen

For a hydrogen atom, determine the allowed states corresponding to the principal quantum number n 5 2 and  
calculate the energies of these states.

S O L U T I O N

Conceptualize  Think about the atom in the n 5 2 quantum state. There is only one such state in the Bohr theory, but our 
discussion of the quantum theory allows for more states because of the possible values of , and m

,
.

Categorize  We evaluate the results using rules discussed in this section, so we categorize this example as a substitution 
problem.

From Table 41.1, we find that when n 5 2, , can be 0 or  , 5 0    S    m
,
 5 0 

1. Find the possible values of m
,
 from Table 41.1: , 5 1    S    m

,
 5 21, 0, or 1

Hence, we have one state, designated as the 2s state, that is associated with the quantum numbers n 5 2, , 5 0, and  
m

,
 5 0, and we have three states, designated as 2p states, for which the quantum numbers are n 5 2, , 5 1, and m

,
 5 21; n 5 

2, , 5 1, and m
,
 5 0; and n 5 2, , 5 1, and m

,
 5 1.

 taBle 41.3  Atomic Subshell 
Notations
ø Subshell Symbol

0 s
1 p
2 d
3 f
4 g
5 h

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    41.5 The Wave Functions for Hydrogen 1117

   41.5    The Wave Functions for Hydrogen
In Section 41.4, we discussed the quantum numbers and allowed energies for the 
hydrogen atom that arise from the Schrödinger equation. What about the solutions 
to the equation: the wave functions? Because the potential energy of the hydrogen 
atom depends only on the radial distance r between nucleus and electron, some of 
the allowed states for this atom can be represented by wave functions that depend 
only on r. For these states, f(u) and g(f) are constants. The simplest wave function 
for hydrogen is the one that describes the 1s state and is designated c1s(r):

 c1ssr d 5
1

Ïpa0
3
 e2rya0  (41.22)

where a0 is the Bohr radius: another remarkable connection between the Bohr the-
ory and the quantum theory. (In Problem 16, you can verify that this function sat-
isfies the Schrödinger equation.) Note that c1s approaches zero as r approaches ` 
and is normalized as presented (see Eq. 40.7). Furthermore, because c1s depends 
only on r, it is spherically symmetric. This symmetry exists for all s states.

Recall that the probability of finding a particle in any region is equal to an inte-
gral of the probability density ucu2 for the particle over the region. The probability 
density for the 1s state is

 uc1su
2 5 S 1

pa0
3De22rya0 (41.23)

Because we imagine the nucleus to be fixed in space at r 5 0, we can assign this 
probability density to the question of locating the electron. According to Equation 
40.3, the probability of finding the electron in a volume element dV is u c u2 dV. It is 
convenient to define the radial probability density function P(r) as the probability per 
unit radial length of finding the electron in a spherical shell of radius r and thick-
ness dr. Therefore, P(r) dr is the probability of finding the electron in this shell. 
The volume dV of such an infinitesimally thin shell equals its surface area 4pr 2 
multiplied by the shell thickness dr (Fig. 41.10), so we can write this probability as

P(r) dr 5 uc u2 dV 5 uc u2 4pr 2 dr

Therefore, the radial probability density function for an s state is

 P(r) 5 4pr 2uc u2 (41.24)

Substituting Equation 41.23 into Equation 41.24 gives the radial probability density 
function for the hydrogen atom in its ground state:

 P1ssrd 5 S4r 2

a0
3  De22rya0 (41.25)

A plot of the function P1s(r) versus r is presented in Figure 41.11a (page 1118). 
The peak of the curve corresponds to the most probable value of r for this partic-
ular state. We show in Example 41.3 that this peak occurs at the Bohr radius, the 
radial position of the electron when the hydrogen atom is in its ground state in 
the Bohr theory, another agreement between the Bohr theory and the quantum 
theory. There are, of course, major differences between the Bohr theory and the 
quantum theory. For example, the Bohr theory claims that the electron moves in 

  Wave function for hydrogen  
in its ground state

   Radial probability density for 
the 1s state of hydrogen

41.2 c o n t i n u e d

Find the energy for all four of these states with n 5 2  E 2 5 2 
13.606 eV

22 5  23.401 eV  
from Equation 41.21:

dr

r

Figure 41.10  A spherical shell of 
radius r and infinitesimal thick-
ness dr has a volume equal to  
4pr 2 dr.
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1118 Chapter 41 Atomic Physics

a flat, two-dimensional circle of fixed radius. The quantum theory makes no such 
claim; the electron can move anywhere in three-dimensional space.

According to quantum mechanics, the atom has no sharply defined boundary as 
suggested by the Bohr theory. The probability distribution in Figure 41.11a suggests 
that the charge of the electron can be modeled as being extended throughout a 
region of space, commonly referred to as an electron cloud. Figure 41.11b shows the 
probability density of the electron in a hydrogen atom in the 1s state as a function 
of position in the xy plane. The darkness of the blue color corresponds to the value 
of the probability density. The darkest portion of the distribution appears at r 5 a0, 
corresponding to the most probable value of r for the electron.

The notion of the electron cloud makes us feel better about Bohr’s assumption 
2(a). It was difficult to imagine that the electron undergoing a centripetal accelera-
tion in a circular path would not radiate. But the electron cloud in the quantum 
theory has no time variation at a particular frequency. The distribution of the prob-
ability density is fixed in time, so it does not radiate!

P 1s(r)

a0 � 0.052 9 nm
r

x

y

r � a0

The probability has 
its maximum value 
when r equals the 
Bohr radius a0.

In this representation, the 
darkest color, representing 
the maximum probability, 
occurs at the Bohr radius.

a b

Figure 41.11 (a) The probability 
of finding the electron as a func-
tion of distance from the nucleus 
for the hydrogen atom in the 1s 
(ground) state. (b) The cross sec-
tion in the xy plane of the spherical 
electronic charge distribution for 
the hydrogen atom in its 1s state.

 Example 41.3    The Ground State of Hydrogen

(A)  Calculate the most probable value of r for an electron in the ground state of the hydrogen atom.

S O L U T I O N

Conceptualize  Do not imagine the electron in orbit around the proton as in the Bohr theory of the hydrogen atom. Instead, 
imagine the charge of the electron spread out in space around the proton in an electron cloud with spherical symmetry.

Categorize Because the statement of the problem asks for the “most probable value of r,” we categorize this example as a 
problem in which the quantum approach is used. (In the Bohr atom, the electron moves in an orbit with an exact value of r.)

Analyze The most probable value of r corresponds to the maximum in the plot of P1s(r) versus r. We can evaluate the most 
probable value of r by setting dP1s /dr 5 0 and solving for r.

Differentiate Equation 41.25 with respect to r and set the  
dP1s

dr
5

d
dr 3S4r 2

a 0
3 De22rya04 5 0 

result equal to zero:

   e22rya0 
d
dr

sr 2d 1 r 2 
d
dr

se22rya 0d 5 0

   2re22r/a0 1 r2(22/a0)e22r/a0 5 0
   (1)   2r [1 2 (r/a 0)]e22r/a0 5 0

Set the bracketed expression equal to zero and solve for r : 1 2
r
a0

5 0   S    r 5 a0
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    41.5 The Wave Functions for Hydrogen 1119

Finalize  The most probable value of r is the Bohr radius! Equation (1) is also satisfied at r 5 0 and as r S .̀ These points are 
locations of the minimum probability, which is equal to zero as seen in Figure 41.11a.

(B  Calculate the probability that the electron in the ground state of hydrogen will be found outside the Bohr radius.

S O L U T I O N

Analyze The probability is found by integrating the radial probability density function P1s(r) for this state from the Bohr 
radius a0 to .̀

Set up this integral using Equation 41.25: P 5 #
`

a 0

P1s sr d dr 5
4

a 0
3 #

`

a0

r 2e22rya0 dr

Put the integral in dimensionless form by changing  P 5
4

a0
3 #

`

2
Sza0

2 D2

e2zSa0

2D dz 5 1
2 #

`

2
z 2e2z dz 

variables from r to z 5 2r/a0, noting that z 5 2 when  
r 5 a0 and that dr 5 (a0/2) dz:

Evaluate the integral using partial integration (see  P 5 2 1
2  sz 2 1 2z 1 2de2z *

`

2
 

Appendix B.7):

Evaluate between the limits: P 5 0 2 f21
2 s4 1 4 1 2de22g 5 5e22 5 0.677 or 67.7%

Finalize  This probability is larger than 50%. The reason for this value is the asymmetry in the radial probability density func-
tion (Fig. 41.11a), which has more area to the right of the peak than to the left.

W H A T  I F ? What if you were asked for the average value of r for the electron in the ground state rather than the most 
probable value?

Answer  The average value of r is the same as the expectation value for r.

Use Equation 41.25 to evaluate the average value of r: ravg 5 kr l 5 #
`

0
rP sr d dr 5 #

`

0
r S4r 2

a0
3De22rya 0 dr

   5 S 4
a0

3D#`

0
r 3e22rya0 dr

Evaluate the integral with the help of the first integral  ravg 5 S 4
a0

3D3 3!
s2ya0d

44 5 3
2a0 

listed in Table B.6 in Appendix B:

Again, the average value is larger than the most probable value because of the asymmetry in the wave function as seen in  
Figure 41.11a.

41.3 c o n t i n u e d

The next-simplest wave function for the hydrogen atom is the one correspond-
ing to the 2s state (n 5 2, , 5 0). The normalized wave function for this state is

 c2s srd 5
1

4Ï2p
S 1

a0
D3y2S2 2

r
a0
De2ry2a 0 (41.26)

Again notice that c2s depends only on r and is spherically symmetric. The energy 
corresponding to this state is E2 5 2(13.606 eV)/4 5 23.401 eV. This energy level 
represents the first excited state of hydrogen. A plot of the radial probability density 
function for this state in comparison to the 1s state is shown in Figure 41.12. The plot 
for the 2s state has two peaks. In this case, the most probable value corresponds to 
that value of r that has the highest value of P(r), which is about 5a0, not 4a0 as in the 
Bohr model. An electron in the 2s state would be much farther from the nucleus (on 
the average) than an electron in the 1s state.

0.6
P(r)

1s

2s

0.5

0.4

0.3

0.2

0.1

0.0
0 4 8 12 16 20

r/a0

Figure 41.12  The radial proba-
bility density function versus  
r/a0 for the 1s and 2s states of  
the hydrogen atom.
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If we look at states other than s states, the situation quickly becomes more com-
plicated. We have to incorporate the angular parts of the wave function. For exam-
ple, here is a 2p state with m

,
 5 61:

c2p 5
1

8Ïp
S 1

a0
D3y2S r

a0
De2ry2a0 sin ue6if

   41.6    Physical Interpretation of the Quantum Numbers
The principal quantum number n of a particular state in the hydrogen atom deter-
mines the energy of the atom according to Equation 41.21. Now let’s see what the 
other quantum numbers in our atomic model correspond to physically.

the Orbital Quantum number <
We begin this discussion by returning briefly to the Bohr model of the atom. If the 
electron moves in a circle of radius r, the magnitude of its angular momentum rela-
tive to the center of the circle is L 5 mevr. The direction of L

S
 is perpendicular to the 

plane of the circle and is given by a right-hand rule. According to classical physics, 
the magnitude L of the orbital angular momentum can have any value. The Bohr 
model of hydrogen, however, postulates that the magnitude of the angular momen-
tum of the electron is restricted to multiples of "; that is, L 5 n". This model predicts 
(incorrectly) that the ground state of hydrogen has one unit of angular momentum.

This difficulty and others are resolved with the quantum-mechanical model of 
the atom, although we must give up the convenient mental representation of an 
electron orbiting in a well-defined circular path. Despite the absence of this repre-
sentation, the atom does indeed possess an angular momentum and it is still called 
orbital angular momentum. According to quantum mechanics, the orbital angular 
momentum is related to the quantum number ,. An atom in a state whose principal 
quantum number is n can take on the following discrete values of the magnitude of 
the orbital angular momentum:5

 L 5 Ï/s/ 1 1d "  / 5 0, 1, 2, . . . , n 2 1  (41.27)

Given these allowed values of ,, we see that L 5 0 (corresponding to , 5 0) is an 
acceptable value of the magnitude of the angular momentum. This result is incon-
sistent with the value of L from Equation 41.6 in the Bohr model, where the ground 
state angular momentum is Lground state 5 ". In the quantum-mechanical interpre-
tation, the electron cloud for the L 5 0 state is spherically symmetric and has no 
fundamental rotation axis.

the Orbital Magnetic Quantum number m
,

Because angular momentum is a vector, its direction must be specified. Recall 
from Chapter 28 that a current loop has a corresponding magnetic moment mS 5 I A

S
  

(Eq. 28.16), where I  is the current in the loop and A
S

 is a vector perpendicular to 
the loop whose magnitude is the area of the loop. In the Bohr theory, the circulat-
ing electron represents a current loop. In the quantum-mechanical approach to 
the hydrogen atom, we abandon the circular orbit viewpoint of the Bohr theory, 
but the atom still possesses an orbital angular momentum. Therefore, there is some 
sense of rotation of the electron around the nucleus and a magnetic moment is 
present due to this angular momentum.

According to quantum mechanics, there are discrete directions allowed for the 
magnetic moment vector mS. These discrete directions can be detected by applying 

Quantized values of L 

5Equation 41.27 is a direct result of the mathematical solution of the Schrödinger equation and the application of 
angular boundary conditions. This development, however, is beyond the scope of this book.

Pitfall PreventiOn 41.4
Quantum Numbers Describe a System  
It is common to assign the quantum 
numbers to an electron. Remember, 
however, that these quantum num-
bers arise from the Schrödinger 
equation, which involves a potential 
energy function for the system of the 
electron and the nucleus. There-
fore, it is more proper to assign the 
quantum numbers to the atom, but 
it is more popular to assign them to 
an electron. We follow this latter 
usage because it is so common.
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a magnetic field B
S

. This situation is very different from that in classical physics, in 
which all directions are allowed.

Because the magnetic moment mS of the atom can be related to the angular 
momentum vector L

S
, the discrete directions of mS translate to the direction of  

L
S

 being quantized. This quantization means that Lz (the projection of L
S

 along 
the z axis) can have only discrete values. The orbital magnetic quantum number  
m

,
 specifies the allowed values of the z component of the orbital angular momen-

tum according to the expression6

 Lz 5 m
,
"  (41.28)

The quantization of the possible orientations of L
S

 with respect to an external mag-
netic field is often referred to as space quantization.

Let’s look at the possible magnitudes and orientations of L
S

 for a given value of ,. 
Recall that m

,
 can have values ranging from 2, to ,. If , 5 0, then L 5 0; the only 

allowed value of m
,
 is m

,
 5 0 and Lz 5 0. If , 5 1, then L 5 Ï2 " from Equation 41.27.  

The possible values of m
,
 are 21, 0, and 1, so Equation 41.28 tells us that  

Lz may be 2", 0, or ". If , 5 2, the magnitude of the orbital angular momentum  
is Ï6 ". The value of m

,
 can be 22, 21, 0, 1, or 2, corresponding to Lz values of 22", 

2", 0, ", or 2", and so on.
Figure 41.13a shows a vector model that describes space quantization for the case 

, 5 2. Notice that L
S

 can never be aligned parallel or antiparallel to B
S

 because the 
maximum value of Lz is ,", which is less than the magnitude of the angular momentum 
L 5 Ï/s/ 1 1d ". The angular momentum vector L

S
 is allowed to be perpendicular to B

S
,  

which corresponds to the case of Lz 5 0 and m/ 5 0.
The vector L

S
 does not point in one specific direction; only the z component of the  

vector is specified. If L
S

 were known exactly, all three components Lx, Ly, and Lz 
would be specified, which is inconsistent with an angular momentum version of 
the uncertainty principle. How can the magnitude and z component of a vector be 
specified, but the vector not be completely specified? To answer, note that Lx and  
Ly are completely unspecified so that L

S
 lies anywhere on the surface of a cone 

that makes an angle u with the z axis as shown in Figure 41.13b. From the  

 Quantized values of Lz

Lz � �2�

� � 2

Lz � ��

Lz � 0

Lz � �

Lz � 2�

Lz � �2�

Lz � ��

Lz � 0

Lz � �

Lz � 2�
Lz

6 �

z

z

The allowed projections on 
the z axis of the orbital 
angular momentum L are 
integer multiples of �.

Because the x and y components of 
the orbital angular momentum 
vector are not quantized, the vector 
L lies on the surface of a cone.

B
S

B
S

L
S

L
S

a b

u

�

S

S

m� � 2

m� � 1

m� � 0

m� � �1

m� � �2

Figure 41.13  A vector model for 
, 5 2.

6As with Equation 41.27, the relationship expressed in Equation 41.28 arises from the solution to the Schrödinger 
equation and application of boundary conditions.
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figure, we see that u is also quantized and that its values are specified through the 
relationship

 cos u 5
Lz

L
5

m/

Ï/s/ 1 1d
 (41.29)

If the atom is placed in a magnetic field, the energy UB 5 2mS ? B
S

 (Eq. 28.19) 
is additional energy for the atom–field system beyond that described in Equa-
tion 41.21. Because the directions of mS are quantized, there are discrete total energies 
for the system corresponding to different values of m

,
. Figure 41.14a shows a transi-

tion between two atomic levels in the absence of a magnetic field. In Figure 41.14b,  
a magnetic field is applied and the upper level, with , 5 1, splits into three levels cor-
responding to the different directions of mS. There are now three possible transitions 
from the , 5 1 subshell to the , 5 0 subshell. Therefore, in a collection of atoms, 
there are atoms in all three states and the single spectral line in Figure 41.14a splits 
into three spectral lines. This phenomenon is called the Zeeman effect.

The Zeeman effect can be used to measure extraterrestrial magnetic fields. 
For example, the splitting of spectral lines in light from hydrogen atoms in the 
surface of the Sun can be used to calculate the magnitude of the magnetic field 
at that location. The Zeeman effect is one of many phenomena that cannot be 
explained with the Bohr model but are successfully explained by the quantum 
model of the atom.

Allowed directions 
of the orbital angular  

momentum vector

f0

hf0

h( f0 � f )

( f0  � f )

No magnetic
field

Magnetic field
present

Spectrum with magnetic
field present

Spectrum without
magnetic field

f0

� 1�

� 0�

�m   �  1
�m   �  0
�m   �  �1

�m   �  0

hf0

h( f0 � f )

( f0  � f )

�

� �

�

E
N

E
R

G
Y

E
N

E
R

G
Y

Atoms in three excited states 
decay to the ground state with 
three different energies, and 
three spectral lines are observed.

a b

When B � 0, the excited 
state has a single energy 
and only a single spectral 
line at f0 is observed.

S

Figure 41.14  The Zeeman 
effect. (a) Energy levels for the 
ground and first excited states of 
a hydrogen atom. (b) When the 
atom is immersed in a magnetic 
field B

S
, the state with , 5 1 splits 

into three states, giving rise to 
emission lines at f0, f0 1 Df, and 
f0 2 Df, where Df is the frequency 
shift of the emission caused by the 
magnetic field.

 Example 41.4    Space Quantization for Hydrogen

Consider the hydrogen atom in the , 5 3 state. Calculate the magnitude of L
S

, the allowed values of Lz, and the correspond-
ing angles u that L

S
 makes with the z axis.

S O L U T I O N

Conceptualize  Consider Figure 41.13a, which is a vector model for , 5 2. Draw such a vector model for , 5 3 to help with this 
problem.

Categorize  We evaluate results using equations developed in this section, so we categorize this example as a substitu-
tion problem.
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the Spin Magnetic Quantum number ms
The three quantum numbers n, ,, and m

,
 discussed so far are generated by applying 

boundary conditions to solutions of the Schrödinger equation, and we can assign a 
physical interpretation to each quantum number. Let’s now consider electron spin, 
which does not come from the Schrödinger equation.

In Example 41.2, we found four quantum states corresponding to n 5 2. In reality, 
however, eight such states occur. The additional four states can be explained by requir-
ing a fourth quantum number for each state, the spin magnetic quantum number ms.

The need for this new quantum number arose historically because of an unusual 
feature observed in the spectra of certain gases, such as sodium vapor. Close exami-
nation of one prominent line in the emission spectrum of sodium reveals that the 
line is, in fact, two closely spaced lines called a doublet.7 The wavelengths of these 
lines occur in the yellow region of the electromagnetic spectrum at 589.0 nm and 
589.6 nm. In 1925, when this doublet was first observed, it could not be explained 
with the existing atomic theory. To resolve this dilemma, Samuel Goudsmit  
(1902–1978) and George Uhlenbeck (1900–1988), following a suggestion made by 
Austrian physicist Wolfgang Pauli, proposed the spin quantum number.

To describe this new quantum number, it is convenient (but technically incor-
rect) to imagine the electron spinning about its axis as it orbits the nucleus as 
described in Section 29.6. As illustrated in Figure 41.15, in quantum theory, only 
two directions exist for the electron spin. If the direction of spin is as shown in Fig-
ure 41.15a, the electron is said to have spin up. If the direction of spin is as shown in 
Figure 41.15b, the electron is said to have spin down. In the presence of a magnetic 
field, the energy associated with the electron is slightly different for the two spin 
directions. This energy difference accounts for the sodium doublet.

The classical description of electron spin—as resulting from a spinning electron— 
is incorrect. More recent theory indicates that the electron is a point particle,  
without spatial extent. Therefore, the electron is not modeled as a rigid object and 
cannot be considered to be spinning. Despite this conceptual difficulty, all experi-
mental evidence supports the idea that an electron does have some intrinsic angu-
lar momentum that can be described by the spin magnetic quantum number. Paul 
Dirac (1902–1984) showed that this fourth quantum number originates in the rela-
tivistic properties of the electron.

Calculate the magnitude of the orbital angular momentum L 5 Ï/s/ 1 1d " 5 Ï3s3 1 1d " 5  2 Ï3 "  
using Equation 41.27:

Calculate the allowed values of Lz using Equation 41.28  Lz 5 23", 22", 2", 0, ", 2", 3"  
with m

,
 5 23, 22, 21, 0, 1, 2, and 3:

Calculate the allowed values of cos u using Equation 41.29: cos u 5
63

2Ï3
5 60.866  cos u 5

62

2Ï3
5 60.577

  cos u 5
61

2Ï3
5 60.289  cos u 5

0

2Ï3
5 0

Find the angles corresponding to these values of cos u: u 5 30.08, 54.78, 73.28, 90.08, 1078, 1258, 1508

W H A T  I F ? What if the value of , is an arbitrary integer? For an arbitrary value of ,, how many values of m
,
 are allowed?

Answer  For a given value of ,, the values of m
,
 range from 2, to 1, in steps of 1. Therefore, there are 2, nonzero values of m

,
 

(specifically, 61, 62, . . . , 6,). In addition, one more value of m
,
 5 0 is possible, for a total of 2, 1 1 values of m

,
. This result is 

critical in understanding the results of the Stern–Gerlach experiment described below with regard to spin.

41.4 c o n t i n u e d

S
S

S
S

z z

a b

�e �e

Figure 41.15  The spin of an 
electron can be either (a) up or 
(b) down relative to a specified 
z axis. As in the case of orbital 
angular momentum, the x and 
y components of the spin angu-
lar momentum vector are not 
quantized.

Pitfall PreventiOn 41.5
The Electron Is Not Spinning  
Although the concept of a spinning 
electron is conceptually useful, it 
should not be taken literally. The 
spin of the Earth is a mechanical 
rotation. On the other hand, elec-
tron spin is a purely quantum effect 
that gives the electron an angular 
momentum as if it were physically 
spinning.

7This phenomenon is a Zeeman effect for spin and is identical in nature to the Zeeman effect for orbital angular 
momentum discussed before Example 41.4 except that no external magnetic field is required. The magnetic field 
for this Zeeman effect is internal to the atom and arises from the relative motion of the electron and the nucleus.
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In 1921, Otto Stern (1888–1969) and Walter Gerlach (1889–1979) performed 
an experiment that demonstrated space quantization. Their results, however, were 
not in quantitative agreement with the atomic theory that existed at that time. In 
their experiment, a beam of silver atoms was sent through a nonuniform magnetic 
field as shown in Figure 41.16. The interaction between the external magnetic 
field and the magnetic moment of the atoms causes a deflection of the atoms in 
the beam from their initial direction. The classical argument is as follows. If the  
z direction is chosen to be the direction of the maximum nonuniformity of B

S
, the 

net magnetic force on the atoms is along the z axis and is proportional to the com-
ponent of the magnetic moment mS of the atom in the z direction. Classically, mS can 
have any orientation, so the deflected beam should be spread out continuously. 
This was not what was observed in the experiment, however. The beam was split into 
two discrete components rather than showing a continuous spreading. Stern and 
Gerlach repeated the experiment using other atoms, and in each case, the beam 
split into two or more discrete components. According to quantum mechanics, the 
deflected beam has an integral number of discrete components and the number 
of components determines the number of possible values of mz. Therefore, because 
the Stern–Gerlach experiment showed split beams, space quantization was at least 
qualitatively verified.

For the moment, let’s assume the magnetic moment of the atom is due to the 
orbital angular momentum. Because mz is proportional to m

,, the number of possi-
ble values of mz is 2, 1 1 as found in the What If? section of Example 41.4. Further-
more, because , is an integer, the number of values of mz is always odd. This predic-
tion is not consistent with Stern and Gerlach’s observation of two components (an 
even number) in the deflected beam of silver atoms.

In 1927, T. E. Phipps and J. B. Taylor repeated the Stern–Gerlach experiment 
using a beam of hydrogen atoms. Their experiment was important because it 
involved an atom containing a single electron in its ground state, for which the 
quantum theory makes reliable predictions. Recall that , 5 0 for hydrogen in its 
ground state, so m

,
 5 0. Therefore, we would not expect the beam to be deflected 

by the magnetic field at all because the magnetic moment mS of the atom is zero. 
The beam in the Phipps–Taylor experiment, however, was again split into two com-
ponents! On the basis of that result, we must conclude that something other than 
the electron’s orbital motion is contributing to the atomic magnetic moment.

As we learned earlier, Goudsmit and Uhlenbeck had proposed that the electron 
has an intrinsic angular momentum, spin, apart from its orbital angular momen-
tum. In other words, the total angular momentum of the electron in a particular 
electronic state contains both an orbital contribution L

S
 and a spin contribution S

S
. 

The Phipps–Taylor result confirmed the hypothesis of Goudsmit and Uhlenbeck.

A beam of silver atoms is 
split in two by a nonuniform 
magnetic field.

The shapes of the pole 
faces create a nonuniform 
magnetic field.

The pattern on the 
screen predicted by a 
classical analysis

The actual pattern 
observed in the 
experiment

Oven

Photographic
plate

Figure 41.16  The technique 
used by Stern and Gerlach that 
demonstrated space quantization.
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In 1929, Dirac used the relativistic form of the total energy of a system to solve 
the relativistic wave equation for the electron in a potential well. His analysis con-
firmed the fundamental nature of electron spin. (Spin, like mass and charge, is an 
intrinsic property of a particle, independent of its surroundings.) Furthermore, the 
analysis showed that electron spin8 can be described by a single quantum number s,  
whose value can be only s 5 1

2. The spin angular momentum of the electron never 
changes. This notion contradicts classical laws, which dictate that a rotating charge 
slows down in the presence of an applied magnetic field because of the Faraday emf 
that accompanies the changing field (Chapter 30). Furthermore, if the electron is 
viewed as a spinning ball of charge subject to classical laws, parts of the electron 
near its surface would be rotating with speeds exceeding the speed of light. There-
fore, the classical picture must not be pressed too far; ultimately, spin of an elec-
tron is a quantum entity defying any simple classical description.

Because spin is a form of angular momentum, it must follow the same quantum 
rules as orbital angular momentum. In accordance with Equation 41.27, the magni-
tude of the spin angular momentum S

S
 for the electron is

 S 5 Ïs ss 1 1d " 5
Ï3
2

 "  (41.30)

Like orbital angular momentum L
S

, spin angular momentum S
S

 exhibits space 
quantization as described in Figure 41.17. The spin vector S

S
 can have two orienta-

tions relative to a z axis, specified by the spin magnetic quantum number ms 5 61
2. 

Similar to Equation 41.28 for orbital angular momentum, the z component of spin 
angular momentum is

 Sz 5 ms " 5 61
2 "  (41.31)

The two values 6"/2 for Sz correspond to the two possible orientations for S
S

 shown 
in Figure 41.17. The value ms 5 11

2 refers to the spin-up case, and ms 5 21
2 refers to 

the spin-down case. These two possibilities for ms lead to the splitting of the beams 
into two components in the Stern–Gerlach and Phipps–Taylor experiments. Notice 
that Equations 41.30 and 41.31 do not allow the spin vector to lie along the z axis. 
The actual direction of S

S
 is at a relatively large angle with respect to the z axis as 

shown in Figures 41.15 and 41.17.
The spin magnetic moment mSspin of the electron is related to its spin angular 

momentum S
S

 by the expression

 mSspin 5 2 
e

me

 S
S

 (41.32)

where e is the electronic charge and me is the mass of the electron. Because Sz 5 61
2 ", 

the z component of the spin magnetic moment can have the values

 mSspin,z 5 6
e "

2me

 (41.33)

As we learned in Section 29.6, the quantity e"/2me is the Bohr magneton mB 5 
9.27 3 10224 J/T.

Today, physicists explain the Stern–Gerlach and Phipps–Taylor experiments as 
follows. The observed magnetic moments for both silver and hydrogen are due to 
spin angular momentum only, with no contribution from orbital angular momen-
tum. In the Phipps–Taylor experiment, the single electron in the hydrogen atom 
has its electron spin quantized in the magnetic field in such a way that the z com-
ponent of spin angular momentum is either 12 " or 21

2 ", corresponding to ms 5 61
2.  

Electrons with spin 11
2 are deflected downward, and those with spin 21

2 are 

  Magnitude of the spin angular 
momentum of an electron

 Allowed values of Sz

8Scientists often use the word spin when referring to the spin angular momentum quantum number. For example, it 
is common to say, “The electron has a spin of one half.”

Figure 41.17  Spin angular 
momentum S

S
 exhibits space 

quantization. This figure shows 
the two allowed orientations of 
the spin angular momentum 
vector S

S
 and the spin magnetic 

moment mSspin for a spin-12 particle, 
such as the electron.
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deflected upward. In the Stern–Gerlach experiment, 46 of a silver atom’s 47 elec-
trons are in filled subshells with paired spins. Therefore, these 46 electrons have 
a net zero contribution to both orbital and spin angular momentum for the atom. 
The angular momentum of the atom is due to only the 47th electron. This electron 
lies in the 5s subshell, so there is no contribution from orbital angular momentum. 
As a result, the silver atoms have angular momentum due to just the spin of one 
electron and behave in the same way in a nonuniform magnetic field as the hydro-
gen atoms in the Phipps–Taylor experiment.

The Stern–Gerlach experiment provided two important results. First, it verified 
the concept of space quantization. Second, it showed that spin angular momen-
tum exists, even though this property was not recognized until four years after the 
experiments were performed.

As mentioned earlier, there are eight quantum states corresponding to n 5 2 
in the hydrogen atom, not four as found in Example 41.2. Each of the four states 
in Example 41.2 is actually two states because of the two possible values of ms.  
Table 41.4 shows the quantum numbers corresponding to these eight states.

The two 2s states of the hydrogen atom in Table 41.4 do not have the same energy. 
In fact, a transition can be made between the two states. The result is the emission 
of a photon with wavelength 21.1 cm. This radiation from hydrogen atoms in space 
is very important for astrophysical purposes. See Problem 22 for more information.

   41.7    The Exclusion Principle and the Periodic Table
We have found that the state of a hydrogen atom is specified by four quantum num-
bers: n, ,, m

,
, and ms. As it turns out, the number of states available to other atoms 

besides hydrogen may also be predicted by this same set of quantum numbers. In 
fact, these four quantum numbers can be used to describe all the electronic states 
of an atom, regardless of the number of electrons in its structure.

For our discussion of atoms with many electrons, it is often easiest to assign the 
quantum numbers to the electrons in the atom as opposed to the entire atom. An 
obvious question that arises here is, “How many electrons can be in a particular 
quantum state?” Pauli answered this important question in 1925, in a statement 
known as the exclusion principle:

No two electrons can ever be in the same quantum state; therefore, no two 
electrons in the same atom can have the same set of quantum numbers.

If this principle were not valid, an atom could radiate energy until every electron in 
the atom is in the lowest possible energy state and therefore the chemical behavior 
of the elements would be grossly modified. Nature as we know it would not exist.

In reality, we can view the electronic structure of complex atoms as a succession 
of filled levels increasing in energy. As a general rule, the order of filling of an 

 taBle 41.4  Quantum Numbers for the n 5 2 State of Hydrogen

      Number of States
n < m

<
 ms Subshell Shell in Subshell

2 0 0 1
2 

2 0 0 21
2 

2s L 2

2 1 1 1
2

2 1 1 21
2

2 1 0 1
2

2 1 0 21
2 

2p L 6

2 1 21 1
2 

2 1 21 21
2 

Wolfgang Pauli
Austrian Theoretical Physicist 
(1900–1958)
An extremely talented theoretician who 
made important contributions in many 
areas of modern physics, Pauli gained 
public recognition at the age of 21 with a 
masterful review article on relativity that 
is still considered one of the finest and 
most comprehensive introductions to the 
subject. His other major contributions 
were the discovery of the exclusion prin-
ciple, the explanation of the connection 
between particle spin and statistics, 
theories of relativistic quantum electro-
dynamics, the neutrino hypothesis, and 
the hypothesis of nuclear spin.
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atom’s subshells is as follows. Once a subshell is filled, the next electron goes into 
the lowest-energy vacant subshell. We can understand this behavior by recognizing 
that if the atom were not in the lowest energy state available to it, it would radiate 
energy until it reached this state. This tendency of a quantum system to achieve the 
lowest energy state is consistent with the second law of thermodynamics discussed 
in Chapter 21. The entropy of the Universe is increased by the system emitting pho-
tons, so that energy is spread out over a larger volume of space.

Before we discuss the electronic configuration of various elements, it is conve-
nient to define an orbital as the atomic state characterized by the quantum numbers 
n, ,, and m

,. The exclusion principle tells us that a maximum of two electrons can 
be present in any orbital. One of these electrons has a spin magnetic quantum 
number ms 5 11

2, and the other has ms 5 21
2. Because each orbital is limited to two 

electrons, the number of electrons that can occupy the various shells is also limited.
Table 41.5 shows the allowed quantum states for the electrons in an atom up to  

n 5 3. The arrows pointing upward indicate a state described by ms 5 11
2, and those 

pointing downward indicate that ms 5 21
2. The n 5 1 shell can accommodate only 

two electrons because m
,
 5 0 means that only one orbital is allowed. (The three 

quantum numbers describing this orbital are n 5 1, , 5 0, and m
,
 5 0.) The n 5 2 

shell has two subshells, one for , 5 0 and one for , 5 1. The , 5 0 subshell is lim-
ited to two electrons because m

,
 5 0. The , 5 1 subshell has three allowed orbitals, 

corresponding to m
,
 5 1, 0, and 21. Because each orbital can accommodate two 

electrons, the , 5 1 subshell can hold six electrons. Therefore, the n 5 2 shell can 
contain eight electrons as shown in Table 41.4. The n 5 3 shell has three subshells 
(, 5 0, 1, 2) and nine orbitals, accommodating up to 18 electrons. In general, each 
shell can accommodate up to 2n2 electrons.

The exclusion principle can be illustrated by examining the electronic arrange-
ment in a few of the lighter atoms. The atomic number Z of any element is the 
number of protons in the nucleus of an atom of that element. A neutral atom of 
that element has Z electrons. Hydrogen (Z 5 1) has only one electron, which, in 
the ground state of the atom, can be described by either of two sets of quantum 
numbers n, ,, m

,
, ms: 1, 0, 0, 1

2 or 1, 0, 0, 21
2. This electronic configuration is often 

written 1s1. The notation 1s refers to a state for which n 5 1 and , 5 0, and the 
superscript indicates that one electron is present in the s subshell.

Helium (Z 5 2) has two electrons. In the ground state, their quantum numbers 
are 1, 0, 0, 1

2 and 1, 0, 0, 21
2. No other possible combinations of quantum numbers 

exist for this level, and we say that the K shell is filled. This electronic configuration 
is written 1s2.

Lithium (Z 5 3) has three electrons. In the ground state, two of them are in 
the 1s subshell. The third is in the 2s subshell because this subshell is slightly lower 
in energy than the 2p subshell.9 Hence, the electronic configuration for lithium  
is 1s22s1.

The electronic configurations of lithium and the next several elements are pro-
vided in Figure 41.18 (page 1128). The electronic configuration of beryllium (Z 5 4), 
with its four electrons, is 1s22s2, and boron (Z 5 5) has a configuration of 1s22s22p1.  

Pitfall PreventiOn 41.6
The Exclusion Principle Is More 
General A more general form of 
the exclusion principle, discussed 
in Chapter 44, states that no two 
fermions can be in the same quan-
tum state. Fermions are particles 
with half-integral spin (1

2 , 32 , 52 ,  
and so on).

 taBle 41.5   Allowed Quantum States for the Electrons in an Atom Up to n 5 3

Shell n 1 2 3

Subshell , 0 0 1 0 1 2

Orbital m
,

0 0 1 0 21 0 1 0 21 2 1 0 21 22

ms c T c T c T c T c T c T c T c T c T c T c T c T c T c T

9To a first approximation, energy depends only on the quantum number n, as we have discussed. Because of the 
effect of the electronic charge shielding the nuclear charge, however, energy depends on , also in multielectron 
atoms. We shall discuss these shielding effects in Section 41.8.
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The 2p electron in boron may be described by any of the six equally probable sets 
of quantum numbers listed in Table 41.4. In Figure 41.18, we show this electron in 
the leftmost 2p box with spin up, but it is equally likely to be in any 2p box with spin 
either up or down.

Carbon (Z 5 6) has six electrons, giving rise to a question concerning how to 
assign the two 2p electrons. Do they go into the same orbital with paired spins 
(c T), or do they occupy different orbitals with unpaired spins (c c)? Experimen-
tal data show that the most stable configuration (that is, the one with the lowest 
energy) is the latter, in which the spins are unpaired. Hence, the two 2p electrons 
in carbon and the three 2p electrons in nitrogen (Z 5 7) have unpaired spins as 
Figure 41.18 shows. The general rule that governs such situations, called Hund’s 
rule, states that

when an atom has orbitals of equal energy, the order in which they are filled 
by electrons is such that a maximum number of electrons have unpaired spins.Hund’s rule 

Some exceptions to this rule occur in elements having subshells that are close to 
being filled or half-filled.

In 1871, long before quantum mechanics was developed, the Russian chem-
ist Dmitri Mendeleev (1834–1907) made an early attempt at finding some order 
among the chemical elements. He was trying to organize the elements for the 
table of contents of a book he was writing. He arranged the atoms in a table sim-
ilar to that shown in Figure 41.19, according to their atomic masses and chemical 
similarities. The first table Mendeleev proposed contained many blank spaces, and 
he boldly stated that the gaps were there only because the elements had not yet 
been discovered. By noting the columns in which some missing elements should 
be located, he was able to make rough predictions about their chemical proper-
ties. Within 20 years of this announcement, most of these elements were indeed 
discovered.

The elements in the periodic table (Fig. 41.19) are arranged so that all those in 
a column have similar chemical properties. For example, consider the elements in 
the last column, which are all gases at room temperature: He (helium), Ne (neon), 
Ar (argon), Kr (krypton), Xe (xenon), and Rn (radon). The outstanding character-
istic of all these elements is that they do not normally take part in chemical reac-
tions; that is, they do not readily join with other atoms to form molecules. They are 
therefore called inert gases or noble gases. All the atoms in this column have a filled 
outer subshell and are very unlikely to give up an electron or take on an electron 
from another atom. Hence, their inert behavior.

We can partially understand this behavior by looking at the electronic configu-
rations in Figure 41.19. The chemical behavior of an element depends on the out-
ermost shell that contains electrons. The electronic configuration for helium is 1s2, 
and the n 5 1 shell (which is the outermost shell because it is the only shell) is filled. 

Atom

Li

Be

B

C

N

O

F

Ne

1s 2s 2p 1s 2s 2p
Electronic

configuration Atom
Electronic

configuration

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

Figure 41.18  The filling of electronic states must obey both the exclusion principle and Hund’s rule.
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    41.7 The Exclusion Principle and the Periodic Table 1129

Also, the energy of the atom in this configuration is considerably lower than the 
energy for the configuration in which an electron is in the next available level, the 
2s subshell. Next, look at the electronic configuration for neon, 1s22s22p6. Again, the 
outermost shell (n 5 2 in this case) is filled and a wide gap in energy occurs between 
the filled 2p subshell and the next available one, the 3s subshell. Argon has the con-
figuration 1s22s22p63s23p6. Here, it is only the 3p subshell that is filled, but again a 
wide gap in energy occurs between the filled 3p subshell and the next available one, 
the 3d subshell. This pattern continues through all the noble gases. Krypton has a 
filled 4p subshell, xenon a filled 5p subshell, and radon a filled 6p subshell. Too few 
atoms of organesson have been detected to determine its chemical behavior.

The column to the left of the noble gases in the periodic table consists of a group of 
elements called the halogens: fluorine, chlorine, bromine, iodine, and so on. At room 
temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine and 
astatine are solids. In each of these atoms, the outer subshell is one electron short of 
being filled. As a result, the halogens are chemically very active, readily accepting an 
electron from another atom to form a closed shell. The halogens tend to form strong 
ionic bonds with atoms at the other side of the periodic table. (We shall discuss ionic 
bonds in Chapter 42.) Tennessine may have a different chemical behavior.

At the left side of the periodic table, the Group I elements consist of hydrogen 
and the alkali metals: lithium, sodium, potassium, rubidium, cesium, and francium. 
Each of these atoms contains one electron in a subshell outside of a closed sub-
shell. Therefore, these elements easily form positive ions because the lone electron 
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Figure 41.19  The periodic table of the elements is an organized tabular representation of the ele-
ments that shows their periodic chemical behavior. Elements in a given column have similar chemical 
behavior. This table shows the chemical symbol for the element, the atomic number, and the electron 
configuration. The seventh row was completed with the identification of new names for elements  
113 (nihonium), 115 (moscovium), 117 (tennessine), and 118 (organesson) in December 2016.  
A more complete periodic table is available in Appendix C.
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1130 Chapter 41 Atomic Physics

is bound with a relatively low energy and is easily removed. Therefore, the alkali 
metal atoms are chemically active and form very strong bonds with halogen atoms. 
For example, table salt, NaCl, is a combination of an alkali metal and a halogen. 
Because the outer electron of an alkali atom is weakly bound, pure alkali metals 
tend to be good electrical conductors. Because of their high chemical activity, how-
ever, they are not generally found in nature in pure form.

It is interesting to plot ionization energy versus atomic number Z as in Fig-
ure 41.20. Notice the pattern of DZ 5 2, 8, 8, 18, 18, 32 for the various peaks. 
This pattern follows from the exclusion principle and helps explain why the 
elements repeat their chemical properties in groups. For example, the peaks 
at Z 5 2, 10, 18, and 36 correspond to the noble gases helium, neon, argon, 
and krypton, respectively, which, as we have mentioned, all have filled outer-
most shells. These elements have relatively high ionization energies and similar 
chemical behavior.

What about the candy/soft drink eruptions in the opening storyline? Normally, 
when a bottle of soft drink is opened, carbon dioxide atoms come out of the liquid 
to form bubbles of gas, usually along the inner surface of the bottle. But when 
the candy is dropped in, it dissolves rapidly, producing many small particles hav-
ing rough surfaces, creating a host of new nucleation sites for the carbon dioxide 
to come out of the liquid. This is primarily a physical reaction, and, together with 
chemical reactions between potassium benzoate and aspartame in a diet soft drink, 
the bubbling of the carbon dioxide creates a foam that shoots violently out of the 
opening of the bottle.

   41.8    More on Atomic Spectra: Visible and X-Ray
In Section 41.1, we discussed the observation and early interpretation of visible 
spectral lines from gases. These spectral lines have their origin in transitions 
between quantized atomic states. We shall investigate these transitions more deeply 
in these final three sections of this chapter.

A modified energy-level diagram for hydrogen is shown in Figure 41.21. In this 
diagram, the allowed values of , for each shell are separated horizontally. Fig-
ure 41.21 shows only those states up to , 5 2; the shells from n 5 4 upward would 
have more sets of states to the right, which are not shown. Transitions for which 
, does not change are very unlikely to occur and are called forbidden transitions. 
(Such transitions actually can occur, but their probability is very low relative to the 
probability of “allowed” transitions.) The various diagonal lines represent allowed 
transitions between stationary states. Whenever an atom makes a transition from a 
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of the elements versus atomic 
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tronic transitions for hydrogen, 
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    41.8 More on Atomic Spectra: Visible and X-Ray 1131

higher energy state to a lower one, a photon of light is emitted. The frequency of 
this photon is f 5 DE/h, where DE is the energy difference between the two states 
and h is Planck’s constant. The selection rules for the allowed transitions are

 D, 5 61    and    Dm
,
 5 0, 61  (41.34)

Figure 41.21 shows that the orbital angular momentum of an atom changes when 
it makes a transition to a lower energy state. Therefore, the atom alone is a non
isolated system for angular momentum. If we consider the atom–photon system, how-
ever, it must be an isolated system for angular momentum because nothing else is 
interacting with this system. The photon involved in the process must carry angular 
momentum away from the atom when the transition occurs. In fact, the photon has 
an angular momentum equivalent to that of a particle having a spin of 1. We have 
now determined over several chapters that a photon has energy, linear momentum, 
and angular momentum, and each of these is conserved in atomic processes.

Recall from Equation 41.19 that the allowed energies for one-electron atoms and 
ions, such as hydrogen and He1, are

 En 5 2 
kee

2

2a0
SZ 2

n2D 5 2 
s13.6 eVdZ 2

n2  (41.35)

This equation was developed from the Bohr theory, but it serves as a good first 
approximation in quantum theory as well. For multielectron atoms, the positive 
nuclear charge Ze is largely shielded by the negative charge of the inner-shell elec-
trons. Therefore, the outer electrons interact with a net charge that is smaller than 
the nuclear charge. The expression for the allowed energies for multielectron 
atoms has the same form as Equation 41.35 with Z replaced by an effective atomic 
number Z eff :

 En 5 2 
s13.6 eVdZ eff

2

n2  (41.36)

where Z eff  depends on n and ,.

X-ray Spectra
X-rays are emitted when high-energy electrons or any other charged particles bom-
bard a metal target. The x-ray spectrum typically consists of a broad continuous 
band containing a series of sharp lines as shown in Figure 41.22. In Section 33.2, 
we mentioned that an accelerated electric charge emits electromagnetic radiation. 
The x-rays in Figure 41.22 are the result of the slowing down of high-energy elec-
trons as they strike the target. It may take several interactions with the atoms of 
the target before the electron gives up all its kinetic energy. The amount of kinetic 
energy given up in any interaction can vary from zero up to the entire kinetic 
energy of the electron. Therefore, the wavelength of radiation from these inter-
actions lies in a continuous range from some minimum value up to infinity. It is 
this general slowing down of the electrons that provides the continuous curve in 
Figure 41.22, which shows the cutoff of x-rays below a minimum wavelength value 
that depends on the kinetic energy of the incoming electrons. X-ray radiation with 
its origin in the slowing down of electrons is called bremsstrahlung, the German 
word for “braking radiation.”

Extremely high-energy bremsstrahlung can be used for the treatment of can-
cerous tissues. Figure 41.23 shows a machine that uses a linear accelerator to 
accelerate electrons up to 18 MeV and smash them into a tungsten target. The 
result is a beam of photons, up to a maximum energy of 18 MeV, which is actually 
in the gamma-ray range in Figure 33.13. This radiation is directed at the tumor 
in the patient.

The discrete lines in Figure 41.22, called characteristic x-rays and discovered 
in 1908, have a different origin. Their origin remained unexplained until the 
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1132 Chapter 41 Atomic Physics

details of atomic structure were understood. The first step in the production of  
characteristic x-rays occurs when a bombarding electron collides with a target 
atom. The electron must have sufficient energy to remove an inner-shell electron 
from the atom. The vacancy created in the shell is filled when an electron in a 
higher level drops down into the level containing the vacancy, emitting a photon in 
the process. Typically, the energy of such transitions is greater than 1 000 eV and 
the emitted x-ray photons have wavelengths in the range of 0.01 nm to 1 nm. The 
existence of characteristic lines in an x-ray spectrum is further direct evidence of 
the quantization of energy in atomic systems. 

Let’s assume the incoming electron has dislodged an atomic electron from the 
innermost shell, the K shell. If the vacancy is filled by an electron dropping from 
the next higher shell—the L shell—the photon emitted has an energy correspond-
ing to the K

a
 characteristic x-ray line on the curve of Figure 41.22. In this notation, 

K refers to the final level of the electron and the subscript a, as the first letter of the 
Greek alphabet, refers to the initial level as the first one above the final level. Figure 
41.24 shows this transition as well as others discussed below. If the vacancy in the K 
shell is filled by an electron dropping from the M shell, the K

b
 line in Figure 41.22 

is produced.
Other characteristic x-ray lines are formed when electrons drop from upper lev-

els to vacancies other than those in the K shell. For example, L lines are produced 
when vacancies in the L shell are filled by electrons dropping from higher shells. 
An L

a
 line is produced as an electron drops from the M shell to the L shell, and an 

L
b
 line is produced by a transition from the N shell to the L shell.
Although multielectron atoms cannot be analyzed exactly with either the Bohr 

model or the Schrödinger equation, we can apply Gauss’s law from Chapter 23 to 
make some surprisingly accurate estimates of expected x-ray energies and wave-
lengths. Consider an atom of atomic number Z in which one of the two electrons 
in the K shell has been ejected. Imagine drawing a gaussian sphere immediately 
inside the most probable radius of the L electrons. The electric field at the position 
of the L electrons is a combination of the fields created by the nucleus, the single K 
electron, the other L electrons, and the outer electrons. The wave functions of the 
outer electrons are such that the electrons have a very high probability of being far-
ther from the nucleus than the L electrons are. Therefore, the outer electrons are 
much more likely to be outside the gaussian surface than inside and, on average, do 
not contribute significantly to the electric field at the position of the L electrons. 
The effective charge inside the gaussian surface is the positive nuclear charge and 
one negative charge due to the single K electron. Ignoring the interactions between 
L electrons, a single L electron behaves as if it experiences an electric field due to a 
charge (Z 2 1)e enclosed by the gaussian surface. The nuclear charge is shielded by 
the electron in the K shell such that Zeff in Equation 41.36 is Z 2 1. For higher-level 
shells, the nuclear charge is shielded by electrons in all the inner shells.

We can now use Equation 41.36 to estimate the energy associated with an elec-
tron in the L shell:

EL 5 2 
s13.6 eVdsZ21d2

22

After the atom makes the transition, there are two electrons in the K shell. We can 
approximate the energy associated with one of these electrons as that of a one- 
electron atom. (In reality, the nuclear charge is reduced somewhat by the negative 
charge of the other electron, but let’s ignore this effect.) Therefore,

 E K < 2(13.6 eV)Z 2 (41.37)

As Example 41.5 shows, the energy of the atom with an electron in an M shell can 
be estimated in a similar fashion. Taking the energy difference between the initial 
and final levels, we can then calculate the energy and wavelength of the emitted 
photon.
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Figure 41.24  Transitions 
between higher and lower atomic 
energy levels that give rise to  
x-ray photons from heavy atoms 
when they are bombarded with 
high-energy electrons.
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    41.9 Spontaneous and Stimulated Transitions 1133

In 1914, Henry G. J. Moseley (1887–1915) plotted Ï1yl versus the Z values for 
a number of elements where l is the wavelength of the K

a
 line of each element. 

He found that the plot is a straight line as in Figure 41.25, which is consistent with 
rough calculations of the energy levels given by Equation 41.37. From this plot, 
Moseley determined the Z values of elements that had not yet been discovered and 
produced a periodic table in excellent agreement with the known chemical proper-
ties of the elements. Until that experiment, atomic numbers had been merely place-
holders for the elements that appeared in the periodic table, the elements being 
ordered according to mass.

Q uiCk Quiz 41.5  In an x-ray tube, as you increase the energy of the elec-
trons striking the metal target, do the wavelengths of the characteristic x-rays 
(a) increase, (b) decrease, or (c) remain constant?

Q uiCk Quiz 41.6  True or False: It is possible for an x-ray spectrum to show the 
continuous spectrum of x-rays without the presence of the characteristic x-rays.

Z

�1/l

Figure 41.25  A Moseley plot  
of Ï1yl versus Z, where l is the 
wavelength of the K

a
 x-ray line of  

the element of atomic number Z.

 Example 41.5    Estimating the Energy of an X-Ray

Estimate the energy of the characteristic x-ray emitted from a tungsten target when an electron drops from an M shell  
(n 5 3 state) to a vacancy in the K shell (n 5 1 state). The atomic number for tungsten is Z 5 74.

S O L U T I O N

Conceptualize  Imagine an accelerated electron striking a tungsten atom and ejecting an electron from the K shell (n 5 1). 
Subsequently, an electron in the M shell (n 5 3) drops down to fill the vacancy and the energy difference between the states 
is emitted as an x-ray photon.

Categorize  We estimate the results using equations developed in this section, so we categorize this example as a substitution 
problem.

Use Equation 41.37 and Z 5 74 for tungsten to estimate  EK < 2(13.6 eV)(74)2 5 27.4 3 104 eV 
the energy associated with the electron in the K shell:

Use Equation 41.36 and that nine electrons shield the  E M < 2 
s13.6 eVds74 2 9d2

s3d2 < 26.4 3 103 eV 
nuclear charge (eight electrons in the n 5 2 state and  
one electron in the n 5 1 state) to estimate the energy  
of the M shell:

Find the energy of the emitted x-ray photon: hf 5 EM 2 EK < 26.4 3 103 eV 2 (27.4 3 104 eV)

  < 6.8 3 104 eV 5 68 keV

 Consultation of x-ray tables shows that the M–K transition energies in tungsten vary from 66.9 keV to 67.7 keV, where the 
range of energies is due to slightly different energy values for states of different ,. Therefore, our estimate differs from the 
midpoint of this experimentally measured range by approximately 1%.

   41.9    Spontaneous and Stimulated Transitions
We have seen that an atom absorbs and emits electromagnetic radiation only at 
frequencies that correspond to the energy differences between allowed states. Let’s 
now examine more details of these processes. Consider an atom having the allowed 
energy levels labeled E 1, E 2, E 3, . . . . When radiation is incident on the atom, 
only those photons whose energy hf matches the energy separation DE between 
two energy levels can be absorbed by the atom as represented in Figure  41.26  
(page 1134). This process is called stimulated absorption because the photon stim-
ulates the atom to make the upward transition. At ordinary temperatures, most of 
the atoms in a sample are in the ground state. If a vessel containing many atoms 
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1134 Chapter 41 Atomic Physics

of a gaseous element is illuminated with radiation of all possible photon frequen-
cies (that is, a continuous spectrum), only those photons having energy E 2 2 E1,  
E 3 2 E1, E4 2 E 1, and so on are absorbed by the atoms. As a result of this absorp-
tion, some of the atoms are raised to excited states.

Once an atom is in an excited state, the excited atom can make a transition 
back to a lower energy level, emitting a photon in the process as in Figure 41.27. 
This process is known as spontaneous emission because it happens naturally, with-
out requiring an event to trigger the transition. Typically, an atom remains in an 
excited state for only about 1028 s.

In addition to spontaneous emission, stimulated emission occurs. Suppose an 
atom is in an excited state E2 as in Figure 41.28. If the excited state is a metastable 
state—that is, if its lifetime is much longer than the typical 1028 s lifetime of excited 
states—the time interval until spontaneous emission occurs is relatively long. Let’s 
imagine that during that interval a photon of energy hf 5 E2 2 E1 is incident on 
the atom. One possibility is that the photon energy is sufficient for the photon to 
ionize the atom. Another possibility is that the interaction between the incoming 
photon and the atom causes the atom to return to the ground state10 and thereby 
emit a second photon with energy hf 5 E2 2 E1. In this process, the incident pho-
ton is not absorbed; therefore, after the stimulated emission, two photons with  
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The electron is transferred from 
the ground state to the excited 
state when the atom absorbs a 
photon of energy hf � E2 � E1.

Before After

hf � E2 � E1

Figure 41.26 Stimulated absorption of a photon.
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When the atom falls to the
ground state, it emits a photon 
of energy hf � E2 � E1.

hf � E2 � E1

Before After

Figure 41.27 Spontaneous emission of 
a photon by an atom that is initially in the 
excited state E2.
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the atom to emit a second photon 
of energy hf � E2 � E1.
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Before After

hf � E2 � E1

Figure 41.28 Stimulated emis-
sion of a photon by an incoming 
photon of energy hf 5 E 2 2 E 1. 
Initially, the atom is in the  
excited state.

10This phenomenon is fundamentally due to resonance. The incoming photon has a frequency and drives the system 
of the atom at that frequency. Because the driving frequency matches that associated with a transition between 
states—one of the natural frequencies of the atom—there is a large response: the atom makes the transition.
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identical energy exist: the incident photon and the emitted photon. The two are 
in phase and travel in the same direction, which is an important consideration in 
lasers, discussed next.

   41.10    Lasers
In this section, we explore the nature of laser light and a variety of applications of 
lasers in our technological society. The primary properties of laser light that make 
it useful in these technological applications are the following:

 ● Laser light is coherent. The individual rays of light in a laser beam maintain a 
fixed phase relationship with one another.

 ● Laser light is monochromatic. Light in a laser beam has a very narrow range 
of wavelengths.

 ● Laser light has a small angle of divergence. The beam spreads out very little, 
even over large distances.

To understand the origin of these properties, let’s combine our knowledge of 
atomic energy levels from this chapter with some special requirements for the 
atoms that emit laser light.

We have described how an incident photon can cause atomic energy transitions 
either upward (stimulated absorption) or downward (stimulated emission). The 
two processes are equally probable. When light is incident on a collection of atoms, 
a net absorption of energy usually occurs because when the system is in thermal 
equilibrium, many more atoms are in the ground state than in excited states. If 
the situation can be inverted so that more atoms are in an excited state than in the 
ground state, however, a net emission of photons can result. Such a condition is 
called population inversion.

Population inversion is, in fact, the fundamental principle involved in the oper-
ation of a laser (an acronym for light amplification by stimulated emission of radi-
ation). The full name indicates one of the requirements for laser light: to achieve 
laser action, the process of stimulated emission must occur.

Consider the two photons traveling in a material after the stimulated emission 
discussed with regard to Figure 41.28. These photons can stimulate other atoms to 
emit photons in a chain of similar processes. The many photons produced in this 
fashion are the source of the intense, coherent light in a laser.

For the stimulated emission to result in laser light, there must be a buildup of 
photons in the system. The following three conditions must be satisfied to achieve 
this buildup:

 ● The system must be in a state of population inversion: there must be more 
atoms in an excited state than in the ground state. That must be true because 
the number of photons emitted must be greater than the number absorbed.

 ● The excited state of the system must be a metastable state, meaning that its 
lifetime must be long compared with the usually short lifetimes of excited 
states, which are typically 1028 s. In this case, the population inversion can 
be established and stimulated emission is likely to occur before spontaneous 
emission.

 ● The emitted photons must be confined in the system long enough to enable 
them to stimulate further emission from other excited atoms. That is 
achieved by using reflecting mirrors at the ends of the system. One end is 
made totally reflecting, and the other is partially reflecting. A fraction of the 
light intensity passes through the partially reflecting end, forming the beam 
of laser light (Fig. 41.29, page 1136).

One device that exhibits stimulated emission of radiation is the helium–neon gas 
laser. Figure 41.30 (page 1136) is an energy-level diagram for the neon atom in this 
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system. The mixture of helium and neon is confined to a glass tube that is sealed 
at the ends by mirrors. A voltage applied across the tube causes electrons to sweep 
through the tube, colliding with the atoms of the gases and raising them into excited 
states. Neon atoms are excited to state E3* through this process (the asterisk indi-
cates a metastable state) and also as a result of collisions with excited helium atoms.  
Stimulated emission occurs, causing neon atoms to make transitions to state E2. 
Neighboring excited atoms are also stimulated. The result is the production of 
coherent light at a wavelength of 632.8 nm.

applications
Since the development of the first laser in 1960, tremendous growth has occurred 
in laser technology. Lasers that cover wavelengths in the infrared, visible, and 
ultraviolet regions are now available. Laser diodes are used as laser pointers, and in 
surveying and construction rangefinders, fiber optic communication, DVD and 
Blu-ray players, and bar code readers. Carbon dioxide lasers are used in industry 
for welding and cutting, such as the process shown to cut fabric in Figure 41.31. 
Excimer lasers are used in Lasik eye surgery. A variety of other types of lasers exist 
and are used in various applications. These applications are possible because of 
the unique characteristics of laser light. In addition to being highly monochro-
matic, laser light is also highly directional and can be sharply focused to produce 
regions of extremely intense light energy (with energy densities 1012 times the 
density in the flame of a typical cutting torch).

Lasers are used in precision long-range distance measurement (range  
finding). In recent years, it has become important in astronomy and geophysics to 
measure as precisely as possible the distances from various points on the surface 
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The atom emits 632.8-nm photons 
through stimulated emission in the 
transition E3* � E2. That is the 
source of coherent light in the laser.

Figure 41.30  Energy-level 
diagram for a neon atom in a 
helium–neon laser.

Figure 41.31  This robot carry-
ing laser scissors, which can cut 
up to 50 layers of fabric at a time, 
is one of the many applications of 
laser technology. 36
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 Summary 1137

of the Earth to a point on the Moon’s surface. To facilitate these measurements, 
the Apollo astronauts set up a 0.5-m square of reflector prisms on the Moon, which 
enables laser pulses directed from an Earth-based station to be retroreflected to 
the same station (see Fig. 34.8a). Using the known speed of light and the measured 
round-trip travel time of a laser pulse, the Earth–Moon distance can be determined 
to a precision of better than 10 cm.

Because various laser wavelengths can be absorbed in specific biological tis-
sues, lasers have a number of medical applications. For example, certain laser 
procedures have greatly reduced blindness in patients with glaucoma and diabe-
tes. Glaucoma is a widespread eye condition characterized by a high fluid pres-
sure in the eye, a condition that can lead to destruction of the optic nerve. A 
simple laser operation (iridectomy) can “burn” open a tiny hole in a clogged 
membrane, relieving the destructive pressure. A serious side effect of diabe-
tes is neovascularization, the proliferation of weak blood vessels, which often 
leak blood. When neovascularization occurs in the retina, vision deteriorates 
(diabetic retinopathy) and finally is destroyed. Today, it is possible to direct the 
green light from an argon ion laser through the clear eye lens and eye fluid, 
focus on the retina edges, and photocoagulate the leaky vessels. Even people 
who have only minor vision defects such as nearsightedness are benefiting from 
the use of lasers to reshape the cornea, changing its focal length and reducing 
the need for eyeglasses.

Laser surgery is now an everyday occurrence at hospitals and medical clinics 
around the world. Infrared light at 10 mm from a carbon dioxide laser can cut 
through muscle tissue, primarily by vaporizing the water contained in cellular 
material. Laser power of approximately 100 W is required in this technique. The 
advantage of the “laser knife” over conventional methods is that laser radiation cuts 
tissue and coagulates blood at the same time, leading to a substantial reduction in 
blood loss. In addition, the technique virtually eliminates cell migration, an impor-
tant consideration when tumors are being removed.

A laser beam can be trapped in fine optical fiber light guides (endoscopes) by 
means of total internal reflection. An endoscope can be introduced through nat-
ural orifices, conducted around internal organs, and directed to specific interior 
body locations, eliminating the need for invasive surgery. For example, bleeding 
in the gastrointestinal tract can be optically cauterized by endoscopes inserted 
through the patient’s mouth.

In biological and medical research, it is often important to isolate and collect 
unusual cells for study and growth. A laser cell separator exploits the tagging of 
specific cells with fluorescent dyes. All cells are then dropped from a tiny charged 
nozzle and laser-scanned for the dye tag. If triggered by the correct light-emitting 
tag, a small voltage applied to parallel plates deflects the falling electrically charged 
cell into a collection beaker.

Summary
 › Concepts and Principles

The wavelengths of spectral lines from hydrogen, called the Balmer series, can be described by the equation

 
1
l

5 R HS 1
22 2

1
n2D n 5 3, 4, 5, . . .  (41.1)

where RH is the Rydberg constant. The spectral lines corresponding to values of n from 3 to 6 are in the visible range of the electro-
magnetic spectrum. Values of n higher than 6 correspond to spectral lines in the ultraviolet region of the spectrum.

continued
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The Bohr model of the atom is successful in describ-
ing some details of the spectra of atomic hydrogen and 
hydrogen-like ions. One basic assumption of the model is 
that the electron can exist only in discrete orbits such that 
the angular momentum of the electron is an integral mul-
tiple of h/2p 5 ". When we assume circular orbits and a 
simple Coulomb attraction between electron and proton, 
the energies of the quantum states for hydrogen are calcu-
lated to be

 En 5 2 
ke e

2

2a0
S 1

n2D n 5 1, 2, 3, . . .  (41.13)

where n is an integer called the quantum number, ke is the 
Coulomb constant, e is the electronic charge, and a0 5 
0.052 9 nm is the Bohr radius.

If the electron in a hydrogen atom makes a transition 
from an orbit whose quantum number is ni to one whose 
quantum number is nf , where nf , ni , a photon is emitted by 
the atom. The frequency of this photon is

 f 5
ke e

2

2a0h
S 1

nf
2 2

1
ni

2D (41.15)

Quantum mechanics can be applied to the hydrogen atom by 
the use of the potential energy function UE(r) 5 2kee

2/r in the 
Schrödinger equation. The solution to this equation yields wave 
functions for allowed states and allowed energies:

 En 5 2
ke e

2

2a0

 S 1
n2D5 2  

13.606 eV
n2  n 5 1, 2, 3, . . .  (41.21)

where n is the principal quantum number. The allowed wave 
functions depend on three quantum numbers: n, ,, and m

,
, 

where , is the orbital quantum number and m
,
 is the orbital 

magnetic quantum number. The restrictions on the quantum 
numbers are

 n 5 1, 2, 3, . . . 

 , 5 0, 1, 2, . . . , n 2 1 

 m
,
 5 2,, 2, 1 1, . . . , 2 1, , 

All states having the same principal quantum number n form a 
shell, identified by the letters K, L, M, . . . (corresponding to n 5  
1, 2, 3, . . .). All states having the same values of n and , form a 
subshell, designated by the letters s, p, d, f, . . . (corresponding to  
, 5 0, 1, 2, 3, . . .).

An atom in a state characterized by a specific 
value of n can have the following values of L, 
the magnitude of the atom’s orbital angular 
momentum L

S
:

L 5 Ï/s/ 1 1d "

 , 5 0, 1, 2, . . . , n 2 1 (41.27)

The allowed values of the projection of L
S

 
along the z axis are

 Lz 5 m
,
" (41.28)

Only discrete values of Lz are allowed as deter-
mined by the restrictions on m

,
. This quantiza-

tion of Lz is referred to as space quantization.

The exclusion principle states that no two 
electrons in an atom can be in the same quan-
tum state. In other words, no two electrons 
can have the same set of quantum numbers 
n, ,, m

,
, and ms . Using this principle, the elec-

tronic configurations of the elements can be 
determined. This principle serves as a basis 
for understanding atomic structure and the 
chemical properties of the elements.

The x-ray spectrum of a metal target consists of a set of 
sharp characteristic lines superimposed on a broad con-
tinuous spectrum. Bremsstrahlung is x-radiation with its 
origin in the slowing down of high-energy electrons as 
they encounter the target. Characteristic x-rays are emit-
ted by atoms when an electron undergoes a transition 
from an outer shell to a vacancy in an inner shell.

The electron has an intrinsic angular momentum called the spin angular 
momentum. Electron spin can be described by a single quantum number s 5 1

2. 
To describe a quantum state completely, it is necessary to include a fourth 
quantum number ms , called the spin magnetic quantum number. This quan-
tum number can have only two values, 61

2. The magnitude of the spin angular 
momentum is

 S 5
Ï3
2

 " (41.30)

and the z component of S
S

 is

 Sz 5 ms " 5 61
2 " (41.31)

That is, the spin angular momentum is also quantized in space, as specified by 
the spin magnetic quantum number ms 5 61

2.

The magnetic moment mSspin associated with the spin angular momentum of an 
electron is

 mSspin 5 2 
e

me

 S
S

 (41.32)

The z component of mSspin can have the values

 mspin,z 5 6
e "

2me

 (41.33)

Atomic transitions can be described with three processes: stim-
ulated absorption, in which an incoming photon raises the atom 
to a higher energy state; spontaneous emission, in which the atom 
makes a transition to a lower energy state, emitting a photon; and 
stimulated emission, in which an incident photon causes an excited 
atom to make a downward transition, emitting a photon identical to 
the incident one.
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think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. You are working on a senior project with a group of your fel-
low students, designing a helium–neon laser that produces 
a green laser beam instead of a red one. Figure TP41.1 
shows the transitions involved to form the red beam and 
the green beam. After a population inversion is established, 
neon atoms make a variety of downward transitions in fall-
ing from the state labeled E4* down eventually to level E1  

(arbitrarily assigned the energy E1 5 0). The atoms emit 
both red light with a wavelength of 632.8 nm in a transition 
E4* 2 E3 and green light with a wavelength of 543.0 nm in a 
competing transition E4* 2 E2. To build your laser, you need 
to determine the following: (a) One of the subsequent tran-
sitions that will occur is E2 2 E1. You need to determine the 
wavelength of this transition for your final report. (b) The 
atoms in your laser are in a cavity between mirrors designed 
to reflect the green light with high efficiency but allow the 
red light to leak from the cavity. Then stimulated emission 
can lead to the buildup of a collimated beam of green light 
between the mirrors having a greater intensity than that 
of the red light. The mirrors forming the resonant cavity 
can be made of layers of silicon dioxide (index of refraction  
n 5 1.458) and titanium dioxide (index of refraction var-
ies between 1.9 and 2.6). You need to determine the thick-
ness of a layer of silicon dioxide, between layers of titanium 
dioxide, that would minimize reflection of the red light and 
maximize reflection of the green light.

2. ACTIVITy  Work with your group to construct a table like 
Table 41.5 for the n 5 4 electron in the hydrogen atom.
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Ground state

20.66 eV
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Figure TP41.1  Think-Pair-Share 
Problem 1 and Problem 35.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtiOn 41.1 Atomic Spectra of Gases

1. The wavelengths of the Lyman series for hydrogen are  
given by

1
l

5 R HS1 2
1
n2D n 5 2, 3, 4, . . . 

(a) Calculate the wavelengths of the first three lines in this 
series. (b) Identify the region of the electromagnetic spec-
trum in which these lines appear.

2. An isolated atom of a certain element emits light of wave-
length 520 nm when the atom falls from its fifth excited 
state into its second excited state. The atom emits a photon 
of wavelength 410 nm when it drops from its sixth excited 
state into its second excited state. Find the wavelength of 
the light radiated when the atom makes a transition from its 
sixth to its fifth excited state.

3. An isolated atom of a certain element emits light of wave-
length lm1 when the atom falls from its state with quantum 
number m into its ground state of quantum number 1. The 
atom emits a photon of wavelength ln1 when the atom falls 
from its state with quantum number n into its ground state. 
(a) Find the wavelength of the light radiated when the atom 
makes a transition from the m state to the n state. (b) Show 
that kmn 5 ukm1 2 kn1u, where kij 5 2p/lij is the wave number 
of the photon. This problem exemplifies the Ritz combination 
principle, an empirical rule formulated in 1908.

SeCtiOn 41.2 Early Models of the Atom

4. According to classical physics, a charge e moving with an 
acceleration a radiates energy at a rate

dE
dt

5 2
1

6pe0

  
e 2a 2

c 3

(a) Show that an electron in a classical hydrogen atom (see 
Fig. 41.5) spirals into the nucleus at a rate

dr
dt

5 2 
e4

12p2e0
2me

2c 3 S 1
r 2D

(b) Find the time interval over which the electron reaches 
r 5 0, starting from r0 5 2.00 3 10210 m.

SeCtiOn 41.3 Bohr’s Model of the Hydrogen Atom

Note: In this section, unless otherwise indicated, assume the 
hydrogen atom is treated with the Bohr model.

5. What is the energy of a photon that, when absorbed by a 
hydrogen atom, could cause an electronic transition from 
(a) the n 5 2 state to the n 5 5 state and (b) the n 5 4 state 
to the n 5 6 state?

6. Show that the speed of the electron in the nth Bohr orbit in 
hydrogen is given by

vn 5
ke e

2

n"
7. The Balmer series for the hydrogen atom corresponds to elec-

tronic transitions that terminate in the state with quantum 
number n 5 2 as shown in Figure P41.7 (page 1140). Consider 
the photon of longest wavelength corresponding to a transition  

T
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1140 Chapter 41 Atomic Physics

shown in the figure. Determine (a) its energy and (b)  its  
wavelength. Consider the spectral line of shortest wavelength 
corresponding to a transition shown in the figure. Find (c) its 
photon energy and (d) its wavelength. (e) What is the shortest 
possible wavelength in the Balmer series?

8. A monochromatic beam of light is absorbed by a collection 
of ground-state hydrogen atoms in such a way that six dif-
ferent wavelengths are observed when the hydrogen relaxes 
back to the ground state. (a) What is the wavelength of the 
incident beam? Explain the steps in your solution. (b) What 
is the longest wavelength in the emission spectrum of these 
atoms? (c) To what portion of the electromagnetic spectrum 
and (d) to what series does it belong? (e) What is the short-
est wavelength? (f) To what portion of the electromagnetic 
spectrum and (g) to what series does it belong?

9. A hydrogen atom is in its second excited state, correspond-
ing to n 5 3. Find (a) the radius of the electron’s Bohr orbit 
and (b) the de Broglie wavelength of the electron in this 
orbit.

10. An electron is in the nth Bohr orbit of the hydrogen atom. 
(a) Show that the period of the electron is T 5 n3t0 and deter-
mine the numerical value of t0. (b) On average, an electron 
remains in the n 5 2 orbit for approximately 10 ms before it 
jumps down to the n 5 1 (ground-state) orbit. How many 
revolutions does the electron make in the excited state?  
(c) Define the period of one revolution as an electron year, 
analogous to an Earth year being the period of the Earth’s 
motion around the Sun. Explain whether we should think 
of the electron in the n 5 2 orbit as “living for a long time.”

11. (a) Construct an energy-level diagram for the He1 ion, for 
which Z 5 2, using the Bohr model. (b) What is the ioniza-
tion energy for He1?

SeCtiOn 41.4 The Quantum Model of the Hydrogen Atom

12. A general expression for the energy levels of one-electron 
atoms and ions is

En 5 2 
mke

2q1
2q2

2

2"2n2

Here m is the reduced mass of the atom, given by m 5 m1m2/
(m1 1 m2), where m1 is the mass of the electron and m2 is the 
mass of the nucleus; ke is the Coulomb constant; and q1 and q2 
are the charges of the electron and the nucleus, respectively. 
The wavelength for the n 5 3 to n 5 2 transition of the hydro-
gen atom is 656.3 nm (visible red light). What are the wave-
lengths for this same transition in (a) positronium, which 
consists of an electron and a positron, and (b) singly ionized 
helium? Note: A positron is a positively charged electron.

13. Atoms of the same element but with different numbers 
of neutrons in the nucleus are called isotopes. Ordinary  

hydrogen gas is a mixture of two isotopes containing either 
one- or two-particle nuclei. These isotopes are hydrogen-1, 
with a proton nucleus, and hydrogen-2, called deuterium, 
with a deuteron nucleus. A deuteron is one proton and one 
neutron bound together. Hydrogen-1 and deuterium have 
identical chemical properties, but they can be separated 
via an ultracentrifuge or by other methods. Their emission 
spectra show lines of the same colors at very slightly differ-
ent wavelengths. (a) Use the equation given in Problem 12  
to show that the difference in wavelength between the 
hydrogen-1 and deuterium spectral lines associated with a 
particular electron transition is given by

lH 2 lD 5 S1 2
mH

mD
DlH

(b) Find the wavelength difference for the Balmer alpha line 
of hydrogen, with wavelength 656.3 nm, emitted by an atom 
making a transition from an n 5 3 state to an n 5 2 state. 
Harold Urey observed this wavelength difference in 1931 
and so confirmed his discovery of deuterium.

14. An electron of momentum p is at a distance r from a station-
ary proton. The electron has kinetic energy K 5 p2/2me . The 
atom has potential energy UE 5 2kee

2/r and total energy E 
5 K 1 UE. If the electron is bound to the proton to form 
a hydrogen atom, its average position is at the proton but 
the uncertainty in its position is approximately equal to the 
radius r of its orbit. The electron’s average vector momen-
tum is zero, but its average squared momentum is approx-
imately equal to the squared uncertainty in its momentum 
as given by the uncertainty principle. Treating the atom 
as a one-dimensional system, (a)  estimate the uncertainty 
in the electron’s momentum in terms of r. Estimate the 
electron’s (b) kinetic energy and (c) total energy in terms 
of r. The actual value of r is the one that minimizes the total 
energy, resulting in a stable atom. Find (d) that value of r and  
(e) the resulting total energy. (f) State how your answers 
compare with the predictions of the Bohr theory.

SeCtiOn 41.5 The Wave Functions for Hydrogen

15. Plot the wave function c1s(r) versus r/a0 (see Eq. 41.22), where a0 
is the Bohr radius, and the radial probability density function 
P1s(r) versus r/a0 (see Eq. 41.25) for hydrogen. Let r/a0 range 
from 0 to 1.5.

16. For a spherically symmetric state of a hydrogen atom, the 
Schrödinger equation in spherical coordinates is

2 
"2

2me
Sd 2c

dr 2 1
2
r
  

dc

dr D2
ke e

2

r
 c 5 E c

(a) Show that the 1s wave function for an electron in 
hydrogen,

c1ssrd 5
1

Ïpa0
3
 e2rya 0

satisfies the Schrödinger equation. (b) What is the energy of 
the atom for this state?

17. The ground-state wave function for the electron in a hydro-
gen atom is

c1ssrd 5
1

Ïpa0
3
 e2rya 0

where r is the radial coordinate of the electron and a0 is 
the Bohr radius. (a) Show that the wave function as given is  

V

5
4
3

2
Balmer
series

�3.401

�1.512
�0.850 4
�0.544 2

0.00
E (eV)

�
n

E
N

E
R

G
Y

Figure P41.7
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normalized. (b) Find the probability of locating the electron 
between r1 5 a0/2 and r2 5 3a0/2.

SeCtiOn 41.6 Physical Interpretation of the Quantum Numbers

18. List the possible sets of quantum numbers for the hydro-
gen atom associated with (a) the 3d subshell and (b) the 3p 
subshell.

19. Find all possible values of (a) L , (b) Lz , and (c) u for a hydro-
gen atom in a 3d state.

20. How many sets of quantum numbers are possible for a 
hydrogen atom for which (a) n 5 1, (b) n 5 2, (c) n 5 3, 
(d) n 5 4, and (e) n 5 5?

21. (a) Find the mass density of a proton, modeling it as a solid 
sphere of radius 1.00 3 10215 m. (b) What If? Consider a 
classical model of an electron as a uniform solid sphere with 
the same density as the proton. Find its radius. (c) Imagine 
that this electron possesses spin angular momentum Iv 5 
"/2 because of classical rotation about the z axis. Determine 
the speed of a point on the equator of the electron. (d) State 
how this speed compares with the speed of light.

22. You have a new summer job with NASA and are work-
ing on astronomical observations using electromagnetic 
radiation that is not in the visible range. Your supervisor 
has explained 21cm radiation to you and that it is used for 
a number of observations of interstellar hydrogen. She 
explains that 21-cm radiation is in the microwave region of 
the electromagnetic spectrum and comes from a hyperfine 
splitting of the electron ground state of hydrogen. It is sim-
ilar to the Zeeman effect, except that it is the spin states that 
are split, and the magnetic field is internal to the atom: it 
comes from the magnetic field due to the nucleus. When the 
atom makes a transition from the higher state to the lower 
state, a 21-cm photon is emitted. Based on the fact that the 
radiation is of wavelength 21 cm, you wish to determine an 
approximate value for the average magnitude of the mag-
netic field in which the electron resides.

23. The r2 meson has a charge of 2e, a spin quantum number 
of 1, and a mass 1 507 times that of the electron. The pos-
sible values for its spin magnetic quantum number are 21, 
0, and 1. What If? Imagine that the electrons in atoms are 
replaced by r2 mesons. List the possible sets of quantum 
numbers for r2 mesons in the 3d subshell.

24. Why is the following situation impossible? A photon of wave-
length 88.0 nm strikes a clean aluminum surface, ejecting a 
photoelectron. The photoelectron then strikes a hydrogen 
atom in its ground state, transferring energy to it and excit-
ing the atom to a higher quantum state.

SeCtiOn 41.7 The Exclusion Principle and the Periodic Table

25. (a) As we go down the periodic table, which subshell is filled 
first, the 3d or the 4s subshell? (b) Which electronic con-
figuration has a lower energy, [Ar]3d 44s 2 or [Ar]3d 54s1? 
Note: The notation [Ar] represents the filled configuration 
for argon. Suggestion: Which has the greater number of 
unpaired spins? (c) Identify the element with the electronic 
configuration in part (b).

26. Devise a table similar to that shown in Figure 41.18 for 
atoms containing 11 through 19 electrons. Use Hund’s rule 
and educated guesswork.

27. (a) Write out the electronic configuration of the ground 
state for nitrogen (Z 5 7). (b) Write out the values for the 
possible set of quantum numbers n, ,, m

,
, and ms for the 

electrons in nitrogen.

28. Scanning through Figure 41.19 in order of increasing 
atomic number, notice that the electrons usually fill the 
subshells in such a way that those subshells with the lowest 
values of n 1 , are filled first. If two subshells have the same 
value of n 1 ,, the one with the lower value of n is generally 
filled first. Using these two rules, write the order in which 
the subshells are filled through n 1 , 5 7.

29. Two electrons in the same atom both have n 5 3 and , 5 1. 
Assume the electrons are distinguishable, so that interchang-
ing them defines a new state. (a) How many states of the atom 
are possible considering the quantum numbers these two 
electrons can have? (b) What If? How many states would be 
possible if the exclusion principle were inoperative?

SeCtiOn 41.8 More on Atomic Spectra: Visible and X-Ray

30. In x-ray production, electrons are accelerated through a high 
voltage DV and then decelerated by striking a target. Show 
that the shortest wavelength of an x-ray that can be produced is

lmin 5
1 240 nm ? V

DV
31. A bismuth target is struck by electrons, and x-rays are emit-

ted. Estimate (a) the M- to L-shell transitional energy for 
bismuth and (b) the wavelength of the x-ray emitted when 
an electron falls from the M shell to the L shell.

32. The 3p level of sodium has an energy of 23.0 eV, and the 3d 
level has an energy of 21.5 eV. (a) Determine Z eff for each of 
these states. (b) Explain the difference.

33. You are hired as an expert witness by the attorney repres-
enting a doctor. The doctor is being sued by a patient who 
claimed radiation damage from the doctor’s x-ray machine. 
The plaintiff argues that the machine must not have been 
properly shielded, exposing him to dangerous radiation. 
Your visit to the doctor’s office shows the following results. 
You do indeed measure x-radiation in the doctor’s office, 
with a minimum wavelength of 30.0 pm. Consultation with 
the doctor and inspection of his x-ray machine shows that 
it accelerates electrons through a voltage of 35.0 kV before 
they strike the target, producing bremsstrahlung. What 
advice do you give the attorney?

34. In x-ray production, electrons are accelerated through a 
high voltage and then decelerated by striking a target. (a) 
To make possible the production of x-rays of wavelength l, 
what is the minimum potential difference DV through which 
the electrons must be accelerated? (b) State in words how 
the required potential difference depends on the wave-
length. (c) Explain whether your result predicts the correct 
minimum wavelength in Figure 41.22. (d) Does the relation-
ship from part (a) apply to other kinds of electromagnetic 
radiation besides x-rays? (e) What does the potential differ-
ence approach as l goes to zero? (f) What does the potential 
difference approach as l increases without limit?

SeCtiOn 41.10 Lasers

35. The number N of atoms in a particular state is called the 
population of that state. This number depends on the energy 
of that state and the temperature. In thermal equilibrium,  

V
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the population of atoms in a state of energy En is given by a 
Boltzmann distribution expression

N 5 Nge2(En2Eg)/kBT

where Ng is the population of the ground state of energy Eg , 
kB is Boltzmann’s constant, and T is the absolute tempera-
ture. For simplicity, assume each energy level has only one 
quantum state associated with it. (a) Before the power is 
switched on, the neon atoms in a laser are in thermal equi-
librium at 27.0°C. Find the equilibrium ratio of the popu-
lations of the states E 4* and E3 shown for the red transition 
in Figure TP41.1. Lasers operate by a clever artificial pro-
duction of a “population inversion” between the upper and 
lower atomic energy states involved in the lasing transition. 
This term means that more atoms are in the upper excited 
state than in the lower one. Consider the E 4*2E3 transition 
in Figure TP41.1. Assume 2% more atoms occur in the upper 
state than in the lower. (b) To demonstrate how unnatural 
such a situation is, find the temperature for which the Boltz-
mann distribution describes a 2.00% population inversion. 
(c) Why does such a situation not occur naturally?

36. Review. Figure 41.29 represents the light bouncing between 
two mirrors in a laser cavity as two traveling waves. These 
traveling waves moving in opposite directions constitute a 
standing wave. If the reflecting surfaces are metallic films, 
the electric field has nodes at both ends. The electromag-
netic standing wave is analogous to the standing string wave 
represented in Figure 17.14. (a) Assume that a helium–neon 
laser has precisely flat and parallel mirrors 35.124 103 cm 
apart. Assume that the active medium can efficiently amplify 
only light with wavelengths between 632.808 40 nm and 
632.809 80 nm. Find the number of components that con-
stitute the laser light, and the wavelength of each compo-
nent, precise to eight digits. (b) Find the root-mean-square  
speed for a neon atom at 120°C. (c) Show that at this temper-
ature the Doppler effect for light emission by moving neon 
atoms should realistically make the bandwidth of the light 
amplifier larger than the 0.001 40 nm assumed in part (a).

additiOnal PrOBleMS

37. Suppose a hydrogen atom is in the 2s state, with its wave 
function given by Equation 41.26. Taking r 5 a0, calculate 
values for (a) c2s(a 0), (b) uc2s(a 0)u2, and (c) P2s(a 0).

38. Show that the wave function for a hydrogen atom in the 2s 
state

c2ssrd 5
1

4Ï2p
S 1

a0
D3y2S2 2

r
a0
De2ry2a0

satisfies the spherically symmetric Schrödinger equation 
given in Problem 16.

39. The states of matter are solid, liquid, gas, and plasma. 
Plasma can be described as a gas of charged particles or a 
gas of ionized atoms. Most of the matter in the Solar System 
is plasma (throughout the interior of the Sun). In fact, most 
of the matter in the Universe is plasma; so is a candle flame. 
Use the information in Figure 41.20 to make an order-of-
magnitude estimate for the temperature to which a typical 
chemical element must be raised to turn into plasma by ion-
izing most of the atoms in a sample. Explain your reasoning.

40. Why is the following situation impossible? An experiment is 
performed on an atom. Measurements of the atom when 
it is in a particular excited state show five possible val-
ues of the z component of orbital angular momentum, 
ranging between 3.16 3 10234 kg ? m2/s and 23.16 3  
10234 kg ? m2/s.

41. Find the average (expectation) value of 1/r in the 1s state of 
hydrogen. Note that the general expression is given by

k1yr l 5 #
 

 all space
 ucu2s1yrd dV 5 #

 ` 

 0
P srds1yrd dr

Is the result equal to the inverse of the average value  
of r ?

42. As the Earth moves around the Sun, its orbits are quantized. 
(a) Follow the steps of Bohr’s analysis of the hydrogen atom 
to show that the allowed radii of the Earth’s orbit are given by

r 5
n2"2

GMS ME
2

where n is an integer quantum number, MS is the mass of 
the Sun, and ME is the mass of the Earth. (b) Calculate the 
numerical value of n for the Sun–Earth system. (c) Find the  
distance between the orbit for quantum number n and  
the next orbit out from the Sun corresponding to the quan-
tum number n 1 1. (d) Discuss the significance of your 
results from parts (b) and (c).

43. We wish to show that the most probable radial position  
for an electron in the 2s state of hydrogen is r  5 5.236a0. 
(a) Use Equations 41.24 and 41.26 to find the radial proba-
bility density for the 2s state of hydrogen. (b) Calculate the 
derivative of the radial probability density with respect to r. 
(c) Set the derivative in part (b) equal to zero and identify 
three values of r that represent minima in the function. (d) 
Find two values of r that represent maxima in the function.  
(e) Identify which of the values in part (c) represents the 
highest probability.

44. Example 41.3 calculates the most probable value and the 
average value for the radial coordinate r of the electron 
in the ground state of a hydrogen atom. For compari-
son with these modal and mean values, find the median 
value of r. Proceed as follows. (a) Derive an expression for  
the probability, as a function of r, that the electron in the 
ground state of hydrogen will be found outside a sphere 
of radius r centered on the nucleus. (b) Make a graph 
of the probability as a function of r/a 0. Choose values of  
r/a 0 ranging from 0 to 4.00 in steps of 0.250. (c) Find the 
value of r for which the probability of finding the electron 
outside a sphere of radius r is equal to the probability of 
finding the electron inside this sphere. You must solve a 
transcendental equation numerically, and your graph is a 
good starting point.

45. All atoms have the same size, to an order of magnitude.  
(a) To demonstrate this fact, estimate the atomic diame-
ters for aluminum (with molar mass 27.0 g/mol and density  
2.70 g/cm3) and uranium (molar mass 238 g/mol and den-
sity 18.9 g/cm3). (b) What do the results of part (a) imply 
about the wave functions for inner-shell electrons as we 
progress to higher and higher atomic mass atoms?
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46. Suppose the ionization energy of an atom is 4.10 eV. In 
the spectrum of this same atom, we observe emission lines 
with wavelengths 310 nm, 400 nm, and 1 377.8 nm. Use this 
information to construct the energy-level diagram with the 
fewest levels. Assume the higher levels are closer together.

47. While performing research with gaseous hydrogen at a high 
enough temperature that the H2 molecules have dissociated 
to H atoms, you notice that atoms in your hydrogen sample 
are ionized by photons of energy 2.28 eV that are incident 
on the sample. You wish to determine two things: (a) the 
minimum value for n for the hydrogen atoms that are being 
ionized, and (b) the speed of the electrons released in the 
ionization process when they are far from the atom. 

48. You are doing a senior thesis project that involves research 
into astronomical observations. In interstellar space, highly 
excited hydrogen atoms called Rydberg atoms have been 
observed, and can be useful in analyzing astronomical envi-
ronments. In these atoms, the quantum number n is very 
high. In preparation for an upcoming publication, your 
supervisor asks you to determine the quantum number of 
a Rydberg atom for which the classical and quantum pre-
dictions of the wavelength of a Dn 5 1 transition are within 
0.500% of each other.

49. A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps pulse 
containing 3.00 J of energy, find (a) the physical length of the 
pulse as it travels through space and (b) the number of pho-
tons in it. (c) The beam has a circular cross section of diameter 
0.600 cm. Find the number of photons per cubic millimeter.

50. A pulsed laser emits light of wavelength l. For a pulse of dura-
tion Dt having energy TER, find (a) the physical length of the 
pulse as it travels through space and (b) the number of pho-
tons in it. (c) The beam has a circular cross section having 
diameter d. Find the number of photons per unit volume.

Challenge PrOBleMS

 51. (a) Use Bohr’s model of the hydrogen atom to show that 
when the electron moves from the n state to the n 2 1 state, 
the frequency of the emitted light is

f 5 S2p2me ke
2  e4

h3 D 2n 2 1
n2sn 2 1d2

  (b) Bohr’s correspondence principle claims that quantum 
results should reduce to classical results in the limit of 
large quantum numbers. Show that as n S ,̀ this expres-
sion varies as 1/n3 and reduces to the classical frequency 
one expects the atom to emit. Suggestion: To calculate the 
classical frequency, note that the frequency of revolution is 
v/2pr, where v is the speed of the electron and r is given by 
Equation 41.10.

 52. Review. Steven Chu, Claude Cohen-Tannoudji, and William  
Phillips received the 1997 Nobel Prize in Physics for “the 
development of methods to cool and trap atoms with laser 
light.” One part of their work was with a beam of atoms  
(mass , 10225 kg) that move at a speed on the order of  
1 km/s, similar to the speed of molecules in air at room 
temperature. An intense laser light beam tuned to a visi-
ble atomic transition (assume 500 nm) is directed straight 
into the atomic beam; that is, the atomic beam and the light 
beam are traveling in opposite directions. An atom in the 
ground state immediately absorbs a photon. Total system 
momentum is conserved in the absorption process. After a 
lifetime on the order of 1028 s, the excited atom radiates by 
spontaneous emission. It has an equal probability of emitting 
a photon in any direction. Therefore, the average “recoil” of 
the atom is zero over many absorption and emission cycles.  
(a) Estimate the average deceleration of the atomic beam. 
(b) What is the order of magnitude of the distance over 
which the atoms in the beam are brought to a halt?
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42

42.1 Molecular Bonds

42.2 Energy States and 
Spectra of Molecules

42.3 Bonding in Solids

42.4 Free-Electron Theory  
of Metals

42.5 Band Theory of Solids

42.6 Electrical Conduction 
in Metals, Insulators, 
and Semiconductors

42.7 Semiconductor 
Devices

Storyline You are sitting at your desk, marveling at what you 
have learned about atomic physics in the previous chapter. You are absent-
mindedly flicking a laser pointer on and off when you wonder, “How does this 
laser pointer work? What makes it different from a flashlight? I understand the 
atoms in this device from Chapter 41, but how do we make these atoms into a 
laser pointer?” You try to open up the laser pointer to see what’s inside, but are 
unsuccessful. Putting the laser pointer down, you pick up a laptop computer that 
you no longer use and decide that this device might be easier to open. Grabbing 
some tools from your desk drawer, you manage to pry the computer open and 
look at the interior. Whoa! What are all these little black rectangles with the 
silver legs?

ConneCtions In the previous chapter, we learned about the structure of 
individual atoms. Now let’s combine atoms together to form bulk matter. The 
most random atomic arrangement, that of a gas, was well understood in the 
1800s as discussed in our study of kinetic theory in Chapter 20. In contrast, in a 
crystalline solid, the atoms are not randomly arranged; rather, they form a regular 
array. The symmetry of the arrangement of atoms both stimulated and allowed 
rapid progress in the field of solid-state physics in the 20th century. With the addi-
tion of liquid crystals, amorphous solids, and some more exotic forms of matter, 
such as Bose–Einstein condensates, solid-state physics expanded in the middle 
of the 20th century to become known as condensed matter physics. In this chap-
ter, we will apply our principles and models from earlier chapters and our new 
understanding of quantum mechanics to an understanding of combinations of 
atoms: molecules. Then we will make similar applications of principles and models 

The inside of a laptop 
computer shows a variety 

of integrated circuits, 
which we will learn about 

in this chapter. (Steve Allen/
Dreamstime.com)

Molecules and Solids
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    42.1 Molecular Bonds 1145

to larger collections of atoms: solids. The understanding of solids will allow us 
to learn about insulating, conducting, and semiconducting materials, as well the 
operation of semiconducting junctions and several semiconductor devices.

   42.1    Molecular Bonds
The bonding mechanisms in a molecule are fundamentally due to electric forces 
between atoms (or ions). Because the electric force is conservative, the forces 
between atoms in the system of a molecule are related to a potential energy func-
tion. A stable molecule is expected at a configuration for which the potential energy 
function for the molecule has its minimum value. (See Section 7.9.)

A potential energy function that can be used to model a molecule should account 
for two known features of molecular bonding:

1. The force between atoms is repulsive at very small separation distances. 
When two atoms are brought close to each other, some of their electron 
shells overlap, resulting in repulsion between the shells. This repulsion is 
partly electrostatic in origin and partly the result of the exclusion principle. 
Because all electrons must obey the exclusion principle, some electrons in 
the overlapping shells are forced into higher energy states and the system 
energy increases as if a repulsive force existed between the atoms. This 
repulsive potential energy function is shown as a function of r above the 
axis in Figure 42.1a.

2. At somewhat larger separations, the force between atoms must be attractive. 
If that were not true, the atoms in a molecule would not be bound together. 
Because the force is attractive, the potential energy is negative and is shown 
as a function of r below the axis in Figure 42.1a.

Taking into account these two features, the potential energy for a system of two 
atoms can be represented by an expression of the form

 U srd 5 2
A
r n 1

B
r m  (42.1)

where r is the internuclear separation distance between the two atoms and n and 
m are small integers. The parameter A is associated with the attractive force and B 
with the repulsive force. Example 7.9 gives one common model for such a potential 
energy function, the Lennard–Jones potential.

Figure 42.1b shows the graphical results of adding the attractive and repulsive 
potential energy functions in Figure 42.1a. At large separation distances between 
the two atoms, the slope of the curve is positive, corresponding to a net attractive 
force. At the equilibrium separation distance r0, the attractive and repulsive forces 
just balance. At this point, the potential energy has its minimum value 2U0 and the 
slope of the curve is zero. The energy U0 is sometimes called the binding energy of 
the molecule.

A complete description of the bonding mechanisms in molecules is highly com-
plex because bonding involves the mutual interactions of many particles. In this 
section, we discuss only some simplified models.

Ionic Bonding
When two atoms combine in such a way that one or more outer electrons are trans-
ferred from one atom to the other, the bond formed is called an ionic bond. Ionic 
bonds are fundamentally caused by the Coulomb attraction between oppositely 
charged ions.

A familiar example of an ionically bonded solid is sodium chloride, NaCl, which is 
common table salt. Sodium, which has the electronic configuration 1s22s22p63s1, is ion-
ized relatively easily, giving up its 3s electron to form a Na1 ion. The energy required 

0
r

U(r)

Attractive
potential � 1/r n 

0
r

U(r)

Repulsive
potential � 1/r m 

U0

r0

a

b

Figure 42.1 (a) The repulsive 
and attractive potential energies 
as a function of separation dis-
tance for a system of two atoms. 
(b) When the energies in part 
(a) are combined, we find the 
total potential energy curve, 
which reaches a minimum of 
depth U0 at a separation distance 
of r0.
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1146 Chapter 42 Molecules and Solids

to ionize the atom to form Na1 is 5.1 eV. Chlorine, which has the electronic configura-
tion 1s22s22p5, is one electron short of the filled-shell structure of argon. If we compare 
the energy of a system of a free electron and a Cl atom with one in which the electron 
joins the atom to make the Cl2 ion, we find that the energy of the ion is lower. When 
the electron makes a transition from the E 5 0 state to the negative energy state asso-
ciated with the available shell in the atom, energy is released. This amount of energy 
is called the electron affinity of the atom. For chlorine, the electron affinity is 3.6 eV. 
Therefore, the energy required to form isolated Na1 and Cl2 ions from isolated atoms 
is 5.1 eV 2 3.6 eV 5 1.5 eV. It costs 5.1 eV to remove the electron from the Na atom, 
but 3.6 eV of it is gained back when that electron is allowed to join with the Cl atom.

Now imagine that these two charged ions interact with one another to form a 
NaCl “molecule.”1 The potential energy of the system will have both attractive and 
repulsive components as described in Figure 42.1a. The total energy of the NaCl 
molecule versus internuclear separation distance is graphed in Figure 42.2. At very 
large separation distances, the energy of the system of ions is 1.5 eV as calculated 
above. The total energy has a minimum value of 24.2 eV at the equilibrium sep-
aration distance, which is approximately 0.24 nm. Hence, the energy required to 
break the Na12Cl2 bond and form neutral sodium and chlorine atoms, called the 
dissociation energy, is 4.2 eV. The energy of the molecule is lower than that of the 
system of two neutral atoms. Consequently, it is energetically favorable for the mol-
ecule to form: the system of neutral sodium and chlorine atoms can reduce its total  
energy by transferring energy out of the system (by electromagnetic radiation, for 
example) and forming the NaCl molecule.

Covalent Bonding
A covalent bond between two atoms is one in which electrons supplied by either 
one or both atoms are shared by the two atoms. Many diatomic molecules—such 
as H2, F2, and CO—owe their stability to covalent bonds. The bond between two 
hydrogen atoms can be described by using atomic wave functions. The ground-
state wave function for a hydrogen atom (Chapter 41) is

c1ssrd 5
1

Ïpa0
3
 e2rya 0

r (nm)

Total energy (eV)

0.24 nm

0
1
2
3
4

�4
�3
�2
�1

Na� � Cl�

Na � Cl4.2 eV

0.2 0.4 0.6 1.0 1.2 1.40.8

Dissociation

The asymptote of the curve for large 
values of r is marked Na� � Cl� 
because that is the energy of the 
system of sodium and chlorine ions.

The horizontal axis is labeled Na � Cl 
because we define zero energy as that 
for the system of neutral sodium and 
chlorine atoms.

Figure 42.2  Total energy versus 
internuclear separation distance 
for Na1 and Cl2 ions. The asymp-
tote of the curve for large values 
of r is 1.5 eV.

PItfall PreventIon 42.1
Ionic and Covalent Bonds In prac-
tice, these descriptions of ionic 
and covalent bonds represent 
extreme ends of a spectrum of 
bonds involving electron transfer. 
In a real bond, the electron may 
not be completely transferred as in 
an ionic bond or equally shared 
as in a covalent bond. Therefore, 
real bonds lie somewhere between 
these extremes.

1NaCl does not tend to form as an isolated molecule at room temperature. In the solid state, NaCl forms a crystalline 
array of ions as described in Section 42.3. In the liquid state or in solution with water, the Na1 and Cl2 ions dissociate 
and are free to move relative to each other.
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    42.1 Molecular Bonds 1147

This wave function is graphed in Figure 42.3a for two hydrogen atoms that are 
far apart. There is very little overlap of the wave functions c1(r) for atom 1, located 
at r 5 0, and c2(r) for atom 2, located some distance away. Suppose now the two 
atoms are brought close together. As that happens, their wave functions overlap and 
form the compound wave function c1(r) 1 c2(r) shown in Figure 42.3b. We inter-
pret these curves as representing the probability amplitude of finding electrons at 
a position r. Notice that the probability amplitude is larger between the atoms than 
it is on either side of the combination of atoms. As a result, the probability is higher 
that the electrons associated with the atoms will be located between the atoms than 
on the outer regions of the system. Consequently, the average position of negative 
charge in the system is halfway between the atoms. This scenario can be modeled 
as if there were a fixed negative charge between the atoms, exerting attractive Cou-
lomb forces on both nuclei. Therefore, there is an overall attractive force between 
the atoms, resulting in a covalent bond.

van der Waals Bonding
Ionic and covalent bonds occur between atoms to form molecules or ionic solids, 
so they can be described as bonds within molecules. Two additional types of bonds, 
van der Waals bonds and hydrogen bonds, can occur between molecules.

You might think that two neutral molecules would not interact by means of the 
electric force because they each have zero net charge. They are attracted to each 
other, however, by weak electrostatic forces called van der Waals forces. 

The van der Waals force results from the following situation. While being elec-
trically neutral, a molecule has a charge distribution with positive and negative 
centers at different positions in the molecule. As a result, the molecule may act as 
an electric dipole. (See Section 22.4.) Because of the dipole electric fields, two mol-
ecules can interact such that there is an attractive force between them.

There are three types of van der Waals forces. The first type, called the dipole–
dipole force, is an interaction between two molecules each having a permanent elec-
tric dipole moment. For example, polar molecules such as HCl have permanent 
electric dipole moments and attract other polar molecules.

The second type, the dipole–induced dipole force, results when a polar molecule 
having a permanent electric dipole moment induces a dipole moment in a nonpo-
lar molecule. We discussed induced polarization in Section 25.6. In this case, the 
electric field of the polar molecule creates the dipole moment in the nonpolar mol-
ecule, which then results in an attractive force between the molecules.

The third type is called the dispersion force, an attractive force that occurs between 
two nonpolar molecules. In this case, although the average dipole moment of a 
nonpolar molecule is zero, the average of the square of the dipole moment is non-
zero because of charge fluctuations. Two nonpolar molecules near each other tend 
to have dipole moments that are correlated in time so as to produce an attractive 
van der Waals force.

The dispersion force is also active for atoms that do not form ionic or covalent 
bonds. Noble gas atoms, for example, because of their filled shell structure, do not 
generally form molecules or bond to each other to form a liquid. However, the elec-
tron structure of the atom can vary in time so that it possesses a temporary dipole 
moment. Because of dispersion forces, therefore, at sufficiently low temperatures 
at which thermal excitations are negligible, noble gases first condense to liquids 
and then solidify. (The exception is helium, which does not solidify at atmospheric 
pressure.)

Hydrogen Bonding
Because hydrogen has only one electron, it is expected to form a covalent bond with 
only one other atom within a molecule. A hydrogen atom in a given molecule can 
also form a second type of bond between molecules called a hydrogen bond. Let’s 

0

0

r

2(r)1(r)

r

c

c c

1(r) �    2(r)cc

c

The probability amplitude for 
an electron to be between the 
atoms is high.

a

b

Figure 42.3 Ground-state wave 
functions c1(r) and c2(r) for two 
atoms making a covalent bond.  
(a) The atoms are far apart, and 
their wave functions overlap min-
imally. (b) The atoms are close 
together, forming a composite 
wave function c1(r) 1 c2(r) for the 
system.
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1148 Chapter 42 Molecules and Solids

use the water molecule H2O as an example. In the two covalent bonds in this mol-
ecule, the electrons from the hydrogen atoms are more likely to be found near the 
oxygen atom than near the hydrogen atoms, leaving essentially bare protons at the 
positions of the hydrogen atoms. This unshielded positive charge can be attracted 
to the negative end of another polar molecule. Because the proton is unshielded 
by electrons, the negative end of the other molecule can come very close to the 
proton to form a bond strong enough to form a solid crystalline structure, such as 
that of ordinary ice. The bonds within a water molecule are covalent, but the bonds 
between water molecules in ice are hydrogen bonds.

The hydrogen bond is relatively weak compared with other chemical bonds 
and can be broken with an input energy of approximately 0.1 eV. Because of this 
weakness, ice melts at the low temperature of 0°C. Even though this bond is weak, 
however, hydrogen bonding is a critical mechanism responsible for the linking of 
biological molecules and polymers. For example, in the case of the DNA (deox-
yribonucleic acid) molecule, which has a double-helix structure (Fig. 42.4), hydro-
gen bonds form by the sharing of a proton between two atoms and create linkages 
between the turns of the helix.

Q uICk QuIz 42.1  For each of the following atoms or molecules, identify the 
most likely type of bonding that occurs between the atoms or between the mol-
ecules. Choose from the following list: ionic, covalent, van der Waals, hydrogen. 
(a) atoms of krypton (b) potassium and chlorine atoms (c) hydrogen fluoride 
(HF) molecules (d) chlorine and oxygen atoms in a hypochlorite ion (ClO2)

   42.2    Energy States and Spectra of Molecules
Let’s imagine that atoms have joined together to form a molecule and the poten-
tial energy of the system is at its minimum value. Consider one such molecule in a 
gaseous sample of identical molecules. Additional contributions to the energy E of 
the molecule can be divided into four categories: (1) electronic energy, due to the 
interactions between the molecule’s electrons and nuclei; (2) translational energy, 
due to the motion of the molecule’s center of mass through space; (3) rotational 
energy, due to the rotation of the molecule about its center of mass; and (4) vibra-
tional energy, due to the vibration of the molecule’s constituent atoms:

E 5 Eel 1 Etrans 1 Erot 1 Evib

We explored the roles of translational, rotational, and vibrational energy of mol-
ecules in determining the molar specific heats of gases in Sections 20.2 and 20.3. 
The translational energy is important in kinetic theory, but it is unrelated to inter-
nal structure of the molecule, so this molecular energy is unimportant in interpret-
ing molecular spectra. The electronic energy of a molecule is very complex because 
it involves the interaction of many charged particles, but various techniques have 
been developed to approximate its values. Although the electronic energies can be 
studied, significant information about a molecule can be determined by analyzing 
its quantized rotational and vibrational energy states. As we find below, rotational 
states are separated by smaller energy differences than vibrational states. Transi-
tions between these states give spectral lines in the microwave and infrared regions 
of the electromagnetic spectrum, respectively.

rotational Motion of Molecules
Let’s consider the rotation of a molecule around its center of mass, confining our 
discussion to the diatomic molecule (Fig. 42.5a) but noting that the same ideas 
can be extended to polyatomic molecules. A diatomic molecule aligned along a 
y axis has only two rotational degrees of freedom, corresponding to rotations about 
the x and z axes passing through the molecule’s center of mass. We discussed the 

Total energy of a molecule 

Figure 42.4  DNA molecules are 
held together by hydrogen bonds.
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    42.2 Energy States and Spectra of Molecules 1149

rotation of such a molecule and its contribution to the specific heat of a gas in 
Section 20.3. If v is the angular frequency of rotation about one of these axes, the 
rotational kinetic energy of the molecule about that axis can be expressed with 
Equation 10.24:

 E rot 5 1
2Iv2 (42.2)

In this equation, I  is the moment of inertia of the molecule about its center of mass, 
given by

 I 5 S m1 m2

m1 1 m2
Dr 2 5 mr 2 (42.3)

where m1 and m2 are the masses of the atoms that form the molecule, r is the atomic 
separation, and m is the reduced mass of the molecule (see Example 40.5 and Prob-
lem 30 in Chapter 40):

 m 5
m1 m2

m1 1 m2

 (42.4)

The magnitude of the molecule’s angular momentum about its center of mass 
is given by Equation 11.16, L 5 Iv, which classically can have any value. In Sec-
tion 41.4, we mentioned that any system in which the potential energy function is 
spherically symmetric and which exhibits rotation has the same solutions of the 
Schrödinger equation as those for the angular part of the hydrogen atom. The mol-
ecule is a rotating system, so the solutions describing its rotation should follow the 
same behavior. Consider Equation 41.27 for the allowed values of the orbital angu-
lar momentum quantum number for the hydrogen atom. There must be a parallel 
expression for molecular rotation:

 L 5 ÏJ s J 1 1d U  J 5 0, 1, 2, Á  (42.5)

where J is an integer called the rotational quantum number. Combining Equa-
tions 42.5 and 42.2, we obtain an expression for the allowed values of the rotational 
kinetic energy of the molecule:

E rot 5 1
2Iv2 5

1
2I

sIvd2 5
L2

2I
5

sÏJ s J 1 1d Ud2

2I

 E rot 5 EJ 5
U2

2I
 J s J 1 1d  J 5 0, 1, 2, Á  (42.6)

The allowed rotational energies of a diatomic molecule are plotted in Figure 42.5b. 
As the quantum number J goes up, the states become farther apart as displayed 
earlier for rotational energy levels in Figure 20.7.

  Moment of inertia for 
a diatomic molecule

  Reduced mass of a diatomic 
molecule

  Allowed values of rotational 
angular momentum

  Allowed values of rotational 
energy
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The diatomic molecule 
can rotate about the x 
and z axes.

m1

m2

E0 � 0

The energies of 
allowed states can 
be calculated using 
Equation 42.6.

Figure 42.5 Rotation of a 
diatomic molecule around its cen-
ter of mass. (a) A diatomic mole-
cule oriented along the y axis. (b) 
Allowed rotational energies of a 
diatomic molecule expressed as 
multiples of E1 5 "2/I.
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1150 Chapter 42 Molecules and Solids

For most molecules, transitions between adjacent rotational energy levels result 
in radiation that lies in the microwave range of frequencies ( f , 1011 Hz). When a 
molecule absorbs a microwave photon, the molecule jumps from a lower rotational 
energy level to a higher one. The allowed rotational transitions of linear molecules 
are regulated by the selection rule DJ 5 61. Given this selection rule, all absorption 
lines in the spectrum of a linear molecule correspond to energy separations equal 
to EJ 2 EJ21, where J 5 1, 2, 3, . . . . From Equation 42.6, we see that the energies of 
the absorbed photons are given by

Ephoton 5 DE rot 5 EJ 2 EJ 21 5
U2

2I
f J s J 1 1d 2 s J 2 1d J g

 Ephoton 5
U2

I
 J 5

h2

4p2I
 J  J 5 1, 2, 3, Á  (42.7)

where J is the rotational quantum number of the higher energy state. Because  
Ephoton 5 hf, where f  is the frequency of the absorbed photon, we see that the allowed  
frequency for the transition J 5 0 to J 5 1 is f1 5 h/4p2I. The frequency correspond-
ing to the J 5 1 to J 5 2 transition is 2f1, and so on. These predictions are in excel-
lent agreement with the observed frequencies.

Q uICk QuIz 42.2  A gas of identical diatomic molecules absorbs electro-
magnetic radiation over a wide range of frequencies. Molecule 1 is in the J 5 0 
rotation state and makes a transition to the J 5 1 state. Molecule 2 is in the J 5 2 
state and makes a transition to the J 5 3 state. Is the ratio of the frequency of 
the photon that excited molecule 2 to that of the photon that excited molecule 
1 equal to (a) 1, (b) 2, (c) 3, (d) 4, or (e) impossible to determine?

Energy of a photon absorbed 
in a transition between 

adjacent rotational levels

 Example 42.1    Rotation of the CO Molecule

The J 5 0 to J 5 1 rotational transition of the CO molecule occurs at a frequency of 1.15 3 1011 Hz.

(A) Use this information to calculate the moment of inertia of the molecule.

S o l u T I o n

Conceptualize Imagine that the two atoms in Figure 42.5a are carbon and oxygen. The center of mass of the molecule is not 
midway between the atoms because of the difference in masses of the C and O atoms.

Categorize The statement of the problem tells us to categorize this example as one involving a quantum-mechanical treat-
ment and to restrict our investigation to the rotational motion of a diatomic molecule.

Analyze Use Equation 42.7 to find the energy of a  E photon 5
h2

4p2I
s1d 5

h2

4p2I
 

photon that excites the molecule from the J 5 0 to  
the J 5 1 rotational level:

Equate this energy to E 5 hf for the absorbed photon  
h2

4p2I
5 hf    S   I 5

h
4p2f

 
and solve for I:

Substitute the frequency given in the problem statement: I 5
6.626 3 10234 J ? s

4p2s1.15 3 1011 s21d
5  1.46 3 10246 kg ? m2

(B) Calculate the bond length of the molecule.

S o l u T I o n

Find the reduced mass m of the CO molecule: m 5
m1 m2

m1 1 m2

5
s12.0 uds16.0 ud
12.0 u 1 16.0 u

5 6.86 u

 5 s6.86 udS1.66 3 10227 kg

1 u D 5 1.14 3 10226 kg
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    42.2 Energy States and Spectra of Molecules 1151

42.1 c o n t i n u e d

Solve Equation 42.3 for r and substitute for the reduced  r 5Î I
m

5Î1.46 3 10246 kg ? m2

1.14 3 10226 kg
  

mass and the moment of inertia from part (A):
5 1.13 3 10210 m 5  0.113 nm

Finalize The moment of inertia of the molecule and the separation distance between the atoms are both very small, as 
expected for a microscopic system. 

W h A T  I F ?  What if another photon of frequency 1.15 3 1011 Hz is incident on the CO molecule while that molecule is in 
the J 5 1 state? What happens?

Answer Because the rotational quantum states are not equally spaced in energy, the J 5 1 to J 5 2 transition does not have 
the same energy as the J 5 0 to J 5 1 transition. Therefore, the molecule will not be excited to the J 5 2 state. Two possibilities 
exist. The photon could pass by the molecule with no interaction, or the photon could induce a stimulated emission, similar 
to that for atoms and discussed in Section 41.9. In this case, the molecule makes a transition back to the J 5 0 state and the 
original photon and a second identical photon leave the scene of the interaction.

vibrational Motion of Molecules
If we consider a molecule to be a flexible structure in which the atoms are bonded 
together by an “effective spring” as shown in Figure 42.6, we can apply the particle 
in simple harmonic motion analysis model to the molecule as long as the atoms 
in the molecule are not too far from their equilibrium positions. Recall from Sec-
tion 15.3 that the potential energy function for a simple harmonic oscillator is par-
abolic, varying as the square of the position of the particle relative to the equilib-
rium position. (See Eq. 15.20 and Fig. 15.9b.) Figure 42.1b shows a plot of potential 
energy versus atomic separation for a diatomic molecule, where r0 is the equilib-
rium atomic separation. For separations close to r0, the shape of the potential 
energy curve closely resembles the parabolic shape of the potential energy function 
in the particle in simple harmonic motion model.

According to classical mechanics, the frequency of vibration for the system 
shown in Figure 42.6 is given by Equation 15.14:

 f 5
1

2pÎ k
m

 (42.8)

where k is the effective spring constant and m is the reduced mass given by Equation 
42.4. In Section 20.3, we studied the contribution of a molecule’s vibration to the 
specific heats of gases.

Quantum mechanics predicts that a molecule vibrates in quantized states as 
described in Section 40.7. The vibrational motion and quantized vibrational energy 
can be altered if the molecule acquires energy of the proper value to cause a transi-
tion between quantized vibrational states. As discussed in Section 40.7, the allowed 
vibrational energies are

 E vib 5 sv 1 1
2dhf  v 5 0, 1, 2, Á  (42.9)

where v is an integer called the vibrational quantum number. (We used n in Sec-
tion 40.7 for a general harmonic oscillator, but v is often used for the quantum 
number when discussing molecular vibrations.) If the system is in the lowest vibra-
tional state, for which v 5 0, its ground-state energy is 12hf. In the first excited vibra-
tional state, v 5 1 and the energy is 32hf, and so on.

Substituting Equation 42.8 into Equation 42.9 gives the following expression for 
the allowed vibrational energies:

 E vib 5 sv 1 1
2d 

h
2p

 Î k
m
  v 5 0, 1, 2, Á  (42.10)   Allowed values of  

vibrational energy

k

r

The vibration of the 
molecule is along 
the molecular axis.

m1

m2

Figure 42.6 Effective-spring 
model of a diatomic molecule.
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1152 Chapter 42 Molecules and Solids

The selection rule for the allowed vibrational transitions is Dv 5 61. Transitions 
between vibrational levels are caused by absorption of photons in the infrared 
region of the spectrum. The energy of an absorbed photon is equal to the energy 
difference between any two successive vibrational levels. Therefore, the photon 
energy is given by

 Ephoton 5 DE vib 5
h

2p
 Î k

m
 (42.11)

The vibrational energies of a diatomic molecule are plotted in Figure 42.7. At 
ordinary temperatures, most molecules have vibrational energies corresponding to 
the v 5 0 state because the spacing between vibrational states is much greater than 
kBT, where kB is Boltzmann’s constant and T is the temperature.

Q uICk QuIz 42.3  A gas of identical diatomic molecules absorbs electromag-
netic radiation over a wide range of frequencies. Molecule 1, initially in the  
v 5 0 vibrational state, makes a transition to the v 5 1 state. Molecule 2, initially 
in the v 5 2 state, makes a transition to the v 5 3 state. What is the ratio of 
the frequency of the photon that excited molecule 2 to that of the photon that 
excited molecule 1? (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine

 Example 42.2    Vibration of the CO Molecule

The frequency of the photon that causes the v 5 0 to v 5 1 transition in the CO molecule is 6.42 3 1013 Hz. We ignore any 
changes in the rotational energy for this example.

(A) Calculate the force constant k for this molecule.

S o l u T I o n

Conceptualize Imagine that the two atoms in Figure 42.6 are carbon and oxygen. As the molecule vibrates, a given point on 
the imaginary spring is at rest. This point is not midway between the atoms because of the difference in masses of the C and 
O atoms.

Categorize The statement of the problem tells us to categorize this example as one involving a quantum-mechanical treat-
ment and to restrict our investigation to the vibrational motion of a diatomic molecule. The molecule is analyzed with por-
tions of the particle in simple harmonic motion analysis model.

Analyze Set Equation 42.11 equal to the photon  
h

2p
 Î k

m
5 hf    S   k 5 4p2mf 2 

energy hf and solve for the force constant:

Substitute the frequency given in the problem  k 5 4p2s1.14 3 10226 kgds6.42 3 1013 s21d2 5  1.85 3 103 Nym 
statement and the reduced mass from  
Example 42.1:

Vibrational
energyv

5 hf11
2

4 hf9
2

3 hf7
2

2 hf5
2

1 hf3
2

0 hf1
2

E vib�

E
N

E
R

G
Y

The spacings between 
adjacent vibrational 
levels are equal if the 
molecule behaves as a 
harmonic oscillator.

Figure 42.7 Allowed vibrational 
energies of a diatomic molecule, 
where f is the frequency of vibra-
tion of the molecule, given by 
Equation 42.8.
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    42.2 Energy States and Spectra of Molecules 1153

Molecular Spectra
In general, a molecule vibrates and rotates simultaneously. To a first approxima-
tion, these motions are independent of each other, so the total energy of the mole-
cule for these motions is the sum of Equations 42.6 and 42.9:

 E 5 sv 1 1
2dhf 1

U2

2I
 J s J 1 1d (42.12)

The energy levels of any molecule can be calculated from this expression, and each 
level is indexed by the two quantum numbers v and J. From these calculations, an 
energy-level diagram like the one shown in Figure 42.8a can be constructed. For 
each allowed value of the vibrational quantum number v, there is a complete set of 
rotational levels corresponding to J 5 0, 1, 2, . . . . The energy separation between 
successive rotational levels is much smaller than the separation between successive 
vibrational levels. As noted earlier, most molecules at ordinary temperatures are 
in the v 5 0 vibrational state; these molecules can be in various rotational states as 
Figure 42.8a shows.

When a molecule absorbs a photon with the appropriate energy, the vibrational 
quantum number v increases by one unit while the rotational quantum number J 
either increases or decreases by one unit as can be seen in Figure 42.8a. Therefore, 
the molecular absorption spectrum in Figure 42.8b consists of two groups of lines: 
one group to the right of center and satisfying the selection rules DJ 5 11 and  
Dv 5 11, and the other group to the left of center and satisfying the selection rules 
DJ 5 21 and Dv 5 11.

The energies of the absorbed photons can be calculated from Equation 42.12:

 Ephoton 5 DE 5 hf 1
U2

I
 s J 1 1d  J 5 0, 1, 2, Á sDJ 5 11d (42.13)

 Ephoton 5 DE 5 hf 2
U2

I
 J  J 5 1, 2, 3, Á sDJ 5 21d (42.14)

where J is the rotational quantum number of the initial state. Equation 42.13 gen-
erates the series of equally spaced lines higher than the frequency f, whereas Equa-
tion 42.14 generates the series lower than this frequency. Adjacent lines are sepa-
rated in frequency by the fundamental unit "/2pI. Figure 42.8b shows the expected 
frequencies in the absorption spectrum of the molecule; these same frequencies 
appear in the emission spectrum.

42.2 c o n t i n u e d

(B) What is the classical amplitude A of vibration for this molecule in the v 5 0 vibrational state?

S o l u T I o n

Equate the maximum elastic potential energy 12 kA2  1
2kA2 5

h
4p

 Î k
m

   S   A 5Î h
2p
S 1

mkD1y4

 
in the molecule (Eq. 15.21) to the vibrational  
energy given by Equation 42.10 with  
v 5 0 and solve for A:

Substitute the value for k from part (A) and  A 5Î6.626 3 10234 J ? s

2p
  3 1

s1.14 3 10226 kgds1.85 3 103 Nymd4
1y4

 
the value for m:

5 4.79 3 10212 m 5  0.004 79 nm

Finalize Comparing this result with the bond length of 0.113 nm we calculated in Example 42.1 shows that the classical ampli-
tude of vibration is approximately 4% of the bond length.

Photon frequency

J � 4
J � 3
J � 2
J � 1
J � 0

v � 1

J � 4
J � 3
J � 2
J � 1
J � 0

v � 0
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The transitions obey the selection 
rule �J � �1 and fall into two 
sequences, those for �J � �1 and 
those for �J � �1.

The lines to the right of the center 
mark correspond to transitions in 
which J changes by �1; the lines to 
the left of the center mark 
correspond to transitions for 
which J changes by �1.

Figure 42.8 (a) Absorptive tran-
sitions between the v 5 0 and  
v 5 1 vibrational states of a 
diatomic molecule. Compare the 
energy levels in this figure with 
those in Figure 20.7. (b) Expected 
lines in the absorption spectrum 
of a molecule. 
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1154 Chapter 42 Molecules and Solids

The experimental absorption spectrum of the HCl molecule shown in Fig-
ure 42.9 follows this pattern very well and reinforces our model. One peculiarity is 
apparent, however: each line is split into a doublet. This doubling occurs because 
two chlorine isotopes (Cl-35 and Cl-37; see Section 43.1) were present in the sample 
used to obtain this spectrum. Because the isotopes have different masses, the two 
HCl molecules have different values of I.

The intensity of the spectral lines in Figure 42.9 follows an interesting pattern, 
rising first as one moves away from the central gap (located at about 8.65 3 1013 Hz, 
corresponding to the forbidden J 5 0 to J 5 0 transition) and then falling. This 
intensity is determined by a product of two functions of J. The first function cor-
responds to the number of available states for a given value of J. This function is  
2J 1 1, corresponding to the number of values of mJ, the molecular rotation ana-
log to m

,
 for atomic states. For example, the J 5 2 state has five substates with five 

values of mJ (mJ 5 22, 21, 0, 1, 2), whereas the J 5 1 state has only three substates 
(mJ 5 21, 0, 1). Therefore, on average and without regard for the second function 
described below, five-thirds as many molecules make the transition from the J 5 2 
state as from the J 5 1 state.

The second function determining the envelope of the intensity of the spectral 
lines is the Boltzmann factor, introduced in Section 20.5. The number of molecules 
in an excited rotational state is given by

n 5 n 0e
2U2J s J 1 1dys2I k BT d

where n0 is the number of molecules in the J 5 0 state.
Multiplying these factors together indicates that the intensity of spectral lines 

should be described by a function of J as follows:

 I ~ s2J 1 1de2U2J s J 1 1dys2Ik BT d (42.15)

The factor (2J 1 1) increases with J while the exponential second factor decreases. 
The product of the two factors gives a behavior that closely describes the envelope 
of the spectral lines in Figure 42.9.

The excitation of rotational and vibrational energy levels is an important con-
sideration in current models of global warming. Most of the absorption lines 
for CO2 are in the infrared portion of the spectrum. Therefore, visible light 
from the Sun is not absorbed by atmospheric CO2 but instead strikes the Earth’s 
surface, warming it. In turn, the surface of the Earth, being at a much lower 
temperature than the Sun, emits thermal radiation that peaks in the infrared 
portion of the electromagnetic spectrum (Section 39.1). This infrared radia-
tion is absorbed by the CO2 molecules in the air instead of radiating out into 
space. Atmospheric CO2 acts like a one-way valve for energy from the Sun and is 

Intensity variation in the 
vibration–rotation spectrum 

of a molecule
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Each line is split into a doublet because the sample 
contains two chlorine isotopes that have different 
masses and therefore different moments of inertia.

Figure 42.9  Experimental 
absorption spectrum of the HCl 
molecule.
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    42.2 Energy States and Spectra of Molecules 1155

responsible, along with some other atmospheric molecules, for raising the tem-
perature of the Earth’s surface above its value in the absence of an atmosphere. 
This phenomenon is commonly called the “greenhouse effect.” The burning of 
fossil fuels in today’s industrialized society adds more CO2 to the atmosphere. 
This addition of CO2 increases the absorption of infrared radiation, raising the 
Earth’s temperature further. In turn, this increase in temperature causes sub-
stantial climatic changes. 

As seen in Figure 42.10, the amount of carbon dioxide in the atmosphere has 
been steadily increasing since the middle of the 20th century. This graph shows 
hard data that indicate that the atmosphere is undergoing a distinct change, 
leading almost all scientists to agree on the interpretation of what that change 
means in terms of global temperatures. 

The Intergovernmental Panel on Climate Change (IPCC) is a scientific body 
that assesses the available information related to global warming and associated 
effects related to climate change. It was originally established in 1988 by two 
United Nations organizations, the World Meteorological Organization and the 
United Nations Environment Programme. The IPCC has published five assessment 
reports on climate change, the most recent in 2014. The 2014 report concludes 
that there is a probability of greater than 95–100% that the increased global tem-
perature measured by scientists is due to the placement of greenhouse gases such 
as carbon dioxide in the atmosphere by humans. The report also predicts a global 
temperature increase between 2.5°C and 7.8°C in the 21st century, a sea level rise 
of up to 60 cm, and very high probabilities of weather extremes, including heat 
waves, droughts, cyclones, and heavy rainfall. As a result of this report and other 
information, the “Paris Agreement” was adopted by all of the 195 participating 
member states and the European Union at the 21st Conference of the Parties of 
the United Nations Framework Convention on Climate Change in December 2015. 
The treaty was signed by enough countries after the Conference that it went into 
effect in November 2016. The treaty sets limits on the emission of greenhouse gases 
and could be helpful in minimizing the temperature rise over the remainder of 
this century.

In addition to its scientific aspects, global warming is a social issue with many fac-
ets. These facets encompass international politics and economics, because global 
warming is a worldwide problem. Changing our policies requires real costs to solve 
the problem. Global warming also has technological aspects, and new methods of 
manufacturing, transportation, and energy supply must be designed to slow down 
or reverse the increase in temperature. The Paris Agreement addresses these issues 
as well.
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Figure 42.10 The concentration 
of atmospheric carbon dioxide in 
parts per million (ppm) of dry air 
as a function of time. These data 
were recorded at the Mauna Loa 
Observatory in Hawaii. The yearly 
variations (red-brown curve) coin-
cide with growing seasons because 
vegetation absorbs carbon dioxide 
from the air. The steady increase 
in the average concentration 
(black curve) is of concern to 
scientists.
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1156 Chapter 42 Molecules and Solids

   42.3    Bonding in Solids
A crystalline solid consists of a large number of atoms arranged in a regular array, 
forming a periodic structure. The ions in the NaCl crystal are ionically bonded, 
as already noted, and the carbon atoms in diamond form covalent bonds with one 
another. The metallic bond described at the end of this section is responsible for 
the cohesion of copper, silver, sodium, and other solid metals.

Ionic Solids
Many crystals are formed by ionic bonding, in which the dominant interaction 
between ions is the Coulomb force. Consider a portion of the NaCl crystal shown in 
Figure 42.11a. The red spheres are sodium ions, and the blue spheres are chlorine 
ions. As shown in Figure 42.11b, each Na1 ion has six nearest-neighbor Cl2 ions. 
Similarly, in Figure 42.11c, we see that each Cl2 ion has six nearest-neighbor Na1 
ions. Each Na1 ion is attracted to its six Cl2 neighbors. The corresponding poten-
tial energy is 26kee

2/r, where ke is the Coulomb constant and r is the separation dis-
tance between each Na1 and Cl2. In addition, there are 12 next-nearest-neighbor 
Na1 ions at a distance of Ï2r  from the Na1 ion, and these 12 positive ions exert 
weaker repulsive forces on the central Na1. Furthermore, beyond these 12 Na1 ions 
are more Cl2 ions that exert an attractive force, and so on. The net effect of all 
these interactions is a resultant negative electric potential energy

 Uattractive 5 2ake 
e 2

r
 (42.16)

where a is a dimensionless number known as the Madelung constant. The value 
of a depends only on the particular crystalline structure of the solid. For example,  
a 5 1.747 6 for the NaCl structure. 

Ionic crystals form relatively stable, hard crystals. They are poor electrical con-
ductors because they contain no free electrons; each electron in the solid is bound 
tightly to one of the ions, so it is not sufficiently mobile to carry current. Ionic 
crystals have high melting points; for example, the melting point of NaCl is 801°C. 
Ionic crystals are transparent to visible radiation because the shells formed by the 
electrons in ionic solids are so tightly bound that visible radiation does not possess 
sufficient energy to promote electrons to the next allowed shell. Infrared radiation 
is absorbed strongly because the vibrations of the ions have natural resonant fre-
quencies in the low-energy infrared region.

 Conceptual Example 42.3    Comparing Figures 42.8 and 42.9

In Figure 42.8a, the transitions indicated correspond to spectral lines that are equally spaced as shown in Figure 42.8b. 
The actual spectrum in Figure 42.9, however, shows lines that move closer together as the frequency increases. Why does 
the spacing of the actual spectral lines differ from the diagram in Figure 42.8b?

S o l u T I o n

In Figure 42.8, we modeled the rotating diatomic molecule as a rigid object (Chapter 10). In reality, however, as the mole-
cule rotates faster and faster, the effective spring in Figure 42.6 stretches and provides the increased force associated with 
the larger centripetal acceleration of each atom. As the molecule stretches along its length, its moment of inertia I increases. 
Therefore, the rotational part of the energy expression in Equation 42.12 has an extra dependence on J in the moment of iner-
tia I. Because the increasing moment of inertia is in the denominator, as J increases, the energies do not increase as rapidly 
with J as indicated in Equation 42.12. With each higher energy level being lower than indicated by Equation 42.12, the energy 
associated with a transition to that level is smaller, as is the frequency of the absorbed photon, destroying the even spacing of 
the spectral lines and giving the spacing that decreases with increasing frequency seen in Figure 42.9.

Na�

Cl �

a

b

c

The blue spheres represent 
Cl� ions, and the red spheres 
represent Na� ions.

Figure 42.11  (a) Crystalline 
structure of NaCl. (b) Each pos-
itive sodium ion is surrounded 
by six negative chlorine ions. 
(c) Each chlorine ion is sur-
rounded by six sodium ions.
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Covalent Solids
Solid carbon, in the form of diamond, is a crystal whose atoms are covalently 
bonded. Because atomic carbon has the electronic configuration 1s22s22p2, it is 
four electrons short of filling its n 5 2 shell, which can accommodate eight elec-
trons. Because of this electron structure, two carbon atoms have a strong attrac-
tion for each other. In the diamond structure, each carbon atom is covalently 
bonded to four other carbon atoms located at four corners of a cube as shown in 
Figure 42.12a.

The crystalline structure of diamond is shown in Figure 42.12b. Notice that each 
carbon atom forms covalent bonds with four nearest-neighbor atoms. The basic 
structure of diamond is called tetrahedral (each carbon atom is at the center of 
a regular tetrahedron), and the angle between the bonds is 109.5°. Other crystals 
such as silicon and germanium have the same structure.

Carbon is interesting in that it can form several different types of structures. 
In addition to the diamond structure, it forms graphite, with completely different 
properties. In this form, the carbon atoms form flat layers with hexagonal arrays of 
atoms. A very weak interaction between the layers allows the layers to be removed 
easily under friction, as occurs in the graphite used in pencil lead.

Carbon atoms can also form a large hollow structure; in this case, the com-
pound is called buckminsterfullerene after the famous architect R. Buckminster 
Fuller, who invented the geodesic dome. The unique shape of this molecule 
(Fig.  42.13) provides a “cage” to hold other atoms or molecules. Related struc-
tures, called “buckytubes” because of their long, narrow cylindrical arrangements 
of carbon atoms, may provide the basis for extremely strong, yet lightweight, 
materials.

A current area of active research is in the properties and applications of graphene. 
Graphene consists of a monolayer of carbon atoms, with the atoms arranged in 
hexagons so that the monolayer looks like chicken wire. Graphite flakes that are 
shed from a pencil while writing contain small fragments of graphene. Pioneers 
in graphene research include Andre Geim (b. 1958) and Konstantin Novoselov 
(b. 1974) of the University of Manchester, who received the Nobel Prize in Physics 
in 2010 for their experiments. Graphene has interesting electronic, thermal, and 
optical properties that are currently under investigation. Its mechanical properties 
include a breaking strength 200 times that of steel. Potential applications under 
study include graphene nanoribbons, quantum dots, transistors, optical modula-
tors, and integrated circuits.

Metallic Solids
Metallic bonds are generally weaker than ionic or covalent bonds. The outer 
electrons in the atoms of a metal are relatively free to move throughout the 
material, and the number of such mobile electrons in a metal is large. The metal-
lic structure can be viewed as a “sea” or a “gas” of nearly free electrons surround-
ing a lattice of positive ions (Fig. 42.14, page 1158). The bonding mechanism in a 
metal is the attractive force between the entire collection of positive ions and the 
electron gas. 

Light interacts strongly with the free electrons in metals. Hence, visible light 
is absorbed and re-emitted quite close to the surface of a metal, which accounts 
for the shiny nature of metal surfaces. In addition to the high electrical con-
ductivity of metals produced by the free electrons, the nondirectional nature 
of the metallic bond allows many different types of metal atoms to be dissolved 
in a host metal in varying amounts. The resulting solid solutions, or alloys (steel, 
bronze, brass, etc.), may be designed to have particular properties, such as 
tensile strength, ductility, electrical and thermal conductivity, and resistance 
to corrosion.

a

b

a

b

Figure 42.12  (a) Each carbon 
atom in a diamond crystal is 
covalently bonded to four other 
carbon atoms so that a tetrahe-
dral structure is formed. (b) The 
crystal structure of diamond, 
showing the tetrahedral bond 
arrangement.

Figure 42.13  Computer render-
ing of a “buckyball,” short for the 
molecule buckminsterfullerene. 
These nearly spherical molecular 
structures that look like soccer 
balls were named for the inventor 
of the geodesic dome. This form 
of carbon, C60, was discovered by 
astrophysicists investigating the 
carbon gas that exists between 
stars. Scientists are actively study-
ing the properties and potential 
uses of buckminsterfullerene and 
related molecules.
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Nonmetallic solids tend to fracture when stressed. Fracturing results because 
bonding in nonmetallic solids is primarily with nearest-neighbor ions or atoms. 
When the distortion causes sufficient stress between some set of nearest neighbors, 
fracture occurs. In contrast, metals tend to bend when stressed. The bonding in 
metals is between all the electrons and all the positive ions. Therefore, there is no 
localized bond to fracture when the metal is bent.

   42.4    Free-Electron Theory of Metals
In Section 26.3, we described a classical free-electron theory of electrical conduc-
tion in metals, a structural model that led to Ohm’s law. According to this theory, a 
metal is modeled as a classical gas of conduction electrons moving through a fixed 
lattice of ions. Although this theory predicts the correct functional form of Ohm’s 
law, it does not predict the correct values of electrical and thermal conductivities.

A quantum-based free-electron theory of metals remedies the shortcomings of 
the classical model by taking into account the wave nature of the electrons. In this 
model, based on the quantum particle under boundary conditions analysis model, 
the outer-shell electrons are free to move through the metal but are trapped within 
a three-dimensional box formed by the metal surfaces. Therefore, each electron is 
represented as a particle in a box. As discussed in Section 40.2, particles in a box 
are restricted to quantized energy levels.

Statistical physics can be applied to a collection of particles in an effort to relate 
microscopic properties to macroscopic properties as we saw with kinetic theory of 
gases in Chapter 20. In the case of electrons, it is necessary to use quantum statistics, 
with the requirement that each state of the system can be occupied by only two 
electrons (one with spin up and the other with spin down) as a consequence of the 
exclusion principle. The probability that a particular state having energy E is occu-
pied by one of the electrons in a solid is

 f sEd 5
1

e sE2E Fdyk BT 1 1
 (42.17)

where f(E) is called the Fermi–Dirac distribution function and EF is called the 
Fermi energy. A plot of f(E) versus E at T 5 0 K is shown in Figure 42.15a. Notice 
that f(E) 5 1 for E , EF and f(E) 5 0 for E . EF . That is, at 0 K, all states having 
energies less than the Fermi energy are occupied and all states having energies 
greater than the Fermi energy are vacant. This situation is consistent with the excu-
sion principle. A plot of f(E) versus E at some temperature T . 0 K is shown in 
Figure 42.15b. This curve shows that as T increases, the distribution rounds off 
slightly. Because of thermal excitation, states near and below EF lose population 
and states near and above EF gain population. The Fermi energy EF also depends 
on temperature, but the dependence is weak in metals.
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The blue area represents the 
electron gas, and the red spheres 
represent the positive metal ions.

Figure 42.14  Highly schematic 
diagram of a metal.
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The energy EF is the Fermi energy.
Figure 42.15 Plot of the Fermi–
Dirac distribution function f (E) 
versus energy at (a) T 5 0 K and 
(b) T . 0 K.
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    42.4 Free-Electron Theory of Metals 1159

Let’s now follow up on our discussion of the particle in a box in Chapter 40 to 
generalize the results to a three-dimensional box. Recall that if a particle of mass m 
is confined to move in a one-dimensional box of length L, the allowed states have 
quantized energy levels given by Equation 40.14:

En 5 S h2

8mL2Dn2 5 S U2p2

2mL2Dn2 n 5 1, 2, 3, Á

Now imagine a piece of metal in the shape of a solid cube of sides L and vol-
ume L3 and focus on one electron that is free to move anywhere in this volume. 
Therefore, the electron is modeled as a particle in a three-dimensional box. In this 
model, we require that c(x, y, z) 5 0 at the boundaries of the metal. It can be shown 
(see Problem 23) that the energy for such an electron is

 E 5
U2p2

2me L2 snx
2 1 ny

2 1 nz
2  d (42.18)

where me is the mass of the electron and nx, ny, and nz are quantum numbers. As we 
expect, the energies are quantized, and each allowed value of the energy is char-
acterized by this set of three quantum numbers (one for each degree of freedom) 
and the spin quantum number ms. For example, the ground state, corresponding to 
nx 5 ny 5 nz 5 1, has an energy equal to 3"2p2/2meL

2 and can be occupied by two 
electrons, corresponding to spin up and spin down.

Because of the macroscopic size L of the box, the energy levels for the electrons 
are very close together. As a result, we can treat the quantum numbers as continu-
ous variables. Under this assumption, the number of allowed states per unit volume 
that have energies between E and E 1 dE is

 g sEd dE 5
8Ï2 pme

3y2

h3  E 1y2 dE  (42.19)

(See Problem 46.) The function g(E) is called the density-of-states function.
If a metal is in thermal equilibrium, the number of electrons per unit volume 

N(E) dE that have energy between E and E 1 dE is equal to the product of the num-
ber of allowed states per unit volume and the probability that a state is occupied; 
that is, N(E) dE 5 g(E)f(E) dE:

 NsE d dE 5 S8Ï2 pme
3y2

h3  E 1y2 DS 1
e sE2EF dykBT 1 1D dE  (42.20)

Plots of N(E) versus E for two temperatures are given in Figure 42.16.
If ne is the total number of electrons per unit volume, we require that

 ne 5 #
`

0
NsEd dE 5

8Ï2 pme
3y2

h3  #
`

0
 

E 1y2 dE
e sE2EFdykBT 1 1

 (42.21)

We can use this condition to calculate the Fermi energy. At T 5 0 K, the Fermi–
Dirac distribution function f(E) 5 1 for E , EF and f(E) 5 0 for E . EF. Therefore, 
at T 5 0 K, Equation 42.21 becomes

 ne 5
8Ï2 pme

3y2

h3  #
EF

0
E 1y2 dE 5 2

3 
8Ï2 pme

3y2

h3  EF
3y2 (42.22)

Solving for the Fermi energy at 0 K gives

 EFs0d 5
h2

2me
S3ne

8p
D2y3

 (42.23)   Fermi energy at T 5 0 K

0 1 2 3
E (eV)

N(E)

T � 0 K

0 1 2 3
E (eV)

N(E)

T � 0 K

kBT at 300 K

T � 300 K

a

b

To provide a sense of scale, 
imagine that the Fermi energy 
EF of the metal is 3 eV.

Figure 42.16  Plot of the elec-
tron distribution function versus 
energy in a metal at (a) T 5 0 K 
and (b) T 5 300 K.
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1160 Chapter 42 Molecules and Solids

The Fermi energies for metals are in the range of a few electron volts. Representa-
tive values for various metals are given in Table 42.1. It is left as a problem (Prob-
lem 25) to show that the average energy of a free electron in a metal at 0 K is

 E avg 5 3
5 EF (42.24)

 taBle 42.1  Calculated Values of the Fermi Energy for Metals 
at 300 K Based on the Free-Electron Theory
Metal Electron Concentration (m23) Fermi Energy (eV)

Li 4.70 3 1028 4.72
Na 2.65 3 1028 3.23
K 1.40 3 1028 2.12
Cu 8.46 3 1028 7.05
Ag 5.85 3 1028 5.48
Au 5.90 3 1028 5.53

 Example 42.4    The Fermi Energy of Gold

Each atom of gold (Au) contributes one free electron to the metal. Compute the Fermi energy for gold.

S o l u T I o n

Conceptualize Imagine electrons filling higher and higher available levels at T 5 0 K in gold. The highest energy filled is the 
Fermi energy.

Categorize We evaluate the result using a result from this section, so we categorize this example as a substitution problem.

Substitute the concentration of free electrons in gold  E Fs0d 5
s6.626 3 10234 J ? sd2

2s9.11 3 10231 kgd 33s5.90 3 1028 m23 d
8p 42y3

 
from Table 42.1 into Equation 42.23 to calculate the  
Fermi energy at 0 K:    5 8.85 3 10219 J 5  5.53 eV

   42.5    Band Theory of Solids
In Section 42.4, the electrons in a metal were modeled as particles free to move 
around inside a three-dimensional box and we ignored the influence of the parent 
atoms. In this section, we make the model more sophisticated by incorporating the 
contribution of the parent atoms that form the crystal.

Based on our discussion in Chapter 40, the probability density |c|2 for a system 
is physically significant, but the probability amplitude c is not. Let’s consider as an 
example an atom that has a single s electron outside of a closed shell. Both of the 
following wave functions are valid for such an atom with atomic number Z:

cs
1
 srd 5 1Af srde2Zryna0  cs

2
 srd 5 2Af srde2Zryna0

where A is the normalization constant and f(r) is a function2 of r that varies with the 
value of the principal quantum number n. Choosing either of these wave functions 
leads to the same value of |c|2, so both choices are equivalent. A difference arises, 
however, when two atoms are combined.

If two identical atoms are very far apart, they do not interact and their elec-
tronic energy levels can be considered to be those of isolated atoms. Suppose the 
two atoms are sodium, each having a lone 3s electron that is in a well-defined 
quantum state. As the two sodium atoms are brought closer together, their wave 

2The functions f(r) are called Laguerre polynomials. They can be found in the quantum treatment of the hydrogen 
atom in modern physics textbooks.
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functions begin to overlap as we discussed for covalent bonding in Section 42.1. 
The properties of the combined system differ depending on whether the two 
atoms are combined with wave functions cs

1(r) as in Figure 42.17a or whether 
they are combined with one having wave function cs

1(r) and the other cs
2(r) as 

in Figure 42.17b. The choice of two atoms with wave function cs
2(r) is physically 

equivalent to that with two positive wave functions, so we do not consider it sep-
arately. When two wave functions cs

1(r) are combined, the result is a compos-
ite wave function in which the probability amplitudes add between the atoms. If 
cs

1(r) combines with cs
2(r), however, the wave functions between the nuclei sub-

tract. Therefore, the composite probability amplitudes for the two possibilities are 
different. These two possible combinations of wave functions represent two pos-
sible states of the two-atom system. We interpret these curves as representing the 
probability amplitude of finding an electron. The positive–positive curve shows 
some probability of finding the electron at the midpoint between the atoms. The 
positive–negative function shows no such probability. A state with a high probabil-
ity of an electron between two positive nuclei must have a different energy than a 
state with a high probability of the electron being elsewhere! Therefore, the states 
are split into two energy levels due to the two ways of combining the wave func-
tions. The energy difference is relatively small, so the two states are close together 
on an energy scale.

When a large number of atoms are brought together to form a solid, a simi-
lar phenomenon occurs. The individual wave functions can be brought together 
in various combinations of cs

1(r) and cs
2(r), each possible combination corre-

sponding to a different energy. As the atoms are brought close together, the var-
ious  isolated-atom energy levels split into multiple energy levels for the composite 
system. 

As the number of atoms grows, the number of combinations of wave functions 
grows, as does the number of possible energies. If we extend this argument to 
the large number of atoms found in solids (on the order of 1023 atoms per cubic 
centimeter), we obtain a huge number of levels of varying energy so closely spaced 
that they may be regarded as a continuous band of energy levels. In the case of 
sodium, it is customary to refer to the continuous distributions of allowed energy 
levels as s bands because the bands originate from the s levels of the individual 
sodium atoms.

Each energy level in the atom can spread into a band when the atoms are com-
bined into a solid. Figure 42.18 shows the allowed energy bands of sodium at a fixed 
separation distance between the atoms. Notice that energy gaps, corresponding to 
forbidden energies, occur between the allowed bands. In addition, some bands exhibit 
sufficient spreading in energy that there is an overlap between bands arising from 
different quantum states (3s and 3p).

As indicated by the blue-shaded areas in Figure 42.18, the 1s, 2s, and 2p bands of 
sodium are each full of electrons because the 1s, 2s, and 2p states of each atom are 
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Figure 42.17  The wave functions 
of two atoms combine to form 
a composite wave function for 
the two-atom system when the 
atoms are close together. (a) Two 
atoms with wave functions cs

1(r) 
combine. (b) Two atoms with 
wave functions cs

1(r) and cs
2(r) 

combine.
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In some cases, the 
energy bands of 
previously separated 
atomic states overlap.

There are no states for electrons 
to occupy in the energy gaps.

Figure 42.18  Energy bands of 
a sodium crystal. Blue represents 
energy bands occupied by the 
sodium electrons when the 
atom is in its ground state. Gold 
represents energy bands that 
are empty.
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full. An energy level in which the orbital angular momentum is , can hold 2(2, 1 1)  
electrons. The factor 2 arises from the two possible electron spin orientations, 
and the factor 2, 1 1 corresponds to the number of possible orientations of the 
orbital angular momentum. The capacity of each band for a system of N atoms is 
2(2, 1 1)N electrons. Therefore, the 1s and 2s bands each contain 2N electrons  
(, 5 0), and the 2p band contains 6N electrons (, 5 1). Because sodium has only one 
3s electron and there are a total of N atoms in the solid, the 3s band contains only 
N electrons and is partially full as indicated by the blue coloring in Figure 42.18.  
The 3p band, which is the higher region of the overlapping bands, is completely 
empty (all gold in the figure).

Band theory allows us to build simple models to understand the behavior of con-
ductors, insulators, and semiconductors as well as that of semiconductor devices, as 
we shall discuss in the following sections.

   42.6    Electrical Conduction in Metals,  
Insulators, and Semiconductors
Good electrical conductors contain a high density of free charge carriers, and the 
density of free charge carriers in insulators is nearly zero. Semiconductors, first 
introduced in Section 22.2, are a class of technologically important materials in 
which charge-carrier densities are intermediate between those of insulators and 
those of conductors. In this section, we discuss the mechanisms of conduction in 
these three classes of materials in terms of a model based on energy bands.

Metals
If a material is to be a good electrical conductor, the charge carriers in the material 
must be free to move in response to an applied electric field. Let’s consider the 
electrons in a metal as the charge carriers. The motion of the electrons in response 
to an electric field represents an increase in energy of the system (the metal lattice 
and the free electrons) corresponding to the additional kinetic energy of the mov-
ing electrons. The system is described by the nonisolated system model for energy. 
Equation 8.2 becomes W 5 DK, where the work is done on the electrons by the 
electric field. Therefore, when an electric field is applied to a conductor, electrons 
must move upward to an available higher energy state on an energy-level diagram 
to represent the additional kinetic energy.

Figure 42.19 shows a half-filled band in a metal at T 5 0 K, where the blue 
region represents levels filled with electrons. Because electrons obey Fermi–Dirac 
statistics, all levels below the Fermi energy are filled with electrons and all levels 
above the Fermi energy are empty. The Fermi energy lies in the band at the highest 
filled state. At temperatures slightly greater than 0 K, some electrons are thermally 
excited to levels above EF, but overall there is little change from the 0 K case. If 
a potential difference is applied to the metal, however, electrons having energies 
near the Fermi energy require only a small amount of additional energy from the 
applied electric field to reach nearby empty energy states above the Fermi energy. 
Therefore, electrons in a metal experiencing only a weak applied electric field are 
free to move because many empty levels are available close to the occupied energy 
levels. The model of metals based on band theory demonstrates that metals are 
excellent electrical conductors.

Insulators
Now consider the two outermost energy bands of a material in which the lower 
band is filled with electrons and the higher band is empty at 0 K (Fig. 42.20). The 
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The states in the gold 
region of the band are 
available to account for 
electron motion.

Figure 42.19 Half-filled band of 
a metal, an electrical conductor. 
At T 5 0 K, the Fermi energy lies 
in the middle of the band.
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The available states in the 
conduction band are 
separated from the valence 
band by a large energy gap.

Figure 42.20  An electrical 
insulator at T 5 0 K has a filled 
valence band and an empty con-
duction band. The Fermi level  
lies somewhere between these 
bands in the region known as the 
energy gap.
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lower, filled band is called the valence band, and the upper, empty band is the con-
duction band. (The conduction band is the one that is partially filled in a metal.) 
It is common to refer to the energy separation between the valence and conduction 
bands as the energy gap Eg of the material. The Fermi energy lies somewhere in the 
energy gap3 as shown in Figure 42.20.

Suppose a material has a relatively large energy gap of, for example, approxi-
mately 5 eV. At 300 K (room temperature), kBT 5 0.025 eV, which is much smaller 
than the energy gap. At such temperatures, the Fermi–Dirac distribution predicts 
that very few electrons are thermally excited into the conduction band. There are 
no available states that lie close in energy above the valence band and into which 
electrons can move upward to account for the extra kinetic energy associated with 
motion through the material in response to an electric field. Consequently, the 
electrons do not move; the material is an insulator. 

Semiconductors
Semiconductors have the same type of band structure as an insulator, but the 
energy gap is much smaller, on the order of 1 eV. Table 42.2 shows the energy gaps 
for some representative materials. The band structure of a semiconductor is shown 
in Figure 42.21. Because the Fermi level is located near the middle of the gap for 
a semiconductor and Eg is small, appreciable numbers of electrons are thermally 
excited from the valence band to the conduction band. Because of the many empty 
levels above the thermally filled levels in the conduction band, a small applied 
potential difference can easily raise the electrons in the conduction band into avail-
able energy states, resulting in a moderate current.

At T 5 0 K, all electrons in these materials are in the valence band and no 
energy is available to excite them across the energy gap. Therefore, semiconduc-
tors are poor conductors at very low temperatures. Because the thermal excitation 
of electrons across the narrow gap is more probable at higher temperatures, the 
conductivity of semiconductors increases rapidly with temperature, contrasting 
sharply with the conductivity of metals, which decreases slowly with increasing 
temperature.

Charge carriers in a semiconductor can be negative, positive, or both. When 
an electron moves from the valence band into the conduction band, it leaves 
behind a vacant site, called a hole, in the otherwise filled valence band. This 
hole (electron-deficient site) acts as a charge carrier in the sense that a free elec-
tron from a nearby site can transfer into the hole. Whenever an electron does 
so, it creates a new hole at the site it abandoned. Therefore, the net effect can be 
viewed as the hole migrating through the material in the direction opposite the 
direction of electron movement. The hole behaves as if it were a particle with a 
positive charge 1e.

A pure semiconductor crystal containing only one element or one compound 
is called an intrinsic semiconductor. In these semiconductors, there are equal 
numbers of conduction electrons and holes. Such combinations of charges are 
called electron–hole pairs. In the presence of an external electric field, the 
holes move in the direction of the field and the conduction electrons move in 
the direction opposite the field (Fig. 42.22, page 1164). Because the electrons 
and holes have opposite signs, both motions correspond to a current in the same 
direction.

3We defined the Fermi energy as the energy of the highest filled state at T 5 0, which might suggest that the 
Fermi energy should be at the top of the valence band in Figure 42.20. A more sophisticated general treatment 
of the Fermi energy, however, shows that it is located at that energy at which the probability of occupation 
is one-half (see Fig.  42.15b). According to this definition, the Fermi energy lies in the energy gap between 
the bands.
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The small energy gap allows 
electrons to be thermally excited 
into the conduction band.

Figure 42.21  Band structure 
of a semiconductor at ordinary 
temperatures (T < 300 K). The 
energy gap is much smaller than 
in an insulator.

 taBle 42.2  Energy-Gap 
Values for Some Semiconductors

Eg (eV)

Crystal 0 K 300 K

Si 1.17 1.14
Ge 0.74 0.67
InP 1.42 1.34
GaP 2.32 2.26
GaAs 1.52 1.42
CdS 2.58 2.42
CdTe 1.61 1.56
ZnO 3.44 3.2
ZnS 3.91 3.6
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Q uICk QuIz 42.4  Consider the data on three materials given in the table.

Material Conduction Band Eg

A Empty 1.2 eV
B Half full 1.2 eV
C Empty 8.0 eV

  Identify each material as a conductor, an insulator, or a semiconductor.

Doped Semiconductors
When impurities are added to a semiconductor, both the band structure of the 
semiconductor and its resistivity are modified. The process of adding impurities, 
called doping, is important in controlling the conductivity of semiconductors. 
For example, when an atom containing five outer-shell electrons, such as arse-
nic, is added to a Group IV semiconductor, four of the electrons form covalent 
bonds with atoms of the semiconductor and one is left over (Fig. 42.23a). This 
extra electron is nearly free of its parent atom and can be modeled as having 
an energy level that lies in the energy gap, immediately below the conduction 
band (Fig. 42.23b). Such a pentavalent atom in effect donates an electron to the 
structure and hence is referred to as a donor atom. Because the spacing between 
the energy level of the electron of the donor atom and the bottom of the conduc-
tion band is very small (typically, approximately 0.05 eV), only a small amount 
of thermal excitation is needed to cause this electron to move into the conduc-
tion band. (Recall that the average energy of an electron at room temperature 
is approximately kBT < 0.025 eV.) Semiconductors doped with donor atoms are 
called n-type semiconductors. The donor electrons do not have an associated 
hole, so the majority of charge carriers in the material are electrons, which are 
negatively charged.

If a Group IV semiconductor is doped with atoms containing three outer-shell 
electrons, such as indium and aluminum, the three electrons form covalent bonds 
with neighboring semiconductor atoms, leaving an electron deficiency—a hole—
where the fourth bond would be if an impurity-atom electron were available to form 
it (Fig. 42.24a). This situation can be modeled by placing an energy level in the 
energy gap, immediately above the valence band, as in Figure 42.24b. An electron 
from the valence band has enough energy at room temperature to fill this impurity 
level, leaving behind a hole in the valence band. This hole can carry current in the 
presence of an electric field. Because a trivalent atom accepts an electron from the 
valence band, such impurities are referred to as acceptor atoms. A semiconduc-
tor doped with trivalent (acceptor) impurities is known as a p -type semiconductor 
because the majority of charge carriers are positively charged holes.
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Figure 42.22  Movement of 
charges (holes and electrons) in 
an intrinsic semiconductor.
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Figure 42.23  (a) Two- 
dimensional representation of a 
semiconductor consisting of Group 
IV atoms (gray) and an impurity 
atom (yellow) that has five out-
er-shell electrons. (b) Energy-band 
diagram for a semiconductor in 
which the nearly free electron 
of the impurity atom lies in the 
energy gap, immediately below the 
bottom of the conduction band.
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When conduction in a semiconductor is the result of acceptor or 
donor impurities, the material is called an extrinsic semiconductor. 
The typical range of doping densities for extrinsic semiconductors is 
1013 to 1019 cm23, whereas the electron density in a typical semiconduc-
tor is roughly 1021 cm23.

   42.7    Semiconductor Devices
The electronics of the first half of the 20th century was based on vac-
uum tubes, in which electrons pass through empty space between 
a cathode and an anode. We have seen vacuum tube devices in Fig-
ure 28.10 (circular electron beam), Figure 28.15a (Thomson’s appara-
tus for measuring e/me for the electron), and Figure 39.9 (photoelectric 
effect apparatus).

The transistor was invented in 1948, leading to a shift away from vac-
uum tubes and toward semiconductors as the basis of electronic devices. 
This phase of electronics has been under way for several decades. As 
discussed in Chapter 40, there may be a new phase of electronics in the 
near future using nanotechnological devices employing quantum dots 
and other nanoscale structures.

In this section, we discuss electronic devices based on semiconduc-
tors, which are still in wide use and will be for many years to come.

the Junction Diode
A fundamental unit of a semiconductor device is formed when a p -type 
semiconductor is joined to an n-type semiconductor to form a p–n junc-
tion. A junction diode is a device that is based on a single p–n junction. The role of 
a diode of any type is to pass current in one direction but not the other. Therefore, 
it acts as a one-way valve for current.

The p–n junction shown in Figure 42.25a consists of three distinct regions: a 
p region, an n region, and a small area that extends several micrometers to either 
side of the interface, called a depletion region.
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Figure 42.24  (a) Two- 
dimensional representation of 
a semiconductor consisting of 
Group IV atoms (gray) and an 
impurity atom (yellow) having 
three outer-shell electrons. (b) 
Energy-band diagram for a semi-
conductor in which the energy 
level associated with the trivalent 
impurity atom lies in the energy 
gap, immediately above the top of 
the valence band.
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Figure 42.25  (a) Physical 
arrangement of a p–n junction. 
(b) Component Ex of the internal 
electric field versus x for the p–n 
junction. (c) Internal electric 
potential difference DV versus x 
for the p–n junction.
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The depletion region may be visualized as arising when the two halves of the 
junction are brought together. The mobile n-side donor electrons nearest the 
junction (deep-blue area in Fig. 42.25a) diffuse to the p side and fill holes located 
there, leaving behind immobile positive ions. While this process occurs, we can 
model the holes that are being filled as diffusing to the n side, leaving behind a 
region (brown area in Fig. 42.25a) of fixed negative ions.

Because the two sides of the depletion region each carry a net charge, an inter-
nal electric field on the order of 104 to 106 V/cm exists in the depletion region (see 
Fig. 42.25b). This field produces an electric force on any remaining mobile charge 
carriers that sweeps them out of the depletion region, so named because it is a 
region depleted of mobile charge carriers. This internal electric field creates an 
internal potential difference DV0 that prevents further diffusion of holes and elec-
trons across the junction and thereby ensures zero current in the junction when no 
potential difference is applied.

The operation of the junction as a diode is easiest to understand in terms of 
the potential difference graph shown in Figure 42.25c. If a voltage DV is applied to 
the junction such that the p side is connected to the positive terminal of a voltage 
source as shown in Figure 42.26a, the internal potential difference DV0 across the  
junction decreases as shown at the bottom of the figure; the decrease results in 
a current that increases exponentially with increasing forward voltage, or forward 
bias. For reverse bias (where the n side of the junction is connected to the positive 
terminal of a voltage source), the internal potential difference DV0 increases with 
increasing reverse bias as in Figure 42.26b; the increase results in a very small 
reverse current that quickly reaches a saturation value I0. The  current–voltage rela-
tionship for an ideal diode is

 I 5 I0 se
e DVykBT 2 1d (42.25)

where the first e is the base of the natural logarithm, the second e represents the 
magnitude of the electron charge, kB is Boltzmann’s constant, and T is the absolute 
temperature. Figure 42.26c shows an I2DV plot characteristic of a real p–n junc-
tion, demonstrating the one-way valve behavior.

light-emitting and light-absorbing Diodes
Light-emitting diodes (LEDs) and semiconductor lasers are common examples of 
devices that depend on the behavior of semiconductors. LEDs are used in television 
displays, household lighting, flashlights, and camera flash units. The laser pointer 
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Figure 42.26  (a) A p–n junction 
under forward bias. The top dia-
gram shows the potentials applied 
at the ends of the junction. Below 
that is a circuit diagram showing a 
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you were inspecting in the opening storyline contains a specially designed LED 
that, in combination with a reflecting cavity (see Section 41.10), emits a narrow 
beam of monochromatic light.

Light emission and absorption in semiconductors is similar to light emission and 
absorption by gaseous atoms except that in the discussion of semiconductors we 
must incorporate the concept of energy bands rather than the discrete energy lev-
els in single atoms. As shown in Figure 42.27a, an electron excited electrically into 
the conduction band can easily recombine with a hole (especially if the electron 
is injected into a p region). As this recombination takes place, a photon of energy 
Eg is emitted. With proper design of the semiconductor and the associated plastic 
envelope or mirrors, the light from a large number of these transitions serves as the 
source of an LED or a semiconductor laser.

Conversely, an electron in the valence band may absorb an incoming photon of 
light and be promoted to the conduction band, leaving a hole behind (Fig. 42.27b). 
This absorbed energy can be used to operate an electrical circuit.

One device that operates on this principle is the photovoltaic solar cell. An early 
large-scale application of arrays of photovoltaic cells is the energy supply for orbit-
ing spacecraft. 

During the early years of the current century, application of photovoltaics 
for ground-based generation of electricity has been one of the world’s fast-
est-growing energy technologies. At the time of this printing, the global gen-
eration of energy by means of photovoltaics is over 305 GW. A homeowner can 
install arrays of photovoltaic panels on the roof of his or her house and generate 
enough energy to operate the home as well as feed excess energy back into the 
electrical grid. Several photovoltaic power plants have recently been completed, 
including the Agua Caliente Solar Project in Arizona (200 MW completed in 
2012, and 397 MW projected at completion), the Golmud Solar Park in China 
(200 MW), and the Charanka Solar Park in India (214 MW completed in 2012, 
and 500 MW projected at completion), the latter of which will be one location 
in the Gujarat Solar Park, a collection of several sites that is hoped to eventually 
supply close to 1 GW of power. At the time of this printing, the largest photo-
voltaic power plant in the United States is Solar Star, a 579-MW facility near 
Rosamund, California, completed in June 2015. It has 1.7 million solar panels, 
covering an area of 13 km2.
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Figure 42.27  (a) Light emission from a semiconductor. (b) Light absorption by a semiconductor.
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the transistor
The invention of the transistor by John Bardeen (1908–1991), Walter Brattain 
(1902–1987), and William Shockley (1910–1989) in 1948 totally revolutionized 
the world of electronics. For this work, these three men shared the Nobel Prize 
in Physics in 1956. By 1960, the transistor had replaced the vacuum tube in many 
electronic applications. The advent of the transistor created a multitrillion-dollar 
industry that produces such popular devices as personal computers, wireless key-
boards, smartphones, electronic book readers, and computer tablets.

A junction transistor consists of a semiconducting material in which a very 
narrow n region is sandwiched between two p regions or a p region is sandwiched 
between two n regions. In either case, the transistor is formed from two p–n junc-
tions. These types of transistors were used widely in the early days of semiconductor 
electronics.

During the 1960s, the electronics industry converted many electronic appli-
cations from the junction transistor to the field-effect transistor, which is much 
easier to manufacture and just as effective. Figure 42.28a shows the structure of 
a very common device, the MOSFET, or metal-oxide-semiconductor field-effect 
transistor. You are likely using millions of MOSFET devices when you are working 
on your computer.

 Example 42.5    Where’s the Remote?

Estimate the band gap of the semiconductor in the infrared LED of a typical television remote control.

S o l u T I o n

Conceptualize Imagine electrons in Figure 42.27a falling from the conduction band to the valence band, emitting infrared 
photons in the process.

Categorize We use concepts discussed in this section, so we categorize this example as a substitution problem.
In Chapter 33, we learned that the wavelength of infrared light ranges from 700 nm to 1 mm. Let’s pick a number that is 

easy to work with, such as 1.000 mm 5 1 000 nm (which is not a bad estimate because remote controls typically operate in the 
range of 880 to 950 nm).

Estimate the energy hf of the photons from the remote control: E 5 hf 5
hc
l

5
1 240 eV ? nm

1 000 nm
5  1.2 eV

This value corresponds to an energy gap Eg of approximately 1.2 eV in the LED’s semiconductor.

Figure 42.28  (a) The structure of a metal-oxide-semiconductor field-effect transistor (MOSFET). 
(b) A source–drain voltage is applied. (c) A gate voltage is applied.
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There are three metal connections (the M in MOSFET) to the transistor: the 
source, drain, and gate. The source and drain are connected to n-type semiconduc-
tor regions (the S in MOSFET) at either end of the structure. These regions are 
connected by a narrow channel of additional n-type material, the n channel. The 
source and drain regions and the n channel are embedded in a p -type substrate 
material, which forms a depletion region, as in the junction diode, along the bot-
tom of the n channel. (Depletion regions also exist at the junctions underneath 
the source and drain regions, but we will ignore them because the operation of the 
device depends primarily on the behavior in the channel.)

The gate is separated from the n channel by a layer of insulating silicon dioxide 
(the O in MOSFET, for oxide). Therefore, it does not make electrical contact with 
the rest of the semiconducting material.

Imagine that a voltage source DVSD is applied across the source and drain as 
shown in Figure 42.28b. In this situation, electrons flow through the upper region 
of the n channel. Electrons cannot flow through the depletion region in the lower 
part of the n channel because this region is depleted of charge carriers. Now a 
second voltage DVSG is applied across the source and gate as in Figure 42.28c. The 
positive potential on the gate electrode results in an electric field below the gate 
that is directed downward in the n channel (the field in “field-effect”). This elec-
tric field exerts upward forces on electrons in the region below the gate, causing 
them to move into the n channel. Consequently, the depletion region becomes 
smaller, widening the area through which there is current between the top of 
the n channel and the depletion region. As the area becomes wider, the current 
increases.

If a varying voltage, such as that generated from music stored in the memory 
of a smartphone, is applied to the gate, the area through which the source–drain 
current exists varies in size according to the varying gate voltage. A small variation 
in gate voltage results in a large variation in current and a correspondingly large 
voltage across the resistor in Figure 42.28c. Therefore, the MOSFET acts as a volt-
age amplifier. A circuit consisting of a chain of such transistors can result in a very 
small initial signal from a microphone being amplified enough to drive powerful 
speakers at an outdoor concert.

resonant tunneling transistors
Another type of transistor, the resonant tunneling transistor, takes advantage of 
the quantum dot discussion at the end of Section 40.4. Figure 42.29a (page 1170) 
shows the physical construction of such a device. The island of gallium arsenide 
in the center is a quantum dot located between two barriers formed from the 
thin extensions of aluminum arsenide. An electron in the quantum dot region is 
restricted to certain energy levels, as discussed in Section 40.4. The contacts at the 
ends of the device act as source and drain, while the electrode over the quantum 
dot acts as a gate. 

Figure 42.29b, representing the potential-energy diagram for the tunneling 
transistor, has a slope at the bottom of the quantum dot due to the differing volt-
ages at the source and drain electrodes. In this configuration, there is a difference 
between the electron energies outside the quantum dot and the quantized energies 
within the dot. 

Figure 42.29c shows the effect of applying a small voltage to the gate electrode: 
the potential in the region of the quantum dot decreases, taking the energy levels 
in the dot downward with it. The deformation of the potential barrier results in an 
energy level in the quantum dot coinciding with the energy of electrons outside 
the dot. This “resonance” of energies gives the device its name. When the voltage 
is applied to the gate, the probability of quantum mechanical tunneling through 
the barrier increases tremendously and the device carries current. The resulting 
current causes a voltage across an external resistor that is much larger than that of 
the gate voltage; hence, the device amplifies the input signal to the gate electrode.
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the Integrated Circuit
Invented independently by Jack Kilby (1923–2005, Nobel Prize in Physics, 2000) 
at Texas Instruments in late 1958 and by Robert Noyce (1927–1990) at Fairchild 
Camera and Instrument in early 1959, the integrated circuit has been justly called 
“the most remarkable technology ever to hit mankind.” Kilby’s first device is shown 
in Figure 42.30. Integrated circuits have indeed started a “second industrial revo-
lution” and are found at the heart of computers, watches, cameras, automobiles, 
aircraft, robots, space vehicles, and all sorts of communication and switching 
networks.

In simplest terms, an integrated circuit is a collection of interconnected transis-
tors, diodes, resistors, and capacitors fabricated on a single piece of silicon known 
as a chip. Contemporary electronic devices often contain many integrated cir-
cuits as seen in the chapter-opening photograph. The integrated circuits are the 
“black rectangles with the silver legs” mentioned in the opening storyline. State-
of-the-art chips easily contain several million components within a 1-cm2 area, 
and the number of components per square inch has increased steadily since the 
integrated circuit was invented. The dramatic advances in chip technology can 
be seen by looking at microchips manufactured by Intel. The 4004 chip, intro-
duced in 1971, contained 2 300 transistors. This number increased to 3.2 million  
24 years later in 1995 with the Pentium processor. The A10 processor in an iPhone 7 
has 3.3 billion transistors.

Integrated circuits were invented partly to solve the interconnection problem 
spawned by the transistor. In the era of vacuum tubes, power and size consider-
ations of individual components set modest limits on the number of components 
that could be interconnected in a given circuit. With the advent of the tiny, low-
power, highly reliable transistor, design limits on the number of components 
disappeared and were replaced by the problem of wiring together hundreds 
of thousands of components. The magnitude of this problem can be appreci-
ated when we consider that second-generation computers (consisting of discrete 
transistors rather than integrated circuits) contained several hundred thousand 
components requiring more than a million joints that had to be hand-soldered 
and tested.
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In addition to solving the interconnection problem, integrated circuits possess 
the advantages of miniaturization and fast response, two attributes critical for 
high-speed computers. Because the response time of a circuit depends on the time  
interval required for electrical signals traveling at the speed of light to pass from 
one component to another, miniaturization and close packing of components 
result in fast response times.

Summary
 › Concepts and Principles

Two or more atoms combine to form molecules because of a net attractive force between the atoms. The mechanisms responsible 
for molecular bonding can be classified as follows:

 ● Ionic bonds form primarily because of the Coulomb attraction between oppositely charged ions. Sodium chloride (NaCl) 
is one example.

 ● Covalent bonds form when the constituent atoms of a molecule share electrons. For example, the two electrons of the H2 
molecule are equally shared between the two nuclei.

 ● Van der Waals bonds are weak electrostatic bonds between molecules or between atoms that do not form ionic or covalent 
bonds. These bonds are responsible for the condensation of noble gas atoms and nonpolar molecules into the liquid phase.

 ● Hydrogen bonds form between the center of positive charge in a polar molecule that includes one or more hydrogen atoms 
and the center of negative charge in another polar molecule.

The allowed values of the rotational energy of a 
diatomic molecule are

 E rot 5 EJ 5
U2

2I
 J s J 1 1d J 5 0, 1, 2, Á  (42.6)

where I is the moment of inertia of the molecule 
and J is an integer called the rotational quan-
tum number. The selection rule for transitions 
between rotational states is DJ 5 61.

The allowed values of the vibrational energy of a diatomic molecule are

 E vib 5 sv 1 1
2d 

h
2p

 Î k
m
 v 5 0, 1, 2, Á  (42.10)

where v is the vibrational quantum number, k is the force constant of the 
“effective spring” bonding the molecule, and m is the reduced mass of the 
molecule. The selection rule for allowed vibrational transitions is Dv 5 61,  
and the energy difference between any two adjacent levels is the same, 
regardless of which two levels are involved.

Bonding mechanisms in sol-
ids can be classified in a man-
ner similar to the schemes 
for molecules. For example, 
the Na1 and Cl2 ions in NaCl 
form ionic bonds, whereas 
the carbon atoms in dia-
mond form covalent bonds. 
The metallic bond is char-
acterized by a net attractive 
force between positive ion 
cores and the mobile free 
electrons of a metal.

In the free-electron theory of metals, the free electrons fill the quantized levels in accordance 
with the Pauli exclusion principle. The number of states per unit volume available to the con-
duction electrons having energies between E and E 1 dE is

 NsEd dE 5 S8Ï2 pme
3y2

h3  E 1y2DS 1
e sE2EFdyk BT 1 1D dE  (42.20)

where EF is the Fermi energy. At T 5 0 K, all levels below EF are filled, all levels above EF are 
empty, and

 E Fs0d 5
h2

2me
S3ne

8p
D2y3

 (42.23)

where ne is the total number of conduction electrons per unit volume. Only those electrons hav-
ing energies near EF can contribute to the electrical conductivity of the metal.

In a crystalline solid, the 
energy levels of the system 
form a set of bands. Electrons 
occupy the lowest energy 
states, with no more than one 
electron per state. Energy 
gaps are present between the 
bands of allowed states.

A semiconductor is a material having an energy gap of approximately 1 eV and a valence 
band that is filled at T 5 0 K. Because of the small energy gap, a significant number of 
electrons can be thermally excited from the valence band into the conduction band. The 
band structures and electrical properties of a Group IV semiconductor can be modified by 
the addition of either donor atoms containing five outer-shell electrons or acceptor atoms 
containing three outer-shell electrons. A semiconductor doped with donor impurity atoms 
is called an n-type semiconductor, and one doped with acceptor impurity atoms is called a 
p-type semiconductor.
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think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. The Dulong–Petit law states that the molar specific heat of 
solids is 3R at higher temperatures, where R is the gas con-
stant. For metals, this law is obeyed at room temperature, 
300 K. The absorption of energy appears as internal energy 
in the metal in two primary ways: (1) vibration of metal lat-
tice ions locked into crystalline positions and (2) transla-
tional kinetic energy of free electrons. The number of free 
electrons in a metal is approximately proportional to kBT/EF ,  
since only those electrons near the Fermi energy can be 
thermally excited into available states. From this informa-
tion, work with your group to determine the percentage of 
the total molar specific heat that is attributed to free elec-
trons in gold.

2. The majority of the atoms in our galaxy are hydrogen. 
In some regions of the galaxy, called molecular clouds, the 
density of atoms is high enough, and the temperature low 
enough, for diatomic molecules H2 to form. In addition, 
within these clouds, it is possible for CO molecules to form. 
Naturally, the number of these molecules is much lower 
than that for H2. Work with your group to respond to the 
following: (a) Based on the fact that the spring constant for 
the hydrogen molecule is k 5 576 N/m, find the frequency 
of the photon emitted when the hydrogen molecule makes 
a transition from vibrational level v 5 1 to level v 5 0. (b) In 
what region of the electromagnetic spectrum is this photon? 
(c) In Example 42.1, the frequency of the photon for the 

lowest rotational transition for the CO molecule is given as 
fCO 5 1.15 3 1011 Hz. In what region of the electromagnetic 
spectrum is this photon? (d) The answers to both (b) and 
(c) are regions of the spectrum in which astronomers can 
detect radiation. Why do astronomers study these galactic 
structures using detection of rotating CO molecules rather 
than vibrating H2 molecules, when there are far more H2 
molecules? (Hint: The typical temperature of a molecular 
cloud is about 20 K.)

3. ACTIVITy  Your group is considering the following table of 
band gaps in several materials. (a) For each material, find 
the maximum wavelength of a photon that will excite an 
electron from the valence band to the conduction band. (b) 
Discuss in your group: Which of the materials in the table 
will be transparent to visible light?

Material Chemical Symbol Band Gap (eV)

Lead sulfide PbS 0.37
Germanium Ge 0.67
Silicon Si 1.11
Gallium arsenide GaAs 1.43
Copper oxide Cu2O 2.1
Gallium phosphide GaP 2.26
Gallium nitride GaN 3.4
Silicon nitride Si3N4 5.0
Diamond C 5.5
Silicon dioxide SiO2 9.0

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SeCtIon 42.1 Molecular Bonds

1. A van der Waals dispersion force between helium atoms 
produces a very shallow potential well, with a depth on the 
order of 1 meV. At approximately what temperature would 
you expect helium to condense?

2. Potassium chloride is an ionically bonded molecule that is 
sold as a salt substitute for use in a low-sodium diet. The 
electron affinity of chlorine is 3.6 eV. An energy input of 
0.70 eV is required to form separate K1 and Cl2 ions from 
separate K and Cl atoms. What is the ionization energy of K?

3. One description of the potential energy of a diatomic mole-
cule is given by the Lennard–Jones potential,

U 5
A
r 12 2

B
r 6

where A and B are constants and r is the separation distance 
between the atoms. For the H2 molecule, take A 5 0.124 3 
102120 eV ? m12 and B 5 1.488 3 10260 eV ? m6. Find (a) the 
separation distance r0 at which the energy of the molecule is 
a minimum and (b) the energy E required to break up the 
H2 molecule.

4. One description of the potential energy of a diatomic mole-
cule is given by the Lennard–Jones potential,

U 5
A
r 12 2

B
r 6

where A and B are constants and r is the separation distance 
between the atoms. Find, in terms of A and B, (a) the value 
r0 at which the energy is a minimum and (b) the energy E 
required to break up a diatomic molecule.

SeCtIon 42.2 Energy States and Spectra of Molecules

5. The CO molecule makes a transition from the J 5 1 to the 
J 5 2 rotational state when it absorbs a photon of frequency 
2.30 3 1011 Hz. (a) Find the moment of inertia of this mol-
ecule from these data. (b) Compare your answer with that 
obtained in Example 42.1 and comment on the significance 
of the two results.

6. The photon frequency that would be absorbed by the NO mol-
ecule in a transition from vibration state v 5 0 to v 5 1, with 
no change in rotation state, is 56.3 THz. The bond between 
the atoms has an effective spring constant of 1 530 N/m.  
(a) Use this information to calculate the reduced mass 
of the NO molecule. (b) Compute a value for m using 
Equation  42.4. (c) Compare your results to parts (a) and 
(b) and explain their difference, if any.
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7. Assume the distance between the protons in the H2 mol-
ecule is 0.750 3 10210 m. (a) Find the energy of the first 
excited rotational state, with J 5 1. (b) Find the wavelength 
of radiation emitted in the transition from J 5 1 to J 5 0.

8. Why is the following situation impossible? The effective force 
constant of a vibrating HCl molecule is k 5 480 N/m. A 
beam of infrared radiation of wavelength 6.20 3 103 nm is 
directed through a gas of HCl molecules. As a result, the 
molecules are excited from the ground vibrational state to 
the first excited vibrational state.

9. The effective spring constant describing the potential 
energy of the HI molecule is 320 N/m and that for the HF 
molecule is 970 N/m. Calculate the minimum amplitude of 
vibration for (a) the HI molecule and (b) the HF molecule.

10. A diatomic molecule consists of two atoms having masses m1 
and m2 separated by a distance r. Show that the moment of 
inertia about an axis through the center of mass of the mol-
ecule is given by Equation 42.3, I 5 mr2.

11. (a) In an HCl molecule, take the Cl atom to be the isotope 
35Cl. The equilibrium separation of the H and Cl atoms is 
0.127 46 nm. The atomic mass of the H atom is 1.007 825 u 
and that of the 35Cl atom is 34.968 853 u. Calculate the 
longest wavelength in the rotational spectrum of this mol-
ecule. (b) What If? Repeat the calculation in part (a), but 
take the Cl atom to be the isotope 37Cl, which has atomic 
mass 36.965 903 u. The equilibrium separation distance 
is the same as in part (a). (c) Naturally occurring chlorine 
contains approximately three parts of 35Cl to one part of 
37Cl. Because of the two different Cl masses, each line in the 
microwave rotational spectrum of HCl is split into a doublet 
as shown in Figure P42.11. Calculate the separation in wave-
length between the doublet lines for the longest wavelength.

12. You are giving a talk at a professional meeting on the absorption 
spectrum of the HCl molecule (Fig. P42.11), which has been 
obtained with a sample including molecules containing only 
the chlorine-35 atom, so that the double peaks in Figure P42.11 
appear as single peaks. After discussing all of the information 
you can glean about the rotational motion of the molecules 
from the spectrum, you see a hand raised by a colleague from 
another university who always asks biting questions. He says, 
“That’s all well and good, but what about the vibration of the 
molecule; for example, what is the effective spring constant for 
the HCl molecule?” You are not upset in the slightest by this 
question because you prepared in advance for any questions 
you could think of. You immediately state a numerical value for 
the effective spring constant of the HCl molecule.

13. An H2 molecule is in its vibrational and rotational ground 
states. It absorbs a photon of wavelength 2.211 2 mm and 

makes a transition to the v 5 1, J 5 1 energy level. It then 
drops to the v 5 0, J 5 2 energy level while emitting a pho-
ton of wavelength 2.405 4 mm. Calculate (a) the moment of 
inertia of the H2 molecule about an axis through its cen-
ter of mass and perpendicular to the H–H bond, (b) the 
vibrational frequency of the H2 molecule, and (c) the equi-
librium separation distance for this molecule.

14. Figure P42.14 is a model of a benzene molecule. All atoms 
lie in a plane, and the carbon atoms (mC 5 1.99 3 10226 kg) 
form a regular hexagon, as do the hydrogen atoms (mH 5 
1.67 3 10227 kg). The carbon atoms are 0.110 nm apart center 
to center, and the adjacent carbon and hydrogen atoms are 
0.100 nm apart center to center. (a) Calculate the moment of 
inertia of the molecule about an axis perpendicular to the 
plane of the paper through the center point O. (b) Deter-
mine the allowed rotational energies about this axis.

15. Most of the mass of an atom is in its nucleus. Model the mass 
distribution in a diatomic molecule as two spheres of uni-
form density, each of radius 2.00 3 10215 m and mass 1.00 3 
10226 kg, located at points along the y axis as in Figure 42.5a, 
and separated by 2.00 3 10210 m. Rotation about the axis join-
ing the nuclei in the diatomic molecule is ordinarily ignored 
because the first excited state would have an energy that is too 
high to access. To see why, calculate the ratio of the energy 
of the first excited state for rotation about the y axis to the 
energy of the first excited state for rotation about the x axis.

16. Estimate the moment of inertia of an HCl molecule from its 
infrared absorption spectrum shown in Figure P42.11.

SeCtIon 42.3 Bonding in Solids

17. Use a magnifying glass to look at the grains of table salt that 
come out of a salt shaker. Compare what you see with Fig-
ure 42.11a. The distance between a sodium ion and a near-
est-neighbor chlorine ion is 0.261 nm. (a) Make an order-of-
magnitude estimate of the number N of atoms in a typical 
grain of salt. (b) What If? Suppose you had a number of 
grains of salt equal to this number N. What would be the 
volume of this quantity of salt?

18. Consider a one-dimensional chain of alternating singly- 
ionized positive and negative ions. Show that the potential 
energy associated with one of the ions and its interactions 
with the rest of this hypothetical crystal is

U srd 5 2ake  
e 2

r

where the Madelung constant is a 5 2 ln 2 and r is the dis-
tance between ions. Suggestion: Use the series expansion for 
ln (1 1 x).
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SeCtIon 42.4 Free-Electron Theory of Metals

19. (a) Find the typical speed of a conduction electron in cop-
per, taking its kinetic energy as equal to the Fermi energy, 
7.05 eV. (b) Suppose the copper is a current- carrying wire. 
How does the speed found in part (a) compare with a typi-
cal drift speed (see Section 26.1) of electrons in the wire of 
0.1 mm/s?

20. (a) State what the Fermi energy depends on according to 
the free-electron theory of metals and how the Fermi energy 
depends on that quantity. (b) Show that Equation 42.23 can 
be expressed as EF 5 (3.65 3 10219)ne

2/3, where EF is in elec-
tron volts when ne is in electrons per cubic meter. (c) Accord-
ing to Table 42.1, by what factor does the free-electron con-
centration in copper exceed that in potassium? (d) Which 
of these metals has the larger Fermi energy? (e) By what 
factor is the Fermi energy larger? (f) Explain whether this 
behavior is predicted by Equation 42.23.

21. The Fermi energy of copper at 300 K is 7.05 eV. (a) What 
is the average energy of a conduction electron in copper at 
300 K? (b) At what temperature would the average transla-
tional energy of a molecule in an ideal gas be equal to the 
energy calculated in part (a)?

22. Sodium is a monovalent metal having density 0.971 g/cm3 
and a molar mass of 23.0 g/mol. Use this information to cal-
culate (a) the density of charge carriers and (b) the Fermi 
energy of sodium.

23. Review. An electron moves in a three-dimensional box of 
edge length L and volume L3. The wave function of the par-
ticle is c 5 A sin (kxx) sin (kyy) sin (kzz). Show that its energy 
is given by Equation 42.18,

E 5
U2p2

2me L
2 snx

2 1 ny
2 1 nz

2d

where the quantum numbers (nx , ny , nz) are integers $ 1. 
Suggestion: The Schrödinger equation in three dimensions 
may be written

U2

2m S−2c

−x2 1
−2c

−y 2 1
−2c

−z2D5 sU 2 Edc

24. Why is the following situation impossible? A hypothetical metal 
has the following properties: its Fermi energy is 5.48 eV, its 
density is 4.90 3 103 kg/m3, its molar mass is 100 g/mol, and 
it has one free electron per atom.

25. Show that the average kinetic energy of a conduction elec-
tron in a metal at 0 K is E avg 5 3

5 E F. Suggestion: In general, 
the average kinetic energy is

E avg 5
1
ne

 #
`

0
EN sEd dE

where ne is the density of particles, N(E) dE is given by 
 Equation 42.20, and the integral is over all possible values 
of the energy.

26. (a) Consider a system of electrons confined to a three- 
dimensional box. Calculate the ratio of the number of 
allowed energy levels at 8.50 eV to the number at 7.05 eV. (b) 
What If? Copper has a Fermi energy of 7.05 eV at 300 K. Cal-
culate the ratio of the number of occupied levels in copper 
at an energy of 8.50 eV to the number at the Fermi energy. 
(c) How does your answer to part (b) compare with that 
obtained in part (a)?

SeCtIon 42.6 Electrical Conduction in Metals, Insulators,  
and Semiconductors

27. The energy gap for silicon at 300 K is 1.14 eV. (a) Find the 
lowest-frequency photon that can promote an electron from 
the valence band to the conduction band. (b) What is the 
wavelength of this photon?

28. Light from a hydrogen discharge tube is incident on a CdS 
crystal. (a) Which spectral lines from the Balmer series are 
absorbed and (b) which are transmitted?

29. The longest wavelength of radiation absorbed by a certain 
semiconductor is 0.512 mm. Calculate the energy gap for 
this semiconductor.

30. In an experiment you are performing, you wish to seal a 
sample inside of a thermally insulated housing, so that there 
is no energy transfer by heat Q to or from the surroundings. 
In the housing, you will install a small window through 
which you can shine an ultraviolet laser to raise the temper-
ature of the sample. Your laser has a wavelength of 220 nm. 
Your assistant suggests using a diamond window, for which 
the energy gap is 5.47 eV. Determine if the diamond window 
will allow you to warm the sample with the laser.

31. Review. When a phosphorus atom is substituted for a sili-
con atom in a crystal, four of the phosphorus valence elec-
trons form bonds with neighboring atoms and the remain-
ing electron is much more loosely bound. You can model 
the electron as free to move through the crystal lattice. The 
phosphorus nucleus has one more positive charge than does 
the silicon nucleus, however, so the extra electron provided 
by the phosphorus atom is attracted to this single nuclear 
charge 1e. The energy levels of the extra electron are simi-
lar to those of the electron in the Bohr hydrogen atom with 
two important exceptions. First, the Coulomb attraction 
between the electron and the positive charge on the phos-
phorus nucleus is reduced by a factor of 1/k from what it 
would be in free space (see Eq. 25.23), where k is the dielec-
tric constant of the crystal. As a result, the orbit radii are 
greatly increased over those of the hydrogen atom. Second, 
the influence of the periodic electric potential of the lattice 
causes the electron to move as if it had an effective mass 
m*, which is quite different from the mass me of a free elec-
tron. You can use the Bohr model of hydrogen to obtain rel-
atively accurate values for the allowed energy levels of the 
extra electron. We wish to find the typical energy of these 
donor states, which play an important role in semiconduc-
tor devices. Assume k 5 11.7 for silicon and m* 5 0.220me. 
(a) Find a symbolic expression for the smallest radius of the 
electron orbit in terms of a0, the Bohr radius. (b) Substitute 
numerical values to find the numerical value of the small-
est radius. (c) Find a symbolic expression for the energy lev-
els En9 of the electron in the Bohr orbits around the donor 
atom in terms of me, m*, k, and En, the energy of the hydro-
gen atom in the Bohr model. (d) Find the numerical value 
of the energy for the ground state of the electron.

SeCtIon 42.7 Semiconductor Devices

32. Assuming T 5 300 K, (a) for what value of the bias voltage 
DV in Equation 42.25 does I 5 9.00I0? (b) What If? What if 
I 5 20.900I0?

33. You put a diode in a microelectronic circuit to protect the 
system in case an untrained person installs the battery 

T

T
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backward. In the correct forward-bias situation, the cur-
rent is 200 mA with a potential difference of 100 mV across 
the diode at room temperature (300 K). If the battery were 
reversed, so that the potential difference across the diode is 
still 100 mV but with the opposite sign, what would be the 
magnitude of the current in the diode?

34. A diode, a resistor, and a battery are connected in a series cir-
cuit. The diode is at a temperature for which kBT 5 25.0 meV, 
and the saturation value of the current is I0 5 1.00 mA. The 
resistance of the resistor is R 5 745 V, and the battery main-
tains a constant potential difference of « 5 2.42 V between 
its terminals. (a) Use Kirchhoff’s loop rule to show that

« 2 DV 5 I 0R se e DVyk BT 2 1d

where DV is the voltage across the diode. (b) To solve this 
transcendental equation for the voltage DV, graph the left-
hand side of the above equation and the right-hand side as 
functions of DV and find the value of DV at which the curves 
cross. (c) Find the current I in the circuit. (d) Find the 
ohmic resistance of the diode, defined as the ratio DV/I, at 
the voltage in part (b). (e) Find the dynamic resistance of 
the diode, which is defined as the derivative d(DV)/dI, at the 
voltage in part (b).

35. A diode is at room temperature so that kBT 5 0.025 0  eV. 
Taking the applied voltages across the diode to be 1 1.00 V 
(under forward bias) and 21.00 V (under reverse bias), cal-
culate the ratio of the forward current to the reverse cur-
rent if the diode is described by Equation 42.25.

aDDItIonal ProBleMS

36. The effective spring constant associated with bonding in the 
N2 molecule is 2 297 N/m. The nitrogen atoms each have a 
mass of 2.32 3 10226 kg, and their nuclei are 0.120 nm apart. 
Assume the molecule is rigid. The first excited vibrational 
state of the molecule is above the vibrational ground state 
by an energy difference DE. Calculate the J value of the 
rotational state that is above the rotational ground state by 
the same energy difference DE.

37. The hydrogen molecule comes apart (dissociates) when 
it is excited internally by 4.48 eV. Assuming this molecule 
behaves like a harmonic oscillator having classical angular 
frequency v 5 8.28 3 1014 rad/s, find the highest vibrational 
quantum number for a state below the 4.48-eV dissociation 
energy.

38. Equation 42.1 gives the potential energy function for two 
atoms bound into a molecule. By choosing A 5 akee 

2 and 
n  5 1, as shown in Equation 42.16, the potential energy 
function represents that for an ionically bonded crystal. 
(a) Use the resulting equation to show that the force on an 
ion that is pulled to a new position r from its neighbors in 
the crystal is given by

F 5 2ake 
e 

2

r 
2 31 2 1r0

r 2
m21

4
where a is the Madelung constant for the crystal, and r0 is 
the equilibrium separation. (b) Imagine that an ion in the 
solid is displaced a small distance s from r0. Show that the 
ion experiences a restoring force F 5 2Ks, where

K 5
akee 

2

r0
3  (m 2 1)

(c) Use the result of part (b) to find the frequency of vibra-
tion of a Na1 ion in NaCl. Take m 5 8 and use the value  
a 5 1.747 6.

39. The dissociation energy of ground-state molecular hydro-
gen is 4.48 eV, but it only takes 3.96 eV to dissociate it when 
it starts in the first excited vibrational state with J 5 0. Using 
this information, determine the depth of the H2 molecular 
potential-energy function.

40. You are tutoring a bright student in his last semester of 
introductory physics. The particular topic of the day is 
bonding in solids. When your session begins, the student 
hands you a slip of paper with the following equation 
printed on it:

U0 5 2ake 
e 

2

r0

 11 2
1
m2

He says that he found this equation in his online studying 
and that it is described as an expression for the ionic cohesive 
energy of a crystal formed by ionic bonding. He asks you to 
derive this equation.

41. A particle moves in one- dimensional motion through a  
field for which the potential energy of the particle–field 
system is

U sxd 5
A
x3 2

B
x

where A 5 0.150 eV ? nm3 and B 5 3.68 eV ? nm. The shape 
of this function is shown in Figure P42.41. (a) Find the equi-
librium position x0 of the particle. (b) Determine the depth 
U0 of this potential well. (c) In moving along the x axis, what 
maximum force toward the negative x direction does the 
particle experience?

42. A particle of mass m moves in one-dimensional motion 
through a field for which the potential energy of the 
 particle–field system is

U sxd 5
A
x3 2

B
x

where A and B are constants. The general shape of this func-
tion is shown in Figure P42.41. (a) Find the equilibrium 
position x0 of the particle in terms of m, A, and B. (b) Deter-
mine the depth U0 of this potential well. (c) In moving along 
the x axis, what maximum force toward the negative x direc-
tion does the particle experience?
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Figure P42.41 Problems 41 and 42.
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43. You are preparing to compete in the Physics Olympics. 
Your instructor is coaching you by providing you with chal-
lenging problems of the type you might see on an Olym-
pics exam. He comes up with the following problem and 
gives you 15  minutes to solve it: Imagine a perfectly rigid 
HCl molecule that does not stretch as it rotates. The equi-
librium separation of its ions is 0.127 5 nm. There are two 
isotopes for chlorine on the sample, Cl-35 and Cl-37. This 
results in double peaks in the molecular spectrum as shown 
in Figure 42.9. (a) Find an expression for the difference in 
the frequency between the peaks to the right of the gap as 
a function of the masses of the two chlorine isotopes and 
the quantum number J. (b) Estimate the difference in fre-
quency numerically for J 5 0, without consulting tables. 
Quick! Get to work!

44. The Fermi–Dirac distribution function can be written as

f sE d 5
1

e sE2E Fdyk BT 1 1
5

1
e sEyE F21dTFyT 1 1

where TF is the Fermi temperature, defined according to

kBTF ; EF

(a) Write a spreadsheet to calculate and plot f(E) versus E/EF 
at a fixed temperature T. (b) Describe the curves obtained 
for T 5 0.1TF, 0.2TF, and 0.5TF.

CHallenge ProBleMS

45. As you will learn in Chapter 43, carbon-14 (14C) is an unsta-
ble isotope of carbon. It has the same chemical properties 
and electronic structure as the much more abundant iso-
tope carbon-12 (12C), but it has different nuclear properties. 
Its mass is 14 u, greater than that of carbon-12 because of 
the two extra neutrons in the carbon-14 nucleus. Assume 
the CO molecular potential energy is the same for both 
isotopes of carbon and the examples in Section 42.2 con-
tain accurate data and results for carbon monoxide with 
carbon-12 atoms. (a) What is the vibrational frequency of 
14CO? (b) What is the moment of inertia of 14CO? (c) What 
wavelengths of light can be absorbed by 14CO in the (v 5 0, 
J 5 10) state that cause it to end up in the v 5 1 state?

46. Derive Equation 42.19 for g(E), the density-of-states func-
tion. Proceed as follows: Imagine a particle confined to a 
three-dimensional cubic box of side length L, subject to 
boundary conditions in three dimensions. Imagine also a 
three-dimensional quantum number space whose axes rep-
resent nx, ny, and nz. The allowed states in this space can be 
represented as dots located at integral values of the three 
quantum numbers as in Figure P42.46. This space is not tra-
ditional space in which a location is specified by coordinates 
x, y, and z; rather, it is a space in which allowed states can 
be specified by integer-valued coordinates representing the 
quantum numbers. The number of allowed states having 
energies between E and E 1 dE corresponds to the number 
of dots in the spherical shell of radius n and thickness dn.

(a) Show that Equation 42.18 can be written as

n2
x 1 n2

y 1 n2
z 5 n2

where n 5 (E/E0)
1/2 and E0 5 "2p2/2meL

2. (b) In the quan-
tum number space, the equation in part (a) is the equation 
of a sphere of radius n. Therefore, the number of allowed 
states having energies between E and E 1 dE is equal to the 
number of points with positive values of nx, ny, and nz in a 
spherical shell of radius n and thickness dn. Show that the 
“volume” of this shell, which represents the total number of 
states G(E) dE, is

G(E )dE 5 1
2pn2 dn

(c) Substitute the value of n from part (a) to show that 

G(E )dE 5
Ï2
2

m3y2
e L3

U3p2  E 
1y2 dE

(d) Define g(E) 5 G(E)/V as the number of states per unit 
volume in traditional space, allow two possible spin states in 
each particle-in-a-box state, and show that

g(E )dE 5
8Ï2pm 

3y2
e

h3  E 
1y2 dE

which is Equation 42.19.

47. As an alternative to Equation 42.1, another useful model 
for the potential energy of a diatomic molecule is the Morse 
potential

 U srd 5 B fe2a sr 2r0d 2 1g2

where B, a, and r0 are parameters used to adjust the shape of 
the potential and its depth. (a) What is the equilibrium sep-
aration of the nuclei? (b) What is the depth of the potential 
well, defined as the difference in energy between the poten-
tial’s minimum value and its asymptote as r approaches 
infinity? (c) If m is the reduced mass of the system of two 
nuclei and assuming the potential is nearly parabolic about 
the well minimum, what is the vibrational frequency of the 
diatomic molecule in its ground state? (d) What amount of 
energy needs to be supplied to the ground-state molecule to 
separate the two nuclei to infinity?

CR

V

nz

n dn

ny

nx

Figure P42.46 The dots representing the 
allowed states are located at integer values of 
nx, ny, and nz and are therefore at the corners of 
cubes with sides of “length” 1.
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Storyline Your grandfather is scheduled for a combination of a 
PET scan and CT scan and you have volunteered to accompany him and drive him 
home afterward. At the hospital, you walk to the Nuclear Medicine Department 
and pass by a sign that says, “Danger Radiation Hazard.” To prepare for the PET 
scan, your grandfather is having an IV installed in his arm. You ask the technician 
what will be infused in your grandfather’s body. He says that it is fluorodeox-
yglucose, which is radioactive. It contains the radioisotope fluorine-18. As the 
technician returns to his duties, you think, “Wow, fluoro-what? What is that? And 
it’s radioactive? What’s the number 18 mean?” After your grandfather is infused 
with the fluorodeoxyglucose, you walk over to the CT area. The CT scan will be 
performed while the fluorodeoxyglucose is spreading through the body, in prepa-
ration for the PET scan. The CT technician mentions that the CT scan will involve 
iodine in your grandfather’s body, and you ask about this. The technician says, 
“The iodine is a radiocontrast agent.” You say, “My grandfather is getting more 
radioactivity?” And the technician says, “No, radiocontrast does not mean radio-
activity.” Now you are totally confused. What do all these words mean: radiation, 
radioactive, radioisotope, radiocontrast? You wonder also about what the differ-
ence is between a PET scan and a CT scan. You pull out your smartphone and 
start looking online while your grandfather is led into the CT room.

ConneCtions The year 1896 marks the birth of nuclear physics when 
French physicist Antoine-Henri Becquerel (1852–1908) discovered radioactivity 
in uranium compounds. This discovery prompted scientists to investigate the 
details of radioactivity, in which radioactive materials spontaneously emit what is 
generally called radiation. These studies led to an understanding of the structure 

A radiation sign in a section 
of a hospital warns that 
various types of radiation are 
present in the area, including 
radioactive materials. 
(JONGSUK/Shutterstock)
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1178 Chapter 43 Nuclear Physics

of the nucleus of the atom that was introduced in Section 41.2. Pioneering work 
by Ernest Rutherford showed that the emissions from radioactive substances is 
of three types—alpha, beta, and gamma rays—classified according to the nature 
of their electric charge and their ability to penetrate matter and ionize air. In this 
chapter, we discuss the properties and structure of the atomic nucleus, and 
phenomena associated with the nucleus. We explore the various processes by 
which nuclei decay and the ways that nuclei can react with each other. We also 
study two means for deriving energy from nuclear reactions. In both cases, the 
released energy can be used either constructively (as in electric power plants) or 
destructively (as in nuclear weapons). We also examine the ways in which radia-
tion interacts with matter and discuss the structure of fission and fusion reactors. 
The chapter concludes with a discussion of some industrial and biological applica-
tions of radiation.

   43.1    Some Properties of Nuclei
All nuclei are composed of two types of particles: protons and neutrons. The only 
exception is the ordinary hydrogen nucleus, which is a single proton. We describe 
the atomic nucleus by the number of protons and neutrons it contains, using the 
following quantities:

 ● the atomic number Z, which equals the number of protons in the nucleus 
(sometimes called the charge number)

 ● the neutron number N, which equals the number of neutrons in the 
nucleus

 ● the mass number A 5 Z 1 N, which equals the number of nucleons 
(neutrons plus protons) in the nucleus

A nuclide is a specific combination of atomic number and mass number that 
represents a nucleus. In representing nuclides, it is convenient to use the symbol AZ X 
to convey the numbers of protons and neutrons, where X represents the chemical 
symbol of the element. For example, 56

26Fe (iron) has mass number 56 and atomic 
number 26; therefore, it contains 26 protons and 30 neutrons. When no confusion 
is likely to arise, we omit the subscript Z because the chemical symbol can always 
be used to determine Z. Therefore, 18

9F is the same as 18F and can also be expressed 
“fluorine-18,” as in the opening storyline, or “F-18.”

The nuclei of all atoms of a particular element contain the same number of pro-
tons but often contain different numbers of neutrons. Nuclei related in this way are 
called isotopes. The isotopes of an element have the same Z value but different N 
and A values. Another isotope of fluorine is 19F, which is not radioactive.

The natural abundance of isotopes can differ substantially. For example 11
6C, 12

6C, 
13

6C, and 14
6C are four isotopes of carbon. The natural abundance of the 12

6C iso-
tope is approximately 98.9%, whereas that of the 13

6C isotope is only about 1.1%. 
Some isotopes, such as 11

6C and 14
6C, do not occur naturally but can be produced by 

nuclear reactions in the laboratory or by cosmic rays.
Even the simplest element, hydrogen, has isotopes: 1

1H, the ordinary hydrogen 
nucleus; 21H, deuterium; and 31H, tritium.

Q uick Quiz 43.1  For each part of this Quick Quiz, choose from the  
following answers: (a) protons (b) neutrons (c) nucleons. (i) The three nuclei 
12C, 13N, and 14O have the same number of what type of particle? (ii) The 
three nuclei 12N, 13N, and 14N have the same number of what type of particle?  
(iii) The three nuclei 14C, 14N, and 14O have the same number of what type 
of particle?

Pitfall Prevention 43.1
Mass Number Is Not Atomic Mass  
The mass number A should not be 
confused with the atomic mass. 
Mass number is an integer specific 
to an isotope and has no units; it 
is simply a count of the number of 
nucleons. Atomic mass has units 
and is generally not an integer 
because it is an average of the 
masses of a given element’s natu-
rally occurring isotopes.
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    43.1 Some Properties of Nuclei 1179

charge and Mass
The proton carries a single positive charge e, equal in magnitude to the charge 2e 
on the electron (e 5 1.60 3 10219 C). The neutron is electrically neutral as its name 
implies. Because the neutron has no charge, it was difficult to detect with early 
experimental apparatus and techniques. Today, neutrons are easily detected with 
devices such as plastic scintillators.

Nuclear masses can be measured with great precision using a mass spectrometer 
(see Section 28.3) and by the analysis of nuclear reactions. The proton is approx-
imately 1 836 times as massive as the electron, and the masses of the proton and 
the neutron are almost equal. The atomic mass unit u is defined in such a way 
that the mass of one atom of the isotope 12C is exactly 12 u, where 1 u is equal to 
1.660 539 3 10227 kg. According to this definition, the proton and neutron each 
have a mass of approximately 1 u and the electron has a mass that is only a small 
fraction of this value. The masses of these particles and others important to the 
phenomena discussed in this chapter are given in Table 43.1.

You might wonder how six protons and six neutrons, each having a mass larger 
than 1 u, can be combined with six electrons to form a carbon-12 atom having a 
mass of exactly 12 u. The bound system of 12C has a lower rest energy (Section 38.8) 
than that of six separate protons and six separate neutrons. According to Equation 
38.24, ER 5 mc2, this lower rest energy corresponds to a smaller mass for the bound 
system. The difference in mass accounts for the binding energy when the particles 
are combined to form the nucleus. We shall discuss this point in more detail in 
Section 43.2.

It is often convenient to express the atomic mass unit in terms of its rest-energy 
equivalent. For one atomic mass unit,

ER 5 mc2 5 (1.660 539 3 10227 kg)(2.997 92 3 108 m/s)2 5 931.494 MeV

where we have used the conversion 1 eV 5 1.602 176 3 10219 J.
Based on the rest-energy expression in Equation 38.24, nuclear physicists often 

express mass in terms of the unit MeV/c2.

the Size and Structure of nuclei
Experiments by Rutherford were mentioned in the chapter introduction. In these 
experiments, positively charged nuclei of helium atoms (alpha particles) were 
directed at a thin piece of metallic foil. As the alpha particles moved through the 
foil, they often passed near a metal nucleus. Because of the positive charge on 
both the incident particles and the nuclei, the particles were deflected from their 
straight-line paths by the Coulomb repulsive force.

Rutherford used the isolated system (energy) analysis model to find an expres-
sion for the separation distance d at which an alpha particle approaching a nucleus 
head-on is turned around by Coulomb repulsion. In such a head-on collision, the 
mechanical energy of the nucleus–alpha particle system is conserved. The initial 

 table 43.1  Masses of Selected Particles in Various Units

  Mass
Particle kg u MeV/c2

Proton 1.672 62 3 10227 1.007 276 938.27

Neutron 1.674 93 3 10227 1.008 665 939.57

Electron ( b particle) 9.109 38 3 10231 5.485 79 3 1024 0.510 999
1
1H atom 1.673 53 3 10227 1.007 825 938.783
4
2He nucleus (a particle) 6.644 66 3 10227 4.001 506 3 727.38
4
2He atom 6.646 48 3 10227 4.002 603 3 728.40
12

6C atom 1.992 65 3 10227 12.000 000 11 177.9
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1180 Chapter 43 Nuclear Physics

kinetic energy of the incoming particle is transformed completely to electric poten-
tial energy of the system when the alpha particle stops momentarily at the point of 
closest approach (the final configuration of the system) before moving back along 
the same path (Fig. 43.1). Applying Equation 8.2, the conservation of energy prin-
ciple, to the system gives

DK 1 DUE 5 0

s0 2 1
2mv2d 1 Ske 

q1q2

d
2 0D 5 0

where m is the mass of the alpha particle and v is its initial speed. Solving for d gives

d 5 2ke 
q1q2

mv2 5 2ke 
s2edsZed

mv2 5 4ke 
Ze 2

mv2

where Z is the atomic number of the target nucleus. From this expression, Ruth-
erford found that the alpha particles approached nuclei to within 3.2 3 10214 m 
when the foil was made of gold. Therefore, the radius of the gold nucleus must be 
less than this value. From the results of his scattering experiments, Rutherford con-
cluded that the positive charge in an atom is concentrated in a small sphere, which 
he called the nucleus, whose radius is no greater than approximately 10214 m.

Because such small lengths are common in nuclear physics, an often-used conve-
nient length unit is the femtometer (fm), which is sometimes called the fermi and 
is defined as

1 fm ; 10215 m

In the early 1920s, it was known that the nucleus of an atom contains Z pro-
tons and has a mass nearly equivalent to that of A protons, where on average  
A < 2Z for lighter nuclei (Z # 20) and A . 2Z for heavier nuclei. To account for 
the nuclear mass, Rutherford proposed that each nucleus must also contain A 2 Z 
neutral particles that he called neutrons. In 1932, British physicist James Chadwick 
(1891–1974) discovered the neutron, and he was awarded the Nobel Prize in Physics 
in 1935 for this important work.

Since the time of Rutherford’s scattering experiments, a multitude of other 
experiments have shown that most nuclei are approximately spherical and have an 
average radius given by

 r 5 aA1/3 (43.1)

where a is a constant equal to 1.2 3 10215 m and A is the mass number. Because 
the volume of a sphere is proportional to the cube of its radius, it follows from 
Equation 43.1 that the volume of a nucleus (assumed to be spherical) is directly 
proportional to A, the total number of nucleons. This proportionality suggests that 
all nuclei have nearly the same density. When nucleons combine to form a nucleus, 
they combine as though they were tightly packed spheres (Fig. 43.2). This fact has 
led to an analogy between the nucleus and a drop of liquid, in which the density of 
the drop is independent of its size. We shall discuss the liquid-drop model of the 
nucleus in Section 43.3.

Nuclear radius 

Because of the Coulomb 
repulsion between the charges of 
the same sign, the alpha particle 
approaches to a distance d from 
the nucleus, called the distance 
of closest approach.

d

Ze
2e v � 0

vS
�� � ��

� �

��
�

�

Figure 43.1 An alpha particle on 
a head-on collision course with a 
nucleus of charge Ze.

Figure 43.2  A nucleus can be 
modeled as a cluster of tightly 
packed spheres, where each  
sphere is a nucleon.

 Example 43.1    The Volume and Density of a Nucleus

Consider a nucleus of mass number A, containing protons and neutrons, each with mass approximately equal to m.

(A) Find an approximate expression for the mass of the nucleus.

S o l U T I o N

Conceptualize Imagine the nucleus to be a collection of protons and neutrons (Fig. 43.2). The mass number A counts both 
protons and neutrons.
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    43.1 Some Properties of Nuclei 1181

43.1 c o n t i n u e d

Categorize Assume A is large enough that we can model the nucleus as spherical.

Analyze Because the masses of protons and neutrons are each approximated as m, the mass of the nucleus is approximately  Am.

(B) Find an expression for the volume of this nucleus in terms of A.

S o l U T I o N

Assume the nucleus is spherical and use Equation 43.1: (1)   Vnucleus 5 4
3 pr 3 5   43 pa 3A

(C) Find a numerical value for the density of this nucleus.

S o l U T I o N

Use Equation 1.1 and substitute Equation (1): r 5
mnucleus

Vnucleus

5
Am

4
3pa 3A

5
3m

4pa 3

Substitute numerical values: r 5
3s1.67 3 10227 kgd
4ps1.2 3 10215 md3 5  2.3 3 1017 kgym3

Finalize The nuclear density is approximately 2.3 3 1014 times the density of water ( rwater 5 1.0 3 103 kg/m3).

W h A T  I F ? What if the Earth could be compressed until it had this density? How large would it be?

Answer Because this density is so large, we predict that an Earth of this density would be very small.

Use Equation 1.1 and the mass of the Earth to find the  V 5
ME

r
5

5.97 3 1024 kg

2.3 3 1017 kgym3
5 2.6 3 107 m3 

volume of the compressed Earth:

From this volume, find the radius: V 5 4
3 pr 3   S   r 5 S3V

4p
D1y3

5 33s2.6 3 107 m3d
4p 41y3

 r 5 1.8 3 102 m

An Earth of this radius is indeed a small Earth!

nuclear Stability
You might expect that the very large repulsive Coulomb forces between the close-
packed protons in a nucleus should cause the nucleus to fly apart. Because that 
does not happen, there must be a counteracting attractive force. The nuclear force 
is a very short range (about 2 fm) attractive force that acts between all nuclear parti-
cles. The protons attract each other by means of the nuclear force, and, at the same 
time, they repel each other through the Coulomb force. The nuclear force also acts 
between pairs of neutrons and between neutrons and protons. The nuclear force 
dominates the Coulomb repulsive force within the nucleus (at short ranges), so sta-
ble nuclei can exist.

Evidence for the limited range of nuclear forces comes from scattering exper-
iments and from studies of nuclear binding energies. The short range of the 
nuclear force is shown in the neutron–proton (n–p) potential energy plot of Fig-
ure 43.3a (page 1182) obtained by scattering neutrons from a target containing 
hydrogen. The depth of the n–p potential energy well is 40 to 50 MeV, and there is 
a strong repulsive component that prevents the nucleons from approaching much 
closer than 0.4 fm.

The nuclear force does not affect electrons, enabling energetic electrons to serve 
as point-like probes of nuclei. The nuclear force is independent of charge. There-
fore, the main difference between the n–p and p–p interactions is that the p–p 
potential energy consists of a superposition of nuclear and Coulomb interactions as 
shown in Figure 43.3b. At distances less than 2 fm, both p–p and n–p potential 
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1182 Chapter 43 Nuclear Physics

energies are nearly identical, but for distances of 2 fm or greater, the p–p potential 
has a positive energy barrier with a maximum at 4 fm.

The existence of the nuclear force results in approximately 270 stable nuclei; 
hundreds of other nuclei have been observed, but they are unstable, meaning that 
they decay spontaneously by a process generally called radioactivity. A plot of neu-
tron number N versus atomic number Z for a number of stable nuclei is given in Fig-
ure 43.4. The stable nuclei are represented by the black dots, which lie in a narrow 
range called the line of stability. Notice that the light stable nuclei contain an equal 
number of protons and neutrons; that is, N 5 Z. Also notice that in heavy stable 
nuclei, the number of neutrons exceeds the number of protons: above Z 5 20, the 
line of stability deviates upward from the line representing N 5 Z. This deviation 
can be understood by recognizing that as the number of protons increases, the 
strength of the Coulomb force increases, which tends to break the nucleus apart. 
As a result, more neutrons are needed to keep the nucleus stable because neutrons 
experience only the attractive nuclear force. Eventually, the repulsive Coulomb 
forces between protons cannot be compensated by the addition of more neutrons. 
This point occurs at Z 5 83, meaning that elements that contain more than 83 pro-
tons do not have stable nuclei.

   43.2    Nuclear Binding Energy
As mentioned in the discussion of 12C in Section 43.1, the total mass of a nucleus 
is less than the sum of the masses of its individual nucleons. Therefore, the rest 
energy of the bound system (the nucleus) is less than the combined rest energy of 
the separated nucleons. This difference in energy is called the binding energy of 
the nucleus and can be interpreted as the energy that must be added to a nucleus 
to break it apart into its components. Therefore, to separate a nucleus into protons 
and neutrons, energy must be delivered to the system.
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Figure 43.3  (a) Potential energy 
versus separation distance for a 
 neutron–proton system. (b) Poten-
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To display the difference in the 
curves on this scale, the height of 
the peak for the proton–proton 
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    43.2 Nuclear Binding Energy 1183

Conservation of energy and the Einstein mass–energy equivalence relationship 
show that the binding energy Eb in MeV of any nucleus is

 Eb 5 [ZM(H) 1 Nmn 2 M(A
Z X)] 3 931.494 MeV/u (43.2)

where M(H) is the atomic mass of the neutral hydrogen atom, mn is the mass of the 
neutron, M(A

Z X) represents the atomic mass of an atom of the isotope A
Z X, and the 

masses are all in atomic mass units. The mass of the Z electrons included in M(H) 
cancels with the mass of the Z electrons included in the term M(A

Z X) within a small 
difference associated with the atomic binding energy of the electrons. Because 
atomic binding energies are typically several electron volts and nuclear binding 
energies are several million electron volts, this difference is negligible.

A plot of binding energy per nucleon Eb/A as a function of mass number A for 
various stable nuclei is shown in Figure 43.5. Notice that the binding energy in Fig-
ure 43.5 peaks in the vicinity of A 5 60. That is, nuclei having mass numbers either 
greater or less than 60 are not as strongly bound as those near the middle of the 
periodic table. The decrease in binding energy per nucleon for A . 60 implies that 
energy is released when a heavy nucleus splits, or fissions, into two lighter nuclei. 
Energy is released in fission because the nucleons in each product nucleus are 
more tightly bound to one another than are the nucleons in the original nucleus. 
The important process of fission and a second important process of fusion, in which 
energy is released as light nuclei combine, shall be considered in detail later in this 
chapter.

Another important feature of Figure 43.5 is that the binding energy per nucleon 
is approximately constant at around 8 MeV per nucleon for all nuclei with A . 50.  
For these nuclei, the nuclear forces are said to be saturated, meaning that in the 
closely packed structure shown in Figure 43.2, a particular nucleon can form attrac-
tive bonds with only a limited number of other nucleons.

Figure 43.5 provides insight into fundamental questions about the origin of the 
chemical elements. In the early life of the Universe, the only elements that existed 

 Binding energy of a nucleus

Pitfall Prevention 43.2
Binding Energy When separate 
nucleons are combined to form a 
nucleus, the energy of the system 
is reduced. Therefore, the change 
in energy is negative. The absolute 
value of this change is called the 
binding energy. This difference in 
sign may be confusing. For exam-
ple, an increase in binding energy 
corresponds to a decrease in the 
energy of the system.
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nucleon versus mass number for a 
number of nuclides that lie along 
the line of stability in Figure 43.4. 
Some representative nuclides 
appear as black dots with labels.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1184 Chapter 43 Nuclear Physics

were hydrogen and helium. Clouds of cosmic gas coalesced under gravitational 
forces to form stars. As a star ages, it produces heavier elements from the lighter 
elements contained within it, beginning by fusing hydrogen atoms to form helium. 
This process continues as the star becomes older, generating atoms having larger 
and larger atomic numbers, up to the tan band shown in Figure 43.5.

The nucleus 63
28Ni has the largest binding energy per nucleon of 8.794 5 MeV. 

It takes additional energy to create elements with mass numbers larger than 63 
because of their lower binding energies per nucleon. This energy comes from the 
supernova explosion that occurs at the end of some large stars’ lives. Therefore, all 
the heavy atoms in your body were produced from the explosions of ancient stars. 
You are literally made of stardust!

   43.3    Nuclear Models
The details of the nuclear force are still an area of active research. Several nuclear 
models have been proposed that are useful in understanding general features of 
nuclear experimental data and the mechanisms responsible for binding energy. 
Two such models, the liquid-drop model and the shell model, are discussed below.

the liquid-Drop Model
In 1936, Bohr proposed treating nucleons like molecules in a drop of liquid. In this 
liquid-drop model, the nucleons interact strongly with one another and undergo 
frequent collisions as they jiggle around within the nucleus. This jiggling motion is 
analogous to the thermally agitated motion of molecules in a drop of liquid.

Four major effects influence the binding energy of the nucleus in the liquid-drop 
model:

 ● The volume effect. Figure 43.5 shows that for A . 50, the binding energy 
per nucleon is approximately constant, which indicates that the nuclear 
force on a given nucleon is due only to a few nearest neighbors and not 
to all the other nucleons in the nucleus. On average, then, the binding 
energy associated with the nuclear force is proportional to the number 
A of nucleons and therefore proportional to the nuclear volume. The 
contribution to the binding energy is C1A, where C1 is an adjustable con-
stant that can be determined by fitting the prediction of the model to 
experimental results.

 ● The surface effect. Because nucleons on the surface of the drop have fewer 
neighbors than those in the interior, surface nucleons reduce the binding 
energy by an amount proportional to their number. Because the number 
of surface nucleons is proportional to the surface area 4pr2 of the nucleus 
(modeled as a sphere) and because r2 ~ A2/3 (Eq. 43.1), the surface term can 
be expressed as 2C2A

2/3, where C2 is a second adjustable constant.
 ● The Coulomb repulsion effect. Each proton repels every other proton in the 

nucleus. The corresponding potential energy per pair of interacting protons 
is kee

2/r, where ke is the Coulomb constant. The total electric potential energy 
is proportional to the number of proton pairs Z(Z 2 1)/2 and inversely pro-
portional to the nuclear radius. Consequently, the reduction in binding 
energy that results from the Coulomb effect is 2C3Z(Z 2 1)/A1/3, where C3 is 
yet another adjustable constant.

 ● The symmetry effect. Another effect that lowers the binding energy is related to 
the symmetry of the nucleus in terms of values of N and Z. For small values of A, 
stable nuclei tend to have N < Z. Any large asymmetry between N and Z for light 
nuclei reduces the binding energy and makes the nucleus less stable. For larger 
A, the value of N for stable nuclei is naturally larger than Z. This effect can be 
described by a binding-energy term of the form 2C4(N 2 Z)2/A, where C4 is 
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    43.3 Nuclear Models 1185

another adjustable constant.1 For small A, any large asymmetry between values 
of N and Z makes this term relatively large and reduces the binding energy. For 
large A, this term is small and has little effect on the overall binding energy.

Adding these contributions gives the following expression for the total binding 
energy:

 Eb 5 C 1A 2 C 2A2y3 2 C 3 
Z sZ 2 1d

A1y3 2 C 4 
sN 2 Zd2

A
 (43.3)

This equation, often referred to as the semiempirical binding-energy formula, 
contains four constants that are adjusted to fit the theoretical expression to experi-
mental data. For nuclei having A $ 15, the constants have the values

 C1 5 15.7 MeV  C2 5 17.8 MeV 

  C3 5 0.71 MeV  C4 5 23.6 MeV 

Equation 43.3, together with these constants, fits the known nuclear mass values 
very well as shown by the theoretical curve and sample experimental values in Fig-
ure 43.6. Equation 43.3 is a theoretical equation for the binding energy, based on the 
liquid-drop model, whereas binding energies calculated from Equation 43.2 are 
experimental values based on mass measurements.
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Figure 43.6 The binding-energy 
curve plotted by using the semiem-
pirical binding-energy formula 
(red-brown). For comparison to 
the theoretical curve, experimen-
tal values for four sample nuclei 
are shown.

 Example 43.2    Applying the Semiempirical Binding-Energy Formula

The nucleus 64Zn has a tabulated binding energy of 559.09 MeV. Use the semiempirical binding-energy formula to generate 
a theoretical estimate of the binding energy for this nucleus.

S o l U T I o N

Conceptualize Imagine bringing the separate protons and neutrons together to form a 64Zn nucleus. The rest energy of the 
nucleus is smaller than the rest energy of the individual particles. The difference in rest energy is the binding energy.

Categorize From the text of the problem, we know to apply the liquid-drop model. This example is a substitution problem.

For the 64Zn nucleus, Z 5 30, N 5 34, and A 5 64.  C1A 5 (15.7 MeV)(64) 5 1 005 MeV 
Evaluate the four terms of the semiempirical binding- 
energy formula: 

C2A
2/3 5 (17.8 MeV)(64)2/3 5 285 MeV

 C 3 
Z sZ 2 1d

A1y3
5 s0.71 MeVd 

s30ds29d
s64d1y3

5 154 MeV

 C 4 
sN 2 Zd2

A
5 s23.6 MeVd 

s34 2 30d2

64
5 5.90 MeV

Substitute these values into Equation 43.3: Eb 5 1 005 MeV 2 285 MeV 2 154 MeV 2 5.90 MeV 5  560 MeV

This value differs from the tabulated value by less than 0.2%. Notice how the sizes of the terms decrease from the first to the 
fourth term. The fourth term is particularly small for this nucleus, which does not have an excessive number of neutrons.

1The liquid-drop model describes that heavy nuclei have N . Z. The shell model, as we shall see shortly, explains why 
that is true with a physical argument.

the Shell Model
The liquid-drop model describes the general behavior of nuclear binding energies 
relatively well. It does not, however, account for some finer details of nuclear struc-
ture, such as stability rules and angular momentum. When the binding energies 
are studied more closely, we find the following features:

 ● Most stable nuclei have an even value of A. Furthermore, only eight stable 
nuclei have odd values for both Z and N.
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1186 Chapter 43 Nuclear Physics

 ● Figure 43.7 shows a graph of the difference between the binding energy per 
nucleon calculated by Equation 43.3 and the measured binding energy. There 
is evidence for regularly spaced peaks in the data that are not described by the 
semiempirical binding-energy formula. The peaks occur at values of N or Z 
that have become known as magic numbers:

 Z or N 5 2, 8, 20, 28, 50, 82 (43.4)

 ● High-precision studies of nuclear radii show deviations from the simple 
expression for radius in Equation 43.1. Graphs of experimental data show 
peaks in the curve of r versus N at values of N equal to the magic numbers.

 ● A group of isotones is a collection of nuclei having the same value of N and 
varying values of Z. When the number of stable isotones is graphed as 
function of N, there are peaks in the graph, again at the magic numbers 
in Equation 43.4.

 ● Several other nuclear measurements show anomalous behavior at the magic 
numbers.2

These peaks in graphs of experimental data are reminiscent of the peaks 
in Figure  41.20 for the ionization energy of atoms, which arose because of 
the shell structure of the atom. The shell model of the nucleus, also called the 
 independent-particle model, was developed independently by two German 
scientists: Maria Goeppert-Mayer in 1949 and Hans Jensen (1907–1973) in 1950. 
Goeppert-Mayer and Jensen shared the 1963 Nobel Prize in Physics for their work. 
In this model, each nucleon is assumed to exist in a shell, similar to an atomic shell 
for an electron. The nucleons exist in quantized energy states, and there are few 
collisions between nucleons. Obviously, the assumptions of this model differ greatly 
from those made in the liquid-drop model.

The quantized states occupied by the nucleons can be described by a set of quan-
tum numbers. Because both the proton and the neutron have spin 12, the exclusion 
principle can be applied to describe the allowed states (as it was for electrons in 
Chapter 41). That is, each state can contain only two protons (or two neutrons) 
having opposite spins (Fig. 43.8). The proton states differ from those of the neutrons 
because the two species move in different potential wells. The proton energy levels 
are farther apart than the neutron levels because the protons experience a super-
position of the Coulomb force and the nuclear force, whereas the neutrons experi-
ence only the nuclear force.
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The appearance of regular peaks 
in the experimental data suggests 
behavior that is not predicted in 
the liquid-drop model.

Figure 43.7  The difference 
between measured binding ener-
gies and those calculated from the 
liquid-drop model as a function of 
A. (Adapted from R. A. Dunlap, 
The Physics of Nuclei and Particles, 
Brooks/Cole, Belmont, CA, 2004.)

2For further details, see chapter 5 of R. A. Dunlap, The Physics of Nuclei and Particles, Brooks/Cole, Belmont, CA, 2004.
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The energy levels for the 
protons are slightly higher 
than those for the neutrons 
because of the electric 
potential energy associated 
with the system of protons.

Figure 43.8  A square potential 
well containing 12 nucleons. The 
orange spheres represent protons, 
and the gray spheres represent 
neutrons.
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One factor influencing the observed characteristics of nuclear ground states is 
nuclear spin–orbit effects. The atomic spin–orbit interaction between the spin of an 
electron and its orbital motion in an atom gives rise to the sodium doublet dis-
cussed in Section 41.6 and is magnetic in origin. In contrast, the nuclear spin–
orbit effect for nucleons is due to the nuclear force. It is much stronger than in the 
atomic case, and it has opposite sign. When these effects are taken into account, 
the shell model is able to account for the observed magic numbers.

More sophisticated models of the nucleus have been and continue to be devel-
oped. For example, the collective model combines features of the liquid-drop and 
shell models. The development of theoretical models of the nucleus continues to be 
an active area of research.

   43.4    Radioactivity
In 1896, Becquerel accidentally discovered that uranyl potassium sulfate crystals 
emit an invisible radiation that can darken a photographic plate even though the 
plate is covered to exclude light. After a series of experiments, he concluded that 
the radiation emitted by the crystals was of a new type, one that requires no exter-
nal stimulation and was so penetrating that it could darken protected photographic 
plates and ionize gases. This process of spontaneous emission of radiation by ura-
nium was soon to be called radioactivity.

Subsequent experiments by other scientists showed that other substances were 
more powerfully radioactive. The most significant early investigations of this type 
were conducted by Marie and Pierre Curie (1859–1906). After several years of care-
ful and laborious chemical separation processes on tons of pitchblende, a radioac-
tive ore, the Curies reported the discovery of two previously unknown elements, 
both radioactive, named polonium and radium. Additional experiments, including 
Rutherford’s famous work on alpha-particle scattering, suggested that radioactivity 
is the result of the decay, or disintegration, of unstable nuclei.

Three types of radioactive decay occur in radioactive substances: alpha (a) 
decay, in which the emitted particles are 4He nuclei; beta (b) decay, in which the 
emitted particles are either electrons or positrons; and gamma (g) decay, in which 
the emitted particles are high-energy photons. A positron is a particle like the elec-
tron in all respects except that the positron has a charge of 1e. (The positron is the 
antiparticle of the electron; see Section 44.2.) The symbol e2 is used to designate an 
electron, and e1 designates a positron.

We can distinguish among these three forms of radiation experimentally by 
allowing the particles from the source to pass through a magnetic field. The direc-
tion and curvature of the paths of the alpha and beta particles are related to their 
charge and mass. The gamma rays are undeflected by the field.

The three types of radiation have quite different penetrating powers. Alpha par-
ticles barely penetrate a sheet of paper, beta particles can penetrate a few millime-
ters of aluminum, and gamma rays can penetrate several centimeters of lead.

The decay process is probabilistic in nature and can be described with statisti-
cal calculations for a radioactive substance of macroscopic size containing a large 
number of radioactive nuclei. For such large numbers, the rate at which a particu-
lar decay process occurs in a sample is proportional to the number of radioactive 
nuclei present (that is, the number of nuclei that have not yet decayed). If N is the 
number of undecayed radioactive nuclei present at some instant, this statement for 
the rate of change of N with time can be expressed mathematically as

 
dN
dt

5 2lN  (43.5)

where l, called the decay constant, is the probability of decay per nucleus per sec-
ond. The negative sign indicates that dN/dt is negative; that is, N decreases in time.

Maria Goeppert-Mayer
German Scientist (1906–1972)
Goeppert-Mayer was born and educated 
in Germany. She is best known for her 
development of the shell model (indepen-
dent-particle model) of the nucleus, pub-
lished in 1950. A similar model was simul-
taneously developed by Hans Jensen, 
another German scientist. Goeppert-
Mayer and Jensen were awarded the 
Nobel Prize in Physics in 1963 for their 
extraordinary work in understanding the 
structure of the nucleus.
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Polish Scientist (1867–1934)
In 1903, Marie Curie shared the Nobel 
Prize in Physics with her husband, Pierre, 
and with Becquerel for their studies of 
radioactive substances. In 1911, she was 
awarded a Nobel Prize in Chemistry for 
the discovery of radium and polonium.
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Pitfall Prevention 43.3
Rays or Particles? Early in the 
history of nuclear physics, the term 
radiation was used to describe the 
emanations from radioactive nuclei. 
We now know that alpha radiation 
and beta radiation involve the 
emission of particles with nonzero 
rest energy. Even though they are 
not examples of electromagnetic 
radiation, the use of the term radia-
tion for all three types of emission is 
deeply entrenched in our language 
and in the physics community.
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Equation 43.5 can be written in the form

dN
N

5 2l dt

which, upon integration, gives

 N 5 N0e
2lt (43.6)

where the constant N0 represents the number of undecayed radioactive nuclei at 
t 5 0. Equation 43.6 shows that the number of undecayed radioactive nuclei in 
a sample decreases exponentially with time. The plot of N versus t shown in Fig-
ure 43.9 illustrates the exponential nature of the decay. The curve is similar to that 
for the time variation of electric charge on a discharging capacitor in an RC circuit, 
as studied in Section 27.4.

The decay rate R, which is the number of decays per second, can be obtained by 
combining Equations 43.5 and 43.6:

 R 5 * dN
dt * 5 lN 5 lN0e2lt 5 R 0e

2lt (43.7)

where R0 5 lN0 is the decay rate at t 5 0. The decay rate R of a sample is often 
referred to as its activity. Note that both N and R decrease exponentially with time.

Another parameter useful in characterizing nuclear decay is the half-life T1/2:

The half-life of a radioactive substance is the time interval during which half 
of a given number of radioactive nuclei decay.

To find an expression for the half-life, we first set N 5 N0/2 and t 5 T1/2 in Equa-
tion 43.6 to give

N0

2
5 N0e2lT1y2

Canceling the N0 factors and then taking the reciprocal of both sides, we obtain 
e lT1y2 5 2. Taking the natural logarithm of both sides gives

 T1y2 5
ln 2

l
5

0.693
l

 (43.8)

After a time interval equal to one half-life, there are N0/2 radioactive nuclei 
remaining (by definition); after two half-lives, half of these remaining nuclei have 
decayed and N0/4 radioactive nuclei are left; after three half-lives, N0/8 are left; and 

Exponential behavior of the 
 number of undecayed nuclei

Exponential behavior  
of the decay rate

half-life 
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1
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The time interval T1/2 is 
the half-life of the sample.

Figure 43.9 Plot of the exponential decay of radioactive nuclei. The vertical axis represents the 
number of undecayed radioactive nuclei present at any time t, and the horizontal axis is time.

Pitfall Prevention 43.4
Notation Warning In Section 43.1, 
we introduced the symbol N as an 
integer representing the number 
of neutrons in a nucleus. In this 
discussion, the symbol N rep-
resents the number of undecayed 
nuclei in a radioactive sample 
remaining after some time inter-
val. As you read further, be sure to 
consider the context to determine 
the appropriate meaning for the 
symbol N.

Pitfall Prevention 43.5
Half-life Because N is not a linear 
function of t in Equation 43.6, 
it is not true that all the original 
nuclei have decayed after two 
half-lives! In one half-life, half of 
the original nuclei will decay. In 
the second half-life, half of those 
remaining will decay, leaving 14 of 
the original number.
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so on. In general, after n half-lives, the number of undecayed radioactive nuclei 
remaining is

 N 5 N0s
1
2 dn (43.9)

where n can be an integer or a noninteger.
A frequently used unit of activity is the curie (Ci), defined as

1 Ci ; 3.7 3 1010 decays/s

This value was originally selected because it is the approximate activity of 1 g of 
radium. The SI unit of activity is the becquerel (Bq):

1 Bq ; 1 decay/s

Therefore, 1 Ci 5 3.7 3 1010 Bq. The curie is a rather large unit, and the more fre-
quently used activity units are the millicurie and the microcurie.

Q uick Quiz 43.2  On your birthday, you measure the activity of a sample of 210Bi, 
which has a half-life of 5.01 days. The activity you measure is 1.000 mCi. What is 
the activity of this sample on your next birthday? (a) 1.000 mCi (b) 0 (c) ,0.2 mCi 
(d) ,0.01 mCi (e) ,10222 mCi

 The curie

 The becquerel

 Example 43.3    How Many Nuclei Are Left?

The isotope carbon-14, 14
6C, is radioactive and has a half-life of 5 730 years. If you start with a sample of 1 000 carbon-14 

nuclei, how many nuclei will still be undecayed in 25 000 years?

S o l U T I o N

Conceptualize The time interval of 25 000 years is much longer than the half-life, so only a small fraction of the originally 
undecayed nuclei will remain.

Categorize The text of the problem allows us to categorize this example as a substitution problem involving radioactive decay.

Analyze Divide the time interval by the half-life to determine  n 5
25 000 yr

5 730 yr
5 4.363 

the number of half-lives:

Determine how many undecayed nuclei are left after this many  N 5 N0s 
1
2  
dn 5 1 000s 1

2 d4.363 5  49 
half-lives using Equation 43.9:

Finalize As we have mentioned, radioactive decay is a probabilistic process and accurate statistical predictions are possible 
only with a very large number of atoms. The original sample in this example contains only 1 000 nuclei, which is certainly not 
a very large number. Therefore, if you counted the number of undecayed nuclei remaining after 25 000 years, it might not be 
exactly 49.

 Example 43.4    The Activity of Carbon

At time t 5 0, a radioactive sample contains 3.50 mg of pure 11
6C, which has a half-life of 20.4 min.

(A) Determine the number N0 of nuclei in the sample at t 5 0.

S o l U T I o N

Conceptualize The half-life is relatively short, so the number of undecayed nuclei drops rapidly. The molar mass of 11
6C is 

approximately 11.0 g/mol.

Categorize We evaluate results using equations developed in this section, so we categorize this example as a substitution 
problem.

continued
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43.4 c o n t i n u e d

Find the number of moles in 3.50 mg of  n 5
3.50 3 1026 g

11.0 gymol
5 3.18 3 1027 mol 

pure 11
6C:

Find the number of undecayed nuclei in  N0 5 s3.18 3 1027 molds6.02 3 1023 nucleiymold 5  1.92 3 1017 nuclei 
this amount of pure 11

6C:

(B) What is the activity of the sample initially and after 8.00 h?

S o l U T I o N

Find the initial activity of the sample  R 0 5 lN0 5
0.693
T1y2

 N0 5
0.693

20.4 min S1 min
60 s Ds1.92 3 1017 d 

using Equations 43.7 and 43.8:
5 (5.66 3 1024 s21)(1.92 3 1017) 5  1.09 3 1014 Bq

Use Equation 43.7 to find the activity at  R 5 R 0e2lt 5 s1.09 3 1014 Bqde2s5.6631024 s21ds2.883104 sd 5  8.96 3 106 Bq 
t 5 8.00 h 5 2.88 3 104 s:

 Example 43.5    A Radioactive Isotope of Iodine

A sample of the isotope 131I, which has a half-life of 8.04 days, has an activity of 5.0 mCi at the time of shipment. Upon receipt 
of the sample at a medical laboratory, the activity is 2.1 mCi. How much time has elapsed between the two measurements?

S o l U T I o N

Conceptualize The sample is continuously decaying as it is in transit. The decrease in the activity is 58% during the time 
interval between shipment and receipt, so we expect the elapsed time to be greater than the half-life of 8.04 d.

Categorize The stated activity corresponds to many decays per second, so N is large and we can categorize this problem as 
one in which we can use our statistical analysis of radioactivity.

Analyze Solve Equation 43.7 for the ratio of the final activity to  
R
R 0

5 e2lt S ln S R
R 0
D 5 2lt 

the initial activity and take the natural logarithm of both sides:

Solve for the time t and use Equation 43.8 to substitute for l: (1)   t 5 2 

1
l

 ln S R
R 0
D 5 2 

T1y2

ln 2
 ln S R

R 0
D

Substitute numerical values: t 5 2 

8.04 d
0.693

 ln S2.1 mCi
5.0 mCiD 5  10 d

Finalize This result is indeed greater than the half-life, as expected. This example demonstrates the difficulty in shipping 
radioactive samples with short half-lives. If the shipment is delayed by several days, only a small fraction of the sample might 
remain upon receipt. This difficulty can be addressed by shipping a combination of isotopes in which the desired isotope is 
the product of a decay occurring within the sample. It is possible for the desired isotope to be in equilibrium, in which case it is 
created at the same rate as it decays. Therefore, the amount of the desired isotope remains constant during the shipping pro-
cess and subsequent storage. When needed, the desired isotope can be separated from the rest of the sample; its decay from 
the initial activity begins at this point rather than upon shipment.

   43.5    The Decay Processes
As we stated in Section 43.4, a radioactive nucleus spontaneously decays by one of 
three processes: alpha decay, beta decay, or gamma decay. Figure 43.10 shows a more 
detailed view of a portion of Figure 43.4 from Z 5 65 to Z 5 80. The black circles are 
the stable nuclei seen in Figure 43.4. In addition, unstable nuclei above and below 
the line of stability for each value of Z are shown. Above the line of stability, the blue 
circles show unstable nuclei that are neutron-rich and undergo a beta decay process 
in which an electron is emitted. Below the black circles are red circles corresponding 
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to proton-rich unstable nuclei that primarily undergo a beta-decay process in which 
a positron is emitted or a competing process called electron capture. Beta decay 
and electron capture are described in more detail below. Further below the line of 
stability (with a few exceptions) are tan circles that represent very proton-rich nuclei 
for which the primary decay mechanism is alpha decay, which we discuss first.

alpha Decay
A nucleus emitting an alpha particle (4

2He) loses two protons and two neutrons. 
Therefore, the atomic number Z decreases by 2, the mass number A decreases by 4, 
and the neutron number decreases by 2. The decay can be written

 A
Z X   S   AZ

2
2

4
2Y 1 42He (43.10)

where X is called the parent nucleus and Y the daughter nucleus. As a general rule 
in any decay expression such as this one, (1) the sum of the mass numbers A must 
be the same on both sides of the decay and (2) the sum of the atomic numbers Z 
must be the same on both sides of the decay. As examples, 238U and 226Ra are both 
alpha emitters and decay according to the schemes

 238
92U S 234

90Th 1 42He (43.11)

 226
88Ra S 222

86Rn 1 42He (43.12)

The decay of 226Ra is shown in Figure 43.11.
When the nucleus of one element changes into the nucleus of another as hap-

pens in alpha decay, the process is called spontaneous decay. In any spontaneous 
decay, relativistic energy and momentum of the parent nucleus as an isolated sys-
tem must be conserved. For processes in which nuclei change to other nuclei, we 
can write a modified version of Equation 8.2, with rest energy included as another 
means of storing energy in the system. Therefore, for example, for an alpha decay, 
we can write, identifying the system as the parent nucleus before the decay, and the 
alpha particle and the daughter nucleus afterward, 

 DER 1 DK 5 0 (43.13)

If we call MX the mass of the parent nucleus, MY the mass of the daughter nucleus, 
and M

a
 the mass of the alpha particle, we can define the disintegration energy Q 

of the system as

 Q 5 2DER 5 (MX 2 MY 2 M
a
)c2 (43.14)

The energy Q is in joules when the masses are in kilograms and c is the speed of 
light, 3.00 3 108 m/s. When the masses are expressed in atomic mass units u, how-
ever, Q can be calculated in MeV using the expression

 Q 5 (MX 2 MY 2 M
a
) 3 931.494 MeV/u (43.15)

Table 43.2 (page 1192) contains information on selected isotopes, including masses 
of neutral atoms that can be used in Equation 43.15 and similar equations.

Equation 43.13 tells us that the disintegration energy, sometimes called the Q value 
of the decay, is the amount of rest energy that is transformed to kinetic energy of the 
daughter nucleus and the alpha particle. Consider the case of the 226Ra decay described 
in Figure 43.11. If the parent nucleus is at rest before the decay, the total kinetic energy 
of the products is 4.87 MeV. (See Example 43.7.) Most of this kinetic energy is associated 

 Q value for alpha decay
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electron capture
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Figure 43.10 A close-up view of 
the line of stability in Figure 43.4 
from Z 5 65 to Z 5 80. The black 
dots represent stable nuclei as in 
Figure 43.4. The other colored 
dots represent unstable isotopes 
above and below the line of stabil-
ity, with the color of the dot indi-
cating the primary means of decay.

Pitfall Prevention 43.6
Another Q We have seen the 
symbol Q before, but this use is a 
brand-new meaning for this sym-
bol: the disintegration energy. In 
this context, it is not heat, charge, 
or quality factor for a resonance, 
for which we have used Q before.

222
Rn 

86

After decay

KRn
α

Rn

Before decay

226
Ra 

88
KRa � 0

Ra � 0

Kα

αpS

pS

pS

Figure 43.11 The alpha decay of 
radium-226. The radium nucleus 
is initially at rest. After the decay, 
the radon nucleus has kinetic 
energy KRn and momentum pSRn 
and the alpha particle has kinetic 
energy K

a
 and momentum pS

a
.
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 table 43.2  Chemical and Nuclear Information for Selected Isotopes

    Mass
 Atomic   Number A Mass of  Half-life, if
 Number  Chemical (* means Neutral Percent Radioactive
 Z Element Symbol radioactive) Atom (u) Abundance T1/2

 21 electron e2 0 0.000 549 
 0 neutron n 1* 1.008 665  612 s
 1 hydrogen 1H 5 p 1 1.007 825 99.988 5
  [deuterium 2H 5 D] 2 2.014 102 0.011 5
  [tritium 3H 5 T] 3* 3.016 049  12.32 yr
 2 helium He 3 3.016 029 0.000 137
  [alpha particle a 5 4He] 4 4.002 603 99.999 863
    6* 6.018 886  0.81 s
 3 lithium Li 6 6.015 123 7.5
    7 7.016 003 92.5
 4 beryllium Be 7* 7.016 929  53.2 d
    8* 8.005 305  10216 s
    9 9.012 183 100
 5 boron B 10 10.012 937 19.9
    11 11.009 305 80.1
 6 carbon C 11* 11.011 433  20.4 min
    12 12.000 000 98.93
    13 13.003 355 1.07
    14* 14.003 242  5 730 yr
 7 nitrogen N 13* 13.005 739  9.96 min
    14 14.003 074 99.632
    15 15.000 109 0.368
 8 oxygen O 14* 14.008 597  70.6 s
    15* 15.003 066  122 s
    16 15.994 915 99.757
    17 16.999 132 0.038
    18 17.999 160 0.205
 9 fluorine F 18* 18.000 937  109.8 min
    19 18.998 403 100
 10 neon Ne 20 19.992 440 90.48
 11 sodium Na 23 22.989 769 100
 12 magnesium Mg 23* 22.994 124  11.3 s
    24 23.985 042 78.99
 13 aluminum Al 27 26.981 538 100
 14 silicon Si 27* 26.986 705  4.2 s
 15 phosphorus P 30* 29.978 313  2.50 min
    31 30.973 762 100
    32* 31.973 908  14.26 d
 16 sulfur S 32 31.972 071 94.99
 19 potassium K 39 38.963 706 93.258 1
    40* 39.963 998 0.011 7 1.25 3 109 yr
 20 calcium Ca 40 39.962 591 96.941
    42 41.958 618 0.647
    43 42.958 766 0.135
 25 manganese Mn 55 54.938 043 100
 26 iron Fe 56 55.934 936 91.754
    57 56.935 392 2.119
 27 cobalt Co 57* 56.936 290  272 d
    59 58.933 194 100
    60* 59.933 816  5.27 yr
 28 nickel Ni 58 57.935 342 68.076 9
    60 59.930 785 26.223 1
 29 copper Cu 63 62.929 597 69.15
    64* 63.929 764  12.7 h
    65 64.927 789 30.85
 30 zinc Zn 64 63.929 142 49.2

continued
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 table 43.2  Chemical and Nuclear Information for Selected Isotopes (continued)

    Mass
 Atomic   Number A Mass of  Half-life, if
 Number  Chemical (* means Neutral Percent Radioactive
 Z Element Symbol radioactive) Atom (u) Abundance T1/2

 37 rubidium Rb 87* 86.909 181 27.83
 38 strontium Sr 87 86.908 877 7.00
    88 87.905 612 82.58
    90* 89.907 731  28.8 yr
 41 niobium Nb 93 92.906 373 100
 42 molybdenum Mo 94 93.905 084 9.25
 44 ruthenium Ru 98 97.905 287 1.87
 54 xenon Xe 136* 135.907 214  2.2 3 1021 yr
 55 cesium Cs 137* 136.907 089  30 yr
 56 barium Ba 137 136.905 827 11.232
 58 cerium Ce 140 139.905 446 88.450
 59 praseodymium Pr 141 140.907 658 100
 60 neodymium Nd 144* 143.910 093 23.8 2.3 3 1015 yr
 61 promethium Pm 145* 144.912 756  17.7 yr
 79 gold Au 197 196.966 570 100
 80 mercury Hg 198 197.966 769 10.0
    202 201.970 644 29.7
 82 lead Pb 206 205.974 465 24.1
    207 206.975 897 22.1
    208 207.976 652 52.4
    214* 213.999 804  26.8 min
 83 bismuth Bi 209 208.980 399 100
 84 polonium Po 210* 209.982 874  138.38 d
    216* 216.001 914  0.145 s
    218* 218.008 972  3.10 min
 86 radon Rn 220* 220.011 393  55.6 s
    222* 222.017 576  3.823 d
 88 radium Ra 226* 226.025 408  1 600 yr
 90 thorium Th 232* 232.038 054 100 1.40 3 1010 yr
    234* 234.043 600  24.1 d
 92 uranium U 234* 234.040 950  2.45 3 105 yr
    235* 235.043 928 0.720 0 7.04 3 108 yr
    236* 236.045 566  2.34 3 107 yr
    238* 238.050 787 99.274 5 4.47 3 109 yr
 93 neptunium Np 236* 236.046 568  1.54 3 105 yr
    237* 237.048 172  2.14 3 106 yr
 94 plutonium Pu 239* 239.052 162  24 120 yr

Source: M. Weng, G. Audi, F.G. Kondev, W. J. Huang, S. Naimi, and X. Xu, “The AME2016 Atomic Mass Evaluation,” Chinese Physics C 41(3), 03003, 2017.

with the alpha particle because this particle is much less massive than the daughter 
nucleus 222Rn. That is, because the system is also isolated in terms of momentum, the 
lighter alpha particle recoils with a much higher speed than does the daughter nucleus. 
Generally, less massive particles carry off most of the energy in nuclear decays.

Experimental observations of alpha-particle energies show a number of discrete 
energies rather than a single energy because the daughter nucleus may be left in an 
excited quantum state after the decay. As a result, not all the disintegration energy is 
available as kinetic energy of the alpha particle and daughter nucleus. The emission 
of an alpha particle is followed by one or more gamma-ray photons (discussed shortly) 
as the excited nucleus decays to the ground state. In this case, Equation 8.2 becomes

 DER 1 DK 5 TER 

where TER represents the energy carried away from the decay by gamma rays. 
Because some of the energy in the system is carried away by photons, less of the 
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1194 Chapter 43 Nuclear Physics

energy represented by Q 5 2DER is available for kinetic energy of the final prod-
ucts. The observed discrete alpha- particle energies represent evidence of the 
quantized nature of the nucleus and allow a determination of the energies of the 
quantum states.

Q uick Quiz 43.3  Which of the following is the correct daughter nucleus asso-
ciated with the alpha decay of 157

72Hf?   (a) 153
72Hf   (b) 153

70Yb   (c) 157
70Yb

 Example 43.6    Mass Change in a Radioactive Decay

The 216Po nucleus is unstable and exhibits radioactivity. It decays to 212Pb by emitting an alpha particle. The relevant masses, 
in atomic mass units, are mi 5 m(216Po) 5 216.001 914 u and mf 5 m(212Pb) 1 m(4He) 5 211.991 898 u 1 4.002 603 u.

(A) Find the mass change of the system in this decay.

S o l U T I o N

Conceptualize The initial system is the 216Po nucleus. Imagine the mass of the system decreasing during the decay and trans-
forming to kinetic energy of the alpha particle and the 212Pb nucleus after the decay.

Categorize We use concepts discussed in this section, so we categorize this example as a substitution problem.

Calculate the change in mass using the mass  Dm 5 mf 2 mi 5 (211.991 898 u 1 4.002 603 u) 2 216.001 914 u 
values given in the problem statement. 

5 20.007 413 u 5  21.23 3 10229 kg

(B) Find the Q value for this decay.

S o l U T I o N

Use Equation 43.14 to evaluate the Q value: Q 5 2DER 5 2(Dm)c2 5 2(21.23 3 10229 kg)(3.00 3 108 m/s)2

5 1.11 3 10212 J 5  6.92 MeV

 Example 43.7    The Energy Liberated When Radium Decays

The 226Ra nucleus undergoes alpha decay according to Equation 43.12.

(A) Calculate the Q value for this process. From Table 43.2, the masses are 226.025 408 u for 226Ra, 222.017 576 u for 222Rn, 
and 4.002 603 u for 42He.

S o l U T I o N

Conceptualize Study Figure 43.11 to understand the process of alpha decay in this nucleus.

Categorize The parent nucleus is an isolated system that decays into an alpha particle and a daughter nucleus. The system 
is isolated in terms of both energy and momentum.

Analyze Evaluate Q using Equation 43.15: Q 5 (MX 2 MY 2 M
a
) 3 931.494 MeV/u

5 (226.025 408 u 2 222.017 576 u 2 4.002 603 u) 3 931.494 MeV/u

5 (0.005 229 u) 3 931.494 MeV/u 5  4.87 MeV

(B) What is the kinetic energy of the alpha particle after the decay?

Analyze The value of 4.87 MeV is the disintegration energy for the decay. It includes the kinetic energy of both the alpha 
particle and the daughter nucleus after the decay. Therefore, the kinetic energy of the alpha particle would be less than 
4.87 MeV.
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43.7 c o n t i n u e d

Set up a conservation of momentum equation, noting  (1)    0 5 MYvY 2 M
a
v

a
 

that the initial momentum of the system is zero:

Solve Equation 43.13 for the negative of the change in the  2DER 5 DK   S   Q 5 DK 
rest mass and then express the left side of the equation  (2)   Q 5 1

2M
a
v

a
2 1 1

2M Y vY
2 

as Q using Q 5 2DER. On the right side, express the final  
kinetic energy of the system as the sum of kinetic energies  
of the daughter nucleus and the alpha particle:

Solve Equation (1) for vY and substitute into Equation (2).  Q 5 1
2M

a
v

a
2 1 1

2M Y SM
a
v

a

MY
D2

5 1
2M

a
v

a
2 S1 1

M
a

MY
D 

Solve the result for the kinetic energy of the alpha particle:

   5 K
aSM Y 1 M

a

M Y
D   S   K

a
5 Q S M Y

M Y 1 M
a

D
Evaluate this kinetic energy for the specific decay of  K

a
5 s4.87 MeVdS 222

222 1 4D 5  4.78 MeV 
226Ra that we are exploring in this example:

Finalize The kinetic energy of the alpha particle is indeed less than the disintegration energy, but notice that the alpha par-
ticle carries away most of the energy available in the decay.

To understand the mechanism of alpha decay, let’s model the parent nucleus 
as a system consisting of (1) the alpha particle, already formed as an entity within 
the nucleus, and (2) the daughter nucleus that will result when the alpha particle 
is emitted. Figure 43.12, which is similar to Figure 40.9, shows a plot of potential 
energy versus separation distance r between the alpha particle and the daughter 
nucleus, where the distance marked R is the range of the nuclear force. The curve 
represents the combined effects of (1)  the repulsive Coulomb force, which gives 
the positive part of the curve for r  . R, and (2) the attractive nuclear force, which 
causes the curve to be negative for r  , R. As shown in Example 43.7, a typical 
disintegration energy Q is approximately 5 MeV, which is the approximate kinetic 
energy of the alpha particle, represented by the lower dashed line in Figure 43.12.

According to classical physics, the alpha particle is trapped in a potential well. 
How, then, does it ever escape from the nucleus? The answer to this question was first 
provided by George Gamow (1904–1968) in 1928 and independently by R. W. Gur-
ney (1898–1953) and E. U. Condon (1902–1974) in 1929, using quantum mechanics. 
In the view of quantum mechanics, there is always some probability that a particle 
can tunnel through a barrier (Section 40.5). That is exactly how we can describe 
alpha decay: the alpha particle tunnels through the barrier in Figure 43.12, escap-
ing the nucleus. Furthermore, this model agrees with the observation that high-
er-energy alpha particles come from nuclei with shorter half-lives. For higher-energy 
alpha particles in Figure 43.12, the barrier is narrower and the probability is higher 
that tunneling occurs. The higher probability translates to a shorter half-life.

beta Decay
When a radioactive nucleus undergoes beta decay, the daughter nucleus contains 
the same number of nucleons as the parent nucleus but the atomic number is 
changed by 1, which means that the number of protons changes:

 A
Z X   S   Z11

A Y 1 e2 (incomplete expression) (43.16)

 A
Z X   S   Z21

A Y 1 e1 (incomplete expression) (43.17)

where, as mentioned in Section 43.4, e2 designates an electron and e1 designates a 
positron, with beta particle being the general term referring to either. Beta decay is not 
described completely by these expressions. We shall give reasons for this statement shortly.

U(r)

≈30 MeV

5 MeV

0 R
r

≈–40 MeV

Classically, the 5-MeV energy 
of the alpha particle is not 
sufficiently large to overcome 
the energy barrier, so the 
particle should not be able to 
escape from the nucleus.

Figure 43.12  Potential energy 
versus separation distance for a 
system consisting of an alpha par-
ticle and a daughter nucleus. The 
alpha particle escapes by tunnel-
ing through the barrier.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1196 Chapter 43 Nuclear Physics

As with alpha decay, the nucleon number and total charge are both conserved in 
beta decays. Because A does not change but Z does, we conclude that in beta decay, 
either a neutron changes to a proton (Eq. 43.16) or a proton changes to a neutron 
(Eq. 43.17). Note that the electron or positron emitted in these decays is not pres-
ent beforehand in the nucleus; it is created in the process of the decay from the rest 
energy of the decaying nucleus. Two typical beta-decay processes are

   14
6C   S   14

7N 1 e2 (incomplete expression) (43.18)

 12
7N   S   12

6C 1 e1    (incomplete expression) (43.19)

Let’s consider experimental results for the kinetic energy of the emitted particle 
in both alpha and beta decay. For alpha decay, as seen in Figure 43.13a, the alpha 
particles are emitted with several discrete energies. The various possibilities shown in 
Figure 43.13a represent the daughter nucleus being left in different excited states 
after the decay. If the daughter is left in an excited state, there is a subsequent 
gamma decay as the daughter makes a transition to the ground state. When the 
gamma ray energies are included, energy is conserved for the system.

Now, what about beta decay? Experimentally, it is found that beta particles from 
a single type of nucleus are emitted over a continuous range of energies as shown in 
Figure 43.13b. This is very different from the situation in alpha decay. Because 
all beta-decaying nuclei in the sample have the same initial mass, however, the Q 
value must be the same for each decay. So, why do the emitted particles have the range 
of kinetic energies shown in Figure 43.13b? The isolated system model and the law 
of conservation of energy seem to be violated! It becomes worse: further analysis of 
the decay processes described by Equations 43.16 and 43.17 shows that the laws of 
conservation of angular momentum (spin) and linear momentum are also violated!

After a great deal of experimental and theoretical study, Pauli in 1930 proposed 
that a third particle must be present in the decay products to carry away the “miss-
ing” energy and momentum. Fermi later named this particle the neutrino (little 
neutral one) because it had to be electrically neutral and have little or no mass. 
Although it eluded detection for many years, the neutrino (symbol n, Greek nu) 
was finally detected experimentally in 1956 by Frederick Reines (1918–1998), who 
received the Nobel Prize in Physics for this work in 1995. The neutrino has the fol-
lowing properties:

 ● It has zero electric charge.
 ● Its mass is either zero (in which case it travels at the speed of light) or very 

small; much recent persuasive experimental evidence suggests that the neu-
trino mass is not zero. Current experiments place the upper bound of the 
mass of the neutrino at approximately 2 eV/c2.

 ● It has a spin of 12, which allows the law of conservation of angular momentum 
to be satisfied in beta decay.

 ● It interacts very weakly with matter and is therefore very difficult to detect.

We can now write the beta-decay processes (Eqs. 43.16 and 43.17) in their cor-
rect and complete form:

 A
Z X   S   Z11

A Y 1 e2 1 n  (complete expression) (43.20)

 A
Z X   S   Z21

A Y 1 e1 1 n  (complete expression) (43.21)

as well as those for carbon-14 and nitrogen-12 (Eqs. 43.18 and 43.19):

 14
6C    S   14

7N 1 e2 1 n  (complete expression) (43.22)

 12
7N   S   12

6C 1 e1 1 n  (complete expression) (43.23)

where the symbol n represents the antineutrino, the antiparticle to the neutrino. 
We shall discuss antiparticles further in Chapter 44. For now, it suffices to say that 
a neutrino is emitted in positron decay and an antineutrino is emitted in electron 
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The observed energies of beta 
particles are continuous, having 
all values up to a maximum value.

The observed energies of 
alpha particles are discrete, 
having only a few values.

Figure 43.13 (a) Distribution of 
alpha-particle energies in a typical 
alpha decay. (b) Distribution of 
beta-particle energies in a typical 
beta decay.
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decay. Figure 43.14 shows a pictorial representation of the decays described by 
Equations 43.22 and 43.23. In beta decay, there are three particles after the decay. 
Therefore, the two conservation principles of energy and momentum cannot com-
pletely specify the kinetic energies of the outgoing particles as in alpha decay. As a 
result, the beta particle can be emitted with any energy up to a maximum, as seen 
in Figure 43.13b.

A process that competes with e1 decay is electron capture, which occurs when a 
parent nucleus captures one of its own orbital electrons and emits a neutrino. The 
final product after decay is a nucleus whose charge is Z 2 1:

 A
Z X 1 

2
0
1e   S   Z21

A Y 1 n 

In most cases, it is a K-shell electron that is captured and the process is therefore 
referred to as K capture. One example is the capture of an electron by 74Be:

7
4Be 1 

21
0e   S   73Li 1 n

Because the neutrino is very difficult to detect, electron capture is usually observed 
by the x-rays given off as higher-shell electrons cascade downward to fill the vacancy 
created in the K shell.

Finally, we specify Q values for the beta-decay processes. The Q values for e2 
decay and electron capture are given by 

 Q 5 (MX 2 MY)c2 (43.24)

where MX and MY are the masses of neutral atoms. In e2 decay, the parent nucleus 
experiences an increase in atomic number and, for the atom to become neutral, an 
electron must be absorbed by the atom. If the neutral parent atom and an electron 
(which will eventually combine with the daughter to form a neutral atom) is the initial 
system and the final system is the neutral daughter atom and the beta-ejected elec-
tron, the system contains a free electron both before and after the decay. Therefore, 
in subtracting the initial and final masses of the system, this electron mass cancels.

The Q values for e1 decay are given by 

 Q 5 (MX 2 MY 2 2me )c
2 (43.25)

The extra term 22mec
2 in this expression is necessary because the atomic number of 

the parent decreases by one when the daughter is formed. After it is formed by the 
decay, the daughter atom sheds one electron to form a neutral atom. Therefore, the 
final products are the daughter atom, the shed electron, and the ejected positron.

  Electron capture

  Q value for e2 decay 
and electron capture

  Q value for e1 decay
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The final products of the beta 
decay of the carbon-14 nucleus 
are a nitrogen-14 nucleus, an 
electron, and an antineutrino.

The final products of the beta 
decay of the nitrogen-12 nucleus 
are a carbon-12 nucleus, a positron, 
and a neutrino.

pS

pS

pS

pS

a b

Figure 43.14 (a) The beta decay 
of carbon-14. (b) The beta decay 
of nitrogen-12.

Pitfall Prevention 43.7
Mass Number of the Electron We 
see in the equations for electron 
capture the symbol 

21
0e for the 

electron. We approximate the 
electron mass as zero because it is 
so small relative to nuclear masses.
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These relationships are useful in determining whether or not a process is ener-
getically possible. For example, the Q value for proposed e1 decay for a particular 
parent nucleus may turn out to be negative. In that case, this decay does not occur. 
The Q value for electron capture for this parent nucleus, however, may be a positive 
number, so electron capture can occur even though e1 decay is not possible. Such is 
the case for the decay of 74Be shown above.

Q uick Quiz 43.4  Which of the following is the correct daughter nucleus asso-
ciated with the beta decay of 184

72Hf? (a) 183
72Hf   (b) 183

73Ta   (c) 184
73Ta 

carbon Dating
The beta decay of 14C (Eq. 43.22) is commonly used to date organic samples. Cos-
mic rays in the upper atmosphere cause nuclear reactions (Section 43.7) that create 
14C. The ratio of 14C to 12C in the carbon dioxide molecules of our atmosphere 
has a constant value of approximately r0 5 1.3 3 10212. The carbon atoms in all 
living organisms have this same 14C/12C ratio r0 because the organisms continu-
ously exchange carbon dioxide with their surroundings. When an organism dies, 
however, it no longer absorbs 14C from the atmosphere, and so the 14C/12C ratio 
decreases as the 14C decays with a half-life of 5 730 yr. It is therefore possible to 
measure the age of organic material by measuring its 14C activity. 

A particularly interesting example is the dating of the Dead Sea Scrolls. This 
group of manuscripts was discovered by a shepherd in 1947. Translation showed 
them to be religious documents, including most of the books of the Old Testament. 
Because of their historical and religious significance, scholars wanted to know their 
age. Carbon dating applied to the material in which they were wrapped established 
their age at approximately 1 950 yr.

 Conceptual Example 43.8    The Age of Iceman

In 1991, German tourists discovered the well-preserved remains of a man, now called “Ötzi the Iceman,” trapped in a gla-
cier in the Italian Alps. Radioactive dating with 14C revealed that this person was alive approximately 5 300 years ago. Why 
did scientists date a sample of Ötzi using 14C rather than 11C, which is a beta emitter having a half-life of 20.4 min?

S o l U T I o N

Because 14C has a half-life of 5 730 yr, the fraction of 14C 
nuclei remaining after thousands of years is high enough 
to allow accurate measurements of changes in the sample’s 
activity. Because 11C has a very short half-life, it is not useful; 
its activity decreases to a vanishingly small value over the age 
of the sample, making it impossible to detect.

An isotope used to date a sample must be present in a 
known amount in the sample when it is formed. As a general 
rule, the isotope chosen to date a sample should also have a 
half-life that is on the same order of magnitude as the age 

of the sample. If the half-life is much less than the age of 
the sample, there won’t be enough activity left to measure 
because almost all the original radioactive nuclei will have 
decayed. If the half-life is much greater than the age of the 
sample, the amount of decay that has taken place since the 
sample died will be too small to measure. For example, if you 
have a specimen estimated to have died 50 years ago, neither  
14C (5 730  yr) nor 11C (20 min) is suitable. If you know your 
sample contains hydrogen, however, you can measure the activ-
ity of 3H (tritium), a beta emitter that has a half-life of 12.3 yr.

 Example 43.9    Radioactive Dating

A piece of charcoal containing 25.0 g of carbon is found in some ruins of an ancient city. The sample shows a 14C activity R 
of 250 decays/min. How long has the tree from which this charcoal came been dead?

S o l U T I o N

Conceptualize Because the charcoal was found in ancient ruins, we expect the current activity to be smaller than the initial 
activity. If we can determine the initial activity, we can find out how long the wood has been dead.
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Gamma Decay
Very often, a nucleus that undergoes radioactive decay is left in an excited energy 
state. The nucleus can then undergo a second decay to a lower-energy state, per-
haps to the ground state, by emitting a high-energy photon:

 A
Z X*   S   AZ X 1 g (43.26)

where X* indicates a nucleus in an excited state. The typical half-life of an excited 
nuclear state is 10210 s. Photons emitted in such a de-excitation process are called 
gamma rays. Such photons have very high energy (1 MeV to 1 GeV) relative to 
the energy of visible light (approximately 1 eV). Recall from Section 41.3 that the 
energy of a photon emitted or absorbed by an atom equals the difference in energy 
between the two electronic states involved in the transition. Similarly, a gamma-ray 
photon has an energy hf that equals the energy difference DE between two nuclear 
energy levels. When a nucleus decays by emitting a gamma ray, the only change in 
the nucleus is that it ends up in a lower-energy state. There are no changes in Z, N, 
or A.

A nucleus may reach an excited state as the result of a violent collision with 
another particle. More common, however, is for a nucleus to be in an excited state 
after it has undergone alpha or beta decay. The following sequence of events rep-
resents a typical situation in which gamma decay occurs:

  12
5B   S   12

6C* 1 e2 1 n  (43.27)

 12
6C*   S   12

6C 1 g (43.28)

Figure 43.15 shows the decay scheme for 12B, which undergoes beta decay to either 
of two levels of 12C. It can either (1) decay directly to the ground state of 12C by 
emitting a 13.4-MeV electron or (2) undergo beta decay to an excited state of 12C* 
followed by gamma decay to the ground state. The latter process results in the emis-
sion of a 9.0-MeV electron and a 4.4-MeV photon.

The various pathways by which a radioactive nucleus can undergo decay are 
summarized in Table 43.3 (page 1200).

 Gamma decay

43.9 c o n t i n u e d

Categorize The text of the question helps us categorize this example as a carbon dating problem.

Analyze Solve Equation 43.7 for t and incorporate  (1)   t 5 2 

1
l

 ln S R
R 0
D 5 2 

T1y2

ln 2
  ln S R

R 0
D 

Equation 43.8:

Evaluate the ratio R/R0 using Equation 43.7, the initial  
R
R 0

5
R

lN0s
14Cd

5
R

lr0N0s
12Cd

5
R

lr0nNA

 
value of the 14C/12C ratio r0, the number of moles n of  
carbon, and Avogadro’s number NA:

Replace the number of moles in terms of the molar mass  
R
R 0

5
R

sln 2yT1y2dr0smyM dNA

5
RMT1y2

r0mNA ln 2
 

M of carbon and the mass m of the sample and substitute  
for the decay constant l:

Substitute numerical values: 
R
R 0

5
s250 min21ds12.0 gymolds5 730 yrd

s1.3 3 10212ds25.0 gds6.022 3 1023 mol21d ln 2
 S3.156 3 107 s

1 yr DS1 min
60 s D

5 0.667

Substitute this ratio into Equation (1): t 5 2 

5 730 yr

ln 2
 ln s0.667d 5  3.4 3 103 yr

Finalize Note that the time interval found here is on the same order of magnitude as the half-life, so 14C is a valid isotope to 
use for this sample, as discussed in Conceptual Example 43.8.

13.4 MeV

4.4 MeV

12
 6

C*

12
 6C

e �

e �

12
 5 B

g

In this decay process, the 
daughter nucleus is in an 
excited state, denoted by 
12C*, and the beta decay is 
followed by a gamma decay. 

In this decay process, the 
daughter nucleus 12C is left 
in the ground state.

E
N

E
R

G
Y

6

6

Figure 43.15  An energy-level 
diagram showing the initial 
nuclear state of a 12B nucleus and 
two possible lower-energy states of 
the 12C nucleus.
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 table 43.3  Various Decay Pathways

Alpha decay A
Z X   S   AZ

2
2

4
2Y 1 42He

Beta decay (e2) A
Z X   S   Z11

A Y 1 e2 1 n

Beta decay (e1) A
Z X   S   Z21

A Y 1 e1 1 n

Electron capture A
Z X 1 e2   S   Z21

A Y 1 n

Gamma decay A
Z X*   S   AZ X 1 g

 table 43.4  The Four Radioactive Series

 Starting Half-life Stable End
Series Isotope (years) Product

Uranium 238
92U 4.47 3 109 206

82Pb

Actinium  Natural 235
92U 7.04 3 108 207

82Pb

Thorium 232
90Th 1.41 3 1010 208

82Pb

Neptunium 237
93Np 2.14 3 106 209

83Bi

6

N

Z

140

135

130

125
80 85 90

216Po

220Rn

212Pb

208Tl

208Pb

212Po
212Bi

224Ra

228Ra

232Th

228Ac
228Th

Decays with violet arrows toward 
the lower left are alpha decays, 
in which A changes by 4.

Decays with blue arrows toward 
the lower right are beta decays, 
in which A does not change.

Figure 43.16  Successive decays 
for the 232Th series.

   43.6    Natural Radioactivity
Radioactive nuclei are generally classified into two groups: (1) unstable nuclei 
found in nature, which give rise to natural radioactivity, and (2) unstable nuclei 
produced in the laboratory through nuclear reactions, which exhibit artificial 
radioactivity.

As Table 43.4 shows, there are three series of naturally occurring radioactive 
nuclei. Each series starts with a specific long-lived radioactive isotope whose half-
life exceeds that of any of its unstable descendants. The three natural series begin 
with the isotopes 238U, 235U, and 232Th, and the corresponding stable end products 
are three isotopes of lead: 206Pb, 207Pb, and 208Pb. The fourth series in Table 43.4 
begins with 237Np and has as its stable end product 209Bi. The element 237Np is a 
transuranic element (one having an atomic number greater than that of uranium) 
not found in nature. This element has a half-life of “only” 2.14 3 106 years.

Figure 43.16 shows the successive decays for the 232Th series. First, 232Th under-
goes alpha decay to 228Ra. Next, 228Ra undergoes two successive beta decays to 
228Th. The series continues and finally branches when it reaches 212Bi. At this point, 
there are two decay possibilities. The sequence shown in Figure 43.16 is charac-
terized by a mass-number decrease of either 4 (for alpha decays) or 0 (for beta or 
gamma decays). The two uranium series are more complex than the 232Th series. In 
addition, several naturally occurring radioactive isotopes, such as 14C and 40K, are 
not part of any decay series.

Because of these radioactive series, our environment is constantly replenished 
with radioactive elements that would otherwise have disappeared long ago. For 
example, because our solar system is approximately 5 3 109 years old, the supply of 
226Ra (whose half-life is only 1 600 years) would have been depleted by radioactive 
decay long ago if it were not for the radioactive series starting with 238U.

   43.7    Nuclear Reactions
We have studied radioactivity, which is a spontaneous process in which the struc-
ture of a nucleus changes. It is also possible to stimulate changes in the structure of 
nuclei by bombarding them with energetic particles. Such collisions, which change 
the identity of the target nuclei, are called nuclear reactions. Rutherford was the 
first to observe them, in 1919, using naturally occurring radioactive sources for 
the bombarding particles. Since then, a wide variety of nuclear reactions has been 
observed following the development of charged-particle accelerators in the 1930s. 
With today’s advanced technology in particle accelerators and particle detectors, 
the Large Hadron Collider (see Section 44.10) in Europe can achieve particle ener-
gies of 14 000 GeV 5 14 TeV. These high-energy particles are used to create new 
particles whose properties are helping to solve the mysteries of the nucleus.

Consider a reaction in which a target nucleus X is bombarded by a particle a, 
resulting in a daughter nucleus Y and an outgoing particle b:

 a 1 X   S   Y 1 b (43.29)Nuclear reaction 
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    43.7 Nuclear Reactions 1201

Sometimes this reaction is written in the more compact form

X(a, b)Y

In Section 43.5, the Q value, or disintegration energy, of a radioactive decay was 
defined as the rest energy transformed to kinetic energy as a result of the decay 
process. Likewise, we define the reaction energy Q associated with a nuclear reac-
tion as the difference between the initial and final rest energies resulting from the reaction:

 Q 5 (Ma 1 MX 2 MY 2 Mb)c
2 (43.30)

As with nuclear decay, the appropriate reduction of Equation 8.2 for nuclear reac-
tions is Equation 43.13. As an example, consider the reaction 7Li(p, a)4He. The 
notation p indicates a proton, which is a hydrogen nucleus. Therefore, we can write 
this reaction in the expanded form

1
1H 1 73Li   S   42He 1 42He

The Q value for this reaction is Q 5 2DER 5 17.3 MeV. A reaction such as this one, 
for which Q is positive, is called exothermic. A reaction for which Q is negative 
is called endothermic. To satisfy conservation of momentum for the isolated sys-
tem, an endothermic reaction does not occur unless the bombarding particle has a 
kinetic energy greater than Q. (See Problem 54.) The minimum energy necessary 
for such a reaction to occur is called the threshold energy.

If particles a and b in a nuclear reaction are identical so that X and Y are 
also necessarily identical, the reaction is called a scattering event. If the kinetic 
energy of the system (a and X) before the event is the same as that of the system 
(b and Y) after the event, it is classified as elastic scattering. If the kinetic energy 
of the system after the event is less than that before the event, the reaction is 
described as inelastic scattering. In this case, the target nucleus has been raised to 
an excited state by the event, which accounts for the difference in energy. The 
final system now consists of b and an excited nucleus Y*, and eventually it will 
become b, Y, and g, where g is the gamma-ray photon that is emitted when the sys-
tem returns to the ground state. This elastic and inelastic terminology is identical 
to that used in describing collisions between macroscopic objects as discussed in 
Section 9.4.

In addition to energy and momentum, the total charge and total number of 
nucleons must be conserved in any nuclear reaction. For example, consider the 
reaction 19F(p, a)16O, which has a Q value of 8.11 MeV. We can show this reaction 
more completely as

 1
1H 1 19

9F   S   16
8O 1 42He (43.31)

The total number of nucleons before the reaction (1 1 19 5 20) is equal to the 
total number after the reaction (16 1 4 5 20). Furthermore, the total charge is the 
same before (1 1 9) and after (8 1 2) the reaction.

In Section 43.2, we mentioned the important process of nuclear fission. Crucial to 
this process is a particular type of nuclear reaction involving neutrons. Because of 
their charge neutrality, neutrons are not subject to Coulomb forces and as a result 
do not interact electrically with electrons or the nucleus. Therefore, neutrons can 
easily penetrate deep into an atom and collide with the nucleus.

A fast neutron (energy greater than approximately 1 MeV) traveling through 
matter undergoes many collisions with nuclei, giving up some of its kinetic 
energy in each collision. For fast neutrons in some materials, elastic collisions 
dominate. Materials for which that occurs are called moderators because they 
slow down (or moderate) the originally energetic neutrons very effectively. Mod-
erator nuclei should be of low mass so that a large amount of kinetic energy 
is transferred to them when struck by neutrons. For this reason, materials that 

 Reaction energy Q
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are abundant in hydrogen, such as paraffin and water, are good moderators for 
neutrons.

Eventually, most neutrons bombarding a moderator become thermal neutrons, 
which means they have given up so much of their energy that they are in thermal 
equilibrium with the moderator material. Their average kinetic energy at room 
temperature is, from Equation 20.19,

 K avg 5 3
2kBT < 3

2s1.38 3 10223 JyKds300 Kd 5 6.21 3 10221 J < 0.04 eV 

which corresponds to a neutron root-mean-square speed of approximately 
2 800 m/s. Thermal neutrons have a distribution of speeds, just as the molecules in 
a container of gas do (see Chapter 20). High-energy neutrons, those with energy of 
several MeV, thermalize (that is, their average energy reaches Kavg) in less than 1 ms 
when they are incident on a moderator.

Once the neutrons have thermalized and the energy of a particular neutron 
is sufficiently low, there is a high probability the neutron will be captured by a 
nucleus, an event that is accompanied by the emission of a gamma ray. This neu-
tron capture reaction can be written

 1
0n 1 AZ X   S   A11

ZX*   S   A11
ZX 1 g (43.32)

Once the neutron is captured, the nucleus A11
ZX* is in an excited state for a very 

short time before it undergoes gamma decay. The product nucleus A11
ZX is usually 

radioactive and decays by beta emission.
The neutron-capture rate for neutrons passing through any sample depends 

on the type of atoms in the sample and on the energy of the incident neutrons. 
The interaction of neutrons with matter increases with decreasing neutron 
energy because a slow neutron spends a larger time interval in the vicinity of tar-
get nuclei. Let’s look now in more detail at the fission reaction.

   43.8    Nuclear Fission
Nuclear fission is a special type of nuclear reaction that occurs when a heavy 
nucleus, such as 235U, splits into two smaller nuclei rather than a daughter 
nucleus and a light particle such as an alpha particle or an electron. Fission is 
initiated when a heavy nucleus captures a thermal neutron as described by the 
first step in Equation 43.32. The absorption of the neutron creates a nucleus 
that is unstable and can change to a lower-energy configuration by splitting 
into two smaller nuclei. In such a reaction, the combined mass of the daughter 
nuclei is less than the mass of the parent nucleus, and the difference in mass 
is called the mass defect. Multiplying the mass defect by c2 gives the numeri-
cal value of the released energy. This energy is in the form of kinetic energy 
associated with the motion of the neutrons and the daughter nuclei after the 
fission event. Energy is released because the binding energy per nucleon of the 
daughter nuclei is approximately 1 MeV greater than that of the parent nucleus 
(see Fig. 43.5).

Nuclear fission was first observed in 1938 by Otto Hahn (1879–1968) and Fritz 
Strassmann (1902–1980) following some basic studies by Fermi. After bombard-
ing uranium with neutrons, Hahn and Strassmann discovered among the reaction 
products two medium-mass elements, barium and lanthanum. Shortly thereafter, 
Lise Meitner (1878–1968) and her nephew Otto Frisch (1904–1979) explained what 
had happened. After absorbing a neutron, the uranium nucleus had split into two 
nearly equal fragments plus several neutrons. Such an occurrence was of consider-
able interest to physicists attempting to understand the nucleus, but it was to have 
even more far-reaching consequences. Measurements showed that approximately 

Neutron capture reaction 

Pitfall Prevention 43.8
Binding Energy Reminder Remem-
ber from Section 43.2 that bind-
ing energy is the absolute value of 
the system energy and is related to 
the system mass. Therefore, when 
considering Figure 43.5, imag-
ine flipping it upside down for a 
graph representing system mass. 
In a fission reaction, the system 
mass decreases. This decrease 
in mass appears in the system 
as kinetic energy of the fission 
products.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    43.8 Nuclear Fission 1203

200 MeV of energy was released in each fission event, and this fact was to affect the 
course of history in World War II.

The fission of 235U by thermal neutrons can be represented by the reaction

 1
0n 1 235

92U   S   236
92U* S X 1 Y 1 neutrons (43.33)

where 236U* is an intermediate excited state that lasts for approximately 10212 s  
before splitting into medium-mass nuclei X and Y, which are called fission 
fragments. In any fission reaction, there are many combinations of X and Y that 
satisfy the requirements of conservation of energy and charge. In the case of ura-
nium, for example, approximately 90 daughter nuclei can be formed.

Fission also results in the production of several neutrons, typically two or three. 
On average, approximately 2.5 neutrons are released per event. A typical fission 
reaction for uranium is

 1
0n 1 235

92U   S   141
56Ba 1 92

36Kr 1 3(1
0n) (43.34)

Figure 43.17 shows a pictorial representation of the fission event in Equation 43.34.
Figure 43.18 is a graph of the distribution of fission products versus mass num-

ber A. The most probable products have mass numbers A < 95 and A < 140. Sup-
pose these products are 95

39Y (with 56 neutrons) and 140
53I (with 87 neutrons). If these 

nuclei are located on the graph of Figure 43.4, it is seen that both are well above the 
line of stability. Because these fragments are very unstable owing to their unusu-
ally high number of neutrons, they almost instantaneously release two or three 
neutrons.

Let’s estimate the disintegration energy Q released in a typical fission process. 
From Figure 43.5, we see that the binding energy per nucleon is approximately 
7.2 MeV for heavy nuclei (A < 240) and approximately 8.2 MeV for nuclei of inter-
mediate mass. The amount of energy released is 8.2 MeV 2 7.2 MeV 5 1 MeV per 
nucleon. Because there are a total of 235 nucleons in 235

92U, the energy released per 
fission event is approximately 235 MeV, a large amount of energy relative to the 
amount released in chemical processes. For example, the energy released in the 
combustion of one molecule of octane used in gasoline engines is about one-mil-
lionth of the energy released in a single fission event!

Q uick Quiz 43.5  When a nucleus undergoes fission, the two daughter 
nuclei are generally radioactive. By which process are they most likely to decay? 
(a) alpha decay (b) beta decay (e2) (c) beta decay (e1)

Q uick Quiz 43.6  Which of the following are possible fission reactions?

 (a) 1
0n 1 235

92U   S   140
54Xe 1 94

38Sr 1 2(1
0n)

 (b) 1
0n 1 235

92U   S   132
50Sn 1 101

42Mo 1 3(1
0n)

 (c) 1
0n 1 239

94Pu   S   137
53I 1 97

41Nb 1 3(1
0n)

After fission

Before fission

235U

92Kr

141Ba

Before the event, a slow neutron
approaches a 235U nucleus.

After the event, there are two 
lighter nuclei and three neutrons.

Figure 43.17  A nuclear fission 
event.
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Figure 43.18  Distribution of fis-
sion products versus mass number 
for the fission of 235U bombarded 
with thermal neutrons. Notice that 
the vertical axis is logarithmic.

 Example 43.10    The Energy Released in the Fission of 235U

Calculate the energy released when 1.00 kg of 235U fissions, taking the disintegration energy per event to be Q 5 208 MeV.

S o l U T I o N

Conceptualize Imagine a nucleus of 235U absorbing a neutron and then splitting into two smaller nuclei and several neutrons 
as in Figure 43.17.

Categorize The problem statement tells us to categorize this example as one involving an energy analysis of nuclear fission.

continued
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43.10 c o n t i n u e d

Analyze Because A 5 235 for uranium, one mole of this isotope has a mass of M 5 235 g.

Find the number of nuclei in our sample in  N 5 nNA 5
m
M

 NA 
terms of the number of moles n and Avogadro’s  
number, and then in terms of the sample mass  
m and the molar mass M of 235U:

Find the total energy released when all nuclei  E 5 NQ 5
m
M

 NAQ 5
1.00 3 103 g

235 gymol
s6.02 3 1023 mol21ds208 MeVd 

undergo fission:
5  5.33 3 1026 MeV

Finalize Convert this energy to kWh:

E 5 s5.33 3 1026 MeVdS1.60 3 10213 J

1 MeV DS 1 kWh
3.60 3 106 JD 5 2.37 3 107 kWh

which, if released slowly, is enough energy to keep a 100-W lightbulb operating for 30 000 years! If the available fission energy 
in 1 kg of 235U were suddenly released, it would be equivalent to detonating about 20 000 tons of TNT.

   43.9    Nuclear Reactors
In Section 43.8, we learned that when 235U fissions, one incoming neutron results 
in an average of 2.5 neutrons emitted per event. These neutrons can trigger other 
nuclei to fission. Because more neutrons are produced by the event than are 
absorbed, there is the possibility of an ever-building chain reaction (Fig. 43.19). 
Experience shows that if the chain reaction is not controlled (that is, if it does 
not proceed slowly), it can result in a violent explosion, with the sudden release 
of an enormous amount of energy. When the reaction is controlled, however, the 
energy released can be put to constructive use. In the United States, for example, 
nearly 20% of the electricity generated each year comes from nuclear power plants, 

92U235

92U235

38Sr95

36Kr92

54Xe138

56Ba141

51Sb135

39Y95

41Nb98

53I138

One incoming neutron 
causes a fission event in 
a 235U nucleus.

Several neutrons 
from the initial 
fission event cause 
fission in additional 
235U nuclei.

The number of neutrons 
and the number of fission 
events grow rapidly.

Figure 43.19 A nuclear chain reaction initiated by the capture of a neutron. Uranium nuclei are 
shown in tan, neutrons in gray, and daughter nuclei in orange.
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and nuclear power is used extensively in many other countries, including France, 
Russia, and India.

A nuclear reactor is a system designed to maintain what is called a self-sustained 
chain reaction. This important process was first achieved in 1942 by Enrico Fermi 
and his team at the University of Chicago, using naturally occurring uranium as the 
fuel.3 In the first nuclear reactor, Fermi placed bricks of graphite (carbon) between 
the fuel elements. Carbon nuclei are about 12 times more massive than neutrons, 
but after several collisions with carbon nuclei, a neutron is slowed sufficiently to 
increase its likelihood of fission with 235U. In this design, carbon is the moderator; 
most modern reactors use water as the moderator.

Most reactors in operation today also use uranium as fuel. Naturally occurring 
uranium contains only 0.7% of the 235U isotope, however, with the remaining 99.3% 
being 238U. This fact is important to the operation of a reactor because 238U almost 
never fissions. Instead, it tends to absorb neutrons without a subsequent fission 
event, producing neptunium and plutonium. For this reason, reactor fuels must be 
artificially enriched to contain at least a few percent 235U.

Several types of reactor systems allow the kinetic energy of fission fragments 
to be transformed to other types of energy and eventually transferred out of the 
reactor plant by electrical transmission. The most common reactor in use in the 
United States is the pressurized-water reactor (Fig. 43.20). We shall examine this 
type because its main parts are common to all reactor designs. Fission events in 
the uranium fuel elements in the reactor core raise the temperature of the water 
contained in the primary loop, which is maintained at high pressure to keep the 
water from boiling. (This water also serves as the moderator to slow down the neu-
trons released in the fission events with energy of approximately 2 MeV.) The hot 
water is pumped through a heat exchanger, where the internal energy of the water 
is transferred by conduction to the water contained in the secondary loop. The 
hot water in the secondary loop is converted to steam, which does work to drive a  

enrico fermi
Italian Physicist (1901–1954)
Fermi was awarded the Nobel Prize in 
Physics in 1938 for producing transuranic 
elements by neutron irradiation and 
for his discovery of nuclear reactions 
brought about by thermal neutrons. He 
made many other outstanding contri-
butions to physics, including his theory 
of beta decay, the free-electron theory 
of metals, and the development of the 
world’s first fission reactor in 1942. 
Fermi was truly a gifted theoretical and 
experimental physicist. He was also well 
known for his ability to present physics 
in a clear and exciting manner. 

Un
iv

er
sa

lIm
ag

es
Gr

ou
p/

Ge
tt

y 
Im

ag
es

3Although Fermi’s reactor was the first manufactured nuclear reactor, there is evidence that a natural fission reaction 
may have sustained itself for perhaps hundreds of thousands of years in a deposit of uranium in Gabon, West Africa. 
See G. Cowan, “A Natural Fission Reactor,” Scientific American 235(5): 36, 1976.

Control rod

Uranium
fuel element

Nuclear
reactor

Pump

Cold water Warm water

�
�

Steam

Primary
loop

Secondary
loop

Liquid water
under high
pressure carries
energy to the
heat exchanger.

Steam drives the blades of a
turbine connected to an
electrical generator.

Steam from the turbine is
condensed by cold water in
the condenser coil.

Energy from the heat
exchanger boils water
into steam.

Figure 43.20  Main components 
of a pressurized-water nuclear 
reactor.
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turbine–generator system to create electric power. The water in the secondary 
loop is isolated from the water in the primary loop to avoid contamination of the 
secondary water and the steam by radioactive nuclei from the reactor core.

The basic design of a nuclear reactor core is shown in Figure 43.21. The fuel ele-
ments consist of uranium that has been enriched in the 235U isotope. To control the 
power level, control rods are inserted into the reactor core. These rods are made of 
materials such as cadmium that are very efficient in absorbing neutrons. 

Safety and Waste Disposal
The 1986 accident at the Chernobyl reactor in Ukraine and the 2011 nuclear disas-
ter caused by the earthquake and tsunami in Japan rightfully focused attention on 
reactor safety. Unfortunately, at Chernobyl the activity of the materials released 
immediately after the accident totaled approximately 1.2 3 1019 Bq and resulted 
in the evacuation of 135 000 people. Thirty individuals died during the accident 
or shortly thereafter, and data from the Ukraine Radiological Institute suggest 
that more than 2 500 deaths could be attributed to the Chernobyl accident. In 
the period 1986–1997, there was a tenfold increase in the number of children 
contracting thyroid cancer from the ingestion of radioactive iodine in milk from 
cows that ate contaminated grass. One conclusion of an international conference 
studying the Ukraine accident was that the main causes of the Chernobyl acci-
dent were the coincidence of severe deficiencies in the reactor physical design 
and a violation of safety procedures. Most of these deficiencies have since been 
addressed at plants of similar design in Russia and neighboring countries of the 
former Soviet Union.

The March 2011 accident in Japan was caused by an unfortunate combination 
of a massive earthquake and subsequent tsunami. The most hard-hit power plant, 
Fukushima I, shut down automatically after the earthquake. Shutting down a 
nuclear power plant, however, is not an instantaneous process. Cooling water must 
continue to be circulated to carry the energy generated by beta decay of the fis-
sion by-products out of the reactor core. Unfortunately, the water from the tsunami 
broke the connection to the power grid, leaving the plant without outside electrical 
support for circulating the water. While the plant had emergency generators to 
take over in such a situation, the tsunami inundated the generator rooms, mak-
ing the generators inoperable. Three of the six reactors at Fukushima experienced 
meltdown, and there were several explosions. Significant radiation was released 
into the environment. At the time of this printing, almost all of Japan’s 54 nuclear 
power plants have been taken offline, and the Japanese public has expressed strong 
reluctance to continue with nuclear power.

Commercial reactors achieve safety through careful design and rigid operat-
ing protocol, and only when these variables are compromised do reactors pose a 
danger. Radiation exposure and the potential health risks associated with such 
exposure are controlled by three layers of containment. The fuel and radioactive  
fission products are contained inside the reactor vessel. Should this vessel rupture, 
the reactor building acts as a second containment structure to prevent radioactive 
material from contaminating the environment. Finally, the reactor facilities must 
be in a remote location to protect the general public from exposure should radia-
tion escape the reactor building.

A continuing concern about nuclear fission reactors is the safe disposal of radio-
active material when the reactor core is replaced. This waste material contains 
long-lived, highly radioactive isotopes and must be stored over long time intervals 
in such a way that there is no chance of environmental contamination. At present, 
sealing radioactive wastes in waterproof containers and burying them in deep geo-
logic repositories seems to be the most promising solution.

Despite these risks, there are advantages to the use of nuclear power to be  
weighed against the risks. For example, nuclear power plants do not produce air pol-
lution and greenhouse gases as do fossil fuel plants, and the supply of uranium on 

Control
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Radiation
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Fuel
elements

Moderator
material

Figure 43.21  Cross section of a 
reactor core showing the control 
rods, fuel elements containing 
enriched fuel, and moderating 
material, all surrounded by a radi-
ation shield.
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the Earth is predicted to last longer than the supply of fossil fuels. For each source 
of energy—whether nuclear, hydroelectric, fossil fuel, wind, solar, or other—the 
risks must be weighed against the benefits and the availability of the energy source.

   43.10    Nuclear Fusion
In Section 43.2, we found that the binding energy for light nuclei (A , 20) is much 
smaller than the binding energy for heavier nuclei, which suggests a process that is 
the reverse of fission. As mentioned in Section 43.2, when two light nuclei combine 
to form a heavier nucleus, the process is called nuclear fusion. Because the mass of 
the final nucleus is less than the combined masses of the original nuclei, there is a 
decrease in system mass accompanied by a release of energy in the form of moving 
particles.

Two examples of such energy-liberating fusion reactions are as follows:
 11

1H 1 111H   S   221H 1 e1 1 n
 11

1H 1 21H   S   32He 1 g

These reactions occur in the core of a star and are responsible for the outpouring 
of energy from the star. The second reaction is followed by either hydrogen–helium 
fusion or helium–helium fusion:

1
1H 1 32He   S   42He 1 e1 1 n

3
2He 1 32He   S   42He 1 11H 1 111H

These fusion reactions are the basic reactions in the proton–proton cycle, believed 
to be one of the basic cycles by which energy is generated in the Sun and other stars 
that contain an abundance of hydrogen. Most of the energy production takes place 
in the Sun’s interior, where the temperature is approximately 1.5 3 107 K. Because 
such high temperatures are required to drive these reactions, they are called ther-
monuclear fusion reactions. All the reactions in the proton–proton cycle are exo-
thermic. An overview of the cycle is that four protons combine to generate an alpha 
particle, positrons, gamma rays, and neutrinos.

Q uick Quiz 43.7  In the core of a star, hydrogen nuclei combine in fusion 
reactions. Once the hydrogen has been exhausted, fusion of helium nuclei can 
occur. If the star is sufficiently massive, fusion of heavier and heavier nuclei 
can occur once the helium is used up. Consider a fusion reaction involving two 
nuclei with the same value of A. For this reaction to be  exothermic, which of the 
following values of A are impossible? (a) 12 (b) 20 (c) 28 (d) 64

terrestrial fusion reactions
The enormous amount of energy released in fusion reactions suggests the possibil-
ity of harnessing this energy for useful purposes. A great deal of effort is currently 
under way to develop a sustained and controllable thermonuclear reactor, a fusion 
power reactor. Controlled fusion is often called the ultimate energy source because 
of the availability of its fuel source: water. For example, if deuterium were used as 
the fuel, 0.12 g of it could be extracted from 1 gal of water at a cost of about four 
cents. This amount of deuterium would release approximately 1010 J if all nuclei 
underwent fusion. By comparison, 1 gal of gasoline releases approximately 108 J 
upon burning and costs far more than four cents.

An additional advantage of fusion reactors is that comparatively few radioactive 
by-products are formed. For the proton–proton cycle, for instance, the end prod-
uct is safe, nonradioactive helium. Unfortunately, a thermonuclear reactor that can 
deliver a net power output spread over a reasonable time interval is not yet a reality, 
and many difficulties must be resolved before a successful device is constructed.

Pitfall Prevention 43.9
Fission and Fusion The words 
fission and fusion sound similar, 
but they correspond to different 
processes. Consider the binding- 
energy graph in Figure 43.5. 
There are two directions from 
which you can approach the 
peak of the graph so that energy 
is released: combining two light 
nuclei, or fusion, and separating 
a heavy nucleus into two lighter 
nuclei, or fission.
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The proton–proton interaction is not suitable for use in a fusion reactor, because 
the event requires very high temperatures and densities. The process works in the 
Sun only because of the extremely high density of protons in the Sun’s interior.

The reactions that appear most promising for a terrestrial fusion power reactor 
involve deuterium (2

1H) and tritium (3
1H):

 22
1H 1 221H   S   32He 1 10n    Q 5 3.27 MeV

 22
1H 1 221H   S   31H 1 11H     Q 5 4.03 MeV (43.35)

 2
1H 1 31H   S   42He 1 10n    Q 5 17.59 MeV

As noted earlier, deuterium is available in almost unlimited quantities from our 
lakes and oceans and is very inexpensive to extract. Tritium, however, is radioactive 
(T1/2 5 12.3 yr) and undergoes beta decay to 3He. For this reason, tritium does not 
occur naturally to any great extent and must be artificially produced.

One major problem in obtaining energy from nuclear fusion is that the Coulomb 
repulsive force between two nuclei, which carry positive charges, must be overcome 
before they can fuse. Figure 43.22 is a graph of potential energy as a function of 
the separation distance between two deuterons (deuterium nuclei, each having 
charge 1e). The potential energy is positive in the region r . R, where the Coulomb 
repulsive force dominates (R < 1 fm), and negative in the region r , R, where the 
nuclear force dominates. The fundamental problem then is to give the two nuclei 
enough kinetic energy to overcome this repulsive force. This requirement can be 
accomplished by raising the fuel to extremely high temperatures (to approximately 
108 K). At these high temperatures, the atoms are ionized and the system consists of 
a collection of electrons and nuclei, commonly referred to as a plasma.

r
R

E

U(r)

The Coulomb repulsive force is 
dominant for large separation 
distances between the deuterons.

The attractive nuclear force is 
dominant when the deuterons 
are close together.

Figure 43.22  Potential energy as 
a function of separation distance 
between two deuterons. R is on 
the order of 1 fm. If we neglect 
tunneling, the two deuterons 
require an energy E greater 
than the height of the barrier to 
undergo fusion.

 Example 43.11    The Fusion of Two Deuterons

For the nuclear force to overcome the repulsive Coulomb force, the separation distance between two deuterons must be 
approximately 1.0 3 10214 m.

(A) Calculate the height of the potential barrier due to the repulsive force.

S o l U T I o N

Conceptualize Imagine moving two deuterons toward each other. As they move closer together, the Coulomb repulsion force 
becomes stronger. Work must be done on the system to push against this force, and this work appears in the system of two 
deuterons as electric potential energy.

Categorize  We categorize this problem as one involving the electric potential energy of a system of two charged particles.

Analyze Evaluate the potential energy  UE 5 ke 
q1q 2

r
5 ke 

s1e d2

r
5 s8.99 3 109 N ? m2yC2d 

s1.60 3 10219 Cd2

1.0 3 10214 m
 

associated with two charges separated by  
a distance r (Eq. 24.13) for two deuterons: 5 2.3 3 10214 J 5  0.14 MeV

(B) Estimate the temperature required for a deuteron to overcome the potential barrier, assuming an energy of 3
2k BT  per 

deuteron (where kB is Boltzmann’s constant).

S o l U T I o N

Because the total Coulomb energy of the pair is 0.14 MeV, the Coulomb energy per deuteron is equal to 0.07 MeV 5 1.1 3 10214 J.

Set this energy equal to the average energy  3
2k BT 5 1.1 3 10214 J 

per deuteron:

Solve for T: T 5
2s1.1 3 10214 Jd

3s1.38 3 10223 JyKd
5  5.6 3 108 K
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43.11 c o n t i n u e d

(C) Find the energy released in the deuterium–deuterium reaction
2
1H 1 21H   S   31H 1 11H

S o l U T I o N

The mass of a single deuterium atom is equal to 2.014 102 u. Therefore, the total mass of the system before the reaction is 
4.028 204 u.

Find the sum of the masses after the reaction: 3.016 049 u 1 1.007 825 u 5 4.023 874 u

Find the change in mass and convert to  4.028 204 u 2 4.023 874 u 5 0.004 33 u 
energy units: 

5 0.004 33 u 3 931.494 MeV/u 5  4.03 MeV

Finalize The calculated temperature in part (B) is too high because the particles in the plasma have a Maxwellian speed dis-
tribution (Section 20.5) and therefore some fusion reactions are caused by particles in the high-energy tail of this distribution. 
Furthermore, even those particles that do not have enough energy to overcome the barrier have some probability of tunneling 
through (Section 40.5). When these effects are taken into account, a temperature of “only” 4 3 108 K appears adequate to fuse 
two deuterons in a plasma. In part (C), notice that the energy value is consistent with that already given in Equation 43.35.

W h A T  I F ? Suppose the tritium resulting from the reaction in part (C) reacts with another deuterium in the reaction

2
1H 1 31H   S   42He 1 10n 

How much energy is released in the sequence of two reactions?

Answer  The overall effect of the sequence of two reactions is that three deuterium nuclei have combined to form a helium 
nucleus, a hydrogen nucleus, and a neutron. The initial mass is 3(2.014 102 u) 5 6.042 306 u. After the reaction, the sum of 
the masses is 4.002 603 u 1 1.007 825 u 1 1.008 665 5 6.019 093 u. The excess mass is equal to 0.023 213 u, equivalent to an 
energy of 21.6 MeV. Notice that this value is the sum of the Q values for the second and third reactions in Equation 43.35.

Magnetic confinement
Many fusion-related plasma experiments use magnetic confinement to contain the 
plasma. A toroidal device called a tokamak, first developed in Russia, is shown in 
Figure 43.23a. A combination of two magnetic fields is used to confine and stabi-
lize the plasma: (1) a strong toroidal field produced by the current in the toroidal 
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Figure 43.23  (a) Diagram of 
a tokamak used in the magnetic 
confinement scheme. (b) Inte-
rior view of the closed Tokamak 
Fusion Test Reactor (TFTR) 
vacuum vessel at the Princeton 
Plasma Physics Laboratory.  
(c) The National Spherical 
Torus Experiment (NSTX) 
that began operation in 
March 1999.
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windings surrounding a doughnut-shaped vacuum chamber and (2) a weaker “pol-
oidal” field produced by the toroidal current. In addition to confining the plasma, 
the toroidal current is used to raise its temperature. The resultant helical magnetic 
field lines spiral around the plasma and keep it from touching the walls of the 
vacuum chamber. (If the plasma touches the walls, its temperature is reduced and 
heavy impurities sputtered from the walls “poison” it, leading to large power losses.)

When it was in operation from 1982 to 1997, the Tokamak Fusion Test Reac-
tor (TFTR, Fig. 43.23b) at Princeton University reported central ion temperatures 
of 510 million degrees Celsius, more than 30 times greater than the temperature 
at the center of the Sun. One of the new generation of fusion experiments is the 
National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab-
oratory and shown in Figure 43.23c. This reactor was brought on line in February 
1999 and has been running fusion experiments since then. Rather than the 
doughnut-shaped plasma of a tokamak, the NSTX produces a spherical plasma that 
has a hole through its center. The major advantage of the spherical configuration is 
its ability to confine the plasma at a higher pressure in a given magnetic field. This 
approach could lead to development of smaller, more economical fusion reactors.

Another type of fusion device is called a stellarator. This device solves some of the 
instability problems of the tokamak by twisting the magnetic field into a shape that 
reflects the natural kinking and bending of the plasma. In addition, the stellarator 
can be operated in a continuous fashion, as opposed to the required pulsed opera-
tion of a tokamak. The stellarator was originally conceived in the 1950s, but fell out 
of favor to the tokamak. Its advantages have led to renewed interest and construc-
tion, represented by the Helically Symmetric Experiment in the United States, the 
Large Helical Device in Japan, and the largest stellarator, the Wendelstein 7-X in 
Germany, which produced its first plasma at 108 K in 2016.

An international collaborative effort involving the United States, the European 
Union, Japan, China, South Korea, India, and Russia is currently under way to 
build a fusion reactor called ITER. This acronym stands for International Thermo-
nuclear Experimental Reactor, although recently the emphasis has shifted to inter-
preting “iter” in terms of its Latin meaning, “the way.” One reason proposed for 
this change is to avoid public misunderstanding and negative connotations toward 
the word thermonuclear. This facility will address the remaining technological and 
scientific issues concerning the feasibility of fusion power. The design is completed, 
and Cadarache, France, was chosen in June 2005 as the reactor site. Construction 
began in 2007 and will require about 20 years, with fusion operation projected to 
begin in 2027. ITER is expected to produce ten times as much output power as 
input power, and the energy content of the alpha particles inside the reactor will be 
so intense that they will sustain the fusion reaction, allowing the auxiliary energy 
sources to be turned off once the reaction is initiated.

inertial confinement
The second technique for confining a plasma, called inertial confinement, makes 
use of a D–T (deuterium–tritium) target that has a very high particle density. Laser 
fusion is the most common form of inertial confinement. A small D–T pellet, 
approximately 1 mm in diameter, is struck simultaneously by several focused, 
high-intensity laser beams, resulting in a large pulse of input energy that causes 
the surface of the fuel pellet to evaporate (Fig. 43.24). The escaping particles exert 
a third-law reaction force on the core of the pellet, resulting in a strong, inwardly 
moving compressive shock wave. This shock wave increases the pressure and density 
of the core and produces a corresponding increase in temperature. When the tem-
perature of the core reaches ignition temperature, fusion reactions occur.

One of the leading laser fusion laboratories in the United States is the Omega 
facility at the University of Rochester in New York. This facility focuses 24 laser 
beams on the target. Currently under operation at the Lawrence Livermore 
National Laboratory in Livermore, California, is the National Ignition Facility. 

Expanding
plasma

Laser
radiation

Imploding
fuel pellet

Figure 43.24  In inertial confine-
ment, a D–T fuel pellet fuses when 
struck by several high-intensity 
laser beams simultaneously.
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The research apparatus there includes 192 laser beams that can be focused on a  
deuterium–tritium pellet. Construction was completed in early 2009, and a test fir-
ing of the lasers in March 2012 broke the record for lasers, delivering 1.87 MJ to 
a target. This energy is delivered in such a short time interval that the power is 
immense: 500 trillion watts, more than 1 000 times the power used in the United 
States at any moment. This facility is currently facing funding challenges.

advantages and Problems of fusion
If fusion power can ever be harnessed, it will offer several advantages over 
fission-generated power: (1) low cost and abundance of fuel (deuterium), (2) impos-
sibility of runaway accidents, and (3) decreased radiation hazard. Some of the antic-
ipated problems and disadvantages include (1) scarcity of the lithium that is used 
as a neutron absorption material, (2) limited supply of helium, which is needed 
for cooling the superconducting magnets used to produce strong confining fields, 
and (3) structural damage and induced radioactivity caused by neutron bombard-
ment. If such problems and the engineering design factors can be resolved, nuclear 
fusion may become a feasible source of energy in the twenty-first century.

   43.11    Biological Radiation Damage
In Chapter 33, we learned that electromagnetic radiation is all around us in the 
form of radio waves, microwaves, light waves, and so on. In this section, we describe 
forms of radiation that can cause severe damage as they pass through matter, such 
as radiation resulting from radioactive processes and radiation in the form of ener-
getic particles such as neutrons and protons.

Radiation damage in biological organisms is primarily due to ionization effects 
in cells. A cell’s normal operation may be disrupted when highly reactive ions are 
formed as the result of ionizing radiation. For example, hydrogen and the hydroxyl 
radical OH2 produced from water molecules can induce chemical reactions that 
may break bonds in proteins and other vital molecules. Furthermore, the ioniz-
ing radiation may affect vital molecules directly by removing electrons from their 
structure. Large doses of radiation are especially dangerous because damage to a 
great number of molecules in a cell may cause the cell to die. Although the death 
of a single cell is usually not a problem, the death of many cells may result in irre-
versible damage to the organism. Cells that divide rapidly, such as those of the 
digestive tract, reproductive organs, and hair follicles, are especially susceptible. 
In addition, cells that survive the radiation may become defective. These defective 
cells can produce more defective cells and can lead to cancer. It is important to 
be aware of the effect of diagnostic treatments, such as x-rays and other forms of 
radiation exposure, and to balance the significant benefits of treatment with the 
damaging effects.

Damage caused by radiation also depends on the radiation’s penetrating power. 
Alpha particles cause extensive damage, but penetrate only to a shallow depth in 
a material due to the strong interaction with other charged particles. Neutrons do 
not interact via the electric force and hence penetrate deeper, causing significant 
damage. Gamma rays are high-energy photons that can cause severe damage, but 
often pass through matter without interaction.

Several units have been used historically to quantify the amount, or dose, of any 
radiation that interacts with a substance.

The roentgen (R) is that amount of ionizing radiation that produces an elec-
tric charge of 3.33 3 10210 C in 1 cm3 of air under standard conditions.

Equivalently, the roentgen is that amount of radiation that increases the energy of 
1 kg of air by 8.76 3 1023 J.
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For most applications, the roentgen has been replaced by the rad (an acronym 
for radiation absorbed dose):

One rad is that amount of radiation that increases the energy of 1 kg of 
absorbing material by 1 3 1022 J.

Although the rad is a perfectly good physical unit, it is not the best unit for mea-
suring the degree of biological damage produced by radiation because damage 
depends not only on the dose but also on the type of the radiation. For example, a 
given dose of alpha particles causes about ten times more biological damage than 
an equal dose of x-rays. The RBE (relative biological effectiveness) factor for a 
given type of radiation is the number of rads of x-radiation or gamma radiation 
that produces the same biological damage as 1 rad of the radiation being used. 
The RBE factors for different types of radiation are given in Table 43.5. The values 
are only approximate because they vary with particle energy and with the form of 
the damage. The RBE factor should be considered only a first-approximation guide 
to the actual effects of radiation.

Finally, the rem (radiation equivalent in man) is the product of the dose in rad 
and the RBE factor:

 Dose in rem ; dose in rad 3 RBE (43.36)

According to this definition, 1 rem of any two types of radiation produces the same 
amount of biological damage. Table 43.5 shows that a dose of 1 rad of fast neutrons 
represents an effective dose of 10 rem, but 1 rad of gamma radiation is equivalent 
to a dose of only 1 rem.

This discussion has focused on measurements of radiation dosage in units such as 
rads and rems because these units are still widely used. They have, however, been for-
mally replaced with new SI units. The rad has been replaced with the gray (Gy), equal 
to 100 rad, and the rem has been replaced with the sievert (Sv), equal to 100 rem. 
Table 43.6 summarizes the older and the current SI units of radiation dosage.

Low-level radiation from natural sources such as cosmic rays and radioactive 
rocks and soil delivers to each of us a dose of approximately 2.4 mSv/yr. This radia-
tion, called background radiation, varies with geography, with the main factors being 
altitude (exposure to cosmic rays) and geology (radon gas released by some rock 
formations, deposits of naturally radioactive minerals).

The upper limit of radiation dose rate recommended by the U.S. government 
(apart from background radiation) is approximately 5 mSv/yr. Many occupations 

Radiation dose in rem 

 table 43.6  Units for Radiation Dosage

   Relations
   to Other
Quantity SI Unit Symbol SI Units Older Unit Conversion

Absorbed dose gray Gy 5 1 J/kg rad 1 Gy 5 100 rad
Dose equivalent sievert Sv 5 1 J/kg rem 1 Sv 5 100 rem

 table 43.5  RBE Factors for Several 
Types of Radiation

Radiation RBE Factor

X-rays and gamma rays 1.0
Beta particles 1.0–1.7
Alpha particles 10–20
Thermal neutrons 4–5
Fast neutrons and protons 10
Heavy ions 20

Note: RBE 5 relative biological effectiveness.
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involve much higher radiation exposures, so an upper limit of 50 mSv/yr has been 
set for combined whole-body exposure. Higher upper limits are permissible for cer-
tain parts of the body, such as the hands and the forearms. A dose of 4 to 5 Sv 
results in a mortality rate of approximately 50% (which means that half the people 
exposed to this radiation level die). The most dangerous form of exposure for most 
people is either ingestion or inhalation of radioactive isotopes, especially isotopes 
of those elements the body retains and concentrates, such as 90Sr.

Our opening storyline asked about the meaning of the terms radiation, radioac-
tive, radioisotope, and radiocontrast. We are now in a position to answer this question. 
The term radiation is general and refers to the emission of energy through space, 
carried by either particles or waves. Therefore, light, beta particles, and cosmic 
rays are all forms of radiation. The term radioactive refers to a material containing 
nuclei that are unstable and will decay by the processes described in Section 43.5. 
A radioisotope is a particular radioactive nucleus, such as fluorine-18. Finally, a radio-
contrast agent has nothing to do with nuclear physics! Iodine is a commonly used 
radiocontrast agent and acts as an attenuation material for x-rays in a CT scan to 
provide greater contrast between different types of biological tissues.

The storyline also referred to CT scans and PET scans. A CT scan is a specialized 
x-ray, employing computers to form detailed images of slices of the body. A PET 
scan depends on the principles of particle physics and will be discussed in Chap-
ter 44. Another type of medical scan, an MRI, will be discussed in Section 43.13.

   43.12    Uses of Radiation from the Nucleus
Nuclear physics applications are extremely widespread in manufacturing, medi-
cine, and biology. In this section, we present a few of these applications and the 
underlying theories supporting them.

tracing
Radioactive tracers are used to track chemicals participating in various reactions. 
One of the most valuable uses of radioactive tracers is in medicine. For example, 
iodine, a nutrient needed by the human body, is obtained largely through the 
intake of iodized salt and seafood. To evaluate the performance of the thyroid, the 
patient drinks a very small amount of radioactive sodium iodide containing 131I, an 
artificially produced isotope of iodine (the natural, nonradioactive isotope is 127I). 
The amount of iodine in the thyroid gland is determined as a function of time by 
measuring the radiation intensity at the neck area. How much of the isotope 131I 
remains in the thyroid is a measure of how well that gland is functioning.

A second medical application is indicated in Figure 43.25. A solution contain-
ing radioactive sodium is injected into a vein in the leg, and the time at which 

Site of
constriction

      The blood carries 
the 24NaCl to both legs.
2       A solution of 24NaCl is 

injected into the bloodstream.
1

      A high reading of radioactivity 
at the upper thigh indicates good 
circulation at that point.

3

      A low reading of radioactivity 
at the right foot indicates poor 
circulation at that point.

4
Figure 43.25  A tracer technique 
for determining the condition of 
the human circulatory system.
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the radioisotope arrives at another part of the body is detected with a radiation 
counter. The elapsed time is a good indication of the presence or absence of con-
strictions in the circulatory system.

Materials analysis
For centuries, a standard method of identifying the elements in a sample of 
material has been chemical analysis, which involves determining how the material 
reacts with various chemicals. A second method is spectral analysis, which works 
because each element, when excited, emits its own characteristic set of electromag-
netic wavelengths. These methods are now supplemented by a third technique, neu-
tron activation analysis. A disadvantage of both chemical and spectral methods is 
that a fairly large sample of the material must be destroyed for the analysis. In addi-
tion, extremely small quantities of an element may go undetected by either method. 
Neutron activation analysis has an advantage over chemical analysis and spectral 
analysis in both respects.

When a material is irradiated with neutrons, nuclei in the material absorb the 
neutrons and are changed to different isotopes, most of which are radioactive. For 
example, 65Cu absorbs a neutron to become 66Cu, which undergoes beta decay:

1
0n 1 65

29Cu   S  66
29Cu   S   66

30Zn 1 e2 1 n

The presence of the copper can be deduced because it is known that 66Cu has a 
half-life of 5.1 min and decays with the emission of beta particles having a maxi-
mum energy of 2.63 MeV. Also emitted in the decay of 66Cu is a 1.04-MeV gamma 
ray. By examining the radiation emitted by a substance after it has been exposed to 
neutron irradiation, one can detect extremely small amounts of an element in that 
substance.

Neutron activation analysis is used routinely in a number of industries. In com-
mercial aviation, for example, it is used to check airline luggage for hidden explo-
sives. One nonroutine use is of historical interest. Napoleon died on the island 
of St. Helena in 1821, supposedly of natural causes. Over the years, suspicion has 
existed that his death was not all that natural. After his death, his head was shaved 
and locks of his hair were sold as souvenirs. In 1961, the amount of arsenic in a sam-
ple of this hair was measured by neutron activation analysis, and an unusually large 
quantity of arsenic was found. (Activation analysis is so sensitive that very small 
pieces of a single hair could be analyzed.) Results showed that the arsenic was fed to 
him irregularly. In fact, the arsenic concentration pattern corresponded to the fluc-
tuations in the severity of Napoleon’s illness as determined from historical records.

Art historians use neutron activation analysis to detect forgeries. The pigments 
used in paints have changed throughout history, and old and new pigments react 
differently to neutron activation. The method can even reveal hidden works of art 
behind existing paintings because an older, hidden layer of paint reacts differently 
than the surface layer to neutron activation.

radiation therapy
Radiation causes much damage to rapidly dividing cells. Therefore, it is useful in 
cancer treatment because tumor cells divide extremely rapidly. Several mechanisms 
can be used to deliver radiation to a tumor. In Section 41.8, we discussed the use 
of high-energy x-rays in the treatment of cancerous tissue. Other treatment proto-
cols include the use of narrow beams of radiation from a radioactive source. As an 
example, Figure 43.26 shows a machine that uses 60Co as a source. The 60Co isotope 
emits gamma rays with photon energies higher than 1 MeV.

In other situations, a technique called brachytherapy is used. In this treatment 
plan, thin radioactive needles called seeds are implanted in the cancerous tissue. 
The energy emitted from the seeds is delivered directly to the tumor, reducing the 
exposure of surrounding tissue to radiation damage. In the case of prostate cancer, 
the active isotopes used in brachytherapy include 125I and 103Pd.
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food Preservation
Radiation is finding increasing use as a means of preserving food because expo-
sure to high levels of radiation can destroy or incapacitate bacteria and mold 
spores (Fig. 43.27). Techniques include exposing foods to gamma rays, high-energy 
electron beams, and x-rays. Food preserved by such exposure can be placed in a 
sealed container (to keep out new spoiling agents) and stored for long periods of 
time. There is little or no evidence of adverse effect on the taste or nutritional 
value of food from irradiation. The safety of irradiated foods has been endorsed by 
the World Health Organization, the Centers for Disease Control and Prevention, 
the U.S. Department of Agriculture, and the Food and Drug Administration. Irra-
diation of food is presently permitted in more than 50 countries. Some estimates 
place the amount of irradiated food in the world as high as 500 000 metric tons 
each year.

   43.13    Nuclear Magnetic Resonance  
and Magnetic Resonance Imaging
In this section, we describe an important application of nuclear physics in medicine 
called magnetic resonance imaging (MRI). To understand this application, we first dis-
cuss the spin angular momentum of the nucleus. This discussion has parallels with 
the discussion of spin for atomic electrons.

In Chapter 41, we discussed that the electron has an intrinsic angular momen-
tum, called spin. Nuclei also have spin because their component particles— 
neutrons and protons—each have spin 1

2 as well as orbital angular momentum 
within the nucleus. All types of angular momentum obey the quantum rules 
that were outlined for orbital and spin angular momentum in Chapter 41. In 
particular, two quantum numbers associated with the angular momentum deter-
mine the allowed values of the magnitude of the angular momentum vector 

Figure 43.26  This large 
machine is being set to deliver 
a dose of radiation from 60Co in 
an effort to destroy a cancerous 
tumor. Cancer cells are especially 
susceptible to this type of therapy 
because they tend to divide 
more often than cells of healthy 
tissue nearby.M
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Figure 43.27  The strawberries 
on the left are untreated and have 
become moldy. The unspoiled 
strawberries on the right have 
been irradiated. The radiation 
has killed or incapacitated the 
mold spores that have spoiled the 
strawberries on the left.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1216 Chapter 43 Nuclear Physics

and its direction in space. The magnitude of the nuclear angular momentum is 
ÏIsI 1 1d U, where I is called the nuclear spin quantum number and may be an 
integer or a half-integer, depending on how the individual proton and neutron 
spins combine. The quantum number I is the analog to , for the electron in an 
atom as discussed in Section 41.6. Furthermore, there is a quantum number mI 
that is the analog to m

,
, in that the allowed projections of the nuclear spin angu-

lar momentum vector on the z axis are mI". The values of mI range from 2I to 1I 
in steps of 1. (In fact, for any type of spin with a quantum number S, there is a 
quantum number mS that ranges in value from 2S to 1S in steps of 1.) Therefore, 
the maximum value of the z component of the spin angular momentum vector 
is I". Figure 43.28 is a vector model (see Section 41.6) illustrating the possible 
orientations of the nuclear spin vector and its projections along the z axis for the 
case in which I 5 3

2.
Nuclear spin has an associated nuclear magnetic moment, similar to that of 

the electron. The spin magnetic moment of a nucleus is measured in terms of the 
nuclear magneton mn, a unit of moment defined as

 mn ;
e U

2mp

5 5.05 3 10227 JyT (43.37)

where mp is the mass of the proton. This definition is analogous to that of the Bohr 
magneton mB, which corresponds to the spin magnetic moment of a free electron 
(see Section 41.6). Note that mn is smaller than mB (5 9.274 3 10224 J/T) by a factor of 
1 836 because of the large difference between the proton mass and the electron mass.

The magnetic moment of a free proton is 2.792 8mn. The neutron also has a mag-
netic moment, which has a value of 21.913 5mn. The negative sign indicates that 
this moment is opposite the spin angular momentum of the neutron. The existence 
of a magnetic moment for the neutron is surprising in view of the neutron being 
uncharged. That suggests that the neutron is not a fundamental particle but rather 
has an underlying structure consisting of charged constituents. We shall explore 
this structure in Chapter 44.

The potential energy associated with a magnetic dipole moment mS in an exter-
nal magnetic field B

S
 is given by 2mS ? B

S
 (Eq. 28.19). When the magnetic moment mS 

is lined up with the field as closely as quantum physics allows, the potential energy 
of the dipole–field system has its minimum value Emin. When mS is as antiparallel to 
the field as possible, the potential energy has its maximum value Emax. In general, 
there are other energy states between these values corresponding to the quantized 
directions of the magnetic moment with respect to the field. For a nucleus with spin 
1
2, there are only two allowed states, with energies Emin and Emax. These two energy 
states are shown in Figure 43.29.

It is possible to observe transitions between these two spin states using a  
technique called NMR, for nuclear magnetic resonance. A constant magnetic field  
(B

S
 in Fig. 43.29) is introduced to define a z axis and split the energies of the spin 

states. A second, weaker, oscillating magnetic field is then applied perpendicular 
to B

S
, creating a cloud of radio-frequency photons around the sample. When the 

frequency of the oscillating field is adjusted so that the photon energy matches the 
energy difference between the spin states, there is a net absorption of photons by 
the nuclei that can be detected electronically.

Figure 43.30 is a simplified diagram of the apparatus used in nuclear magnetic 
resonance. The energy absorbed by the nuclei is supplied by the tunable oscilla-
tor producing the oscillating magnetic field. Nuclear magnetic resonance and a 
related technique called electron spin resonance are extremely important methods for 
studying nuclear and atomic systems and the ways in which these systems interact 
with their surroundings.

A widely used medical diagnostic technique called MRI, for magnetic resonance 
imaging, is based on nuclear magnetic resonance. Because nearly two-thirds of the 
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Figure 43.28  A vector model 
showing possible orientations of 
the nuclear spin angular momen-
tum vector and its projections 
along the z axis for the case I 5 3
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The magnetic field splits a single 
state of the nucleus into two states.

Figure 43.29  A nucleus with spin 
1
2 is placed in a magnetic field.
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atoms in the human body are hydrogen (which gives a strong NMR signal), MRI 
works exceptionally well for viewing internal tissues. The patient is placed inside a 
large solenoid that supplies a magnetic field that is constant in time but whose mag-
nitude varies spatially across the body. Because of the variation in the field, hydro-
gen atoms in different parts of the body have different energy splittings between 
spin states, so the resonance signal can be used to provide information about the 
positions of the protons. A computer is used to analyze the position information 
to provide data for constructing a final image. Contrast in the final image among 
different types of tissues is created by computer analysis of the time intervals for the 
nuclei to return to the lower-energy spin state between pulses of radio-frequency 
photons. Contrast can be enhanced with the use of contrast agents such as gad-
olinium compounds or iron oxide nanoparticles taken orally or injected intrave-
nously. An MRI scan showing incredible detail in internal body structure is shown 
in Figure 43.31.

The main advantage of MRI over other imaging techniques is that it causes mini-
mal cellular damage. The photons associated with the radio-frequency signals used 
in MRI have energies of only about 1027 eV. Because molecular bond strengths are 
much larger (approximately 1 eV), the radio-frequency radiation causes little cel-
lular damage. In comparison, x-rays have energies ranging from 104 to 106 eV and 
can cause considerable cellular damage. Therefore, despite some individuals’ fears 
of the word nuclear associated with MRI, the radio-frequency radiation involved is 
overwhelmingly safer than the x-rays that these individuals might accept more read-
ily. A disadvantage of MRI is that the equipment required to conduct the procedure 
is very expensive, so MRI images are costly.

The magnetic field produced by the solenoid is sufficient to lift a car, and the 
radio signal is about the same magnitude as that from a small commercial broad-
casting station. Although MRI is inherently safe in normal use, the strong magnetic 
field of the solenoid requires diligent care to ensure that no ferromagnetic materi-
als are located in the room near the MRI apparatus, as discussed in the storyline 
for Chapter 29. Several accidents have occurred, as mentioned in that storyline.

N

S

Electromagnet

Sample

Tunable
oscillator

Resonance
signal

Oscilloscope

Figure 43.30  Experimental arrangement for 
nuclear magnetic resonance. The radio-frequency 
magnetic field created by the coil surrounding the 
sample and provided by the variable-frequency 
oscillator is perpendicular to the constant magnetic 
field created by the electromagnet. When the nuclei 
in the sample meet the resonance condition, the 
nuclei absorb energy from the radio-frequency field 
of the coil; this absorption changes the characteris-
tics of the circuit in which the coil is included. Most 
modern NMR spectrometers use superconducting 
magnets at fixed field strengths and operate at fre-
quencies of approximately 200 MHz.
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Figure 43.31  A color-enhanced 
MRI scan of a human brain, show-
ing a tumor in white.

Summary
 › Definitions

A nucleus is represented by the symbol A
Z X, where A is the mass number (the 

total number of nucleons) and Z is the atomic number (the total number of 
protons). The total number of neutrons in a nucleus is the neutron number 
N, where A 5 N 1 Z. Nuclei having the same Z value but different A and N 
values are isotopes of each other.

The magnetic moment of a nucleus is measured 
in terms of the nuclear magneton mn, where

 mn ;
e U

2mp

5 5.05 3 10227 JyT (43.37)

continued

 Summary 1217
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1218 Chapter 43 Nuclear Physics

 › Concepts and Principles

Assuming nuclei are spherical, 
their radius is given by

 r 5 aA1/3 (43.1)

where a 5 1.2 fm.

Nuclei are stable because of the nuclear force between nucleons. This short-range force 
dominates the Coulomb repulsive force at distances of less than about 2 fm and is indepen-
dent of charge. Light stable nuclei have equal numbers of protons and neutrons. Heavy stable 
nuclei have more neutrons than protons. The most stable nuclei have Z and N values that are 
both even.

The difference between the sum of the masses of a group 
of separate nucleons and the mass of the compound 
nucleus containing these nucleons, when multiplied by c2, 
gives the binding energy Eb of the nucleus. The binding 
energy of a nucleus can be calculated in MeV using the 
expression

 Eb 5 [ZM(H) 1 Nmn 2 M(A
Z X)] 3 931.494 MeV/u (43.2)

where M(H) is the atomic mass of the neutral hydrogen 
atom, M(A

Z X) represents the atomic mass of an atom of the 
isotope AZ X, and mn is the mass of the neutron.

A radioactive substance 
decays by alpha decay, 
beta decay, or gamma 
decay. An alpha parti-
cle is the 4He nucleus, a 
beta particle is either an 
electron (e2) or a posi-
tron (e1), and a gamma 
particle is a high-energy 
photon.

In alpha decay, a helium nucleus is ejected from the par-
ent nucleus with a discrete set of kinetic energies. A nucleus 
undergoing beta decay emits either an electron (e2) and an 
antineutrino (n) or a positron (e1) and a neutrino (n). The 
electron or positron is ejected with a continuous range of ener-
gies. In electron capture, the nucleus of an atom absorbs one 
of its own electrons and emits a neutrino. In gamma decay, a 
nucleus in an excited state decays to its ground state and emits 
a gamma ray.

The liquid-drop model of nuclear structure treats the nucleons as 
molecules in a drop of liquid. The four main contributions influ-
encing binding energy are the volume effect, the surface effect, the 
Coulomb repulsion effect, and the symmetry effect. Summing such 
contributions results in the semiempirical binding-energy formula:

 Eb 5 C 1A 2 C 2 A2y3 2 C 3 
Z sZ 2 1d

A1y3
2 C 4 

sN 2 Z d2

A
 (43.3)

The shell model, or independent-particle model, assumes each 
nucleon exists in a shell and can only have discrete energy values. 
The stability of certain nuclei can be explained with this model.

If a radioactive material contains N0 radioactive nuclei at t 5 0, the number N of nuclei remaining 
after a time t has elapsed is

 N 5 N0e
2lt (43.6)

where l is the decay constant, a number equal to the probability per second that a nucleus will 
decay. The decay rate, or activity, of a radioactive substance is

 R 5 * dN
dt * 5 R 0e2lt (43.7)

where R0 5 lN0 is the activity at t 5 0. The half-life T1/2 is the time interval required for half of a 
given number of radioactive nuclei to decay, where

 T1y2 5
0.693

l
 (43.8)

Nuclear reactions can occur when a target nucleus X is bom-
barded by a particle a, resulting in a daughter nucleus Y and 
an outgoing particle b:

 a 1 X S Y 1 b (43.29)

The mass–energy conversion in such a reaction, called the 
reaction energy Q , is

 Q 5 (Ma 1 MX 2 MY 2 Mb)c2 (43.30)

The probability that neutrons are captured as they 
move through matter generally increases with 
decreasing neutron energy. A thermal neutron is 
a slow-moving neutron that has a high probability 
of being captured by a nucleus in a neutron cap-
ture event:

 1
0n 1 AZ X   S   A11

Z X*   S   A11
Z X 1 g (43.32)

where A11
Z X* is an excited intermediate nucleus 

that rapidly emits a photon.

Nuclear fission occurs when a very heavy nucleus, such as 235U, splits 
into two smaller fission fragments. Thermal neutrons can create fission 
in 235U:

 1
0n 1 235

92U   S   236
92U* S X 1 Y 1 neutrons (43.33)

where 236U* is an intermediate excited state and X and Y are the fission 
fragments. On average, 2.5 neutrons are released per fission event. The 
fragments then undergo a series of beta and gamma decays to various 
stable isotopes. The energy released per fission event is approximately 
200 MeV.

In nuclear fusion, two light nuclei fuse to form a heavier nucleus and release energy. The major obstacle in obtaining useful 
energy from fusion is the large Coulomb repulsive force between the charged nuclei at small separation distances. The temperature 
required to produce fusion is on the order of 108 K, and at this temperature, all matter occurs as a plasma.
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think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. The world’s oceans contain a vast repository of energy. Your 
group has been tasked to determine which would provide 
more energy: mining the uranium in the ocean to use in fis-
sion reactors, or mining the deuterium in the ocean to use 
in fusion reactors. Divide your group into two halves and 
find the available energy in the ocean from each source. 

Group (i): Fission fuel. Seawater contains 3.00 mg of ura-
nium per cubic meter. About 0.700% of naturally occurring 
uranium is the fissionable isotope 235U. 

Group (ii): Fusion fuel. Of all the hydrogen in the oceans, 
0.030 0% of the mass is deuterium. Two deuterons fuse to 
form helium in the form 4

2He. Assume all the deuterium in 
the oceans is fused to form helium. 

For both groups, use the fact that the average ocean 
depth is about 4.00 km and water covers two-thirds of the 
Earth’s surface.

2. Your group is a radiology department in a hospital. Two 
patients in your waiting room are arguing about who 
“got more radiation” in their cancer treatments. Patient 
A received 2.0 Gy of radiation, while Patient B received 
1.0 Gy. Patient A is claiming that he had twice as much 
energy delivered to his body based on these numbers. 

Upon further investigation, it is determined that Patient 
A received radiation from fast neutrons, RBE 10, affecting 
22 g of tissue. Patient B received alpha particles, RBE 18, 
affecting 30 g of tissue. (a) Who “got more radiation” in 
terms of biological effectiveness for radiation damage and 
(b) by what factor?

3. ACTIVITy  This activity simulates the statistical decay of 
radioactive nuclei. Packages of 100 dice can be purchased 
online. (a) First, think about the following procedure, but 
don’t do it yet: Put 100 dice in a bag and shake for a few sec-
onds. Roll out the dice on a tabletop. Each such roll of the 
dice will represent one time interval Dt. Remove all the 
dice showing a one on the upper face, and set them aside. 
Record the remaining number N of dice. Put the remain-
ing dice back in the bag, shake, and roll out again. Repeat 
this procedure, always removing the dice showing a number 
one from those on the table, until only a few dice remain. 
Second, after thinking about this procedure, predict the 
half-life of the procedure: the number of throws after which 
half the dice remain when the dice with a one showing have 
been removed. (b) Finally, perform the activity and record 
the results. Graph the natural logarithm of the number N 
of dice remaining after each throw against the number n 
of the throw and determine the half-life. Compare to your 
theoretical prediction.

Problems
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

Section 43.1 Some Properties of Nuclei

1. (a) What is the order of magnitude of the number of pro-
tons in your body? (b) Of the number of neutrons? (c) Of 
the number of electrons?

2. (a) Determine the mass number of a nucleus whose radius 
is approximately equal to two-thirds the radius of 230

88Ra. 
(b) Identify the element. (c) Are any other answers possible? 
Explain.

3. Figure P43.3 shows the potential energy for two protons as 
a function of separation distance. In the text, it was claimed 
that, to be visible on such a graph, the peak in the curve is 
exaggerated by a factor of ten. (a) Find the electric potential 

energy of a pair of protons separated by 4.00 fm. (b) Verify 
that the peak in Figure P43.3 is exaggerated by a factor of ten.

4. In a Rutherford scattering experiment, alpha particles 
having kinetic energy of 7.70 MeV are fired toward a gold 
nucleus that remains at rest during the collision. The alpha 
particles come as close as 29.5 fm to the gold nucleus before 
turning around. (a) Calculate the de Broglie wavelength for 
the 7.70-MeV alpha particle and compare it with the distance 
of closest approach, 29.5 fm. (b) Based on this comparison, 
why is it proper to treat the alpha particle as a particle and 
not as a wave in the Rutherford scattering experiment?

5. Assume a hydrogen atom is a sphere with diameter 0.100 nm 
and a hydrogen molecule consists of two such spheres in 
contact. (a) What fraction of the space in a tank of hydrogen 
gas at 08C and 1.00 atm is occupied by the hydrogen mole-
cules themselves? (b) What fraction of the space within one 
hydrogen atom is occupied by its nucleus, of radius 1.20 fm?

Section 43.2 Nuclear Binding Energy

6. You are working as a nuclear physicist and are performing 
research on mirror isobars. Mirror isobars are pairs of nuclei 
for which Z1 5 N2 and Z2 5 N1 (the atomic and neutron 
numbers are interchanged). You wish to investigate the 
independence of nuclear forces on charge by comparing 
binding-energy measurements in the laboratory on mirror 
isobars against a theoretical value for the difference in 
binding energies. You first find the theoretical difference 
in binding energies for the two mirror isobars 15

8 O and 15
7 N.
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Figure P43.3

 Problems 1219

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1220 Chapter 43 Nuclear Physics

7. (a) Calculate the difference in binding energy per nucleon 
for the nuclei 23

11Na and 23
12Mg. (b) How do you account for 

the difference?

8. The peak of the graph of nuclear binding energy per 
nucleon occurs near 56Fe, which is why iron is prominent 
in the spectrum of the Sun and stars. Show that 56Fe has a 
higher binding energy per nucleon than its neighbors 55Mn 
and 59Co.

9. Nuclei having the same mass num-
bers are called isobars. The isotope 
139

57La is stable. A radioactive iso-
bar, 139

59Pr, is located below the line 
of stable nuclei as shown in Figure 
P43.9 and decays by e1 emission. 
Another radioactive isobar of 
139

57La, 139
55Cs, decays by e2 emis-

sion and is located above the line 
of stable nuclei in Figure P43.9. 
(a)  Which of these three isobars 
has the highest neutron-to-proton 
ratio? (b) Which has the great-
est binding energy per nucleon? 
(c) Which do you expect to be 
heavier, 139

59Pr or 139
55Cs?

10. The energy required to construct a uniformly charged 
sphere of total charge Q and radius R is U 5 3keQ

2/5R, 
where ke is the Coulomb constant (see Problem 66). Assume 
a 40Ca nucleus contains 20 protons uniformly distributed 
in a spherical volume. (a) How much energy is required to 
counter their electrical repulsion according to the above 
equation? (b) Calculate the binding energy of 40Ca. (c) 
Explain what you can conclude from comparing the result 
of part (b) with that of part (a).

Section 43.3 Nuclear Models

11. Using the graph in Figure 43.5, estimate how much energy 
is released when a nucleus of mass number 200 fissions into 
two nuclei each of mass number 100.

12. (a) In the liquid-drop model of nuclear structure, why does 
the surface-effect term 2C2A

2/3 have a negative sign? (b) 
What If? The binding energy of the nucleus increases as the 
volume-to-surface area ratio increases. Calculate this ratio 
for both spherical and cubical shapes and explain which is 
more plausible for nuclei.

Section 43.4 Radioactivity

13. From the equation expressing the law of radioactive decay, 
derive the following useful expressions for the decay 
constant and the half-life, in terms of the time interval Dt 
during which the decay rate decreases from R0 to R:

l 5
1
Dt

  ln SR 0

R D  T1y2 5
sln 2d Dt

ln sR 0yR d

14. You are working as a technician in the radiology department 
of a large hospital. One of the radioactive isotopes that is used 
to treat cancer is 60Co. Although use of this isotope is decreas-
ing due to the availability of electrons from linear accel-
erators, 60Co is still in wide use where accelerators are not 
available. A radiologist has asked you to supply a container 
of 60Co, and you need to determine if a particular sample 

on the supply shelf is still viable for use. During your train-
ing, you learned that cobalt is not viable for medical use if its 
activity has fallen to 60.0% of its activity when delivered to 
the hospital. The label on the sample states that the delivery 
date was January 31, over three-and-a-half years ago. It is now 
December 31. Should you send this sample to the radiologist, 
or should it be disposed of? (60Co has a half-life of 5.27 yr.)

15. The radioactive isotope 198Au has a half-life of 64.8 h. A sam-
ple containing this isotope has an initial activity (t 5 0) of 
40.0 mCi. Calculate the number of nuclei that decay in the 
time interval between t1 5 10.0 h and t2 5 12.0 h.

16. A radioactive nucleus has half-life T1/2. A sample contain-
ing these nuclei has initial activity R0 at t 5 0. Calculate the 
number of nuclei that decay during the interval between the 
later times t1 and t2.

17. Tritium has a half-life of 12.33 years. What fraction of the 
nuclei in a tritium sample will remain (a) after 5.00 yr? (b) 
After 10.0 yr? (c) After 123.3 yr? (d) According to Equation 
43.6, an infinite amount of time is required for the entire 
sample to decay. Discuss whether that is realistic.

18. (a) The daughter nucleus formed in radioactive decay is 
often radioactive. Let N10 represent the number of parent 
nuclei at time t 5 0, N1(t) the number of parent nuclei at 
time t, and l1 the decay constant of the parent. Suppose the 
number of daughter nuclei at time t 5 0 is zero. Let N2(t) 
be the number of daughter nuclei at time t and let l2 be the 
decay constant of the daughter. Show that N2(t) satisfies the 
differential equation

dN2

dt
5 l1N1 2 l2N2

(b) Verify by substitution that this differential equation has 
the solution

N2std 5
N10l1

l1 2 l2

se2l2t 2 e2l1td

This equation is the law of successive radioactive decays. 
(c)  218Po decays into 214Pb with a half-life of 3.10 min, and 
214Pb decays into 214Bi with a half-life of 26.8 min. On the 
same axes, plot graphs of N1(t) for 218Po and N2(t) for 214Pb. 
Let N10 5 1 000 nuclei and choose values of t from 0 to 
36 min in 2-min intervals. (d) The curve for 214Pb obtained 
in part (c) at first rises to a maximum and then starts to 
decay. At what instant tm is the number of 214Pb nuclei a 
maximum? (e) By applying the condition for a maximum 
dN2/dt 5 0, derive a symbolic equation for tm in terms of l1 
and l2. (f) Explain whether the value obtained in part (c) 
agrees with this equation.

Section 43.5 The Decay Processes

19. Determine which decays can occur spontaneously. 
(a) 40

20Ca S e1 1 40
19K (b) 98

44Ru S 42He 1 94
42Mo 

(c) 144
60Nd S 42He 1 140

58Ce

20. Identify the unknown nuclide or particle (X). 
(a) X S 65

28Ni 1 g  (b) 215
84Po S X 1 a 

(c) X S 55
26Fe 1 e1 1 n

21. The nucleus 15
8O decays by electron capture. The nuclear 

reaction is written
15

8O 1 e2 S 15
7N 1 n
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(a) Write the process going on for a single particle within 
the nucleus. (b) Disregarding the daughter’s recoil, deter-
mine the energy of the neutrino.

22. A sample consists of 1.00 3 106 radioactive nuclei with a 
half-life of 10.0 h. No other nuclei are present at time t 5 0.  
The stable daughter nuclei accumulate in the sample as 
time goes on. (a) Derive an equation giving the number 
of daughter nuclei Nd as a function of time. (b)  Sketch 
or describe a graph of the number of daughter nuclei as 
a function of time. (c) What are the maximum and min-
imum numbers of daughter nuclei, and when do they 
occur? (d)  What are the maximum and minimum rates 
of change in the number of daughter nuclei, and when do 
they occur?

23. A living specimen in equilibrium with the atmosphere con-
tains one atom of 14C (half-life 5 5 730 yr) for every 7.70 3 
1011 stable carbon atoms. An archeological sample of wood 
(cellulose, C12H22O11) contains 21.0 mg of carbon. When the 
sample is placed inside a shielded beta counter with 88.0% 
counting efficiency, 837 counts are accumulated in one 
week. We wish to find the age of the sample. (a) Find the 
number of carbon atoms in the sample. (b) Find the num-
ber of carbon-14 atoms in the sample. (c)  Find the decay 
constant for carbon-14 in inverse seconds. (d) Find the ini-
tial number of decays per week just after the specimen died. 
(e) Find the corrected number of decays per week from the 
current sample. (f) From the answers to parts (d) and (e), 
find the time interval in years since the specimen died.

Section 43.6 Natural Radioactivity

24. The most common isotope of radon is 222Rn, which has half-
life 3.82 days. (a) What fraction of the nuclei that were on 
the Earth one week ago are now undecayed? (b) Of those 
that existed one year ago? (c) In view of these results, 
explain why radon remains a problem, contributing signifi-
cantly to our background radiation exposure.

25. Enter the correct nuclide symbol in each open tan rectan-
gle in Figure P43.25, which shows the sequences of decays 

in the natural radioactive series starting with the long-lived 
isotope uranium-235 and ending with the stable nucleus 
lead-207.

Section 43.7 Nuclear Reactions

26. Natural gold has only one isotope, 197
79Au. If natural gold is 

irradiated by a flux of slow neutrons, electrons are emitted. 
(a) Write the reaction equation. (b) Calculate the maxi-
mum energy of the emitted electrons.

27. Identify the unknown nuclides and particles X and X9 in the 
nuclear reactions (a) X 1 42He S 24

12Mg 1 10n, (b) 235
92U 1 10n S 

90
38Sr 1 X 1 2(1

0n), and (c) 2(1
1H) S 21H 1 X 1 X9.

Section 43.8 Nuclear Fission

Online-Only Problem 24.36 in Chapter 24 can be assigned 
with this chapter.

28. Strontium-90 is a particularly dangerous fission product of 
235U because it is radioactive and it substitutes for calcium in 
bones. What other direct fission products would accompany 
it in the neutron-induced fission of 235U? Note: This reaction 
may release two, three, or four free neutrons.

29. List the nuclear reactions required to produce 233U from 
232Th under fast neutron bombardment.

Section 43.9 Nuclear Reactors

30. To minimize neutron leakage from a reactor, the ratio of 
the surface area to the volume should be a minimum. For 
a given volume V, calculate this ratio for (a) a sphere, (b) a 
cube, and (c) a parallelepiped of dimensions a 3 a 3 2a. (d) 
Which of these shapes would have minimum leakage? Which 
would have maximum leakage? Explain your answers.

31. According to one estimate, there are 4.40 3 106 metric tons 
of world uranium reserves extractable at $130/kg or less. 
We wish to determine if these reserves are sufficient to sup-
ply all the world’s energy needs. About 0.700% of naturally 
occurring uranium is the fissionable isotope 235U. (a) Cal-
culate the mass of 235U in the reserve in grams. (b) Find the 
number of moles of 235U in the reserve. (c) Find the num-
ber of 235U nuclei in the reserve. (d) Assuming 200 MeV is 
obtained from each fission reaction and all this energy is 
captured, calculate the total energy in joules that can be 
extracted from the reserve. (e) Assuming the rate of world 
power consumption remains constant at 1.5 3 1013 J/s, how 
many years could the uranium reserve provide for all the 
world’s energy needs? (f) What conclusion can be drawn?

32. Why is the following situation impossible? An engineer work-
ing on nuclear power makes a breakthrough so that he is 
able to control what daughter nuclei are created in a fission 
reaction. By carefully controlling the process, he is able to 
restrict the fission reactions to just this single possibility: the 
uranium-235 nucleus absorbs a slow neutron and splits into 
lanthanum-141 and bromine-94. Using this breakthrough, 
he is able to design and build a successful nuclear reactor in 
which only this single process occurs.

33. A particle cannot generally be localized to distances much 
smaller than its de Broglie wavelength. This fact can be 
taken to mean that a slow neutron appears to be larger to a 
target particle than does a fast neutron in the sense that the 
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1222 Chapter 43 Nuclear Physics

slow neutron has probabilities of being found over a larger 
volume of space. For a thermal neutron at room tempera-
ture of 300 K, find (a) the linear momentum and (b) the 
de Broglie wavelength. (c) State how this effective size com-
pares with both nuclear and atomic dimensions.

Section 43.10 Nuclear Fusion

34. You are having a family holiday dinner with your extended 
family: grandparents, aunts, uncles, cousins, etc. The con-
versation turns to your studies in physics, and you tell every-
one about your studies about fusion reactions in the Sun. 
One of your nephews says, “Oh, yeah? I think the Sun is just 
a big ball of gasoline burning away. How can you prove that 
that isn’t true?” (a) Based on the fact that gasoline delivers 
about 1.3 3 108 J of energy for each gallon burned, perform 
a calculation that will show your nephew how long the Sun 
would last if it were made of gasoline. (b) Perform a calcu-
lation to show your nephew that nuclear fusion of all the 
hydrogen in the Sun could last a lot longer.

35. Review. Consider the deuterium–tritium fusion reaction 
with the tritium nucleus at rest:

2
1H 1 31H   S   42He 1 10n

(a) Suppose the reactant nuclei will spontaneously fuse if 
their surfaces touch. From Equation 43.1, determine the 
required distance of closest approach between their centers. 
(b) What is the electric potential energy (in electron volts) 
at this distance? (c) Suppose the deuteron is fired straight 
at an originally stationary tritium nucleus with just enough 
energy to reach the required distance of closest approach. 
What is the common speed of the deuterium and tritium 
nuclei, in terms of the initial deuteron speed vi, as they 
touch? (d) Use energy methods to find the minimum initial 
deuteron energy required to achieve fusion. (e) Why does 
the fusion reaction actually occur at much lower deuteron 
energies than the energy calculated in part (d)?

36. Two nuclei having atomic numbers Z1 and Z2 approach each 
other with a total energy E. (a) When they are far apart, they 
interact only by electric repulsion. If they approach to a dis-
tance of 1.00 3 10214 m, the nuclear force suddenly takes 
over to make them fuse. Find the minimum value of E, in 
terms of Z1 and Z2, required to produce fusion. (b) State how 
E depends on the atomic numbers. (c) If Z1 1 Z2 is to have 
a certain target value such as 60, would it be energetically 
favorable to take Z1 5 1 and Z2 5 59, or Z1 5 Z2 5 30, or some 
other choice? Explain your answer. (d) Evaluate from your 
expression the minimum energy for fusion for the D–D and 
D–T reactions (the first and third reactions in Eq. 43.35).

37. To understand why plasma containment is necessary, con-
sider the rate at which an unconfined plasma would be 
lost. (a) Estimate the rms speed of deuterons in a plasma 
at a temperature of 4.00 3 108 K. (b) What If? Estimate the 
order of magnitude of the time interval during which such 
a plasma would remain in a 10.0-cm cube if no steps were 
taken to contain it.

38. Another series of nuclear reactions that can produce energy 
in the interior of stars is the carbon cycle first proposed by 
Hans Bethe in 1939, leading to his Nobel Prize in Physics in 
1967. This cycle is most efficient when the central tempera-
ture in a star is above 1.6 3 107 K. Because the temperature 
at the center of the Sun is only 1.5 3 107 K, the following 

cycle produces less than 10% of the Sun’s energy. (a)  A 
high-energy proton is absorbed by 12C. Another nucleus, 
A, is produced in the reaction, along with a gamma ray. 
Identify nucleus A. (b) Nucleus A decays through positron 
emission to form nucleus B. Identify nucleus B. (c) Nucleus 
B absorbs a proton to produce nucleus C and a gamma ray. 
Identify nucleus C. (d) Nucleus C absorbs a proton to pro-
duce nucleus D and a gamma ray. Identify nucleus D. (e) 
Nucleus D decays through positron emission to produce 
nucleus E. Identify nucleus E. (f) Nucleus E absorbs a pro-
ton to produce nucleus F plus an alpha particle. Identify 
nucleus F. (g) What is the significance of the final nucleus 
in the last step of the cycle outlined in part (f)?

Section 43.11 Biological Radiation Damage

39. Assume an x-ray technician takes an average of eight x-rays 
per workday and receives a dose of 5.0 rem/yr as a result. 
(a)  Estimate the dose in rem per x-ray taken. (b)  Explain 
how the technician’s exposure compares with the local low-
level background radiation of 0.13 rem/yr.

40. Review. Why is the following situation impossible? A “clever” 
technician takes his 20-min coffee break and boils some 
water for his coffee with an x-ray machine. The machine 
produces 10.0 rad/s, and the temperature of the water in an 
insulated cup is initially 50.08C.

41. Strontium-90 from the testing of nuclear bombs can still 
be found in the atmosphere. Each decay of 90Sr releases 
1.10 MeV of energy into the bones of a person who has 
had strontium replace his or her body’s calcium. Assume a 
70.0-kg person receives 1.00 ng of 90Sr from contaminated 
milk. Take the half-life of 90Sr to be 29.1 yr. Calculate the 
absorbed dose rate (in joules per kilogram) in one year.

Section 43.12 Uses of Radiation from the Nucleus

42. A method called neutron activation analysis can be used for 
chemical analysis at the level of isotopes. When a sample 
is irradiated by neutrons, radioactive atoms are produced 
continuously and then decay according to their character-
istic half-lives. (a) Assume one species of radioactive nuclei 
is produced at a constant rate R and its decay is described 
by the conventional radioactive decay law. Assuming irradi-
ation begins at time t 5 0, show that the number of radioac-
tive atoms accumulated at time t is

N 5
R
l

s1 2 e2ltd

(b) What is the maximum number of radioactive atoms that 
can be produced?

43. You want to find out how many atoms of the isotope 65Cu 
are in a small sample of material. You bombard the sample 
with neutrons to ensure that on the order of 1% of these 
copper nuclei absorb a neutron. After activation, you turn 
off the neutron flux and then use a highly efficient detector 
to monitor the gamma radiation that comes out of the sam-
ple. Assume half of the 66Cu nuclei emit a 1.04-MeV gamma 
ray in their decay. (The other half of the activated nuclei 
decay directly to the ground state of 66Ni.) If after 10 min 
(two half-lives) you have detected 1.00 3 104 MeV of photon 
energy at 1.04 MeV, (a) approximately how many 65Cu atoms 
are in the sample? (b) Assume the sample contains natural 
copper. Refer to the isotopic abundances listed in Table 43.2 
and estimate the total mass of copper in the sample.

CR
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Section 43.13 Nuclear Magnetic Resonance  
and Magnetic Resonance Imaging

44. Construct a diagram like that of Figure 43.28 for the cases 
when I equals (a) 52 and (b) 4.

aDDitional ProbleMS

45. (a) Why is the beta decay p S n 1 e1 1 n forbidden for a 
free proton? (b) What If? Why is the same reaction possible 
if the proton is bound in a nucleus? For example, the follow-
ing reaction occurs:

13
7N   S   13

6C 1 e1 1 n

(c) How much energy is released in the reaction given in 
part (b)?

46. Why is the following situation impossible? A 10B nucleus is struck 
by an incoming alpha particle. As a result, a proton and a 
12C nucleus leave the site after the reaction.

47. A fusion reaction that has been considered as a source of 
energy is the absorption of a proton by a boron-11 nucleus 
to produce three alpha particles:

1
1H 1 11

5B   S   3(4
2He)

This reaction is an attractive possibility because boron is 
easily obtained from the Earth’s crust. A disadvantage is 
that the protons and boron nuclei must have large kinetic 
energies for the reaction to take place. This requirement 
contrasts with the initiation of uranium fission by slow neu-
trons. (a) How much energy is released in each reaction? (b) 
Why must the reactant particles have high kinetic energies?

48. Show that the 238U isotope cannot spontaneously emit a pro-
ton by analyzing the hypothetical process

238
92U   S   237

91Pa 1 11H

Note: The 237Pa isotope has a mass of 237.051 144 u.

49. When, after a reaction or disturbance of any kind, a nucleus 
is left in an excited state, it can return to its normal (ground) 
state by emission of a gamma-ray photon (or several pho-
tons). This process is illustrated by Equation 43.26. The 
emitting nucleus must recoil to conserve both energy and 
momentum. (a) Show that the recoil energy of the nucleus is

Er 5
sDEd2

2Mc 2

where DE is the difference in energy between the excited 
and ground states of a nucleus of mass M. (b) Calculate the 
recoil energy of the 57Fe nucleus when it decays by gamma 
emission from the 14.4-keV excited state. For this calcula-
tion, take the mass to be 57 u. Suggestion: Assume hf ,, Mc2.

50. In a piece of rock from the Moon, the 87Rb content is assayed 
to be 1.82 3 1010 atoms per gram of material and the 87Sr 
content is found to be 1.07 3 109 atoms per gram. The rel-
evant decay relating these nuclides is 87Rb S 87Sr 1 e2 1 
n. The half-life of the decay is 4.75 3 1010 yr. (a) Calculate 
the age of the rock. (b) What If? Could the material in the 
rock actually be much older? What assumption is implicit in 
using the radioactive dating method?

51. When a nucleus decays, the daughter nucleus can be in an 
excited state. The 93

43Tc nucleus (molar mass 92.910 2 g/mol) in 
the ground state decays by electron capture and e1 emission 
to energy levels of the daughter (molar mass 92.906 8 g/mol  

in the ground state) at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 
1.35 MeV. (a) Identify the daughter nuclide. (b) To which of 
the listed levels of the daughter are electron capture and e1 
decay of 93

43Tc allowed?

52. Why is the following situation impossible? In an effort to study 
positronium, a scientist places 57Co and 14C in proximity. 
The 57Co nuclei decay by e1 emission, and the 14C nuclei 
decay by e2 emission. Some of the positrons and electrons 
from these decays combine to form sufficient amounts of 
positronium for the scientist to gather data.

53. As part of his discovery of the neutron in 1932, James Chad-
wick determined the mass of the newly identified particle by 
firing a beam of fast neutrons, all having the same speed, 
at two different targets and measuring the maximum recoil 
speeds of the target nuclei. The maximum speeds arise 
when an elastic head-on collision occurs between a neutron 
and a stationary target nucleus. (a)  Represent the masses 
and final speeds of the two target nuclei as m1, v1, m2, and 
v2 and assume Newtonian mechanics applies. Show that the 
neutron mass can be calculated from the equation

mn 5
m1v1 2 m2v2

v2 2 v1

(b) Chadwick directed a beam of neutrons (produced from 
a nuclear reaction) on paraffin, which contains hydrogen. 
The maximum speed of the protons ejected was found to be 
3.30 3 107 m/s. Because the velocity of the neutrons could not 
be determined directly, a second experiment was performed 
using neutrons from the same source and nitrogen nuclei as 
the target. The maximum recoil speed of the nitrogen nuclei 
was found to be 4.70 3 106 m/s. The masses of a proton and a 
nitrogen nucleus were taken as 1.00 u and 14.0 u, respectively. 
What was Chadwick’s value for the neutron mass?

54. When the nuclear reaction represented by Equation 43.29 
is endothermic, the reaction energy Q is negative. For the 
reaction to proceed, the incoming particle must have a 
minimum energy called the threshold energy, Eth. Some 
fraction of the energy of the incident particle is transferred 
to the compound nucleus to conserve momentum. There-
fore, Eth must be greater than Q. (a) Show that

E th 5 2Q S1 1
M a

MX
D

(b) Calculate the threshold energy of the incident alpha 
particle in the reaction

4
2He 1 14

7N   S   17
8O 1 11H

55. In an experiment on the transport of nutrients in a plant’s 
root structure, two radioactive nuclides X and Y are used. 
Initially, 2.50 times more nuclei of type X are present than 
of type Y. At a time 3.00 d later, there are 4.20 times more 
nuclei of type X than of type Y. Isotope Y has a half-life of 
1.60 d. What is the half-life of isotope X?

56. In an experiment on the transport of nutrients in a plant’s 
root structure, two radioactive nuclides X and Y are used. 
Initially, the ratio of the number of nuclei of type X present 
to that of type Y is r1. After a time interval Dt, the ratio of the 
number of nuclei of type X present to that of type Y is r2. Iso-
tope Y has a half-life of TY. What is the half-life of isotope X?

57. (a) A student wishes to measure the half-life of a radioactive 
substance using a small sample. Consecutive clicks of her 
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1224 Chapter 43 Nuclear Physics

radiation counter are randomly spaced in time. The counter 
registers 372 counts during one 5.00-min interval and 337 
counts during the next 5.00 min. The average background 
rate is 15 counts per minute. Find the most probable value 
for the half-life. (b) Express the estimated half-life with an 
appropriate estimated uncertainty.

58. Review. Consider a nucleus at rest, which then spontane-
ously splits into two fragments of masses m1 and m2. (a) Show 
that the fraction of the total kinetic energy carried by frag-
ment m1 is

K1

Ktot

5
m2

m1 1 m2

and the fraction carried by m2 is

K2

K tot

5
m1

m1 1 m2

assuming relativistic corrections can be ignored. A station-
ary 236

92U nucleus fissions spontaneously into two primary 
fragments, 87

35Br and 149
57La. (b) Calculate the disintegration 

energy. The required atomic masses are 86.920 711 u for 
87
35Br, 148.934 370 u for 149

57La, and 236.045 562 u for 236
92U. (c) 

How is the disintegration energy split between the two pri-
mary fragments? (d) Calculate the speed of each fragment 
immediately after the fission.

59. Review. A nuclear power plant operates by using the energy 
released in nuclear fission to convert 208C water into 4008C 
steam. How much water could theoretically be converted 
to steam by the complete fissioning of 1.00 g of 235U at 
200 MeV/fission?

60. Review. A nuclear power plant operates by using the energy 
released in nuclear fission to convert liquid water at Tc into 
steam at Th. How much water could theoretically be con-
verted to steam by the complete fissioning of a mass m of 
235U if the energy released per fission event is E?

61. Consider the two nuclear reactions

I:   A 1 B   S   C 1 E
II: C 1 D   S   F 1 G

(a) Show that the net disintegration energy for these two 
reactions (Q net 5 Q I 1 Q II) is identical to the disintegration 
energy for the net reaction

A 1 B 1 D   S   E 1 F 1 G

(b) One chain of reactions in the Sun’s core is the proton- 
proton cycle, described in Section 43.10. Based on part (a), 
what is Q net for this sequence?

62. Natural uranium must be processed to produce uranium 
enriched in 235U for weapons and power plants. The process-
ing yields a large quantity of nearly pure 238U as a by-product, 
called “depleted uranium.” Because of its high mass density, 
238U is used in armor-piercing artillery shells. (a) Find the edge 
dimension of a 70.0-kg cube of 238U (r 5 19.1 3 103 kg/m3).  
(b) The isotope 238U has a long half-life of 4.47 3 109 yr. As 
soon as one nucleus decays, a relatively rapid series of 14 
steps begins that together constitute the net reaction

238
92U   S   8s4

2Hed 1 6s
21

0ed 1 206
82Pb 1 6n 1 Q net

Find the net decay energy. (Refer to Table 43.2.) (c) Argue 
that a radioactive sample with decay rate R and decay energy 
Q has power output P 5 QR. (d) Consider an artillery shell 

with a jacket of 70.0 kg of 238U. Find its power output due to 
the radioactivity of the uranium and its daughters. Assume 
the shell is old enough that the daughters have reached 
steady-state amounts. Express the power in joules per year. 
(e) What If? A 17-year-old soldier of mass 70.0 kg works in an 
arsenal where many such artillery shells are stored. Assume 
his radiation exposure is limited to 5.00 rem per year. Find 
the rate in joules per year at which he can absorb energy of 
radiation. Assume an average RBE factor of 1.10.

63. Consider a 1.00-kg sample of natural uranium composed 
primarily of 238U, a smaller amount (0.720% by mass) of 235U, 
and a trace (0.005 00%) of 234U, which has a half-life of 2.44 3 
105 yr. (a) Find the activity in curies due to each of the isotopes. 
(b) What fraction of the total activity is due to each isotope? 
(c) Explain whether the activity of this sample is dangerous.

64. When photons pass through matter, the intensity I of the 
beam (measured in watts per square meter) decreases expo-
nentially according to

I 5 I 0e
2mx

where I is the intensity of the beam that just passed through 
a thickness x of material and I0 is the intensity of the inci-
dent beam. The constant m is known as the linear absorp-
tion coefficient, and its value depends on the absorbing 
material and the wavelength of the photon beam. This 
wavelength (or energy) dependence allows us to filter out 
unwanted wavelengths from a broad-spectrum x-ray beam. 
(a) Two x-ray beams of wavelengths l1 and l2 and equal inci-
dent intensities pass through the same metal plate. Show 
that the ratio of the emergent beam intensities is

I2

I1

5 e2sm 2 2 m1dx

(b) Compute the ratio of intensities emerging from an alu-
minum plate 1.00 mm thick if the incident beam contains 
equal intensities of 50 pm and 100 pm x-rays. The values of 
m for aluminum at these two wavelengths are m1 5 5.40 cm21 
at 50 pm and m2 5 41.0 cm21 at 100 pm. (c) Repeat part (b) 
for an aluminum plate 10.0 mm thick.

65. (a) Calculate the energy (in kilowatt-hours) released if 
1.00 kg of 239Pu undergoes complete fission and the energy 
released per fission event is 200 MeV. (b) Calculate the 
energy (in electron volts) released in the deuterium–tritium 
fusion reaction

2
1H 1 31H   S   42He 1 10n

(c) Calculate the energy (in kilowatt-hours) released if 1.00 kg 
of deuterium undergoes fusion according to this reaction. 
(d) What If? Calculate the energy (in kilowatt-hours) released 
by the combustion of 1.00 kg of carbon in coal if each C 1 
O2 S CO2 reaction yields 4.20 eV. (e) List advantages and dis-
advantages of each of these methods of energy generation.

challenGe ProbleM

66. Review. Consider a model of the nucleus in which the 
positive charge (Ze) is uniformly distributed throughout a 
sphere of radius R. By integrating the energy density 1

2e0 E 2 
over all space, show that the electric potential energy may 
be written

U 5
3Z 2e 2

20pe0R
5

3ke Z
2e 2

5R
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Storyline Your grandfather has finished his medical tests and it 
looks like everything is fine. His PET scan was clear, looking nothing like the 
chapter-opening photograph. On your smartphone, you learned about CT scans 
while you were waiting for him. You had just started reading about PET scans 
when it was time to go home. As you drive him home, your grandfather says, 
“Did you know that they introduced antimatter into my body for the PET scan?” 
You say, “What?! Don’t antimatter and matter annihilate each other violently 
when combined? Grandpa, why didn’t you explode?” Your grandfather assures 
you that he is not going to explode; they just introduced a material that created a 
relatively small number of positrons. This gets you thinking. What are positrons? 
And what exactly is antimatter? As you think ahead to this final chapter, you hope 
that these questions will be answered. And, because this is the final chapter 
of the book, you hope that you will finish the chapter understanding everything 
there is to know about physics. What do you think? Is that possible?

ConneCtions In Chapters 41 and 42, we went upward in scale: from 
atoms to molecules and solids. Then we went downward in scale to the 
nucleus in Chapter 43. In this chapter, we will go even further in this downward 
direction: to the most fundamental particles from which matter is built. After 
1932, physicists viewed all matter as consisting of three constituent particles: 
electrons, protons, and neutrons. Beginning in the 1940s, many “new” particles 

A PET scan of a patent with 
widespread metastasis of 
cancer. Cancerous cells 
have damaged mitochondria, 
resulting in their absorbing 
very high amounts of glucose 
for the production of energy. 
If the glucose is radioactive, 
these sites of increased 
glucose uptake appear in the 
PET scan as yellow regions, 
as seen in the photograph. 
(Living Art Enterprises/Science 
Source)
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1226 Chapter 44 Particle Physics and Cosmology

were discovered in experiments involving high-energy collisions between 
known particles. The new particles are characteristically very unstable and have 
very short half-lives, ranging between 10–6 s and 10–23 s. So far, more than 
300 of these particles have been catalogued. Until the 1960s, physicists were 
bewildered by the great number and variety of subatomic particles that were 
being discovered. The periodic table explains how more than 100 elements 
can be formed from three types of particles (electrons, protons, and neutrons). 
In parallel with the periodic table, is there a means of forming more than 300 
subatomic particles from a small number of basic building blocks? In this 
concluding chapter, we examine the current theory of elementary particles, in 
which all matter is constructed from only two families of particles, quarks and 
leptons. We then reverse direction again and take a giant leap upward in scale by 
discussing how clarifications of models regarding elementary particles might help 
scientists understand the birth and evolution of the Universe.

   44.1    Field Particles for the Fundamental  
Forces in Nature
In this chapter, we will be discussing many types of particles that are new to us. Let’s 
begin by making a bridge with something familiar: forces. As noted in Section 5.1, 
all natural phenomena can be described by four fundamental forces acting between 
particles. In order of decreasing strength, they are the nuclear force, the electro-
magnetic force, the weak force, and the gravitational force.

The nuclear force discussed in Chapter 43 is an attractive force between nucle-
ons. It has a very short range and is negligible for separation distances between 
nucleons greater than approximately 10215 m (about the size of the nucleus). The 
electromagnetic force (Chapters 22 and 28), which binds atoms and molecules 
together to form ordinary matter, has a strength of approximately 1022 times that 
of the nuclear force. This long-range force decreases in magnitude as the inverse 
square of the separation between interacting particles. The gravitational force 
(Chapter 13) is a long-range force that has a strength of only about 10239 times that 
of the nuclear force. Although this familiar interaction is the force that holds the 
planets, stars, and galaxies together, its effect on elementary particles is negligible.

The only force in our list we have not yet discussed is the weak force. The weak 
force is a short-range force that tends to produce instability in certain nuclei. It is 
responsible for decay processes, and its strength is only about 10–5 times that of the 
nuclear force.

In Section 13.3, we discussed the difficulty early scientists had with the notion 
of the gravitational force acting at a distance, with no physical contact between 
the interacting objects. To resolve this difficulty, the concept of the gravitational 
field was introduced. Similarly, in Chapter 22, we introduced the electric field to 
describe the electric force acting between charged objects, and we followed that 
with a discussion of the magnetic field in Chapter 28. For each of these types of 
fields, we developed an analysis model describing a particle in that field. In mod-
ern physics, the nature of the interaction between particles is carried a step fur-
ther. These interactions are described in terms of the exchange of entities called 
field particles or exchange particles. Field particles are also called gauge bosons.1 
The interacting particles continuously emit and absorb field particles. The emis-
sion of a field particle by one particle and its absorption by another manifests as 
a force between the two interacting particles. In the language of modern physics, 

1The word bosons suggests that the field particles have integral spin. The word gauge comes from gauge theory, which is 
a sophisticated mathematical analysis that is beyond the scope of this book.
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    44.2 Positrons and Other Antiparticles 1227

the electromagnetic force is said to be mediated by photons, and photons are the 
field particles of the electromagnetic field. Likewise, the nuclear force is mediated 
by field particles called gluons. The weak force is mediated by field particles called  
W and Z bosons, and the gravitational force is proposed to be mediated by field par-
ticles called gravitons. These interactions, their ranges, and their relative strengths 
are summarized in Table 44.1.

The graviton has yet to be observed. We will discuss more about gluons in later 
sections of this chapter. In 1983, W6 and Z0 bosons were discovered by Italian phys-
icist Carlo Rubbia (b.1934) and his associates, using a proton–antiproton collider. 
Rubbia and Simon van der Meer (1925–2011), both at CERN,2 shared the 1984 
Nobel Prize in Physics for the discovery of the W6 and Z0 particles and the develop-
ment of the proton–antiproton collider.

   44.2    Positrons and Other Antiparticles
As mentioned in Section 41.6, in the 1920s, Paul Dirac developed a relativistic quan-
tum-mechanical description of the electron that successfully explained the origin 
of the electron’s spin and its magnetic moment. His theory had one major problem, 
however: its relativistic wave equation required solutions corresponding to negative 
energy states, and if negative energy states existed, an electron in a state of positive 
energy would be expected to make a rapid transition to one of these states, emit-
ting a photon in the process.

Dirac circumvented this difficulty by imagining an energy structure similar 
to our discussion of band theory in Section 42.5. Dirac postulated that all nega-
tive energy states are filled. The electrons occupying these negative energy states 
are collectively called the Dirac sea. Electrons in the Dirac sea (the blue area in 
Fig. 44.1) are not directly observable because the Pauli exclusion principle does not 
allow them to react to external forces; there are no available states to which an elec-
tron can make a transition in response to an external force. Therefore, an electron 
in such a state acts as an isolated system unless an interaction with the environment 
is strong enough to excite the electron to a positive energy state. Such an excitation 
causes one of the negative energy states to be vacant as in Figure 44.1, leaving a 
hole in the sea of filled states. This process is described by the nonisolated system 
model: as energy enters the system by some transfer mechanism, the system energy 
increases and the electron is excited to a higher energy level. The hole can react to 
external forces and is observable. The hole reacts in a way similar to that of the electron 
except that it has a positive charge: it is the antiparticle to the electron.

This theory strongly suggested that an antiparticle exists for every particle, not only 
for fermions such as electrons but also for bosons. It has subsequently been ver-
ified that practically every known elementary particle has a distinct antiparticle. 
Among the exceptions are the photon and the neutral pion (p0; see Section 44.3). 
Following the construction of high-energy accelerators in the 1950s, many other 

2CERN was originally the Conseil Européen pour la Recherche Nucléaire; the name has been altered to the Euro-
pean Organization for Nuclear Research, and the laboratory operated by CERN is called the European Laboratory 
for Particle Physics. The CERN acronym has been retained and is commonly used to refer to both the organization 
and the laboratory.

 Table 44.1  Particle Interactions
    Mass of Field
 Relative  Mediating Particle
Interactions Strength Range of Force Field Particle (GeV/c 2)

Nuclear 1 Short (< 1 fm) Gluon 0
Electromagnetic 1022 ` Photon 0
Weak 1025 Short (< 1023 fm) W6, Z0 bosons 80.4, 80.4, 91.2
Gravitational 10239 ` Graviton 0
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Paul adrien Maurice 
Dirac
British Physicist (1902–1984)
Dirac was instrumental in the under-
standing of antimatter and the unifica-
tion of quantum mechanics and relativity. 
He made many contributions to the 
development of quantum physics and 
cosmology. In 1933, Dirac won a Nobel 
Prize in Physics.
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Figure 44.1  Dirac’s model for 
the existence of antielectrons 
(positrons). The minimum energy 
for an electron to exist in the gold 
band is its rest energy mec

2. The 
blue band of negative energies is 
filled with electrons.
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1228 Chapter 44 Particle Physics and Cosmology

antiparticles were revealed. They included the antiproton, discovered by Emilio 
Segré (1905–1989) and Owen Chamberlain (1920–2006) in 1955, and the antineu-
tron, discovered shortly thereafter. The antiparticle for a charged particle has the 
same mass as the particle but opposite charge.3 For example, the electron’s antipar-
ticle (the positron mentioned in Section 43.4) has a rest energy of 0.511 MeV and a 
positive charge of 11.602 3 10219 C.

Carl Anderson (1905–1991) observed the positron experimentally in 1932 
and was awarded a Nobel Prize in Physics in 1936 for this achievement. Ander-
son discovered the positron while examining tracks created in a cloud chamber 
by  electron-like particles of positive charge. (These early experiments used cos-
mic rays—mostly energetic protons passing through interstellar space—to initiate 
high-energy reactions on the order of several GeV.) To discriminate between posi-
tive and negative charges, Anderson placed the cloud chamber in a magnetic field, 
causing moving charges to follow curved paths. He noted that some of the electron-
like tracks deflected in a direction corresponding to a positively charged particle.

Since Anderson’s discovery, positrons have been observed in a number of 
experiments. A common source of positrons is pair production. In this process, a 
gamma-ray photon with sufficiently high energy interacts with a nucleus and an 
electron–positron pair is created from the photon. (The presence of the nucleus 
allows the principle of conservation of momentum to be satisfied.) Because the total 
rest energy of the electron–positron pair is 2mec

2 5 1.02 MeV (where me is the mass of 
the electron), the photon must have at least this much energy to create an electron–
positron pair. The energy of a photon is converted to rest energy of the electron and 
positron in accordance with Einstein’s relationship ER 5 mc2. If the gamma-ray pho-
ton has energy in excess of the rest energy of the electron–positron pair, the excess 
appears as kinetic energy of the two particles. Figure 44.2 shows early observations 
of tracks of electron–positron pairs in a bubble chamber created by 300-MeV gamma 
rays striking a lead sheet.

Q uick Quiz 44.1  Given the identification of the particles in Figure 44.2b, is 
the direction of the external magnetic field in Figure 44.2a (a) into the page,  
(b) out of the page, or (c) impossible to determine?

The reverse process can also occur. Under the proper conditions, an electron 
and a positron can annihilate each other to produce two gamma-ray photons that 
have a combined energy of at least 1.02 MeV:

e2 1 e1   S   2g
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Figure 44.2  (a) Bubble-chamber 
tracks of electron–positron pairs 
produced by 300-MeV gamma rays 
striking a lead sheet from the left. 
(b) The pertinent pair-produc-
tion events. The positrons deflect 
upward and the electrons down-
ward in an applied magnetic field.

3Antiparticles for uncharged particles, such as the neutron, are a little more difficult to describe. One basic process 
that can detect the existence of an antiparticle is pair annihilation. For example, a neutron and an antineutron can 
annihilate to form two gamma rays. Because the photon and the neutral pion do not have distinct antiparticles, pair 
annihilation is not observed with either of these particles.

PiTfall PrevenTion 44.1
Antiparticles An antiparticle is 
not identified solely on the basis 
of opposite charge; even neutral 
particles have antiparticles, which 
are defined in terms of other 
properties, such as spin.
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    44.3 Mesons and the Beginning of Particle Physics 1229

Because the initial momentum of the electron–positron system is approximately 
zero, the two gamma rays travel in opposite directions after the annihilation, satis-
fying the principle of conservation of momentum for the isolated system.

Electron–positron annihilation is used in the medical diagnostic technique 
called positron-emission tomography (PET). This is the scan that you and your grand-
father were discussing in the opening storyline. The patient is injected with a glu-
cose solution containing a radioactive substance that decays by positron emission, 
and the material is carried throughout the body by the blood. A positron emitted 
during a decay event in one of the radioactive nuclei in the glucose solution anni-
hilates with an electron in the surrounding tissue, resulting in two gamma-ray pho-
tons emitted in opposite directions. A gamma detector surrounding the patient 
pinpoints the source of the photons and, with the assistance of a computer, displays 
an image of the sites at which the glucose accumulates. (Glucose metabolizes rap-
idly in cancerous tumors and accumulates at those sites, providing a strong signal 
for a PET detector system.) The images from a PET scan can indicate a wide variety 
of disorders in the brain, including Alzheimer’s disease (Fig. 44.3). In addition, 
because glucose metabolizes more rapidly in active areas of the brain, a PET scan 
can indicate areas of the brain involved in the activities in which the patient is 
engaging at the time of the scan, such as language use, music, and vision. Because 
the number of positrons emitted into the recipient of a PET scan is small, there is 
no danger to the body from the resultant matter/antimatter annihilation.

   44.3    Mesons and the Beginning of Particle Physics
Physicists in the mid-1930s had a fairly simple view of the structure of matter. The 
building blocks were the proton, the electron, and the neutron. Three other par-
ticles were either known or postulated at the time: the photon, the neutrino, and 
the positron. Together these six particles were considered the fundamental constit-
uents of matter. With this simple picture, however, no one was able to answer the 
following important question: the protons in any nucleus should strongly repel one 
another due to their charges of the same sign, so what is the nature of the force that 
holds the nucleus together? Scientists recognized that this mysterious force must be 
much stronger than anything encountered in nature up to that time. This force is 
the nuclear force discussed in Section 43.1 and examined in historical perspective 
in the following paragraphs.

The first theory to explain the nature of the nuclear force was proposed in 1935 
by Japanese physicist Hideki Yukawa, an effort that earned him a Nobel Prize in 
Physics in 1949. To understand Yukawa’s theory, recall the introduction of field 
particles in Section 44.1, which stated that each fundamental force is mediated 
by a field particle exchanged between the interacting particles. Yukawa used this 
idea to explain the nuclear force, proposing the existence of a new particle whose 
exchange between nucleons in the nucleus causes the nuclear force. He established 
that the range of the force is inversely proportional to the mass of this particle 

Figure 44.3  PET scans of the 
brain of a healthy older person 
(left) and that of a patient suffering 
from Alzheimer’s disease (right). 
Lighter regions contain higher 
concentrations of radioactive glu-
cose, indicating higher metabo-
lism rates and therefore increased 
brain activity.
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Hideki Yukawa
Japanese Physicist (1907–1981)
Yukawa was awarded the Nobel Prize in 
Physics in 1949 for predicting the exis-
tence of mesons. This photograph of him 
at work was taken in 1950 in his office 
at Columbia University. Yukawa came 
to Columbia in 1949 after spending the 
early part of his career in Japan.
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and predicted the mass to be approximately 200 times the mass of the electron. 
(Yukawa’s predicted particle is not the gluon mentioned in Section 44.1, which 
is massless and is today considered to be the field particle for the nuclear force.) 
Because the new particle would have a mass between that of the electron and that 
of the proton, it was called a meson (from the Greek meso, “middle”).

In efforts to substantiate Yukawa’s predictions, physicists began experimental 
searches for the meson by studying cosmic rays entering the Earth’s atmosphere. In 
1937, Carl Anderson and his collaborators discovered a particle of mass 106 MeV/c2,  
approximately 207 times the mass of the electron. This particle was thought to be 
Yukawa’s meson. Subsequent experiments, however, showed that the particle inter-
acted very weakly with matter and hence could not be the field particle for the 
nuclear force. That puzzling situation inspired several theoreticians to propose two 
mesons having slightly different masses equal to approximately 200 times that of 
the electron, one having been discovered by Anderson and the other, still undiscov-
ered, predicted by Yukawa. This idea was confirmed in 1947 with the discovery of 
the pi meson (p), or simply pion. The particle discovered by Anderson in 1937, the 
one initially thought to be Yukawa’s meson, is not really a meson. (We shall discuss 
the characteristics of mesons in Section 44.4.) Instead, it takes part in the weak and 
electromagnetic interactions only and is now called the muon (m). We discussed 
muons with regard to tests for special relativity in Section 38.4.

The pion comes in three varieties, corresponding to three charge states: p1, p2, 
and p0. The p1 and p2 particles (p2 is the antiparticle of p1) each have a mass of 
139.6 MeV/c2, and the p0 mass is 135.0 MeV/c2. Two muons exist: m2 and its antipar-
ticle m1.

Pions and muons are very unstable particles. For example, the p2, which has a 
mean lifetime of 2.6 3 1028 s, decays to a muon and an antineutrino.4 The muon, 
which has a mean lifetime of 2.2 ms, then decays to an electron, a neutrino, and an 
antineutrino:

 p2   S   m2 1 n 

 m2   S   e2 1 n 1 n (44.1)

For chargeless particles (as well as some charged particles, such as the proton), a 
bar over the symbol indicates an antiparticle, as for the neutrino in beta decay (see 
Section 43.5). Other antiparticles, such as e1 and m1, use a different notation.

The interaction between two particles can be represented in a simple diagram 
called a Feynman diagram, developed by American physicist Richard P. Feynman. 
Figure 44.4 is such a diagram for the electromagnetic interaction between two elec-
trons. A Feynman diagram is a qualitative graph of time on the vertical axis versus 
space on the horizontal axis. It is qualitative in the sense that the actual values of 
time and space are not important, but the overall appearance of the graph provides 
a pictorial representation of the process.

In the simple case of the electron–electron interaction in Figure 44.4, a pho-
ton (the field particle) mediates the electromagnetic force between the electrons. 
Notice that the entire interaction is represented in the diagram as occurring at a 
single point in time. Therefore, the paths of the electrons appear to undergo a dis-
continuous change in direction at the moment of interaction. The electron paths 
shown in Figure 44.4 are different from the actual paths, which would be curved 
due to the continuous exchange of large numbers of field particles.

In the electron–electron interaction, the photon, which transfers energy and 
momentum from one electron to the other, is called a virtual photon because it 
vanishes during the interaction without having been detected. In Chapter 39, we 

4The antineutrino is another zero-charge particle for which the identification of the antiparticle is more difficult 
than that for a charged particle. Although the details are beyond the scope of this book, the neutrino and anti-
neutrino can be differentiated by means of the relationship between the linear momentum and the spin angular 
momentum of the particles.

Virtual
photon

e�

e�

e�

e�

Figure 44.4  Feynman diagram 
representing a photon mediating 
the electromagnetic force between 
two electrons.

richard feynman
American Physicist (1918–1988)
Inspired by Dirac, Feynman developed 
quantum electrodynamics, the theory of 
the interaction of light and matter on a 
relativistic and quantum basis. In 1965, 
Feynman won the Nobel Prize in Physics. 
The prize was shared by Feynman, Julian 
Schwinger, and Sin Itiro Tomonaga. Early 
in Feynman’s career, he was a leading 
member of the team developing the first 
nuclear weapon in the Manhattan Project. 
Toward the end of his career, he worked 
on the commission investigating the 1986 
Challenger tragedy and demonstrated the 
effects of cold temperatures on the rub-
ber O-rings used in the space shuttle.
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discussed that a photon has energy E 5 hf, where f is its frequency. Consequently, 
for a system of two electrons initially at rest, the system has energy 2mec

2 before a 
virtual photon is released and energy 2mec

2 1 hf after the virtual photon is released 
(plus any kinetic energy of the electron resulting from the emission of the photon). 
Is that a violation of the law of conservation of energy for an isolated system? No; 
this process does not violate the law of conservation of energy because the virtual 
photon has a very short lifetime Dt that makes the uncertainty in the energy DE < 
"/2 Dt of the system greater than the photon energy. Therefore, within the con-
straints of the uncertainty principle, the energy of the system is conserved.

Now consider a pion exchange between a proton and a neutron according to 
Yukawa’s model (Fig. 44.5). The energy DER needed to create a pion of mass m

p
 is 

given by Einstein’s equation DER 5 m
p
c 2. As with the photon in Figure 44.4, the very 

existence of the pion would appear to violate the law of conservation of energy if 
the particle existed for a time interval greater than Dt < "y2 DER (from the uncer-
tainty principle), where Dt is the time interval required for the pion to transfer 
from one nucleon to the other. Therefore,

Dt <
"

2 DER

5
"

2m
p
c2

and the rest energy of the pion is

 m
p
c2 5

"

2 Dt
 (44.2)

Because the pion cannot travel faster than the speed of light, the maximum dis-
tance d it can travel in a time interval Dt is c Dt. Therefore, using Equation 44.2 and 
d 5 c Dt, we find 

 m
p
c 2 5

"c
2d

 (44.3)

From Table 44.1, we know that the range of the nuclear force is on the order of 
10215 m. Using this value for d in Equation 44.3, we estimate the rest energy of the 
pion to be

mpc
2 <

s 1.055 310234 J . sd s 3.00 3108 mysd
2s 1 310215 md

 5 1.6 3 10211 J < 100 MeV 

which corresponds to a mass of 100 MeV/c 2 (approximately 200 times the mass of 
the electron). This value is in reasonable agreement with the observed pion mass.

The concept just described is quite revolutionary. In effect, it says that a system 
of two nucleons can change into two nucleons plus a pion as long as it returns to its 
original state in a very short time interval. (Remember that this description is the 
older historical model, which assumes the pion is the field particle for the nuclear 
force; the gluon is the actual field particle in current models.) Physicists often say 
that a nucleon undergoes fluctuations as it emits and absorbs field particles. These 
fluctuations are a consequence of a combination of quantum mechanics (through 
the uncertainty principle) and special relativity (through Einstein’s energy–mass 
relationship ER 5 mc 2).

   44.4    Classification of Particles
We have now been introduced to pions and muons. We have a growing list of 
particles. All particles other than field particles can be classified into two broad 
categories, hadrons and leptons. The criterion for separating these particles into 
categories is whether or not they interact via the strong force. The nuclear force 

Figure 44.5  Feynman diagram 
representing a proton and a neu-
tron interacting via the nuclear 
force with a neutral pion mediat-
ing the force. (This model is not 
the current model for nucleon 
interaction.)

n

n

p

p

Pion (    )0p

PiTfall PrevenTion 44.2
The Nuclear Force and the Strong 
Force The nuclear force discussed 
in Chapter 43 was historically 
called the strong force. Once the 
quark theory (Section 44.8) was 
established, however, the phrase 
strong force was reserved for the 
force between quarks. We shall 
follow this convention: the strong 
force is between quarks or par-
ticles built from quarks, and the 
nuclear force is between nucleons 
in a nucleus. The nuclear force is 
a secondary result of the strong 
force as discussed in Section 44.9. 
It is sometimes called the residual 
strong force. Because of this histor-
ical development of the names for 
these forces, other books some-
times refer to the nuclear force as 
the strong force.
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1232 Chapter 44 Particle Physics and Cosmology

between nucleons in a nucleus is a particular manifestation of the strong force, 
but we will use the term strong force to refer to any interaction between parti-
cles made up of quarks. (For more detail on quarks and the strong force, see 
Section 44.8.) Table 44.2 provides a summary of the properties of a number of 
hadrons and leptons. The five columns to the right of the column for mass will 
be explained in subsequent sections of this chapter.

Hadrons
Particles that interact through the strong force (as well as through the other funda-
mental forces) are called hadrons. The two classes of hadrons, mesons and baryons, 
are distinguished by their masses and spins.

Mesons all have zero or integer spin (0 or 1). As indicated in Section 44.3, the 
name comes from the expectation that Yukawa’s proposed meson mass would 
lie between the masses of the electron and the proton. Several meson masses do 
lie in this range, although mesons having masses greater than that of the proton 
have been found to exist.

All mesons decay finally into electrons, positrons, neutrinos, and photons. 
The pions are the lightest known mesons and have masses of approximately 1.4 3 
102  MeV/c 2, and all three pions—p1, p2, and p0—have a spin of 0. (This spin-0 
characteristic indicates that the particle discovered by Anderson in 1937, the 
muon, is not a meson. The muon has spin 12 and belongs in the lepton classification, 
described below.)

 Table 44.2  Some Particles and Their Properties
 Particle    Anti-    Mass
Category Name Symbol particle (MeV/c 2) B Le L

m
 L

t
 S Lifetime(s) Spin

Leptons Electron e2 e1 0.511 0 11 0 0 0 Stable 1
2

 Electron–neutrino† ne ne , 2 eV/c 2 0 11 0 0 0 Stable 1
2

 Muon m2 m1 105.7 0 0 11 0 0 2.20 3 1026  1
2

 Muon–neutrino† n
m
 n

m
 , 2 eV/c 2 0 0 11 0 0 Stable 1

2

 Tau t2 t1 1 777    0 0 0 11 0      2.9 3 10213 1
2

 Tau–neutrino† n
t
 n

t
 , 2 eV/c 2 0 0 0 11 0 Stable 1

2

Hadrons
 Mesons Pion p1 p2  139.6 0 0 0 0 0 2.60 3 1028 0
  p0 Self  135.0 0 0 0 0 0 8.52 3 10217 s 0
 Kaon K1 K2  493.7 0 0 0 0 11 1.24 3 1028 0
  K S

0 K 0
S  497.7 0 0 0 0 11 0.89 3 10210 0

  K L
0 K 0

L  497.7 0 0 0 0 11  5.1 3 1028 0
 Baryons Proton p p  938.3 11 0 0 0 0 Stable 1

2

 Neutron n n  939.6 11 0 0 0 0 881 1
2

 Lambda L0 L 0 1 115.7 11 0 0 0 21  2.6 3 10210 1
2

 Sigma S1 S 2 1 189.4 11 0 0 0 21 0.80 3 10210 1
2

  S0 S 0 1 192.6 11 0 0 0 21  7.4 3 10220 1
2

  S2 S1 1 197.4 11 0 0 0 21  1.5 3 10210 1
2

 Delta D11 D22 1 232   11 0 0 0 0    6 3 10224 3
2

  D1 D2 1 232   11 0 0 0 0    6 3 10224 3
2

  D0 D0 1 232   11 0 0 0 0    6 3 10224 3
2

  D2 D1 1 232   11 0 0 0 0    6 3 10224 3
2

 Xi J0 J0 1 315   11 0 0 0 22  2.9 3 10210 1
2

  J2 J1 1 322   11 0 0 0 22 1.64 3 10210 1
2

 Omega V2 V1 1 672   11 0 0 0 23 0.82 3 10210 3
2

†The mass of neutrinos is an elusive quantity and is an ongoing field of research. Determination of their mass is complicated by the fact that neutrinos undergo 
oscillations among all three types as they move through space.
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Baryons, the second class of hadrons, have masses equal to or greater than the 
proton mass (the name baryon means “heavy” in Greek), and their spin is always a 
half-integer value (1

2, 3
2, . . .). Protons and neutrons are baryons, as are many other 

particles. With the exception of the proton, all baryons decay in such a way that 
the end products include a proton. For example, the baryon called the J0 hyperon 
(Greek letter xi) decays to the L0 baryon (Greek letter lambda) in approximately 
10210 s. A hyperon is a baryon with at least one strange quark, to be discussed in Sec-
tion 44.8. The L0 then decays via two possible pathways in approximately 3 3 10210 s.

Today it is believed that hadrons are not elementary particles but instead are 
composed of more elementary units called quarks, per Section 44.8.

leptons
Leptons (from the Greek leptos, meaning “small” or “light”) are particles that do 
not interact by means of the strong force. All leptons have spin 1

2. Unlike hadrons, 
which have size and structure, leptons appear to be truly elementary, meaning that 
they have no structure and are point-like.

Quite unlike the case with hadrons, the number of known leptons is small. Cur-
rently, scientists believe that only six leptons exist: the electron, the muon, the tau, 
and a neutrino associated with each: e2, m2, t2, ne , nm

, and n
t
. The tau lepton, discov-

ered in 1975, has a mass about twice that of the proton. Direct experimental evidence 
for the neutrino associated with the tau was announced by the Fermi National Accel-
erator Laboratory (Fermilab) in July 2000. Each of the six leptons has an antiparticle.

We discussed neutrinos with regard to beta decay in Section 43.5. Current studies 
indicate that neutrinos have a small but nonzero mass. If they do have mass, they 
cannot travel at the speed of light. In addition, because so many neutrinos exist, 
their combined mass may be sufficient to cause all the matter in the Universe to 
eventually collapse into a single point, which might then explode and create a com-
pletely new Universe! We shall discuss this possibility in more detail in Section 44.11.

   44.5    Conservation Laws
The laws of conservation of energy, linear momentum, angular momentum, and 
electric charge for an isolated system provide us with a set of rules that all pro-
cesses must follow. In Chapter 43, we learned that conservation laws are important 
for understanding why certain radioactive decays and nuclear reactions occur and 
others do not. In the study of elementary particles, a number of additional conser-
vation laws are important. Although the two described here have no theoretical 
foundation, they are supported by abundant empirical evidence.

baryon number
Experimental results show that whenever a baryon is created in a decay or nuclear 
reaction, an antibaryon is also created. This scheme can be quantified by assign-
ing every particle a quantum number, the baryon number, as follows: B 5 11 for  
all baryons, B 5 21 for all antibaryons, and B 5 0 for all other particles. (See 
Table 44.2.) The law of conservation of baryon number states that 

whenever a nuclear reaction or decay occurs, the sum of the baryon numbers 
before the process must equal the sum of the baryon numbers after the process.

If baryon number is conserved, the proton must be absolutely stable. For exam-
ple, a decay of the proton to a positron and a neutral pion would satisfy conser-
vation of energy, momentum, and electric charge. Such a decay has never been 
observed, however. The law of conservation of baryon number would be consistent 
with the absence of this decay because the proposed decay would involve the loss 
of a baryon. Based on experimental observations as pointed out in Example 44.2, 

  Conservation of baryon
 number
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all we can say at present is that protons have a half-life of at least 1033 years (the 
estimated age of the Universe is only 1010 years). Some recent theories, however, 
predict that the proton is unstable. According to this theory, baryon number is not 
absolutely conserved.

Q uick Quiz 44.2  Consider the decays (i) n S p1 1 p2 1 m1 1 m2 and  
(ii) n S p 1 p2. From the following choices, which conservation laws are  
violated by each decay? (a) energy (b) electric charge (c) baryon number  
(d) angular momentum (e) no conservation laws

 Example 44.1    Checking Baryon Numbers

Use the law of conservation of baryon number to determine whether each of the following reactions can occur:

(A)  p 1 n   S   p 1 p 1 n 1 p

S O L U T I O N

Conceptualize  The mass on the right is larger than the mass on the left. Therefore, one might be tempted to claim that the 
reaction violates energy conservation. The reaction can indeed occur, however, if the initial particles have sufficient kinetic 
energy to allow for the increase in rest energy of the system.

Categorize  We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the total baryon number for the left side of the reaction: 1 1 1 5 2

Evaluate the total baryon number for the right side of the reaction: 1 1 1 1 1 1 (21) 5 2

Therefore, baryon number is conserved and the reaction can occur.

(B)  p 1 n   S   p 1 p 1 p

S O L U T I O N

Evaluate the total baryon number for the left side of the reaction: 1 1 1 5 2

Evaluate the total baryon number for the right side of the reaction: 1 1 1 1 (21) 5 1

Because baryon number is not conserved, the reaction cannot occur.

 Example 44.2     Detecting Proton Decay

Measurements taken at two neutrino detection facilities, the Irvine–Michigan–
Brookhaven detector (Fig. 44.6) and the Super Kamiokande in Japan, indicate 
that the half-life of protons is at least 1033 yr.

(A)  Estimate how long we would have to watch, on average, to see a proton in a 
glass of water decay.

S O L U T I O N

Conceptualize  Imagine the number of pro-
tons in a glass of water. Although this number is 
huge, the probability of a single proton undergo-
ing decay is small, so we would expect to wait for a 
long time interval before observing a decay.

Categorize  Because a half-life is provided in the 
problem, we categorize this problem as one in 
which we can apply our statistical analysis tech-
niques from Section 43.4.

Figure 44.6  (Example 44.2) A 
diver swims through ultrapure 
water in the Irvine–Michigan–
Brookhaven neutrino detector. This 
detector holds almost 7 000 metric  
tons of water and is lined with 
over 2 000 photomultiplier tubes, 
many of which are visible in the 
photograph. JO
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44.2 c o n t i n u e d

Analyze  Let’s estimate that a drinking glass contains a number of moles n of water, with a mass of m 5 250 g and a molar mass 
M 5 18 g/mol.

Find the number of molecules of water in the glass: Nmolecules 5 nNA 5
m
M

 NA

Each water molecule contains one proton in each of its two hydrogen atoms plus eight protons in its oxygen atom, for a total of 
ten protons. Therefore, there are N 5 10Nmolecules protons in the glass of water.

Find the activity of the protons  (1)   R 5 lN 5
ln 2
T1y2

 S10 
m
M

 NAD 5
ln 2

1033 yr
 s10dS 250 g

18 gymolDs6.02 3 1023 mol21d 
from Equation 43.7:

55.8 31028 yr21

Finalize  The decay constant represents the probability that one proton decays in one year. The probability that any proton  
in our glass of water decays in the one-year interval is given by Equation (1). Therefore, we must watch our glass of water for 
1/R <   17 million years!   That indeed is a long time interval, as expected.

(B)  The Super Kamiokande neutrino facility contains 50 000 metric tons of water. Estimate the average time interval 
between detected proton decays in this much water if the half-life of a proton is 1033 yr.

S O L U T I O N

Analyze  The proton decay rate R in a sample of water 
R Kamiokande

R glass

5
N Kamiokande

Nglass

   S   R Kamiokande 5
NKamiokande

Nglass

 R glass 
 is proportional to the number N of protons. Set up a  
ratio of the decay rate in the Super Kamiokande  
facility to that in a glass of water:

The number of protons is proportional to the mass of  R Kamiokande 5
mKamiokande

mglass

 R glass 
the sample, so express the decay rate in terms of mass:

Substitute numerical values: R Kamiokande 5S50 000 metric tons
0.250 kg DS 1 000 kg

1 metric tonDs5.8 3 1028 yr21d < 12 yr21

Finalize  The average time interval between decays is about one-twelfth of a year, or approximately one month . That is much 
shorter than the time interval in part (A) due to the tremendous amount of water in the detector facility. Despite this rosy pre-
diction of one proton decay per month, a proton decay has never been observed. This suggests that the half-life of the proton 
may be larger than 1033 years or that proton decay simply does not occur.

lepton number
There are three conservation laws involving lepton numbers, one for each variety 
of lepton. The law of conservation of electron lepton number states that

whenever a nuclear reaction or decay occurs, the sum of the electron lepton 
numbers before the process must equal the sum of the electron lepton numbers 
after the process.

The electron and the electron neutrino are assigned an electron lepton number 
Le 5 11, and the antileptons e1 and ne are assigned an electron lepton number Le 5 
21. All other particles have Le 5 0. For example, consider the decay of the neutron:

n   S   p 1 e2 1 ne

Before the decay, the electron lepton number is Le 5 0; after the decay, it is 0 1 1 1 
(21) 5 0. Therefore, electron lepton number is conserved. (Baryon number must 
also be conserved, of course, and it is: before the decay, B 5 11, and after the decay, 
B 5 11 1 0 1 0 5 11.)

  Conservation of electron
lepton number
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Similarly, when a decay involves muons, the muon lepton number L
m
 is con-

served. The m2 and the n
m
 are assigned a muon lepton number L

m
 5 11, and the 

antimuons m1 and n
m
 are assigned a muon lepton number L

m
 5 21. All other parti-

cles have L
m
 5 0.

Finally, tau lepton number L
t
 is conserved with similar assignments made for 

the tau lepton, its neutrino, and their two antiparticles.

Q uick Quiz 44.3  Consider the following decay: p0 S m2 1 e1 1 n
m
. What con-

servation laws are violated by this decay? (a) energy (b) angular momentum  
(c) electric charge (d) baryon number (e) electron lepton number (f) muon 
lepton number (g) tau lepton number (h) no conservation laws

Q uick Quiz 44.4  Suppose a claim is made that the decay of the neutron 
is given by n S p 1 e2. What conservation laws are violated by this decay? 
(a) energy (b) angular momentum (c) electric charge (d) baryon number 
(e) electron lepton number (f) muon lepton number (g) tau lepton number  
(h) no conservation laws

 Example 44.3    Checking Lepton Numbers

Use the law of conservation of lepton numbers to determine whether each of the following decay schemes (A) and (B)  
can occur:

(A)  m2   S   e2 1 ne 1 n
m

S O L U T I O N

Conceptualize  Because this decay involves a muon and an electron, L
m
 and Le must each be conserved separately if the decay 

is to occur.

Categorize  We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the lepton numbers before the decay: L
m
 5 11   Le 5 0

Evaluate the total lepton numbers after the decay: L
m
 5 0 1 0 1 1 5 11 Le 5 11 1 (21) 1 0 5 0

Therefore, both numbers are conserved and on this basis the decay is possible.

(B)  p1   S   m1 1 n
m
 1 ne

S O L U T I O N

Evaluate the lepton numbers before the decay: L
m
 5 0  Le 5 0

Evaluate the total lepton numbers after the decay: L
m
 5 21 1 1 1 0 5 0  Le 5 0 1 0 1 1 5 1

Therefore, the decay is not possible because electron lepton number is not conserved.

   44.6    Strange Particles and Strangeness
Many particles discovered in the 1950s were produced by the interaction of 
pions with protons and neutrons in the atmosphere. A group of these—the 
kaon (K), lambda (L), and sigma (S) particles—exhibited unusual properties 
both as they were created and as they decayed; hence, they were called strange 
particles.
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One unusual property of strange particles is that they are always produced in 
pairs. For example, when a pion collides with a proton, a highly probable result is 
the production of two neutral strange particles:

p2 1 p   S   K0 1 L0

The reaction p2 1 p S K0 1 n, where only one final particle is strange, never 
occurs, however, even though no previously known conservation laws would be vio-
lated and even though the energy of the pion is sufficient to initiate the reaction.

The second peculiar feature of strange particles is that although they are pro-
duced in reactions involving the strong interaction at a high rate, they do not decay 
into particles that interact via the strong force at a high rate. Instead, they decay 
very slowly, which is characteristic of the weak interaction. Their half-lives are in the 
range 10210 s to 1028 s, whereas most other particles that interact via the strong force 
have much shorter lifetimes on the order of 10223 s. Particularly strange is the exis-
tence of two different half-lives for the neutral kaon, as can be seen in Table 44.2. 
The existence of the short-lived kaon KS

0 and the long-lived kaon KL
0 is due to a phe-

nomenon called neutral kaon mixing, which is beyond the scope of this text.
To explain these unusual properties of strange particles, a new quantum num-

ber S, called strangeness, was introduced, together with a conservation law. The 
strangeness numbers for some particles are given in Table 44.2. The production of 
strange particles in pairs is handled mathematically by assigning S 5 11 to one of 
the particles, S 5 21 to the other, and S 5 0 to all nonstrange particles. The law  
of conservation of strangeness states that

in a nuclear reaction or decay that occurs via the strong force, strangeness is 
conserved; that is, the sum of the strangeness numbers before the process must 
equal the sum of the strangeness numbers after the process. In processes that 
occur via the weak interaction, strangeness may not be conserved.

The low decay rate of strange particles can be explained by assuming the strong 
and electromagnetic interactions obey the law of conservation of strangeness but 
the weak interaction does not. Because the decay of a strange particle involves the 
loss of one strange particle, it violates strangeness conservation and hence proceeds 
slowly via the weak interaction.

 Conservation of strangeness

 Example 44.4     Is Strangeness Conserved?

(A)  Use the law of strangeness conservation to determine whether the reaction p0 1 n   S   K1 1 S2 occurs.

S O L U T I O N

Conceptualize  We recognize that there are strange particles appearing in this reaction, so we see that we will need to investi-
gate conservation of strangeness.

Categorize  We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the strangeness for the left side of the reaction S 5 0 1 0 5 0 
using Table 44.2:

Evaluate the strangeness for the right side of  S 5 11 2 1 5 0 
the reaction:

Therefore, strangeness is conserved and the reaction is allowed.

(B)  Show that the reaction p2 1 p   S   p2 1 S1 does not conserve strangeness.

continued
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   44.7    Finding Patterns in the Particles
One tool scientists use is the detection of patterns in data, patterns that contribute 
to our understanding of nature. For example, Table 20.2 shows a pattern of molar 
specific heats of gases that allows us to understand the differences among mon-
atomic, diatomic, and polyatomic gases. Figure 41.20 shows a pattern of peaks in 
the ionization energy of atoms that relate to the quantized energy levels in the 
atoms. Figure 43.7 shows a pattern of peaks in the binding energy that suggest a 
shell structure within the nucleus. One of the best examples of this tool’s use is the 
development of the periodic table, which provides a fundamental understanding 
of the chemical behavior of the elements. As mentioned in the introduction, the 
periodic table explains how more than 100 elements can be formed from three 
particles, the electron, the proton, and the neutron. The table of nuclides, part of 
which is shown in Table 43.2, contains hundreds of nuclides, but all can be built 
from protons and neutrons.

The number of particles observed by particle physicists is in the hundreds. Is it 
possible that a small number of entities exist from which all these particles can be 
built? Taking a hint from the success of the periodic table and the table of nuclides, 
let explore the historical search for patterns among the particles.

Many classification schemes have been proposed for grouping particles into 
families. Consider, for instance, the baryons listed in Table 44.2 that have spins 
of 12: p, n, L0, S1, S0, S2, J0, and J2. If we plot strangeness versus charge for these 
baryons using a sloping coordinate system as in Figure 44.7a, a fascinating pattern 
is observed: six of the baryons form a hexagon, and the remaining two are at the 
hexagon’s center.

As a second example, consider the following seven spin-zero mesons listed 
in Table 44.2: p1, p0, p2, K1, K0, K2, and the antiparticle K0. Figure 44.7b is 
a plot of strangeness versus charge for this family. Again, a hexagonal pattern 
emerges. In this case, each particle on the perimeter of the hexagon lies oppo-
site its antiparticle and the neutral pion (which forms its own antiparticle) is at 

44.4 c o n t i n u e d

S O L U T I O N

Evaluate the strangeness for the left side of the reaction: S 5 0 1 0 5 0

Evaluate the strangeness for the right side of the reaction: S 5 0 1 (21) 5 21

Therefore, strangeness is not conserved.
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spin-12 baryons. This strangeness- 
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American Physicist (b. 1929)
In 1969, Murray Gell-Mann was awarded 
the Nobel Prize in Physics for his theo-
retical studies dealing with subatomic 
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the center of the hexagon. These and related symmetric patterns were developed 
independently in 1961 by Murray Gell-Mann and Yuval Ne’eman (1925–2006). 
Gell-Mann called the patterns the eightfold way, after the eightfold path to nir-
vana in Buddhism.

Groups of baryons and mesons can be displayed in many other symmetric pat-
terns within the framework of the eightfold way. For example, the family of spin-32 
baryons known in 1961 contains nine particles arranged in a pattern like that of 
the pins in a bowling alley as in Figure 44.8. (The particles S*1, S*0, S*2, J*0,  
and J*2 are excited states of the particles S1, S0, S2, J0, and J2. In these higher- 
energy states, the spins of the three quarks—see Section 44.8—making up the par-
ticle are aligned so that the total spin of the particle is 3

2.) When this pattern was 
proposed, an empty spot occurred in it (at the bottom position), corresponding 
to a particle that had never been observed. Gell-Mann predicted that the missing 
particle, which he called the omega minus (V2), should have spin 3

2, charge 21, 
strangeness 23, and rest energy of approximately 1 680 MeV. Shortly thereafter, 
in 1964, scientists at the Brookhaven National Laboratory found the missing parti-
cle through careful analyses of bubble-chamber photographs (Fig. 44.9) and con-
firmed all its predicted properties.

The prediction of the missing particle in the eightfold way has much in common 
with the prediction of missing elements in the periodic table. Whenever a vacancy 
occurs in an organized pattern of information, experimentalists have a guide for 
their investigations.
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Figure 44.9  Discovery of the 
V2 particle. The photograph 
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 bubble-chamber tracks. The 
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   44.8    Quarks
As mentioned earlier, leptons appear to be truly elementary particles because there 
are only a few types of them, and experiments indicate that they have no measur-
able size or internal structure. Hadrons, on the other hand, are complex particles 
having size and structure. The existence of the strangeness–charge patterns of the 
eightfold way suggests that hadrons have substructure. Furthermore, hundreds of 
types of hadrons exist and many decay into other hadrons.

The original Quark Model
In 1963, Gell-Mann and George Zweig (b. 1937) independently proposed a model for 
the substructure of hadrons. According to their model, all hadrons are composed of 
two or three elementary constituents called quarks. (Gell-Mann borrowed the word 
quark from the passage “Three quarks for Muster Mark” in James Joyce’s Finnegans 
Wake. In Zweig’s model, he called the constituents “aces.”) The model has three types 
of quarks, designated by the symbols u, d, and s, that are given the arbitrary names 
up, down, and strange. The various types of quarks are called flavors. Figure 44.10 
is a pictorial representation of the quark compositions of several hadrons.

An unusual property of quarks is that they carry a fractional electric charge. The 
u, d, and s quarks have charges of 12e/3, 2e/3, and 2e/3, respectively, where e is 
the elementary charge 1.602 3 10219 C. These and other properties of quarks and 
antiquarks are given in Table 44.3. Quarks have spin 12, which means that all quarks 
are fermions, defined as any particle having half-integral spin. As Table 44.3 shows, 
associated with each quark is an antiquark of opposite charge, baryon number, and 
strangeness.

The compositions of all hadrons known when Gell-Mann and Zweig presented 
their model can be completely specified by three simple rules:

 ● A meson consists of one quark and one antiquark, giving it a baryon number 
of 0, as required.

 ● A baryon consists of three quarks.
 ● An antibaryon consists of three antiquarks.

Baryons

p

n

Mesons

K�

�

u

s

p

u u

d

u

d

d

d

u

Figure 44.10 Quark composition 
of two mesons and two baryons.

 Table 44.3  Properties of Quarks and Antiquarks
Quarks

    Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Up u 1
2 12

3 e 1
3 0 0 0 0

Down d 1
2 21

3 e 1
3 0 0 0 0

Strange s 1
2 21

3 e 1
3 21 0 0 0

Charmed c 1
2 12

3 e 1
3 0 11 0 0

Bottom b 1
2 21

3 e 1
3 0 0 11 0

Top t 1
2 12

3 e 1
3 0 0 0 11

Antiquarks

    Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Anti-up u 1
2 22

3 e 21
3 0 0 0 0

Anti-down d 1
2 11

3 e 21
3 0 0 0 0

Anti-strange s 1
2 11

3 e 21
3 11 0 0 0

Anti-charmed c 1
2 22

3 e 21
3 0 21 0 0

Anti-bottom b 1
2 11

3 e 21
3 0 0 21 0

Anti-top t 1
2 22

3 e 21
3 0 0 0 21
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The theory put forth by Gell-Mann and Zweig is referred to as the original quark 
model.

Notice in Table 44.3 that baryon numbers of 61/3 are provided for each quark 
and antiquark. A combination of three quarks, as in the original quark model, 
provides a baryon number of 11, consistent with the baryons listed in Table 44.2. 
Similarly, a combination of three antiquarks gives a baryon number of 21 for the 
antibaryon. Combining a quark and an antiquark gives a total baryon number of 0, 
consistent with the mesons listed in Table 44.2. The law of conservation of baryon 
number leads to a conservation law requiring that each type of quark in a reaction 
must be conserved if the reaction proceeds via the strong force.

Q uick Quiz 44.5  Using a coordinate system like that in Figure 44.7, draw an 
eightfold-way diagram for the three quarks in the original quark model.

charm and other Developments
Although the original quark model was highly successful in classifying particles 
into families, some discrepancies occurred between its predictions and certain 
experimental decay rates. Consequently, several physicists proposed a fourth quark 
flavor in 1967. They argued that if four types of leptons exist (as was thought at 
the time), there should also be four flavors of quarks because of an underlying 
symmetry in nature. The fourth quark, designated c, was assigned a property called 
charm. A charmed quark has charge 12e/3, just as the up quark does, but its charm 
distinguishes it from the other three quarks. This introduces a new quantum num-
ber C , representing charm. The new quark has charm C 5 11, its antiquark has 
charm of C 5 21, and all other quarks have C 5 0. Charm, like strangeness, is 
conserved in strong and electromagnetic interactions but not in weak interactions.

Evidence that the charmed quark exists began to accumulate in 1974, when a 
heavy meson called the J/C particle (or simply C, Greek letter psi) was discovered 
independently by two groups, one led by Burton Richter (b. 1931) at the Stanford 
Linear Accelerator (SLAC), and the other led by Samuel Ting (b. 1936) at the Brook-
haven National Laboratory. In 1976, Richter and Ting were awarded the Nobel Prize 
in Physics for this work. The J/C particle does not fit into the three-quark model; 
instead, it has properties of a combination of the proposed charmed quark and its anti-
quark (cc). It is much more massive than the other known mesons (,3 100 MeV/c2),  
and its lifetime is much longer than the lifetimes of particles that interact via the 
strong force. Soon, related mesons were discovered, corresponding to such quark 
combinations as cd and cd, all of which have great masses and long lifetimes. The 
existence of these new mesons provided firm evidence for the fourth quark flavor.

In 1975, researchers at Stanford University reported strong evidence for the tau 
(t) lepton, mass 1 784 MeV/c2. This fifth type of lepton led physicists to propose that 
more flavors of quarks might exist, on the basis of symmetry arguments similar to 
those leading to the proposal of the charmed quark. These proposals led to more 
elaborate quark models and the prediction of two new quarks, top (t) and bottom 
(b). (Some physicists prefer truth and beauty.) To distinguish these quarks from the 
others, quantum numbers called topness and bottomness (with allowed values 11, 0, 
21) were assigned to all quarks and antiquarks (see Table 44.3). In 1977, researchers 
at the Fermi National Laboratory, under the direction of Leon Lederman (b. 1922), 
reported the discovery of a very massive new meson Y (Greek letter upsilon), whose 
composition is considered to be bb, providing evidence for the bottom quark. In 
March 1995, researchers at Fermilab announced the discovery of the top quark (sup-
posedly the last of the quarks to be found), which has a mass of 173 GeV/c2.

Table 44.4 (page 1242) lists the quark compositions of mesons formed from the 
up, down, strange, charmed, and bottom quarks. Table 44.5 (page 1242) shows the 
quark combinations for the baryons listed in Table 44.2. Notice that only two fla-
vors of quarks, u and d, are contained in all hadrons encountered in ordinary mat-
ter (protons and neutrons).
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Will the discoveries of elementary particles ever end? How many “building 
blocks” of matter actually exist? At present, physicists believe that the elementary 
particles in nature are six quarks and six leptons, together with their antiparticles, 
and the four field particles listed in Table 44.1. Table 44.6 lists the rest energies and 
charges of the quarks and leptons.

Despite extensive experimental effort, no isolated quark has ever been observed. 
Physicists now believe that at ordinary temperatures, quarks are permanently con-
fined inside ordinary particles because of an exceptionally strong force that prevents 
them from escaping, called (appropriately) the strong force5 (which we introduced 
at the beginning of Section 44.4 and will discuss further in Section 44.10). This force 
increases with separation distance, similar to the force exerted by a stretched spring. 
Current efforts are under way to form a quark–gluon plasma, a state of matter in 
which the quarks are freed from neutrons and protons. In 2000, scientists at CERN 
announced evidence for a quark–gluon plasma formed by colliding lead nuclei. In 
2005, experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven sug-
gested the creation of a quark–gluon plasma. Experiments continue, and the ALICE 
project (A Large Ion Collider Experiment) at the Large Hadron Collider at CERN 
has joined the search. Results at both RHIC and ALICE have allowed scientists to 
learn more about the properties of a quark–gluon plasma. One of the interesting 
and surprising properties is that the plasma acts as a viscous liquid.

Q uick Quiz 44.6  Doubly charged baryons, such as the D11, are known to 
exist. True or False: Doubly charged mesons also exist.

   44.9    Multicolored Quarks
Shortly after the concept of quarks was proposed, scientists recognized that cer-
tain particles had quark compositions that violated the exclusion principle. In Sec-
tion 41.7, we applied the exclusion principle to electrons in atoms. The principle is 
more general, however, and applies to all particles with half-integral spin (1

2, 32, etc.), 
which are collectively called fermions. Because all quarks are fermions having spin 
1
2, they are expected to follow the exclusion principle. One example of a particle 
that appears to violate the exclusion principle is the V2 (sss) baryon, which con-
tains three strange quarks having parallel spins, giving it a total spin of 32. All three 
quarks have the same spin quantum number, in violation of the exclusion princi-
ple. Other examples of baryons made up of identical quarks having parallel spins 
are the D11 (uuu) and the D2 (ddd).

To resolve this problem, it was suggested that quarks possess an additional prop-
erty called color charge. This property is similar in many respects to electric charge 
except that it occurs in six varieties rather than two. The colors assigned to quarks 

5As a reminder, the original meaning of the term strong force was the short-range attractive force between nucleons, 
which we have called the nuclear force. The nuclear force between nucleons is a secondary effect of the strong force 
between quarks.

 Table 44.4  Quark Composition of Mesons
Antiquarks

 b c s d u

 b Y (bb) Bc
2 (cb) Bs

0 (sb) Bd
0 (db) B2 (ub)

 c Bc
1 (bc) J/C (cc) Ds

1 (sc) D1 (dc) D0 (uc)
Quarks s Bs

0 (bs) Ds
2 (cs) f (ss) K 0 (ds) K2 (us)

 d Bd
0 (bd) D2 (cd) K0 (sd) p0 (dd) p2 (ud)

 u B1 (bu) D0 (cu) K1 (su) p1 (du) p 0 (uu)

Note: The top quark does not form mesons because it decays too quickly.

 Table 44.5  Quark 
Composition of Several 
Baryons
 Quark
Particle Composition

p uud
n udd
L0 uds
S1 uus
S0 uds
S2 dds
D11 uuu
D1 uud
D0 udd
D2 ddd
J0 uss
J2 dss
V2 sss

Note: Some baryons have the same quark 
composition, such as the p and the D1 
and the n and the D0. In these cases, the 
D particles are considered to be excited 
states of the proton and neutron.

 Table 44.6  The Elementary 
Particles and Their Rest 
Energies and Charges
 Approximate 
Particle Rest Energy Charge
Quarks

u 2.4 MeV 12
3e

d 4.8 MeV 21
3e

s 104 MeV 21
3e

c 1.27 GeV 12
3e

b 4.2 GeV 21
3e

t 173 GeV 12
3e

Leptons

e2 511 keV 2e
m2 105.7 MeV 2e
t2 1.78 GeV 2e
ne , 2 eV 0
n

m
 , 2 eV 0

n
t
 , 2 eV 0
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are red, green, and blue, and antiquarks have the colors antired, antigreen, and 
antiblue. Therefore, the colors red, green, and blue serve as the “quantum num-
bers” for the color of the quark. To satisfy the exclusion principle, the three quarks 
in any baryon must all have different colors. Look again at the quarks in the bary-
ons in Figure 44.10 and notice the colors. The three colors “neutralize” to white.  
A quark and an antiquark in a meson must be of a color and the corresponding 
anticolor and will consequently neutralize to white, similar to the way electric 
charges 1 and 2 neutralize to zero net charge. (See the mesons in Fig. 44.10.) The 
apparent violation of the exclusion principle in the V2 baryon is removed because 
the three quarks in the particle have different colors.

The new property of color increases the number of quarks by a factor of 3 
because each of the six quarks comes in three colors. Although the concept of color 
in the quark model was originally conceived to satisfy the exclusion principle, it also 
provided a better theory for explaining certain experimental results. For example, 
the modified theory correctly predicts the lifetime of the p0 meson.

The theory of how quarks interact with each other is called quantum chromo-
dynamics, or QCD, to parallel the name quantum electrodynamics (the theory of the 
electrical interaction between light and matter). In QCD, each quark is said to 
carry a color charge, in analogy to electric charge. The strong force between quarks 
is often called the color force. Therefore, the terms strong force and color force are 
used interchangeably.

In Section 44.1, we stated that the nuclear interaction between hadrons is medi-
ated by massless field particles called gluons. As mentioned earlier, the nuclear 
force is actually a secondary effect of the strong force between quarks. The glu-
ons are the mediators of the strong force. When a quark emits or absorbs a gluon, 
the quark’s color may change. For example, a blue quark that emits a gluon may 
become a red quark and a red quark that absorbs this gluon becomes a blue quark.

The color force between quarks is analogous to the electric force between 
charges: particles with the same color repel, and those with opposite colors attract. 
Therefore, two green quarks repel each other, but a green quark is attracted to 
an antigreen quark. The attraction between quarks of opposite color to form a 
meson (qq) is indicated in Figure 44.11a. Differently colored quarks also attract 
one another, although with less intensity than the oppositely colored quark and 
antiquark. For example, a cluster of red, blue, and green quarks all attract one 
another to form a baryon as in Figure 44.11b. Therefore, every baryon contains 
three quarks of three different colors.

Although the nuclear force between two colorless hadrons is negligible at large 
separations, the net strong force between their constituent quarks is not exactly 
zero at small separations. This residual strong force is the nuclear force that binds 
protons and neutrons to form nuclei. It is similar to the force between two electric 
dipoles. Each dipole is electrically neutral. An electric field surrounds the dipoles, 
however, because of the separation of the positive and negative charges (see Sec-
tion 22.5). As a result, an electric interaction occurs between the dipoles that is 
weaker than the force between single charges. In Section 42.1, we explored how this 
interaction results in the Van der Waals force between neutral molecules.

According to QCD, a more basic explanation of the nuclear force can be given in 
terms of quarks and gluons. Figure 44.12a (page 1244) shows the nuclear interaction 
between a neutron and a proton by means of Yukawa’s pion, in this case a p2. This 
drawing differs from Figure 44.5, in which the field particle is a p0; there is no trans-
fer of charge from one nucleon to the other in Figure 44.5. In Figure 44.12a, the 
charged pion carries charge from one nucleon to the other, so the nucleons change 
identities, with the proton becoming a neutron and the neutron becoming a proton.

Let’s look at the same interaction from the viewpoint of the quark model, shown 
in Figure 44.12b. In this Feynman diagram, the proton and neutron are represented 
by their quark constituents. Each quark in the neutron and proton is continuously 
emitting and absorbing gluons. The energy of a gluon can result in the creation of 

Baryon

Mesonq q

a

b

Figure 44.11  (a) A green  
quark is attracted to an antigreen 
quark. This forms a meson  
whose quark structure is (qq).  
(b) Three quarks of different col-
ors attract one another to form  
a baryon.

PiTfall PrevenTion 44.3
Color Charge Is Not Really Color  
The description of color for a 
quark has nothing to do with 
visual sensation from light. It is 
simply a convenient name for a 
property that is analogous to  
electric charge.
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quark–antiquark pairs. This process is similar to the creation of electron–positron 
pairs in pair production, which we investigated in Section 44.2. When the neutron 
and proton approach to within 1 fm of each other, these gluons and quarks can be 
exchanged between the two nucleons, and such exchanges produce the nuclear 
force. Figure 44.12b depicts one possibility for the process shown in Figure 44.12a. 
A down quark in the neutron on the right emits a gluon. The energy of the gluon is 
then transformed to create a uu pair. The u quark stays within the nucleon (which 
has now changed to a proton), and the recoiling d quark and the u antiquark are 
transmitted to the proton on the left side of the diagram. Here the u annihilates 
a u quark within the proton and the d is captured. The net effect is to change a u 
quark to a d quark, and the proton on the left has changed to a neutron.

As the d quark and u antiquark in Figure 44.12b transfer between the nucleons, 
the d and u exchange gluons with each other and can be considered to be bound 
to each other by means of the strong force. Looking back at Table 44.4, we see that 
this combination is a p2, or Yukawa’s field particle! Therefore, the quark model of 
interactions between nucleons is consistent with the pion-exchange model.

   44.10    The Standard Model
Scientists now believe there are three classifications of truly elementary particles: 
leptons, quarks, and field particles. These three types of particles are further classi-
fied as either fermions or bosons. Quarks and leptons have spin 12 and hence are fer-
mions, whereas the field particles have integral spin of 1 or higher and are bosons.

Recall from Section 44.1 that the weak force is believed to be mediated by 
the W1, W2, and Z0 bosons. These particles are said to have weak charge, just as 
quarks have color charge. Therefore, each elementary particle can have mass, 
electric charge, color charge, and weak charge. Of course, one or more of these 
could be zero.

In 1979, Sheldon Glashow (b. 1932), Abdus Salam (1926–1996), and Steven Wein-
berg (b. 1933) won the Nobel Prize in Physics for developing a theory that unifies the 
electromagnetic and weak interactions. This electroweak theory postulates that the 
weak and electromagnetic interactions have the same strength when the particles 
involved have very high energies. The two interactions at normal energies are viewed 
as different manifestations of a single unifying electroweak interaction. The theory 
makes many concrete predictions, but perhaps the most spectacular is the predic-
tion of the masses of the W and Z particles at approximately 82 GeV/c2 and 93 GeV/c2,  
respectively. These predictions are close to the masses in Table 44.1 determined by 
experiment.

The combination of the electroweak theory and QCD for the strong interaction 
is referred to in high-energy physics as the Standard Model. Although the details 
of the Standard Model are complex, its essential ingredients can be summarized 
with the help of Fig. 44.13. (Although the Standard Model does not include the 
gravitational force at present, physicists hope to eventually incorporate this force 
into a unified theory.) The quarks at the upper left in Figure 44.13 participate in all 
the fundamental forces, while the leptons at the lower left participate in all except 
the strong force.

The Standard Model does not answer all questions. A major question still unan-
swered is why, of the two mediators of the electroweak interaction, the photon has 
no mass but the W and Z bosons do. Because of this mass difference, the electro-
magnetic and weak forces are quite distinct at low energies but become similar at 
very high energies, when the rest energy is negligible relative to the total energy. 
The behavior as one goes from high to low energies is called symmetry breaking 
because the forces are similar, or symmetric, at high energies but are very different 
at low energies. The nonzero rest energies of the W and Z bosons raise the question 
of the origin of particle masses. To resolve this problem, a hypothetical particle 
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Figure 44.12  (a) A nuclear  
interaction between a proton and 
a neutron explained in terms of 
Yukawa’s pion-exchange model.  
(b) The same interaction, explained 
in terms of quarks and gluons.
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called the Higgs boson, which provides a mechanism for breaking the electroweak 
symmetry, has been proposed. The Standard Model modified to include the Higgs 
boson provides a logically consistent explanation of the massive nature of the W 
and Z bosons. In July 2012, announcements from the ATLAS (A Toroidal LHC 
Apparatus) and CMS (Compact Muon Solenoid) experiments at the Large Hadron 
Collider (LHC) at CERN claimed the discovery of a new particle having properties 
consistent with that of a Higgs boson. The mass of the particle is 125–127 GeV, 
within the range of predictions made from theoretical considerations using the 
Standard Model. While more testing is needed to remove all alternate theoretical 
possibilities, it is becoming likely that the discovery is indeed the Higgs boson.

Because of the limited energy available in conventional accelerators using fixed 
targets, it is necessary to employ colliding-beam accelerators called colliders. The 
concept of colliders is straightforward. Particles that have equal masses and equal 
kinetic energies, traveling in opposite directions in an accelerator ring, collide 
head-on to produce the required reaction and form new particles. Because the 
total momentum of the interacting particles is zero, all their kinetic energy is avail-
able for the reaction. 

Several colliders provided important data for understanding the Standard 
Model in the latter part of the 20th century and the first decade of the 21st cen-
tury: the Large Electron–Positron (LEP) Collider and the Super Proton Syn-
chrotron at CERN, the Stanford Linear Collider, and the Tevatron at the Fermi 
National Laboratory in Illinois. The Relativistic Heavy Ion Collider at Brookhaven 
National Laboratory is the sole remaining collider in operation in the United 
States. The Large Hadron Collider at CERN, which began collision operations 
in March 2010, has taken the lead in particle studies due to its extremely high 
energy capabilities. The expected upper limit for the LHC is a center-of-mass 
energy of 14 TeV.

Figure 44.13  The Standard 
Model of particle physics. The 
fundamental particles are shown 
at the left as two distinct fami-
lies: quarks and leptons. On the 
right, the field particles for the 
fundamental forces are shown. 
The Higgs boson is proposed to 
provide mass for the fundamen-
tal particles and the W and Z 
particles.Fe
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   44.11    The Cosmic Connection
As promised in the introduction, let us reverse course and go upward in scale. In 
this section, we describe one of the most fascinating theories in all science—the 
Big Bang theory of the creation of the Universe—and the experimental evidence 
that supports it. This theory of cosmology states that the Universe had a beginning 
and furthermore that the beginning was so cataclysmic that it is impossible to look 
back beyond it. According to this theory, the Universe erupted from an infinitely 
dense singularity about 14 billion years ago. The first few moments after the Big 
Bang saw such extremely high energy that it is believed that all four interactions of 
physics were unified and all matter was contained in a quark–gluon plasma.

The evolution of the four fundamental forces from the Big Bang to the present 
is shown in Figure 44.14. During the first 10243 s (the ultrahot epoch, T , 1032 K), it 

Present
day.

Galaxies
form.

Protons and
neutrons can 
form.

Helium atoms 
can form.

The Universe
consists of quarks 
and leptons.

The Universe
expands rapidly.

The Big Bang 
occurs. All forces 
are unified.

Gravitational force 
splits off from the 
strong and electro-
weak forces.

The strong and
electroweak
forces split.

The weak and
electromagnetic
forces split.

Nuclei can
form.

Hydrogen 
atoms can 
form.

More complex
atoms can
form.

Stars form.

Electromagnetic
WeakStrong

Gravitation

The expansion 
appears to
accelerate.

Figure 44.14  A brief history of the Universe from the Big Bang to the present. The four forces 
became distinguishable during the first nanosecond. Following that, all the quarks combined to form 
particles that interact via the nuclear force. The leptons, however, remained separate and to this day 
exist as individual, observable particles.
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is presumed the strong, electroweak, and gravitational forces were joined to form a 
completely unified force. In the first 10235 s following the Big Bang (the hot epoch,  
T , 1029 K), symmetry breaking occurred for gravity while the strong and elec-
troweak forces remained unified. It was a period when particle energies were so great  
(. 1016 GeV) that very massive particles as well as quarks, leptons, and their antiparti-
cles existed. Then, after 10235 s, the Universe rapidly expanded and cooled (the warm 
epoch, T , 1029 to 1015 K) and the strong and electroweak forces parted company. As 
the Universe continued to cool, the electroweak force split into the weak force and the 
electromagnetic force approximately 10210 s after the Big Bang.

After a few minutes, protons and neutrons condensed out of the plasma. For half 
an hour, the Universe underwent thermonuclear fusion, exploding as a hydrogen 
bomb and producing most of the helium nuclei that now exist. The Universe con-
tinued to expand, and its temperature dropped. Until about 700 000 years after the 
Big Bang, the Universe was dominated by radiation. Energetic radiation prevented 
matter from forming single hydrogen atoms because photons would instantly ion-
ize any atoms that happened to form. Photons experienced continuous Compton 
scattering from the vast numbers of free electrons, resulting in a Universe that was 
opaque to radiation. By the time the Universe was about 377 000 years old, it had 
expanded and cooled to approximately 3 000 K and protons could bind to elec-
trons to form neutral hydrogen atoms. Because of the quantized energies of the 
atoms, far more wavelengths of radiation were not absorbed by atoms than were 
absorbed, and the Universe suddenly became transparent to photons. Radiation no 
longer dominated the Universe, and clumps of neutral matter steadily grew: first 
atoms, then molecules, gas clouds, stars, and finally galaxies.

observation of radiation from the Primordial fireball
In 1965, Arno A. Penzias (b. 1933) and Robert W. Wilson (b. 1936) of Bell Labora-
tories were testing a sensitive microwave receiver and made an amazing discovery. 
A pesky signal producing a faint background hiss was interfering with their satellite 
communications experiments. The microwave horn that served as their receiving 
antenna is shown in Figure 44.15. Evicting a flock of pigeons from the 20-ft horn 
and cooling the microwave detector both failed to remove the signal.

The intensity of the detected signal remained unchanged as the antenna was pointed 
in different directions. That the radiation had equal strengths in all directions sug-
gested that the entire Universe was the source of this radiation. Ultimately, it became 
clear that they were detecting microwave background radiation (at a wavelength of 
7.35 cm), which represented the leftover “glow” from the Big Bang. Through a casual 
conversation, Penzias and Wilson discovered that a group at Princeton University had 
predicted the residual radiation from the Big Bang and were planning an experiment 
to attempt to confirm the theory. The excitement in the scientific community was high 
when Penzias and Wilson announced that they had already observed an excess micro-
wave background compatible with a 3-K blackbody source, which was consistent with 
the predicted temperature of the Universe at this time after the Big Bang.

Figure 44.15 Robert W. Wilson 
(left) and Arno A. Penzias with 
the Bell Telephone Laboratories 
horn-reflector antenna.©
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Because Penzias and Wilson made their measurements at a single wavelength, 
they did not completely confirm the radiation as 3-K blackbody radiation. Subse-
quent experiments by other groups added intensity data at different wavelengths as 
shown in Figure 44.16. The results confirm that the radiation is that of a black body 
at 2.7 K. This figure is perhaps the most clear-cut evidence for the Big Bang theory. 
The 1978 Nobel Prize in Physics was awarded to Penzias and Wilson for this most 
important discovery.

In the years following Penzias and Wilson’s discovery, other researchers made 
measurements at different wavelengths. In 1989, the COBE (COsmic Background 
Explorer) satellite was launched by NASA and added critical measurements at wave-
lengths below 0.1 cm. The results of these measurements led to a Nobel Prize in Phys-
ics for the principal investigators in 2006. Several data points from COBE are shown 
in Figure 44.16. The Wilkinson Microwave Anisotropy Probe, launched in June 2001, 
exhibits data that allow observation of temperature differences in the cosmos in the 
microkelvin range. Ongoing observations are also being made from Earth-based facil-
ities, associated with projects such as QUaD, Qubic, and the South Pole Telescope. 
In addition, the Planck satellite was launched in May 2009 by the European Space 
Agency. This space-based observatory measured the cosmic background radiation 
with higher sensitivity than the Wilkinson probe until its shutdown in 2013. The series 
of measurements taken since 1965 are consistent with thermal radiation associated 
with a temperature of 2.7 K. The whole story of the cosmic temperature is a remark-
able example of science at work: building a model, making a prediction, taking mea-
surements, and testing the measurements against the predictions.

other evidence for an expanding universe
The Big Bang theory of cosmology predicts that the Universe is expanding. Most 
of the key discoveries supporting the theory of an expanding Universe were made 
in the 20th century. Vesto Melvin Slipher (1875–1969), an American astronomer, 
reported in 1912 that most galaxies are receding from the Earth at speeds up to 
several million miles per hour. Slipher was one of the first scientists to use Doppler 
shifts (see Section 16.9) in spectral lines to measure galaxy velocities.

In the late 1920s, Edwin P. Hubble (1889–1953) performed research on the 
notion of an expanding Universe. From 1928 to 1936, until they reached the lim-
its of the 100-inch telescope, Hubble and Milton Humason (1891–1972) worked at 
Mount Wilson in California to prove the assertion that the Universe is expanding. 
The results of that work and of its continuation with the use of a 200-inch telescope 
in the 1940s showed that the speeds at which galaxies are receding from the Earth 
increase in direct proportion to their distance R from us. This linear relationship, 
known as Hubble’s law, may be written

 v 5 HR (44.4)

where H, called the Hubble constant, has the approximate value

H < 22 3 1023 m/(s ? ly)

Hubble’s law 
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Figure 44.16  Theoretical black-
body (brown curve) and measured 
radiation spectra (black points) 
of the Big Bang. Most of the data 
were collected from the COsmic 
Background Explorer, or COBE, 
satellite.

 Example 44.5     Recession of a Quasar

A quasar, or quasi-stellar object, is a very distant galaxy with an active nucleus that appears star-like because of its high lumi-
nosity and compact size. Its speed can be determined from Doppler-shift measurements in the light it emits. A certain qua-
sar recedes from the Earth at a speed of 0.55c. How far away is it?

S O L U T I O N

Conceptualize  A common mental representation for the Hubble law is that of raisin bread cooking in an oven. Imagine 
yourself at the center of the loaf of bread. As the entire loaf of bread expands upon heating, raisins near you move slowly with 
respect to you. Raisins far away from you on the edge of the loaf move at a higher speed.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



    44.11 The Cosmic Connection 1249

44.5 c o n t i n u e d

Categorize  We use a concept developed in this section, so we categorize this example as a substitution problem.

Find the distance through Hubble’s law: R 5
v
H

5
s0.55ds3.00 3 108 mysd

22 3 1023 myss ? lyd
5 7.5 3 109 ly

W H A T  I F ?  Suppose the quasar has moved at this speed ever since the Big Bang. With this assumption, estimate the age 
of the Universe.

Answer Let’s approximate the distance from the Earth to the quasar as the distance the quasar has moved from the singular-
ity since the Big Bang. We can then find the time interval from the particle under constant speed model: Dt 5 d/v 5 R/v 5 1/H < 
14 billion years, which is in approximate agreement with other calculations.

critical Density and the fate of the universe
The discovery and confirmation of the expansion of the Universe led to numerous 
attempts to measure its expansion rate, as this rate would provide information on 
the eventual fate of the Universe. For example, if the expansion were slowing, that 
would indicate that there may be sufficient mass in the Universe for the gravita-
tional attraction between galaxies to halt and reverse the expansion. This could 
possibly lead to a collapse of the Universe to a superdense state, sometimes referred 
to as the Big Crunch, followed by another Big Bang expansion. This type of situation 
is described as an oscillating Universe. The minimum density of matter and energy 
in the Universe at which this scenario would occur is called the critical density rc 
(Example 44.6). The density parameter V0 (Greek letter omega), defined as the 
ratio of the actual density of the Universe to the critical density, is helpful in delin-
eating the fate of the Universe. Figure 44.17 helps us to understand possible fates of 
the Universe based on V0. If V0 , 1, the galaxies will slow in their outward rush but 
still escape to infinity. This scenario is referred to as an open Universe (blue curve in 
Fig. 44.17). If V0 5 1, the expansion rate slows to a stop at an infinitely distant time 
in the future (green curve in Fig. 44.17) and we live in a flat Universe. If V0 . 1, how-
ever, the scenario is a closed Universe (orange curve in Fig. 44.17) and the expansion 
reverses itself, leading to the Big Crunch. See the section “Mysterious Energy in the 
Universe” (page 1251) regarding the red curve. 
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Figure 44.17 Various scenarios of 
the fate of the Universe. Observa-
tions indicate that we live in a nom-
inally flat (V0 5 1) Universe, except 
for the effect of dark energy, which 
is to accelerate the expansion of 
the Universe (red curve).

 Example 44.6     The Critical Density of the Universe

(A)  Starting from energy conservation, derive an expression for the critical mass 
density of the Universe rc in terms of the Hubble constant H and the universal 
gravitational constant G.

S O L U T I O N

Conceptualize  Figure 44.18 shows a large sec-
tion of the Universe, contained within a sphere 
of radius R. The total mass in this volume is M. 
A galaxy of mass m ,, M that has a speed v at a 
distance R from the center of the sphere escapes 
to infinity (at which its speed approaches zero) if 
the sum of its kinetic energy and the gravitational 
potential energy of the system is zero.

Categorize  The Universe may be infinite in spatial extent, but Gauss’s law for gravitation (an analog to Gauss’s law for electric 
fields in Chapter 23) implies that only the mass M inside the sphere contributes to the gravitational potential energy of the 
galaxy–sphere system. Therefore, we categorize this problem as one in which we apply Gauss’s law for gravitation. We model 
the sphere in Figure 44.18 and the escaping galaxy as an isolated system for energy.

R

m

vS

Figure 44.18 (Example 44.6) The 
galaxy marked with mass m is escap-
ing from a section of the Universe 
contained within a spherical volume 
of radius R . Only the mass within R 
slows the escaping galaxy.

continued
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Dark Matter and the Missing Mass in the universe
The estimated mass of luminous matter in galaxies leads to an average Universe 
density of about 5 3 10233 g/cm3. The radiation in the Universe has a mass equiva-
lent of approximately 2% that of the luminous matter. The total mass of all nonlu-
minous matter (such as interstellar gas and black holes) may be estimated from the 
motion of small “satellite” galaxies orbiting far from larger galaxies, just like the 
mass of the Sun can be determined from Kepler’s third law applied to the motion 
of the planets (Example 13.4). In the case of the Milky Way galaxy, it is estimated 
that the stars and the interstellar gas and dust only account for one-third of the 
total mass of the galaxy, and only part of the missing mass to make the Universe flat 
may be accounted for by large, tenuous gas clouds surrounding the galaxy. This 
missing mass has been the subject of intense theoretical and experimental work, 
and some researchers have proposed that the missing mass is present in neutrinos. 
The most recent measurements indicate, however, that the sum of the masses of 
the electron, muon, and tau neutrino are on the order of 0.5 eV/c 2. This sum is not 
sufficient to furnish the missing mass.

In Section 13.6, we discussed dark matter, which not only does not emit electro-
magnetic radiation, but also does not interact with electromagnetic waves in any 
way. In 1933, Swiss cosmologist Fritz Zwicky’s (1898–1974) observations of the 
Coma Cluster of galaxies indicated that the motion of the galaxies in the cluster 
could not be explained by the gravitational force of the luminous and nonlumi-
nous “ordinary,” or baryonic (comprised of baryons), matter. Zwicky coined the term 
dunkle materie (dark matter) for the missing matter. Although the presence of dark 
matter has been inferred in numerous observations, including the rotation rates of 
spiral galaxies and the motion of galaxies in galaxy clusters, the nature of this form 
of matter remains a mystery (see Section 13.6). What is known is that dark matter 

44.6 c o n t i n u e d

Analyze  Write the appropriate reduction of Equation 8.2,  DK 1 DU 5 0 
assuming that the galaxy leaves the spherical volume while  
moving at the escape speed: s0 2 1

2mv2d 1 30 2 S2 

GmM
R D4 5 0

Substitute for the mass M contained within the sphere  1
2mv 2 5

Gm s4
3 pR 3rc 

d

R
 

the product of the critical density and the volume  
of the sphere:

Solve for the critical density: rc 5
3v2

8pGR 2

From Hubble’s law, substitute for the ratio v/R 5 H: (1)   rc 5
3

8pG
  Sv

RD2

5
3H 2

8pG

(B)  Estimate a numerical value for the critical density in grams per cubic centimeter.

S O L U T I O N

In Equation (1), substitute numerical values  rc 5
3H 2

8pG
5

3f22 3 1023 myss ? lydg 2

8ps6.67 3 10211 N ? m2ykg2d
5 8.7 3 105 kgym ? slyd2 

for H and G:

Reconcile the units by converting light-years  rc 5 8.7 3 105 kgym ? slyd2 S 1 ly

9.46 3 1015 mD2

 
to meters:

 5 9.7 3 10227 kg/m3 5 9.7 3 10230 gycm3

Finalize  Because the mass of a hydrogen atom is 1.67 3 10224 g, this value of rc corresponds to 6 3 1026 hydrogen atoms per 
cubic centimeter or 6 atoms per cubic meter.
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makes up 26.8% of the matter-energy density of the Universe, or more than five 
times the density of “ordinary” luminous and non-luminous matter.

Mysterious energy in the universe?
A surprising twist in the story of the Universe arose in 1998 with the observation of 
a class of supernovae that have a fixed absolute brightness. By combining the appar-
ent brightness and the redshift of light from these explosions, their distance and 
speed of recession from the Earth can be determined. These observations led to 
the conclusion that the expansion of the Universe is not slowing down, but is accel-
erating! Observations by other groups also led to the same interpretation. The 2011 
Nobel Prize in Physics was awarded to Saul Perlmutter (b. 1959), Brian P. Schmidt  
(b. 1967) and Adam Riess (b. 1969) “for the discovery of the accelerating expan-
sion of the Universe through observations of distant supernovae.” To explain this 
acceleration, physicists have proposed dark energy, which is energy possessed by 
the vacuum of space. In the early life of the Universe, gravity dominated over the 
dark energy. As the Universe expanded and the gravitational force between galax-
ies became smaller because of the great distances between them, the dark energy 
became more important. The dominance of dark energy over gravitation is hypoth-
esized to have occurred about 5 billion years ago. Dark energy constitutes 68.3% of 
the matter–energy budget of the Universe, resulting in a value of V0 that is almost 
precisely equal to 1, indicating that we live in a flat Universe. The red curve in 
Figure 44.17 shows the effect of adding dark energy to the matter-energy density of 
the Universe. Instead of a slowing expansion, or an expansion matching the V0 5 1 
case (green curve), dark energy results in an effective repulsive force that causes the 
expansion rate to increase, resulting in an accelerating Universe.6

   44.12    Problems and Perspectives
While particle physicists have been exploring the realm of the very small, cosmol-
ogists have been exploring cosmic history back to the first microsecond of the Big 
Bang. Observation of the events that occur when two particles collide in an accel-
erator is essential for reconstructing the early moments in cosmic history. For this 
reason, perhaps the key to understanding the early Universe is to first understand 
the world of elementary particles. Cosmologists and physicists now find that they 
have many common goals and are joining hands in an attempt to understand the 
physical world at its most fundamental level.

The end of our Storyline?
In the introductory storyline for this chapter, we alluded to the idea that perhaps 
we might finish this chapter knowing everything there is to know about physics. 
Well, how did we do? We know a tremendous amount of physics after studying these 
44 chapters. But we don’t know everything.

Our understanding of physics is far from complete. Particle physics is faced with 
many questions. Why does so little antimatter exist in the Universe? Is it possible to 
unify the strong and electroweak theories in a logical and consistent manner? Why 
do quarks and leptons form three similar but distinct families? Are muons the same 
as electrons apart from their difference in mass, or do they have other subtle differ-
ences that have not been detected? Why are some particles charged and others neu-
tral? Why do quarks carry a fractional charge? What determines the masses of the 
elementary constituents of matter? Can isolated quarks exist? Why do electrons and 
protons have exactly the same magnitude of charge when one is a truly fundamental 
particle and the other is built from smaller particles?

6For an overview of dark energy, see S. Perlmutter, “Supernovae, Dark Energy, and the Accelerating Universe,” Physics 
Today 56(4): 53–60, April 2003.
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Other questions outside the realm of particle physics are still unanswered. For 
example, let’s consider the famous “Schrödinger cat.” To point out the contrast 
between an experimental result and the wave function describing it, Schrödinger 
imagined a box containing a cat, a radioactive sample, a radiation counter, and 
a vial of poison. When a nucleus in the sample decays, the counter triggers the 
administration of lethal poison to the cat. Quantum mechanics correctly predicts 
the probability of finding the cat dead when the box is opened. Before the box is 
opened, however, what is the wave function of the cat? That is, before a measure-
ment is taken, does the cat have a wave function that is a mixture of dead and alive? 
Does the wave function describe the cat as fractionally dead, with some chance of 
being alive? Does the act of measurement change the system from a probabilistic 
state to a definite state? This question is under continuing investigation, never with 
actual cats but sometimes with interference experiments building upon the experi-
ment described in Section 39.7. When a particle emitted by a radioactive nucleus is 
detected at one particular location, does the wave function describing the particle 
drop instantaneously to zero everywhere else in the Universe? (Einstein called such 
a state change a “spooky action at a distance.”) Is there a fundamental difference 
between a quantum system and a macroscopic system? The answers to these ques-
tions are unknown.

An important and obvious question that remains in particle physics is whether 
leptons and quarks have an underlying structure. If they do, we can envision an 
infinite number of deeper structure levels. If leptons and quarks are indeed the 
ultimate constituents of matter, however, scientists hope to construct a final theory 
of the structure of matter, just as Einstein dreamed of doing. This theory, whimsi-
cally called the Theory of Everything, is a combination of the Standard Model and 
a quantum theory of gravity.

String Theory: a new Perspective
Let’s briefly discuss one current effort at answering some of these questions 
by proposing a new perspective on particles. While reading this book, you may 
recall starting off with the particle model in Chapter 2 and doing quite a bit of 
physics with it. In Chapter 16, we introduced the wave model, and there was more 
physics to be investigated via the properties of waves. We used a wave model for 
light in Chapter 34; in Chapter 39, however, we saw the need to return to the par-
ticle model for light. Furthermore, we found that material particles had wave-like 
characteristics. The quantum particle model discussed in Chapter 39 allowed us 
to build particles out of waves, suggesting that a wave is the fundamental entity. 
In the current Chapter 44, however, we introduced elementary particles as the 
fundamental entities. It seems as if we cannot make up our mind! In this final 
section, we discuss a current research effort to build particles out of waves and 
vibrations on strings!

String theory is an effort to unify the four fundamental forces by modeling all 
particles as various quantized vibrational modes of a single entity, an incredibly 
small string. The typical length of such a string is on the order of 10235 m, called 
the Planck length. We have seen quantized modes before in the frequencies of 
vibrating guitar strings in Chapter 17 and the quantized energy levels of atoms in 
Chapter 41. In string theory, each quantized mode of vibration of the string corre-
sponds to a different elementary particle in the Standard Model.

One complicating factor in string theory is that it requires spacetime to have ten  
dimensions. Despite the theoretical and conceptual difficulties in dealing with 
ten dimensions, string theory holds promise in incorporating gravity with the 
other forces. Four of the ten dimensions—three space dimensions and one time 
dimension—are visible to us. The other six are said to be compactified; that is, the six 
dimensions are curled up so tightly that they are not visible in the macroscopic world.

As an analogy, consider a soda straw. You can build a soda straw by cutting a 
rectangular piece of paper (Fig. 44.19a), which clearly has two dimensions, and 

Figure 44.19  (a) A piece of paper 
is cut into a rectangular shape. 
(b) The paper is rolled up into a 
soda straw.

y

x

x

As a rectangle, the shape 
has two dimensions.

The curled-up second dimension 
is not visible when viewed from a 
distance that is large compared 
with the diameter of the straw.

a

b
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rolling it into a small tube (Fig. 44.19b). From far away, the soda straw looks like a 
one-dimensional straight line. The second dimension has been curled up and is not 
visible. String theory claims that six spacetime dimensions are curled up in an anal-
ogous way, with the curling being on the size of the Planck length and impossible 
to see from our viewpoint.

Another complicating factor with string theory is that it is difficult for string the-
orists to guide experimentalists as to what to look for in an experiment. The Planck 
length is so small that direct experimentation on strings is impossible. Until the 
theory has been further developed, string theorists are restricted to applying the 
theory to known results and testing for consistency.

One of the predictions of string theory, called supersymmetry, or SUSY, suggests 
that every elementary particle has a superpartner that has not yet been observed. It 
is believed that supersymmetry is a broken symmetry (like the broken electroweak 
symmetry at low energies) and the masses of the superpartners are above our cur-
rent capabilities of detection by accelerators. Some theorists claim that the mass 
of superpartners is the missing mass discussed in Section 44.11. Keeping with the 
whimsical trend in naming particles and their properties, superpartners are given 
names such as the squark (the superpartner to a quark), the selectron (electron), and 
the gluino (gluon).

Other theorists are working on M-theory, which is an eleven-dimensional theory 
based on membranes rather than strings. In a way reminiscent of the correspon-
dence principle, M-theory is claimed to reduce to string theory if one compactifies 
from eleven dimensions to ten dimensions.

The questions listed at the beginning of this section go on and on. Because of 
the rapid advances and new discoveries in the field of particle physics, many of 
these questions may be resolved in the next decade and other new questions may 
emerge.

Summary
 › Concepts and Principles

Before quark theory was developed, the four fundamental forces in nature 
were identified as nuclear, electromagnetic, weak, and gravitational. All 
the interactions in which these forces take part are mediated by field par-
ticles. The electromagnetic interaction is mediated by photons; the weak 
interaction is mediated by the W6 and Z0 bosons; the gravitational inter-
action is mediated by gravitons; and the nuclear interaction is mediated 
by gluons.

Particles other than field particles are classified as hadrons or leptons. 
Hadrons interact via all four fundamental forces. They have size and struc-
ture and are not elementary particles. There are two types, baryons and 
mesons. Baryons, which generally are the most massive particles, have non-
zero baryon number and a spin of 12 or 32. Mesons have baryon number zero 
and either zero or integral spin.

In all reactions and decays, quantities such as energy, linear 
momentum, angular momentum, electric charge, baryon 
number, and lepton number are strictly conserved. Certain 
particles have properties called strangeness and charm. 
These unusual properties are conserved in all decays and 
nuclear reactions except those that occur via the weak force.

A charged particle and its antiparticle have the 
same mass but opposite charge, and other proper-
ties will have opposite values, such as lepton num-
ber and baryon number. It is possible to produce 
particle– antiparticle pairs in nuclear reactions if 
the available energy is greater than 2mc 2, where m 
is the mass of the particle (or antiparticle).

Leptons have no structure or size and are consid-
ered truly elementary. They interact only via the 
weak, gravitational, and electromagnetic forces. 
Six types of leptons exist: the electron e2, the 
muon m2, and the tau t2, and their neutrinos ne , 
n

m
, and n

t
.

Theorists in elementary particle physics have postulated that all 
hadrons are composed of smaller units known as quarks, and exper-
imental evidence agrees with this model. Quarks have fractional 
electric charge and come in six flavors: up (u), down (d), strange 
(s), charmed (c), top (t), and bottom (b). Each baryon contains three 
quarks, and each meson contains one quark and one antiquark.

continued
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According to the theory of quantum chromodynamics, quarks have a prop-
erty called color; the force between quarks is referred to as the strong force 
or the color force. The strong force is now considered to be a fundamental 
force. The nuclear force, which was originally considered to be fundamen-
tal, is now understood to be a secondary effect of the strong force due to 
gluon exchanges between hadrons.

The electromagnetic and weak forces are now 
considered to be manifestations of a single force 
called the electroweak force. The combination of 
quantum chromodynamics and the electroweak 
theory is called the Standard Model.

The background microwave radiation discovered by Penzias and Wilson strongly suggests that the Universe started with a Big Bang 
about 14 billion years ago. The background radiation is equivalent to that of a black body at 3 K. Various astronomical measure-
ments strongly suggest that the Universe is expanding. According to Hubble’s law, distant galaxies are receding from the Earth at a 
speed v 5 HR, where H is the Hubble constant, H < 22 3 1023 m/(s ? ly), and R is the distance from the Earth to the galaxy.

Think–Pair–Share
See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

1. Your group is working in a particle physics laboratory and 
is studying the following reaction: (a) p1 1 p S K1 1 S1. 
In your group, analyze the reaction in terms of constituent 
quarks and show that each type of quark is conserved. (b) 
The next reaction you study is K2 1 p S K1 1 K0 1 V2. Ana-
lyze this reaction in terms of constituent quarks and show 
that each type of quark is conserved. In the reaction p 1  
p S K0 1 p 1 p1 1 ?, (c) determine the quarks in the 
mystery particle, and (d) identify the mystery particle.

2. Consider the following reaction that proceeds by the strong 
interaction, in which strangeness is conserved. Discuss this 
reaction in your group and answer the following: What are 
the possible identities of the mystery particle?

K11 p  S  ? 1 p

3. Consider the following reactions that proceed by the weak 
interaction, in which strangeness is not conserved. Assume 

that the strangeness changes by one unit. Discuss these 
reactions in your group and answer the following: What are 
the possible identities of the mystery particles?

(a) V2  S  ? 1 p2

(b) K1  S  ? 1 m11 n
m

4. ACTIvITy  Your team is studying the phi meson, which has 
a mass of 1 019 MeV/c2 and zero electric charge. (a) Deter-
mine which of the following decay schemes are possible for 
the phi meson at rest:

(i) f  S  K1 1 K2 1 p0

(ii) f  S  K1 1 K2

(iii) f  S  K1 1 e2

(iv) f  S  K1 1 p2

(b) For the reaction(s) that occur, find the kinetic energy of 
the decay products.

Problems
and sat down at the same table for dinner. The supervisor 
looked shocked when the employee mentioned that he had 
just had a PET scan before the meeting. Later that evening, 
the supervisor started feeling ill and became convinced 
that it was radiation poisoning due to the significant radi-
ation he received during his encounter with the employee. 
The supervisor quickly filed suit for radiation damage to 
his body against the employee based on this conclusion. In 
order to generate a defense argument for the employee, cal-
culate the activity of the 14O in the employee’s body when 
the two sat down to have dinner at 5:30.

SecTion 44.3  Mesons and the Beginning  
of Particle Physics

3. One mediator of the weak interaction is the Z0 boson, with 
mass 91 GeV/c2. Use this information to find the order of 
magnitude of the range of the weak interaction.

See the Preface for an explanation of the icons used in this problems set. 
For additional assessment items for this section, go to 

SecTion 44.2  Positrons and Other Antiparticles

1. Two photons are produced when a proton and an antipro-
ton annihilate each other. In the reference frame in which 
the center of mass of the proton–antiproton system is sta-
tionary, what are (a) the minimum frequency and (b) the 
corresponding wavelength of each photon?

2. You are hired as an expert witness for the defense of an 
employee who is being sued for exposing his supervisor to 
harmful radiation. The employee had a PET scan and was 
injected at 4:30 PM with glucose containing on the order 
of 1014 atoms of 14O, with a half-life of 70.6 s. Immediately 
after the scan was completed, at 5:30 PM, the employee met 
his supervisor for a dinner meeting, shook hands with him, 

CR

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. (a) Prove that the exchange of a virtual particle of mass m can 
be associated with a force with a range given by

d <
1 240
4pmc 2 5

98.7
mc 2

 where d is in nanometers and mc 2 is in electron volts. 
(b)  State the pattern of dependence of the range on the 
mass. (c) What is the range of the force that might be pro-
duced by the virtual exchange of a proton?

SecTion 44.5  Conservation Laws

5. When a high-energy proton or pion traveling near the speed 
of light collides with a nucleus, it travels an average distance 
of 3 3 10215 m before interacting. From this information, 
find the order of magnitude of the time interval required 
for the strong interaction to occur.

6. The first of the following two reactions can occur, but the 
second cannot. Explain.

KS
0   S   p1 1 p2 (can occur)

L0   S   p1 1 p2 (cannot occur)

7. Each of the following reactions is forbidden. Determine 
what conservation laws are violated for each reaction.

(a) p 1 p   S   m1 1 e2

(b) p2 1 p   S   p 1 p1

(c) p 1 p   S   p 1 p 1 n

(d) g 1 p   S   n 1 p 0

(e) ne 1 p   S   n 1 e1

8. (a) Show that baryon number and charge are conserved in 
the following reactions of a pion with a proton:

(1)    p1 1 p   S   K1 1 S1

(2)    p1 1 p   S   p1 1 S1

 (b) The first reaction is observed, but the second never 
occurs. Explain.

9. The following reactions or decays involve one or more neu-
trinos. In each case, supply the missing neutrino (ne, nm

, or 
n

t 
) or antineutrino.

(a) p2   S   m2 1 ? (b) K1   S   m1 1 ?

(c) ? 1 p   S   n 1 e1 (d) ? 1 n   S   p 1 e2

(e) ? 1 n   S   p 1 m2 (f) m2   S   e2 1 ? 1 ?

10. Determine the type of neutrino or antineutrino involved in 
each of the following processes.

(a) p1   S   p0 1 e1 1 ? (b) ? 1 p   S   m2 1 p 1 p1

(c) L0   S   p 1 m2 1 ? (d) t1   S   m1 1 ? 1 ?

11. Determine which of the following reactions can occur. For 
those that cannot occur, determine the conservation law (or 
laws) violated.

(a) p   S   p1 1 p 0 (b) p 1 p   S   p 1 p 1 p0

(c) p 1 p   S   p 1 p1 (d) p1   S   m1 1 n
m
 

(e) n   S   p 1 e2 1 ne (f) p1   S   m1 1 n

12. (a) Show that the proton-decay p   S   e1 1 g cannot occur 
because it violates the conservation of baryon number. 
(b) What If? Imagine that this reaction does occur and the pro-
ton is initially at rest. Determine the energies and magnitudes 
of the momentum of the positron and photon after the reac-
tion. (c) Determine the speed of the positron after the reaction.

13. A L0 particle at rest decays into a proton and a p2 meson.  
(a) Use the data in Table 44.2 to find the Q value for this 
decay in MeV. (b) What is the total kinetic energy shared by 
the proton and the p2 meson after the decay? (c) What is the 
total momentum shared by the proton and the p2 meson? 
(d) The proton and the p2 meson have momenta with the 
same magnitude after the decay. Do they have equal kinetic 
energies? Explain.

SecTion 44.6  Strange Particles and Strangeness

14. The neutral meson r0 decays by the strong interaction into 
two pions:

r0   S   p1 1 p2    (T1/2 , 10223 s)

 The neutral kaon also decays into two pions:

KS
0   S   p1 1 p2    (T1/2 , 10210 s)

 How do you explain the difference in half-lives?

15. Which of the following processes are allowed by the strong 
interaction, the electromagnetic interaction, the weak inter-
action, or no interaction at all? (Note: The eta (h) particle is 
a chargeless, non-strange meson.)

(a) p2 1 p   S   2h (b) K2 1 n   S   L0 1 p2

(c) K2   S   p2 1 p0 (d) V2   S   J2 1 p0

(e) h   S   2g

16. For each of the following forbidden decays, determine what 
conservation laws are violated.

(a) m2   S   e2 1 g (b) n   S   p 1 e2 1 ne

(c) L0   S   p 1 p0 (d) p   S   e1 1 p0

(e) J0   S   n 1 p0

17. Determine whether or not strangeness is conserved in the 
following decays and reactions.

(a) L0   S   p 1 p2 (b) p2 1 p   S   L0 1 K0

(c) p 1 p   S   L0 1 L0 (d) p2 1 p   S   p2 1 S1

(e) J2   S   L0 1 p2 (f) J0   S   p 1 p2

18. Identify the conserved quantities in the following processes.

(a) J2   S   L0 1 m2 1 n
m
 (b) K 0

S   S   2p0

(c) K2 1 p   S   S0 1 n (d) S0   S   L0 1 g

(e) e1 1 e2   S   m1 1 m2 (f) p 1 n   S   L0 1 S2

(g) Which reactions cannot occur? Why not?

19. The particle decay S1   S   p1 1 n is observed in a bubble 
chamber. Figure P44.19 (page 1256) represents the curved 
tracks of the particles S1 and p1 and the invisible track of the 
neutron in the presence of a uniform magnetic field of 1.15 T  
directed out of the page. The measured radii of curvature 
are 1.99 m for the S1 particle and 0.580 m for the p1 particle.  
From this information, we wish to determine the mass  
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1256 Chapter 44 Particle Physics and Cosmology

of the S1 particle. (a) Find the magnitudes of the momenta 
of the S1 and the p1 particles in units of MeV/c. (b) The 
angle between the momenta of the S1 and the p1 particles  
at the moment of decay is u 5 64.58. Find the magnitude of the 
momentum of the neutron. (c) Calculate the total energy of 
the p1 particle and of the neutron from their known masses 
(m

p
 5 139.6 MeV/c2, mn 5 939.6 MeV/c2) and the relativistic 

energy–momentum relation. (d)  What is the total energy 
of the S1 particle? (e) Calculate the mass of the S1 particle.  
(f) Compare the mass with the value in Table 44.2.

n

�

�

�

p

u

Figure P44.19

SecTion 44.8  Quarks

20. The quark compositions of the K0 and L0 particles are ds 
and uds, respectively. Show that the charge, baryon number, 
and strangeness of these particles equal the sums of these 
numbers for the quark constituents.

21. Identify the particles corresponding to the quark states 
(a) suu, (b) ud, (c) sd, and (d) ssd.

22. You are working as an assistant for a physics professor. For 
an upcoming lecture, your professor asks you to prepare 
a presentation slide with the following two proposed reac-
tions which might proceed via the strong interaction:

(i) p2 1 p  S  K0 1 L0

(ii) p2 1 p  S  K0 1 n

 On the slide, the professor wishes for you to show the quark 
analysis of the reactions, and (a) identify which reaction is 
observed, and (b) explain why the other is not observed.

23. A S0 particle traveling through matter strikes a proton; then 
a S1 and a gamma ray as well as a third particle emerge. Use 
the quark model of each to determine the identity of the 
third particle.

SecTion 44.11  The Cosmic Connection

Problem 11 in Chapter 38 can be assigned with this section.

24. Review. Refer to Section 38.4. Prove that the Doppler shift 
in wavelength of electromagnetic waves is described by

l9 5 lÎ1 1 vyc
1 2 vyc

 where l9 is the wavelength measured by an observer moving 
at speed v away from a source radiating waves of wavelength l.

25. Review. The cosmic background radiation is blackbody 
radiation from a source at a temperature of 2.73 K. (a) Use 
Wien’s law to determine the wavelength at which this radi-
ation has its maximum intensity. (b) In what part of the 
electromagnetic spectrum is the peak of the distribution?

26. If the average density of the Universe is small compared 
with the critical density, the expansion of the Universe 
described by Hubble’s law proceeds with speeds that are 
nearly constant over time. (a) Prove that in this case the age 
of the Universe is given by the inverse of the Hubble con-
stant. (b) Calculate 1/H and express it in years.

27.  The early Universe was dense with gamma-ray photons of 
energy , kBT and at such a high temperature that protons 
and antiprotons were created by the process g   S   p 1 p 
as rapidly as they annihilated each other. As the Universe 
cooled in adiabatic expansion, its temperature fell below 
a certain value and proton pair production became rare.  
At that time, slightly more protons than antiprotons 
existed, and essentially all the protons in the Universe 
today date from that time. (a) Estimate the order of mag-
nitude of the temperature of the Universe when protons 
condensed out. (b) Estimate the order of magnitude of 
the temperature of the Universe when electrons con-
densed out.

28. You are working in a cosmology research laboratory. A col-
league has proposed that dark matter distributed uniformly 
in a sphere centered on the Sun and of radius 1 AU is affect-
ing the Earth’s motion through space. You feel that that 
idea is not valid. Perform a calculation that will show that 
the effect on the Earth of any dark matter in this sphere 
is miniscule. Estimates of the density of dark matter vary 
widely, but a typical value is 5 3 10–22 kg/m3.

29. Review. Use Stefan’s law to find the intensity of the cosmic 
background radiation emitted by the fireball of the Big 
Bang at a temperature of 2.73 K.

30. The visible section of the Universe is a sphere centered on 
the bridge of your nose, with radius 13.7 billion light-years. 
(a) Explain why the visible Universe is getting larger, with 
its radius increasing by one light-year in every year. (b) Find 
the rate at which the volume of the visible section of the 
Universe is increasing.

31. The first quasar to be identified and the brightest found 
to date, 3C 273 in the constellation Virgo, was observed to 
be moving away from the Earth at such high speed that the 
observed blue 434-nm Hg line of hydrogen is Doppler-shifted 
to 510 nm, in the green portion of the spectrum. (a) How fast 
is the quasar receding? (b)  Edwin Hubble discovered that 
all objects outside the local group of galaxies are moving 
away from us, with speeds v proportional to their distances 
R. Hubble’s law is expressed as v 5 HR, where the Hubble 
constant has the approximate value H < 22 3 1023 m/(s ? ly). 
Determine the distance from the Earth to this quasar.
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32. The various spectral lines observed in the light from a 
distant quasar have longer wavelengths l9n than the wave-
lengths ln measured in light from a stationary source. Here 
n is an index taking different values for different spectral 
lines. The fractional change in wavelength toward the red is 
the same for all spectral lines. That is, the Doppler redshift 
parameter Z defined by

Z 5
l9n 2 ln

ln

 is common to all spectral lines for one object. In terms of 
Z, use Hubble’s law to determine (a) the speed of recession 
of the quasar and (b) the distance from the Earth to this 
quasar.

SecTion 44.12  Problems and Perspectives

33. Classical general relativity views the structure of spacetime 
as deterministic and well defined down to arbitrarily small 
distances. On the other hand, quantum general relativity 
forbids distances smaller than the Planck length given by  
L 5 ("G/c3)1/2. (a) Calculate the value of the Planck length. 
The quantum limitation suggests that after the Big Bang, 
when all the presently observable section of the Universe 
was contained within a point-like singularity, nothing could 
be observed until that singularity grew larger than the 
Planck length. Because the size of the singularity grew at 
the speed of light, we can infer that no observations were 
possible during the time interval required for light to travel 
the Planck length. (b) Calculate this time interval, known 
as the Planck time T, and state how it compares with the 
ultrahot epoch mentioned in the text.

aDDiTional ProbleMS

34. Identify the unknown particle on the left side of the follow-
ing reaction:

? 1 p   S   n 1 m1

35. For each of the following decays or reactions, name at least 
one conservation law that prevents it from occurring.

(a) p2 1 p   S   S1 1 p0

(b) m2   S   p2 1 ne

(c) p   S   p1 1 p1 1 p2

36. Why is the following situation impossible? A gamma-ray photon 
with energy 1.05 MeV strikes a stationary electron, causing 
the following reaction to occur:

g2 1 e2   S   e2 1 e2 1 e1

 Assume all three final particles move with the same speed 
in the same direction after the reaction.

37. Review. Supernova Shelton 1987A, located approximately 
170 000 ly from the Earth, is estimated to have emitted a 
burst of neutrinos carrying energy , 1046 J (Fig. P44.37). 
Suppose the average neutrino energy was 6 MeV and your 
mother’s body presented cross-sectional area 5 000 cm2. To 
an order of magnitude, how many of these neutrinos passed 
through her?

Figure P44.37 Problems 37 and 48.

38. The energy flux carried by neutrinos from the Sun 
is estimated to be on the order of 0.400 W/m2 at the 
Earth’s surface. Estimate the fractional mass loss of  
the Sun over 109 yr due to the emission of neutrinos. The 
mass of the Sun is 1.989 3 1030 kg. The Earth–Sun distance 
is equal to 1.496 3 1011 m.

39. Hubble’s law can be stated in vector form as vS 5 H R
S

.  
Outside the local group of galaxies, all objects are moving 
away from us with velocities proportional to their positions 
relative to us. In this form, it sounds as if our location in 
the Universe is specially privileged. Prove that Hubble’s 
law is equally true for an observer elsewhere in the Uni-
verse. Proceed as follows. Assume we are at the origin of 
coordinates, one galaxy cluster is at location R

S
1 and has 

velocity vS1 5 HR
S

1 relative to us, and another galaxy cluster 
has position vector R

S
2 and velocity vS2 5 H R

S
2. Suppose the 

speeds are nonrelativistic. Consider the frame of reference 
of an observer in the first of these galaxy clusters. (a) Show 
that our velocity relative to her, together with the position 
vector of our galaxy cluster from hers, satisfies Hubble’s 
law. (b) Show that the position and velocity of cluster 2 rel-
ative to cluster 1 satisfy Hubble’s law.

40. Identify the mediators for the two interactions described in 
the Feynman diagrams shown in Figure P44.40 (page 1258).

T
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Figure P44.40

41. An unstable particle, initially at rest, decays into a 
proton (rest energy 938.3 MeV) and a negative pion 
(rest energy 139.6 MeV). A uniform magnetic field of  
0.250 T exists perpendicular to the velocities of the created 
particles. The radius of curvature of each track is found to 
be 1.33 m. What is the mass of the original unstable particle?

42. An unstable particle, initially at rest, decays into a positively 
charged particle of charge 1e and rest energy E

1
 and a neg-

atively charged particle of charge 2e and rest energy E
2

. A 
uniform magnetic field of magnitude B exists perpendicu-
lar to the velocities of the created particles. The radius of 
curvature of each track is r. What is the mass of the original 
unstable particle?

43. (a) What processes are described by the Feynman diagrams 
in Figure P44.43? (b) What is the exchanged particle in 
each process?

e�e�

d

dd

u

u

u

�

gg

m

m

n

a b

Figure P44.43

44. You are performing work as an assistant to a cosmology pro-
fessor. She asks you to estimate the temperature of the Uni-
verse at a time after the Big Bang when neutral atoms could 
form from the plasma and the Universe became transpar-
ent. She tells you that the energy required to excite an atom 
is on the order of 1 eV. She suggests you use the Boltzmann 
distribution function e2E/k BT  to find the order of magnitude 
of the threshold temperature at which 1.00% of a popula-
tion of photons has energy greater than 1.00 eV.

45. Two protons approach each other head-on, each with 
70.4  MeV of kinetic energy, and engage in a reaction in 
which a proton and positive pion emerge at rest. What third 
particle, obviously uncharged and therefore difficult to 
detect, must have been created?

cHallenGe ProbleMS

 46. A particle of mass m 1 is fired at a stationary particle of mass 
m 2, and a reaction takes place in which new particles are 

created out of the incident kinetic energy. Taken together, 
the product particles have total mass m 3. The minimum 
kinetic energy the bombarding particle must have so as to 
induce the reaction is called the threshold energy. At this 
energy, the kinetic energy of the products is a minimum, so 
the fraction of the incident kinetic energy that is available 
to create new particles is a maximum. This condition is met 
when all the product particles have the same velocity and the 
particles have no kinetic energy of motion relative to one 
another. (a) By using conservation of relativistic energy and 
momentum and the relativistic energy– momentum relation, 
show that the threshold kinetic energy is

K min 5
fm3

22 sm1 1 m 2 d
 

2 gc 2

2m2

  Calculate the threshold kinetic energy for each of the 
following reactions: (b) p 1 p   S   p 1 p 1 p 1 p (one of 
the initial protons is at rest, and antiprotons are produced); 
(c) p2 1 p   S   K0 1 L0 (the proton is at rest, and strange 
particles are produced); (d) p 1 p   S   p 1 p 1 p0 (one of 
the initial protons is at rest, and pions are produced); and 
(e) p 1 p   S   Z0  (one of the initial particles is at rest, and 
Z0 particles of mass 91.2 GeV/c 2 are produced).

 47. Assume the average density of the Universe is equal to the 
critical density. (a) Prove that the age of the Universe is given 
by 2/(3H ). (b) Calculate 2/(3H ) and express it in years.

 48. The most recent naked-eye supernova was Supernova 
Shelton 1987A (Fig. P44.37). It was 170 000 ly away in the 
Large Magellanic Cloud, a satellite galaxy of the Milky 
Way. Approximately 3 h before its optical brightening 
was noticed, two neutrino detection experiments simulta-
neously registered the first neutrinos from an identified  
source other than the Sun. The Irvine–Michigan–Brookhaven 
experiment in a salt mine in Ohio registered eight neutrinos 
over a 6-s period, and the Kamiokande II experiment in a zinc 
mine in Japan counted eleven neutrinos in 13 s. (Because the 
supernova is far south in the sky, these neutrinos entered the 
detectors from below. They passed through the Earth before 
they were by chance absorbed by nuclei in the detectors.) The 
neutrino energies were between approximately 8 MeV and 
40 MeV. If neutrinos have no mass, neutrinos of all energies 
should travel together at the speed of light, and the data are 
consistent with this possibility. The arrival times could vary 
simply because neutrinos were created at different moments 
as the core of the star collapsed into a neutron star. If neutri-
nos have nonzero mass, lower-energy neutrinos should move 
comparatively slowly. The data are consistent with a 10-MeV 
neutrino requiring at most approximately 10 s more than a 
photon would require to travel from the supernova to us. Find 
the upper limit that this observation sets on the mass of a neu-
trino. (Other evidence sets an even tighter limit.)

 49. A rocket engine for space travel using photon drive and mat-
ter–antimatter annihilation has been suggested. Suppose 
the fuel for a short-duration burn consists of N protons and 
N antiprotons, each with mass m. (a) Assume all the fuel 
is annihilated to produce photons. When the photons are 
ejected from the rocket, what momentum can be imparted 
to it? (b) What If? If half the protons and antiprotons anni-
hilate each other and the energy released is used to eject 
the remaining particles, what momentum could be given to 
the rocket? (c) Which scheme results in the greater change 
in speed for the rocket?
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Appendix A Tables

Table a.1 Conversion Factors

Length

 m  cm  km  in.  ft  mi

1 meter 1 102 1023 39.37 3.281 6.214 3 1024

1 centimeter 1022 1 1025 0.393 7 3.281 3 1022 6.214 3 1026

1 kilometer 103 105 1 3.937 3 104 3.281 3 103 0.621 4

1 inch 2.540 3 1022 2.540 2.540 3 1025 1 8.333 3 1022 1.578 3 1025

1 foot 0.304 8 30.48 3.048 3 1024 12 1 1.894 3 1024

1 mile 1 609 1.609 3 105 1.609 6.336 3 104 5 280 1

Mass

 kg  g  slug  u

1 kilogram 1 103 6.852 3 1022 6.024 3 1026

1 gram 1023 1 6.852 3 1025 6.024 3 1023

1 slug 14.59 1.459 3 104 1 8.789 3 1027

1 atomic mass unit 1.660 3 10227 1.660 3 10224 1.137 3 10228 1
Note: 1 metric ton 5 1 000 kg.

Time

 s  min  h  day  yr

1 second 1 1.667 3 1022 2.778 3 1024 1.157 3 1025 3.169 3 1028

1 minute 60 1 1.667 3 1022 6.994 3 1024 1.901 3 1026

1 hour 3 600 60 1 4.167 3 1022 1.141 3 1024

1 day 8.640 3 104 1 440 24 1 2.738 3 1025

1 year 3.156 3 107 5.259 3 105 8.766 3 103 365.2 1

Speed

 m/s  cm/s  ft/s  mi/h

1 meter per second 1 102 3.281 2.237

1 centimeter per second 1022 1 3.281 3 1022 2.237 3 1022

1 foot per second 0.304 8 30.48 1 0.681 8

1 mile per hour 0.447 0 44.70 1.467 1
Note: 1 mi/min 5 60 mi/h 5 88 ft/s.

Force

 N  lb

1 newton 1 0.224 8

1 pound 4.448 1

(Continued)
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Table a.1 Conversion Factors (continued )

Energy, Energy Transfer

 J ft ? lb eV

1 joule 1 0.737 6 6.242 3 1018

1 foot-pound 1.356 1 8.464 3 1018

1 electron volt 1.602 3 10219 1.182 3 10219 1

1 calorie 4.186 3.087 2.613 3 1019

1 British thermal unit 1.055 3 103 7.779 3 102 6.585 3 1021

1 kilowatt-hour 3.600 3 106 2.655 3 106 2.247 3 1025

 cal Btu kWh

1 joule 0.238 9 9.481 3 1024 2.778 3 1027

1 foot-pound 0.323 9 1.285 3 1023 3.766 3 1027

1 electron volt 3.827 3 10220 1.519 3 10222 4.450 3 10226

1 calorie 1 3.968 3 1023 1.163 3 1026

1 British thermal unit 2.520 3 102 1 2.930 3 1024

1 kilowatt-hour 8.601 3 105 3.413 3 102 1

Pressure

 Pa atm

1 pascal 1 9.869 3 1026

1 atmosphere 1.013 3 105 1

1 centimeter mercurya 1.333 3 103 1.316 3 1022

1 pound per square inch 6.895 3 103 6.805 3 1022

1 pound per square foot 47.88 4.725 3 1024

 cm Hg lb/in.2 lb/ft2

1 pascal 7.501 3 1024 1.450 3 1024 2.089 3 1022

1 atmosphere 76 14.70 2.116 3 103

1 centimeter mercurya 1 0.194 3 27.85

1 pound per square inch 5.171 1 144

1 pound per square foot 3.591 3 1022 6.944 3 1023 1
aAt 08C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s2.

Table a.2 Symbols, Dimensions, and Units of Physical Quantities

 Common   Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration aS m/s2 L/T2 m/s2

Amount of substance n MOLE  mol
Angle u, f radian (rad)  
Angular acceleration aS rad/s2 T 22 s22

Angular frequency v rad/s T 21 s21

Angular momentum L
S

 kg ? m2/s ML2/T kg ? m2/s

Angular velocity vS rad/s T 21 s21

Area A m2 L2 m2

Atomic number Z   
Capacitance C farad (F) Q2T2/ML2 A2 ? s4/kg ? m2

Charge q, Q , e coulomb (C) Q A ? s
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Table a.2 Symbols, Dimensions, and Units of Physical Quantities (continued )

 Common   Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units
Charge density    
 Line l C/m Q /L A ? s/m
 Surface s C/m2 Q /L2 A ? s/m2

 Volume r C/m3 Q /L3 A ? s/m3

Conductivity s 1/V ? m Q2T/ML3 A2 ? s3/kg ? m3

Current I AMPERE Q /T A
Current density J A/m2 Q /TL2 A/m2

Density r kg/m3 M/L3 kg/m3

Dielectric constant k   
Electric dipole moment pS C ? m QL A ? s ? m

Electric field E
S

 V/m ML/QT2 kg ? m/A ? s3

Electric flux FE V ? m ML3/QT2 kg ? m3/A ? s3

Electromotive force « volt (V) ML2/QT2 kg ? m2/A ? s3

Energy, energy transfer E, U, K, T joule ( J) ML2/T2 kg ? m2/s2

Entropy S J/K ML2/T2K kg ? m2/s2 ? K
Force F

S
 newton (N) ML/T2 kg ? m/s2

Frequency f hertz (Hz) T 21 s21

Heat Q joule ( J) ML2/T2 kg ? m2/s2

Inductance L henry (H) ML2/Q2 kg ? m2/A2 ? s2

Length ,, L METER L m
 Displacement Dx, D rS   

 Distance d, h   
 Position x, y, z, rS   

 Width, height, radius w, h, r, R, a, b
Magnetic dipole moment mS N ? m/T QL2/T A ? m2

Magnetic field B
S

 tesla (T) (5 Wb/m2) M/QT kg/A ? s2

Magnetic flux FB weber (Wb) ML2/QT kg ? m2/A ? s2

Mass m, M KILOGRAM M kg
Moment of inertia I kg ? m2 ML2 kg ? m2

Momentum pS kg ? m/s ML/T kg ? m/s

Period T s T s
Permeability of free space m0 N/A2 (5 H/m) ML/Q2 kg ? m/A2 ? s2

Permittivity of free space e0 C2/N ? m2 (5 F/m) Q2T2/ML3 A2 ? s4/kg ? m3

Potential V volt (V)(5 J/C) ML2/QT2 kg ? m2/A ? s3

Power P watt (W)(5 J/s) ML2/T3 kg ? m2/s3

Pressure P pascal (Pa)(5 N/m2) M/LT2 kg/m ? s2

Resistance R ohm (V)(5 V/A) ML2/Q2T kg ? m2/A2 ? s3

Specific heat c J/kg ? K L2/T2K m2/s2 ? K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque tS N ? m ML2/T2 kg ? m2/s2

Velocity vS m/s L/T m/s

Volume V m3 L3 m3

Wavelength   l m L m
Work W joule ( J)(5 N ? m) ML2/T2 kg ? m2/s2

aThe base SI units are given in uppercase letters.
bThe symbols M, L, T, K, and Q denote mass, length, time, temperature, and charge, respectively.
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Appendix B Mathematics Review

T his appendix in mathematics is intended as a brief review of operations and  
methods. Early in this course, you should be totally familiar with basic alge-
braic techniques, analytic geometry, and trigonometry. The sections on dif-

ferential and integral calculus are more detailed and are intended for students who 
have difficulty applying calculus concepts to physical situations.

B.1  Scientific Notation
Many quantities used by scientists often have very large or very small values. The 
speed of light, for example, is about 300 000 000 m/s, and the ink required to 
make the dot over an i in this textbook has a mass of about 0.000 000 001 kg. Obvi-
ously, it is very cumbersome to read, write, and keep track of the numbers of zeros 
in such quantities. We avoid this problem by using a method incorporating powers 
of the number 10:

100 5 1

101 5 10

102 5 10 3 10 5 100

103 5 10 3 10 3 10 5 1 000

104 5 10 3 10 3 10 3 10 5 10 000

105 5 10 3 10 3 10 3 10 3 10 5 100 000

and so on. The number of zeros corresponds to the power to which ten is raised, 
called the exponent of ten. For example, the speed of light, 300 000 000 m/s, can 
be expressed as 3.00 3 108 m/s.

In this method, some representative numbers smaller than unity are the 
following:

1021 5
1
10

 5 0.1 

1022 5
1

10 3 10
 5 0.01 

1023 5
1

10 3 10 3 10
 5 0.001 

1024 5
1

10 3 10 3 10 3 10
 5 0.000 1 

1025 5
1

10 3 10 3 10 3 10 3 10
 5 0.000 01 

In these cases, the number of places the decimal point is to the left of the digit 1 
equals the value of the (negative) exponent. Numbers expressed as some power of 
ten multiplied by another number between one and ten are said to be in scientific 
notation. For example, the scientific notation for 5 943 000 000 is 5.943 3 109 and 
that for 0.000 083 2 is 8.32 3 1025.
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When numbers expressed in scientific notation are being multiplied, the follow-
ing general rule is very useful:

 10n 3 10m 5 10n1m  (B.1)

where n and m can be any numbers (not necessarily integers). For example, 102 3 
105 5 107. The rule also applies if one of the exponents is negative: 103 3 1028 5 1025.

When dividing numbers expressed in scientific notation, note that

 
10n

10m 5 10n 3 102m 5 10n2m  (B.2)

Exercises
With help from the preceding rules, verify the answers to the following equations:

1. 86 400 5 8.64 3 104

2. 9 816 762.5 5 9.816 762 5 3 106

3. 0.000 000 039 8 5 3.98 3 1028

4. (4.0 3 108)(9.0 3 109) 5 3.6 3 1018

5. (3.0 3 107)(6.0 3 10212) 5 1.8 3 1024

6. 
75 3 10211 
5.0 3 1023 

 5 1.5 3 1027

7. 
s3 3 106ds8 3 1022d
s2 3 1017ds6 3 105d

 5 2 3 10218

B.2  Algebra
Some Basic Rules
When algebraic operations are performed, the laws of arithmetic apply. Symbols 
such as x, y, and z are usually used to represent unspecified quantities, called the 
unknowns.

First, consider the equation

8x 5 32

If we wish to solve for x, we can divide (or multiply) each side of the equation by the 
same factor without destroying the equality. In this case, if we divide both sides by 8, 
we have

8x
8

5
32
8

 

x 5 4 

Next, consider the equation

x 1 2 5 8

In this type of expression, we can add or subtract the same quantity from each side. 
If we subtract 2 from each side, we have

x 1 2 2 2 5 8 2 2 

 x 5 6 

In general, if x 1 a 5 b, then x 5 b 2 a.
Now consider the equation

x
5

 5 9
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If we multiply each side by 5, we are left with x on the left by itself and 45 on the right:

Sx
5Ds5d 5 9 3 5 

 x 5 45 
In all cases, whatever operation is performed on the left side of the equality must also be per-
formed on the right side.

The following rules for multiplying, dividing, adding, and subtracting fractions 
should be recalled, where a, b, c, and d are four numbers:

 Rule Example

Multiplying  Sa
bDS c

dD 5
ac
bd

 S2
3DS4

5D 5
8
15

 

Dividing 
saybd
scydd

5
ad
bc

  
2y3
4y5

5
s2ds5d
s4ds3d

 5
10
12

 

Adding 
a
b

6
c
d

5
ad 6 bc

bd
  

2
3

 2
4
5

 5
s2ds5d 2 s4ds3d

s3ds5d
 5 2

2
15

 

Exercises
In the following exercises, solve for x:

 Answers

1.  a 5
1

1 1 x
 x 5

1 2 a
a

2.  3x 2 5 5 13 x 5 6

3.  ax 2 5 5 bx 1 2 x 5
7

a 2 b

4.  
5

2x 1 6
 5

3
4x 1 8

 x 5 2 

11
7

Powers
When powers of a given quantity x are multiplied, the following rule applies:

 xn xm 5 xn1m  (B.3)

For example, x 2x 4 5 x 214 5 x 6.
When dividing the powers of a given quantity, the rule is

 
xn 
xm 

 5 xn2m  (B.4)

For example, x 8/x 2 5 x 822 5 x 6.
A power that is a fraction, such as 13, corresponds to a root as follows:

 x 1yn 5 Ïn x  (B.5)

For example, 41y3 5 Ï3 4 5 1.587 4. (A scientific calculator is useful for such 
calculations.)

Finally, any quantity xn raised to the mth power is

 sxndm 5 xnm  (B.6)

Table B.1 summarizes the rules of exponents.

Exercises
Verify the following equations:

1. 32 3 33 5 243
2. x5x28 5 x23

TAble b.1 Rules of 
Exponents

x 
0 5 1

x1 5 x
xn xm 5 xn1m

xnyxm 5 xn2m

x1yn 5 Ïn x
sxndm 5 xnm
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3. x10/x25 5 x15

4. 51/3 5 1.709 976 (Use your calculator.)
5. 601/4 5 2.783 158 (Use your calculator.)
6. (x4)3 5 x12

Factoring
Some useful formulas for factoring an equation are the following:

ax 1 ay 1 az 5 asx 1 y 1 zd common factor

a2 1 2ab 1 b 2 5 sa 1 bd2 perfect square

a2 2 b 2 5 sa 1 bdsa 2 bd differences of squares

Quadratic Equations
The general form of a quadratic equation is

 ax 2 1 bx 1 c 5 0  (B.7)

where x is the unknown quantity and a, b, and c are numerical factors referred to as 
coefficients of the equation. This equation has two roots, given by

 x 5
2b 6 Ïb 2 2 4ac 

2a
 (B.8)

If b2 $ 4ac, the roots are real.

 Example B.1  

Find the roots of the equation x2 1 5x 1 4 5 0.

S O L U T I O N

x 5
25 6 Ï52 2 s4ds1ds4d 

2s1d
 5

25 6 Ï9 
2

 5
25 6 3

2

x
1

 5
25 1 3

2
 5 21  x

2
 5

25 2 3
2

 5 24

where x1 refers to the root corresponding to the positive sign and x2 refers to the root corresponding to the negative sign.

Use Equation B.8 to find the roots:

Evaluate the root for each of the 
two possibilities of the sign:

Exercises
Solve the following quadratic equations:

  Answers

1.  x2 1 2x 2 3 5 0 x
1

5 1 x2    5 23

2.  2x2 2 5x 1 2 5 0 x
1

5 2 x2    5 12
3.  2x2 2 4x 2 9 5 0 x

1
5 1 1 Ï22y2 x2    5 1 2 Ï22y2

Linear Equations
A linear equation has the general form

 y 5 mx 1 b  (B.9)

where m and b are constants. This equation is referred to as linear because the 
graph of y versus x is a straight line as shown in Figure B.1. The constant b, called 
the y-intercept, represents the value of y at which the straight line intersects  

y

(x1, y1)

(x2, y2)

y

x(0, b)

(0, 0)
x

�

�

Figure B.1 A straight line 
graphed on an xy coordinate sys-
tem. The slope of the line is the 
ratio of Dy to Dx.
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the y axis. The constant m is equal to the slope of the straight line. If any two 
points on the straight line are specified by the coordinates (x1, y1) and (x2, y2) as in  
Figure B.1, the slope of the straight line can be expressed as

 Slope 5
y 2 2 y1 

x 2 2 x1 
 5

Dy

Dx  (B.10)

Note that m and b can have either positive or negative values. If m . 0, the straight 
line has a positive slope as in Figure B.1. If m , 0, the straight line has a negative 
slope. In Figure B.1, both m and b are positive. Three other possible situations are 
shown in Figure B.2.

Exercises
1. Draw graphs of the following straight lines: (a) y 5 5x 1 3 (b) y 5 22x 1 4 

(c) y 5 23x 2 6
2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5   (b) 22   (c) 23

3. Find the slopes of the straight lines that pass through the following sets of 
points: (a) (0, 24) and (4, 2) (b) (0, 0) and (2, 25) (c) (25, 2) and (4, 22)

Answers (a) 32   (b) 25
2   (c) 24

9

Solving Simultaneous Linear Equations
Consider the equation 3x 1 5y 5 15, which has two unknowns, x and y. Such an 
equation does not have a unique solution. For example, (x 5 0, y 5 3), (x 5 5, y 5 0),  
and (x 5 2, y 5 95) are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two 
pieces of information. In most common cases, those two pieces of information are 
equations. In general, if a problem has n unknowns, its solution requires n equa-
tions. To solve two simultaneous equations involving two unknowns, x and y, we 
solve one of the equations for x in terms of y and substitute this expression into the 
other equation.

In some cases, the two pieces of information may be (1) one equation and (2) a 
condition on the solutions. For example, suppose we have (1) the equation m 5 3n 
and (2) the condition that m and n must be the smallest positive nonzero integers 
possible. Then, the single equation does not allow a unique solution, but the addi-
tion of the condition gives us that n 5 1 and m 5 3.

 Example B.2  

Solve the two simultaneous equations
(1)   5x 1 y 5 28 

(2)   2x 2 2y 5 4 

S O L U T I O N

Solve Equation (2) for x: (3)             x 5 y 1 2

Substitute Equation (3) into Equation (1): 5sy 1 2d 1 y 5 28 

 6y 5 218 

  y 5  23 

Use Equation (3) to find x:   x 5 y 1 2 5  21 

y

(1)

(2)

(3)

m � 0
b � 0

m � 0
b � 0

m � 0
b � 0

x

Figure B.2 The brown line has 
a positive slope and a negative 
y - intercept. The blue line has 
a negative slope and a positive 
y -intercept. The green line has 
a negative slope and a negative 
y -intercept.
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Two linear equations containing two unknowns can also be solved by a graphi-
cal method. If the straight lines corresponding to the two equations are plotted in 
a conventional coordinate system, the intersection of the two lines represents the 
solution. For example, consider the two equations

x 2 y 5 2 

x 2 2y 5 21 

These equations are plotted in Figure B.3. The intersection of the two lines has the 
coordinates x 5 5 and y 5 3, which represents the solution to the equations. You 
should check this solution by the analytical technique discussed earlier.

Exercises
Solve the following pairs of simultaneous equations involving two unknowns:

  Answers

1. x 1 y 5 8 x 5 5, y 5 3
 x 2 y 5 2

2. 98 2 T 5 10a T 5 65, a 5 3.27
 T 2 49 5 5a

3. 6x 1 2y 5 6 x 5 2, y 5 23
 8x 2 4y 5 28

Logarithms
Suppose a quantity x is expressed as a power of some quantity a:

 x 5 ay (B.11)

The number a is called the base number. The logarithm of x with respect to the 
base a is equal to the exponent to which the base must be raised to satisfy the 
expression x 5 ay:
 y 5 loga x (B.12)

Conversely, the antilogarithm of y is the number x :

 x 5 antiloga y (B.13)

In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base e 5 2.718 282, called Euler’s constant or the natural logarithm 
base. When common logarithms are used,

 y 5 log10  x sor x 5 10 yd (B.14)

When natural logarithms are used,

 y 5 ln x sor x 5 e yd (B.15)

For example, log10 52 5 1.716, so antilog10 1.716 5 101.716 5 52. Likewise, ln 52 5 
3.951, so antiln 3.951 5 e3.951 5 52.

B.2 c o n t i n u e d

Alternative Solution 

Multiply each term in Equation (1) by 2:  10x 1 2y 5 216 

Add Equation (2): 2x 2 2y 5 4 

 12x  5 212 

Solve for x: x 5  21   

Use Equation (3) to find y: y 5 x 2 2 5 23

5
4
3
2
1

x � 2y � �1

2 3 4 5 6

(5, 3)

x

x � y � 2

y

1

Figure B.3 A graphical solution 
for two linear equations.
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In general, note you can convert between base 10 and base e with the equality

 ln x 5 s2.302 585d log10 x (B.16)

Finally, some useful properties of logarithms are the following:

logsabd 5 log a 1 log b

logsaybd 5 log a 2 log b

logsand 5 n log a

ln e 5 1

ln e a 5 a

ln S1
aD 5 2ln a

B.3  Geometry
The distance d between two points having coordinates (x1, y1) and (x2, y2) is

 d 5 Ïsx 2 2 x 1d
2 1 sy 2 2 y 1d

2  (B.17)

Two angles are equal if their sides are perpendicular, right side to right side and 
left side to left side. For example, the two angles marked u in Figure B.4 are the 
same because of the perpendicularity of the sides of the angles. To distinguish the 
left and right sides of an angle, imagine standing at the angle’s apex and facing into 
the angle.

Radian measure: The arc length s of a circular arc (Fig. B.5) is proportional to 
the radius r for a fixed value of u (in radians):

 
s 5 r u

u 5
s
r
 
  (B.18)

Table B.2 gives the areas and volumes for several geometric shapes used 
throughout this text.

u

u

Figure B.4 The angles are 
equal because their sides are 
perpendicular.

r

s
u

Figure B.5 The angle u in radi-
ans is the ratio of the arc length s 
to the radius r of the circle.

TAble b.2 Useful Information for Geometry

Surface area �
2(�h � �w � hw)
Volume � �wh

Area � �w

Area � �bh1
2

Area � pr2

Circumference � 2pr

Surface area � 4pr2

Volume � 4pr3

3

Volume � pr2�

Lateral surface
area � 2pr�

Shape Area or Volume Area or VolumeShape

Sphere

r

Cylinder

Rectangular box

r

�

w
h

Triangle

h

b �

Rectangle

w

�

r

Circle

any base
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b

0

y
m � slope

x

Figure B.6 A straight line with a 
slope of m and a y -intercept of b.

y

0

b

a
x

Figure B.7 An ellipse with semi- 
major axis a and semiminor axis b.

The equation of a straight line (Fig. B.6) is

 y 5 mx 1 b (B.19)

where b is the y -intercept and m is the slope of the line.
The equation of a circle of radius R centered at the origin is

 x2 1 y2 5 R 2 (B.20)

The equation of an ellipse having the origin at its center (Fig. B.7) is

 
x2 
a2 

1
y2 

b 2 
 5 1 (B.21)

where a is the length of the semimajor axis (the longer one) and b is the length of 
the semiminor axis (the shorter one).

The equation of a parabola the vertex of which is at y 5 b (Fig. B.8) is

 y 5 ax 2 1 b (B.22)

The equation of a rectangular hyperbola (Fig. B.9) is

 xy 5 constant (B.23)

B.4  Trigonometry
That portion of mathematics based on the special properties of the right trian-
gle is called trigonometry. By definition, a right triangle is a triangle containing a  
908 angle. Consider the right triangle shown in Figure B.10, where side a is opposite 
the angle u, side b is adjacent to the angle u, and side c is the hypotenuse of the tri-
angle. The three basic trigonometric functions defined by such a triangle are the 
sine (sin), cosine (cos), and tangent (tan). In terms of the angle u, these functions 
are defined as follows:

 sin u 5
side opposite u

hypotenuse
 5

a
c
  (B.24)

 cos u 5
side adjacent to u

hypotenuse
 5

b
c
  (B.25)

 tan u 5
side opposite u

side adjacent to u
 5

a
b
  (B.26)

The Pythagorean theorem provides the following relationship among the sides 
of a right triangle:

 c 2 5 a2 1 b 2 (B.27)

From the preceding definitions and the Pythagorean theorem, it follows that

sin2 u 1 cos2 u 5 1 

 tan u 5
sin u
cos u

 

The cosecant, secant, and cotangent functions are defined by

csc u 5
1

sin u
  sec u 5

1
cos u

  cot u 5
1

tan u
 

y

b

0
x

Figure B.8 A parabola with its 
vertex at y 5 b.

0

y

x

Figure B.9 A hyperbola.

a � opposite side
b � adjacent side
c � hypotenuse

90��uc
a

b

90�
u

Figure B.10 A right triangle, 
used to define the basic functions 
of trigonometry.
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TAble b.3 Some Trigonometric Identities

sin2 u 1 cos2 u 5 1 csc2 u 5 1 1 cot2 u

sec2 u 5 1 1 tan2 u sin2 
u

2
5 1

2s1 2 cos ud

sin 2u 5 2 sin u cos u cos2 
u

2
5 1

2s1 1 cos ud

cos 2u 5 cos2 u 2 sin2 u 1 2 cos u 5 2 sin2 
u

2

tan 2u 5
2 tan u

1 2 tan2 u
 tan 

u

2
5Î1 2 cos u

1 1 cos u

sin sA 6 Bd 5 sin A cos B 6 cos A sin B
cos sA 6 Bd 5 cos A cos B 7 sin A sin B
sin A 6 sin B 5 2 sin f1

2sA 6 Bdg cos f1
2sA 7 Bdg

cos A 1 cos B 5 2 cos f1
2sA 1 Bdg cos f1

2sA 2 Bdg

cos A 2 cos B 5 2 sin f1
2sA 1 Bdg sin f1

2sB 2 Adg

The following relationships are derived directly from the right triangle shown in 
Figure B.10:

sin u 5 cos s908 2 ud

cos u 5 sin s908 2 ud

cot u 5 tan s908 2 ud

Some properties of trigonometric functions are the following:

sin s2ud 5 2sin u

cos s2ud 5 cos u

tan s2ud 5 2tan u

The following relationships apply to any triangle as shown in Figure B.11:

a 1 b 1 g 5 1808

 a2 5 b 2 1 c 2 2 2bc cos a

Law of cosines b 2 5 a2 1 c 2 2 2ac cos b

 c 2 5 a2 1 b 2 2 2ab cos g 

Law of sines 
a

sin a
5

b
sin b

 5
c

sin g

Table B.3 lists a number of useful trigonometric identities.

a b

c

b a

g

Figure B.11 An arbitrary, non-
right triangle.

 Example B.3   

Consider the right triangle in Figure B.12 in which a 5 2.00, b 5 5.00, and c is 
unknown. (A) Find c.

S O L U T I O N

Use the Pythagorean theorem:  c 2 5 a2 1 b2 5 2.002 1 5.002 5 4.00 1 25.0 5 29.0

c 5 Ï29.0 5  5.39

(B) Find the angle u.

Use the tangent function:  tan u 5
a
b
 5

2.00
5.00

 5 0.400

a � 2.00

b � 5.00

c

u

Figure B.12 (Example B.3)
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Exercises
1. In Figure B.13, identify (a) the side opposite u (b) the side adjacent to f and 

then find (c) cos u, (d) sin f, and (e) tan f.

Answers (a) 3 (b) 3 (c) 45 (d) 45 (e) 43

2. In a certain right triangle, the two sides that are perpendicular to each other 
are 5.00 m and 7.00 m long. What is the length of the third side?

Answer 8.60 m

3. A right triangle has a hypotenuse of length 3.0 m, and one of its angles is 
308. (a) What is the length of the side opposite the 308 angle? (b) What is the 
side adjacent to the 308 angle?

Answers (a) 1.5 m (b) 2.6 m

B.5  Series Expansions

sa 1 bdn 5 an 1
n
1! a

n21 b 1
nsn 2 1d

2!   an22 b 2 1 P

s1 1 xdn 5 1 1 nx 1
nsn 2 1d

2!  x2 1 P

e x 5 1 1 x 1
x2 
2! 1

x3 
3! 1 P

ln s1 6 xd 5 6x 2 1
2 x 2 6 1

3 x 3 2 P

sin x 5 x 2
x3

3! 1
x5

5! 2 P

cos x 5 1 2
x2

2! 1
x4

4! 2 P

tan x 5 x 1
x3

3
 1

2x5

15
 1 P uxu ,

p

2

The following approximations can be used:

For x ,, 1: s1 1 xdn < 1 1 nx For x # 0.1 rad: sin x < x

 e x < 1 1 x  cos x < 1

 ln s1 6 xd < 6x  tan x < x

B.6  Differential Calculus
In various branches of science, it is sometimes necessary to use the basic tools of 
calculus, invented by Newton, to describe physical phenomena. The use of calcu-
lus is fundamental in the treatment of various problems in Newtonian mechanics, 
electricity, and magnetism. In this section, we simply state some basic properties 
and “rules of thumb” that should be a useful review to the student.

x in radians

B.3 c o n t i n u e d

Use your calculator to find the angle:  u 5 tan21 s0.400d 5  21.88

where tan21 (0.400) is the notation for “angle whose tangent is 0.400,” sometimes written as arctan (0.400).

5

4

3

u

f

Figure B.13 (Exercise 1)
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First, a function must be specified that relates one variable to another (e.g.,  
position as a function of time). Suppose one of the variables is called y (the depen-
dent variable), and the other x (the independent variable). We might have a func-
tion relationship such as

ysxd 5 ax3 1 bx2 1 cx 1 d

If a, b, c, and d are specified constants, y can be calculated for any value of x. We 
usually deal with continuous functions, that is, those for which y varies “smoothly” 
with x.

The derivative of y with respect to x is defined as the limit as Dx approaches zero 
of the slopes of chords drawn between two points on the y versus x curve. Math-
ematically, we write this definition as

 
dy

dx
 5 lim

Dx S 0
 

Dy

Dx
 5 lim

Dx S 0
 

ysx 1 Dxd 2 ysxd
Dx

 (B.28)

where Dy and Dx are defined as Dx 5 x2 2 x1 and Dy 5 y2 2 y1 (Fig. B.14). Note that 
dy/dx does not mean dy divided by dx, but rather is simply a notation of the limiting 
process of the derivative as defined by Equation B.28.

A useful expression to remember when y(x) 5 axn, where a is a constant and n is 
any positive or negative number (integer or fraction), is

 
dy

dx
 5 naxn21 (B.29)

If y(x) is a polynomial or algebraic function of x, we apply Equation B.29 to each 
term in the polynomial and take d[constant]/dx 5 0. In Examples B.4 through B.7, 
we evaluate the derivatives of several functions.

Special Properties of the Derivative
 A. Derivative of the product of two functions If a function f(x) is given by 

the product of two functions—say, g(x) and h(x)—the derivative of f(x) is 
defined as

 
d
dx

 f sxd 5
d
dx

 fg sxdhsxdg 5 g 
dh
dx

1 h 
dg

dx
 (B.30)

 B. Derivative of the sum of two functions If a function f(x) is equal to the 
sum of two functions, the derivative of the sum is equal to the sum of the 
derivatives:

 
d
dx

 f sxd 5
d
dx

 fg sxd 1 hsxdg 5  
dg

dx
1

dh
dx

 (B.31)

 C. Chain rule of differential calculus If y 5 f(x) and x 5 g(z), then dy/dz can 
be written as the product of two derivatives:

 
dy

dz
 5

dy

dx
  

dx
dz

 (B.32)

 D. The second derivative The second derivative of y with respect to x is 
defined as the derivative of the function dy/dx (the derivative of the deriva-
tive). It is usually written as

 
d2y

dx2 
 5

d
dx

 Sdy

dxD (B.33)

Some of the more commonly used derivatives of functions are listed in Table B.4.

y

y2

y1

x1 x2
x

x

y

�

�

Figure B.14 The lengths Dx and Dy 
are used to define the derivative of 
this function at a point.

TAble b.4 Derivative for 
Several Functions
d
dx

 sad 5 0

d
dx

 saxnd 5 naxn21

d
dx

 se axd 5 aeax

d
dx

 ssin axd 5 a cos ax

d
dx

 scos axd 5 2a sin ax

d
dx

 stan axd 5 a sec2 ax

d
dx

 scot axd 5 2a csc2 ax

d
dx

 ssec xd 5 tan x sec x

d
dx

 scsc xd 5 2cot x csc x

d
dx

 sln axd 5
1
x

d
dx

 ssin21 axd 5
a

Ï1 2 a 2x 2  
d
dx

 scos21 axd 5
2a

Ï1 2 a 2x 2  
d
dx

 stan21 axd 5
a

1 1 a 2x 2 
 

Note: The symbols a and n represent 
constants.
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 Example B.4   

Use Equation B.28 to find the derivative of the following function: y(x) 5 ax3 1 bx 1 c, where a, b, and c are constants.

S O L U T I O N

Evaluate the function at x 1 Dx:  ysx 1 Dxd 5 asx 1 Dxd3 1 bsx 1 Dxd 1 c 

  5 a sx3 1 3x2 Dx 1 3x Dx2 1 Dx3d 1 b sx 1 Dxd 1 c

Evaluate the numerator of Equation B.28:  Dy 5 ysx 1 Dxd 2 ysxd 5 a s3x2 Dx 1 3x Dx2 1 Dx3d 1 b Dx

Substitute into Equation B.28 and take the limit: 
dy

dx
5 lim

Dx S0
 
Dy

Dx
5 lim

Dx S0
[a(3x 

2 1 3x Dx 1 Dx 
2)g 1 b  

 
dy

dx
5 3ax 2 1 b

 Example B.5   

Find the derivative of

y sx d 5 8x 5 1 4x 3 1 2x 1 7

S O L U T I O N

Apply Equation B.29 to each term separately  
and remember that the derivative of a 

dy

dx
5 8s5dx 

4 1 4s3dx 
2 1 2s1dx 

0 1 0  
constant is zero: 

 
dy

dx
5 40x 4 1 12x 2 1 2

 Example B.6   

Find the derivative of y(x) 5 x 3/(x 1 1)2 with respect to x.

S O L U T I O N

Rewrite the function as a product: y(x) 5 x 3(x 1 1)22

Use Equation B.30 to find the derivative:  
dy

dx
5 sx 1 1d22 

d
dx

 sx3d 1 x3 
d
dx

 sx 1 1d22 

    5 sx 1 1d22  3x2 1 x3 s22dsx 1 1d23

 
dy

dx
5

3x 2

sx 1 1d2 2
2x3

sx 1 1d3  5 
x 

2sx 1 3d
sx 1 1d3

 Example B.7   

A useful formula that follows from Equation B.30 is the derivative of the quotient of two functions. Show that

d
dx

 3g sxd
hsxd

 4 5

h 
dg

dx
2 g 

dh
dx

 

h2 

continued
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B.7  Integral Calculus
We think of integration as the inverse of differentiation. As an example, consider 
the expression

 f sxd 5
dy

dx
5 3ax2 1 b (B.34)

which was the result of differentiating the function

y  sxd 5 ax 
3 1 bx 1 c

in Example B.4. We can write Equation B.34 as dy 5 f(x) dx 5 (3ax 2 1 b) dx and 
obtain y(x) by “summing” over all values of x. Mathematically, we write this inverse 
operation as

y sxd 5 #
 

f sx d dx

For the function f(x) given by Equation B.34, we have

y sxd 5 #s3ax2 1 bd dx 5 ax 3 1 bx 1 c

where c is a constant of the integration. This type of integral is called an indefinite 
integral because its value depends on the choice of c.

A general indefinite integral I(x) is defined as

 Isxd 5 #
 

f sxd dx (B.35)

where f(x) is called the integrand and f(x) 5 dI(x)/dx.
For a general continuous function f(x), the integral can be interpreted geometri-

cally as the area under the curve bounded by f(x) and the x axis, between two speci-
fied values of x, say, x1 and x2, as in Figure B.15.

The area of the blue element in Figure B.15 is approximately f(xi) Dxi. If we sum 
all these area elements between x1 and x2 and take the limit of this sum as Dxi S 0,  
we obtain the true area under the curve bounded by f(x) and the x axis, between 
the limits x1 and x2:

 Area 5 lim
Dxi

S 0o
i

 f sxi 
dDxi 5 #

x 2

x1

 f sxd dx (B.36)

Integrals of the type defined by Equation B.36 are called definite integrals.

B.6 c o n t i n u e d

S O L U T I O N

Write the quotient as gh21 and use Equations B.29  
and B.30: 

d
dx

 Sg

hD 5
d
dx

 sgh21d 5 g  
d

dx
 sh21d 1 h21 

d
dx

 s g d 

  5 2gh22 
dh
dx

1 h21 
dg

dx

  5

h 
dg

dx
2 g 

dh
dx

 

h2 
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Partial Integration
Sometimes it is useful to apply the method of partial integration (also called “inte-
grating by parts”) to evaluate certain integrals. This method uses the property

 # u dv 5 uv 2 # v du (B.39)

where u and v are carefully chosen so as to reduce a complex integral to a simpler 
one. In many cases, several reductions have to be made. Consider the function

Isxd 5 #x2 e x dx

which can be evaluated by integrating by parts twice. First, if we choose u 5 x 2, v 5 e x,  
we obtain

#x2 e x  dx 5 #x2 dse xd 5 x2 e x 2 2#e x x dx 1 c1

One common integral that arises in practical situations has the form

 #
 

xn dx 5
xn 1 1 
n 1 1

1 c sn Þ 21d (B.37)

This result is obvious, being that differentiation of the right-hand side with respect 
to x gives f(x) 5 xn directly. If the limits of the integration are known, this integral 
becomes a definite integral and is written

 #
x 2

x1

 xn dx 5
x 

n 11

n 1 1
 *

x 
2

 
x1 

5
x2

n11 2 x1
n11

n 1 1
  sn Þ 21d (B.38)

xi

x2

f(xi)

f(x)

x1

�

Figure B.15 The definite inte-
gral of a function is the area 
under the curve of the function 
between the limits x1 and x2.

Exercises
In the following exercises, evaluate the integral:

 Answer  Answer

1. #
a

0
 x 2 dx 

a3

3
 3. #

5

3
 x dx 8

2. #
b

0
 x 

3y2 dx 
2
5

 b 5y2
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Now, in the second term, choose u 5 x, v 5 e x, which gives

#x2 e x  dx 5 x2 e x 2 2x e x 1 2#e x dx 1 c1

or

#x2 e x  dx 5 x2 e x 2 2xex 1 2e x 1 c2

The Perfect Differential
Another useful method to remember is that of the perfect differential, in which 
we look for a change of variable such that the differential of the function is the 
 differential of the independent variable appearing in the integrand. For example, 
consider the integral

Isxd 5 #cos2 x sin x dx

This integral becomes easy to evaluate if we rewrite the differential as d (cos x) 5 
2sin x dx. The integral then becomes

#cos2 x sin x dx 5 2#cos2 x dscos xd

If we now change variables, letting y 5 cos x, we obtain

#cos2 x sin x dx 5 2#y2 dy 5 2 

y3

3
1 c 5 2 

cos3 x
3

1 c

Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s probabil-
ity integral and other definite integrals. A more complete list can be found in vari-
ous handbooks, such as The Handbook of Chemistry and Physics (Boca Raton, FL: CRC 
Press, published annually).

TAble b.5 Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)

# xn  dx 5
xn11 
n 1 1

 sprovided n Þ 1d # ln ax dx 5 sx ln axd 2 x

# 
dx
x

5 # x 2 1 dx 5 ln x # xeax dx 5
e ax 
a 2 

 sax 2 1d

# 
dx

a 1 bx
5

1
b
 ln sa 1 bxd # 

dx
a 1 be cx 

5
x
a

2
1
ac

 ln sa 1 be cxd

# 
x dx

a 1 bx
5

x
b

2
a

b 2 
 ln sa 1 bxd # sin ax dx 5 2

1
a

 cos ax

# 
dx

xsx 1 ad
5 2

1
a

 ln 
x 1 a

x
  #

 

cos ax dx 5
1
a

  sin ax

# 
dx

sa 1 bxd2 
5 2

1
bsa 1 bxd

 # tan ax dx 5 2
1
a

 ln scos axd 5
1
a

 ln ssec axd

# 
dx

a 2 1 x 2 
5

1
a

 tan21 
x
a

 # cot ax dx 5
1
a

 ln ssin axd

#
 

 
dx

a 2 2 x2 
5

1
2a

 ln 
a 1 x
a 2 x

 sa 2 2 x2 . 0d #  sec ax dx 5
1
a

 ln ssec ax 1 tan axd 5
1
a

 ln 3tan Sax
2

1
p

4D4
# 

dx
x2 2 a 2 

5
1
2a

 ln 
x 2 a
x 1 a

 sx2 2 a 2 . 0d # csc ax dx 5
1
a

 ln scsc ax 2 cot axd 5
1
a

 ln Stan 
ax
2 D

continued
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TAble b.5 Some Indefinite Integrals (continued)

# 
x dx

a 2 6 x 2 
5 61

2 ln sa2 6 x 2 d # sin2  ax dx 5
x
2

2
sin 2ax

4a
 

# 
dx

Ïa 2 2 x2  
5 sin21 

x
a

5 2cos21 
x
a

 sa 2 2 x2 . 0d # cos2  ax dx 5
x
2

1
sin 2ax

4a
 

# 
dx

Ïx 2 6 a 2  
5 ln sx 1 Ïx 2 6 a 2 d # 

dx
sin2  ax

5 2 

1
a

 cot ax

# 
x dx

Ïa 2 2 x2  
5 2Ïa 2 2 x2  # 

dx
cos2  ax

5
1
a

 tan ax

# 
x dx

Ïx 2  6 a 2  
5 Ïx 2  6 a 2  # tan2 ax dx 5

1
a

 stan axd 2 x

# Ïa 2 2 x 
2  dx 5 1

2 Sx Ïa 2 2 x 
2 1 a 2 sin21  

x
uauD # cot 2 ax dx 5 2 

1
a

 scot axd 2 x

# x Ïa 2 2 x 
2  dx 5 21

3 sa 2 2 x 
2 d3y2 #  sin21 ax dx 5 x ssin21 axd 1

Ï1 2 a 2 x2  
a

# Ïx2 6 a 2 dx 5 1
2 xÏx2 6 a 2 6 a 2 ln sx 1 Ïx2 6 a 2d #  cos21 ax dx 5 xscos21 axd 2

Ï1 2 a 2x2  
a

 

# x sÏx2 6 a 2 d dx 5 1
3 sx2 6 a 2d3y2 # 

dx
sx2 1 a 2d3y2 

5
x

a 2 Ïx2 1 a 2  

# e ax dx 5
1
a

 e ax  # 
x dx

sx2 1 a 2d3y2 
5 2 

1

Ïx2 1 a 2  

TAble b.6 Gauss’s Probability Integral and Other Definite Integrals

#
`

0
  x 

n  e2ax  dx 5
n!

an 1 1 

I 0 5 #
`

0
  e2ax 2  dx 5

1
2

 Îp

a
  (Gauss’s probability integral)

I1 5 #
`

0
  xe2ax 2   dx 5

1
2a

I2 5 #
`

0
  x 

2 e2ax 2  dx 5 2 

dI0 

da
5

1
4

 Î p

a 3 
 

I3 5 #
`

0
  x 

3 e2ax 2   dx 5 2 

dI1 

da
5

1
2a 2 

I 4 5 #
`

0
  x 

4 e2ax 2  dx 5
d 2 I 0 

da 2 
5

3
8

 Î p

a 5 
 

I 5 5 #
`

0
  x 

5 e2ax 2   dx 5
d 2 I 1 

da 2 
5

1
a 3 

 f

I2n 5 s21dn 
dn 
dan 

 I0

I2n 1 1 5 s21dn 
dn 

dan 
 I1
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Addition and subtraction: When measurements with uncertainties are added or 
subtracted, add the absolute uncertainties to obtain the absolut uncertainty in the 
result.

B.8  Propagation of Uncertainty
In laboratory experiments, a common activity is to take measurements that act as 
raw data. These measurements are of several types—length, time interval, tem-
perature, voltage, and so on—and are taken by a variety of instruments. Regard-
less of the measurement and the quality of the instrumentation, there is always 
uncertainty associated with a physical measurement. This uncertainty is a combi-
nation of that associated with the instrument and that related to the system being 
measured. An example of the former is the inability to exactly determine the posi-
tion of a length measurement between the lines on a meterstick. An example of 
uncertainty related to the system being measured is the variation of temperature 
within a sample of water so that a single temperature for the sample is difficult to 
determine.

Uncertainties can be expressed in two ways. Absolute uncertainty refers to an 
uncertainty expressed in the same units as the measurement. Therefore, the length 
of a computer disk label might be expressed as (5.5 6 0.1) cm. The uncertainty 
of  6 0.1 cm by itself is not descriptive enough for some purposes, however. This 
uncertainty is large if the measurement is 1.0 cm, but it is small if the measurement 
is 100 m. To give a more descriptive account of the uncertainty, fractional uncer-
tainty or percent uncertainty is used. In this type of description, the uncertainty 
is divided by the actual measurement. Therefore, the length of the computer disk 
label could be expressed as

/ 5 5.5 cm 6
0.1 cm
5.5 cm

5 5.5 cm 6 0.018 sfractional uncertaintyd

or as

/ 5 5.5 cm 6 1.8% spercent uncertaintyd

When combining measurements in a calculation, the percent uncertainty in 
the final result is generally larger than the uncertainty in the individual measure-
ments. This is called propagation of uncertainty and is one of the challenges of 
experimental physics.

Some simple rules can provide a reasonable estimate of the uncertainty in a cal-
culated result:

Multiplication and division: When measurements with uncertainties are multi-
plied or divided, add the percent uncertainties to obtain the percent uncertainty in 
the result.

 Example B.8    

Find the area, with associated uncertainty, of a rectangular plate of dimensions 5.5 cm 6 1.8% by 6.4 cm 6 1.6%.

S O L U T I O N

Because the result is a multiplication, add the percent  A 5 /w 5 s5.5 cm 6 1.8%ds6.4 cm 6 1.6%d 
uncertainties:    5 35 cm2 6 3.4% 5  s35 6 1d cm2
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For complicated calculations, many uncertainties are added together, which can 
cause the uncertainty in the final result to be undesirably large. Experiments 
should be designed such that calculations are as simple as possible.

Notice that uncertainties in a calculation always add. As a result, an experi-
ment involving a subtraction should be avoided if possible, especially if the mea-
surements being subtracted are close together. The result of such a calculation is 
a small difference in the measurements and uncertainties that add together. It is 
possible that the uncertainty in the result could be larger than the result itself!

Powers: If a measurement is taken to a power, the percent uncertainty is multi-
plied by that power to obtain the percent uncertainty in the result.

 Example B.9     

Find the change in temperature, with associated uncertainty, when the temperature increases from (27.6 6 l.5)8C  
to (99.2 6 1.5)8C

S O L U T I O N

Because the result is a subtraction, add the absolute DT 5 T2 2 T1 5 s99.2 6 1.5d8C 2 s27.6 6 1.5d8C 
uncertainties:     5 s71.6 6 3.0d8C 5  1.68C 6 4.2%

 Example B.10     

Find the volume of a sphere of radius 6.20 cm 6 2.0%.

S O L U T I O N

Because the result is determined by raising a quantity to a  V 5 4
3 pr 3 5 4

3p
 
s6.20 cm 6 2.0%d3 

power, multiply the power by the percent uncertainty:   5 998 cm3 6 6.0% 5  s998 6 60d cm3
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Appendix C Periodic Table of the Elements

*Lanthanide series

**Actinide series

Atomic numberSymbol

Electron configuration

20Ca
Atomic mass†

58

90

57

89

3

11

19

37

55

87

20

38

56

88

21

39

57–71*

89–103**

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76

108

27

45

77

109

4

12

59 60 61 62
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Note : Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature.
For an unstable element, mass number of the most stable known isotope is given in parentheses.
For elements 109 and higher, electron configurations are theoretically predicted. 
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Note : For a description of the atomic data, visit physics.nist.gov/PhysRefData/Elements/per_text.html.
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Appendix D SI Units

Table D.1 SI Units

SI Base Unit

Base Quantity Name Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table D.2  Some Derived SI Units

Other  
Quantity Name Symbol

Expression in  
Terms of Base  
Units

Expression 
in Terms of  
SI Units

Plane angle radian rad m/m

Frequency hertz Hz s21

Force newton N kg ? m/s2 J/m

Pressure pascal Pa kg/m ? s2 N/m2

Energy joule J kg ? m2/s2 N ? m

Power watt W kg ? m2/s3 J/s

Electric charge coulomb C A ? s

Electric potential volt V kg ? m2/A ? s3 W/A

Capacitance farad F A2 ? s4/kg ? m2 C/V

Electric resistance ohm V kg ? m2/A2 ? s3 V/A

Magnetic flux weber Wb kg ? m2/A ? s2 V ? s

Magnetic field tesla T kg/A ? s2

Inductance henry H kg ? m2/A2 ? s2 T ? m2/A

a-24
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Chapter 1
Answers to Quick Quizzes

 1. (a)
 2. False
 3. (b)

Answers to Odd-Numbered Problems

 1. (a) 5.52 3 103 kg/m3   (b) It is between the density of alu-
minum and that of iron and is greater than the densities 
of typical surface rocks.

 3. 7.69 cm
 5. The angle subtended by the Great Wall is less than the 

visual acuity of the eye.
 7. 0.141 nm
 9. (b) only
 11. 11.4 3 103 kg/m3

 13. 2.86 cm
 15. 151 mm
 17. (a) ,102 kg   (b) ,103 kg
 19. The average distance between asteroids in the asteroid 

belt is about 400 000 km.
 21. 31 556 926.0 s
 23. 19
 25. 63
 27. 63.46
 29. 316 m
 31. 1011 stars
 33. Answers may vary.   (a) , 1029 prokaryotes   (b) , 1014 kg
 35. (a) 478 cm3/s   (b) 0.225 cm/s   (c) When the balloon 

radius is twice as large, its surface area is four times 
larger. The new volume added in one second in the infla-
tion process is equal to this larger area times an extra 
radial thickness that is one-fourth as large as it was when 
the balloon was smaller.

 37. V 5 0.579t 1 (1.19 3 1029)t2, where V is in cubic feet and t 
is in seconds

 39. 
d tan f tan u

tan f 2 tan u

Chapter 2
Answers to Quick Quizzes

 1. (b)
 2. (c)
 3. (b)
 4. False. Your graph should look something like the one 

shown in the next column. This vx–t graph shows that 
the maximum speed is about 5.0 m/s, which is 18 km/h 
(5 11 mi/h), so the driver was not speeding.

  vx (m/s)

t (s)

6

4

2

0

�2

�4

�6

20 30 40 5010

 5. (b)
 6. (c)
 7. (a)–(e), (b)–(d), (c)–(f)
 8. (i) (e)   (ii) (d)

Answers to Odd-Numbered Problems

 1.  0.02 s
 3. (a) 2.30 m/s   (b) 16.1 m/s   (c) 11.5 m/s
 5. (a) 22.4 m/s   (b) 23.8 m/s   (c) 4.0 s
 7. (a) 2.80 h   (b) 218 km
 9. (a) 1.3 m/s2   (b) t 5 3 s, a 5 2 m/s2   (c) t 5 6 s, t  . 10 s 

(d) a 5 21.5 m/s2, t 5 8 s
 11. (a) 20 m/s, 5 m/s   (b) 263 m
 13. 

t

x

t

v

t

a

x

t

t

v

t

a

t

v

t

a

t

x

a

b

c

Answers to Quick Quizzes and Odd-Numbered Problems
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Chapter 3
Answers to Quick Quizzes

 1. vectors: (b), (c); scalars: (a), (d), (e)
 2. (c)
 3. (b) and (c)
 4. (b)
 5. (c)

Answers to Odd-Numbered Problems

 1. (a) 8.60 m   (b) 4.47 m, 263.48; 4.24 m, 1358
 3. (a) (23.56 cm, 22.40 cm)   (b) (r 5 4.30 cm, u 5 3268)  

(c) (r 5 8.60 cm, u 5 34.08)   (d) (r 5 12.9 cm, u 5 1468)
 5. This situation can never be true because the distance 

is the length of an arc of a circle between two points, 
whereas the magnitude of the displacement vector is a 
straight-line chord of the circle between the same points.

 7. 9.5 N, 578 above the x axis
 9. (a) 5.2 m at 608   (b) 3.0 m at 3308   (c) 3.0 m at 1508  

(d) 5.2 m at 3008
 11. (a) yes   (b) The speed of the camper should be 28.3 m/s 

or more to satisfy this requirement.
 13. 9.48 m at 1668
 15. (a) 185 N at 77.88 from the positive x axis  

(b) (239.3 i
⁄

2 181 j
⁄
) N

 17. (a) 2.83 m at u 5 3158   (b) 13.4 m at u 5 1178
 19. (a) 8.00 i

⁄
1 12.0 j

⁄
2 4.00 k

⁄
   (b) 2.00 i

⁄
1 3.00 j

⁄
2 1.00 k

⁄
  

(c) 224.0 i
⁄

2 36.0 j
⁄

1 12.0 k
⁄

 21. (a) 23.00 i
⁄

1 2.00 j
⁄
   (b) 3.61 at 1468   (c) 3.00 i

⁄
2 6.00 j

⁄

 23. (a) a 5 5.00 and b 5 7.00   (b) For vectors to be equal, all 
their components must be equal. A vector equation con-
tains more information than a scalar equation.

 25. s2.60 i
⁄

1 4.50 j
⁄ dm

 27. 196 cm at 3458
 29. (a) s220.5 i

⁄
1 35.5 j

⁄
d mys   (b) 25.0 j

⁄
 mys  

(c) s261.5 i
⁄

1 107 j
⁄
d m   (d) 37.5 j

⁄
 m   (e) 157 km

 31. 1.43 3 104 m at 32.28 above the horizontal
 33. (a) s5 1 11f d i

⁄
1 s3 1 9f d j

⁄
 meters   (b) s5 1 0d i

⁄
1 s3 1 0d j

⁄
 

meters   (c) This is reasonable because it is the location of 
the starting point, 5 i

⁄
1 3 j

⁄
 meters.   (d) 16 i

⁄
1 12 j

⁄
 meters 

(e) This is reasonable because we have completed the 
trip, and this is the position vector of the endpoint.

 35. 240 m at 2378
 37. 1.158
 39. (a) 25.4 s   (b) 15.0 km/h
 41. (a) The x, y, and z components are, respectively, 2.00, 1.00, 

and 3.00.   (b) 3.74   (c) ux 5 57.78, uy 5 74.58, uz 5 36.78
 43. (a) 22.00 k

⁄
 m/s   (b) its velocity vector

 45. (a) R
S

1 5 a i
⁄

1 b j
⁄
   (b) R1 5 (a2 1 b2)1/2  

(c) R
S

2 5 a i
⁄

1 b j
⁄

1 c k
⁄

Chapter 4
Answers to Quick Quizzes

 1. (a)
 2. (i) (b)   (ii) (a)
 3. 158, 308, 458, 608, 758

 15. (a) 9.00 m/s   (b) 23.00 m/s   (c) 17.0 m/s   (d) The graph 
of velocity versus time is a straight line passing through 
13 m/s at 10:05 a.m. and sloping downward, decreasing 
by 4 m/s for each second thereafter.   (e) If and only if we 
know the object’s velocity at one instant of time, knowing 
its acceleration tells us its velocity at every other moment 
as long as the acceleration is constant.

 17. 216.0 cm/s2

 19. (a) The idea is false unless the acceleration is zero. We 
define constant acceleration to mean that the velocity 
is changing steadily in time. So, the velocity cannot be 
changing steadily in space.   (b) This idea is true. Because 
the velocity is changing steadily in time, the velocity half-
way through an interval is equal to the average of its ini-
tial and final values.

 21. (a) 19.7 cm/s   (b) 4.70 cm/s2   (c) The length of the glider 
is used to find the average velocity during a known time 
interval.

 23. (a) 3.75 s   (b) 5.50 cm/s   (c) 0.604 s   (d) 13.3 cm, 47.9 cm  
(e) The cars are initially moving toward each other, so 
they soon arrive at the same position x when their speeds 
are quite different, giving one answer to (c) that is not an 
answer to (a). The first car slows down in its motion to the 
left, turns around, and starts to move toward the right, 
slowly at first and gaining speed steadily. At a particular 
moment its speed will be equal to the constant rightward 
speed of the second car, but at this time the accelerating 
car is far behind the steadily moving car; thus, the answer 
to (a) is not an answer to (c). Eventually the accelerating 
car will catch up to the steadily coasting car, but passing 
it at higher speed, and giving another answer to (c) that is 
not an answer to (a).

 25. David will be unsuccessful. The average human reac-
tion time is about 0.2 s (research on the Internet) and 
a dollar bill is about 15.5 cm long, so David’s fingers are 
about 8 cm from the end of the bill before it is dropped. 
The bill will fall about 20 cm before he can close his 
fingers.

 27. 7.96 s
 29. (a) 10.0 m/s up   (b) 4.68 m/s down
 31. (a) The box could reach the window according to the 

data provided.   (b) Answers will vary.
 33. (a) ax(t) 5 axi 1 Jt ; vx(t) 5 vxi 1 axit 1 12 Jt 2;  

x(t) 5 xi 1 vxit 1  12axit
2 1 16 Jt 3

 35. (a) 4.00 m/s   (b) 1.00 ms   (c) 0.816 m
 37. (a) Here, v1 must be greater than v2 and the distance 

between the leading athlete and the finish line must 
be great enough so that the trailing athlete has time to  
catch up.

  (b) t 5
d1

v1 2 v2

    (c) d2 5
v2d1

v1 2 v2

 39. (a) 5.46 s   (b) 73.0 m    
(c) vStan 5 22.6 m/s, vKathy 5 26.7 m/s

 41. 1.60 m/s2

 43. (a) 5.32 m/s2 for Laura and 3.75 m/s2 for Healan  
(b) 10.6 m/s for Laura and 11.2 m/s for Healan  
(c) Laura, by 2.63 m   (d) 4.47 m at t 5 2.84 s

A-26 Answers to Quick Quizzes and Odd-Numbered Problems
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the ball is dropped from about 0.4 m, which is also below 
the hand of a normally proportioned person.

 37. (a) 26.9 m/s   (b) 67.3 m   (c) s2.00i
⁄

2 5.00j
⁄
d mys2

 39. The initial height of the ball when struck is 3.94 m, which 
is too high for the batter to hit the ball.

 41. (a) 1.69 km/s   (b) 1.80 h
 43. (a) x 5 vi(0.164 3 1 0.002 299vi

2)1/2 1 0.047 94vi
2, where x 

is in meters and vi is in meters per second   (b) 0.041 0 m   
(c) 961 m   (d) x < 0.405vi   (e) x < 0.095 9vi

2   (f) The graph 
of x versus vi starts from the origin as a straight line with  
slope 0.405 s. Then it curves upward above this tangent 
line, becoming closer and closer to the parabola x 5 
0.095 9vi

2, where x is in meters and vi is in meters per 
second.

 45. (a) 4.00 km/h   (b) 4.00 km/h
 47. ,102 m/s2

 49. (a) 43.2 m   (b) s9.66i
⁄

2 25.6 j
⁄
d mys   (c) Air resistance 

would ordinarily make the jump distance smaller and the 
final horizontal and vertical velocity components both 
somewhat smaller. If a skilled jumper shapes her body 
into an airfoil, however, she can deflect downward the air 
through which she passes so that it deflects her upward, 
giving her more time in the air and a longer jump.

 51. (a) Dt1 5
L

c 1 v
1

L
c 2 v

5
2Lyc

1 2 v2yc2

  (b) Dt2 5
2L

Ïc2 2 v2
5

2Lyc

Ï1 2 v2yc2

  (c) Sarah, who swims cross-stream, returns first.

 53.  tan 2 1SÏ2gh

v D
Chapter 5
Answers to Quick Quizzes

 1. (d)
 2. (a)
 3. (d)
 4. (b)
 5. (i) (c)   (ii) (a)
 6. (b)
 7. (b) Pulling up on the rope decreases the normal force, 

which, in turn, decreases the force of kinetic friction.

Answers to Odd-Numbered Problems

 1. 8.71 N
 3. (a) s6.00 i

⁄
1 15.0 j

⁄
d N   (b) 16.2 N

 5. (a) s245.0 i
⁄

1 15.0 j
⁄ d m/s   (b) 162° from the +x axis    

(c) s2225 i
⁄

1 75.0 j
⁄
d m   (d) s2227 i

⁄
1 79.0 j

⁄
d m

 7. (a) a⁄ is at 181°   (b) 11.2 kg   (c) 37.5 m/s  
(d) (237.5i

⁄
2 0.893j

⁄
) m/s

 9. (a) 1.53 m   (b) 24.0 N forward and upward at 5.29° with 
the horizontal

 11. (a) 3.64 3 10218 N   (b) 8.93 3 10230 N is 408 billion times 
smaller

 13. (a) ,10222 m/s2   (b) d , 10223 m
 15. (a) 3.43 kN   (b) 0.967 m/s horizontally forward

 4. (i) (d)   (ii) (b)
 5. (i) (b)   (ii) (d)

Answers to Odd-Numbered Problems

 1. (a) (1.00i
⁄
 1 0.750 j

⁄
) m/s   (b) (1.00i

⁄
 1 0.500 j

⁄
) m/s,  

1.12 m/s
 3. (a) vS 5 212.0t j

⁄
, where vS is in meters per second and t is in 

seconds   (b) aS 5 212.0j
⁄
 mys2   (c) rS 5 s3.00i

⁄
2 6.00j

⁄
d m; 

 vS 5 212.0j
⁄
 mys

 5. (a) vSf 5 (3.45 2 1.79t)i
⁄

1 (2.89 2 0.650t)j
⁄
 

  (b) rSf 5 (225.3 1 3.45t 2 0.893t 
2)i

⁄
1  

(28.9 1 2.89t 2 0.325t 
2)j

⁄
 

 7. 12.0 m/s
 9. 67.88

 11. d tan ui 2
gd 

2

2vi
2  cos2 ui

 13. (a) (0, 50.0 m)   (b) vxi 5 18.0 m/s; vyi 5 0   (c) Particle 
under constant acceleration   (d) Particle under constant 
velocity   (e) vxf 5 vxi; vyf 5 2gt   (f) xf 5 vxit; yf 5 yi 2 12gt2   
(g) 3.19 s   (h) 36.1 m/s, 260.18

 15. (a) 41.7 m/s   (b) 3.81 s   (c) vx 5 34.1 mys, vy 5 213.4 mys, 
v 5 36.7 mys

 17. 1.92 s
 19. 7.58 3 103 m/s, 5.80 3 103 s
 21. 377 m/s2

 23. (a) Yes. The particle can be either speeding up or slow-
ing down, with a tangential component of acceleration 
of magnitude Ï62 2 4.52 5 3.97 mys2.   (b) No. The mag-
nitude of the acceleration cannot be less than v 2/r 5  
4.5 m/s2.

 25. (a) 9.80 m/s2 down and 2.50 m/s2 south   (b) 9.80 m/s2  
down   (c) The bolt moves on a parabola with its axis 
downward and tilting to the south. It lands south of the 
point directly below its starting point.   (d) The bolt 
moves on a parabola with a vertical axis.

 27. 18.28
 29. 15.3 m

 31. (a) 
2dyc

1 2 v 
2yc 

2   (b) 
2d
c

 

 (c) The trip in flowing water takes a longer time interval. 
The swimmer travels at the low upstream speed for a lon-
ger time interval, so his average speed is reduced below 
c. Mathematically, 1/(1 2 v 2/c 2) is always greater than 1. 
In the extreme, as v S c, the time interval becomes infi-
nite. In that case, the student can never return to the 
starting point because he cannot swim fast enough to 
overcome the river current.

 33. (a) straight up, at 08 to the vertical   (b) 8.25 m/s   (c) a 
straight up and down line   (d) a symmetric parabola 
opening downward   (e) 12.6 m/s north at tan−1(8.25/ 
9.5) 5 41.08 above the horizontal

 35. The relationship between the height h and the walking 
speed is h 5 (4.16 3 1023)vx

2, where h is in meters and vx 
is in meters per second. At a typical walking speed of 4 to 
5 km/h, the ball would have to be dropped from a height 
of about 1 cm, clearly much too low for a person’s hand. 
Even at Olympic-record speed for the 100-m run (con-
firm on the Internet), this situation would only occur if 

 Answers to Quick Quizzes and Odd-Numbered Problems A-27

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 (d) T12 decreases and T23 increases
 33. Driver was traveling at 67.1 mi/h
 35. 834 N
 37. (a) 3.43 m/s2 toward the scrap iron   (b) 3.43 m/s2 toward 

the scrap iron; 26.86 m/s2 toward the magnet

 39. (a) 1

m1
m2

2

F
S

P
S

 P
S

nS
nS

gS 
gS fk1

S fk2
S

  (b) F   (c) F – P   (d) P   (e) m1: F – P = m1a; m 2: P = m 2a

  (f) a 5
F 2 m1m1g 2 m2m2g

m1 1 m2

 

  (g) P 5
m2

m1 1 m2

 fF 1 m1sm2 2 m1dgg 

 41. (a) 

480 N

250 N

250 N

160 N

250 N

nS320 N

250 N

nS

  (b) 0.408 m/s2   (c) 83.3 N
 43. (a) 

19.6 N

18 N

m1

1nS

P
S

 P
S

 

29.4 N

m2

2nS

Q
S

 

39.2 N
m3

3nS

Q
S

 

  (b) 2.00 m/s2 to the right   (c) 4.00 N on m1, 6.00 N right 
on m2, 8.00 N right on m3   (d) 14.0 N between m1 and m2,  
8.00 N between m2 and m3   (e) The m2 block models the 
heavy block of wood. The contact force on your back is 
modeled by the force between the m2 and the m3 blocks, 
which is much less than the force F. The difference 
between F and this contact force is the net force causing 
the acceleration of the 5-kg pair of objects. The accelera-
tion is real and nonzero, but it lasts for so short a time 
that it is never associated with a large velocity. The frame 
of the building and your legs exert forces, small in magni-
tude relative to the hammer blow, to bring the partition, 
block, and you to rest again over a time interval large 
relative to the hammer blow.

 45. (b) If u is greater than tan21 (1/ms), motion is impossible.
 47. Ship requires 1.5 km to come to rest.
 49. (M 1 m 1 1 m 2)(m 1g /m2)
 51. (a) 0.931 m/s2   (b) From a value of 0.625 m/s2 for large 

x, the acceleration gradually increases, passes through a 

 17. (a)  nS

mg sin u

mg cos u

m

u

u

u

x

y

mgS

  (b) 22.54 m/s2   (c) 3.19 m/s
 19. (a) 

21

9.80 N

T
ST

S

  (b) 613 N
 21. (a) a 5 g tan u   (b) 4.16 m/s2

 23. (a) Fx . 19.6 N   (b) Fx # 278.4 N 
  (c) 

�100�100
Fx (N)

�10

ax (m/s2)
�10

 25. (a) a2 5 2a1   (b) T2 5
m1m2

2m2 1
1
2

m1

g  and T2 5
m1m2

m2 1
1
4

m1

g   

(c) 
m1g

2m2 1
1
2

m1

 and 
m1g

4m2 1 m1

 27. (a) 14.7 m (b) neither mass is necessary
 29. 37.8 N
 31. (a) nS

T12
S

T12
S

T23
S

T23
S

m2gS

m1gS

m3gS

f
S

 (b) 2.31 m/s2, down for m1, left for m2, and up for m3
 (c) T12 5 30.0 N and T23 5 24.2 N
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 15. (a) 491 N   (b) 50.1 kg   (c) 2.00 m/s2

 17. 0.5278
 19. (a) 2.03 N down   (b) 3.18 m/s2 down   (c) 0.205 m/s down
 21. (a) 1.47 N ? s/m   (b) 2.04 3 1023 s   (c) 2.94 3 1022 N
 23. 101 N
 25. 781 N

 27. (a) mg 2
mv2

R
   (b) ÏgR

 29. (a) v 5 vi e
2bt/m   (b) 

vi

O

v

t

  (c) In this model, the object keeps moving forever.  
(d) It travels a finite distance in an infinite time interval.

 31. (a) the downward gravitational force and the tension 
force in the string, always directed toward the center of 
the path

  (b) 

Fg
S

Fg
S

T
S

T
S

   (c) 6.05 N   (d) 7.82 m/s

 33. (a) 1 975 lb, directed upward   (b) 647 lb, directed down-

ward   (c) When F 9g 5 0, then mg 5
mv2

R
.

 35. (a) The only horizontal force on the car is the force of 
friction, with a maximum value determined by the sur-
face roughness (described by the coefficient of static 
friction) and the normal force (here equal to the gravita-
tional force on the car).   (b) 34.3 m   (c) 68.6 m   (d) Brak-
ing is better. You should not turn the wheel. If you used 
any of the available friction force to change the direction 
of the car, it would be unavailable to slow the car and the 
stopping distance would be greater.   (e) The conclusion 
is true in general. The radius of the curve you can barely 
make is twice your minimum stopping distance.

 37. (a) 735 N   (b) 732 N   (c) The gravitational force is larger. 
The normal force is smaller, just like it is when going over 
the top of a Ferris wheel.

 39. (a) o F
S

5 kmvS   (b) In general, the possibility of k positive 
is unrealistic in nature. You might be able to imagine some 
device with a feedback mechanism that could be used to 
apply a force to cause the velocity to increase in magni-
tude. In this case the speed would increase exponentially, 
so such a situation could only exist temporarily.   (c) Think 
of a duck landing on a lake, where the water exerts a resis-
tive force on the duck proportional to its speed.

 41. (a) vmin 5ÎRgstan u 2 msd

1 1 ms tan u
, vmax 5ÎRg stan u 1 msd

1 2 ms tan u

  (b) ms 5 tan u

maximum, and then drops more rapidly, becoming nega-
tive and reaching 22.10 m/s2 at x 5 0.   (c) 0.976 m/s2 at  
x 5 25.0 cm   (d) 6.10 cm

 53. (a) m2g 3 m1M

m2M 1 m1(m2 1 M)4   (b) 3 gm1(m2 1 M)

m2M 1 m1(m2 1 M)4 

  (c) 3 m1m2g

m2M 1 m1(m2 1 M)4   (d) 3 m1Mg

m2M 1 m1(m2 1 M)4
 55. R

S
5 [m cosu sinui

⁄
1 (M 1 m cos2u)j

⁄
]g , where the x axis is 

horizontal and the y axis is vertical in Figure P5.55.

Chapter 6
Answers to Quick Quizzes

 1. (i) (a)   (ii) (b)
 2. (i) Because the speed is constant, the only direction the 

force can have is that of the centripetal acceleration. 
The force is larger at Ⓒ than at Ⓐ because the radius at 
Ⓒ is smaller. There is no force at Ⓑ because the wire is 
straight.   (ii) In addition to the forces in the centripetal 
direction in part (a), there are now tangential forces to 
provide the tangential acceleration. The tangential force 
is the same at all three points because the tangential 
acceleration is constant.

  

�

�
�

�

�

� F
S

F
S

Fr
S

Fr
S

Ft
SFt

S

Ft
S

i ii

 3. (c)
 4. (a)

Answers to Odd-Numbered Problems

 1. (a) 8.33 3 1028 N toward the nucleus  
(b) 9.15 3 1022 m/s2 inward

 3. (a) (20.233i
⁄

1 0.163j
⁄
) m/s2  

(b) 6.53 m/s, (20.181i
⁄

1 0.181j
⁄
) m/s2

 5. 6.22 3 10212 N
 7. (a) no   (b) yes
 9. (a) 1.33 m/s2   (b) 1.79 m/s2 at 48.08 inward from the 

direction of the velocity

 11. (a) v 5ÎR S2T
m

2 gD   (b) 2T up

 13. (a) 8.62 m   (b) Mg, downward   (c) 8.45 m/s2   (d) Calcu-
lation of the normal force shows it to be negative, which 
is impossible. We interpret it to mean that the normal 
force goes to zero at some point and the passengers will 
fall out of their seats near the top of the ride if they are 
not restrained in some way. We could arrive at this same 
result without calculating the normal force by noting that 
the acceleration in part (c) is smaller than that due to 
gravity. The teardrop shape has the advantage of a larger 
acceleration of the riders at the top of the arc for a path 
having the same height as the circular path, so the pas-
sengers stay in the cars.
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 41. 0.559 m/s
 43. 0.799 N ? m
 45. (a) F

S
1 5 s20.5 i

⁄
1 14.3 j

⁄
d N, F

S
2 5 s236.4 i

⁄
1 21.0 j

⁄
d N

  (b) o F
S

5 s215.9 i
⁄

1 35.3 j
⁄
d N 

  (c) aS 5 s23.18 i
⁄

1 7.07 j
⁄
d mys2 

  (d) vS 5 s25.54 i
⁄

1 23.7 j
⁄
d mys 

  (e) rS 5 s22.30 i
⁄

1 39.3 j
⁄
d m   (f) 1.48 kJ   (g) 1.48 kJ  

(h) The work–kinetic energy theorem is consistent with 
Newton’s second law.

 47. 0.131 m
 49. (a) 19.3°   (b) 1.39 3 104 J

Chapter 8
Answers to Quick Quizzes

 1. (i) (b)   (ii) (b)   (iii) (a)
 2. (a)
 3. v1 5 v2 5 v3
 4. (c)

Answers to Odd-Numbered Problems

 1. (a) DK 1 DU 5 0, v 5 Ï2gh   (b) DK 5 W, v 5 Ï2gh
 3. (a) 5.94 m/s, 7.67 m/s   (b) 147 J
 5. 5.49 m/s
 7. (a) 2168 J   (b) 184 J   (c) 500 J   (d) 148 J   (e) 5.65 m/s
 9. (a) 5.60 J   (b) 2.29 rev
 11. (a) 22.0 J, 40.0 J   (b) Yes   (c) The total mechanical 

energy has decreased, so a nonconservative force must 
have acted.

 13. (a) Isolated. The only external influence on the system  
is the normal force from the slide, but this force is  
always perpendicular to its displacement so it performs  
no work on the system.   (b) No, the slide is frictionless. 

  (c) Esystem 5 mgh   (d) Esystem 5 15mgh 1 12mvi
2 

  (e) Esystem 5 mgymax 1 12mvxi
2 

  (f) vi 5Î8gh

5
   (g) ymax 5 hs1 2 4

5 cos2 u)   (h) If friction is 

  present, mechanical energy of the system would not be con-
served, so the child’s kinetic energy at all points after leav-
ing the top of the waterslide would be reduced when com-
pared with the frictionless case. Consequently, her launch 
speed and maximum height would be reduced as well.

 15. Both trails result in the same speed.
 17. $145
 19. , 104 W
 21. (a) 423 mi/gal   (b) 776 mi/gal
 23. (a) 0.225 J   (b) 20.363 J   (c) no   (d) It is possible to find 

an effective coefficient of friction but not the actual value 
of m since n and f vary with position.

 25. (a) 1.29 3 104 N   (b) 45.4 m/s   (c) 3.72 3 104 N ; 46.1 m/s 
(d) 45 m   (e) No

 27. (a) x 5 24.0 mm   (b) 21.0 cm
 29. (a) 26.08 3 103 J   (b) 24.59 3 103 J   (c) 4.59 3 103 J
 31. (a) 1.38 3 104 J   (b) 5.51 3 103 W   
   (c) The value in part (b)  represents only energy that 

leaves the engine and is transformed to kinetic energy 
of the car. Additional energy leaves the engine by sound 
and heat. More energy from the engine is transformed to 
internal energy by friction forces and air resistance.

 43. (a) Particle under constant acceleration   (b) Dt 5 
2v
g

    

(c) Particle in uniform circular motion   (d) T 5 
2pR

v
   

(e) v 5 ÏpRg    (f) F 5 pmg
 45. (a) 78.3 m/s   (b) 11.1 s   (c) 121 m
 47. (a) 8.04 s   (b) 379 m/s   (c) 1.19 3 1022 m/s   (d) 9.55 cm
 49. 0.092 88

Chapter 7
Answers to Quick Quizzes

 1. (a)
 2. (c), (a), (d), (b)
 3. (d)
 4. (a)
 5. (b)
 6. (c)
 7. (i) (c)   (ii) (a)
 8. (d)

Answers to Odd-Numbered Problems

 1. (a) 1.59 3 103 J   (b) smaller   (c) the same
 3. (a) 472 J   (b) 2.76 kN
 7. 5.33 J
 9. (a) 7.50 J   (b) 15.0 J   (c) 7.50 J   (d) 30.0 J
 11. (a) 0.938 cm   (b) 1.25 J
 13. Each spring should have a spring constant of 316 N/m.
 15. (b) mgR
 17. (a) 

20
25

10
5
0

15

0.050 0.1 0.15 0.2

F (N)

L (m)

  (b) The slope of the line is 116 N/m.   (c) We use all the 
points listed and also the origin. There is no visible evi-
dence for a bend in the graph or nonlinearity near either 
end.   (d) 116 N/m   (e) 12.7 N

 19. (a) 50.0 J   (b) 87.5 J; path independent.
 21. (a) 1.20 J   (b) 5.00 m/s   (c) 6.30 J
 23. 878 kN up
 25. (a) 4.56 kJ   (b) 4.56 kJ   (c) 6.34 kN    

(d) 422 km/s2   (e) 6.34 kN   (f) The two theories agree.
 27. (a) 97.8 J   (b) s24.31 i

⁄
1 31.6  j

⁄
d N   (c) 8.73 m/s

 29. (a) 2.5 J   (b) 29.8 J   (c) 212 J
 31. (a) 2196 J   (b) 2196 J   (c) 2196 J   (d) The gravitational 

force is conservative.
 33. (a) 125 J   (b) 50.0 J   (c) 66.7 J   (d) nonconservative    

(e) The work done on the particle depends on the path 
followed by the particle.

 35. (a) 40.0 J   (b) 240.0 J   (c) 62.5 J
 37. A/r 2 away from the other particle
 39. 

Stable Unstable Neutral
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 27. (a) y

x
r1
S

r2
S

v1
S

v2
S

vCM
S

CM

m1

m2

 

  (b) (22.00i
⁄

2 1.00j
⁄
) m   (c) (3.00i

⁄
2 1.00j

⁄
) m/s 

  (d) (15.0i
⁄

2 5.00j
⁄
) kg ? m/s

 29. The drone was struck by a meteorite.
 31. (a) yes   (b) no   (c) 103 kg ? m/s, up   (d) yes   (e) 88.2 J  

(f) No, the energy came from potential energy stored in 
the person from previous meals.

 33. (a) 442 metric tons   (b) 19.2 metric tons   (c) It is much 
less than the suggested value of 442/2.50. Mathemati-
cally, the logarithm in the rocket propulsion equation is 
not a linear function. Physically, a higher exhaust speed 
has an extra -large cumulative effect on the rocket body’s 
final speed by counting again and again in the speed the 
body attains second after second during its burn.

 35. (a) She moves, just like the archer in Example 9.1.  
(b) 2_ m

M 2 m+ vSgloves   (c) As she throws the gloves and 
exerts a force on them, the gloves exert an equal and 
opposite force on her that causes her to accelerate from 
rest to reach the velocity vSgirl.

 37. (a) 1.33 i
⁄
 mys   (b) 2235 i

⁄
 N   (c) 0.680 s   (d) 2160 i

⁄
 N ? s  

and 1160 i
⁄
 N ? s   (e) 1.81 m   (f) 0.454 m   (g) 2427 J    

(h) 1107 J   (i) Let’s imagine an ideal situation in which 
the person and the cart have a perfect thermal insulator 
between them, so that no energy can transfer by heat Q  
between the person and the cart. Then, the change in 
kinetic energy of one member of the system, accord-
ing to Equation 8.2, will be equal to the negative of the 
change in internal energy for that member: DK 5 2DE int. 
The change in internal energy, in turn, is the product 
of the friction force and the distance through which the 
member moves while experiencing that force. Equal- 
magnitude friction forces act on the person and the cart, 
but the person and the cart move through different dis-
tances, as we see in parts (e) and (f). Therefore, there 
are different changes in internal energy for the person 
and the cart and, in turn, different changes in kinetic 
energy. The person and the cart will experience differ-
ent changes in internal energy and, therefore, in tem-
perature, which, in the real situation without the thermal 
insulator, will equalize after the event by means of the 
transfer of energy by heat Q between the person and the 
cart. The total change in kinetic energy of the system, 
2320 J, becomes 1320 J of extra internal energy in the 
entire system in this perfectly inelastic collision.

 33. (a) 0.403 m or 20.357 m   (b) From a perch at a height 
of 2.80 m above the top of a pile of mattresses, a 46.0-kg 
child jumps upward at 2.40 m/s. The mattresses behave 
as a linear spring with force constant 19.4 kN/m. Find the 
maximum amount by which they are compressed when 
the child lands on them.   (c) 0.023 2 m   (d) This result 
is the distance by which the mattresses compress if the 
child just stands on them. It is the location of the equilib-
rium position of the oscillator.

 35. (a) 1.53  J at x 5 6.00 cm, 0  J at x 5 0   (b) 1.75 m/s   
(c) 1.51 m/s   (d) The answer to part (c) is not half the 
answer to part (b), because the equation for the speed of 
an oscillator is not linear in position

 37. 48.28
 39. (a) No, mechanical energy is not conserved in this case. 

(b) 77.0 m/s
 43. (b) 0.342
 45. (a) 2mk gx/L   (b) (mkgL)1/2

 47. Less dangerous

Chapter 9
Answers to Quick Quizzes

 1. (d)
 2. (b), (c), (a)
 3. (i) (c), (e)   (ii) (b), (d)
 4. (a) All three are the same. (b) dashboard, seat belt, air bag
 5. (a)
 6. (b)
 7. (b)
 8. (i) (a)   (ii) (b)

Answers to Odd-Numbered Problems

 1. (b) p 5 Ï2mK
 3. F

S
on bat 5 s3.26  i

⁄
2 3.99  j

⁄
d kN, where positive x is from the 

pitcher toward home plate and positive y is upward.
 5. (a) 26.00  i

⁄
 m/s   (b) 8.40 J   (c) The original energy is 

in the spring.   (d) A force had to be exerted over a dis-
placement to compress the spring, transferring energy 
into it by work. The cord exerts force, but over no dis-
placement.   (e) System momentum is conserved with 
the value zero.   (f) The forces on the two blocks are 
internal forces, which cannot change the momentum 
of the system; the system is isolated.   (g) Even though 
there is motion afterward, the final momenta are of 
equal magnitude in opposite directions, so the final 
momentum of the system is still zero.

 7. (c) no difference
 9. (a) 9.60 3 1022 s   (b) 3.65 3 105 N   (c) 26.6g
 11. 16.5 N
 13. (a) 2.50 m/s   (b) 37.5 kJ

 15.  (a) vf 5
1
3

(v1 1 2v2)   (b) DK 5 2
m
3

(v 
2

1 1 v 2  

2 2 2v1v2)

 17. (a) 4.85 m/s   (b) 8.41 m
 19. The defendant was traveling at 41.5 mi/h.
 21. vO 5 vi cos u, vY 5 vi sin u

 23. v 5
vi

Ï2
, 45.08, 245.08

 25. 3.57 3 108 J
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 21. tf 5 20.039 8 N ? m

 23.   Iy 9
5 #

all mass
r  

2 dm 5 #
L

0
x 

2M
L

 dx 5
M
L

 
x 3

3 *
L

0

5 1
3  
ML2

 25. (a) 92.0 kg ⋅ m2   (b) 184 J   (c) 6.00 m/s, 4.00 m/s,  
8.00 m/s   (d) 184 J   (e) The kinetic energies computed 
in parts (b) and (d) are the same.

 27. 1.03 3 1023 J
 29. (a) 11.4 N   (b) 7.57 m/s2   (c) 9.53 m/s   (d) 9.53 m/s
 31. (a) 2(Rg/3)1/2   (b) 4(Rg/3)1/2   (c) (Rg)1/2

 33. (a) 2.38 m/s   (b) The centripetal acceleration at the top 

is  
v2

2

r
5

(2.38 m/s)2

0.450 m
5 12.6 m/s2 . g.  Therefore, the ball 

must be in contact with the track, with the track pushing  
downward on it.   (c) 4.31 m/s   (d) The speed of the 
ball turns out to be imaginary.   (e) When the ball is 
projected with the same speed as before, but with only 
translational kinetic energy, there is insufficient kinetic 
energy for the ball to arrive at the top of the track.

 35. (a) 1.21 3 1024 kg ? m2   (b) Knowing the height of the 
can is unnecessary.   (c) The mass is not uniformly distrib-
uted; the density of the metal can is larger than that of 
the soup.

 37. (a) 12.5 rad/s   (b) 128 rad

 39. (a) d 5 (1 890 1 80n)1 0.459 m
80n 2 1502   (b) 94.1 m   (c) 1.62 m  

(d) 25.79 m   (e) The rising car will coast to a stop only 
for n $ 2.   (f) For n 5 0 or n 5 1, the mass of the elevator 
is less than the counterweight, so the car would acceler-
ate upward if released. (g) 0.459 m

 43. 54.08
 45. (b) to the left

Chapter 11
Answers to Quick Quizzes

 1. (d)
 2. (i) (a)   (ii) (c)
 3. (b)
 4. (a)

Answers to Odd-Numbered Problems

 1.  i
⁄

1 8.00 j
⁄

1 22.0 k
⁄

 3. 45.0°
 5. (a) F3 5 F1 1 F2   (b) no
 7. (a) (210.0 N ? m)k

⁄
   (b) yes   (c) yes   (d) yes   (e) no  

(f) 5.00 j
⁄
 m

 9. m sxvy 2 yvx 
d k

⁄

 11.  (a) zero   (b) s2mvi
3  sin2 u cos uy2g d k

⁄
   

(c) s22mvi
3  sin2 u cos uyg d k

⁄
  

(d) The downward gravitational force exerts a torque on 
the projectile in the negative z direction.

 13. mvR fcos svtyRd 1 1g k
⁄

 15. (a) 2m/g t cos u k
⁄
   (b) The Earth exerts a gravitational 

torque on the ball.   (c) 2mg/ cos u k
⁄

 17. (a) 0.360 kg ? m2/s   (b) 0.540 kg ? m2/s
 19. 1.20 kg ? m2/s
 21. 8.63 m/s2

 23. (a) The mechanical energy of the system is not con-
stant. Some potential energy in the woman’s body from  

 39. (a) Momentum of the bullet–block system is conserved 
in the collision, so you can relate the speed of the block 
and bullet immediately after the collision to the initial 
speed of the bullet. Then, you can use conservation of 
mechanical energy for the bullet–block–Earth system 
to relate the speed after the collision to the maximum 
height.   (b) 521 m/s upward

 41. (a) 
m1v1 1 m2v2

m1 1 m2

   (b) sv1 2 v2dÎ m1m2

ksm1 1 m2d
 

  (c) v1f 5
sm1 2 m2dv1 1 2m2v2

m1 1 m2

,

  v2f 5
2m1v1 1 sm2 2 m1dv2

m1 1 m2

 43. (a) 6.29 m/s   (b) 6.16 m/s   (c) Most of the 2% difference 
between the values for speed could be accounted for by 
air resistance.

 45. 143 m/s
 47. (a) 0; inelastic   (b) s20.250  i

⁄
1 0.75  j

⁄
2 2.00 k

⁄
d mys; 

perfectly inelastic   (c) either a 5 26.74 with 
vS 5 20.419 k

⁄
 mys or a 5 2.74 with vS 5 23.58 k

⁄
 mys

 49. (a) 20.256  i
⁄
 mys and 0.128  i

⁄
 mys    

(b) 20.064 2  i
⁄
 mys and 0   (c) 0 and 0

 51. (a) (20.0i
⁄

1 7.00j
⁄
) m/s    (b) 4.00i

⁄
 m/s2   (c) 4.00i

⁄
 m/s2   

(d)  (50.0i
⁄

1 35.0j
⁄
) m   (e) 600 J   (f) 674 J   (g) 674 J  

(h) The accelerations computed in different ways agree. 
The kinetic energies computed in different ways agree. 
The three theories are consistent.

 53. (a) particle of mass m: Ï2vi ; particle of mass 3m: Ï2
3vi 

(b) 35.3°

Chapter 10
Answers to Quick Quizzes

 1. (i) (c)   (ii) (b)
 2. (b)
 3. (i) (b)   (ii) (a)
 4. (b)
 5. (b)
 6. (a)
 7. (b)

Answers to Odd-Numbered Problems

 1. (a) 7.27 3 1025 rad/s   (b) Because of its angular speed, 
the Earth bulges at the equator.

 3. (a) 4.00 rad/s2   (b) 18.0 rad
 5. (a) 8.21 3 102 rad/s2   (b) 4.21 3 103 rad

 7. (a) vh3y2S2
gD1y2

   (b) 1.16 cm   (c) The deflection is only 

0.02% of the original height, so it is negligible in many 
practical cases.   (d) decrease

 9. (a) 25.0 rad/s   (b) 39.8 rad/s2   (c) 0.628 s
 11. (a) 54.3 rev   (b) 12.1 rev/s
 13. (a) 3.47 rad/s   (b) 1.74 m/s   (c) 2.78 s   (d) 1.02 rotations
 15. (a) 1.03 s   (b) 10.3 rev
 17. (a) 24.0 N ? m   (b) 0.035 6 rad/s2   (c) 1.07 m/s2

 19. (a) 0.312   (b) 117 N
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 19. 23.8 mm
 21. (a) 3.14 3 104 N   (b) 6.28 3 104 N
 23. 9.85 3 1025

 25. nA 5 5.98 3 105 N, nB 5 4.80 3 105 N
 27. (a) 0.400 mm   (b) 40.0 kN   (c) 2.00 mm   (d) 2.40 mm   

(e) 48.0 kN

 29. (a) T
S

3.00 m 3.00 m 
700 N 

x
200 N 

80.0 N 

60.0�

O

Ry

Rx

  (b) T 5 343 N, Rx 5 171 N to the right, Ry 5 683 N up 
(c) 5.14 m

 31. (a) T 5 Fg(L 1 d)/[sin u (2L 1 d)] 
  (b) Rx 5 Fg(L 1 d) cot u/(2L 1 d); Ry 5 FgL/(2L 1 d)
 33. (a) 5.08 kN   (b) 4.77 kN   (c) 8.26 kN

 35. (a) 12 mS2ms sin u 2 cos u

cos u 2 ms sin u D   (b) (m 1 M )g Ï1 1 ms 
2

  (c) gÏM 2 1 ms
2  sm 1 M d2

 37. (a) 9.28 kN   (b) The moment arm of the force F
S

h is no 
longer 70 cm from the shoulder joint but only 49.5 cm, 
therefore reducing F

S
m to 6.56 kN.

 39. (a) 66.7 N   (b) increasing at 0.125 N/s

 41. (a) 
1

Ï15
 
mgd

/
   (b) nA 5 mgS2/ 2 d

2/ D, nB 5
mgd

2/

  (c) R x 5
1

Ï15
 
mgd

/
 to the right, R y 5

mgd

2/
 downward

 43. (a) P1 5 P3 5 1.67 N, P2 5 3.33 N   (b) 2.36 N
 45. 5.73 rad/s
 47. (a) 443 N   (b) 221 N (to the right), 217 N (upward)
 49. (b) 60.0°   (c) unstable

Chapter 13
Answers to Quick Quizzes

 1. (e)
 2. (c)
 3. (a)
 4. (a) perihelion   (b) aphelion   (c) perihelion   (d) all points

Answers to Odd-Numbered Problems

 1. 7.41 3 10210 N
 3. ,1027 N
 5. (a) 7.61 cm/s2   (b) 363 s   (c) 3.08 km    

(d) 28.9 m/s at 72.98 below the horizontal
 7. (a) 1.31 3 1017 N   (b) 2.62 3 1012 N/kg
 9. (a) 0.708 yr   (b) 0.399 yr
 11. 4.99 days
 13. (a) yes   (b) 3.93 yr
 15. 4.17 3 1010 J
 17. (a) 21.67 3 10214 J   (b) The particles collide at the center 

of the triangle.
 19. 1.58 3 1010 J
 21. 1.78 3 103 m
 23. (a) same size force   (b) 15.6 km/s

previous meals is converted into mechanical energy.    
(b) The momentum of the system is not constant. The 
turntable bearing exerts an external northward force on 
the axle.   (c) The angular momentum of the system is 
constant.   (d) 0.360 rad/s counterclockwise   (e) 99.9 J

 25. (a) 11.1 rad/s counterclockwise   (b) No; 507 J is transformed 
into internal energy in the system.   (c) No; the turntable bear-
ing promptly imparts impulse 44.9 kg ? m/s north into the 
turntable–clay system and thereafter keeps changing the sys-
tem momentum as the velocity vector of the clay continuously 
changes direction.

 27. (a) mv, down   (b) M/(M 1 m)
 29. (a) v 5 2mvid/[M 1 2m]R 2   (b) No; some mechanical 

energy of the system changes into internal energy.    (c) The  
momentum of the system is not constant. The axle exerts 
a backward force on the cylinder when the clay strikes.

 31. 5.46 3 1022 N ? m
 33. (a) 2.35 rad/s   (b) 0.498 rad/s   (c) 5.588
 35. 7.50 3 10211 s
 37. (a) 7md 2/3   (b) mgd k

⁄
   (c) 3g/7d counterclockwise 

  (d) 2g/7 upward   (e) mgd   (f) Ï6gy7d   (g) mÏ14gd 3y3  
(h) Ï2gdy21 

 39. (a) 3 750 kg ? m2/s   (b) 1.88 kJ   (c) 3 750 kg ? m2/s 
(d) 10.0 m/s   (e) 7.50 kJ   (f) 5.62 kJ

 41. (a) 2mv0   (b) 2v0/3   (c) 4m ,v0/3   (d) 4v0/9,   (e) mv0
2   

(f) 26mv0
2/27   (g) No horizontal forces act on the bola 

from outside after release, so the horizontal momen-
tum stays constant. Its center of mass moves steadily 
with the horizontal velocity it had at release. No torques 
about its axis of rotation act on the bola, so the angular  
momentum stays constant. Internal forces cannot affect 
momentum conservation and angular momentum con-
servation, but they can affect mechanical energy.

 43. 10.7 m/s
 45. an increase of 6.368 3 1024 % or 0.550 s, which is not 

significant
 47. 14.0 s
 49. (a) 2.0 m/s   (b) 1.0 rad/s

Chapter 12
Answers to Quick Quizzes

 1. (a)
 2. (b)
 3. (b)
 4. (i) (b)   (ii) (a)   (iii) (c)

Answers to Odd-Numbered Problems
 1. Safe arrangements: 2-3-1, 3-1-2, 3-2-1; dangerous  

arrangements: 1-2-3, 1-3-2, 2-1-3
 3. (3.85 cm, 6.85 cm)
 5. x 5 0.750 m
 7. 177 kg
 9. (a) 29.9 N   (b) 22.2 N
 11. (a) 27.7 kN   (b) 11.5 kN   (c) 4.19 kN
 13. (a) 1.04 kN at 60.0° upward and to the right  

(b) s370 i
⁄

1 910 j
⁄
d N

 15. (a) 859 N   (b) 1.04 kN at 36.9° to the left and upward
 17. (a) 20.053 8 m3   (b) 1.09 3 103 kg/m3   (c) With only a 

5% change in volume in this extreme case, liquid water 
can be modeled as incompressible in biological and stu-
dent laboratory situations.
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  (c) ms 5 4
3(rair 2 rHe)pr  

3 2 mb   

  (d) 0.023 7 kg (e) 0.948 m
 35. ,104

 37. (a) 8.01 km   (b) yes
 39. 91.64%
 41. (a) 3.307 g (b) 3.271 g (c) 3.48 3 1024 N
 43. 18.1 N
 45. 758 Pa
 47. 4.43 m/s

Chapter 15
Answers to Quick Quizzes

 1. (d)
 2. (f)
 3. (a)
 4. (b)
 5. (c)
 6. (i) (a)   (ii) (a)

Answers to Odd-Numbered Problems

 1. (a) 17 N to the left   (b) 28 m/s2 to the left
 3. (a) 1.50 Hz   (b) 0.667 s   (c) 4.00 m   (d) p rad   (e) 2.83 m
 5. (a) 22.34 m   (b) 21.30 m/s   (c) 20.076 3 m   (d) 0.315 m/s
 7. (a) x 5 2.00 cos (3.00pt 2 908) or x 5 2.00 sin (3.00pt)  

 where x is in centimeters and t is in seconds   (b) 18.8 cm/s 
(c) 0.333 s   (d) 178 cm/s2   (e) 0.500 s (f) 12.0 cm

 9. (a) yes   (b) The value of k in Equation 15.13 is propor-
tional to the mass m, so the mass cancels in the equation, 
leaving only the extension of the spring and the accelera-
tion due to gravity in the equation: T 5 0.859 s.

 11. 2.60 cm or 22.60 cm
 13. (a) 89 E    (b) 19 E    (c) x 5 6Ï2

3A
  (d) No; the maximum potential energy is equal to the 

total energy of the system. Because the total energy must 
remain constant, the kinetic energy can never be greater 
than the maximum potential energy.

 15. (a) 4.58 N   (b) 0.125 J   (c) 18.3 m/s2   (d) 1.00 m/s   
(e) smaller   (f) the coefficient of kinetic friction between 
the block and surface   (g) 0.934

 17. (a) 1.50 s   (b) 0.559 m
 19. 0.944 kg ? m2

 21. (a) 0.820 m/s   (b) 2.57 rad/s2   (c) 0.641 N   (d) vmax 5 
0.817 m/s, amax 5 2.54 rad/s2, Fmax 5 0.634 N   (e) The 
answers are close but not exactly the same. The angu-
lar amplitude of 158 is not a small angle, so the simple 
harmonic oscillation model is not accurate. The answers 
computed from conservation of energy and from New-
ton’s second law are more accurate.

 23. (a) 5.00 3 1027 kg ? m2   (b) 3.16 3 1024 N ? m/rad
 27. (a) 3.16 s21   (b) 6.28 s21   (c) 5.09 cm
 29. (a) 0.349 kg ? m2   (b) too low
 31. (a) 2.09 s   (b) 0.477 Hz   (c) 36.0 cm/s   (d) E 5 0.064 8m,  

where E is in joules and m is in kilograms   (e) k 5 9.00m, 
where k is in newtons/meter and m is in kilograms   
(f) Period, frequency, and maximum speed are all inde-
pendent of mass in this situation. The energy and the 
force constant are directly proportional to mass.

 33. (a) 2.00 cm   (b) 4.00 s   (c) 
p

2
 rad/s   (d) p cm/s (e) 4.93 

  cm/s2   (f) x 5 2.00 sin 1p

2
t2, where x is in centimeters and 

  t is in seconds

 25. 492 m/s
 27. 1.30 3 103 m/s
 29. 2.25 3 1027

 31. (a) 1.00 3 107 m   (b) 1.00 3 104 m/s
 33. (a) 15.3 km   (b) 1.66 3 1016 kg   (c) 1.13 3 104 s   (d) No; 

its mass is so large compared with yours that you would 
have a negligible effect on its rotation.

 35. (c) 1.85 3 1025 m/s2

 37. (a) 2 3 108 yr   (b) ,1041 kg   (c) 1011

 39. (a) 2.93 3 104 m/s   (b) K 5 2.74 3 1033 J, 
  U 5 25.39 3 1033 J   (c) K 5 2.56 3 1033 J, 
  U 5 25.21 3 1033 J   (d) Yes; E 5 22.65 3 1033 J at both 

aphelion and perihelion.

 41. (a) (2.77 m/s2)11 1
m

5.98 3 1024 kg2   (b and c) 2.77 m/s2    

(d) 3.70 m/s2   (e) Any object with mass small compared 
to the Earth starts to fall with acceleration 2.77 m/s2. 
As m increases to become comparable to the mass of 
the Earth, the acceleration increases and can become 
arbitrarily large. It approaches a direct proportionality  
to m.

 43. 18.2 ms

Chapter 14
Answers to Quick Quizzes

 1. (a)
 2. (a)
 3. (c)
 4. (b) or (c)
 5. (a)

Answers to Odd-Numbered Problems

 1. 2.96 3 106 Pa
 3. 5.27 3 1018 kg
 5. 7.74 3 1023 m2

 7. 0.072 1 mm
 9. (a) 10.5 m   (b) No. The vacuum is not as good because 

some alcohol and water in the wine will evaporate. The 
equilibrium vapor pressures of alcohol and water are 
higher than the vapor pressure of mercury.

 11. 3.33 3 103 kg/m3

 13. (a) 1 250 kg/m3   (b) 500 kg/m3

 15. (a) 408 kg/m3   (b) When m is less than 0.310 kg, the 
wooden block will be only partially submerged in the 
water.   (c) When m is greater than 0.310 kg, the wooden 
block and steel object will sink.

 17. (a) 11.6 cm   (b) 0.963 g/cm3    
(c) No; the density r is not linear in h.

 19. 20.0 g
 21. (b) 616 MW
 23. (a) 15.1 MPa   (b) 2.95 m/s
 25. (a) 28.0 m/s   (b) 28.0 m/s   (c) The answers agree  

precisely. The models are consistent with each other.  
(d) 2.11 MPa

 27. 0.120 N
 29. 0.200 mm
 31. (a) 4.43 m/s   (b) 10.1 m
 33. (a) particle in equilibrium 

  (b) oFy 5 B 2 Fb 2 FHe 2 Fs 5 0 
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 49. (a) v 5Î T
r s1.00 3 1025 x 1 1.00 3 1026d

, where v is in 

  meters per second, T is in newtons, r is in kilograms per  
meter cubed, and x is in meters   (b) v(0) 5 94.3 m/s,  
v(10.0 m) 5 9.38 m/s

 51. (a) 
mv3

2k
 A 0

2  e22bx   (b) 
mv3

2k
 A 0

2   (c) e22bx

 53. It is unreasonable, implying a sound level of 123 dB. 
Nearly all the decrease in mechanical energy becomes 
internal energy in the latch.

 55. 1.34 3 104 N

 57. (a) m (x) 5
(mL 2 m0)x

L
1 m0  

(b) Dt 5
2L

3ÏT  (mL 2 m0)
 (m 3y2

L 2 m 3y2
0 )

Chapter 17
Answers to Quick Quizzes

 1. (c)
 2. (i) (a)   (ii) (d)
 3. (d)
 4. (b)
 5. (c)

Answers to Odd-Numbered Problems

 1. (a) 21.65 cm   (b) 26.02 cm   (c) 1.15 cm
 3. 

0

2

4

6

0 4 8 12

y (cm)

x

t � 1 s

0

2

4

6

0 4 8 12

y (cm)

x

t � 1.5 s

0

2

4

6

0 4 8 12

y (cm)

x

t � 2 s

0

2

4

6

0 4 8 12

y (cm)

x

t � 2.5 s

0

2

4

6

0 4 8 12

y (cm)

x

t � 3 s

 35. 
1

2pL
 ÎgL 1

kh2

M

 37. (a) 1.26 m   (b) 1.58   (c) The energy decreases by 120 J.    
(d)  Mechanical energy is transformed into internal 
energy in the perfectly inelastic collision.

 41. (b) T 5
2
r
 ÎpM

rg
 

 43. 13.0 s

 47. (a) x 5 2 cosS10t 1
p

2D   (b) 6 1.73 m   (c) 0.105 s 5 105 ms   

  (d) 0.098 0 m
 49. (a) yf 5 20.110 m   (b) greater

 51. (a) 
2p

Ïg ÎL i 1
1

2ra 2 SdM
dt Dt   (b) 2p ÎLi

g

Chapter 16
Answers to Quick Quizzes

 1. (i) (b)   (ii) (a)
 2. (i) (c)   (ii) (b)   (iii) (d)
 3. (c)
 4. (f) and (h)
 5. (d)
 6. (c)
 7. (b)
 8. (b)
 9. (e)
 10. (e)
 11. (b)

Answers to Odd-Numbered Problems

 1. 184 km
 3. (a) L 5 (380 m/s)Dt   (b) 48.2 m   (c) 48 cm
 5. 2.40 m/s
 7. 66.67 cm
 9. (a) y 5 0.080 0 sin (2.5px 1 6pt)  

(b) y 5 0.080 0 sin (2.5px 1 6pt 2 0.25p)
 11. 13.5 N
 13. (a) 0.051 0 kg/m   (b) 19.6 m/s
 15. (a) 1   (b) 1   (c) 1   (d) increased by a factor of 4
 17. (a) y 5 0.075 sin (4.19x 2 314t), where x and y are in 

meters and t is in seconds   (b) 625 W
 19. Ï2P0
 23. (a) 2.00 mm   (b) 40.0 cm   (c) 54.6 m/s   (d) 20.433 mm 

(e) 1.72 mm/s
 25. 5.81 m
 27. 335 m/s
 29. (a) 27.2 s   (b) 25.7 s; the time interval in part (a) is longer.
 31. (a) 3.75 W/m2   (b) 0.600 W/m2

 33. (a) 0.691 m   (b) 691 km
 35. 4.28 m
 39. 2.82 3 108 m/s
 41. (a) 441 Hz   (b) 439 Hz   (c) 54.0 dB
 43. 14.7 kg
 45. 0.883 cm
 47. (a) 375 m/s2   (b) 0.045 0 N   (c) The maximum transverse 

force is very small compared to the tension of 46.9 N  
in the string, more than a thousand times smaller.
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Answers to Odd-Numbered Problems

 1. (a) 27388N   (b) 21058N   (c) 2708N   (d) 1538N
 3. (a) 21098F, 195 K   (b) 98.68F, 310 K
 5. (a) 56.78C and 262.18C   (b) 330 K and 211 K
 7. 3.27 cm
 9. 1.54 km. The pipeline can be supported on rollers. In 

addition, V-shaped loops can be built between straight 
sections; these loops bend as the steel changes length.

 11. 2.74 m
 13. (a) 4378C   (b) 2.1 3 103 8C   (c) No; aluminum melts at 

6608C (Table 19.2). Also, although it is not in Table 19.2, 
Internet research shows that brass (an alloy of copper 
and zinc) melts at about 9008C.

 15. (a) 99.8 mL   (b) It lies below the mark. The acetone 
has reduced in volume, and the flask has increased in 
volume.

 17. (a) 396 N   (b) 21018C   (c) The original length divides 
out of the equations in the calculation, so the answers 
would not change.

 19. 1.50 3 1029 molecules
 21. (a) 41.6 mol   (b) 1.20 kg   (c) This value is in agreement 

with the tabulated density.
 23. 2.42 3 1011 molecules
 25. 473 K
 27. ,102 kg

 31. (a) u 5 2 sin21 11 1 aAlTC

2 2   (b) yes   (c) yes    

(d) u 5 2 sin21 1 1 1 aAlTC

2(1 1 ainvarTC)2   (e) 61.08   (f) 59.68

 33. (a) 94.97 cm   (b) 95.03 cm
 35. (b) As the temperature increases, the density decreases 

(assuming b is positive).   (c) 5 3 1025 (8C)21    
(d) 22.5 3 1025 (8C)21

 37. (b) It assumes a DT is much less than 1.
 39. (a) yes, as long as the coefficients of expansion remain 

constant   (b) The lengths LCu and LSt at 08C need to 
satisfy 17LCu 5 11LSt. Then the steel rod must be longer. 
With LSt  2 LCu 5 5.00 cm, the only possibility is LSt 5 
14.2 cm and LCu 5 9.17 cm.

 41. (a) 0.34%   (b) 0.48%   (c) All the moments of inertia 
have the same mathematical form: the product of a con-
stant, the mass, and a length squared.

 45. 4.54 m

Chapter 19
Answers to Quick Quizzes

 1. (i) iron, glass, water   (ii) water, glass, iron
 2. The figure on the next page shows a graphical represen-

tation of the internal energy of the system as a function 
of energy added. Notice that this graph looks quite dif-
ferent from Figure 19.3 in that it doesn’t have the flat 
portions during the phase changes. Regardless of how 
the temperature is varying in Figure 19.3, the internal 
energy of the system simply increases linearly with energy 
input; the line in the graph below has a slope of 1.

 5. (a) y1: positive x direction; y2: negative x direction 
(b) 0.750 s   (c) 1.00 m

  7. (a) 2.72 rad 5 1568   (b) 0.058 4 cm
 9. (a) The separation of adjacent nodes is Dx 5

p

k
5

l

2
. The 

nodes are still separated by half a wavelength   (b) Yes.  

The nodes are located at kx 1
f

2
5 np, so that 

x 5
np

k
2

f

2k
, which means that each node is shifted 

f

2k
 

to the left by the phase difference between the traveling 
waves in comparison to the case in which f 5 0.

 11. (a) 0.600 m   (b) 30.0 Hz
 13. (a) 78.6 Hz   (b) 157 Hz, 236 Hz, 314 Hz
 15. 1.86 g
 17. (a) 3.8 cm   (b) 3.85%
 19. The resonance frequency of the bay calculated from the 

data provided is 12 h, 24 min. The natural frequency of 
the water sloshing in the bay agrees precisely with that 
of lunar excitation, so we identify the extra-high tides as 
amplified by resonance.

 21. (a) 0.656 m   (b) 1.64 m
 23. (a) 349 m/s   (b) 1.14 m
 25. n(0.252 m) with n 5 1, 2, 3, . . .
 27. 158 s
 29. 210.08C
 31. (a) 1.99 beats/s   (b) 3.38 m/s
 33. The coefficients beyond n 5 1 are approximate: A1 5 100, 

A2 5 156, A3 5 62, A4 5 104, A5 5 52, A6 5 29, A7 5 25.

  y (nm)

t (ms)

400

�400

0
2 4 6

 35. 800 m
 37. (a) larger   (b) 2.43

 39. (a) r 5 0.078 2S1 2
4
n2D1y3

   (b) 3   (c) 0.078 2 m    

(d) The sphere floats on the water.
 41. (a) 3.99 beats/s   (b) 3.99 beats/s
 43. (a) Frequency should be halved.   (b) 3 n

n 1 14
2

T   

(c) 
T 9

T
5

9
16

 45. 283 Hz
 47. (a) 78.9 N   (b) 211 Hz
 49. (b) A 5 11.2 m, f 5 1.11 rad 5 63.48

Chapter 18
Answers to Quick Quizzes

 1. (c)
 2. (c)
 3. (c)
 4. (c)
 5. (a)
 6. (b)
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water at 08 C to freeze it, which corresponds to a liquid-
to-solid phase transition. Finally, once all the water has 
frozen, additional energy must be removed from the ice 
to cool it from 08 to 28.008C   (b) 32.5 kJ

 39. (a) 2 000 W   (b) 4.468C
 41. (a) 3.16 3 1022 W   (b) 3.17 3 1022 W    

(c) It is 0.408% larger.   (d) 5.78 3 103 K
 43. 1.44 kg
 45. (b) 9.32 kW
 47. 3.66 3 104 s 5 10.2 h

Chapter 20
Answers to Quick Quizzes

 1. (i) (b)   (ii) (a)
 2. (i) (a)   (ii) (c)
 3. (d)
 4. (c)

Answers to Odd-Numbered Problems

 1. 3.32 mol
 3. 5.05 3 10221 J
 5. (a) 2.28 kJ   (b) 6.21 3 10–21 J
 7. 17.4 kPa
 9. 74.8 J
 11. (a) W 5 0   (b) DE

int
5  209 J   (c) 317 K

 13. between 1023 8C and 1022 8C
 15. (a) 1.08   (b) no
 17. 5.74 3 106 Pa
 19. 227 K
 21. (a) 2.45 3 1024 m3   (b) 9.97 3 1023 mol   (c) 9.01 3 105 Pa   

(d) 5.15 3 1025 m3   (e) 560 K   (f ) 53.9 J   (g) 6.79 3 1026 m3   
(h) 53.3 g   (i) 2.24 K

 23. (a) 2.37 3 104 K   (b) 1.06 3 103 K
 25. (b) 0.278
 27. (a) 3.90 km/s   (b) 4.18 km/s
 29. (a) 7.89 3 1026 molecules   (b) 37.9 kg   (c) 6.07 3 10221 J   

(d) 503 m/s   (e) 0   (f) When the furnace operates, air 
expands and some of it leaves the room. The smaller 
mass of warmer air left in the room contains the same 
internal energy as the cooler air initially in the room.

 31. (a) 367 K   (b) The rms speed of nitrogen would be higher 
because the molar mass of nitrogen is less than that  
of oxygen.   (c) 572 m/s

 33. Sulfur dioxide is the gas with the greatest molecular 
mass of those listed. If the effective spring constants for 
various chemical bonds are comparable, SO2 can then 
be expected to have low frequencies of atomic vibration. 
Vibration can be excited at lower temperature than for 
other gases. Some vibration may be going on at 300 K. 
With more degrees of freedom for molecular motion, the 
material has higher specific heat.

 35. (a) 300 K   (b) 1.00 atm
 37. (a) 7.27 3 10220 J   (b) 2.20 km/s   (c) 3.51 3 103 K    

(d) The evaporating particles emerge with much less 
kinetic energy, as negative work is performed on them by 
restraining forces as they leave the liquid. Much of the 
initial kinetic energy is used up in overcoming the latent 
heat of vaporization. There are also very few of these 
escaping at any moment in time.

  

E
in

t (
J)

Ice �
water

0 1 500

3 1103 070815

396

62.7

Ice

Water �
steam

Water 

Energy added ( J)

Steam

3 000

 3. Situation System Q W DEint

(a)  Rapidly pumping  
up a bicycle tire

Air in the pump 0 1 1

(b)  Pan of room- 
temperature water 
sitting on a hot stove

Water in the pan 1 0 1

(c)  Air quickly leaking 
out of a balloon

Air originally in 
the balloon

0 2 2

 4. Path A is isovolumetric, path B is adiabatic, path C is iso-
thermal, and path D is isobaric.

 5. (b)

Answers to Odd-Numbered Problems

 1. (a) 2.26 3 106 J   (b) 2.80 3 104 steps   (c) 6.99 3 103 steps
 3. 23.68C
 5. 0.918 kg
 7. (a) 1 822 J/kg ? 8C   (b) We cannot make a definite iden-

tification. It might be beryllium.   (c) The material might 
be an unknown alloy or a material not listed in the table.

 9. (a) 25.88C   (b) The symbolic result from part (a) shows 
no dependence on mass. Both the change in gravitational 
potential energy and the change in internal energy of the 
system depend on the mass, so the mass cancels.

 11. 2.27 km
 13. (a) 08C   (b) 114 g
 15. (a) 24PiVi   (b) According to T 5 (Pi /nRVi )V 2, it is pro-

portional to the square of the volume.
 17. 720 J
 19. (a) 0.041 0 m3   (b) 15.48 kJ   (c) 25.48 kJ
 21. (a) 20.048 6 J   (b) 16.2 kJ   (c) 16.2 kJ
 23. 74.8 kJ
 25. (a) 1.19   (b) 1.19
 27. (a) 1.85 ft2 ? 8F ? h/Btu   (b) 1.78
 29. (a) 26.08 3 105 J   (b) 4.56 3 105 J
 31. 888 K
 33. 1.90 3 103 J/kg ? 8C
 35. (a) 9.31 3 1010 J   (b) 28.47 3 1012 J   (c) 8.38 3 1012 J
 37. (a) First, energy must be removed from the liquid water 

to cool it to 08 C. Next, energy must be removed from the 
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(b)
Macrostate Microstates Number of ways to draw

All R RRRR  1

4R, 1G GRRRR, RGRRR,  
  RRGRR, RRRGR,  
  RRRRG  5

3R, 2G GGRRR, GRGRR,  
  GRRGR, GRRRG,  
  RGGRR, RGRGR,  
  RGRRG, RRGGR,  
  RRGRG, RRRGG 10

2R, 3G RRGGG, RGRGG,  
  RGGRG, RGGGR,  
  GRRGG, GRGRG,  
  GRGGR, GGRRG,  
  GGRGR, GGGRR 10

1R, 4G RGGGG, GRGGG,  
  GGRGG, GGGRG,  
  GGGGR  5

All G GGGGG  1

 23. 1.02 kJ/K
 25. 195 J/K
 27. (a) 23.45 J/K   (b) 18.06 J/K   (c) 14.62 J/K 
 29. 1 W/K

 31. (a) 13   (b) 23
 33. (a) 3nRTi   (b) 3nRTi ln 2   (c) 23nRTi   (d) 2nRTi ln 2 

(e) 3nRTi (1 1 ln 2)   (f) 2nRTi ln 2   (g) 0.273
 35. (a) 39.4 J   (b) 65.4 rad/s 5 625 rev/min    

(c) 293 rad/s 5 2.79 3 103 rev/min
 37. (a) 4.10 3 103 J   (b) 1.42 3 104 J   (c) 1.01 3 104 J   

(d) 28.8%   (e) Because eC 5 80.0%, the efficiency of the 
cycle is much lower than that of a Carnot engine operat-
ing between the same temperature extremes.

 39. (a) 0.476 J/K   (b) 417 J
 41. (a) 5.97 K   (b) higher   (c) 22.6 K
 43. (a) 13.4 J/K   (b) 310 K   (c) 13.3 J/K   (d) smaller by less 

than 1%
 45. (b) yes   (c) No; the second law refers to an engine operat-

ing in a cycle, whereas this problem involves only a single 
process.

 47. (a) 
 T (K) P (kPa)   V (cm3)

A  293 100 500

B  673 1.84 3 103  62.5

C 1 023 2.79 3 103  62.5

D  445 152 500

  (b) 
Q Weng DEint

ASB   0 2162 162

BSC 149 0 149

CSD  0 246 2246

DSA 265.0 0 265.0

ABCD   84.3 84.3   0

  (c) 149 J   (d) 65.0 J   (e) 84.3 J   (f) 0.565    
(g) 1.42 3 103 rev/min

 39. (a) 1.09 3 1023   (b) 2.69 3 1022   (c) 0.529   (d) 1.00    
(e) 0.199   (f) 1.01 3 10241   (g) 1.25 3 1021 082

 43. (a) 0.510 m/s   (b) 20 ms

 45. (c)    

0

0.5

1

1.5

2

0 0.5 1 1.5 2

2 � 2a � a2

a

  The graph above shows the behavior of the factor in 
parentheses in part (b) between the possible limits of  
a 5 0 and a 5 2. Except at the value of a 5 1, the factor is 
always greater than 1. Therefore, the equation shows that, 
in general (except for the special case of a 5 1), vrms . vavg.

  (d) a 5 1

Chapter 21
Answers to Quick Quizzes

 1. (i) (c)   (ii) (b)
 2. (d)
 3. C, B, A
 4. (a) one   (b) six
 5. (a)
 6. false (The adiabatic process must be reversible for the 

entropy change to be equal to zero.)

Answers to Odd-Numbered Problems

 1. (a) 10.7 kJ   (b) 0.533 s
 3. 55.4%
 5. (a) 4.51 3 106 J   (b) 2.84 3 107 J   (c) 68.1 kg
 7. (a) 67.2%   (b) 58.8 kW
 9. 1.86
 11. (a) 564°C   (b) No; a real engine will always have an effi-

ciency less than the Carnot efficiency because it operates 
in an irreversible manner.

 13. (a) 5.12%   (b) 5.27 3 1012 J/h   (c) 5.68 3 104    
(d) 4.50 3 106 m2   (e) yes   (f) numerically, yes; feasibly, 
probably not

 15. (a) 
Q c

Dt
5 1.40S0.5Th 1 383

Th 2 383 D, where Q c /Dt is in mega-

  watts and Th is in kelvins   (b) The exhaust power decreases 
as the firebox temperature increases.   (c) 1.87 MW    
(d) 3.84 3 103 K   (e) No answer exists. The energy exhaust 
cannot be that small.

 17. 1.17
 21. (a)

Macrostate Microstates Number of ways to draw

All R RRR 1

2 R, 1 G GRR, RGR, RRG 3

1 R, 2 G GGR, GRG, RGG 3

All G GGG 1
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 37. 25.9 cm
 39. 1.67 3 1025 C
 41. 1.98 mC
 43. 1.14 3 1027 C on one sphere and 5.69 3 1028 C on the other
 45. (a) u1 5 u2
 47. (a) 0.307 s   (b) Yes; the downward gravitational force is  

not negligible in this situation, so the tension in the 
string depends on both the gravitational force and the 
electric force.

 49. (a) E
S

5
935x

s0.062 5 1 x2d3y2
 i
⁄
  where E

S
 is in newtons per

  coulomb and x is in meters   (b) 4.00 i
⁄
 kNyC   

  (c) x 5 0.016 8 m and x 5 0.916 m   
  (d) nowhere is the field as large as 16 000 N/C

Chapter 23
Answers to Quick Quizzes

 1. (e)
 2. (b) and (d)

Answers to Odd-Numbered Problems

 1. 

� � � � � � �

 3. (a) 6.64 3 106 N/C away from the center of the ring
  (b) 2.41 3 107 N/C away from the center of the ring
  (c) 6.39 3 106 N/C away from the center of the ring
  (d) 6.64 3 105 N/C away from the center of the ring
 5. (a) 9.35 3 107 N/C away from the center of the disk   

(b) 1.04 3 108 N/C away from the center of the disk 
(about 11% higher)   
(c) 5.15 3 105 N/C away from the center of the disk    
(d) 5.19 3 105 N/C away from the particle (about 
0.7% higher)

 7. (a) ke 
l0

x0

   (b) to the left

 9. (a) 
keQ i⁄

h
 3 1

(d 
2 1 R 

2)1/2 2
1

_(d 1 h)2 1 R 
2+1/24

  (b) 
2keQ i⁄

R 
2h 3h 1 (d 

2 1 R 
2)1/2 2 _(d 1 h)2 1 R 

2+1/24
 11. (a) 1.98 3 106 N ? m2/C   (b) 0
 13. 28.2 N ? m2/C
 15. 2Q/e0 for S1; 0 for S2; 22Q/e0 for S3; 0 for S4
 17. (a) 339 N ? m2/C   (b) No. The electric field is not uni-

form on this surface, so the integral in Equation 23.7 
cannot be evaluated.

 19. 218.8 kN ? m2/C

 21. (a) 
q

2e0

   (b) 
q

2e0

   (c) The fluxes are the same. The plane and 

the square look the same to the charge.
 23. (a) EA cos u   (b) 2EA sin u   (c) 2EA cos u   (d) EA sin u    

(e) 0 for both faces   (f) 0   (g) 0
 25. 3.50 kN

Chapter 22
Answers to Quick Quizzes

 1. (a), (c), (e)
 2. (e)
 3. (b)
 4. (a)
 5. A, B, C

Answers to Odd-Numbered Problems

 1. (a) 11.60 3 10219 C, 1.67 3 10227 kg  
(b) 11.60 3 10219 C, 3.82 3 10226 kg  
(c) 21.60 3 10219 C, 5.89 3 10226 kg  
(d) 13.20 3 10219 C, 6.65 3 10226 kg  
(e) 24.80 3 10219 C, 2.33 3 10226 kg  
(f) 16.40 3 10219 C, 2.33 3 10226 kg  
(g) 11.12 3 10218 C, 2.33 3 10226 kg  
(h) 21.60 3 10219 C, 2.99 3 10226 kg

 3. 3.60 3 106 N downward
 5. (a) 8.74 3 1028 N   (b) repulsive
 7. (a) 0.951 m   (b) yes, if the third bead has positive charge
 9. (a) 8.24 3 1028 N   (b) 2.19 3 106 m/s

 11. ke 
Q 2

d 2 3 1

2Ï2
 i
⁄

1 S2 2
1

2Ï2
D j

⁄4
 13. (b) 

p

2
 Îmd 

3

keqQ
   (c) 4aÎkeqQ

md 
3

 15. (a) 2s5.58 3 10211 NyCdj
⁄
   (b) s1.02 3 1027 NyCdj

⁄

 17. (a) ke 
Q

d 2 fs1 2 Ï2d i
⁄

1 Ï2 j
⁄
g 

  (b) 2ke 
Q

4d 2 fs1 1 4Ï2d i
⁄

1 4Ï2 j
⁄
g

 19. (a) 1.80 3 104 N/C to the right   (b) 8.98 3 1025 N to the left
 21. (a) s20.599 i

⁄
  2   2.70 j

⁄ d  kNyC   (b) s23.00 i
⁄

  2   13.5 j
⁄ d  mN

 23. (a) 

�

��

 

  (b) at the center   (c) 1.7ke 

q

a2    

(d) upward in the plane of the page
 25. (a) 111 ns   (b) 5.68 mm   (c) s450 i

⁄
1 102 j

⁄ d km/s
 27. 4.52 3 10214 C

 29. 2 

p2ke q

6a 2  i
⁄
 

 31. (a) 
mg

uQ u
 sin u   (b) 3.19 3 103 N/C down the incline

 33. (a) 1.09 3 1028 C   (b) 5.44 3 1023 N
 35. (a) 24.2 i

⁄
 NyC   (b) s24.21i

⁄
1 8.42 j

⁄ d NyC
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is changing more rapidly in space at A.   (b) The magni-
tude of the electric field at B is approximately 200 V/m  
based on the rate of change of the electric potential in 
space and Equation 24.16.

  (c) 

B

0
2

4
6

8

A

 25. (a) Cym2   (b) ke a 3L 2 d lnS1 1
L
dD4

 27. ke l(p 1 2 ln 3)
 29. No. A conductor of any shape forms an equipotential sur-

face. However, if the surface varies in shape, there is no 
clear way to relate electric field at a point on the surface 
to the potential of the surface.

 31. 
s

e0

 

 33. Eglass 5 EAl
 35. (a) 0, 1.67 MV   (b) 5.84 MN/C away, 1.17 MV    

(c) 11.9 MN/C away, 1.67 MV
 37. Using Equation 24.13 for the potential energy of the 

atom and using the numerical values provided, n does 
not turn out to be an integer. Therefore, the problem 
does not describe an allowed state of the atom.

 39. (a) 2 
keq

4a
   (b) The approximate expression 22keqa/x2 

gives 2keq/4.5, which is different by only 11.1%.

 41. ke l ln 3a 1 L 1 Ïsa 1 Ld2 1 b 2

a 1 Ïa 2 1 b 2 4
 43. (a) 4.07 kV/m   (b) 488 V   (c) 7.82 3 10217 J   (d) 306 km/s
  (e) 3.89 3 1011 m/s2 toward the negative plate    

(f) 6.51 3 10216 N toward the negative plate    
(g) 4.07 kV/m   (h) They are the same.

 45. (a) Q 1 r
a2

3

   (b) ke 

Qr

a3    (c) Q   (d) ke 

Q

r2   (e) E 5 0  

(f) 2Q   (g) 1Q   (h) inner surface of radius b

 47. (a) 24.01 nC   (b) 19.57 nC   (c) 14.01 nC   (d) 15.56 nC

 49. pkeC 3R ÏR 2 1 x2 1 x2 ln S x

R 1 ÏR 2 1 x2D4
 51. (a) 

ke Q

h
 ln 3d 1 h 1 Ïsd 1 hd2 1 R 2

d 1 Ïd 2 1 R 2 4
  (b) 

keQ

R 2h 3sd 1 hdÏsd 1 hd2 1 R 2 2 d Ïd 2 1 R 2

  22dh 2 h 2 1 R 2 ln Sd 1 h 1 Ïsd 1 hd2

d 1 Ïd 2 1 R 2 D4

 27. 508 kN/C up
 29. (a) 51.4 kN/C outward   (b) 645 N ? m2/C
 31. E

S
5 rry2e0 5 2pke rr  away from the axis

 33. (a) 0   (b) 3.65 3 105 N/C   (c) 1.46 3 106 N/C   
(d) 6.49 3 105 N/C

 35. (a) r 5 a 12q

4Q2
1/3

   (b) Yes, it is possible for any value of r . a.

 37. 0.438 N ? m2/C

 39. 2
ke l0

2x0

 i
⁄
 

 41. 20.706 i
⁄  N

 43. 8.27 3 105 N ? m2/C

 45. (a) E 5
Cd 3

24e0

 to the right for x . d/2 and to the left for 

  x , 2d/2   (b) E
S

5
Cx3

3e0

 i
⁄

 47. (a) 
r0r

2e0
Sa 2

2r
3bD   (b) 

r0R 2

2e0r
Sa 2

2R
3bD

Chapter 24
Answers to Quick Quizzes

 1. (i) (b)   (ii) (a)
 2. Ⓑ to Ⓒ, Ⓒ to Ⓓ, Ⓐ to Ⓑ, Ⓓ to Ⓔ
 3. (i) (c)   (ii) (a)
 4. (i) (a)   (ii) (a)

Answers to Odd-Numbered Problems

 1. 1.35 MJ
 3. (a) 1.13 3 105 N/C   (b) 1.80 3 10−14 N   (c) 4.37 3 10−17 J
 5. (a) 0.400 m/s   (b) It is the same. Because the electric 

field is uniform, each bit of the rod feels a force of the 
same size as before.

 7. 6.93ke 
Q

d

 9. 2ke 

Q

R

 11. (a) 4Ï2ke 
Q

a
   (b) 4Ï2ke 

qQ

a

 15. (a) no point   (b) 
2keq

a
 17. (a) 10.8 m/s and 1.55 m/s   (b) They would be greater. 

The conducting spheres will polarize each other, with 
most of the positive charge of one and the negative 
charge of the other on their inside faces. Immediately 
before the spheres collide, their centers of charge will be 
closer than their geometric centers, so they will have less 
electric potential energy and more kinetic energy.

 19. 22.8ke 
q 2

s

 21. E
y

5
k

e
Q

yÏ/2 1 y2

 23. (a) E
A

. E
B
 The electric field can be interpreted as the rate 

of change of electric potential in space. The equipotential 
surfaces are closer together at A than at B, so the potential  
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connected in series to another two capacitors in parallel. 
In either case, one capacitor will be left over in the box    
(b) Each of the four capacitors will be exposed to a maxi-
mum voltage of 45 V.

 45. k 5
C sDV d2

f  
2s1 2 f  dd 

2

 47. 
C 0

2
sÏ3 2 1d

 49. (a) 
e0/

d
 f/ 1 x sk 2 1dg   (b) 

Q 
2d

2e0/
 
f/ 1 x sk 2 1dg

  (c) 
Q 

2d sk 2 1d
2e0/[/ 1 x sk 2 1d]2  i

⁄
   (d) 205i

⁄
 mN

Chapter 26
Answers to Quick Quizzes

 1. (a) . (b) 5 (c) . (d)
 2. (b)
 3. (b)
 4. (a)

Answers to Odd-Numbered Problems

 1. 27.0 yr
 3. 1.05 mA
 5. (a) 0.632I0t   (b) 0.999 95I0t   (c) I0t
 7. (a) 17.0 A   (b) 85.0 kA/m2

 9. 0.256 C
 11. 8.89 V
 13. (a) 1.82 m   (b) 280 mm
 15. 6.00 3 10215 (V ? m)21

 17. 0.12
 19. (a) 31.5 nV ? m   (b) 6.35 MA/m2   (c) 49.9 mA   
  (d) 658 mm/s   (e) 0.400 V
 21. 227°C
 23. (a) 3.00 3 108 W   (b) 1.75 3 1017 W
 25. 36.1%
 27. (a) $1.48   (b) $0.005 34   (c) $0.381
 29. $0.494/day
 31. (a) 4.75 m   (b) 340 W
 33. , $10
 35. 50.0 MW

 37. (a) 
Q

4C
    (b) 

Q

4
 on C, 

3Q

4
 on 3C 

  (c) 
Q 2

32C
 in C,   

3Q 2

32C
 in 3C    (d) 

3Q 2

8C

 39. (a) 8.00 V/m in the positive x direction   (b) 0.637 V    
(c) 6.28 A in the positive x  direction   (d) 200 MA/m2

 41. (a) Any diameter d and length / related by d 2 5 
(4.77 3 1028)/, where d and / are in meters   (b) Yes; for  
V 5 0.500 cm3 of Nichrome, / 5 3.65 m and d 5 0.418 mm.

 43. (b) Charges flow in the direction of decreasing voltage. 
Energy flows by heat in the direction of decreasing 
temperature.

 45. (a) 
e0/

2d
 s/ 1 2x 1 k/ 2 2kxd    (b) 

e0/vDV

d
 sk 2 1d clockwise

Chapter 25
Answers to Quick Quizzes

 1. (d)
 2. (a)
 3. (a)
 4. (b)
 5. (a)

Answers to Odd-Numbered Problems

 1. (a) 9.00 V   (b) 12.0 V
 3. 4.43 mm

 5. 
s2N 2 1de0sp 2 udR 

2

d

 7. (a) 2.81 mF   (b) 12.7 mF
 9. ten
 11. (a) 5.96 mF   (b) 89.5 mC on 20 mF, 63.2 mC on 6 mF, and 

26.3 mC on 15 mF and 3 mF
 13. 12.9 mF
 15. 6.00 pF and 3.00 pF
 17. (a) 216 mJ   (b) 54.0 mJ
 19. (a) 2.50 3 1022 J   (b) 66.7 V   (c) 3.33 3 1022 J   (d) Posi-

tive work is done by the agent pulling the plates apart.

 21. (a) 

2

1

25.0 �F 5.00 �F
100 V

  (b) 0.150 J   (c) 268 V   
  (d) 

2

1

25.0 �F

5.00 �F

268 V

 23. (b) 
keq1

2

2R 1

1
Ke 

sQ 2 q1d
2

2R 2

   (c) 
R 1Q

R 1 1 R 2

   (d) 
R 2Q

R 1 1 R 2

 

  (e) V1 5
keQ

R 1 1 R 2

 and V2 5
keQ

R1 1 R2

   (f) 0

 25. (a) 81.3 pF   (b) 2.40 kV
 27. 1.04 m
 29. (a) 40.0 mJ   (b) 500 V
 33. (a) 100 pF   (b) 0.22 mC   (c) 2.2 kV 
 35. 2.51 3 1023 m3 5 2.51 L
 37. (a) 25.0 mF(1 2 0.846f  )21   (b) 25.0 mF, the general expres-

sion agrees   (c) 162 mF; the general expression agrees.

 39. (a) 
Q 0 

2   d s/ 2 xd

2e0/3    (b) 
Q 0

2   d

2e0/3 to the right   (c) 
Q 0

2

2e0/4

  (d) 
Q 0

2

2e0/4   (e) They are precisely the same.

 41. 579 V
 43. (a) One capacitor cannot be used by itself—it would 

burn out. The technician can use two capacitors in 
series, connected in parallel to another two capacitors 
in series. Another possibility is two capacitors in parallel, 
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 35. (a) 1.02 A down   (b) 0.364 A down   (c) 1.38 A up    
(d) 0   (e) 66.0 mC

 37. (a) 4.00 V   (b) Point a is at the higher potential.
 39. 6.00 V, 3.00 V
 41. (a) q 5 240(1 2 e2t/6)   (b) q 5 360(1 2 e2t/6), where in both 

answers, q is in microcoulombs and t is in milliseconds
 43. (a) 4.40 V   (b) 32.0 W   (c) 9.60 W   (d) 70.4 W   (e) 48.0 W
 45. (a) 9.30 V   (b) 2.51 V   (c) 18.6 V   (d) 3.70 A   (e) 1.09 A 

(f) 14.3 W   (g) 8.54 W   (h) Because of the internal resis-
tance of the batteries, the terminal voltage of the pair of 
batteries is not the same in both cases.

 47. (a) 0 in 3 kV, 333 mA in 12 kV and 15 kV   (b) 50.0 mC   
(c) i(t) 5 278 e2t/0.180, where i is in microamperes and t is 
in seconds   (d) 290 ms

 49. (a) R x 5 R 2 2 1
4R 1   (b) No; Rx 5 2.75 V, so the station is 

inadequately grounded.
 51. (R1 1 2R2)C ln 2

Chapter 28
Answers to Quick Quizzes

 1. (e)
 2. (i) (b)   (ii) (a)
 3. (c)
 4. (i) (c), (b), (a)   (ii) (a) 5 (b) 5 (c)

Answers to Odd-Numbered Problems

 1. Gravitational force: 8.93 3 10230 N down, electric force: 
1.60 3 10217 N up, and magnetic force: 4.80 3 10217 N 
down.

 3. (a) into the page   (b) toward the right   (c) toward the 
bottom of the page

 5. (a) 1.25 3 10213 N   (b) 7.50 3 1013 m/s2

 7. 220.9 j
⁄
 mT

 9. (a) Ï2rp   (b) Ï2rp

 11. 115 keV
 13. (a) 5.00 cm   (b) 8.79 3 106 m/s
 15. 1.56 3 105

 17. (a) 7.66 3 107 s21   (b) 2.68 3 107 m/s   (c) 3.75 MeV    
(d) 3.13 3 103 revolutions   (e) 2.57 3 1024 s

 19. (a) Yes. The constituent of the beam is present in all kinds 
of atoms   (b) Yes. Everything in the beam has a single 
charge-to-mass ratio   (c) In a charged macroscopic object 
most of the atoms are uncharged. Therefore, its charge-
to-mass ratio is tiny, on the order of 1026 C/kg. A mol-
ecule never has all of its atoms ionized. Any atoms other 
than hydrogen contain neutrons and so has more mass 
per charge if it is ionized than hydrogen does. Therefore, 
the greatest charge-to-mass ratio Thomson could expect 
was for ionized hydrogen, 1.6 3 10219 C/1.67 3 10227 kg  
,108 C/kg, smaller than the value e/m he measured,  
1.6 3 10219 C/9.11 3 10231 kg ,1011 C/kg, by a factor of 
1836. The particles in his beam could not be whole atoms 
but rather must be much smaller in mass   (d) No. The 
particles move with speed on the order of ten million 
meters per second, so they fall by an immeasurably small 
amount over a distance of less than 1 m.

 21. 22.88 j
⁄
 N 

 23. 1.07 m/s
 25. (a) east   (b) 0.245 T

 47. The value of 11.4 A is what results from substituting the 
given voltage and resistance into Equation 26.7. However, 
the resistance measured for a lightbulb with an ohmme-
ter is not the resistance at which it operates, because of 
the change in resistivity with temperature. The higher 
resistance of the filament at the operating temperature 
brings the current down significantly.

Chapter 27
Answers to Quick Quizzes

 1. (a)
 2. (b)
 3. (a)
 4. (i) (b)    (ii) (a)    (iii) (a)    (iv) (b)
 5. (i) (c)    (ii) (d)

Answers to Odd-Numbered Problems

 1. (a) 4.59 V   (b) 8.16%
 3. (a) 75 W   (b) 100 W   (c) 175 W   (d) Two: switch positions 

3 and 4. In both cases, the power is 100 W.
 5. (a) IA 5 «/R, IB 5 IC 5 «/2R    (b) B and C have the same 

brightness because they carry the same current.   (c) A 
is brighter than B or C because it carries twice as much 
current.

 7. 0.6 V , Rextra , 1.6 V  and 0.672 kV , Rextra , 1.74 kV 
 9. (a) 1.00 kV   (b) 2.00 kV   (c) 3.00 kV
 11. (a) The single hot dog and the two in parallel will all cook 

first. (b) single hot dog and the two in parallel: 57.3 s; two 
hot dogs in series: 229 s

 13. 14.2 W to 2.00 V, 28.4 W to 4.00 V, 1.33 W to 3.00 V, 
4.00 W to 1.00 V

 15. (a) DV1 5
«
3

,  DV2 5
2«
9

, DV3 5
4«
9

, DV4 5
2«
3

   

  (b) I1 5 I,  I2 5 I3 5
I
3

,  I4 5
2I
3

   (c) I4 increases and I1, I2, 

and I3 decrease   (d) I1 5
3I
4

,  I2 5 I3 5 0,  I4 5
3I
4

 17. (a) 0.846 A down in the 8.00-V resistor, 0.462 A down 
in the middle branch, 1.31 A up in the right-hand 
branch   (b) 2222 J by the 4.00-V battery, 1.88 kJ by the 
12.0-V battery   (c) 687 J to 8.00 V, 128 J to 5.00 V, 25.6 J  
to the 1.00-V resistor in the center branch, 616 J to 
3.00 V, 205 J to the 1.00-V resistor in the right branch    
(d) Chemical potential energy in the 12.0-V battery is 
transformed into internal energy in the resistors. The 
4.00-V battery is being charged, so its chemical potential 
energy is increasing at the expense of some of the chemi-
cal potential energy in the 12.0-V battery.   (e) 1.66 kJ

 19. 50.0 mA from a to e
 21. (a) No. The circuit cannot be simplified further, and 

Kirchhoff’s rules must be used to analyze it.   (b) I1 5 
3.50 A   (c) I2 5 2.50 A   (d) I3 5 1.00 A

 23. (a) 2.00 ms   (b) 1.80 3 1024 C   (c) 1.14 3 1024 C
 25. (a) 1.50 s   (b) 1.00 s   (c) i 5 200 1 100e2t, where i is in 

microamperes and t is in seconds
 27. 587 kV
 29. No.
 31. (a) ,10214   (b) ,10210 V
 33. 7.49 V
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down on the wires, requiring less magnetic force to raise 
the wires to the same angle and therefore less current.

 19. (a) 3.60 T   (b) 1.94 T
 21. (a) 4.00 m   (b) 7.50 nT   (c) 1.26 m   (d) zero
 23. 31.8 mA
 25. 5.96 3 1022 T 
 27. (a) 2pBR 2 cos u   (b) pBR 2 cos u
 29. (a) 7.40 mWb   (b) 2.27 mWb
 31. 3.18 A
 33. (a) , 1025 T    

(b) It is , 1021 as large as the Earth’s magnetic field.
 35. 143 pT
 37. (a) m0sv into the page   (b) zero   (c) 12 m0s2v2 up toward 

  the top of the page   (d) 
1

Ïm0e0

 ; we will find out in Chap-

ter 33 that this speed is the speed of light. We will also 
  find out in Chapter 38 that this speed is not possible for 

the capacitor plates.
 39. 1.80 mT
 41. (b) 3.20 3 10213 T   (c) 1.03 3 10224 N   (d) 2.31 3 10222 N
 43. B 5 4.36 3 1024 I, where B is in teslas and I is in amperes

 45. (a) 
m0IN

2/ 3 / 2 x

Ïs/ 2 xd2 1 a 2
1

x

Ïx2 1 a 2 4
 47. (b) 

m0I

4p
s1 2 e22pd out of the page

 49. (a) 
m0I s2r 2 2 a 2d

pr s4r 2 2 a 2d
 to the left   (b) 

m0I s2r 2 1 a 2d

pr s4r 2 1 a 2d
 toward 

   the top of the page
 51. (b) 5.92 3 1028 N

Chapter 30
Answers to Quick Quizzes

 1. (c)
 2. (c)
 3. (b)
 4. (a)

Answers to Odd-Numbered Problems

 1. 2.26 mV
 3. 1.89 3 10211 V
 5. (a) 1.60 A counterclockwise when viewed from the left of 

the figure   (b) 20.1 mT   (c) left
 7. 272 m
 9. « 5 0.422 cos 120pt, where « is in volts and t is in seconds
 11. 2.83 mV

 13. 
Rmv
B 

2/ 
2

 15. (a) 0.729 m/s   (b) counterclockwise   (c) 0.650 mW    
(d) Work must be done by an external force if the bar 
is to move with constant speed. This input of energy by 
work appears as internal energy in the resistor.

 17. 3.32 3 103 rev/min
 19. 1.00 T
 21. (a) 8.01 3 10221 N   (b) tangent to a circle of radius r, in a 

clockwise direction   (c) t 5 0 or t 5 1.33 s
 23. 13.3 V

 27. (a) 2prIB sin u   (b) up, away from magnet
 29. (a) north at 48.08 below the horizontal    

(b) south at 48.08 above the horizontal   (c) 1.07 mJ
 31. (a) 0.713 A   (b) Current is independent of angle.
 33. (a) 9.98 N ? m   (b) clockwise as seen looking down from 

a position on the positive y axis
 35. (a) 118 mN ? m   (b) 2118 mJ # UB # 1118 mJ
 37. 2.75 Mrad/s
 39. (a) 12.5 km   (b) It will not arrive at the center. Because 

the radius of curvature of the proton’s path is much 
smaller than the radius of the cylinder, the proton enters 
the magnetic field only for a short distance before turn-
ing around and exiting the field.

 41. 3R/4
 43. (a) the positive z direction   (b) 0.696 m   (c) 1.09 m    

(d) 54.7 ns
 45. (a) B , 10–1 T   (b) t , 10–1 N ? m   (c) I , 1 A 5 100 A   

(d) A , 10–3 m2   (e) N , 103

 47. (a) 1.33 m/s   (b) Positive ions carried by the blood flow 
experience an upward force resulting in the upper wall of 
the blood vessel at electrode A becoming positively charged 
and the lower wall of the blood vessel at electrode B becom-
ing negatively charged.   (c) No. Negative ions moving in 
the direction of v would be deflected toward point B, giv-
ing A a higher potential than B. Positive ions moving in the 
direction of v would be deflected toward A, again giving A 
a higher potential than B. Therefore, the sign of the poten-
tial difference does not depend on whether the ions in the 
blood are positively or negatively charged.

 49. 3.71 3 10224 N ? m
 51. (a) 0.128 T   (b) 78.78 below the horizontal

Chapter 29
Answers to Quick Quizzes

 1. B . C . A
 2. (a)
 3. c . a . d . b
 4. a 5 c 5 d . b 5 0
 5. (c)

Answers to Odd-Numbered Problems

 1. 1.60 3 1026 T
 3. 12.5 T

 5. 
m0I

2r S1
p

1
1
4D

 7. (a) 53.3 mT toward the bottom of the page    
(b) 20.0 mT toward the bottom of the page   (c) zero

 9. 
m0I

2pad
sÏd 2 1 a 2 2 dd into the page

 11. (a) 4.00 mT toward the bottom of the page    
(b) 6.67 mT at 167.08 from the positive x axis

 13. (a) 3.00 3 1025 N/m   (b) attractive

 15. k 5
m0I  

2L

4pd(d 1 /)

 17. (a) opposite directions   (b) 67.8 A   (c) It would be 
smaller. A smaller gravitational force would be pulling 

 Answers to Quick Quizzes and Odd-Numbered Problems A-43

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 29. 281 mH
 31. 20.0 V
 33. (a) 2.51 kHz   (b) 69.9 V

 35. (a) 0.693 S2L
R D   (b) 0.347 S2L

R D
 37. 

Q

2N Î3L
C

 39. (a) 12m0pN 2R   (b) ,1027 H   (c) ,1029 s
 41. 1.20 
 43. 3.67 3 1025 C
 45. vab (mV)

0

100

�100

2 4 6
t (ms)

�

 47. (a) 50.0 mT   (b) 20.0 mT   (c) 2.29 MJ   (d) 318 Pa

 51. (a) 
2pB 0

2  R 3

m0

   (b) 2.70 3 1018 J

 53. 
L 1L 2 2 M 2

L 1 1 L 2 2 2M

Chapter 32
Answers to Quick Quizzes

 1. (i) (c)   (ii) (b)
 2. (b)
 3. (a)
 4. (b)
 5. (a) XL , XC   (b) XL 5 XC   (c) XL . XC
 6. (c)
 7. (c)

Answers to Odd-Numbered Problems

 1. (a) 193 V   (b) 144 V
 3. 14.6 Hz
 5. (a) 25.3 rad/s   (b) 0.114 s
 7. 5.60 A
 9. (a) 12.6 V   (b) 6.21 A   (c) 8.78 A
 11. 32.0 A
 13. (a) 141 mA   (b) 235 mA
 15. 

f � 20.0�

XL � XC � 109 � 

XL � 200 � 

XC � 90.9 � 

R � 300 � 

Z � 319 � 

 17. 11.1 A
 19. (a) 17.48   (b) the voltage
 21. 353 W

 25. (a) FB 5 8.00 3 1023 cos 120pt, where FB is in T ? m2 and 
t is in seconds   (b) « 5 3.02 sin 120pt, where « is in 
volts and t is in seconds   (c) I 5 3.02 sin 120pt, where I is 
in amperes and t is in seconds   (d) P 5 9.10 sin2 120pt, 
where P is in watts and t is in seconds   

  (e) t 5 0.024 1 sin2 120pt, where t is in newton meters 
and t is in seconds

 29. 3.79 mV
 31. 8.80 A
 33. « 5 27.22 cos 1 046pt, where « is in millivolts and t is in 

seconds
 35. (a) 3.50 A up in 2.00 V and 1.40 A up in 5.00 V   (b) 34.3 W    

(c) 4.29 N
 37. 2.29 mC
 39. (a) 0.125 V clockwise   (b) 0.020 0 A clockwise
 41. (a) We would need to know if the field is increasing or 

decreasing   (b) 248 mV   (c) Higher resistance would 
reduce the power delivered.

 43. (a) NB/v   (b) 
NB/v

R
   (c) 

N 2B 2/2v2

R
   (d) 

N 2B 2/2v
R

    

(e) clockwise   (f) directed to the left
 45. « 5 287.1 cos (200pt 1 f), where « is in millivolts and t 

is in seconds

 47. (a) 
(1.18 3 1024)t
0.800 2 4.90t 

2   (b) zero   (c) infinity   (d) 98.3 mV

 51. 
MgR

B 2/2 f1 2 e2B 2/2tyR sM 1 mdg

Chapter 31
Answers to Quick Quizzes

 1. (c), (f)
 2. (i) (b)   (ii) (a)
 3. (a), (d)
 4. (a)
 5. (i) (b)   (ii) (c)

Answers to Odd-Numbered Problems

 1. 100 V
 3. 19.2 mT ? m2

 5. 
«0

Lk2

 7. « 5 218.8 cos 120pt, where « is in volts and t is in 
seconds

 9. (a) 5.90 mH  (b) 23.6 mV
 11. (a) 1.00 kV   (b) 3.00 ms
 13. (a) 20.0%   (b) 4.00%
 15. (a) iL 5 0.500(1 2 e210.0t ), where iL is in amperes and t 

is in seconds   (b) iS 5 1.50 2 0.250e210.0t , where iS is in 
amperes and t is in seconds

 17. (a) 6.67 A/s   (b) 0.332 A/s
 19. For t # 0, the current in the inductor is zero; for  

0 # t # 200 ms, iL 5 10.0(1 2 e210 000t ), where iL 
is in amperes and t is in seconds; for t $ 200 ms,  
iL 5 63.9e210 000t, where iL is in amperes and t is in seconds

 21. 2.44 mJ
 23. (a) 18.0 J   (b) 7.20 J 
 25. 80.0 mH
 27. (a) M12 5 m0pR 

2
2 N1N2 

y/   (b) M21 5 m0pR 2 

2 N1N2y/    
(c) They are the same.
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 29. 56.2 m
 31. (a) ,108 Hz radio wave   (b) ,1013 Hz infrared
 33. (a) 3.85 3 1026 W   (b) 1.02 kV/m and 3.39 mT
 35. 5.50 3 1027 m
 37. 75.0 MHz
 39. , 106 J
 41. 378 nm
 43. (a) 625 kW/m2   (b) 21.7 kV/m   (c) 72.4 mT   (d) 17.8 min
 45. (a) 388 K   (b) 363 K
 47. 21.25 3 1027 rad/s
 49. (a) 0.161 m   (b) 0.163 m2   (c) 76.8 W   (d) 470 W/m2   

(e) 595 V/m   (f) 1.98 mT   (g) 119 W
 51. (a) 3.33 m   (b) 11.1 ns   (c) 6.67 pT 

  (d) E
S

5 (2.00 3 1023)cos 2p S x
3.33

2 90.0 3 106tDj
⁄
 and 

  B
S

5 (6.67 3 10212)cos 2pS x
3.33

2 90.0 3 106tDk
⁄
 

  (e) 5.31 3 1029 W/m2   (f) 1.77 3 10217 J/m2    
(g) 3.54 3 10217 Pa

Chapter 34
Answers to Quick Quizzes

 1. (d)
 2. Beams ➁ and ➃ are reflected; beams ➂ and ➄ are 

refracted.
 3. (c)
 4. (c)
 5. (i) (b)   (ii) (b)

Answers to Odd-Numbered Problems

 1. 114 rad/s
 3. 2.27 3 108 m/s
 5. b 5 2d 
 7. (a) 1.94 m   (b) 50.08 above the horizontal
 9. (a) 1.81 3 108 m/s   (b) 2.25 3 108 m/s    

(c) 1.36 3 108 m/s
 11. (a) 29.08   (b) 25.88   (c) 32.08
 13. (a) 1.52   (b) 417 nm   (c) 4.74 3 1014 Hz   (d) 198 Mm/s
 15. , 10211 s, , 103 wavelengths
 17. n 5 1.55
 19. (a) 1.67 m   (b) yes
 21. The index of refraction of the atmosphere decreases 

with increasing altitude because of the decrease in den-
sity of the atmosphere with increasing altitude, just like 
the index of refraction of the slabs as you move upward 
from the bottom in Figure P34.21. Imagine that the Sun 
is the source of light at the upper left of the diagram. 
Imagine yourself to be at the point where the light strikes 
the lower surface of the bottom slab. The direction from 
which the refracted light from the Sun comes to you is 
higher in angle relative to the horizontal than the actual 
geometric position of the Sun.

 23. tan21 (ng )

 25.  sin215nV sin 3F 2 sin211 sin u

nV
246 2  

   sin215nR sin fF 2 sin211 sin u

nR
246

 23. 88.0 W
 25. (a) 156 pH   (b) 8.84 V
 27. 1.41 3 105 rad/s 

 29. 
4pRC ÏLC(DVrms)

2

4R 
2C 1 9L

 31. 1.88 V
 33. The resonance frequency for this circuit is not in the 

North American AM frequency range.
 35. 2.6 cm
 37. (b) 31.6
 39. (a) 19.7 cm at 35.08   (b) 19.7 cm at 35.08    

(c) The answers are identical.   (d) 9.36 cm at 1698
 41. (a) Tension T and separation d must be related by T 5 

274d 2, where T is in newtons and d is in meters.    
(b) One possibility is T 5 10.9 N and d 5 0.200 m.

 43. (a) 78.5 V   (b) 1.59 kV   (c) 1.52 kV   (d) 138 mA    
(e) 284.38   (f) 0.098 7   (g) 1.43 W

 45. (a) capacitor   (b) resistor   (c) 
R

ÎR 
2 1 1 1

vC2
2
    

(d) 
1

ÏR 2C 2v2 1 1
 47. 1.00 3 104 rad/s
 49. (a) 580 mH   (b) 54.6 mF   (c) 1.00   (d) 894 Hz   (e) At 

200 Hz, f 5 260.08 (Dvout leads Dvin); at f0, f 5 0 (Dvout 
is in phase with Dvin); and at 4.00 3 103 Hz, f 5 160.08 
(Dvout lags Dvin).   (f) At 200 Hz and at 4.00 3 103 Hz, P 5 
1.56 W; and at f0, P 5 6.25 W.   (g) 0.408

 51. 58.7 Hz or 35.9 Hz. The circuit can be either above or 
below resonance.

Chapter 33
Answers to Quick Quizzes

 1. (i) (b)   (ii) (c)
 2. (c)
 3. (c)
 4. (b)
 5. (a)
 6. (c)
 7. (a)

Answers to Odd-Numbered Problems

 1. (a) 7.19 3 1011 V/m ? s   (b) 2.00 3 1027 T
 3. s22.87j

⁄
1 5.75k

⁄
d 3 109 mys2

 5. (a) 681 yr   (b) 8.32 min   (c) 2.56 s
 7. 2.25 3 108 m/s
 9. 2.9 3 108 m/s 65%
 11. The ratio of v to k is higher than the speed of light in a 

vacuum, so the wave as described is impossible.
 13. 3.34 mJ/m3

 15. (a) 2.33 mT   (b) 650 MW/m2   (c) 511 W
 17. ,1 3 104 m2

 19. 5.16 m
 21. 5.31 3 1025 N/m2

 23. (a) 1.90 kN/C   (b) 50.0 pJ   (c) 1.67 3 10219 kg ? m/s
 25. (a) 1.60 3 10210 i

⁄
 kg ? mys each second   (b) 1.60 3 10210 i

⁄
 N    

(c) The answers are the same. Force is the time rate of 
momentum transfer (Eq. 9.3).

 27. (a) 1.00 3 103 km or 621 mi   (b) While the project may 
be theoretically possible, it is not very practical, due to 
the required size of the antenna.
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Answers to Odd-Numbered Problems

 1. (a) younger   (b) , 1029 s younger
 3. (a) p1 1 h, behind the lower mirror   (b) virtual   (c) upright    

(d) 1.00   (e) no
 5. (a) 33.3 cm in front of the mirror   (b) 20.666   (c) real 

(d) inverted
 7. (a) 7.50 cm behind the mirror   (b) upright   (c) 0.500 cm
 9. 3.33 m out from the deepest point in the niche
 11. (a) convex   (b) at the 30.0-cm mark   (c) 220.0 cm
 13. (a) 0.708 m in front of the sphere   (b) upright
 15. (a) 25.6 m   (b) 0.058 7 rad   (c) 2.51 m   (d) 0.023 9 rad   

(e) 62.8 m
 17. (a) 45.1 cm   (b) 289.6 cm   (c) 26.00 cm
 19. (a) (i) 3.77 cm from the front of the wall, in the water, (ii) 

19.3 cm from the front wall, in the water   (b) (i) 11.01, (ii) 
11.03   (c) The plastic has uniform thickness, so the surfaces 
of entry and exit for any particular ray are very nearly paral-
lel. The ray is slightly displaced, but it would not be changed 
in direction by going through the plastic wall with air on 
both sides. Only the difference between the air and water 
is responsible for the refraction of the light   (d) yes   (e) If 
p 5 |R |, then q 5 2p 5 2|R |; if p . |R |, then |q | . |R |. For 
example, if p 5 2|R |, then q 5 23.00|R | and M 5 12.00.

 21. (a) 1.00 , M , 1.99   (b) No; the light from the Sun does 
not focus within the bowl.

 23. (a) 6.40 cm   (b) 20.250   (c) converging
 25. 20.0 cm
 27. (a) 20.0 cm from the lens on the front side    

(b) 12.5 cm from the lens on the front side    
(c) 6.67 cm from the lens on the front side    
(d) 8.33 cm from the lens on the front side

 29. (a) 25.00 cm   (b) 10.500   (c) The image from a converg-
ing lens of an object placed at the focal point is infinitely 
far away and of infinite magnification.

 31. (a) 3.05 cm   (b) 0.17 cm 
 33. 21.3 cm
 35. 2.18 mm away from the CCD
 37. 2575
 39. (a) Yes, if the lenses are bifocal.    

(b) 11.78 diopters   (c) 21.18 diopters
 41. (a) 1 50.8 diopters # P # 60.0 diopters    

(b) –0.800 diopters, diverging
 43. The image is inverted, real, and diminished in size.
 45. 240.0 cm
 47. (a) 1.50    (b) 1.90 
 51. 8.00 cm

 53. (a) 
1
f

5
1
p1

1
1

1.50 2 p1

   (b) 
1
f

5
1

p1 1 0.900
1

1
0.600 2 p1

 

(c) 0.300 m   (d) 0.240 m
 55. Both images form at the same position, and there are not 

two locations at which the student can hold a screen to 
see images formed by this system.

 57. d 5 p and d 5 p 1 2fM

Chapter 36
Answers to Quick Quizzes

 1. (c)
 2. The graph is shown on the next page. The width of the 

primary maxima is slightly narrower than the N 5 5 

 27. (a) 27.08   (b) 37.18   (c) 49.88
 29. (a) 10.78   (b) air   (c) Looking at Table 16.1, we see that 

the speeds of sound for solids are an order of magnitude 
larger than the speed of sound in air. Therefore, we can 
estimate the critical angle for the air-concrete interface 
by using Equation 34.9 and letting the ratio of indices of 
refraction be ,0.1. This gives a critical angle of about 68. 
Therefore, all sound striking the wall at angles greater 
than 68 is completely reflected.

 31. (a) 
nd

n 2 1
   (b) Rmin S 0. Yes; for very small d, the light 

strikes the interface at very large angles of incidence.   
(c) Rmin decreases. Yes; as n increases, the critical angle 
becomes smaller.   (d) Rmin S .̀ Yes; as n S 1, the critical 
angle becomes close to 908 and any bend will allow the 
light to escape.   (e) 350 mm

 33. five times from the right-hand mirror and six times from 
the left

 35. The angle of 38.08 above the horizontal is equivalent to 
52.08 with respect to the normal at the water surface. As 
found in the What If? of Example 34.6, all the light from 
above the water is seen by the scuba diver in a circle corre-
sponding to an angle of 48.88 with respect to the normal. 
Therefore, the Sun would be seen within this circle. At 
52.08 with respect to the normal at the water surface, or 
38.08 above the horizontal, the diver would see a reflec-
tion of the bottom of the lake.

 37. (a) 0.042 6 or 4.26%   (b) no difference
 39. (a) 334 ms   (b) 0.014 6%
 41. (a) Total internal reflection occurs for all values of u, or 

the maximum angle is 908.   (b) 30.38   (c) Total internal 
reflection never occurs as the light moves from lower-
index polystyrene to higher-index carbon disulfide.

 43. sin21 3 L
R 2 sÏn2R 2 2 L2 2 ÏR 2 2 L2d4 or 

  sin21 3n sin Ssin21 
L
R

2 sin21 
L

nRD4
 45. (a) 53.18   (b) u1 $ 38.78
 47. 36.58

 49. (a) n 5Î1 1 14t
d 2

2

   (b) 2.10 cm   (c) violet

 51. (a) 0.172 mm/s   (b) 0.345 mm/s   (c) and (d) northward 
and downward at 50.08 below the horizontal.

 53. (a) S4x2 1 L2

L Dv   (b) 0   (c) Lv   (d) 2Lv   (e) 
p

8v

 57. 70.6%

Chapter 35
Answers to Quick Quizzes

 1. false
 2. (b)
 3. (b)
 4. (d)  
 5. (a)
 6. (b)
 7. (c)
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 4. (c)
 5. (b)
 6. (c)

Answers to Odd-Numbered Problems

 1. 4.22 mm
 3. (a) 1.50 m   (b) 4.05 mm
 5. I

�p p
f

 7. 1.62 3 1022

 9. 0.284 m
 11. 30.5 m
 13. 0.40 mrad
 15. 16.4 m
 17. (a) three   (b) 0°, 145.2°, 245.2°
 19. (a) five   (b) ten
 21. 514 nm
 23. (a) two, at 652.3°   (b) no
 25. (a) 0.109 nm   (b) four
 27. (a) 93.3% (b) 50.0% (c) 0.00%
 29. 60.5°
 31. (a) 20.58   (b) The refracted beam arrives at the second 

surface at Brewster’s angle.
 33. (a) 0.045 0   (b) 0.016 2
 35. 5.51 m, 2.76 m, 1.84 m
 37. (a) 7.26 mrad 5 1.50 arc seconds   (b) 0.189 ly   (c) 50.8 mrad    

(d) 1.52 mm
 39. (a) 25.6°   (b) 18.9°
 41. 13.7°
 43. (b) 428 mm
 45. (b) 3.77 nm/cm
 47. (a) f 5 4.49 rad compared with the prediction from the 

approximation of 1.5p 5 4.71 rad   (b) f 5 7.73 rad com-
pared with the prediction from the approximation of 
2.5p 5 7.85 rad

 49. (b) 0.001 90 rad 5 0.109°
 51. (b) 15.3 mm

Chapter 38
Answers to Quick Quizzes

 1. (c)
 2. (d)
 3. (d)
 4. (a)
 5. (c)
 6. (d)
 7. (i) (c)   (ii) (a)
 8. (a) m3 . m2 5 m1   (b) K3 5 K2 . K1   (c) u2 . u3 5 u1

Answers to Odd-Numbered Problems

 3. (a) 0.436 m   (b) less than 0.436 m
 5. 5.00 s

primary width but wider than the N 5 10 primary width. 
Because N 5 6, the secondary maxima are 1

36 as intense 
as the primary maxima.

   I
Imax

0
d sin 

�2 � 2llll
u

 3. (a)

Answers to Odd-Numbered Problems

 1. 641
 3. 632 nm
 5. 2.40 mm
 7. 0.318 m/s
 11. 506 nm
 13. (a) 1.93 mm   (b) 3.00l   (c) It corresponds to a maxi-

mum. The path difference is an integer multiple of the 
wavelength.

 15. ER 5 10.0 and f 5 53.18
 17. I/Imax

–0.2 0
u (°)

0.2

 19. 96.2 nm
 21. (a) 276 nm, 138 nm, 92.0 nm   (b) No visible wavelengths 

are intensified.
 23. 1.31
 25. (a) 238 nm   (b) The wavelength of the transmitted light 

increases.   (c) 328 nm
 27. 39.6 mm
 29. 1.62 cm
 31. x1 2 x2 5 sm 2 1

48d650, where x1 and x2 are in nanometers 
and m 5 0, 61, 62, 63, . . .

 33. 
l

2sn 2 1d
 35. (a) 72.0 m   (b) 36.0 m
 37. (a) 70.6 m   (b) 136 m
 39. (a) 14.7 mm   (b) 1.53 cm   (c) 216.0 m
 41. 0.505 mm
 43. 140 nm
 45. 3.588
 47. 115 nm

 49. (a) m 5
l1

2sl1 2 l2d
   (b) 266 nm

Chapter 37
Answers to Quick Quizzes

 1. (a)
 2. (b)
 3. (a)
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 9. (a) 4.20 mm   (b) 1.05 3 1019 photons    
(c) 8.82 3 1016 mm23

 11. (a) 295 nm, 1.02 PHz   (b) 2.69 V
 13. (a) 288 nm   (b) 1.04 3 1015 Hz   (c) 1.19 eV
 15. 4.85 3 10212 m
 17. 70.08
 19. (a) 43.08   (b) E 5 0.601 MeV; p 5 0.601 MeV/c 5 3.21 3  

10222 kg ? m/s   (c) E 5 0.279 MeV; p 5 0.601 MeV/c 5  
3.21 3 10222 kg ? m/s

 21. (a) 0.101 nm   (b) 80.88
 23. To have photon energy 10 eV or greater, according to 

this definition, ionizing radiation is the ultraviolet light, 
x-rays, and g rays with wavelength shorter than 124 nm; 
that is, with frequency higher than 2.42 3 1015 Hz.

 25. (a) 1.66 3 10227 kg ? m/s   (b) 1.82 km/s
 27. (a) 3.91 3 104   (b) 20.0 GeV/c 5 1.07 3 10217 kg ? m/s   

(c) 6.20 3 10217 m   (d) The wavelength is two orders of 
magnitude smaller than the size of the nucleus.

 29. 3.76 mV
 31. The speed with which the student must pass through 

the door to experience diffraction is extremely low. It 
is impossible for the student to walk this slowly. At this 
speed, if the thickness of the wall in which the door is 
built is 15 cm, the time interval required for the stu-
dent to pass through the door is 1.4 3 1033 s, which  
is 1015 times the age of the Universe.

 35. 105 V
 37. 3 3 10229 J < 2 3 10210 eV
 41. (a) 1.7 eV   (b) 4.2 3 10215 V ? s   (c) 7.3 3 102 nm
 43. 2.81 3 1028

 45. (a) 8.72 3 1016 
electrons

s ? cm2    (b) 14.0 mA/cm2   

  (c) The actual current will be lower than that corresponding 
to part (b).

 47. (a) The Doppler shift increases the apparent frequency 
of the incident light.   (b) 3.86 eV   (c) 8.76 eV

 51. (b) 2.897 755 3 1023 m ? K

Chapter 40
Answers to Quick Quizzes

 1. (d)
 2. (i) (a)   (ii) (d)
 3. (c)
 4. (a), (c), (f)

Answers to Odd-Numbered Problems

 1. (a) 126 pm   (b) 5.27 3 10224 kg ? m/s   (c) 95.3 eV

 3. 1
2

 5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV   
  (b) They do; the MeV is the natural unit for energy radi-

ated by an atomic nucleus.
 7. (a)   

3

2

1

4

339 eV

151 eV

37.7 eV

603 eV
n

E
N

E
R

G
Y

  (b) 2.20 nm, 2.75 nm, 4.12 nm, 4.71 nm, 6.59 nm, 11.0 nm

 7. 0.140c
 9. 0.800c
 11. (b) 0.050 4c
 13. (a) 39.2 ms   (b) accurate to one digit
 15. (c) 2.00 kHz   (d) 0.075 m/s 5 0.168 mi/h (0.250%)
 17. (a) 17.4 m   (b) 3.308
 19. (a) 2.50 3 108 m/s 5 0.834c   (b) 4.98 m   (c) 21.33 3 1028 s
 21. 0.960c
 23. (a)  2.73 3 10224 kg ? m/s   (b) 1.58 3 10222 kg ? m/s    

(c) 5.64 3 10222 kg ? m/s
 25. (a) 929 MeV/c   (b) 6.58 3 103 MeV/c   (c) No
 27. 0.285c
 29. (a) 0.582 MeV   (b) 2.45 MeV
 31. (a) 0.999 997c   (b) 3.74 3 105 MeV
 33. 1.63 3 103 MeV/c
 35. (a) 0.979c   (b) 0.065 2c   (c) 15.0    

(d) 0.999 999 97c; 0.948c; 1.06
 37. 2.97 3 10226 kg
 39. larger; ,1029 J
 41. (a) 2.66 3 107 m   (b) 3.87 km/s   (c) 28.35 3 10211  

(d) 5.29 3 10210   (e) 14.46 3 10210

 43. (a) v/c 5 1 2 1.12 3 10210   (b) 6.00 3 1027 J    
(c) $2.17 3 1020

 45. (a) 6.67 3 104   (b) 1.97 h

 47. (a) 3.65 MeV/c 2   (b) 0.589c

 49. (a) 0.905 MeV   (b) 0.394 MeV    
(c) 0.747 MeV/c 5 3.99 3 10222 kg ? m/s   (d) 65.48

 51. (b) 1.48 km
 55. (a) Tau Ceti exploded 16.0 years before the Sun.   (b) The 

two stars blew up simultaneously.

Chapter 39
Answers to Quick Quizzes

 1. (b)
 2. Sodium light, microwaves, FM radio, AM radio.
 3. (c)
 4. The classical expectation (which did not match the 

experiment) yields a graph like the following drawing:

  

High intensity

Low intensity (delayed)

K max

f

 5. (d)
 6. (c)
 7. (b)
 8. (a)

Answers to Odd-Numbered Problems

 1. (a) lightning: , 1027 m; explosion: , 10210 m   (b) light-
ning: ultraviolet; explosion: x-ray and gamma ray

 3. 2.27 3 1030 photon/s
 5. (a) 5.78 3 103 K   (b) 501 nm
 7. (a) 0.263 kg  (b) 1.81 W  (c) 20.015 38C/s 5 20.9198C/min   

(d) 9.89 mm  (e) 2.01 3 10220 J  (f) 8.99 3 1019 photon/s
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 39. (a) Kn 5ÎSnhc
2LD2

1 smc 2d2 2 mc 2   (b) 4.68 3 10214 J   

(c) 28.6% larger
 41. (a) 1.03U   (b) 0.172

 43. (a)   

2
a

c 2 � (2/a)e–2x/a

0 a
x

c 2

  (b) 0   (d) 0.865
 45. (b) 0.092 0   (c) 0.908

 47. (a) 32 Uv   (b) x 5 0   (c) x 5 6Î U
mv

   (d) B 5 S4m3v3

pU3 D1y4

   

  (e) 0   (f) 8de24 Îmv

pU

Chapter 41
Answers to Quick Quizzes

 1. (c)
 2. (a)
 3. (b)
 4. (a) five   (b) nine
 5. (c)
 6. true

Answers to Odd-Numbered Problems

 1. (a) 121.5 nm, 102.5 nm, 97.20 nm   (b) ultraviolet

 3. (a) lmn 5 * 1
1ylm1 2 1yln1

*   (b) kmn 5 ukm1 2 kn1u

 5. (a) 2.86 eV   (b) 0.472 eV
 7. (a) 1.89 eV   (b) 656 nm   (c) 3.02 eV   (d) 410 nm    

(e) 365 nm
 9. (a) 0.476 nm   (b) 0.997 nm
 11. (a) En 5 254.4 eV/n2 for n 5 1, 2, 3, . . .   

  

1 �54.4

2 �13.6

3 �6.05
4 �3.40

� 0

(eV)n E

E
N

E
R

G
Y

  (b) 54.4 eV
 13. (b) 0.179 nm

 9. (a) 
U

2L
   (b) U2/8mL2   (c) This estimate is too low by 

4p2 < 40 times, but it correctly displays the pattern of 
dependence of the energy on the mass and on the length 
of the well.

 11. (a) 
L
2

   (b) 5.26 3 1025   (c) 3.99 3 1022   

  (d) In the n 5 2 graph in the text’s Figure 40.4b, it is 
more probable to find the particle either near x 5 L/4 or 
x 5 3L/4 than at the center, where the probability density 
is zero. Nevertheless, the symmetry of the distribution 
means that the average position is x 5 L/2.

 13. (a) 0.196   (b) 0.609

 15. (b) 
U2k2

2m

 17. (a) U 5
U2

mL2 S2x2

L2 2 3D   

  (b) U (x)

x

Lx � 2
3�

U �
mL2

�3�2

Lx � � 2
3�

 19. (a) 

0 L
x

0 L
x

2
� �c

c

a

b

  (b)

 21. (a) 1.03 3 1023   (b) 1.91 nm
 23. 600 nm

 25. (a) B 5 Smv

pUD1y4

   (b) dSmv

pUD1y2

 33. (a) 0.903   (b) 0.359   (c) 0.417   (d) 1026.5931032

 35. 1
2mgh 1Î1 1

/2

h2 2 12
 37. (a) L 5 Shl

mec
D1y2

   (b) l9 5 8
5  

l
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 35. (a) 1.26 3 10233   (b) 21.15 3 106 K   (c) As can be seen 
in part (b), a population inversion requires the absolute 
temperature to be negative, which can not possibly hap-
pen naturally.

 37. (a) 1.57 3 1014 m23/2   (b) 2.47 3 1028 m23   (c) 8.69 3 108 m21

 39. , between 104 K and 105 K; use Equation 20.19 and set 
the kinetic energy equal to typical ionization energies

 41. 
1
a0

 , no

 43. (a) 
r 2

8a0
3  S2 2

r
a0
D2

 e2rya0   

  (b) 
r

8a0
5 S2 2

r
a0
D e2rya0sr 2 2 6a0r 1 4a0

2  d   

  (c) r 5 0, r 5 2a0, and r 5 `   (d) r 5 s3 6 Ï5da0   

  (e) r 5 s3 1 Ï5da0 where P 5 0.191ya0

 45. (a) Al: 2.55 3 10210 m ~ 1021 nm and U: 2.76 3 10210 m 
~ 1021 nm   (b) The outermost electron in any atom sees 
the nuclear charge screened by all the electrons below it. 
If we can visualize a single outermost electron, it moves 
in the electric field of net charge 1Ze 2 (Z 2 1)e 5 1e, 
the charge of a single proton, as felt by the electron in 
hydrogen. So the Bohr radius sets the scale for the out-
side diameter of every atom. An innermost electron, on 
the other hand, sees the nuclear charge unscreened, and 
the scale size of its (K-shell) orbit is a0/Z.

 47. (a) 3   (b) 520 km/s
 49. (a) 4.20 mm   (b) 1.05 3 1019 photons   (c) 8.84 3 1016 mm23

Chapter 42
Answers to Quick Quizzes

 1. (a) van der Waals   (b) ionic   (c) hydrogen   (d) covalent
 2. (c)
 3. (a)
 4. A: semiconductor; B: conductor; C: insulator

Answers to Odd-Numbered Problems

 1. ,10 K
 3. (a) 74.2 pm   (b) 4.46 eV
 5. (a) 1.46 3 10246 kg ? m2   (b) The results are the same, 

suggesting that the molecule’s bond length does not 
change measurably between the two transitions.

 7. (a) 0.014 7 eV   (b) 84.1 mm
 9. (a) 12.0 pm   (b) 9.22 pm
 11. (a) 472 mm   (b) 473 mm   (c) 0.715 mm
 13. (a) 4.60 3 10248 kg ? m2   (b) 1.32 3 1014 Hz   (c) 0.074 1 nm
 15. 6.25 3 109

 17. (a) ,1017   (b) ,105 m3

 19. (a) 1.57 Mm/s   (b) The speed is larger by ten orders of 
magnitude.

 21. (a) 4.23 eV   (b) 3.27 3 104 K
 27. (a) 276 THz   (b) 1.09 mm
 29. 2.42 eV

 31. (a) a9 5 1me

m*2k a0   (b) 2.81 nm   (c) E 9n 5 21m*
me

2En

k2  

(d) −0.021 9 eV
 33. 4.18 mA
 35. 22.35 3 1017

 37. 7

 15. 

0

0.5

1.0

1.5

0
0.2

0.4

0.6

0.8

1.0
1.2

0.5 10 1.5 0.5 10 1.5
a0
r

a0
r

P1s ( � 1010 m�1)c1s ( � 1015 m�3/2)

 17. (b) 0.497
 19. (a) Ï6"   (b) 22", 2", 0, " and 2".    

(c) 145°, 114°, 90.0°, 65.9°, and 35.3°
 21. (a) 3.99 3 1017 kg/m3   (b) 8.17 am   (c) 1.77 Tm/s   (d) It is  

5.91 3 103c, which is huge compared with the speed of 
light—and impossible.

 23. n , m
,
 s ms

  3 2 22 1 21

  3 2 22 1 0

  3 2 22 1 1

  3 2 21 1 21

  3 2 21 1 0

  3 2 21 1 1

  3 2 0 1 21

  3 2 0 1 0

  3 2 0 1 1

  3 2 1 1 21

  3 2 1 1 0

  3 2 1 1 1

  3 2 2 1 21

  3 2 2 1 0

  3 2 2 1 1

 25. (a) the 4s subshell   (b) We would expect [Ar]3d44s2 to 
have lower energy, but [Ar]3d54s1 has more unpaired 
spins and lower energy according to Hund’s rule.    
(c) chromium

 27. (a) 1s 22s 22p 3   

  (b) n , m
,
 ms

   1 0 0 1
2

   1 0 0 21
2

   2 1 1 1
2

   2 1 1 21
2

   2 1 0 1
2

   2 1 0 21
2

   2 1 21 1
2

   2 1 21 21
2

   2 0 0 1
2

   2 0 0 21
2

 29. (a) 30   (b) 36
 31. (a) 14 keV   (b) 8.8 3 10211 m
 33. Minimum wavelength from doctor’s office is 35.4 pm. 

Radiation is coming from elsewhere.
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 27. (a) 21
10Ne   (b) 144

54Xe   (c) e1 1 n
 29. 1

0n 1 232Th   S   233Th; 233Th   S   233Pa 1 e2 1 n;  
233Pa   S   233U 1 e2 1  n

 31. (a) 3.08 3 1010 g   (b) 1.31 3 108 mol   (c) 7.89 3 1031 nuclei    
(d) 2.53 3 1021 J   (e) 5.34 yr   (f) Fission is not sufficient 
to supply the entire world with energy for a long time at a 
price of $130 or less per kilogram of uranium.

 33. (a) 4.56 3 10224 kg ? m/s   (b) 0.145 nm   (c) This size has 
the same order of magnitude as an atom’s outer electron 
cloud, and is vastly larger than a nucleus.

 35. (a) 3.24 fm   (b) 444 keV   (c) 
2
5

 vi   (d) 740 keV   

  (e) The deuteron may tunnel through the energy barrier. 
 37. (a) 2.23 3 106 m/s   (b) ,1027 s
 39. (a) 2.5 mrem/x-ray   (b) The technician’s occupational 

exposure is high: 38 times the local background radia-
tion of 0.13 rem/yr.

 41. 3.96 3 1024 J/kg
 43. (a) ,106 atoms   (b) ,10215 g
 45. (a) The process cannot occur, because the final rest 

energy is larger than the initial rest energy: energy input 
would be required   (b) When a proton or a neutron is 
in a nucleus, the rest energy of the nucleus is not just the 
sum of the rest energies of its particles, the difference 
corresponding to the binding energy of the nucleus. As a 
result of differing binding energies, the rest energy of the 
nitrogen nucleus is larger than that of the particles on the 
right side of the reaction, so the reaction can proceed.   
(c) 1.20 MeV

 47. (a) 8.68 MeV   (b) The particles must have enough kinetic 
energy to overcome their mutual electrostatic repulsion 
so that they can get close enough to fuse.

 49. (b) 1.95 3 1023 eV
 51. (a) 93

42Mo   (b) electron capture: all levels; e1 emission: 
only 2.03 MeV, 1.48 MeV, and 1.35 MeV

 53. (b) 1.16 u
 55. 2.66 d
 57. (a) 27.6 min   (b) 30 min 6 27%
 59. 2.57 3 104 kg
 61. (b) 26.7 MeV
 63. (a) 238U: 3.4 3 1024 Ci, 235U: 16 mCi, 234U: 3.1 3 1024 Ci   

(b) 238U: 50%, 235U: 2.3%, 234U: 47%   (c) It is dangerous, 
notably if the material is inhaled as a powder. With pre-
cautions to minimize human contact, however, microcu-
rie sources are routinely used in laboratories.

 65. (a) 2.24 3 107 kWh   (b) 17.6 MeV for each D-T fusion    
(c) 2.34 3 108 kWh   (d) 9.36 kWh   (e) Coal is cheap at 
this moment in human history. We hope that safety and 
waste disposal problems can be solved so that nuclear 
energy can be affordable before scarcity drives up the 
price of fossil fuels. Burning coal in the open puts carbon 
dioxide into the atmosphere, worsening global warm-
ing. Plutonium is a very dangerous material, especially in 
powdered form, in which it can catch fire or be inhaled 
and cause cancer.

Chapter 44
Answers to Quick Quizzes

 1. (a)
 2. (i) (c), (d)    (ii) (a)
 3. (b), (e), (f)

 39. 4.74 eV
 41. (a) 0.350 nm   (b) 27.02 eV   (c) 21.20i

⁄
 nN

 43. Df 5 ( J 1 1)
h(mCl37

2 mCl35
)

4p2r2mCl35
mCl37

    (b) 9.60 3 108 Hz

 45. (a) 6.15 3 1013 Hz   (b) 1.59 3 10246 kg ? m2   (c) 4.78 mm 
or 4.96 mm

 47. (a) r0   (b) B   (c) 
a
pÎ B

2m
   (d) B 2

ha
pÎ B

8m

Chapter 43
Answers to Quick Quizzes

 1. (i) (b)   (ii) (a)   (iii) (c)
 2. (e)
 3. (b)
 4. (c)
 5. (b)
 6. (a), (b)
 7. (d)

Answers to Odd-Numbered Problems

 1. ,1028 protons   (b) ,1028 neutrons   (c) ,1028 electrons 
 3. (a) 0.360 MeV   (b) Figure P43.3 shows the highest point 

in the curve at about 4 MeV, a factor of ten higher than 
the value in (a).

 5. (a) 2.82 3 1025   (b) 1.38 3 10214

 7. (a) 0.210 MeV   (b) There is less proton repulsion in 23
11Na; 

it is a more stable nucleus.
 9. (a) 139

55Cs   (b) 139
57La   (c) 139

55Cs
 11. ,200 MeV
 15. 9.47 3 109 nuclei
 17. (a) 0.755   (b) 0.570   (c) 9.766 3 1024   (d) No. The decay 

model depends on large numbers of nuclei. After some 
long but finite time, only one undecayed nucleus will 
remain. It is likely that the decay of this final nucleus will 
occur before infinite time.

 19. (a) cannot occur   (b) cannot occur   (c) can occur
 21. (a) e2 1 p S n 1 n   (b) 2.75 MeV
 23. (a) 1.05 3 1021   (b) 1.37 3 109   (c) 3.83 3 10212 s21    

(d) 3.17 3 103 decaysyweek   (e) 951 decays/week    
(f) 9.95 3 103 yr

 25. N

Z
95908580

Alpha decay

Beta (�) decay

145

140

135

130

125

92U235

90Th231

91Pa231

82Pb207

90Th227

88Ra223

86Rn219

84Po215

83Bi211

84Po211

89Ac227

87Fr223

85At219

83Bi215

82Pb211

81Tl207
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 17. (a) Strangeness is not conserved.    
(b) Strangeness is conserved.    
(c) Strangeness is conserved.    
(d) Strangeness is not conserved.    
(e) Strangeness is not conserved.    
(f) Strangeness is not conserved.

 19. (a) p
S1 5 686 MeVyc, p

p1 5 200 MeVyc   (b) 626 MeV/c 
  (c) E

p1 5 244 MeV, En 5 1.13 GeV   (d) 1.37 GeV  
(e) 1.19 GeV/c2

  (f)  The result in part (e) is within 0.05% of the value in 
Table 44.2.

 21. (a)S1   (b) p2   (c) K0   (d) J2

 23. The unknown particle is a neutron, udd.
 25. (a) 1.06 mm   (b) microwave
 27. (a) , 1013 K   (b) , 1010 K
 29. 3.15 3 1026 Wym2

 31. (a) 0.160c   (b) 2.18 3 109 ly
 33. (a) 1.62 3 10235 m   (b) 5.39 3 10244 s; this result is on the 

same order of magnitude as that described as the ultrahot 
epoch in association with Figure 44.14.

 35. (a) Charge is not conserved.   (b) Energy, muon lepton 
number, and electron lepton number are not conserved.   
(c) Baryon number is not conserved.

 37. , 1014

 41. 1.12 GeV/c 2

 43. (a) electron–positron annihilation; e2   (b) A neutrino col-
lides with a neutron, producing a proton and a muon; W1.

 45. neutron
 47. (b) 9.08 Gyr
 49. (a) 2Nmc   (b)Ï3Nmc   (c) method (a)

 4. (b), (e)
 5. 

Q � � 2
3

S � 0

S � �1

Q � � 1
3

d u

s

 6. false

Answers to Odd-Numbered Problems

 1.  (a) 2.27 3 1023 Hz   (b)1.32 3 10215 m
 3.  ,10218 m
 5.  ,10223 s
 7. (a) muon lepton number and electron lepton number   

(b) charge   (c) angular momentum and baryon number   
(d) charge   (e) electron lepton number

 9. (a) n
m
   (b) n

m
   (c) ne   (d) ne   (e) n

m
   (f) ne 1 n

m

 11. (a) It cannot occur because it violates baryon number 
conservation.   (b) It can occur.   (c) It cannot occur 
because it violates baryon number conservation.   (d) It 
can occur.   (e) It can occur.   (f) It cannot occur because 
it violates baryon number conservation, muon lepton 
number conservation, and energy conservation.

 13. (a) 37.7 MeV   (b) 37.7 MeV   (c) 0   (d) No. The mass of 
the p2 meson is much less than that of the proton, so 
it moves at a much higher speed than the proton and 
carries much more kinetic energy. The correct analy-
sis using relativistic energy conservation shows that the 
kinetic energy of the proton is 5.35 MeV, while that of the 
p2 meson is 32.3 MeV.

 15. (a) It is not allowed because neither baryon number nor 
angular momentum is conserved.   (b) strong interaction   
(c) weak interaction   (d) weak interaction   

  (e) electromagnetic interaction
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Locator note: boldface indicates a definition; 
italics indicates a figure; t indicates a table; n 
indicates a footnote

Absolute pressure, 365
Absolute temperature scales, 485, 485–487, 

486, 486, 487
Absolute uncertainty, A-20
Absorption spectroscopy, 1106
Absorptivity of radiation, 523
Academy of Natural Science, 825
Accelerated frames, circular motion in, 

135–138, 136, 137
Acceleration (aS)

angular (aS), 250–252
average angular, 251
centripetal, 82–84, 128, 128
constant, with motion in two dimensions, 

71–74
dimensions and units of, 10t
free-fall, 41–44, 43, 335–336, 335t
instantaneous angular, 251
in Newton’s first law of motion, 98
nonconstant, 388
overview, 32–36
particle under constant, 37–41, 38
radial, 84, 84–85
relative, 85–88
rigid object under constant angular, 

252–254, 253
of simple harmonic oscillator, 390n, 391, 

391–392
tangential, 84, 84–85
tangential and angular relationship, 255
of two connected objects with friction, 

118, 118–119
vectors for, 70

Acceleration-time graph, 35
Accelerator, particle beam in, 773. See also 

Particle physics and cosmology
Accommodation, in eye focusing, 949
Action force, 103
Activity of radioactive material (decay rate), 

1188–1190
Adaptive optics, 992
Addition

associative law of, 56, 56
commutative law of, 56, 56
of vectors, 55–56, 61, 70

Adiabatic process
free expansion of gas, 562, 562–563, 574, 

577–578
for ideal gas, 545–547, 546
overview, 516–517, 524

Agua Caliente Solar Project (AZ), 1167
Ahlborn, B., 565n
Air bags, in collision tests, 218, 218
Air columns, standing waves in, 466–469, 

467, 469
Air conditioners, 55962
Air-standard diesel cycle, 583, 583

Air-water boundary, critical angle (of 
incidence) for, 915–916, 916

A Large Ion Collider Experiment (ALICE 
project), 1242

Algebra, A-5–A-10
Algebraic symbols for quantities, 10n, 15
Alkali metal elements, 1129–1130
Allowed transitions, selection rules for, 1131
Alpha decay, in radioactivity, 1095, 1095, 

1191, 1191–1195, 1192t–1193t,  
1195, 1200t

Alternating-current (AC) circuits, 847–872. 
See also Current and resistance

AC sources, 848, 848
capacitors in, 854, 854–856, 855
inductors in, 851, 851–853, 852, 853
phasors, 849, 849–850, 852, 852, 854, 854
power in, 859–861
resistors in, 848, 848–851, 849, 850
RLC series circuits

overview, 856, 856–859, 857, 858
resonance in, 861–863, 862

storyline on, 847–848
transformers and power transmission, 

863–866, 864, 864, 865
Alternating-current (AC) generators, 811, 

811–813, 812
Alternative representations in problem 

solving, 8–9
Alzheimer’s disease, PET scans for,  

1229, 1229
American Wire Gauge (AWG) system, 708
Amorphous solids, 1144
Ampere (A, SI base unit of current), 692, 

694–695
Ampère, Andre-Marie, 779, 779
Ampère-Maxwell law, 875
Ampère’s law

general form of, 874, 874–875, 875
magnetic field of ideal solenoid from, 783
overview, 779, 779–782, 779n, 780, 781

Amplitude of motion, 389, 389, 406, 406
Amplitude (A) of waves, 420, 423, 457
Analysis models

analysis step in, 31
boundary effects, 461, 461–465,  

463, 464
definition of, 7
isolated system (angular momentum), 

295–300, 296, 298, 299
isolated system (energy), 185–191

free fall, 187, 187–188, 188
overview, 185–187, 186
pulleys, 188–190, 189, 190
spring-loaded popgun, 190, 190–191

isolated system (momentum), 213–215, 
214

nonisolated system (angular momentum), 
288–293, 290, 292

nonisolated system (energy), 182,  
182–185, 184

nonisolated system (momentum),  
215–219, 217, 217, 218, 219

particle in a field (electric), 598, 598–603, 
599, 601, 602, 603

particle in a field (gravitational),  
336–339, 338

particle in a field (magnetic), 743,  
743–748, 744, 746, 747t, 748

particle in equilibrium, 105–107
particle in simple harmonic motion, 

388–394, 389, 391, 392
particle in uniform circular motion, 83
particle under constant acceleration, 

37–41
particle under constant velocity, 27–30
particle under net force, 106–114, 749
problem solving, 30–32
quantum particle under boundary 

conditions, 1084, 1084–1089,  
1085, 1089

rigid object in equilibrium, 311, 311–312, 
312

rigid object under constant angular 
acceleration, 252–254, 253

rigid object under net torque, 259,  
259–263, 261, 262, 263

traveling wave, 419, 419–423, 420, 422, 423
waves in interference, 452–456, 453, 454, 

455, 965, 965–968, 966, 966
wave under reflection, 902, 902–905, 903, 

904, 905
wave under refraction

angle of refraction for glass, 908–909
index of refraction, 906–908, 907, 907t
light through prism, 910, 910
light through slab, 909–910, 910
overview, 905, 905–907, 906, 908, 908

Anderson, Carl, 1228, 1230
Angle of deviation (d), 910, 910, 913
Angle of divergence, 1135
Angle of incidence, 902, 914, 915
Angle of reflection, 902
Angle of refraction, 905, 908–909
Angular acceleration (aS)

average, 251
instantaneous, 251
overview, 250–252
rigid object under constant, 252–254, 253
tangential acceleration and, 255

Angular and translational quantities in 
rotational motion, 254–257, 255, 
256

Angular frequency (v), 389, 392, 401,  
421, 423

Angular magnification, 951
Angular momentum (L

S
), 285–309

ground-state, of atom, 1112
gyroscopes and tops, motion of, 301, 301
isolated system (angular momentum), 

analysis model of, 295–300, 296, 
298, 299

Index
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nonisolated system (angular momentum), 
analysis model of, 288–293,  
290, 292

quantized orbital, 786, 786
of rotating rigid object, 293, 293–295, 294
in rotational motion, 212n
spin, 1125, 1125n
storyline on, 285–286
vector product and torque, 286, 286–288

Angular position (u), 250, 250–252
Angular speed (v)

average, 251
constant, 399–400
instantaneous, 251
translational speed and, 82–83

Angular velocity (vS), 250–252
Angular wave number (k), 421
Anomalous trichromats, in color blindness, 

950
Antenna, for electromagnetic wave 

production, 886–887, 887
Antiderivatives, in calculus, 44
Antilogarithms, A-9
Antinodes, 457–458
Antiparticles

antineutrino, 1196, 1230, 1230n
antineutron, 1228
antiproton, 1228
antiquarks, 1240, 1240t
of electrons, positrons as, 1187
overview, 1227, 1227–1229, 1228, 1229

Apex angle of prism (F), 910, 910
Apollo 11 moon landing, 904, 904, 918
Apollo astronauts, 1137
Arago, Dominique-François-Jean, 984
Archimedes’s principle, 365, 365–368
Area (A)

dimensions and units of, 10t
of geometric shapes, A-10, A-10t
integration to determine, 45

Arfeuille, Walter, 176
Aristarchus of Samos, 339n
Aristotle, 41, 208
Arithmetic, for vectors, 55–58
Art forgeries, neutron activation analysis to 

identify, 1214
Artificial kidney machines, 768
Artificial radioactivity, 1200
Ashpole, Ian, 380
Associative law of addition, 56, 56
Asymmetrical nature of potential energy 

curve, 488n
ATLAS (A Toroidal LHC Apparatus), 1245
Atmosphere, of Earth

atmospheric blurring for telescopes and, 
991–992, 992

carbon dioxide levels in, 1155, 1155
temperature of, 523

Atmospheres, law of, 554
Atomic emissions, 1072–1073
Atomic mass unit, 1179
Atomic number (Z), 1112, 1178, 1182
Atomic orbitals, 1127, 1127t
Atomic physics, 1105–1143

atom, models of, 1107, 1107–1108, 1108
Bohr’s model of hydrogen atom, 1109, 

1109–1114, 1110, 1111

exclusion principle and periodic table, 
1126, 1126–1130, 1127t, 1128, 1128, 
1129, 1130

gases, atomic spectra of, 1106, 1106–1107, 
1107

lasers, 1135–1137, 1136
quantum model of hydrogen atom, 1114, 

1114–1117, 1115, 1116t
quantum numbers

orbital (,), 1120
orbital magnetic (m,), 1120–1123,  

1121, 1122
principal (n), 1115
spin magnetic (ms), 1123, 1123–1126, 

1124, 1125, 1126t
spontaneous and stimulated transitions, 

1133–1134, 1134
storyline on, 1105
visible and x-ray spectra, 1130, 1130–1133, 

1131, 1132, 1133
wave functions for hydrogen, 1117,  

1117–1120, 1118, 1119
Atomic shells, 1116, 1116t
Atomic spectroscopy, 994–995
Atomic subshells, 1116, 1116t
Atoms. See also Atomic physics; Hydrogen

magnetic moments of, 786, 786–787,  
787

models of, 1107, 1107–1108, 1108
Attractive force, 589, 589, 590
Atwood machine, 112, 112–113, 271–272, 

272
AU (astronomical unit), 342
Audible sound waves, 429
Automobiles, fuel-cell-powered, 1
Average acceleration (ax,avg ), 32, 35–36, 70
Average angular acceleration (a), 251
Average angular speed (vavg ), 251
Average coefficient of linear expansion (a), 

488, 488–489, 489, 489t
Average coefficient of volume expansion ( b),  

489, 489t
Average current (Iavg), 692
Average force, 535n
Average kinetic energy per molecule, 537
Average power (Pavg), 201, 860–862
Average speed (vavg), 22–23
Average velocity (vx,avg), 22–23, 69, 70
Avogadro’s number (NA), 492–493
AWG (American Wire Gauge) system,  

708, 708t
Axis of rotation. See Rotational motion

Back emf, 825
Background radiation, 1212
Bainbridge mass spectrometer, 753
Balboa State Park (San Diego), 468
Balmer, Johann Jacob, 1107
Balmer series (emission spectrum of 

hydrogen), 1106, 1107, 1107,  
1111, 1111

Band theory of solids, 1160–1162, 1161, 1161
Banked roadways, 131, 131–132
Bar charts for energy, 168, 169, 200
Bardeen, John, 703, 1168
Barrier height, 1093
Barrier penetration, 1093
Baryon number, 1233–1234

Baryon particles, 1233, 1238, 1238–1239, 
1239, 1242, 1242t

Basal metabolic rate (BMR), 530
Base number of logarithms, A-9
Batteries, 714–716
Battery charger, wireless, 833, 833
Bay of Fundy (Nova Scotia, Canada), 477
BCS theory of superconductivity, 703
Beat frequency, 471, 471
Beats: interference in time, 469–471,  

470, 471
Becquerel, Antoine-Henri, 1177, 1187
Bednorz, J. Georg, 703
Bell, Alexander Graham, 436n
Bell Laboratories, 1247
Bernard, W. H., 191n
Bernoulli, Daniel, 371, 371
Bernoulli’s principle, 371–375, 373, 377
Beta decay, in radioactivity, 1195–1198, 

1196, 1197, 1200t
Betatron, 823
Betelgeuse (star), 1050
Bethe, Hans, 1222
Big Bang theory of Universe creation, 1246
Big Ben (London, UK), 281, 281, 283, 304
Binding energy, 1145, 1182, 1182–1184,  

1183
Biological radiation damage, 1211–1213, 

1212t
Biot, Jean-Baptiste, 772
Biot-Savart law, 772, 772–776, 773, 774,  

775, 776
Blackbody radiation, 523, 1049, 1049–1055, 

1050, 1051, 1052, 1053
Black holes, 350, 350
Blueshift, in wavelength, 1029
Blu-ray Discs, 981
BMR (basal metabolic rate), 530
Bohr, Niels, 791, 1109, 1109, 1184
Bohr model of hydrogen atom

correspondence principle in, 1112–1113
description of, 1109, 1109–1112,  

1110, 1111
electronic transitions in, 1113–1114
electron in circular path in, 144
quantum model of hydrogen atom versus, 

1117–1118
Bohr radius (a0), 1110, 1117
Boltzmann, Ludwig, 548
Boltzmann distribution law, 547, 1052
Boltzmann’s constant (kB), 493, 712, 1050
Bonaparte, Napoleon, arsenic poisoning 

of, 1214
Bonds

bond energy, 502
covalent molecular, 1146–1147, 1147
in covalent solids, 1157, 1157
in DNA (deoxyribonucleic acid) 

molecules, 1148, 1148
hydrogen molecular, 1147–1148, 1148
ionic molecular, 1145–1146, 1146
in ionic solids, 1156, 1156
in metallic solids, 1157–1158, 1158
in metals, 1157–1158, 1158
overview, 1145, 1145
potential energy in molecular, 1145
van der Waals, 1147, 1243

Bose-Einstein condensates, 1144

Angular momentum (continued)
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Bosons. See also Particle physics and cosmology
gauge, 1226
Higgs, 1245
integral spin of, 1226n
weak force mediated by W and Z, 1227

Bottom type of quark (b), 1241
Boundary effects, 459, 459–460, 460, 461, 

463, 464
Boyle, Willard S., 1060
Brachytherapy (radiation “seeds” implanted 

in cancerous tissue), 1214
Brackett series, in hydrogen spectra, 1107
Bragg, W. L., 997
Bragg’s law, 997
Brahe, Tycho, 339
Braking radiation (bremsstrahlung), 1131
Braking systems, eddy currents and, 815
Brattain, Walter, 1168
Bremsstrahlung (x-rays from slowing down 

of electrons; braking radiation), 
1131, 1131

Brewster, David, 1000
Brewster’s angle, 1000
Brewster’s law, 1000
Bright fringes, in wave optics, 986
British thermal unit (Btu), 503
Broglie, Louis de, 1064–1065, 1071
Brookhaven National Laboratory, 1239, 

1241, 1242
Buckminsterfullerene, 1157
Bulk modulus, 320, 320t, 321–322
Bumpers, in collision tests, 219
Bunsen, Robert, 724
Buoyant forces, 365–368, 366

Calculus
differential, A-13–A-16
instantaneous velocity derived from, 25
integral, A-16–A-19
kinematic equations from, 44–45

Calories, as heat unit, 503
Calorimetry, 504–508, 505t, 507, 507
Cameras, 947, 947–948, 1059
Cancer, detection of and therapies for, 1214, 

1215, 1225
Candela (cd, unit of luminous density), 3
Capacitance (C), 663–690

calculating, 665–668, 666, 667, 668
capacitors in alternating-current circuits, 

854, 854–856, 855
capacitors with dielectrics, 676–678, 677, 

677t
combinations of capacitors, 668, 668–672, 

669, 670, 671
definition of, 664, 664–665, 665
dielectrics, atomic description of, 681, 

681–683, 682, 683
displacement current in capacitors, 875, 

875
electric dipole in electric field, 678,  

678–680, 679, 680
energy stored in charged capacitors, 

672–676, 673, 674
storyline on, 663–664

Capacitor(s), 664
Carbon dating by radioactivity decay, 

1198–1199
Carbon dioxide lasers, 1136–1137

Carbon monoxide (CO) molecule, 
1150–1153

Carnot, Sadi, 563
Carnot cycle in Carnot engine

description of, 563, 563–567, 564, 565
entropy change in, 575–576

Carnot’s theorem, 563
Cartesian coordinate system, 53, 53, 54, 71
Categorization, in analysis models, 31
Cavendish, Sir Henry, 333
Cavendish balance, 353
Cavendish Laboratory, University of 

Cambridge, 753
Cavity within conductor, 654, 654–655
CCD (charge-coupled device), 948, 1060
Cell separator, lasers used with, 1137
Celsius temperature scale, 484–485,  

485, 487
Center of gravity, 312–313, 313
Center of mass, 230–234, 231, 232, 233
Centers for Disease Control and Prevention 

(CDC), 1215
Central maximum, in diffraction  

patterns, 984
Centrifugal force, 137
Centripetal acceleration, 82–84, 128, 128
Cerenkov effect, 448
Cerenkov radiation, 1047
CERN (Conseil Européen pour la 

Recherche Nucléaire, changed to 
European Laboratory for Particle 
Physics), 1011, 1022, 1227n,  
1242, 1245

Cesium-133 atom, in time standard, 5
Cesium fountain atomic clock, 4
Chadwick, James, 1223
Chain rule of differential calculus, A-14
Challenger space shuttle tragedy of 1986, 

1230
Chamberlain, Owen, 1228
Change of phase from reflection, 969, 

969–970, 970
Characteristic x-rays, 1131–1132
Charanka Solar Park (India), 1167
Charge, electric. See Electric fields
Charge, of nucleus, 1179
Charge-coupled device (CCD), 948, 1060
Charge density, 616–617, 681–682
Charge on spheres, as example of 

Coulomb’s law, 597, 597–598
Charmed type of quark (c), 1241
Charon (moon of Pluto), 992, 992
Chernobyl nuclear power plant accident 

(Ukraine, 1986), 1206
Chip (integrated circuit), 1170
Choice, entropy and, 570–571
Chromatic aberrations in lenses, 947, 947
Chu, Steven, 1143
Circuit diagrams, 668
Circuit symbols, 668
Circular aperture and single-slit resolution, 

988–992, 989, 990, 992
Circular current loop, magnetic field on 

axis of, 775, 775–776, 776
Circular motion, 127–149

in accelerated frames, 135–138
with constant angular speed, 399–400
nonuniform, 133–135

particle in uniform, 81, 81–83
particle in uniform (extended model), 

128–133
with resistive forces present, 138–143
storyline on, 127–128
uniform, 81, 81–83, 398, 398–400, 399

Classical mechanics, 1
Clausius, Rudolf, 560n
Clausius statement of the second law of 

thermodynamics, 560, 579
Climate change, 1155
Closed surface, electric flux through, 622, 

622, 622–623
Closed Universe, 1249
CMS (Compact Muon Solenoid), 1011,  

1245
Coaxial cable, 698–699, 832, 832
COBE (Cosmic Background Explorer) 

satellite, 1248
Coefficient of kinetic friction (mk), 115, 117, 

117–118
Coefficient of performance (COP), for heat 

pumps, 560–561, 566
Coefficient of static friction (ms), 114,  

115, 116t
Coefficients, 26n
Cohen-Tannoudji, Claude, 1143
Coherent light sources, 964, 995, 1135
Collective model of nucleus, 1187
Colliders (colliding-beam accelerators), 

1245
Collisions. See also Linear momentum

disk and stick, 299, 299–300, 300t
in one dimension, 219–227

ballistic pendulum, 224–225, 225
elastic, 220–222
inelastic, 220
overview, 219–220, 220
perfectly inelastic, 220
stress reliever device, 223, 223–224
two-body, with spring, 226, 226–227

in two dimensions, 227–230
Color, wavelengths of visible light 

corresponding to, 888, 888t
Color blindness, 950
Color charge, quark property of, 1242–1243
Color force, between quarks, 1243
Colors, angles of deviation of, 913
Columbia University, 1229
Coma Cluster of galaxies, 1250
Comet Halley, 341
Commutative law, 56, 56, 154n
Compact Muon Solenoid (CMS) Detector 

(CERN), 1011, 1245
Compass needles, 743, 743, 745
Complementarity, principle of, 1064
Complex numbers, 1081n
Composition resistor, 695
Compound microscope, 952, 952
Compression ratio, for gasoline engines, 

569
Compton, Arthur Holly, 146, 1061, 1061
Compton effect in quantum physics, 1061, 

1061–1063, 1063
Compton shift equation, 1062
Compton wavelength of electrons, 1062
Concave spherical mirrors, 928, 928–930, 

929, 930, 933–934
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Conceptualization, in analysis models, 
30–31

Condensation, latent heat of, 509n
Condensed matter physics, 1144
Condition for pure rolling motion, 271, 271
Condon, E. U., 1195
Conduction

electrical, 699–701
thermal, 519, 519–521, 520, 577–578, 692

Conduction band, 1163
Conduction current, 874, 874
Conductivity (s), 695, 700
Conductors

current-carrying, in magnetic fields, 755, 
755–757, 756

in electrostatic equilibrium, 651, 651–655, 
652, 653, 654

magnetic field between two parallel, 777, 
777–778, 778

magnetic field surrounding thin, straight, 
773–774, 774

overview, 591
Cones and rods, in eyes, 949
Conical pendulum, 129, 129
Conservation laws for particle physics, 

1233–1236, 1234
Conservation of angular momentum, 295n. 

See also Angular momentum
Conservation of baryon number, 1233
Conservation of electric charge, 590–591
Conservation of electron lepton number, 

1235
Conservation of energy equation, 184. See 

also Energy, conservation of
Conservation of momentum, 217. See also 

Linear momentum
Conservation of muon lepton number, 1236
Conservation of strangeness, 1237
Conservation of tau lepton number, 1236
Conservative field, 642
Conservative forces

nonconservative forces and, 169–171, 170, 
170, 171, 171

overview, 637
potential energy and, 171–173

Constant acceleration model
with motion in two dimensions, 71–74
particle under, 37–41

Constant angular speed, 399–400
Constant positive velocity, 36, 37
Constant velocity, particle under, 27–30
Constructive interference, 452, 453, 964, 

964–966, 965, 1067
Contact force, 96, 96, 338
Continuity for fluids, equation of, 370
Continuous charge distributions, 615–635. 

See also Electric fields
electric field of, 616, 616–620, 618,  

619, 620
electric flux (FE) and, 620–623, 621, 621, 

622, 623
electric potential due to, 646, 646–651, 

648, 649, 650
Gauss’s law

application of, 625–629, 626, 627,  
628, 629

overview, 623, 623–625, 624
storyline on, 615–616

Convection, as energy transfer mechanism, 
522–523

Converging thin lenses, 943, 943–944
Conversion factors, A-1–A-2
Conversion of units, 12
Convex spherical mirrors, 930–931, 931, 

935, 935
Cooper, Gordon, 1043
Cooper, L. N., 703
Coordinate systems, 53–54
COP (coefficient of performance), for heat 

pumps, 560–561, 566
Copernicus, Nicolaus, 41, 339
Copper, Hall effect for, 762
Coriolis force, 136
Cornu, Marie, 870
Correspondence principle, of Bohr, 

1112–1113
Cosmic Background Explorer (COBE) 

satellite, 1248
Cosmic rays, 752
Cosmology. See Particle physics and 

cosmology
Coulomb (C, unit of electric charge), 593
Coulomb, Charles, 593
Coulomb constant (ke), 593
Coulomb repulsive force

between alpha particle and nucleus, 1095
fusion reactions hindered by, 1208
in liquid-drop model, 1184
nuclear stability and, 1182, 1182–1183, 

1183
size and structure of nuclei determined 

by, 1179–1181, 1180
Coulomb’s law, 593–598

in capacitance determination, 664n
charge on spheres example, 597, 597–598
conservative force between charges in, 

637
hydrogen atom example, 594–595, 595
overview, 592, 592–594, 594t
resultant force example, 595, 595–596
zero, as net force value, 596, 596–597

Covalent molecular bonds, 1146–1147, 1147
Covalent solids, 1157, 1157
Crest, of waves, 417
Critical angle (of incidence), 915–916
Critical density, universe fate and, 1249, 

1249–1250
Critically damped motion, 839
Critical systems, 405
Cross product, 286, 286
CT scans, for medical diagnosis, 1177, 1213, 

1225
Cubic zirconia versus diamond, 915
Curie, Marie, 1187
Curie, Pierre, 1187
Curie temperatures for ferromagnetic 

substances, 788, 788t
Current (I)

conduction, 874, 874
displacement, 874, 874–875, 875
in inductor in AC circuit, 852
in phase with voltage, 849

Current and resistance, 691–712. See also 
Alternating-current circuits; 
Direct-current circuits; Faraday’s 
law of induction

current, overview of, 692, 692–694, 693
electrical conduction model, 699–701
electrical power, 703, 703–706, 705
resistance, overview of, 694–699, 695, 

695, 696, 696t, 697, 697t, 698
storyline on, 691–692
superconductors, 702, 702–703, 702t
temperature and, 701, 701–702

Current-carrying wire, magnetic field 
created by, 780, 780–781

Current density ( J), 694, 700
Curvature of spacetime, 1040–1041
Curved wire, magnetic field due to,  

774–775, 775
Curzon, F. L., 565n
Curzon-Ahlborn efficiency of engines, 565n
Cutoff frequency (fc), in photoelectric 

effect, 1056
Cutoff wavelength, in photoelectric effect, 

1059
Cyclic process, on PV diagram, 515, 515
Cyclotron, 750, 754, 754–755
Cylinder

as symmetry for capacitor, 667, 667
as symmetry for charge distribution, 

627–628, 628

Daedalus and Icarus, myth of, 529
Damped oscillations, 404, 404–405, 405, 

838, 838t
Dark energy, 1251, 1251n
Dark fringes, in wave optics, 986–987
Dark matter, 350, 350–351, 351, 1250–1251
Daughter nucleus, in radioactive decay, 1191
Davisson, C. J., 1065
Davisson-Germer experiment, 1064–1065, 

1070
Dead Sea Scrolls, carbon dating of, 1198
Death Valley (CA), 496
de Broglie, Louis, 1064
de Broglie wavelength, 1064, 1084
Debye, Peter, 1061
Decay constant, 1187
Decay rate, 1188
Deceleration, 34
Decibels (dB), 436–437
Decimal places, 14
Defibrillator, 663, 663, 676
Definite integral, in calculus, 44, A-16, A-17, 

A-19t
Deformable systems, 152, 237–239, 238
Delta (D) symbol, 22
Density (r)

of common substances, 361t
definition of, 6
of nucleus, 1180–1181

Depletion region, in junction diodes, 
1165–1166

Depth, pressure variation with, 360–364
Derivative

in calculus, A-14
instantaneous velocity as, 25
second, acceleration as, 34

Derived quantities, 6, 10t
Destructive interference, 452, 453, 455, 964, 

964–966, 965, 986
Deuterium (heavy water) fuel, for fusion 

reactions, 1207
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Dewar flask, 525, 525
Diamagnetism, 788–789, 789, 845
Diamond, cubic zirconia versus, 915
Diatomic molecules, 1146
Dielectric constant (k), 676–677, 677t
Dielectrics

atomic description of, 681, 681–683,  
682, 683

capacitors with, 676–678, 677, 677t
Dielectric strength, 677, 677t
Diesel and gasoline engines, 567–569, 568
Differential calculus, A-13–A-16
Diffraction, intensity distribution from, 969
Diffraction patterns, 983–1010. See also Wave 

optics
diffraction grating and, 992–996, 993, 

994, 995, 1065
from narrow slits, 985, 985–988, 987, 988
overview, 984, 984
single-slit and circular aperture 

resolution, 988–992, 989, 990, 992
storyline on, 983
in wave nature of particles, 1065

Diffraction of x-rays by crystals, 996,  
996–997, 997

Diffuse reflection, 902
Digital micromirror device, in projection 

equipment, 904, 904–905
Dimensional analysis, 10–11
Dimensions, A-2–A-3
Diodes

junction, 1165, 1165–1166, 1166
light-emitting and light-absorbing,  

1166–1168, 1167
Diopters, in lens prescriptions, 950
Dipole, electric potential due to, 648, 648
Dipole antenna, 886–887
Dipole-dipole force, 1147
Dipole-induced dipole force, 1147
Dirac, Paul, 1125, 1227
Dirac sea (electrons in negative energy 

states), 1227
Direct-current (DC) circuits, 713–741, 714. 

See also Current and resistance
electrical safety, 733, 733–734, 734
electromotive force (emf, «), 714,  

714–716, 716
household wiring, 732, 732–733, 733
Kirchhoff’s rules, 723, 723–726, 724, 725
RC circuits, 725–732

charging capacitors, 725–728, 727, 728, 
729–730

discharging capacitors, 728–729, 729, 
730–731

energy delivered to resistor in, 731–732
intermittent windshield wipers 

example, 729
time constant, 728

resistors, 716–722
equivalent resistance, calculating, 721, 

721
landscape lights example, 720, 720
in parallel, 718, 718–720, 720
in series, 716–718, 717, 718
three, in parallel, 722, 722

storyline on, 713–714
Direct-current (DC) generators, 810–811, 

811

Disneyland, 127, 127
Disney World, 93
Disorder, entropy and, 571
Dispersion, 416n
Dispersion force, 1147
Dispersion of light, 912–914, 913, 914
Displacement (Dx). See also Superposition 

and standing waves
approaching zero, 25n
as change in position, 21–22, 22, 25n
in definition of work, 152, 152–153, 153, 

156–157, 157
potential energy function (U) and, 172n
unit-vector notation for, 61
as vector quantity, 54, 54–55

Displacement amplitude of waves, 430
Displacement antinode, 466
Displacement current, 874, 874–875, 875
Displacement node, 466
Displacement vector, 69, 69
Dissociation energy, 1146, 1146n
Distance, 22, 22
Distribution function, 547
Distributive law of multiplication, 155
Disturbance, propagation of, 416, 416–419, 

417, 418
Divergence, angle of, 1135
Diverging mirror, 931
Diverging thin lenses, 944, 944–945
DNA (deoxyribonucleic acid) molecules, 

hydrogen bonding in, 1148, 1148
Domains, in ferromagnetic materials,  

787, 788
Donor atoms, in doped semiconductors, 

1165
Doped semiconductors, 1164–1165, 1165
Doppler, Christian Johann, 438n
Doppler effect, 438, 438–443, 439, 440, 442, 

443, 1029
Doppler shifts, 1248
Dot product, 154, 154n
Double rainbows, 913, 914
Double-reflected light ray, 903, 903
Double refraction, polarization of light 

waves by, 1001, 1001–1002, 1002t
Double-slit experiment, 1070, 1070–1071
Double-slit interference pattern, intensity 

distribution of, 968–969, 969
Down type of quark (d), 1240
Drag coefficient, 141
Drag force, 377
Drift velocity, 693–694, 700, 701n, 761
Drude, Paul, 699
Drude model of electrical conduction, 699–701
Dulong-Petit law, 1172
DVDs, as diffraction gratings, 993–994, 994

Earth
atmosphere carbon dioxide levels, 1155, 1155
atmospheric blurring for telescopes,  

991–992, 992
centripetal acceleration of, 83
density of, 336
escape speed of, 350t, 549
as inertial frame, 98
kinetic energy of, 162t
magnetic field of, 743–745, 744
mass of, 5t

orbit of, 340, 350
ozone layer, 889
planetary data, 343t

Ear thermometer, 1053, 1053
Earthquake (Japan)-caused nuclear power 

disaster (2011), 1206
Earthquakes, seismic waves from, 417
Eaton, Ashton, 77
Eccentricities, in planetary motion, 340, 

340–341
Eddy currents, 814, 814–815, 865
Edison, Thomas, 865
EER (energy efficiency ratio) for air 

conditioners, 584
Eightfold way (patterns in baryon particles), 

1239
Einstein, Albert

energy equation of, 1231
general theory of relativity of, 1039–1041
gravitational waves predicted by, 975, 975
Michelson-Morley experiment and, 

1016–1017
photoelectric effect model of, 1057–1058
Planck results rederived by, 1053
relativity principle of, 1018, 1018–1019, 

1018n
special theory of relativity of, 1011

Elastic collisions, 220–222, 221
Elastic limit, 321
Elastic modulus, 320
Elastic potential energy, 167
Elastic properties of solids, 319–323

bulk modulus (B), 320, 320t, 321–322
prestressed concrete example, 322, 

322–323
shear modulus (S), 320, 320t, 321
Young’s modulus (Y), 320–321, 320t

Electrical conduction
in insulators, 1162–1163
in metals, 1162, 1162
model of, 699–701
in semiconductors, 1163, 1163–1165, 

1163t, 1164, 1165
Electrical power, 691, 691, 703, 703–706, 705
Electrical safety, 733, 733–734, 734, 800
Electrical transmission (TET), 183
Electric charges, magnetic fields from 

moving, 772
Electric dipole moment, 678
Electric fields (E

S
), 588–615. See also 

Continuous charge distributions; 
Current and resistance

Coulomb’s law, 592, 592–598, 594t
charge on spheres example, 597, 

597–598
hydrogen atom example, 594–595, 595
overview, 592–594
resultant force example, 595, 595–596
zero, as net force value, 596, 596–597

electric charge (q)
electric force and, 593–598
of electron, proton, and neutron, 594t
in particle in a field (electric) model, 

598–603
properties, 589, 589–591, 590
smallest unit (e) of free, 593

electric dipole in, 678, 678–680, 679, 680
electric field lines, 603, 603–605, 604, 605
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electric potential for value of, 645–646, 
646

induction to charge objects, 591–592, 592
motion of charged particles in uniform, 

605–607, 606, 607
particle in electric field, analysis model 

of, 598, 598–603, 599, 601, 602, 603
sinusoidal, 880–881, 881
storyline on, 588–589

Electric flux (FE). See also Gauss’s law
description of, 620–623, 621, 621,  

622, 623
displacement current and, 875, 875–876
magnetic field differences from, 785, 785

Electric force, 590, 590
Electric guitar, 800, 800
Electric potential (UE), 636–662

conductors in electrostatic equilibrium, 
651, 651–655, 652, 653, 654

continuous charge distributions as source 
of, 646, 646–651, 648, 649, 650

electric field value from, 645–646, 646
of live wires, 732n
point charges as source of, 642, 642–645, 

643
potential difference and

overview, 637–639, 638
in uniform electric field, 639–642,  

640, 641
storyline on, 636–637
voltage drop as decrease in, 717n

Electric shock, 733, 733–734, 800
Electromagnetic blood pumps, 768
Electromagnetic force, 96, 1226–1227, 1227t
Electromagnetic radiation (TER), 183, 183n. 

See also Quantum mechanics; 
Quantum physics

Electromagnetic waves, 873–896. See 
also Faraday’s law of induction; 
Magnetic fields

antenna production of, 886–887, 887
definition of, 1
displacement current and general form of 

Ampère’s law, 874, 874–875, 875
electronic devices and, 797–798
energy carried by, 882–884, 883
Maxwell’s equations and Hertz’s 

discoveries, 876–878, 877, 878
momentum and radiation pressure, 

884–886
phase change from reflection, 970
plane, 878, 878–882, 879, 881
in quantum physics, 1063–1064
spectrum of, 887–889, 888, 888, 889, 889
storyline on, 873–874

Electromotive force (emf, «)
inducing, 800, 800–801, 812
motional, 801, 801–805, 802, 803, 805
overview, 714, 714–716, 716
self-induced («L), 825

Electron affinity, 1146
Electron capture, 1197, 1200t
Electron cloud, 1118
Electron-hole pairs, in intrinsic 

semiconductors, 1163
Electron microscope, 90, 1066, 1066
Electron-positron annihilation, 1229

Electrons
bending beam of, 751, 751
charge and mass of, 594t
in early atomic models, 1107–1109
as leptons, 1233
linear momentum of, 1035
in magnetic fields, 748, 748
muon decay to, 1230
in photoelectric effect, 1055–1056
as photoelectrons, 1055n
positrons as antiparticles of, 1187
spin angular momentum for, 1125, 1125n
spin property of, 786–787, 787
transmission coefficient of, 1094
uncertainty principle and location of, 

1072
wave nature of, 1064–1066

Electron spin resonance, 1216
Electron volt (eV, unit of energy), 638
Electrostatic equilibrium, 651, 651–655, 652, 

653, 654
Electroweak theory, 1244
ELF (extremely low-frequency) waves, 893
Ellipses, 340, A-11
Emission spectroscopy, 1106, 1106
Emissivity of surface, 523
Endoscopes, lasers used with, 1137
Endothermic nuclear reactions, 1201
Energetically favorable conditions, for 

molecules to form, 1146
Energy (E), 150–180. See also Atomic physics; 

Energy transfer mechanisms; 
Kinetic energy; Potential energy; 
Thermodynamics, first law of

in AC circuit analysis, 859–861
binding, of molecules, 1145
conservative and nonconservative forces, 

169–171, 170, 170, 171, 171
conservative forces and potential, 171–173
conversion factors for, A-2
dark, 1251
delivered to resistor, 731–732
dissociation, 1146
in electric fields, 672–674, 673
electromagnetic waves to carry, 882–884, 

883
as electron affinity of atoms, 1146
energy diagrams and system equilibrium, 

173, 173–174, 174
equipartition of, 538, 542–545, 543, 544, 

545
Fermi, 1158–1160, 1160t, 1163n
fission, release of, 1203–1204
frequency, relation to, 1053
in inductors, 831
internal, 170, 502
ionization, 1111, 1130
kinetic, 161, 161–164, 162t, 163, 164
in magnetic fields, 830–832, 832
mass as form of, 1036
mysterious, of universe, 1251
nuclear binding, 1182, 1182–1184, 1183
photovoltaic solar cells for, 1167
in planetary and satellite motion, 347, 

347–351, 348, 350, 350t, 351
potential, 165, 165–169, 168, 169
for power plants, 812–813
quantized, 1051

radiated by accelerated electric  
charge, 878

radium decay and liberation of, 
1194–1195

reaction (Q), 1201
relativistic, 1035–1039, 1036
rest (ER), 1036

equivalent for atomic mass unit, 1179
of proton, 1038–1039
for quarks and leptons, 1242t
of selected particles, 1179t
and total energy, 1037

in rotational motion, 269, 269–272, 270t, 
271, 272

of simple harmonic oscillator, 394–397, 
395, 396

sinusoidal waves on strings, transfer of, 
426, 426–428

states of, in molecules
overview, 1148
rotational motion of molecules,  

1148–1151, 1149
spectra of, 1153, 1153–1156, 1154, 1155
vibrational motion of molecules, 1151, 

1151–1153, 1152
stored in charged capacitors, 672–676, 

673, 674
storyline on, 150–151
system model of, 151
for work done

by constant force, 151–154, 152, 153, 
154

by varying force, 156–161, 157, 158, 
159, 160

of x-rays, 1133
Energy, conservation of, 181–209

isolated system (energy), analysis model 
of, 185–191

free fall, 187, 187–188, 188
overview, 185–187, 186
pulleys, 188, 188–190, 189, 190
spring-loaded popgun, 190–191, 191

kinetic friction, 191–196, 192, 194
mechanical energy changes for 

nonconservative forces, 196–200, 
197, 198, 199, 200

nonisolated system (energy), analysis 
model of, 182, 182–185, 184

power, 200–202, 201, 202
principle of, 163, 170
storyline on, 181–182

Energy efficiency ratio (EER) for air 
conditioners, 584

Energy gap (Eg) of material (energy 
separation between valence and 
conduction bands), 1163, 1163t

Energy-level diagrams, 545, 545, 548, 1051, 
1051, 1051n

Energy quantization, 544–545, 545
Energy spreading, entropy change  

and, 574
Energy transfer mechanisms

convection, 522–523
electrical transmission (TET), 183, 

703–706
electromagnetic radiation (TER), 183, 

523–524, 878–884
heat (Q), 182–183, 502–505

Electric fields (continued)
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home insulation, 521–522, 521t, 522
matter transfer (TMT), 183, 522
mechanical waves (TMW), 182, 426–428, 

433–438
overview, 182–185, 518–519
thermal conduction, 519, 519–521, 520
work (W), 151–161, 152, 182

Enlargement, magnification versus, 929
Entropy (S)

overview, 570, 570–572, 571, 571
in quantum systems, 1127
second law of thermodynamics and, 

578–580, 579
in thermodynamic systems, 572–578,  

575, 576
Environment, as surrounding system, 151
Equations

Bernoulli’s, 371–375
Brewster’s law, 1000
Compton shift, 1062
conservation of energy, 184
continuity for fluids, 370
Galilean transformation, 86, 1014, 

1015–1016
Hagen-Poiseuille, 377
kinematic, 39, 44–45
lens-makers’, 940–941
linear wave, 428, 428–429
Lorentz transformation, 1030, 1030–1034, 

1033
Malus’s law, 999
Maxwell’s, 876–878
mirror, 930
photoelectric effect, 1058
Raleigh-Jeans law, 1050
range, 76
rotational motion, 270t
Schrödinger, 1092
of state for ideal gas, 492–493
Stefan’s law, 1049
thin lens, 941
translational motion, 253t, 270t
Wien’s displacement law, 1050

Equilibrium, 310–331
center of gravity, 312–313, 313
electrostatic, 651, 651–655, 652, 653, 654
particle in (analysis model), 105–107,  

117, 117
rigid object in (analysis model), 311, 

311–312, 312
rigid objects in static, 313–319

horizontal beam, 315–317, 316
leaning ladder, 317, 317
seesaw, 314, 314–315
wheelchair on curb, 318, 318–319

storyline on, 310–311
of system, 173, 173–174

neutral, 173
stable, 173
unstable, 173

thermal, 513
Equilibrium position of system, 387, 387
Equipartition of energy, 538, 542–545, 543, 

544, 545
Equipotential surface, 640
Equivalent capacitance, 671–672
Equivalent resistance, 717, 719, 721, 721, 864
Ergonomics, 593

Escape speed, 348, 348–350, 350t
Estimates, 12–13
Euler’s number (e, base of natural 

logarithm), 140, 712
European Laboratory for Particle Physics. 

See CERN
European Space Agency, 1248
Evaporation, 550
Event horizon, of black holes, 350
Exchange particles, 1226. See also Particle 

physics and cosmology
Excimer lasers, 1136
Exclusion principle, 1126–1130, 1127t, 1128

for electrons in Dirac sea, 1227
for fermions, 1242–1243
periodic table and, 1128, 1128–1130,  

1129, 1130
Exoplanets, 890–891, 891t
Exothermic nuclear reactions, 1201
Expanding universe, evidence for, 

1248–1249
Expectation values, 1081–1082, 1082n, 

1087–1088
Explorer VIII satellite, 354
Exponents, 26n, A-4, A-6–A-7
Extraterrestrial magnetic fields, Zeeman 

effect to measure, 1122
Extremely low-frequency (ELF) waves, 893
Extrinsic semiconductors, 1165
Eyes, 948, 948–950, 949, 950, 990, 990–991

Factoring equations, A-7
Fahrenheit, Daniel, 496
Fahrenheit temperature scale, 487
Fairchild Camera and Instrument, Inc., 1170
Falling objects, motion of, 41–44, 43
Farad (F, unit of capacitance), 664
Faraday, Michael, 587, 664, 772, 797, 798
Faraday cage, 654
Faraday disk, 818
Faraday’s law of induction, 797–823. See also 

Inductance
Ampère-Maxwell law and, 876
eddy currents, 814, 814–815
general form of, 808, 808–810, 809
generators and motors, 810–814, 811,  

811, 812
Lenz’s law, 805–808, 806, 807, 808, 813
motional emf, 801, 801–805, 802, 803, 805
overview, 798, 798–801, 799, 799, 800
plane electromagnetic waves predicted by, 

878–879
storyline on, 797–798

Far point, in eye focusing, 949
Farsightedness (hyperopia), 949–950
Fermat, Pierre de, 924
Fermat’s principle, 924
Fermi, Enrico, 18, 1196, 1202, 1205
Fermi-Dirac distribution function,  

1158, 1158
Fermi energy (EF), 1158–1160, 1160t,  

1162–1163, 1163n
Fermi National Accelerator Laboratory 

(Fermilab), 1045, 1233, 1241, 1245
Fermion particles, 1242
Ferris wheel, circular motion of, 132, 

132–133
Ferromagnetism, 787–788, 788, 788t

Feynman, Richard P., 609, 1230
Feynman diagrams, 1230, 1231, 1243
Fictitious force, 135–136, 136
Field-effect transistor, 1168
Field forces, 96, 96, 183n, 338
Field particles, 1226. See also Particle physics 

and cosmology
Finalization, in analysis models, 31–32
Fission fragments, 1203
Fixed axis. See Rotational motion
Fizeau, Armand H. L., 900, 900–901, 918
Flat mirrors, 926, 926–928, 927, 928
Flat refracting surfaces, 937, 937
Flat Universe, 1249, 1251
Flavors of quarks, 1240
Floating objects, buoyant force on, 367, 367
Flow calorimeter, 530
Fluid, 358
Fluid mechanics, 358–384

Bernoulli’s equation, 371–375
buoyant forces and Archimedes’s 

principle, 365–368
fluid dynamics, 368–371, 377–378
pressure

measurement of, 359, 359, 364–365
overview, 359–360
variation with depth, 360–364

storyline on, 358
viscous fluids flowing in pipes, 375–377, 

376, 376, 376t
Fluorodeoxyglucose, 1177
Focal length (f), 930, 930, 940–941, 941
Focal point, 930, 930–931, 941
Focus, of ellipse, 340
Focus point, focal point versus, 931
Food preservation, radiation for, 1215, 1215
Forbidden transitions, 1130
Force ( F

S
). See also Torque

acceleration proportional to, 34
attractive, 589, 589, 590
buoyant, 139n, 365–368, 366, 366
centrifugal, 137
centripetal acceleration from, 128
color, between quarks, 1243
concept of, 96–97
conservative

between charges described by 
Coulomb’s law, 637

nonconservative and, 169–171, 170, 170, 
171, 171

potential energy and, 171–173
contact, 338
conversion factors for, A-1
Coriolis, 136
on dam, 363–364, 364
dipole-dipole, 1147
dipole-induced dipole, 1147
dispersion, 1147
drag, 377
electric, 590, 590
electromagnetic, 1226–1227, 1227t
fictitious, 135–137, 136, 137
field, 338
friction, 114–119
fundamental, particle physics in,  

1226–1227, 1227t
gravitational, 42, 96, 102–103, 102–103, 

335–336, 1226–1227, 1227t
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impulse of net, 216, 217
kinetic friction, 115–118, 116, 116
lift, 377
Lorentz, 752, 876
magnetic, 745–746, 746
in molecular model of ideal gas, 535
newton (N), as SI unit of, 100
nuclear, 1181, 1226–1227, 1227t, 1231
particle under net force model, 106, 106
pressure versus, 359
radial, 134, 134
repulsive, 589, 589, 590, 790
repulsive magnetic, 790
resistive, 138–143, 139, 139–141
restoring, 387
resultant, in Coulomb’s law, 595, 595–596
retarding, 404–405
strong, 1231, 1242
tangential, 134, 134
vectors and, 97, 97
weak, 96, 1226–1227, 1227t
work done by constant, 151–154, 152,  

153, 154
work done by varying, 156–161, 157, 158, 

159, 160
zero as net value of, 596, 596–597

Force constant, 158, 160
Forced convection, 522
Forced oscillations, 405–407, 406, 407
Ford, W. K., 351n
Fourier, Jean Baptiste Joseph, 472n
Fourier series, 472
Fourier’s theorem, 472–473
Fourier transform infrared (FTIR) 

spectroscopy, 974–975
Fractional uncertainty, A-20
Frames of reference, 86, 86, 98
Franklin, Benjamin, 590
Fraunhofer diffraction pattern, 985, 985
Free-body diagrams, 104, 107, 109, 112, 113
Free-electron theory of metals, 591n, 1158, 

1158–1160, 1159, 1160t
Free expansion, entropy change in, 576–577
Free-fall acceleration (g), 42, 335–336, 335t
Free space, permeability of (m0), 772
Free space, permittivity of (e0), 593
French Academy of Science, 984
Frequency (f)

angular (v), 389
beat, 470, 471
cutoff, in photoelectric effect, 1056
energy relation to, 1053
fundamental, 462
natural, 467–468
of particles, 1064
pitch versus, 472
resonance (v0), 406, 465–466, 861–862
of simple harmonic oscillator, 390, 392
of sound, 436–437, 437
of tuning fork, 469
of waves, 420, 423

Fresnel, Augustin, 984
Fresnel diffraction pattern, 985n
Fresnel lens, 943, 943
Friction

forces of, 114–119, 115
kinetic, 115, 115, 191–196, 192, 194

rolling, 273
static, 114, 115

Fringes
in wave optics, 986–987
in Young double-slit experiment,  

963, 963
Frisch, Otto, 1202
FTIR (Fourier transform infrared) 

spectroscopy, 974–975
Fuel cells, automobiles powered by, 1
Fuel elements, of uranium, 1205
Fukushima I nuclear power plant  

(Japan), 1206
Fulcrum, 314
Fuller, R. Buckminster, 1157
Functions, in calculus, A-14
Fundamental forces, 96, 1226–1227, 1227t
Fundamental frequency, 462
Fundamental quantities, 6
Furnace Creek Ranch, Death Valley (CA), 

496
Fusion, latent heat of (Lf), 509, 510t
Fusion, nuclear, 1207–1211, 1208, 1209, 1210

Gabor, Dennis, 995
Galaxy clusters, 351
Galilean relativity, 1013, 1013–1016,  

1014, 1015
Galilean transformation equations

overview, 86
space-time, 1014
velocity, 1015–1016

Galilei, Galileo, 20, 41, 41–42, 147, 899
Gamma decay, in radioactivity, 1199,  

1199–1200, 1200t
Gamma rays, 889
Gases

atomic spectra of, 1106, 1106–1107, 1107
inert, 1128, 1147
noble, 1128, 1147

Gases, kinetic theory of, 533–555
equipartition of energy, 542–545, 543, 

544, 545
ideal gas

adiabatic processes for, 545–547, 546
equation of state for, 492
molar specific heat of, 539, 539–542, 

540, 541t
molecular model of, 534, 534–539,  

535, 538t
molecular speeds, distribution of,  

547–551, 548, 549
storyline on, 533–534

Gasoline and diesel engines, 567–569, 568
Gasoline gauge for small engines, 921
Gauge bosons, 1226. See also Particle physics 

and cosmology
Gauge pressure, 365
Gauge theory, 1226n
Gauss, Karl Friedrich, 624
Gauss’s law of magnetism, 784, 784–786, 785
Gauss’s probability integral, A-19t
Gauss’s law. See also Electric flux (FE)

application of, 625–629, 626, 627, 628, 
629

on conductors in electrostatic 
equilibrium, 652

Maxwell’s equations and, 876

overview, 623, 623–625, 624
x-ray energies and wavelengths from, 1132

Geiger, Hans, 1107–1108
Geiger-Mueller tube, 661, 688
Geim, Andre, 1157
Gell-Mann, Murray, 1238–1241
General theory of relativity, 1039–1041, 

1040, 1040, 1041
Generators and motors, 810–814, 811,  

811, 812
Geocentric model of the universe, 339
Geodesic dome, 1157
Geomagnetic poles, 744–745
Geometric models, 7, 7
Geometry, A-10–A-11
Geosynchronous satellites, 344, 344
Gerlach, Walter, 1124, 1124–1126
German Magnetic Union, 624
Germer, L. H., 1065
GFCIs (ground-fault circuit interrupters), 

734, 800, 800
Glashow, Sheldon, 1244
Glaucoma, laser treatment for, 1137
Global warming, 308, 1155
Gluino superpartner particle, 1253
Gluons, 1227, 1243–1244
Goeppert-Mayer, Maria, 1186
Gold, Fermi energy of, 1160
Golden Gate Bridge, San Francisco (CA), 

497
Golmud Solar Park (China), 1167
Goudsmit, Samuel, 1123–1124
Grand Coulee Dam, 381
Gran Telescopio Canarias (Canary Islands, 

Spain), 954
Graphene, 1157
Graphical representations, 9, 9, 22, 23
Gravitation, 332–357

Einstein’s theory of, 1039
energy in planetary and satellite motion, 

347, 347–351, 348, 350, 350t, 351
free-fall acceleration and force of, 

335–336
Kepler’s laws and planetary motion,  

339–344, 340, 341, 342, 343t, 344
Newton’s law of universal, 333, 333–335, 

334
particle in a field (gravitational), analysis 

model of, 336–339, 338
potential energy of, 345, 345–346, 346
storyline of, 332–333

Gravitational force ( F
S

g)
acceleration due to (g), 42
as field force, 96
as fundamental in nature, 1226–1227, 

1227t
weight and, 102–103

Gravitational mass, 102, 1039
Gravitational potential energy (Ug),  

166–167, 166n, 643n
Gravitational waves, 1042
Gravitons, gravitational force mediated by, 

1227
Gravity, center of, 312–313, 313
Greenhouse effect, 527, 1155, 1155
Ground, wire connected to, 592
Ground-fault circuit interrupters (GFCIs), 

734, 800, 800

Force (continued)
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Ground state, 545
Guinness Book of Records, 1105
Gujarat Solar Park (India), 1167
Gurney, R. W., 1195
Gyroscopes and tops, motion of, 301, 301

Hadron particles, 1231–1233, 1232, 1232t
Hagen, Gotthilf Heinrich Ludwig, 377n
Hagen-Poiseuille equation, 377
Hahn, Otto, 1202
Hale Telescope (Palomar Mountain, CA), 

1005
Half-life of radioactive material, 1188–1189
Half-wave antenna, 886–887, 887
Hall, Edwin, 761
Hall effect, 761, 761–762
Hall voltage (DVH), 761
Halogen elements, 1129
Harmonic motion, simple

analysis model of, 388–394, 389, 391, 392
description of, 387, 387
energy of, 394–397, 395, 396
uniform circular motion versus, 398, 

398–400, 399
Harmonics, 462, 473
Harmonic series, 462
Hearing, limits of, 435
Heart-lung machines, 768
Heat (Q)

internal energy and, 502–505, 504
latent, 509–512, 510, 510t
overview, 183
specific, 504–508, 505t, 506, 506

Heat capacity (C), 505
Heat engines, 556–586

Carnot engine, 563, 563–567, 564, 565
entropy

overview, 570, 570–572, 571, 571
second law of thermodynamics and, 

578–580, 579
in thermodynamic systems, 572–578, 

575, 576
gasoline and diesel engines, 567–569, 568
heat pumps and refrigerators, 559, 559–

562, 560
reversible and irreversible processes, 562, 

562–563
second law of thermodynamics and, 557, 

557–559, 558, 558
storyline on, 556–557

Heat pumps and refrigerators, 559,  
559–562, 560

Heat sinks, 704
Heiligenschein (retroreflection), 914
Heinonen, Sami, 176
Heisenberg, Werner, 1071, 1071
Heisenberg uncertainty principle, 1071
Helically Symmetric Experiment, in nuclear 

fusion (US), 1210
Heliocentric model of the universe, 339
Helium, 1106
Helium-neon gas lasers, 1135–1136, 1136
Henry (H, unit of inductance), 825
Henry, Joseph, 587, 772, 797, 825, 825
Hertz (Hz, unit of frequency), 420
Hertz, Heinrich Rudolf, 878, 878, 899
Hertz’s discoveries, 876–878, 877, 878
Higgs boson, 1245

Higher-phase material, 509
High-temperature copper-oxide based 

superconductors, 703
Hofstader, Robert, 1076
Hole, in valence band, 1163, 1227
Holography, 995, 995–996
Home insulation, 521–522, 521t, 522
Homopolar generator, 818
Hooke’s law, 177, 179, 209, 387, 619
Horizontal range of projectiles, 75, 75–77, 

76
Horsepower units, 201
Household wiring, 732, 732–733, 733
Hubble, Edwin P., 1029, 1248, 1256
Hubble constant, 1248
Hubble’s law, 1248
Hubble Space Telescope, 332, 992, 992
Humanson, Milton, 1248
Hund’s rule, 1128, 1128
Huygens, Christiaan, 401t, 899, 899–900
Huygens’s principle, 911, 911–912, 912, 985
Hydraulic lift, Pascal’s law and, 362, 

362–363
Hydrogen

Balmer series (emission spectrum) for, 
1106, 1107, 1107

Bohr model of atom of, 144, 534, 1109, 
1109–1114, 1110, 1111

Coulomb’s law and, 594–595, 595
electronic transitions in, 1113–1114
Lyman, Paschen, and Brackett series, in 

spectra of, 1107
molar specific heat of, 1097–1098
quantum model of atom of, 534, 1114, 

1114–1117, 1115, 1116t
Rutherford’s nuclear model, 1108
space quantization for, 1122–1123
Thomson (J.J.) incorrect model of atom 

of, 630
wave functions for, 1117, 1117–1120,  

1118, 1119
Hydrogen molecular bonds, 1147–1148, 1148
Hydrometer, 380, 380
Hyperbola, equation for, A-11
Hyperopia (farsightedness), 949–950

IBM Zurich Research Laboratory 
(Switzerland), 703

Ideal absorber, 523
Ideal fluid flow, 369
Ideal gas

adiabatic process for, 545–547, 546
description of, 492, 492–494, 493, 493
equation of state for, 492
molar specific heat of, 539, 539–542, 540, 

541t
molecular model of, 534, 534–539, 535, 

538t
IKAROS (Interplanetary Kite-craft 

Accelerated by Radiation of the 
Sun, JAXA), 885

Image distance (q), 926
Image formation, 925–961

by flat mirrors, 926, 926–928, 927, 928
lens aberrations and, 947, 947
optical instruments for

camera, 947, 947–948
compound microscope, 952, 952

eyes, 948, 948–950, 949, 950
magnifying glass, 951, 951
telescope, 953, 953–954, 954

by refracting surfaces, 935–939
by spherical mirrors

concave, 928, 928–930, 929, 930, 
933–934

convex, 930–931, 931, 935, 935
ray diagrams for, 931, 931–933, 931t, 

932, 933
storyline on, 925–926
by thin lenses, 939–946

combinations of, 945, 945–946
converging, 943, 943–944
diverging, 944, 944–945
magnification of, 941–943, 941t,  

942, 943
overview, 939–941, 940, 941

Impedance (Z), 857
Impending motion, 115
Impulse ( I

S
), 215–219, 216, 217

Impulse approximation, 218
Impulse-momentum theorem, 218, 235, 535
Incoherent light sources, 964
Incompressible fluid, 369
Indefinite integral, in calculus, A-16, 

A-18t–A-19t
Independent-particle model of the nucleus, 

1186
Index of refraction (n), 906–908, 907, 907t, 

914, 970
Individual waves, amplitude of, 457
Induced polarization, 680
Inductance (L), 824–846. See also Faraday’s 

law of induction
energy in magnetic fields, 830–832, 832
mutual, 832, 832–833, 833
oscillations in LC circuits, 834, 834–837, 

836
RLC circuits, 837–839, 838, 838t, 839
RL circuits, 827, 827–830, 828, 829, 830
self-induction and, 825, 825–826
storyline on, 824

Induction furnace, 823
Induction to charge objects, 591–592, 592
Inductors, 827

in alternating-current circuits, 851,  
851–853, 852, 853

Inelastic collisions, 220
Inert gases, 1128, 1147
Inertia, moment of, 260, 261, 263–267, 264, 

265, 266, 403
Inertial confinement of fusion reactions, 

1210, 1210–1211
Inertial frame of reference, 97–99,  

1013–1014, 1014
Inertial mass, 102, 1039
Infrared radiation, intensity of, 1053,  

1053
Infrared (IR) waves, 888
Infrasonic sound waves, 429
In phase, current and voltage, 849
Instantaneous acceleration, 33, 33, 35–36
Instantaneous angular acceleration, 251
Instantaneous angular momentum, 289
Instantaneous angular speed, 251
Instantaneous centripetal acceleration, 84
Instantaneous current, 692
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Instantaneous energy density, 883
Instantaneous power, 201
Instantaneous speed, 24–27
Instantaneous velocity, 24–27, 69–70, 70
Instantaneous voltage, 849
Institute for Advanced Studies 

(Copenhagen, Denmark), 1109
Insulators, electrical, 591, 1162–1163
Integral calculus, A-16–A-19
Integrated circuits, 1144, 1170, 1170–1171
Integration, in calculus, 44
Intel, Inc., 1170
Intensity (I)

distribution of, in double-slit interference 
pattern, 968–969, 969

of electromagnetic waves, 882–884
of infrared radiation from eardrum, 

1053, 1053
of single-slit diffraction patterns, 987, 

987–988, 988
of sound waves, 433–438, 434, 436t, 438
of two-slit diffraction patterns, 988

Interference
analysis model of waves in, 452–456, 453, 

454, 455, 965, 965–968, 966
intensity distribution of double-slit 

pattern of, 968–969, 969
in thin films, 970, 970–973, 971, 973
in time, 469–471, 471
Young’s double-slit experiment on, 963, 

963–964, 964
Interference grating, 992
Intergovernmental Panel on Climate 

Change (IPCC), 1155
Internal energy (Eint)

change in, 193
in first law of thermodynamics, 514–515
heat and, 502–505, 504
of ideal gas, 540
symbol for, 514n
and temperature, 538

Internal resistance (r), 714
International Astronomical Union, 343n
International Bureau of Weights and 

Measures (Sèvres, France), 4
International Prototype of Kilogram, 4
International Space Station, 339, 630, 891
International Thermonuclear Experimental 

Reactor (ITER, in France), 1210
Internet, Wi-Fi to connect to, 873
Intersections, collisions at, 229, 229
Intrinsic semiconductors, 1163
Invariant mass, 1037
Inverse-square law, 333
Ionic molecular bonds, 1145–1146, 1146
Ionic solids, 1156, 1156
Ionization energy, 1111, 1130
IPCC (Intergovernmental Panel on Climate 

Change), 1155
Iridescence, 972
Irradiance (power per unit area), 882
Irreversible and reversible processes in heat 

engines, 562, 562–563
Irrotational fluid, 369
Irvine-Michigan-Brookhaven experiment, 

1234, 1258
Isobaric process, 516, 516
Isobars, 1219–1220

Isochoric process, 516
Isolated system (angular momentum), 

analysis model of, 295–300, 296, 
298, 299

Isolated system (energy), analysis model of, 
185–191

free fall, 187, 187–188, 188
overview, 185–187, 186
pulleys, 188–190, 189, 190
spring-loaded popgun, 190–191, 191

Isolated system (momentum), analysis 
model of, 213–215, 214

Isothermal process, 515, 515–518
Isotones, 1186
Isotopes, 1178, 1190
Isovolumetric process, 516, 516
ITER (International Thermonuclear 

Experimental Reactor, in France), 
1210

Japan Aerospace Exploration Agency 
(JAXA), 885

Jensen, Hans, 1186
Jewett, Frank Baldwin, 753
Jewett, John W., Jr., 753
Joule (J, unit of energy), 153
Joule, James Prescott, 502, 503, 503–504
Joule heating, 704n
J/C particle, 1241
Junction diode, 1165, 1165–1166, 1166
Junction rule (Kirchhoff rules), 723
Junction transistor, 1168

Kamerlingh-Onnes, Heike, 702
Kamiokande II experiment, 1258
Kao, Charles K., 916
Kaon (K) particle, 1236–1237, 1239
Keck Observatory (Mauna Kea, HI), 954, 

954, 991–992, 1005
Kelvin (K, SI base unit of absolute 

temperature), 486
Kelvin, Lord (Thomson, William), 557
Kelvin-Planck form of the second law 

of thermodynamics, 558, 560,  
562, 579

Kelvin temperature scale, 486–487
Kepler, Johannes, 339, 340
Kepler’s laws, 339–344, 340, 341, 342,  

343t, 344
Kilby, Jack, 1170
Kilogram, (kg, SI base unit of mass), 2–4, 4

International Prototype of, 4
Kilowatt-hour (kWh), 201
Kinematic equations, 39, 44–45
Kinetic energy (K). See also Energy; Energy, 

conservation of; Work-kinetic 
energy theorem

of charged particle in magnetic field, 747
of earth, 215
relativistic, 1035–1036, 1036
rotational, 267, 267–268, 268
of simple harmonic oscillator, 394,  

395, 396
Kinetic friction, 191–196, 192, 194
Kinetic friction forces, 115–118, 116, 116
Kinetic theory of gases. See Gases, kinetic 

theory of
Kirchhoff, Gustav, 724, 724

Kirchhoff’s rules, 723, 723–726, 724,  
725, 844

Kuiper belt, 342–343

Lagrange, Joseph Louis, 357
Laguerre polynomials, 1160n
Lambda (L) particle, 1236–1237
Laminar flow, 368–369, 369, 372
Land, E. H., 999
Large Electron-Positron (LEP)  

Collider, 1245
Large Hadron Collider (LHC), CERN, 

1200, 1242, 1245
Large Helical Device, for nuclear fusion 

(Japan), 1210
Laser diodes, 1136
Laser interferometer gravitational-wave 

observatory (LIGO), 975, 975
Laser pointer, radiation pressure of, 886
Lasers, 1134–1136, 1135
Lasik eye surgery, 1136–1137
Latent heat 509–512, 510, 510t

of condensation, 509n
of fusion (Lf), 509, 510t
of solidification, 509n
of vaporization (Lv), 509, 510t

Lateral magnification, 927
Laue, Max von, 996
Laue pattern, 996, 996–997, 997
Law of atmospheres, 554
Law of conservation of baryon number, 

1233
Law of conservation of electron lepton 

number, 1235
Law of conservation of muon lepton 

number, 1236
Law of conservation of strangeness, 1237
Law of conservation of tau lepton number, 

1236
Law of inertia, 97–99
Law of reflection, 902
Law of refraction, 908
Law of successive radioactive decays, 1220
Law of thermal conduction, 519
Lawrence, E. O., 754
Lawrence Livermore National Laboratory 

(CA), 1210
Laws of motion. See Motion
LC circuits, 834, 834–837, 836, 877
Leaning Tower of Pisa, 41
LEDs (light-emitting diodes) 

and light-absorbing diodes,  
1166–1168, 1167

Length
contraction of, 1025–1026, 1026
conversion factors for, A-1
example values of, 4t
standards of, 3–4, 6
time connection to, 402

Lennard-Jones potential energy function, 
174, 396

Lenses
aberrations of, 947, 947
derivation of, 950n
thin, 939–946

combinations of, 945, 945–946
converging, 943, 943–944
diverging, 944, 944–945
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magnification by, 941–943, 941t, 942, 
943

overview, 939–941, 940, 941
Lens-makers’ equation, 940–941
Lenz, Heinrich, 805n
Lenz’s law, 805–808, 806, 807, 808
LEP (Large Electron-Positron) Collider, 

1245
Lepton number, 1235–1236
Lepton particles, 1231, 1232t, 1233, 1242t
LHC (Large Hadron Collider), CERN, 1200, 

1242, 1245
Lift force, 377
Light, speed of, 4, 1015, 1015–1016
Light and ray optics, 897–924. See also 

Quantum physics
color corresponding to wavelengths of, 

888t
dispersion, 912–914, 913, 914
as electromagnetic radiation, 877
Huygens’s principle, 911, 911–912, 912
nature of light, 899–901
polarization of light waves, 998, 998–1003, 

999, 1000, 1001, 1002, 1002t
ray approximation in, 901, 901
speed of, 4, 1015, 1015–1016, 1018
storyline on, 898–899
total internal reflection, 914, 914–917, 

915, 916, 917
wave under reflection, analysis model of, 

902, 902–905, 903, 904, 905
wave under refraction, analysis model of, 

905–910
angle of refraction for glass, 908–909
index of refraction, 906–908, 907, 907t
light through prism, 910, 910
light through slab, 909–910, 910
overview, 905, 905–906, 906, 907,  

908, 908
Light-emitting diodes (LEDs) and light-

absorbing diodes, 1166–1168, 1167
Lightning, 615, 615, 636, 636, 713
Light-year, 4
LIGO (laser interferometer gravitational-

wave observatory), 975
Limiting values of Dx over Dt, 25
Linear charge density, 617, 650
Linear equations, A-7, A-7–A-9, A-8, A-9
Linearly polarized waves, 881
Linear momentum (pS), 210–248

center of mass, 230–234, 231, 232, 233
collisions in one dimension

ballistic pendulum, 224–225, 225
elastic, 221, 221–222
overview, 219–220, 220
perfectly inelastic, 220
stress reliever device, 223, 223–224
two-body, with spring, 226, 226–227

collisions in two dimensions, 227–230, 
228, 229

deformable systems, 237–239, 238
isolated system (momentum), analysis 

model of, 213–215, 214
nonisolated system (momentum), analysis 

model of, 215–219, 217, 218, 219
overview, 211, 211–213, 212
relativistic, 1034–1035
rocket propulsion, 239, 239–241

storyline on, 210
systems of many particles, 234–237

Linear polarization, 998
Linear wave equation, 428, 428, 428–429
Line of charge, finite, 650, 650–651
Line spectrum, 1106
Liquid crystals, 1144
Liquid-drop model (Bohr), in nuclear 

physics, 1184–1185, 1185
Live wires, 732n, 733, 733
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Lloyd, Humphrey, 969n
Lloyd’s mirror, 969
Load resistance, 714, 716, 716, 864
Logarithms, A-9–A-10
Loma Prieta earthquake of 1989 (CA), 446
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Longitudinal waves, 416, 417, 417, 466–467, 

467
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Loop rule (Kirchhoff’s rules), 723, 844
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Lorentz force, 752, 876
Lorentz transformation equations, 1030, 

1030–1031
Lorentz velocity transformation equations, 

1031–1034, 1033
Loudness of sound, 436–437, 437
Lunar and Planetary Institute, 527t
Lyman series, in hydrogen spectra, 1107

Macrostate of systems, 570
Madelung constant, 1156
Maglev trains, 587, 587
Magnetic bottles, 752, 752
Magnetic confinement of fusion reactions, 

1209, 1209–1210
Magnetic declination, 745
Magnetic dipole moment, 759
Magnetic fields (B

S
), 742–770. See also 

Electromagnetic waves
current-carrying conductor in, 755, 

755–757, 756
extraterrestrial, 1122
Hall effect, 761, 761–762
motion of charged particle in a uniform 

magnetic field
applications of, 752, 752–755, 753, 754
overview, 748–752, 749, 750, 751, 752

particle in a field (magnetic), analysis 
model of, 743, 743–748, 744, 746, 
747t, 748

sinusoidal, 880–881, 881
storyline on, 742–743
torque on current loop in uniform, 757, 

757–760, 758, 759, 760
Magnetic fields, sources of, 771–796

Ampère’s law, 779, 779–782, 780, 781
Biot-Savart law, 772, 772–776, 773, 774, 

775, 776
force between two parallel conductors, 

777, 777–778, 778
Gauss’s law of magnetism, 784, 784–786, 

785
in matter, 786, 786–789, 787, 788, 789
of solenoids, 782, 782–783, 783
storyline on, 771–772

Magnetic flux (FB), 784, 784–786, 785, 799, 
799–800, 800, 832

Magnetic force, 745–746, 746
Magnetic moments of atoms, 786, 786–787, 

787
Magnetic poles, 744–745
Magnetic resonance imaging (MRI), 771, 

771, 790, 1215–1217, 1216, 1216, 
1217

Magnification
enlargement versus, 929
lateral, 927
magnifying glass for, 951, 951
by thin lenses, 941–943, 941t, 942, 943

Major axis, of ellipse, 340
Malus, E. L., 999n
Malus’s law, 999
Manhattan Project (nuclear weapons),  

1230
Marsden, Ernest, 1107
Mass (m)

center of, 230–234, 231, 232, 233
conversion factors for, A-1
of electrons, protons, and neutrons, 594t
as energy form, 1036
example values of, 5t
gravitational, 102
inertial, 102
International Prototype of Kilogram, 4
invariant, 1037
moments of inertia versus, 260
motion and, 99
of nucleus of atoms, 1179
of planets, 343t
radioactive decay changes in, 1194
reduced, of molecules, 1149
of selected particles, 1179t
standards of, 4–6
of Sun, 343

Mass dampers, 404
Mass defect, in nuclear fission, 1202
Mass number (A), 1178
Mass spectrometer, 753, 753
Materials analysis, radioactivity in, 1214
Mathematical Principles of Natural Philosophy 

(Newton), 333
Mathematical representations, 9
Mathematics review

algebra, A-5–A-10
differential calculus, A-13–A-16
geometry, A-10–A-11
integral calculus, A-16–A-19
propagation of uncertainty, A-20–A-21
scientific notation, A-4–A-5
series expansion, A-13
trigonometry, A-11–A-13

Matrix mechanics (Heisenberg), 1071
Matter, magnetic fields in, 786, 786–789, 

787, 788, 789
Matter transfer (TMT), 183
Mauna Loa Observatory (HI), 1155
Maximum heights of projectiles, 75–77
Maxwell, James Clerk, 548, 587, 772, 874, 

874, 899, 1015, 1108
Maxwell-Boltzmann speed distribution 

function, 548
Maxwell’s equations, 876–878, 877, 878
Mean solar day, as time standard, 5
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Measurement, 2–19
conversion of units, 12
dimensional analysis for, 10–11
estimates and order-of-magnitude 

calculations, 12–13
length, standards of, 3–4, 6
mass, standards of, 4–6
modeling and alternative representations, 

6–9
of pressure, 359, 359, 364, 364–365
significant figures, 13–15, 14
storyline on, 2–3
time, standards of, 5–6

Mechanical energy
changes in, for nonconservative forces, 

196–200, 197, 198, 199, 200
as kinetic and potential energy sum, 171

Mechanical equivalent of heat, 503–505, 
504, 504

Mechanical waves (TMW), 182. See also 
Oscillatory motion

Mechanics, classical, 1
Meissner effect, 789–790, 790
Meitner, Lise, 1202
Melting, as entropy change, 575
Mendeleev, Dmitri, 1128
Mental representations, 9
Mercury contamination, atomic absorption 

spectroscopy of, 1106
Meson particles, 1229–1231, 1230, 1230, 

1231, 1232, 1232t, 1242t
Metal-oxide-semiconductor field-effect 

transistor (MOSFET), 1168, 
1168–1169

Metals
bonding in, 1157–1158, 1158
electrical conduction in, 1162, 1162
free electrons in, 591n
free-electron theory of, 1158, 1158–1160, 

1159, 1160t
work functions of, 1057–1058, 1058t

Meter (m, SI base unit of length), 3–4
Michelson, A. A., 973, 1016
Michelson interferometer, 973–975, 974, 975
Michelson-Morley experiment, 1016, 

1016–1018
Microscope, compound, 952, 952
Microscopes, scanning tunneling, 1095
Microstate of systems, 570–571
Microwaves, 888
Milky Way galaxy, 19
Millikan, Robert A., 591, 656–657, 1074, 

1077
Millikan oil drop experiment, 656–657
Minima, in diffraction patterns, 984
Minkowski, H., 1018n
Minor axis, of ellipse, 340
Mirages, 914
Mirai, Toyota Motor Company, 1
Miranda (satellite of Uranus), 353, 353
Mirror equation, 930
Mirrors

flat, 926, 926–928, 927, 928
Lloyd’s mirror, 969
multiple images formed by two, 927, 927
spherical

concave, 928, 928–930, 929, 930, 
933–934

convex, 930–931, 931, 935, 935
ray diagrams for, 931, 931–933, 931t, 

932, 933
tilting rearview, 928, 928

“Missing information,” macrostates 
described as, 571n

Models. See also Analysis models
constant acceleration

with motion in two dimensions, 71–74
particle under, 37–41

definition of, 7
electrical conduction, 699–701
geometric, 7, 7
heat engines as basis for, 557n
mathematical representation from, 28
measurement and, 6–9
molecular model of ideal gas, 534,  

534–539, 535, 538t
for motion in one dimension, 30–32
for motion in two dimensions, 71, 71
for Newton’s second law

net force, particle under, 106–114
particle in equilibrium, 105–107,  

117, 117
particle, 7
for particles under constant velocity, 

27–30
for particle under constant acceleration, 

37–41
rigid object, 250
simplification, 8
structural, 7, 534
for uniform circular motion, 83

Moderators, elastic collisions of, 1201
Molar specific heat of hydrogen, 1097–1098
Molar specific heat of ideal gas, 539,  

539–542, 540, 541t, 544
Mole (mol, SI base unit of amount of 

substance), 3, 492
Molecular model of ideal gas, 534, 534–539, 

535, 538t
Molecular speeds, distribution of, 547–551, 

548, 549
Molecules and solids, 1144–1176

average kinetic energy of, 537
band theory of solids, 1160–1162,  

1161, 1161
electrical conduction and

in insulators, 1162–1163
in metals, 1162, 1162
in semiconductors, 1163, 1163–1165, 

1163t, 1164, 1165
energy states and spectra of

molecular spectra, 1153, 1153–1156, 
1154, 1155

overview, 1148
rotational motion of molecules,  

1148–1151, 1149
vibrational motion of molecules, 1151, 

1151–1153, 1152
free-electron theory of metals, 1158, 

1158–1160, 1159, 1160t
molecular bonds

covalent, 1146–1147, 1147
hydrogen, 1147–1148, 1148
ionic, 1145–1146, 1146
overview, 1145, 1145
van der Waals, 1147

root-mean-square (rms) speed of, 538, 538t
semiconductor devices

integrated circuits, 1170, 1170–1171
junction diode, 1165, 1165–1166, 1166
light-emitting and light-absorbing 

diodes, 1166–1168, 1167
transistors, 1168–1170

junction, 1168
MOSFET (metal-oxide-

semiconductor field-effect 
transistor), 1168, 1168–1169

resonant tunneling, 1169–1170, 1170
solids, bonding in

covalent solids, 1157, 1157
ionic solids, 1156, 1156
metallic solids, 1157–1158, 1158

storyline on, 1144–1145
Moment of inertia (I), 261, 263–267, 264, 

265, 266, 403
Momentum (pS), 884–886, 1061. See also 

Angular momentum; Linear 
momentum

Monochromatic light sources, 964, 1135
Moon

distance to, measurement of, 904, 904, 
1137

escape speed of, 350t, 549
forces affecting orbit of, 96
kinetic energy of, 162t
mass, 5t
planetary data on, 343t

Morley, Edward W., 1016
Moseley, Henry G. J., 1133, 1133
MOSFET (metal-oxide-semiconductor field-

effect transistor), 1168, 1168–1169
Motion, 95–126

analysis model related to Newton’s  
second law, 105–114

equilibrium, particle in, 105–107
net force, particle under, 106–114

of charged particle in a uniform electric 
field, 605–607, 606, 607

of charged particle in a uniform magnetic 
field

applications of, 752, 752–755, 753, 754
overview, 748–752, 749, 750, 751, 752

force, 96–97
friction forces in, 114–119
gravitational force and weight in, 102–103
mass and, 99
Newton’s first law of, 97–99
Newton’s second law of, 99–102
Newton’s third law of, 103, 103–105
storyline on, 95

Motional emf, 801, 801–805, 802, 803, 805
Motion in one dimension, 20–51

acceleration
overview, 32–36
particle under constant, 37–41

analysis model approach to, 30–32
constant velocity, particle under, 27–30
falling objects, 41–44
instantaneous velocity and speed, 24–27
kinematic equations from calculus, 44–45
motion diagrams, 36–37
position, velocity, and speed of particle, 

21–24
storyline on, 20–21
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Novoselov, Konstantin (graphene 
studies), 1157

Penzias, Arno A.(Big Bang theory 
evidence), 1248

Perlmutter, Saul (accelerating expansion 
of Universe), 1251

Phillips, William (laser light to cool and 
trap atoms), 1143

Planck, Max (quantized nature of 
energy), 1052

Reines, Frederick (neutrino detection), 
1196

Richter, Burton ( J/C particle detection), 
1241

Riess, Adam (accelerating expansion of 
Universe), 1251

Rubbia, Carlo (W and Z boson discovery), 
1227

Salam, Abdus (electroweak theory), 1244
Schmidt, Brian P. (accelerating expansion 

of Universe), 1251
Schrieffer, J. R. (superconductivity 

theory), 703
Schwinger, Julian (quantum 

electrodynamics), 1230
Shockley, William (transistor), 1168
Smith, George E. (charge-coupled device 

[CCD]), 1060
Thomson, J. J. (electron discovery), 1107
Ting, Samuel ( J/C particle detection), 

1241
Tinibagam Sin Itiro (quantum 

electrodynamics), 1230
van der Meer, Simon (W and Z boson 

discovery), 1227
Weinberg, Steven (electroweak theory), 

1244
Wilson, Robert A. (Big Bang theory 

evidence), 1248
Yukawa, Hideki (meson prediction), 1229

Noble gases, 1128, 1147
Nonconservative and conservative forces, 

169–171
Nonconservative forces, mechanical energy 

changes for, 196–200, 197, 198, 
199, 200

Nonconstant acceleration, 388
Noninertial frame of reference, 98
Nonisolated system (angular momentum), 

analysis model of, 288–293, 290, 
291, 292

Nonisolated system (energy), analysis model 
of, 182, 182–185, 184, 184

Nonisolated system (momentum), analysis 
model of, 215–219, 217, 217, 218, 
219

Nonpolar molecules, 680
Nonsinusoidal waveforms, 472, 472–473,  

473
Nonuniform circular motion, 133–135, 134
Normalized wave functions, 1082
Normal modes of oscillation, 461, 461–462
Novoselov, Konstantin, 1157
Noyce, Robert, 1170
NSTX (National Spherical Torus 

Experiment), 1209
n-type semiconductors, 1165
Nuclear force, 1181, 1226–1227, 1227t, 1231

Motion in two dimensions, 68–94
constant acceleration with, 71, 71–74
position, velocity, and acceleration vectors 

in, 69–71
of projectiles, 74–80
relative velocity and acceleration, 85–88
storyline on, 68
tangential and radial acceleration, 84–85
uniform circular motion, 81–83

Motors and generators, 810–814, 811, 811, 
812

Mount Wilson Observatory (CA), 1248
MRI (magnetic resonance imaging), 771, 

789, 1215–1217
M-theory, 1253
Müller, K. Alex, 703
Multicolored quarks, 1242–1244
Multiplication, distributive law of, 155
Mungan, C. E., 275n
Muon (m) particles, 1022, 1230, 1233
Mutual inductance, 832, 832–833, 833
Myopia (nearsightedness), 950

Napoleon, arsenic poisoning of, 1214
Narrow slits, diffraction patterns from, 985, 

985–988, 987, 988
NASA (National Aeronautics and Space 

Administration), 497, 890, 895, 
1141, 1248

National Ignition Facility, Lawrence 
Livermore National Laboratory 
(CA), 1210

National Institute of Standards and 
Technology (NIST), 4, 4

National Oceanic and Atmospheric 
Administration (NOAA), 444

National Spherical Torus Experiment 
(NSTX), 1209

Natural convection, 522
Natural fission reactions, 1205n
Natural frequencies, 467–468
Natural radioactivity, 1200
Nature, fundamental forces in, 1226–1227, 

1227t
Near point, in eye focusing, 949
Nearsightedness (myopia), 950
Ne’eman, Yuval, 1239
Negative acceleration, 34, 37
Negative electric charge, 590
Neutral equilibrium, 173
Neutrino (n) particles, 1042, 1196, 1230, 

1233
Neutron activation analysis, radioactivity 

in, 1214
Neutron capture reactions, 1202
Neutron degeneracy pressure, 350
Neutron number (N), 1178, 1182
Neutrons

as baryon particles, 1233
charge and mass of, 594t
thermal, 1202

Newton (N, unit of force), 100
Newton, Isaac, 96, 96
Newtonian mechanics, 1
Newton’s first law of motion, 97, 97, 97–99
Newton’s law of universal gravitation, 333, 

333–335, 334
Newton’s rings, 971, 971–972

Newton’s second law of motion
applied in radial direction, 128, 135
linear momentum and force on particle 

in, 212–213
overview, 99–102
quantity of motion in, 212
rotational analog to, 289

Newton’s third law of motion, 103, 103–105, 
104, 211, 211

Nichrome wire, resistance of, 697–698
Nimitz Freeway (CA), 446
Niobium metal, 792
NIST (National Institute of Standards and 

Technology), 4, 4
NMR (nuclear magnetic resonance),  

1215–1217, 1216, 1216, 1217
NOAA (National Oceanic and Atmospheric 

Administration), 444
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1187
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Bardeen, John (superconductivity theory), 
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Boyle, Willard S. (charge-coupled device 

[CCD]), 1060
Brattain, Walter (transistor), 1168
Chu, Steven (laser light to cool and trap 

atoms), 1143
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Cohen-Tannoudji, Claude (laser light to 

cool and trap atoms), 1143
Compton, Arthur Holly (Compton effect), 

146, 1061
Cooper, L. N. (superconductivity theory), 

703
de Broglie, Louis (wave nature of 

electrons), 1064
Dirac, Paul (quantum physics), 1227
Einstein, Albert (electromagnetic 

radiation), 1057
Fermi, Enrico (nuclear reaction 

discoveries), 1205
Feynman, Richard P. (quantum 

electrodynamics), 1230
Gabor, Dennis (holography), 995
Geim, Andre (graphene studies), 1157
Gell-Mann, Murray (subatomic particles), 

1238
Glashow, Sheldon (electroweak theory), 

1244
Goeppert-Mayer, Maria (shell model of 

nucleus), 1186–1187
Heisenberg, Werner (nucleus models), 

1071
Hofstader, Robert (scattering of 

electrons), 1076
Jensen, Hans (shell model of nucleus), 

1186
Kao, Charles K. (fiber optics), 916
Kilby, Jack (integrated circuit), 1170
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Nuclear magnetic resonance (NMR),  
1215–1217, 1216, 1216, 1217

Nuclear magneton, 1216
Nuclear physics, 1177–1224

biological radiation damage, 1211–1213, 
1212t

decay process in
alpha, 1191, 1191–1195, 1192t–1193t, 

1195
beta, 1195–1198, 1196, 1197
carbon dating by, 1198–1199
gamma, 1199, 1199–1200, 1200t
overview, 1190–1191

liquid-drop model (Bohr) in, 1184–1185, 
1185

natural radioactivity, 1200
nuclear binding energy, 1182, 1182–1184, 

1183
nuclear fission, 1202–1204, 1203
nuclear fusion, 1095, 1207–1211, 1208, 

1209, 1210
nuclear magnetic resonance and 

magnetic resonance imaging 
(MRI), 1215–1217, 1216, 1216, 1217

nuclear reactions, 1200–1202
nuclear reactors, 1204, 1204–1207,  

1205, 1206
nuclei, properties of, 1178–1182, 1179t, 

1180, 1182
radiation uses, 1213, 1213–1215, 1215
radioactivity and, 1187–1190, 1188
shell model (Goeppert-Mayer and Jensen) 

in, 1185–1187, 1186
storyline on, 1177–1178

Nuclear processes, energy from (MeV), 638
Nuclear spin-orbit effects, 1187
Nuclei, properties of, 1108, 1178–1182, 

1179t, 1180, 1182
Nuclides, 1178
Number density, 547

Object distance (p), 926
Oersted, Hans Christian, 587, 743, 743,  

772
Ohm (Ω, unit of electrical resistance), 695
Ohm, Georg Simon, 695, 695
Ohm’s law, 695
Omega facility, University of Rochester 

(NY), laser fusion laboratory, 1210
Omega minus particle (Ω2), 1239, 1239
Omega minus (Ω2) sss baryon, 1242
One-dimensional wave function (C), 

1081–1082
On the Masses of Nebulae and of Clusters of 

Nebulae (Zwicky), 351n
Open-circuit voltage, 714
Open Universe, 1249
Optical doublet, 960
Optical fibers, 916, 916–917, 917
Optical instruments

camera, 947, 947–948
compound microscope, 952, 952
eyes, 948, 948–950, 949, 950
magnifying glass, 951, 951
telescope, 953, 953–954, 954

Optics. See Light and ray optics; Wave optics
Optics (Ptolemy), 918
Orbital, 1127

Orbital magnetic quantum number (m,), 
1115, 1116t, 1120–1123, 1121, 1122

Orbital quantum number (,), 1115, 1116t, 
1120

Order number, in constructive interference, 
965–966

Order-of-magnitude calculations, 12–13
Original quark model, 1241
Oscillating Universe, 1249
Oscillatory motion, 385–414. See also 

Superposition and standing waves; 
Wave motion

damped, 404, 404–405, 405, 838, 838t
energy of simple harmonic oscillator, 

394–397, 395, 396
forced, 405–407, 406, 407
in LC circuits, 834, 834–837, 836
of pendulum, 400, 400–404, 401t, 402, 

403, 404
quantized, 1054–1055
simple harmonic motion, analysis model 

of, 388–394, 389, 391, 392
simple harmonic oscillator, 1096–1098, 

1097
spring, motion of object attached to, 387, 

387–388
storyline on, 386–387

Otto cycle, for gasoline engines, 567–569, 
568

Ötzi the Iceman (remains in Italian Alps, 
found in 1991), radioactive dating 
of, 1198

Overdamped motion, 839
Overdamped systems, 405
Ozone shield, to block UV radiation, 889

Pacific Tsunami Warning Center (HI), 444
Pair annihilation, 1228
Pair production, as source of positrons, 

1228
Parabola, 74, 74–80, 74n, A-11
Parallel-axis theorem, 265–267, 266, 271, 

403
Parallel combination of capacitors, 669, 

669–670
Parallel combination of resistors, 718, 

718–722
Parallel-plate capacitor, 666, 676, 678, 

681–682
Paramagnetism, 788
Paraxial rays of mirrors, 929, 929
Parent nucleus, in radioactive decay, 1191
Paris Agreement, on climate change, 1155
Partial integration, in calculus, A-17–A-18
Particle(s). See also Analysis models

boundary conditions on, 1088–1089
center of gravity from, 313, 313
center of mass of, 232, 232–233
charged, in a uniform magnetic field

applications of, 752, 752–755, 753, 754
overview, 748–752, 749, 750, 751, 752

in electric field, 598, 598–603, 599, 601, 
602, 603

energy of charged, 878
frequency of, 1064
model of, 7
motion of, in uniform electric fields, 

605–607, 606, 607

overview, 7
position, velocity, and speed, 21–24
quantum particle model, 1067,  

1067–1069, 1068
systems of many, 234–237
in uniform circular motion, angular 

momentum of, 290, 290–291
wave function for, 1082–1083
wave properties of, 1064, 1064–1066, 1066
in well of finite height, 1091, 1091–1093, 

1092
WIMP (weakly interacting massive 

particle), 351
Particle-in-a-box problem, 1084, 1084–1087, 

1085, 1086, 1090–1091
Particle in a field (gravitational), analysis 

model of, 336–339, 338
Particle in a field model, 637
Particle in a field (magnetic) model, 743, 

743–748, 744, 746, 747t, 748
Particle in damped harmonic motion,  

838, 838t
Particle in equilibrium model, 105, 105–107, 

117, 117, 129, 129–132, 130, 131, 
138

Particle in simple harmonic motion model, 
388–394, 389, 391, 392, 619

Particle in uniform circular motion model, 
81, 81–83, 130–133, 131, 1110

Particle in uniform circular motion model, 
extended, 128–133

Particle model of light (Newton), 899
Particle physics and cosmology, 1225–1258

connection between
critical density and universe fate, 1249, 

1249–1250
dark matter and missing mass of 

universe, 1250–1251
expanding universe, evidence for, 

1248–1249
mysterious energy of universe, 1251
overview, 1246, 1246–1247
radiation from primordial fireball, 

1247, 1247–1248, 1248
conservation laws for, 1233–1236, 1234
for fundamental forces in nature,  

1226–1227, 1227t
mesons and beginnings of, 1229–1231, 

1230, 1230, 1231
particle classification, 1231–1233, 1232t
patterns in, 1238, 1238–1239, 1239
positrons and other antiparticles, 1227, 

1227–1229, 1228, 1229
problems and perspectives in, 1251–1253, 

1252
quarks, 1240–1244, 1240t, 1242t, 1243, 

1244
standard model for, 1244–1245, 1245
storyline on, 1225–1226
strange particles and strangeness,  

1236–1238, 1237
Particle, quantum, under boundary 

conditions, analysis model of, 1084, 
1084–1089, 1085, 1089

Particle under constant acceleration model, 
37–41, 38

Particle under constant velocity model, 
27–30
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Particle under net force model, 106, 106–114, 
134, 134–135, 142–143, 749

Pascal (Pa, unit of pressure), 359
Pascal, Blaise, 361, 380
Pascal’s law, 361–362
Paschen series, in hydrogen spectra, 1107
Path difference (d), wave optics, 965
Pauli, Wolfgang, 1123, 1126, 1126,  

1196, 1227
Pendulum, 386, 400, 400–404, 401t, 402, 

403, 404, 1023–1024
Penzias, Arno A., 1247, 1247–1248
Percent uncertainty, A-20
Perfect diamagnetism, in superconductors, 

845
Perfect differential, in calculus, A-18
Perfectly inelastic collisions, 220, 220, 239n
Period (T)

of particle in simple harmonic motion, 
392

of physical pendulum, 403
of revolution, 82–83
of simple harmonic oscillator, 389, 

389–390
of simple pendulum, 401
as time interval, 5n
of waves, 420

Periodic Table
example of, A-22–A-23
exclusion principle and, 1126, 1126–1130, 

1127t, 1128, 1128, 1129, 1130
missing elements, prediction of, 1239

Periscope, 956
Perlmutter, Saul, 1251
Permeability of free space, constant of  

(m0), 772
Permittivity of free space (e0), 593
PET (positron-emission tomography) scans, 

for medical diagnosis, 1177, 1213, 
1225, 1225, 1229, 1229

Pfund, A. H., 923
Phase change, 509, 969, 969–970, 970
Phase constant (f), 389, 392, 421
Phase speed of waves in wave packets, 

1068–1069
Phase transition, 505
Phasor, 849, 849, 850, 857
Phillips, William, 1143
Phipps, T. E., 1124–1126
Photoelectric effect, 1055, 1055–1060,  

1058t, 1059
Photoelectric photometry, 1059–1060
Photomultiplier tubes, 1059, 1059, 1234
Photons

electromagnetic force mediated by, 1227
as particle of light, 899
quantized light as, 1057
virtual, 1230–1231

Phototube, photoelectric effect and, 1059
Photovoltaic cells, 883, 1167
Physical pendulum, 402, 402–403, 403
Physical quantities, units of, A-2–A-3
Physics (Aristotle), 208
Pickup coil, in electric guitar, 800
Pictorial representations, 9, 9
Pike’s Peak, 304
Pi meson (p, pion), 1230
Pion (p) particles, 1230–1231

Pitch, frequency versus, 472
Planck, Max, 1011, 1051, 1052
Planck length, 1252–1253
Planck satellite, 1248
Planck’s constant (h), 786, 1051–1052, 1131
Planck’s hypothesis on blackbody radiation, 

1049, 1049–1055, 1050, 1051, 1052, 
1053

Plane, motion in, 73, 73–74
Plane electromagnetic waves, 878, 878–882, 

879, 881
Plane of charge, 628–629, 629
Plane polar coordinates, 53, 53
Planetary motion

data on, 343t
description of, 347, 347–351, 348, 350, 

350t, 351
Kepler’s laws and, 339–344, 340, 341, 342, 

343t, 344
Planets, surface temperatures of, 527t, 552t
Plasma, 1142
Plateau-Rayleigh instability, 612
Plethysmographs, 710
Pluto (dwarf planet), 992, 992
p-n junction diodes, 1165, 1166
Point charges, 593, 642, 642–645, 643
Point source, of waves, 436
Poiseuille, Jean Leonard Marie, 377n
Poiseuille’s law, 377
Poisson, Simeon, 984
Polar coordinate systems, 53–54, 54, 59
Polarization of light waves, 998–1003

by double refraction, 1001, 1001–1002, 
1002t

overview, 998
by reflection, 999–1001, 1000, 1001
by scattering, 1002, 1002–1003
by selective absorption, 998–999, 999

Polar molecules, 680, 681
Polaroid material, 999
Pole-in-the-barn paradox, 1028, 1028–1029
Polytechnic Institute (Paris, France), 870
Population inversion, in lasers, 1135
Position ( rS)

angular (u), 250–252
in constant acceleration model, 38, 72, 72
of particles, 21–24
of simple harmonic oscillator, 391, 

391–392
in trajectory of projectiles, 75
vectors of, 69–71

Position-time graph, 21, 22, 23, 26, 35
Positive electric charge, 590
Positron-emission tomography (PET) scans, 

for medical diagnosis, 1177, 1213, 
1225, 1225, 1229, 1229

Positron particles, 1187, 1227, 1227–1229, 
1228, 1229

Potential difference (DV)
across capacitor, 676
across load resistance, 714
for ohmic and nonohmic material, 697
overview, 637–639, 638
in uniform electric field, 639–642, 640, 

641
Potential energy (U). See also Electric 

potential; Energy; Energy, 
conservation of

asymmetrical nature of potential energy 
curve, 488n

of capacitor, 672n
conservative forces and, 171–173
of gravitation, 345, 345–346, 346
in ionic solids, 1156
in molecular bonding, 1145
overview, 165, 165–169, 168, 169
rotational configuration associated  

with, 679
of simple harmonic oscillator, 395, 395, 396
tunneling through barrier of, 1093, 

1093–1094
Potential energy function (U), 171–172
Power (P)

in alternating-current circuits, 859–861
electromagnetic wave intensity and, 882
of emitted radiation, 1049
of lenses in diopters, 950
in output of Carnot engine, 565n
overview, 200–202, 201, 202
sound wave intensity and, 434–435

Power factor (cos f), 860
Power plants, energy sources for, 812–813
Powers, algebraic handling of, A-6–A-7
Powers of ten, prefixes for, 6t
Power tools, eddy currents and, 815
Power transmission, 863–866, 864, 864, 865
Poynting vector ( S

S
), 882, 883, 883, 886

Precessional motion, 301, 301
Presbyopia, 950n
Pressure (P)

absolute temperature scale and, 486
conversion factors for, A-2
definition of, 321
gauge for, 365
measurement of, 359, 359, 364, 364–365
molar specific heat of ideal gas at 

constant, 539–540, 540
molecular kinetic energy and, 537
overview, 359–360
variation with depth, 360–364, 361

Pressure amplitude of waves, 430
Pressure antinode, 466
Primer on Work-Energy Relationships for 

Introductory Physics, A (Mungan), 
275n

Primordial fireball, radiation from, 1247, 
1247–1248, 1248

Princeton Plasma Physics Laboratory, 1209
Princeton University, 1061, 1210, 1247
Principal axes, 294n
Principal axis of mirrors, 928, 928, 929
Principal quantum number (n), 1115, 1116t
Principle of complementarity, 1064
Principle of Relativity, The (Lorentz, Einstein, 

Minkowski, and Weyl), 1018n
Principle of superposition, 455. See also 

Superposition and standing waves
Prism, light through, 910, 910. See also Light 

and ray optics
Probabilistic quantum-mechanical theory of 

atomic structure, 1109
Probability, entropy and, 570–571
Probability amplitude (wave function), 1080
Projectiles

exploding, 236, 236
motion of, 74–80
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Projectile-target demonstration, 78, 78
Propagation of a disturbance, 416, 416–419, 

417, 418
Propagation of uncertainty, A-20–A-21
Proper length, 1025
Proper time interval, 1022
Prospect Creek Camp (AK), 496
Proton-antiproton collider, 1227
Proton-proton collisions, 229–230
Proton-proton cycle, nuclear fusion in, 1207
Protons

as baryon particles, 1233
charge and mass of, 594t
detecting decay of, 1234, 1234–1235
energy of, 1038–1039
moving perpendicular to uniform 

magnetic field, 750
in uniform electric field, 641, 641–642

J/C particle, 1241
Ptolemy, Claudius, 339, 918
p -type semiconductor, 1164
Pulsed ruby laser, 1143
Pulses, of waves, 416, 416–419, 417, 418, 425
Purely capacitive AC circuit, 855–856
Purely inductive AC circuit, 853
Pure rolling motion, condition for, 271, 271
PV diagram, 513–514
P waves, 417
Pythagorean theorem, 53, A-11

Qamdo Bamda Airport (China), 358
QCD (quantum chromodynamics), 1243
QLED televisions, 1093
QUaD, 1248
Quadratic equations, A-7
Quality factor (Q), 863, 863n
Quantization of oscillatory motion, 461
Quantized electric charge, 591
Quantized energy, 1051
Quantized orbital angular momentum,  

786, 786
Quantum chromodynamics (QCD), 1243
Quantum dot, 1093, 1169–1170, 1170
Quantum mechanics, 1079–1104

definition of, 1
particle in well of finite height, 1091, 

1091–1093, 1092
quantum particle under boundary 

conditions, analysis model of, 1084, 
1084–1089, 1085, 1089

Schrödinger equation, 1089–1091,  
1090, 1090

simple harmonic oscillator, 1096–1098, 
1097

storyline on, 1079
tunneling applications, 1094, 1094–1096
tunneling through potential energy 

barrier, 1093, 1093–1094
wave function, 1079–1083, 1080, 1082

Quantum model of hydrogen atom, 534, 
1114, 1114–1118, 1115, 1116t

Quantum numbers
baryon number, 1233–1234
bottomness, for quarks, 1241
charm, for quarks, 1240t, 1241
description of, 1051n
lepton number, 1235–1236
orbital (,), 1115, 1116t, 1120

orbital magnetic (m,), 1115, 1116t,  
1120–1123, 1121, 1122

principal (n), 1115, 1116t
spin magnetic (ms), 1123, 1123–1126, 1124, 

1125, 1126t
strangeness (S), 1237
topness, for quarks, 1241
vibrational, 1151

Quantum physics, 1048–1078
blackbody radiation and Planck’s 

hypothesis, 1049, 1049–1055, 1050, 
1051, 1052, 1053

Compton effect, 1061, 1061–1063, 1062
double-slit experiment, 1070, 1070–1071
electromagnetic waves, 1063–1064
photoelectric effect, 1055, 1055–1060, 

1058t, 1059
quantum particle model, 1067,  

1067–1069, 1068
storyline on, 1048–1049
uncertainty principle, 1071, 1071–1073
wave properties of particles, 1064,  

1064–1066, 1066
Quantum states, 1051
Quantum statistics, 1158
Quark-gluon plasma, 1242
Quarks, 593n, 1240–1244, 1240t, 1242t, 

1243, 1244
Quasars, 1248–1249, 1256
Qubic, 1248
Queckenstedt’s test, 379
Quincy Quarries Reservation (MA), 415, 

415, 447

Rad (radiation absorbed dose), 1212
Radial acceleration, 84, 84–85
Radial probability density function,  

1117, 1119
Radian (rad, unit of angular position), 250, 

389n, 390, A-10
Radiant intensity, 882
Radiation. See also Blackbody radiation

biological damage from, 1211–1213,  
1212t

as energy transfer mechanism, 523–524
from primordial fireball, 1247, 1247–1248, 

1248
uses for, 1213, 1213–1215, 1215

Radiation equivalent in man (REM), 1212
Radiation pressure of electromagnetic 

waves, 884–886
Radiation therapy, 1214, 1215
Radioactivity

artificial, 1200
decay process in

alpha, 1191, 1191–1195, 1192t–1193t, 
1195

beta, 1195–1198, 1196, 1197
carbon dating by, 1198–1199
gamma, 1199, 1199–1200, 1200t
overview, 1190–1191

discovery of, 1187–1190, 1188
natural, 1200

Radio waves, 887
Rail guns, 794
Rainbows, 898, 898, 913, 913, 914
Range equation, 76
Räsänen, Juha, 176

Ray diagrams for spherical mirrors, 931, 
931–933, 931t, 932, 933

Rayleigh-Jeans law, 1050–1051, 1053, 1053Z
Rayleigh’s criterion, 989–990
Ray optics. See Light and ray optics
Rays, of wave fronts, 435
RBE (relative biological effectiveness), 1212, 

1212t
RC circuits, 725–732

charging capacitors, 725–728, 727, 728, 
729–730

discharging capacitors, 728–729, 729, 
730–731

energy delivered to resistor in, 731–732
intermittent windshield wipers  

example, 729
Reaction energy (Q), 1201
Reaction force, 103
Reactions, nuclear, 1200–1202
Reactors, nuclear, 1204, 1204–1207, 1205, 

1206
Real image, 926
Reasonable values, 3
Receptacle testers, 847, 847
Rectangular components of vectors, 58
Rectangular coordinate systems, 53
Rectangular hyperbola, equation for, A-11
Redshift, in wavelength, 1029
Reduced mass of molecules, 1149
Reflecting telescope, 954
Reflection

change of phase from, 969, 969–970,  
970

Huygens’s principle applied to, 911, 
911–912, 912

polarization by, 999, 999–1001,  
1000, 1001

total internal, 914, 914–917, 915, 916, 917
wave under, analysis model of, 902,  

902–905, 903, 904, 905
Reflection coefficient (R), 1093
Reflection grating, 992
Reflections on the Motive Power of Heat 

(Carnot), 563
Refracting telescope, 953
Refraction

Huygens’s principle applied to, 911,  
911–912, 912

image formation by, 935, 935–939, 936, 
937, 937t, 938

index of refraction, 970
wave under, analysis model of, 905–910

angle of refraction for glass, 908–909
index of refraction, 906–908, 907, 907t
light through prism, 910, 910
light through slab, 909–910, 910
overview, 905, 905–908, 906, 907,  

908, 908
Refrigerators, heat pumps and, 559,  

559–562, 560
Reines, Frederick, 1196
Relative acceleration, 85–88
Relative biological effectiveness (RBE), 

1212, 1212t
Relative velocity, 85–88, 87, 1014, 1031–1034
Relativistic Heavy Ion Collider (RHIC), 

Brookhaven National Laboratory, 
1242
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Relativity
consequences of special theory of

length contraction, 1025–1026, 1026
pole-in-the-barn paradox, 1028, 1028–1029
relativistic Doppler effect, 1029
simultaneity and relativity of time, 1019, 

1019–1020
space-time graphs, 1026, 1026–1029, 1028
time dilation, 1020, 1020–1024, 1021, 

1021, 1021t, 1023
twin paradox, 1024, 1024–1025

definition of, 1
Einstein’s principle of, 1018, 1018–1019
Galilean, 1013, 1013–1016, 1014, 1015
general theory of, 1039–1041, 1040,  

1040, 1041
Lorentz transformation equations, 1030, 

1030–1031
Lorentz velocity transformation 

equations, 1031–1034, 1033
Michelson-Morley experiment, 1016, 

1016–1018
pole-in-the-barn paradox, 1028, 

1028–1029
relativistic energy, 1035–1039, 1036
relativistic linear momentum, 1034–1035
storyline on, 1012–1013

Rem (radiation equivalent in man), 1212
Repulsive force, 589, 589, 590
Repulsive magnetic force, 790
Resistance (R), 864. See also Current and 

resistance
Resistive forces, motion and, 138–143
Resistivity (r), 696, 697t, 700–701
Resistors

in alternating-current circuits, 848,  
848–851, 849, 850

equivalent resistance, calculating, 721, 
721

landscape lights example, 720, 720
in parallel, 718, 718–720, 720
in series, 716–718, 717, 718
three, in parallel, 722, 722

Resonance
Hertz’s electromagnetic wave detection 

by, 877
overview, 406–407, 407
in RLC series circuits, 861–863, 862
in standing waves, 465, 465–466
in stimulated emission, 1134n

Resonance frequencies (v0), 406, 465–466, 
861–862

Resonant tunneling transistors, 1169–1170, 
1170

Rest energy (ER), 1036
Restoring force, 387
Retarding force, 404–405
Retinopathy, laser treatment for, 1137
Retroreflection, 904, 914
Return stroke of lightning, 636, 636
Reversible and irreversible processes in heat 

engines, 562, 562–563
Reynold’s number, for fluid turbulence, 383
RHIC (Relativistic Heavy Ion Collider), 

Brookhaven National Laboratory, 
1242

Richter, Burton, 1241
Riess, Adam, 1251

Rigel (star), 1050
Rigid objects

angular momentum of rotating, 293, 
293–295, 294

under constant angular acceleration, 
analysis model of, 252–254, 253

definition of, 250
in equilibrium, analysis model of, 311, 

311–312, 312
model of, 250
moments of inertia to characterize, 260n
under net torque, analysis model of, 259, 

259–263, 261, 262, 263
rolling motion of, 272, 272–277, 273, 274, 

275
in static equilibrium, 313–319

horizontal beam, 315–317, 316
leaning ladder, 317, 317
seesaw, 314, 314–315
wheelchair on curb, 318, 318–319

RLC circuits, 837–839, 838, 838t, 839
RL circuits, 827, 827–830, 828, 829, 830
RLC series circuits

as alternating-current circuit, 856,  
856–859, 857, 858

resonance in, 861–863, 862
RMS (root-mean-square) current, 850–851, 

862
Rocket propulsion, 239, 239–241
Rockets, exploding, 236–237
Rod, center of mass of, 233, 233–234
Rods and cones, in eyes, 949
Roemer, Ole, 899–900, 918
Roentgen, Wilhelm, 996
Roentgen (R) unit of ionizing radiation, 

1211
Rogowski coil, 817
Rolling friction, 273
Rolling motion of rigid object, 272,  

272–277, 273, 274, 275
Root-mean-square (rms) speed of 

molecules, 538, 538t
Rotational equilibrium, 311
Rotational motion, 249–284

angular and translational quantities, 
254–257, 255, 256

angular momentum in, 212n
angular momentum of rigid object, 293, 

293–295, 294
angular position, velocity, and 

acceleration, 250–252, 251, 251
energy considerations in, 269, 269–272, 

270t, 271, 272
energy states of molecules in, 1148–1151, 

1149
equations for, 270t
moments of inertia, 263–267, 264, 265, 266
overview, 162
rigid object under constant angular 

acceleration, analysis model of, 
252–254, 253

rigid object under net torque, analysis 
model of, 259, 259–263, 261,  
262, 263

rolling motion of rigid object, 272,  
272–277, 273, 274, 275

rotational kinetic energy, 267, 267–268, 
268

storyline on, 249–250
torque, 257, 257–259, 258

Rotation of the Andromeda Nebula from a 
Spectroscopic Survey of Emission 
Regions (Rubin and Ford), 351n

Rotation rate, 82
Rubbia, Carlo, 1227
Rubin, V. C., 351n
Rutherford, Ernest, 1107–1108, 1108,  

1178–1179, 1187
R-value of insulation material, 521–522, 

521t, 522
Rydberg, Johannes, 1107, 1111
Rydberg constant, 1107

Safety
electrical, 733, 733–734, 734, 800, 800
in nuclear fission reactions, 1206–1207

Salam, Abdus, 1244
Satellite motion, 344, 344, 347, 347–351, 

348, 350, 350t, 351
Savart, Félix, 772
Scalar product, work and, 154–156
Scalar quantities

addition of, 55
multiplication of, 56–57
overview, 22
pressure, 359
vectors and, 54–55, 154–156, 155

Scanning electron microscope (SEM), 1066
Scanning tunneling microscopes (STM), 

1095, 1095–1096
Scattering, polarization of light waves by, 

1002, 1002–1003
Scattering events, reactions as, 1201
Schmidt, Brian P., 1251
Schmidt-Nielsen, Knut, 382
Schmitt, Harrison, 102
Schrieffer, J. R., 703
Schrödinger, Erwin, 1090
Schrödinger equations, 1089–1091, 1090, 

1090, 1092, 1114, 1115n, 1120n, 
1121n

Schrödinger’s cat, 1252
Schwarzschild radius, 350
Schwinger, Julian, 1230
Scientific notation, A-4–A-5
Scissors, laser, 1136
Scotopic vision, of eyes, 949
Scott, David, 42
Search coil device, 821
Search for Extraterrestrial Intelligence 

(SETI), 892
Second (s, SI base unit of time), 5
Secondary maxima, in diffraction  

patterns, 984
Second derivative, in calculus, A-14
Second law of thermodynamics

entropy and, 578–580, 579
heat engines and, 557, 557–559, 558, 558

Segré, Emilio, 1228
Seismic waves, 417
Selection rules for allowed transitions,  

1131, 1150
Selective absorption, polarization by,  

998–999, 999
Selectron superpartner particle, 1253
Self-induced emf («L), 825
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Self-induction, 825, 825–826
Self-sustained nuclear chain reaction, 1205
SEM (scanning electron microscope), 1066
Semiconductor devices

integrated circuits, 1170, 1170–1171
junction diode, 1165, 1165–1166, 1166
light-emitting and light-absorbing diodes, 

1166–1168, 1167
transistors

junction, 1168
MOSFET (metal-oxide-semiconductor 

field-effect tranistor), 1168, 
1168–1169

resonant tunneling, 1169–1170, 1170
Semiconductors, 591, 702, 1163, 1163–1165, 

1163t, 1164, 1165
Semimajor axis, of ellipse, 340
Semiminor axis, of ellipse, 340
Series combination of capacitors, 670, 670–671
Series combination of resistors, 716–718, 717
Series expansion, A-13
Series limit, of Balmer series, 1107
SETI (Search for Extraterrestrial 

Intelligence), 892
Seurat, Georges, 1005
Shape, elasticity of, 321
Shear modulus, 320, 320t, 321, 321, 376
Shell model (Goeppert-Mayer and Jensen), 

in nuclear physics, 1185–1187, 1186
Shells, atomic, 1116, 1116t
Sherwood, B. A., 191n
Shockley, William, 1168
Shock waves, 442, 442–443, 443
Side maxima, in diffraction patterns, 984
Sideview mirrors, automobile, 935, 935
Sigma (S) particle, 1236–1237
o (summation symbol), 44
Significant figures, 13–15, 14, 26n
Simple harmonic motion, 387. See also 

Oscillatory motion
Simple harmonic motion of elements of the 

medium, amplitude of, 457
Simple harmonic oscillator, 1096–1098, 1097
Simple magnifier, 951, 951
Simplification models, 8
Simplified pictorial representations, 9, 9
Simultaneity and relativity of time,  

1019–1020, 1031
Sines and tangents of angles, 401t
Single-slit and circular aperture resolution, 

988–992, 989, 990, 992
Single-slit diffraction patterns, intensity of, 

987, 987–988, 988
Sinusoidal waves, 419, 419, 420, 422–423, 

426, 426–428, 453–455, 454
SI (Système International) standards,  

3, A-24
Six Flags Great America amusement park 

(IL), 145
Ski jump, example of projectile motion, 

80, 80
Skysurfer, forces on, 142, 142
SLAC (Stanford Linear Accelerator),  

1241
Slipher, Vesto Melvin, 1248
Slopes of graphs, 25
Slug (unit of mass), 100n
Small angle approximation, 401

Smartphones, physics activities involving,  
2, 20, 50, 52, 68, 89, 127, 129,  
137–138, 144, 228, 307, 354, 415, 
445, 447, 475, 495, 636, 664, 711, 
742, 873, 920, 925, 956

Smith, George E., 1060
Smithsonian Institution, 825
Snell’s law of refraction, 907–908, 912, 924
Solar and Heliospheric Observatory 

(SOHO), 357
Solar cells, nonreflective coatings for,  

973, 973
Solar sailing, for spacecraft propulsion, 885
Solar Star (CA), 1167
Solenoids

electric field induced by changing 
magnetic field in, 809, 809–810

inductance of, 830–831
magnetic fields of, 782, 782–783, 783
mutual inductance of, 833

Solidification, latent heat of, 509n
Solids. See Molecules and solids
Solid-state physics, 1144
Sonic booms, 443
Sorbonne (France), 1064
Sound level (b), in decibels (dB), 436–437
Sound waves, 429–443

beating, 469–471, 471
Doppler effect, 438–443, 439, 440, 442, 443
intensity of, 433–438, 434, 436t, 438
overview, 429–431, 430, 431
speed of, 431–433
standing, in air columns, 466–469, 467

South Pole Telescope, 1248
Space quantization, 1122–1124, 1124
Spacetime, curvature of, 1040–1041
Space-time graphs, in special theory of 

relativity, 1026, 1026–1029, 1028
Space-time transformation equations, 

Galilean, 1014
Spatial interference, 469
Special theory of relativity

length contraction, 1025–1026, 1026
relativistic Doppler effect, 1029
simultaneity and relativity of time, 1019, 

1019–1020
space-time graphs, 1026, 1026–1029, 1028
time dilation, 1019, 1019–1024, 1020, 

1021, 1021t, 1023
twin paradox, 1024, 1024–1025

Specific heat (c)
calorimetry and, 504–508, 505, 506t, 507
molar, for ideal gas, 539, 539–542, 540, 

541t
molar, of hydrogen, 1097–1098

Spectra
of electromagnetic waves, 887–889, 888, 

888, 889, 889
of gases, 1106, 1106–1107, 1107
molecular, 1153, 1153–1156, 1154, 1155
visible, 1130, 1130–1131
x-ray, 1131, 1131–1133, 1132, 1133

Spectroscopy
as diffraction grating application,  

994–996, 995
Fourier transform infrared (FTIR), 

974–975
Kirchhoff and Bunsen as founders of, 724

Specular reflection, 902
Speed (v)

angular (v), 82
average angular (v), 251
constant angular, 399–400
conversion factors for, A-1
dimensions and units of, 10t
of electromagnetic waves, 878, 880
escape, 348, 348–350, 350t
instantaneous, 24–27, 26
instantaneous angular, 251
of light, 899–901, 900, 1015, 1015–1016, 

1018
of light in vacuum, 4
maximum, 130–131
of particles, 21–24
phase, of waves in wave packets, 

1068–1069
of pulses on cords, 425
resistive force proportional to object, 141, 

141–143
root-mean-square (rms), of molecules, 

538, 538t
of sound waves, 431–433, 433t
tangential, 255
terminal, 140–141, 142t
of water spray, 370, 370–371
of waves on strings, 423–426, 424, 425
work-kinetic energy theorem related  

to, 163
Speedometer, 12
Spheres

capacitance of isolated charged, 665
capacitor as, 668, 668
charge distribution symmetric to, 626, 

626–627, 627
charge on, as example of Coulomb’s law, 

591–592, 597, 597–598
Spherical aberrations in lenses, 947, 947
Spherical mirrors

concave, 928, 928–930, 929, 930, 933–934
convex, 930–931, 931, 935, 935
ray diagrams for, 931, 931–933, 931t, 932, 

933
Spherical waves, 435, 435
Spin angular momentum, for electrons, 

1125, 1125n
Spin magnetic quantum number (ms), 1123, 

1123–1126, 1124, 1125, 1126t
Spinning object, 130
Spin property of electrons, 786–787, 787
Spirit-in-glass thermometer, 383
Spontaneous and stimulated transitions, 

1133–1134, 1134
Spontaneous emission, 1134
Spring constant (k), 158
Springs. See also Oscillatory motion

motion of object attached to, 387, 
387–388

pushing on, 238, 238–239
two-body collision with, 226, 226–227
work done by, 158, 158–160, 159,  

160, 168
Square barrier, 1093
Square well, particle-in-a-box in, 1090
Squark superpartner particle, 1253
Stability, nuclear, 1181–1182, 1182
Stable equilibrium, 173, 173
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Standard international notation for large 
numbers, 4n

Standard Model (electroweak theory and 
QCD), 1244–1245, 1245

Standing waves, 456–459, 457, 458. See also 
Superposition and standing waves

Stanford Linear Accelerator (SLAC), 1241
Stanford Linear Collider, 1245
Stanford University, 1241
State variables, 513, 672n
Static equilibrium. See Equilibrium
Static friction forces, 114, 115
Stationary states of electrons, 1109
Statistical physics, 1158
Steady flow, 368
Steam engine, 567
Stefan-Boltzmann constant, 1049
Stefan’s law, 1049–1050, 1053, 1256
Stellarator fusion device, 1210
Step-down transformer, 864
Stepped leader of lightning, 636, 636
Step-up transformer, 864
Stern, Otto, 1124–1126
Stick-and-slip motion, 412
Stimulated absorption, 1133–1134, 1134
Stimulated emission, 1134, 1134–1135
Stimulated transitions, 1133–1134, 1134
Stirling, Robert, 584
Stirling engine, 584, 584
STM (scanning tunneling microscopes), 

1095, 1095–1096
Stokes’s law, 657
Stonehenge, as observatory, 2
Stopping potential, 1056
Storyline

alternating-current circuits, 847–848
angular momentum, 285–286
atomic physics, 1105
circular motion, 127–128
continuous charge distributions, 615–616
current and resistance, 691–692
diffraction patterns, 983
direct-current circuits, 713–714
electric fields, 588–589
electric potential, 636–637
electromagnetic waves, 873–874
energy, 150–151
energy, conservation of, 181–182
equilibrium, 310–311
Faraday’s law of induction, 797–798
fluid mechanics, 358
gravitation, 332–333
heat engines, 556–557
image formation, 925–926
kinetic theory of gases, 533–534
light and ray optics, 898–899
linear momentum, 210
magnetic fields, 742–743
magnetic fields, sources of, 771–772
measurement, 2–3
molecules and solids, 1144–1145
motion, laws of, 95
motion in one dimension, 20–21
motion in two dimensions, 68
nuclear physics, 1177–1178
particle physics and cosmology, 

1225–1226
quantum mechanics, 1079

quantum physics, 1048–1049
relativity, 1012–1013
rotational motion, 249–250
superposition and standing waves, 

451–452
temperature, 482–483
vectors, 52
wave motion, 415–416

Strange particles and strangeness,  
1236–1238, 1237

Strange type of quark (s), 1240
Strassmann, Fritz, 1202
Streamline flow, 369, 377
Strings

power supplied to vibrating, 427–428
sinusoidal waves on, 422–423, 426–428
speed of waves on, 423–426, 424, 425
standing waves on, 457, 457–459, 458

String theory, 1252, 1252–1253
Stroboscopic photograph, 36
Strong force, 96, 1231, 1242
Strontium-90, 1222
Structural mechanics, 593
Structural models, 7
Subshells, atomic, 1116, 1116t
Subtraction of vectors, 56, 56
Successive radioactive decays, law of, 1220
Summation symbol (o), 44
Sun

atmosphere, analysis of gases in, 1106
electromagnetic radiation from, 523–524
escape speed of, 350t
fusion in, 1207
magnetic field of, 747t
mass of, 5t, 343, 343t
planetary data on, 343t
temperature of, 487
wavelength of radiation from, 1054

Sunday Afternoon on the Island of La Grande 
Jatte, A (Seurat), 1005

Sunglasses, to reduce ultraviolet light 
damage, 889, 889

Sunscreen lotions, to reduce ultraviolet light 
damage, 889

Superconductors, 702, 702–703, 702t,  
789–790, 790, 792, 845

Superheating, 512
Super Kamiokande neutrino facility, 

1234–1235
Supernova explosions, 1045
Supernova Shelton 1987A, 1257, 1257–1258
Supernumerary bows, 898
Superposition and standing waves, 451–480. 

See also Wave motion
in air columns, 466–469, 467, 469
beats: interference in time, 469–471, 471
boundary conditions, analysis model of, 

461, 461–465, 463, 464
boundary effects: reflection and 

transmission, 459, 459–460, 460
nonsinusoidal waveforms, 472, 472–473, 

473
overview, 456, 456–459, 457, 458
resonance, 465
storyline on, 451–452
on strings, 457, 457–459, 458
waves in interference, analysis model of, 

452–456, 453, 454, 455

Super Proton Synchrotron, CERN, 1245
Supersymmetry (SUSY), 1253
Surface charge density (s), 617, 649
Surface effect, in liquid-drop model, 1184
Surface-water waves, 417, 417
Surfactants, 680
S waves, 417
Symbols, A-2–A-3
Symmetry effect, in liquid-drop model, 

1184–1185
Systems. See also Analysis models

deformable, 152, 237–239, 238
energy diagrams and equilibrium of, 173, 

173–174, 174
energy model based on, 151
of many particles, 234–237

Tabular representations, 9, 22
Tacoma Narrows Bridge (WA), 407, 407
Tangent function, 60
Tangential acceleration, 84, 84–85, 255
Tangential velocity, 255
Tangents and sines of angles, 401t
Tau (t) particles, 1233
Taylor, J. B., 1124–1126
Telegraph, 792
Telescopes, 953, 953–954, 954, 991
TEM (transmission electron microscope), 

1066
Temperature (T), 482–501

Celsius scale, 484–485, 485, 487
constant-volume gas thermometers and 

absolute scale, 485, 485–487, 486, 
486, 487

Curie, 788, 788t
current and resistance and, 701, 701–702
energy-level diagrams and, 545
Fahrenheit scale, 487
ideal gas, macroscopic description of, 

492, 492–494, 493
Kelvin scale, 487
molar specific heat as function of, 544
molecular kinetic energy and, 537
power of emitted radiation increases  

with, 1049
storyline on, 482–483
of surfaces of planets, 527t, 552t
thermal expansion of solids and liquids, 

488, 488–491, 489, 489t, 490, 491
thermometers and Celsius scale, 484–485, 

485, 487
zeroth law of thermodynamics and, 

483–484, 484
Temperature coefficients of resistivity,  

697t, 701
Temperature gradient (dT/dx), 519
Temporal interference, 470
Ten, powers of, 6t
Tensile strain, 320, 321
Tensile stress, 320, 321
Terminal speed, 140–141, 142t
Terminal voltage of battery, 714–716
Terrestrial fusion reactions, 1207–1209
Tesla (T, unit of magnetic field), 747
Tesla, Nikola, 865, 865
Tevatron, Fermi National Accelerator 

Laboratory, 1245
Texas Instruments, Inc., 1170
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TFTR (Tokamak Fusion Test Reactor),  
1209, 1210

Theorem of equipartition of energy, 538
Theory of Everything, 1252
Thermal conduction

current analogy to, 692
entropy change in, 577–578
overview, 519, 519–521, 520

Thermal efficiency (e) of heat engines, 
558–559

Thermal energy, 502
Thermal equilibrium, 483
Thermal expansion of solids and liquids, 

488, 488–491, 489, 489t, 490, 491. 
See also Temperature

Thermal neutrons, moderators and, 1202
Thermal radiation, 1053–1054
Thermodynamics. See also Temperature

definition of, 1
electricity linked to, 705–706
zeroth law of, 483–484, 484

Thermodynamics, first law of, 501–532
energy transfer mechanisms

convection, 522–523
Dewar flask, 525
home insulation, 521–522, 521t, 522
overview, 518–519
radiation, 523–524
thermal conduction, 519, 519–521, 520

heat and internal energy, 502–505, 504
latent heat, 509–512, 510, 510t
overview, 514–518, 515, 516, 517
specific heat and calorimetry, 504–508, 

505t, 506, 506
storyline on, 501–502
work in, 513, 513–514, 514

Thermodynamic systems
entropy change in, 572–578

in Carnot cycle, 575–576
in free expansion, 576–577
overview, 572–575
in thermal conduction, 577–578

Thermodynamic variables of ideal  
gas, 493

Thermometers, 383, 1053, 1053. See also 
Temperature

Thermonuclear fusion reactions, 1207
Thermos flask (Dewar flask), 525
Thin films, interference in, 970, 970–973, 

971, 973
Thin lens equations, 941
Thin lenses. See Lenses
Thompson, Benjamin, 504
Thomson, G. P., 1065
Thomson, J. J., 630, 753, 753, 766, 1075, 

1107, 1107
Thomson, William (Lord Kelvin), 557
Thorud, Richard A., 921
Threshold of hearing, 435
Threshold of pain, 435
Tilting rearview mirrors, 928, 928
Time (t)

conversion factors for, A-1
dilation of, from special theory of 

relativity, 1019, 1019–1024, 1020, 
1021, 1021, 1021t, 1023, 1031

example values of, 5t
interference in, 469–471, 471

length connection to, 402
standards of, 5–6

Time constant (t), 140
of RC circuit, 728
of RL circuits, 829–830, 830

Time-dependent Schrödinger equation, 
1090

Ting, Samuel, 1241
Tinibagam Sin Itiro, 1230
Tokamak Fusion Test Reactor (TFTR),  

1209, 1210
Tokamak magnetic confinement device, for 

fusion reactions, 1209, 1209–1210
Tops and gyroscopes, motion of, 301, 301
Top type of quark (t), 1241
Toro Company, Inc., 921
Toroid, magnetic field created by, 781, 

781–782
Toroidal magnetic confinement device, for 

fusion reactions, 1209, 1209–1210
Torque ( tS)

on current loop in uniform magnetic 
field, 757, 757–760, 758, 759, 760

overview, 257, 257–259, 258
rigid object under net, 259, 259–263, 261, 

262, 263
vector product and, 286, 286–288
zero net, 311

Torricelli, Evangelista, 364, 383
Torricelli’s barometer, 380, 380
Torricelli’s law, 374, 374–375
Torsional pendulum, 404, 404
Torsion constant (k), 404
Total energy (E), 1037
Total energy of simple harmonic oscillator, 

395, 396
Total instantaneous energy density (u), 883
Total internal reflection, 914, 914–917, 915, 

916, 917
Totally submerged objects, buoyant force 

on, 366, 366
Toyota Motor Company, 1
Tracing, radioactivity in, 1213, 1213–1214
Trajectory of projectiles, 74–80
Trans-Alaska Pipeline, 496
Transfer of energy, 182, 182, 183
Transfer variables, 513
Transformation of energy, 186
Transformers

eddy currents in, 815, 865
and power transmission, 863–866, 864, 

864, 865
step-down, 864
step-up, 864

Transistors
field-effect, 1168, 1168–1169
junction, 1168
resonant tunneling, 1169–1170

Transitions
forbidden, 1130
selection rules for allowed, 1131
spontaneous and stimulated, 1133–1134, 

1134
Translational motion, 22, 162

center of mass moving in, 271, 272, 273
equations for, 270t
kinematic equations for, 253t
in rotational motion, 254–257

Transmission coefficient (T), 1093–1094
Transmission electron microscope (TEM), 

1066
Transmission grating, 992
Transmission of standing waves, 459,  

459–460, 460
Transverse waves, 416, 416, 417, 466
Traveling waves, analysis model of, 419, 

419–423, 420, 422, 423. See also 
Superposition and standing waves

Triboelectric series, 609
Trigonometric functions of angles, 53, 389n, 

401t
Trigonometry, A-11–A-13, A-12t
Triple point of water, 486
Tropical year, 18
Trough, of waves, 417
Tsunami (Japan)-caused nuclear power 

disaster (2011), 1206
Tuning fork, frequency of, 469
Tunneling

applications for, 1094, 1094–1096
through potential energy barrier, 1093, 

1093–1094
Turbulent flow, 369, 369, 383
Twin paradox, in special theory of relativity, 

1024, 1024–1025
Two-slit diffraction patterns, intensity  

of, 988

Uhlenbeck, George, 1123–1124
Ukraine Radiological Institute, 1206
Ultrasonic sound waves, 429
Ultraviolet catastrophe, 1051
Ultraviolet waves, 888–889
Uncertainty

entropy and, 570–571
experimental, 508
propagation of, A-20–A-21

Uncertainty principle, 1071, 1071–1073
Underdamped systems, 405
Uniform circular motion, 81, 81–83, 398, 

398–400, 399. See also Circular 
motion

Uniformly charged disk, 620, 620, 649, 
649–650

Uniform ring of charge, 618–619, 619, 649, 
649

United Nations Environment Programme, 
1155

United Nations Framework Convention on 
Climate Change, 1155

Units, conversion of, 12
Units of physical quantities, A-2–A-3
Unit vectors, 59, 59–60, 60
Universal gravitation. See Gravitation
Universe

Big Bang theory of creation of, 1246, 
1246–1248

critical density and fate of, 1249, 
1249–1250

dark matter and missing mass of, 
1250–1251

evidence for expansion of, 1248–1249
mysterious energy of, 1251

University of Cambridge (UK), 753
University of Chicago, 1061
University of Helmstedt (Germany), 624
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Doppler effect, 438–443, 439, 440, 442, 
443

intensity of, 433–438, 434, 436t, 438
overview, 429–431, 430, 431
speed of, 431–433, 433t
standing, in air columns, 466–469, 467

speed of waves on strings, 423–426, 424, 
425

storyline on, 415–416
traveling waves, analysis model of, 419, 

419–423, 420, 422, 423
Wave number (k), 421
Wave optics, 962–982. See also Diffraction 

patterns
intensity distribution of double-slit 

interference pattern, 968–969,  
969

in interference, analysis model of, 965, 
965–968, 966, 966

interference in thin films, 970, 970–973, 
971, 973

Michelson interferometer, 973–975, 974, 
975

reflection causing change of phase, 969, 
969–970, 970

storyline on, 962
Young’s double-slit experiment, 963, 

963–964, 964
Wave packets, 1067, 1067–1068
Wave-particle duality, 1070, 1080
Wave under reflection, analysis model of, 

902, 902–905, 903, 904, 905
Wave under refraction, analysis model of, 

905–910
angle of refraction for glass, 908–909
index of refraction, 906–908, 907, 907t
light through prism, 910, 910
light through slab, 909–910, 910
overview, 905, 905–906, 906, 907, 908, 

908
Weak force, 96, 1226–1227, 1227t
Weakly interacting massive particle 

(WIMP), 351
Weber (Wb, unit of magnetic flux), 784
Weber, Wilhelm, 792
Weight

in Archimedes’ principle, 365
example of, 111, 111–112
gravitational force and, 102–103
mass versus, 99

Weinberg, Steven, 1244
Well, particle-in-a-box in, 1090
Wendelstein 7-X stellarator, for nuclear 

fusion (Germany), 1210
Weyl, H., 1018n
White, Jack, 451
Wien’s displacement law, 1050, 1050
Wi-Fi signals, 873, 873, 889
Wilkinson Microwave Anisotropy Probe, 

1248
Wilson, Charles, 1061
Wilson, Robert W., 1247, 1247–1248
WIMP (weakly interacting massive particle), 

351
Windmills, 797, 797
Wireless battery charger, 833, 833
Wire-wound resistor, 696
Wooster College, 1061

Visible spectra, 913, 1130, 1130–1131
VLA (Very Large Array, NM), 1007
Volt (V, unit of electric potential), 638
Voltage (DV)

across capacitor, 855
amplitude of, 848–850
instantaneous, 849
maximum possible of battery, 714
potential difference as, 638

Voltage drop, 717n
Voltmeter, potential difference measured 

by, 676
Volume (V)

of geometric shapes, A-10, A-10t
molar specific heat of ideal gas at 

constant, 539–540, 540
of nucleus, 1180–1181
overview, 10t

Volume charge density (r ), 616
Volume effect, in liquid-drop model, 1184
Volume elasticity, 321–322, 322
Voyager I and 2 satellites, 355

Washboarding, on roadways, 412
Waste disposal in nuclear reactors, 

1206–1207
Water

as polar molecule, 680
thermal-expansion behavior of, 490, 490
triple point of, 486

Watt (W, unit of power), 201
Watt, James, 201
Waveform, 418
Wave front, 435
Wave function (C)

for hydrogen, 1117, 1117–1120, 1118, 1119
overview, 417–418, 421, 1079–1083, 1080, 

1082
in particle-in-a-box problem, 1084–1085

Wave intensity (I), 882
Wavelength (l)

blueshift and redshift in, 1029
Brewster’s angle as function of, 1000
Compton, 1062
cutoff, in photoelectric effect, 1059
de Broglie, 1064, 1064n, 1084
description of, 419–420, 420, 423
measuring, 967
separating double-slit fringes of two, 

967–968
signal components identified by, 975n
of visible light versus color, 888t
Wien’s displacement law effect on, 1050, 

1050
Wave model of light (Huygens), 899
Wave motion, 415–450. See also 

Electromagnetic waves; Oscillatory 
motion; Superposition and 
standing waves

energy transfer by sinusoidal waves on 
strings, 426, 426–428

gravitational, 1042
linear wave equation, 428, 428, 428–429
particle properties of, 1064, 1064–1066, 1066
from propagation of a disturbance, 416, 

416, 416–419, 417, 418
sound waves, 429–443

beating, 469–471, 471

University of Manchester (UK), 1157
University of Munich (Germany), 695, 1071
Unstable equilibrium, 173, 173
Up type of quark (u), 1240
Uranium, fission of, 1109
Urner, Steve, 91
U.S. Coast Guard, 63, 92
U.S. customary system of measurement 

units, 5, 100n
U.S. Department of Agriculture, 1215
U.S. Food and Drug Administration (FDA), 

1215
U.S. Post Office, 123

Valence band, 1163
Van Allen radiation belts, 752, 752
Vancouver International Airport (British 

Columbia, Canada), 745
Van de Graaff generator, 709–710
van der Meer, Simon, 1227
van der Waals molecular bonds, 1147, 1243
Vaporization, latent heat of (Lv), 509, 510t
Vector product, torque and, 286, 286–288
Vector quantities, 22, 54, 252n
Vectors, 52–67

addition of, 61
arithmetic for, 55, 55–58
components of, 58, 58–62, 59
coordinate systems, 53–54
cross product of two, 286, 286
dot product of two, 154–156, 155
force and, 97, 97
linear momentum as vector quantity, 212
in nonuniform circular motion, 134, 134
scalar multiplication of, 56–57
scalar product of two, 154–156, 154
scalar quantities and, 54–55
storyline on, 52
vector product of two, 286, 286

Velocity ( vS)
angular (vS), 250–252
constant, 27–30, 28
in constant acceleration model, 39, 72, 72
constant positive, 36, 37
Galilean transformation equations, 

1015–1016
instantaneous, 24–27, 25
as kinematic equation, 45
Lorentz velocity transformation 

equations, 1031–1034, 1033
of particles, 21–24
relative, 85–88, 87, 87–88
resistive force proportional to object, 139, 

139–141
of simple harmonic oscillator, 390n, 391, 

391–392
tangential, 255
vectors of, 69–71

Velocity selector, 752, 752
Velocity-time graph, 33, 33, 35
Venturi tube, 373, 373–374
Very Large Array (VLA, NM), 1007
Vibrational motion, 1151, 1151–1153, 1152
Vibrational quantum number, 1151
Virtual image, 926
Virtual photons, 1230–1231
Viscosity, 369, 375–377, 376, 376, 376t
Visible light, 888, 888t
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y -intercept, in linear equations, A-7
Young, Thomas, 899, 963, 984
Young’s double-slit experiment in wave 

optics, 963, 963–965, 964,  
965

Young’s modulus, 320–321, 320t
YouTube.com, 143–144
Yukawa, Hideki, 1229–1231, 1243

Zeeman effect, 1122, 1122, 1123n
Zero, net force value as, 596, 596–597
Zero acceleration, 36, 37
Zeroth law of thermodynamics, 483–484
Zoom lens system, 961
Zweig, George, 1240–1241
Zwicky, Fritz, 351n, 1250

overview, 161–164, 162t, 163, 164
for particles, 192
positive vs. negative effects in, 162–163
relativistic, 1035–1036, 1036
for rotational motion, 269

World Health Organization, 1215
World-line (path through space), 1026–1027
World Meteorological Organization, 1155

x and y components of vectors, 58
X-rays, 889, 996, 996–997, 997, 1063
X-ray spectra, 1131, 1131–1133, 1132

Yellowstone National Park, 381, 481
Yerkes Observatory (Williams Bay, WI),  

954

Work (W)
constant force for, 151–154, 152, 153, 154
definition of, 182
first law of thermodynamics and, 513, 

513–514, 514
varying force for, 156–161, 157, 158,  

159, 160
Work and Heat Transfer in the Presence of 

Sliding Friction (Sherwood and 
Bernard), 191n

Work functions of metals, 1057–1058,  
1058t

Work-kinetic energy theorem, 161, 161–164, 
162t, 163, 164. See also Kinetic energy

in magnetic fields, 747
for nonisolated systems, 182
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Some Physical Constants

Quantity Symbol Valuea

Atomic mass unit u 1.660 539 040 (20) 3 10227 kg
  931.494 095 4 (57) MeV/c 2

Avogadro’s number NA 6.022 140 857 (74) 3 1023 particles/mol

Bohr magneton �B 5
e U
2me

 9.274 009 994 (57) 3 10224 J/T

Bohr radius a0 5
U 2

mee 
2ke

 5.291 772 106 7 (12) 3 10211 m

Boltzmann’s constant kB 5
R

NA

 1.380 648 52 (79) 3 10223 J/K

Compton wavelength �C 5
h

mec
 2.426 310 236 7 (11) 3 10212 m

Coulomb constant ke 5
1

4��0

 8.987 551 788 . . . 3 109 N ? m2/C2 (exact)

Deuteron mass md 3.343 583 719 (41) 3 10227 kg
  2.013 553 212 745 (40) u
Electron mass me 9.109 383 56 (11) 3 10231 kg
  5.485 799 090 70 (16) 3 1024 u
  0.510 998 946 1 (31) MeV/c 2

Electron volt eV 1.602 176 620 8 (98) 3 10219 J

Elementary charge e 1.602 176 620 8 (98) 3 10219 C

Gas constant R 8.314 459 8 (48) J/mol ? K

Gravitational constant G 6.674 08 (31) 3 10211 N ? m2/kg2

Neutron mass mn 1.674 927 471 (21) 3 10227 kg
  1.008 664 915 88 (49) u
  939.565 413 3 (58) MeV/c 2

Nuclear magneton �n 5
e U
2mp

 5.050 783 699 (31) 3 10227 J/T

Permeability of free space m0 4p 3 1027 T ? m/A (exact)

Permittivity of free space �0 5
1

�0c
2 8.854 187 817 . . . 3 10212 C2/N ? m2 (exact)

Planck’s constant h 6.626 070 040 (81) 3 10234 J ? s

 U 5
h

2�
 1.054 571 800 (13) 3 10234 J ? s

Proton mass mp 1.672 621 898 (21) 3 10227 kg
  1.007 276 466 879 (91) u
  938.272 081 3 (58) MeV/c 2

Rydberg constant RH 1.097 373 156 850 8 (65) 3 107 m21

Speed of light in vacuum c 2.997 924 58 3 108 m/s (exact)

Note: These constants are the values recommended in 2014 by CODATA, based on a least-squares adjustment of data from different measurements. For a more 
complete list, see P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2014.” Rev. Mod. Phys. 88:3, 
035009, 2016.

aThe numbers in parentheses for the values represent the uncertainties of the last two digits.
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Average Earth–Moon distance 3.84 3 108 m
Average Earth–Sun distance 1.496 3 1011 m
Average radius of the Earth 6.37 3 106 m
Density of air (208C and 1 atm) 1.20 kg/m3

Density of air (0°C and 1 atm) 1.29 kg/m3

Density of water (208C and 1 atm) 1.00 3 103 kg/m3

Free-fall acceleration on the Earth 9.80 m/s2

Mass of the Earth 5.97 3 1024 kg
Mass of the Moon 7.35 3 1022 kg
Mass of the Sun 1.99 3 1030 kg
Standard atmospheric pressure on the Earth 1.013 3 105 Pa

Note: These values are the ones used in the text.

Physical Data Often Used

Some Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation

 10224 yocto y 101 deka da
 10221 zepto z 102 hecto h
 10218 atto a 103 kilo k
 10215 femto f 106 mega M
 10212 pico p 109 giga G
 1029 nano n 1012 tera T
 1026 micro m 1015 peta P
 1023 milli m 1018 exa E
 1022 centi c 1021 zetta Z
 1021 deci d 1024 yotta Y

Solar System Data

Body Mass (kg)
Mean Radius  

(m) Period (s)
Mean Distance from 

the Sun (m)

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Plutoa

Moon
Sun

3.30 3 1023

4.87 3 1024

5.97 3 1024

6.42 3 1023

1.90 3 1027

5.68 3 1026

8.68 3 1025

1.02 3 1026

1.25 3 1022

7.35 3 1022

1.989 3 1030

2.44 3 106

6.05 3 106

6.37 3 106

3.39 3 106

6.99 3 107

5.82 3 107

2.54 3 107

2.46 3 107

1.20 3 106

1.74 3 106

6.96 3 108

7.60 3 106

1.94 3 107

3.156 3 107

5.94 3 107

3.74 3 108

9.29 3 108

2.65 3 109

5.18 3 109

7.82 3 109

—
—

5.79 3 1010

1.08 3 1011

1.496 3 1011

2.28 3 1011

7.78 3 1011

1.43 3 1012

2.87 3 1012

4.50 3 1012

5.91 3 1012

—
—

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined 
as a “dwarf planet” (like the asteroid Ceres).
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Mathematical Symbols Used in the Text and Their Meaning

Symbol Meaning

5  is equal to
; is defined as
± is not equal to
~ is proportional to
, is on the order of
. is greater than
, is less than
..(,,) is much greater (less) than
< is approximately equal to
Dx the change in x

o
N

i 5 1

 xi the sum of all quantities xi from i 5 1 to i 5 N

|x | the absolute value of x (always a nonnegative quantity)

Dx ➛ 0 Dx approaches zero
dx
dt

 the derivative of x with respect to t

0x
0 t

 the partial derivative of x with respect to t

# integral

Standard Abbreviations and Symbols for Units

Symbol Unit Symbol Unit

A ampere K kelvin
u atomic mass unit kg kilogram
atm atmosphere kmol kilomole
Btu British thermal unit L liter
C coulomb lb pound
8C degree Celsius ly light-year
cal calorie m meter
d day min minute
eV electron volt mol mole
8F degree Fahrenheit N newton
F farad Pa pascal
ft foot rad radian
G gauss rev revolution
g gram s second
H henry T tesla
h hour V volt
hp horsepower W watt
Hz hertz Wb weber
in. inch yr year
J joule V ohm
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Conversions

Length

1 in. 5 2.54 cm (exact)
1 m 5 39.37 in. 5 3.281 ft
1 ft 5 0.304 8 m
12 in. 5 1 ft
3 ft 5 1 yd
1 yd 5 0.914 4 m
1 km 5 0.621 mi
1 mi 5 1.609 km
1 mi 5 5 280 ft
1 mm 5 1026 m 5 103 nm
1 ly (light-year) 5 9.461 3 1015 m
1 pc (parsec) 5 3.26 ly 5 3.09 3 1016 m

Area

1 m2 5 104 cm2 5 10.76 ft2

1 ft2 5 0.092 9 m2 5 144 in.2

1 in.2 5 6.452 cm2

1 ha (hectare) 5 1.00 3 104 m2

Volume

1 m3 5 106 cm3 5 6.102 3 104 in.3

1 ft3 5 1 728 in.3 5 2.83 3 1022 m3

1 L 5 1 000 cm3 5 1.057 6 qt 5 0.035 3 ft3

1 ft3 5 7.481 gal 5 28.32 L 5 2.832 3 1022 m3

1 gal 5 3.786 L 5 231 in.3

Mass

1 000 kg 5 1 t (metric ton)
1 slug 5 14.59 kg
1 u 5 1.66 3 10227 kg 5 931.5 MeV/c2

Force

1 N 5 0.224 8 lb
1 lb 5 4.448 N

Velocity

1 mi/h 5 1.47 ft/s 5 0.447 m/s 5 1.61 km/h
1 m/s 5 100 cm/s 5 3.281 ft/s
1 mi/min 5 60 mi/h 5 88 ft/s

Acceleration

1 m/s2 5 3.28 ft/s2 5 100 cm/s2

1 ft/s2 5 0.304 8 m/s2 5 30.48 cm/s2

Pressure

1 bar 5 105 N/m2 5 14.50 lb/in.2

1 atm 5 760 mm Hg 5 76.0 cm Hg
1 atm 5 14.7 lb/in.2 5 1.013 3 105 N/m2

1 Pa 5 1 N/m2 5 1.45 3 1024 lb/in.2

Time

1 yr 5 365 days 5 3.16 3 107 s
1 day 5 24 h 5 1.44 3 103 min 5 8.64 3 104 s

Energy

1 J 5 0.738 ft ? lb
1 cal 5 4.186 J
1 Btu 5 252 cal 5 1.054 3 103 J
1 eV 5 1.602 3 10219 J
1 kWh 5 3.60 3 106 J

Power

1 hp 5 550 ft ? lb/s 5 0.746 kW
1 W 5 1 J/s 5 0.738 ft ? lb/s
1 Btu/h 5 0.293 W

Some Approximations Useful for Estimation Problems

1 m < 1 yd 1 m/s < 2 mi/h

1 kg < 2 lb 1 yr < p 3 107 s

1 N < 14 lb 60 mi/h < 100 ft/s

1 L < 14 gal 1 km < 12 mi

Note: See Table A.1 of Appendix A for a more complete list.

The Greek Alphabet

Alpha A a Iota I i Rho R r

Beta B b Kappa K k Sigma S s

Gamma G g Lambda L l Tau T t

Delta D d Mu M m Upsilon Y y

Epsilon E e Nu N n Phi F f

Zeta Z z Xi J j Chi X x

Eta H h Omicron O o Psi C c

Theta Q u Pi P p Omega V v
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